Science.gov

Sample records for natural beryl crystals

  1. Optical Properties of Natural and Synthetic Beryl Crystals

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.; Merkulov, V.

    2015-03-01

    The results of investigation of photoluminescence and UV-Visible absorption spectra of natural beryl crystals from Ural Mountains before and after fast neutron irradiation and synthetic crystal grown in Belarus and Russia are presented. Photoluminescence (PL) spectra of synthetic beryl crystals contain a broad band with maxima 740 nm excited both by UV light (λex = 260 nm, 271 nm) and laser excitation (λex =263 nm). This band is connected with Fe2+ ions. The temperature lowering down to 8 K leads to appearance of narrow lines in the 680 - 720 nm regions. Emission lines observed in the luminescence spectra are connected with electron transition 2Eg→4A2g of the Cr3+ ions: R-lines (682.5 nm) arise from isolated Cr3+ ions occupying Al3+ sites; N-lines (691, 698, 703, 706 and 711 nm) arise from several types of exchange-coupled pairs of Cr3+ ions occupying first, second and third nearest and related neighbour Al3+ sites. It is shown that the absorption bands in the 690-580 nm region of natural pale blue beryl crystals caused by neutron irradiation belong to a complex center, which consists of Cr3+ ions and radiation defect - F or F+- center. Presence of Fe2+ ions contributes to the persistence of the complex defect.

  2. Properties of beryl single crystals grown by a high pressure hydrothermal method

    SciTech Connect

    Furusaki, T.; Bando, Y.; Kodaira, K. ); Matsushita, T. )

    1989-08-01

    The authors discuss beryl crystals grown under high pressure hydrothermal condition of 1 GPa. The optimum crystal growth was observed at 600{sup 0}C and from 0.1N NaOH solution. The beryl crystals from 0.1 - 0.3N NaOH solutions incorporated water molecules and alkali cations in the channels of the beryl structure. The crystals showed same refractive indices and density as those of natural emerald crystals. These physical properties were very similar to natural emeralds.

  3. Dipole defects in beryl

    NASA Astrophysics Data System (ADS)

    Holanda, B. A.; Cordeiro, R. C.; Blak, A. R.

    2010-11-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be3Al2Si6O18) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  4. Optical and crystal-chemical changes in aquamarines and yellow beryls from Thanh Hoa province, Vietnam induced by heat treatment

    NASA Astrophysics Data System (ADS)

    Fridrichová, Jana; Bačík, Peter; Rusinová, Petra; Antal, Peter; Škoda, Radek; Bizovská, Valéria; Miglierini, Marcel

    2015-04-01

    Optical and crystal-chemical changes in two beryl varieties after the heat treatment were determined using a wide spectrum of analytical methods. Studied aquamarines are generally more enriched in Fe (up to 0.25 apfu) and alkali (up to 0.08 apfu) than yellow beryls (up to 0.07 apfu Fe, up to 0.04 apfu alkali). The determined c/ a ratio of 0.997-0.998 classified all our studied beryls as "normal" beryls. While no crystal structure changes were observed in samples heated to 700 °C, those heated to 900 and 1,100 °C exhibited cracks and fissures. Reduced Fe occurred in samples heated between 300 and 700 °C, and subsequent oxidation from 900 to 1,100 °C induced changes in their colour and clarity. The Fe-bearing beryl colour is controlled by the position of the absorption edge and the presence of a broad band attributed to Fe2+ in the NIR region. Blue colour results from the absorption edge located deeper in the UV region and the presence of broad band in the NIR region. Shift of absorption edge to the visible region at the presence of the broad band gives a yellow colour. Although our studied beryls are enriched in H2O I molecule due to their low alkali content, the H2O II molecule is also present. The following two dehydration processes were observed: (1) release of one double-coordinating H2O II molecule at 300-500 °C and (2) total dehydration at 900-1,100 °C. The observed cracks and fissures likely resulted from channel water release in large beryl crystals.

  5. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice

    SciTech Connect

    Zhukova, Elena S. Gorshunov, Boris P.; Torgashev, Victor I.; Lebedev, Vladimir V.; Shakurov, Gil'man S.; Pestrjakov, Efim V.; Prokhorov, Anatoly S.; Dressel, Martin

    2014-06-14

    Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ε{sup ′}(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from several wavenumbers up to ν = 7000 cm{sup −1}, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ε{sup ′}(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν{sub 1}, ν{sub 2}, and ν{sub 3} of the H{sub 2}O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm{sup −1} reveal a rich set of highly anisotropic features in the low-energy response of H{sub 2}O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm{sup −1} and ∼160 cm{sup −1}, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm{sup −1}) and translational (150–200 cm{sup −1}) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential

  6. Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald.

    PubMed

    de Donato, Philippe; Cheilletz, Alain; Barres, Odile; Yvon, Jacques

    2004-05-01

    An infrared (IR) study of natural deuteration is conducted on minerals containing hydroxyl groups (talc and kaolinite) and channel-water-bearing minerals (beryl and emerald). In talc, the OD valence vibration is located at 2710 cm(-1), corresponding to OD groups surrounded by 3 Mg atoms. In kaolinite, the OD valence vibrations are located at 2671 cm(-1) (inner OD group), 2712, 2706, and 2700 cm(-1) (three inner-surface OD groups). In beryl and emerald, natural deuteration of channel water is observed for the first time by infrared microspectroscopy. In beryl from Minas Gerais (Brazil), the OD profiles are characterized by four bands at 2735, 2686, 2672, and 2641 cm(-1). In emeralds from Colombia and Brazil, the OD profiles are characterized by five or four bands, respectively, at 2816, 2737, 2685, 2673, and 2641 cm(-1) (Colombia) and 2730, 2684, 2672, and 2640 cm(-1) (Brazil). The band at 2816 cm(-1) can be assigned to -OD or OD(-), and bands at 2686-2684, 2673-2672, and 2641-2640 cm(-1) can be assigned to type-I and type-II HOD molecules. The band at 2737-2730 cm(-1) is partially disturbed by combination bands of the mineral. Such OD profiles are different from those obtained by artificial deuteration at higher OD dilution. PMID:15165327

  7. Infrared spectroscopy of OD vibrators in minerals at natural dilution: hydroxyl groups in talc and kaolinite, and structural water in beryl and emerald.

    PubMed

    de Donato, Philippe; Cheilletz, Alain; Barres, Odile; Yvon, Jacques

    2004-05-01

    An infrared (IR) study of natural deuteration is conducted on minerals containing hydroxyl groups (talc and kaolinite) and channel-water-bearing minerals (beryl and emerald). In talc, the OD valence vibration is located at 2710 cm(-1), corresponding to OD groups surrounded by 3 Mg atoms. In kaolinite, the OD valence vibrations are located at 2671 cm(-1) (inner OD group), 2712, 2706, and 2700 cm(-1) (three inner-surface OD groups). In beryl and emerald, natural deuteration of channel water is observed for the first time by infrared microspectroscopy. In beryl from Minas Gerais (Brazil), the OD profiles are characterized by four bands at 2735, 2686, 2672, and 2641 cm(-1). In emeralds from Colombia and Brazil, the OD profiles are characterized by five or four bands, respectively, at 2816, 2737, 2685, 2673, and 2641 cm(-1) (Colombia) and 2730, 2684, 2672, and 2640 cm(-1) (Brazil). The band at 2816 cm(-1) can be assigned to -OD or OD(-), and bands at 2686-2684, 2673-2672, and 2641-2640 cm(-1) can be assigned to type-I and type-II HOD molecules. The band at 2737-2730 cm(-1) is partially disturbed by combination bands of the mineral. Such OD profiles are different from those obtained by artificial deuteration at higher OD dilution.

  8. Anisotropic dynamics of water ultra-confined in macroscopically oriented channels of single-crystal beryl: A multi-frequency analysis

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Mamontov, Eugene; Ishai, Paul ben; Kolesnikov, Alexander I

    2013-01-01

    The properties of fluids can be significantly altered by the geometry of their confining environments. While there has been significant work on the properties of such confined fluids, the properties of fluids under ultraconfinement, environments where, at least in one plane, the dimensions of the confining environment are similar to that of the confined molecule, have not been investigated. This paper investigates the dynamic properties of water in beryl (Be3Al2Si6O18), the structure of which contains approximately 5-A-diam channels parallel to the c axis. Three techniques, inelastic neutron scattering, quasielastic neutron scattering, and dielectric spectroscopy, have been used to quantify these properties over a dynamic range covering approximately 16 orders of magnitude. Because beryl can be obtained in large single crystals we were able to quantify directional variations, perpendicular and parallel to the channel directions, in the dynamics of the confined fluid. These are significantly anisotropic and, somewhat counterintuitively, show that vibrations parallel to the c-axis channels are significantly more hindered than those perpendicular to the channels. The effective potential for vibrations in the c direction is harder than the potential in directions perpendicular to it. There is evidence of single-file diffusion of water molecules along the channels at higher temperatures, but below 150 K this diffusion is strongly suppressed. No such suppression, however, has been observed in the channel-perpendicular direction. Inelastic neutron scattering spectra include an intramolecular stretching O-H peak at 465 meV. As this is nearly coincident with that known for free water molecules and approximately 30 meV higher than that in liquid water or ice, this suggests that there is no hydrogen bonding constraining vibrations between the channel water and the beryl structure. However, dielectric spectroscopic measurements at higher temperatures and lower frequencies

  9. Natural photonic crystals

    NASA Astrophysics Data System (ADS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  10. Single Crystals Grown Under Unconstrained Conditions

    NASA Astrophysics Data System (ADS)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  11. Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa

    NASA Astrophysics Data System (ADS)

    O'Bannon, Earl; Williams, Quentin

    2016-08-01

    The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that

  12. Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa

    NASA Astrophysics Data System (ADS)

    O'Bannon, Earl; Williams, Quentin

    2016-10-01

    The Raman and Cr3+ and V2+ luminescence spectra of beryl and emerald have been characterized up to 15.0 and 16.4 GPa, respectively. The Raman spectra show that an E 1g symmetry mode at 138 cm-1 shifts negatively by -4.57 (±0.55) cm-1/GPa, and an extrapolation of the pressure dependence of this mode indicates that a soft-mode transition should occur near 12 GPa. Such a transition is in accord with prior theoretical results. Dramatic changes in Raman mode intensities and positions occur between 11.2 and 15.0 GPa. These changes are indicative of a phase transition that primarily involves tilting and mild distortion of the Si6O18 rings. New Raman modes are not observed in the high-pressure phase, which indicates that the local bonding environment is not altered dramatically across the transition (e.g., changes in coordination do not occur). Both sharp line and broadband luminescence are observed for both Cr3+ and V2+ in emerald under compression to 16.4 GPa. The R-lines of both Cr3+ and V2+ shift to lower energy (longer wavelength) under compression. Both R-lines of Cr3+ split at ~13.7 GPa, and the V2+ R1 slope changes at this pressure and shifts more rapidly up to ~16.4 GPa. The Cr3+ R-line splitting and FWHM show more complex behavior, but also shift in behavior at ~13.7 GPa. These changes in the pressure dependency of the Cr3+ and V2+ R-lines and the changes in R-line splitting and FWHM at ~13.7 GPa further demonstrate that a phase transition occurs at this pressure, in good agreement with our Raman results. The high-pressure phase of beryl appears to have two Al sites that become more regular under compression. Hysteresis is not observed in our Raman or luminescence spectra on decompression, suggesting that this transition is second order in nature: The occurrence of a second-order transition near this pressure is also in accord with prior theoretical results. We speculate that the high-pressure phase (beryl-II) might be a mildly modulated structure, and/or that

  13. Crystal structure of a new variety of lead dodecaborate Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O and its comparison with beryl and cordierite

    SciTech Connect

    Belokoneva, E. L. Derkach, I. K.; Dimitrova, O. V.

    2013-05-15

    Crystals of a new representative of ring-radical dodecaborates Pb{sub 6}(Li{sub 0.65}Na{sub 0.19})[B{sub 12}O{sub 24}]I{sub 0.84} {center_dot} 0.168H{sub 2}O, space group R3bar m , are obtained under hydrothermal conditions. The structure is determined with-out preliminary knowledge of the chemical formula. It is close to that of the Pb{sub 6}[B{sub 12}O{sub 24}] {center_dot} H{sub 2}O dodecaborate studied earlier, but unlike the latter structure it contains admixtures of iodide anion, lithium cation, and water molecule, which incompletely populate positions in channels. The formation of the second variety, which brings to light ion-exchange properties of the crystals, is due to mineralizing ions available in the concen-trated solution in the course of crystallization. The new compound is compared with beryl and cordierite, which have close structures with channels capable of capturing various groups. Structures of synthetic Na and Ag dodecaborates with analogous but distorted ring dodecaborate radicals are discussed.

  14. Speciation and diffusion profiles of H2O in water-poor beryl: comparison with cordierite

    NASA Astrophysics Data System (ADS)

    Della Ventura, G.; Radica, F.; Bellatreccia, F.; Freda, C.; Cestelli Guidi, M.

    2015-10-01

    This paper reports on water speciation and diffusion in synthetic beryl samples treated in CO2-rich atmosphere, at 700 MPa and 700 and 800 °C, respectively. The study has been conducted by means of polarized FTIR (Fourier transform infrared) integrated with FPA (focal plane array) imaging. As expected, the infrared spectra show the presence of CO2 but also of minor H2O interpreted as resulting from moisture present in the starting materials used for the experiments. FPA-FTIR images show that H2O diffuses into the beryl matrix along the structural channels oriented parallel to [001]. Spectra collected along profiles parallel to the c-axis show subtle changes as a function of the distance from the crystal edge; these changes can be correlated to a progressive change in the H2O coordination environment in the channel, as a response to the varying H2O/alkali ratio. In particular, the data show that when 2H2O > Na+ apfu (atoms per formula unit), H2O can assume both type I and type II orientation; in the latter case, each Na cation coordinates two H2O[II] molecules (doubly coordinated H2O). If 2H2O < Na+ apfu, then H2O[II] molecules are singly coordinated to each Na cation. The same type of feature is observed and commented for the structurally related cordierite. Diffusion coefficients and activation energies have been also determined for both types of water molecules.

  15. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls.

    PubMed

    McManus, Catherine E; McMillan, Nancy J; Harmon, Russell S; Whitmore, Robert C; De Lucia, Frank C; Miziolek, Andrzej W

    2008-11-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be(3)Al(2)Si(6)O(18)) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo #1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance.

  16. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls

    SciTech Connect

    McManus, Catherine E.; McMillan, Nancy J.; Harmon, Russell S.; Whitmore, Robert C.; De Lucia, Frank C. Jr.; Miziolek, Andrzej W

    2008-11-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be3Al2Si6O18) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo no. 1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance.

  17. Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls.

    PubMed

    McManus, Catherine E; McMillan, Nancy J; Harmon, Russell S; Whitmore, Robert C; De Lucia, Frank C; Miziolek, Andrzej W

    2008-11-01

    The provenance of gem stones has been of interest to geologists, gemologists, archeologists, and historians for centuries. Laser induced breakdown spectroscopy (LIBS) provides a minimally destructive tool for recording the rich chemical signatures of gem beryls (aquamarine, goshenite, heliodor, and morganite). Broadband LIBS spectra of 39 beryl (Be(3)Al(2)Si(6)O(18)) specimens from 11 pegmatite mines in New Hampshire, Connecticut, and Maine (USA) are used to assess the potential of using principal component analysis of LIBS spectra to determine specimen provenance. Using this technique, beryls from the three beryl-bearing zones in the Palermo #1 pegmatite (New Hampshire) can be recognized. However, the compositional variation within this single mine is comparable to that in beryls from all three states. Thus, a very large database with detailed location metadata will be required to routinely determine gem beryl provenance. PMID:19122706

  18. Sliding Wear Response of Beryl Reinforced Aluminum Composite - A Factorial Design Approach

    NASA Astrophysics Data System (ADS)

    Bharat, V.; Durga Prasad, B.; Prabhakar, M. Bhovi; Venkateswarlu, K.

    2016-02-01

    Al-Beryl MMCs were successfully fabricated using powder metallurgy route. Processing conditions such as beryl content and particle size were varied and its influence on dry sliding wear response was studied. Effect of test parameters like applied load and sliding distance on wear performance of Al-Beryl MMCs were discussed detail. Sliding wear tests were conducted using a pin on disc machine based on the 24 (4 factors at 2 levels) factorial design. Analysis of variance (ANOVA) was performed to obtain the contribution of control parameters on wear rate. The present study shows that wear resistance of Al-beryl MMCs not only depends on the beryl content but also influenced by normal load, sliding distance and particle size. The results show that most significant variables affecting wear rate of Al - beryl MMCs are size of the beryl particles (22%), beryl content (19.60%), sliding distance (18.47%), and normal load (10.30%). The interaction effects of these parameters are less significant in influencing wear rate compared to the individual parameters. The correlation between sliding wear and its parameters was obtained by multiple regression analysis. Regression model developed in the present study can be successfully implemented to predict the wear response of Al-Beryl MMCs.

  19. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    PubMed Central

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-01-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693

  20. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    NASA Astrophysics Data System (ADS)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  1. ICP, IR, Raman, NMR investigations of beryls from pegmatites of the Sudety Mts

    NASA Astrophysics Data System (ADS)

    Łodziński, M.; Sitarz, M.; Stec, K.; Kozanecki, M.; Fojud, Z.; Jurga, S.

    2005-06-01

    Detailed ICP, IR, Raman and NMR investigation were performed for more than 50 samples of beryls from pegmatites in the Sudety Mts. MIR spectra were measured at room (293 K), low up to 22 K and high up to 1273 K temperatures. The absorption bands for studied samples of beryl are correlated with chemical composition and structural parameters. The samples represent both alkali-poor (potassium-bearing, sodium-potassium-bearing) and alkali-rich (sodic and sodic-lithian) members of the beryl group. Two types of H 2O molecules are discerned in all studied beryls. The I-type is not connected with alkali with bands at 3697/3690 cm -1, 3647/3630/3610 cm -1 (3606 cm -1 in Raman spectra) and 1602/1550 cm -1 dominates over the II-type (hydrated anions of alkali) with bands at 3660 cm -1, 3592/3590 cm -1 (3597 cm -1 in Raman spectra) and 1637/1630 cm -1. CO 2 molecules (2360 cm -1 in MIR spectra, 1386 cm -1, 1240 cm -1 in Raman spectra) and hydroxyl groups in subordinate quantities occur in structural channels of beryls, except for mentioned above. Main bands in the range of 1200-400 cm -1 are diagnostic in discerning of the three types of beryls according to lattice parameter classification. Studied beryls, in the most cases, belong to normal-type. Some samples are octahedral-type, and do not occur tetrahedral beryls in the Sudety Mts.

  2. Crystal contacts as nature's docking solutions.

    PubMed

    Krissinel, Evgeny

    2010-01-15

    The assumption that crystal contacts reflect natural macromolecular interactions makes a basis for many studies in structural biology. However, the crystal state may correspond to a global minimum of free energy where biologically relevant interactions are sacrificed in favor to unspecific contacts. A large-scale docking experiment was performed to assess the extent of misrepresentation of natural (in-solvent) protein dimers by crystal packing. As found, the failure rate of docking may be quantitatively interpreted if both calculation errors and misrepresentation effects are taken into account. The failure rate analysis is based on the assumption that crystal structures reflect thermodynamic equilibrium between different dimeric configurations. The analysis gives an estimate of misrepresentation probability, which suggests that weakly bound complexes with K(D) > or = 100 microM (some 20% of all dimers in the PDB) have higher than 50% chances to be misrepresented by crystals. The developed theoretical framework is applicable in other studies, where experimental results may be viewed as snapshots of systems in thermodynamic equilibrium.

  3. Gahnite, chrysoberyl and beryl co-occurrence as accessory minerals in a highly evolved peraluminous pluton: The Belvís de Monroy leucogranite (Cáceres, Spain)

    NASA Astrophysics Data System (ADS)

    Merino, E.; Villaseca, C.; Orejana, D.; Jeffries, T.

    2013-10-01

    Gahnite (ZnAl2O4), chrysoberyl (BeAl2O4) and beryl (Be3Al2Si6O18) have been found as accessory minerals in the external, highly fractionated, leucogranitic unit within the Hercynian reversely zoned Belvís de Monroy pluton (westernmost part of the Montes de Toledo batholith, Cáceres, Spain). The highly felsic (SiO2 > 72 wt.%) and peraluminous (ACNK > 1.2) character of this leucogranite, together with the high content of some incompatible elements (F, Li, B, and P), seems to be a primary consequence of fractional crystallization in a magmatic closed-system. The high Be contents and Zn/FeTotal ratio (> 0.01) are relevant factors which have favoured the precipitation of these minerals. Moreover, the Si, Al, P, B, and F activities might be high, favouring the magmatic crystallization of such exotic mineral phases together with Be-rich cordierite, F-rich micas, sillimanite and Al-rich phosphates. In fact, the interplay between the silica and alumina activities likely controls the stabilization and the preferential crystallization of gahnite + chrysoberyl or beryl + chrysoberyl assemblages in mm-sized microdomains. The P-T crystallization conditions are constrained by the muscovite and sillimanite stability fields and the minimum granite Al2O3-saturated solidus, and have been estimated at temperatures between 670 and 700 °C, and pressures between 1 and 2 kbar.

  4. Crystal chemistry of the natural vanadium bronzes

    USGS Publications Warehouse

    Evans, H.T.; Hughes, J.M.

    1990-01-01

    The crystal chemistry of the natural vanadium bronze minerals is reviewed on the basis of published information and new studies (mainly by X-ray powder-diffraction methods) using type material wherever possible. The known V bronze minerals are divided into three categories: 1) the hewettite group, 2) the straczekite group, 3) other structure types including navajoite, schubnelite, fervanite, shcherbinaite, bannermanite, and melanovanadite. All known structures associated with the fibrous V bronzes (fiber spacing 3.6 A??) can be considered as various lateral linkages (into sheets or networks) of only two types of polyvanadate chains: 1) a divanadate chain (V2O6)n consisting of alternating square pyramids, and 2) a tetravanadate chain (V4O12)n consisting of four highly condensed single octahedral chains. -from Authors

  5. Spectroscopic and bond-topological investigation of interstitial volatiles in beryl from Slovakia

    NASA Astrophysics Data System (ADS)

    Fridrichová, Jana; Bačík, Peter; Bizovská, Valéria; Libowitzky, Eugen; Škoda, Radek; Uher, Pavel; Ozdín, Daniel; Števko, Martin

    2016-06-01

    Nine beryl samples from Western Carpathians, Slovakia, were investigated by infrared and Raman spectroscopy and differential thermal analysis. Two types of water H2O I and H2O II were detected. Infrared spectroscopy proved the presence of water type I and II in the presence of alkali cations with several bands: (1) symmetric stretching vibration—ν1; (2) antisymmetric stretching mode—ν3; (3) bending vibration—ν2. The presence of singly and doubly coordinated type II water (IIs and IId) was confirmed by single-crystal IR spectroscopy. From Raman spectra a band at 3606 cm-1 was assigned to ν1 of water type I and the range of 3597-3600 cm-1 to water type II. The presence of doubly coordinating water indicates a relatively highly hydrated environment with the presence of alkali ions including Na as the dominant cation coordinated by H2O II. CO2 bands were detected only by single-crystal IR spectroscopy. Thermal analysis proved total water loss in the range of 1.4-2.0 wt% and three main dehydration events. Based on the study of bond-topological arrangements two molecules of H2O IId are each bound with two H···O1 bonds and one Na-OW bond with an angular distortion, and by releasing one H2O molecule more stable H2O IIs is produced. The H2O I molecule is bound only by two equivalent hydrogen bonds. The H2O IIs molecule with a Na-OW bond strength of 0.28 vu and two H···O1 bonds of 0.14 vu without any forced angular distortion is the most stable of all.

  6. Protein crystallization on liquid surfaces: Forced versus natural crystallization

    NASA Astrophysics Data System (ADS)

    Hirsa, A.

    2005-11-01

    Two-dimensional crystallization of proteins has recently been reported where streptavidin protein dissolved in the bulk liquid anchors to binding sites on a biotinylated lipid monolayer initially spread on the liquid surface. Thermodynamic aspects investigated include the effects of subphase buffer and pH, dilution of bulk protein and monolayer. Here, we investigate three possible avenues where flow can influence protein crystallization: i) change the initial state of monolayer, ii) advect dissolved protein to the interface, iii) apply direct hydrodynamic force on the crystals at the interface. The flow system consists of a stationary open cylinder driven by constant rotation of the floor, in the axisymmetric flow regime with inertia. Direct imaging of the interface illuminated by forward scattering of a laser was utilized to avoid labeling proteins for conventional fluorescence microscopy. These images provide greater detail than Brewster angle microscopy. Scientific motivation is to use flow to probe protein structure, and the application is to make designer protein thin-films, e.g. for biosensors.

  7. Reservoir characterization of lacustrine sediments from the Late Triassic, Beryl Field, UK North Sea

    SciTech Connect

    Bond, J.; Welton, J.E.

    1996-12-31

    Located on the western flank of the Viking Graben, the Beryl Field has been producing from the Late Triassic Lewis reservoir since first oil in 1976. The Beryl A Triassic contains an estimated STOIIP of 256 mmstb, with a cumulative production of 31 mmstb (8/95) (12% recovery). Low recovery to date, coupled with high remaining reserves potential, necessitated a new simulation model and optimized development program for the Lewis reservoir. This paper summarizes the revised reservoir description of the Beryl A Triassic, a complex lacustrine and fluvial system, and its integration with the reservoir simulation. The Triassic reservoir is subdivided into four zones: Lewis Units I, II, III and IV. Six lithofacies associations are identified in core: offshore lacustrine, lacustrine sandflat, marginal lacustrine, floodplain, sheetflood/overbank, and fluvial. Detailed petrological studies were conducted which confirmed that both depositional and diagenetic processes influenced reservoir properties and quality. Optimal reservoir quality is preserved in fluvial and lacustrine sandflat deposits. Argillaceous floodplain and lacustrine facies are non-reservoir and form barriers to vertical fluid migration. Calcrete lags (concentrated at the base of fluvial channels) and carbonate paleosols form baffles to flow. Fieldwide correlation of core and log facies resulted in the identification of 27 genetic flow-units. This geologically-based layering scheme was integrated with production data to generate the framework for vertical zonation for the new reservoir simulation. The simulation studies produced as accelerated development program for the Beryl A Triassic. Reserves have increased as result of optimizing secondary recovery.

  8. Reservoir characterization of lacustrine sediments from the Late Triassic, Beryl Field, UK North Sea

    SciTech Connect

    Bond, J. ); Welton, J.E. )

    1996-01-01

    Located on the western flank of the Viking Graben, the Beryl Field has been producing from the Late Triassic Lewis reservoir since first oil in 1976. The Beryl A Triassic contains an estimated STOIIP of 256 mmstb, with a cumulative production of 31 mmstb (8/95) (12% recovery). Low recovery to date, coupled with high remaining reserves potential, necessitated a new simulation model and optimized development program for the Lewis reservoir. This paper summarizes the revised reservoir description of the Beryl A Triassic, a complex lacustrine and fluvial system, and its integration with the reservoir simulation. The Triassic reservoir is subdivided into four zones: Lewis Units I, II, III and IV. Six lithofacies associations are identified in core: offshore lacustrine, lacustrine sandflat, marginal lacustrine, floodplain, sheetflood/overbank, and fluvial. Detailed petrological studies were conducted which confirmed that both depositional and diagenetic processes influenced reservoir properties and quality. Optimal reservoir quality is preserved in fluvial and lacustrine sandflat deposits. Argillaceous floodplain and lacustrine facies are non-reservoir and form barriers to vertical fluid migration. Calcrete lags (concentrated at the base of fluvial channels) and carbonate paleosols form baffles to flow. Fieldwide correlation of core and log facies resulted in the identification of 27 genetic flow-units. This geologically-based layering scheme was integrated with production data to generate the framework for vertical zonation for the new reservoir simulation. The simulation studies produced as accelerated development program for the Beryl A Triassic. Reserves have increased as result of optimizing secondary recovery.

  9. Natural growth habit of bulk AlN crystals

    NASA Astrophysics Data System (ADS)

    Epelbaum, B. M.; Seitz, C.; Magerl, A.; Bickermann, M.; Winnacker, A.

    2004-05-01

    Growth conditions for self-nucleation and subsequent growth of bulk AlN crystals by sublimation are presented. With increasing growth temperature, the natural habit of AlN crystals changes from needle-like to prismatic and then turns to thick asymmetric platelet. The best-formed platelet crystals up to 14×7×2 mm 3 in size exhibit a number of atomically smooth surfaces. Growth morphology and crystal quality were found to be strongly influenced by the polar nature of AlN. Al-terminated faces produce mirror-like facets and transparent material of high crystalline quality, whereas development of N-terminated faces leads to opaque and defective sectors in grown crystals. It is suggested that the most successful seeded growth of AlN can be achieved along Al-terminated (0 0 0 1) , ( 1¯ 0 1 2) and non-polar ( 1¯ 0 1 0) faces.

  10. Reconnaissance of beryl-bearing pegmatites in the Ruby Mountains, other areas in Nevada, and northwestern Mohave County, Arizona

    USGS Publications Warehouse

    Olson, Jerry Chipman; Hinrichs, E. Neal

    1957-01-01

    The scheelite-beryl deposits at Oreana and in Humboldt Canyon, Pershing County., are rich in beryllium.  Twelve samples from the Humboldt Canyon (Lakeview) deposit range from 0.018 to 0.11 percent BeO, but underground crosscuts have failed to intersect similar rock at depth. Beryl locally constitutes as much as 10 percent of the pegmati tic ore at Oreana. &nbs

  11. FTIR imaging in diffusion studies: CO2 and H2O in a synthetic sector-zoned beryl

    NASA Astrophysics Data System (ADS)

    Della Ventura, Giancarlo; Radica, Francesco; Bellatreccia, Fabio; Cavallo, Andrea; Cinque, Gianfelice; Behrens, Harald

    2015-06-01

    In this work we investigate the strongly inhomogeneous distribution of CO2 and H2O in a synthetic beryl having a peculiar hourglass zoning of Cr due to the crystal growth. The sample was treated at 800°C, 500 MPa, in a CO2-rich atmosphere. High-resolution FESEM images revealed that the hourglass boundary is not correlated to physical discontinuities, at least at the scale of tens of nanometers. Polarized FPA-FTIR imaging, on the other side, revealed that the chemical zoning acts as a fast pathway for carbon dioxide diffusion, a feature never observed so far in minerals. The hourglass zone boundary may be thus considered as a structural defect possibly due to the mismatch induced by the different growth rates of each sector. High-resolution synchrotron-light FTIR imaging, in addition, also allows enhancement of CO2 diffusion along the hourglass boundary to be distinguished from diffusion along fractures in the grain. Therefore, FTIR imaging provides evidence that different diffusion mechanisms may locally combine, suggesting that the distribution of the target molecules needs to be be carefully characterized in experimental studies. This piece of information is mandatory when the study is aimed at extracting diffusion coefficients from analytical profiles. Combination of TOF-SIMS and FPA data shows a significant depletion of type II H2O along the hourglass boundary, indicating that water diffusion could be controlled by the distribution of alkali cations within channels, coupled to a plug effect of CO2.

  12. Quantum Tunneling of Water in Beryl: A New State of the Water Molecule

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.

    2016-04-01

    Using neutron scattering and ab initio simulations, we document the discovery of a new "quantum tunneling state" of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. In addition, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  13. Ground-water data for the Beryl-Enterprise area, Escalante Desert, Utah

    USGS Publications Warehouse

    Mower, R.W.

    1981-01-01

    This report contains a compilation of selected ground-water data for the Beryl-Enterprise area, Iron and Washington Counties, Utah. The records of the wells include such information as driller 's logs, yield, drawdown, use, and temperature of the well water. There are also records of water levels in selected wells for the period 1973-79, chemical analyses of ground water, records of selected springs, and a tabulation of ground-water withdrawals for 1937-78. (USGS)

  14. Refurbishment of the ballast-water system of the gravity-based structure Beryl Alpha

    SciTech Connect

    Seume, K.; Gilchrist, J.M. )

    1989-11-01

    In Sept. 1985, the Beryl Alpha platform in the North Sea experienced a leak in its ballast-water system in the utility shaft 328 ft (100m) below sea level. The importance of the ballast-water system for platform operations and the particular location of the leak led to the development and implementation of unique and extensive repair procedures. These procedures are detailed by the authors.

  15. Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates.

    PubMed

    Makreski, Petre; Jovanovski, Gligor

    2009-08-01

    IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams. PMID:18722809

  16. Minerals from Macedonia XXIII. Spectroscopic and structural characterization of schorl and beryl cyclosilicates.

    PubMed

    Makreski, Petre; Jovanovski, Gligor

    2009-08-01

    IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams.

  17. Brazil twinning in natural and synthetic amethyst crystals

    NASA Astrophysics Data System (ADS)

    Taijing, Lu; Sunagawa, I.; Balitsky, V. S.

    1990-01-01

    The structures of Brazil twin boundaries, the micro-textures due to Brazil twinning, and the sites and the conditions for the generation of Brazil twins have been investigated on natural amethyst crystals with and without Brewster fringes, synthetic amethyst crystals hydrothermally grown under various conditions, and natural milky quartz crystals of epithermal origin. Their generation is triggered by the precipitation of solid inclusions on the growing smooth surfaces due to a perturbation of growth parameters. Brewster fringes appear through a process of incorporation of a large number of Brazil twin lamellae, whereas fibrous or other micro-textures appear when there is no such process. The former is assumed to have been formed under more stable conditions than the latter.

  18. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE PAGESBeta

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.

    2016-04-22

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  19. Natural pseudowollastonite: Crystal structure, associated minerals, and geological context

    NASA Astrophysics Data System (ADS)

    Seryotkin, Yurii V.; Sokol, Ella V.; Kokh, Svetlana N.

    2012-03-01

    Pseudowollastonite, an extremely rare constituent of ultrahigh-temperature combustion metamorphic and igneous rocks, has been found as a rock-forming mineral in Ca-rich paralava veins of Nabi Musa fossil mud volcano (Dead Sea area). Pseudowollastonite-bearing paralavas are the products of combustion metamorphism associated with spontaneous burning of methane. The melt began to crystallize at 1480-1500 °C about the ambient pressure. Pseudowollastonite enters two mineral assemblages: (1) rankinite, larnite, nagelschmidtite, wollastonite (1T), gehlenite-rich melilite, Ti-rich andradite, cuspidine, and fluorapatite; (2) parawollastonite (2M), wollastonite (1T), gehlenite-rich melilite, Ti-rich andradite, fluorellestadite. In this study we present the first single-crystal structure determination of natural pseudowollastonite. Pseudowollastonite from Nabi Musa dome is stoichiometric CaSiO3 and belongs to the most widespread four-layer polytype: a = 6.83556(10) Å, b = 11.86962(18) Å, c = 19.6255(3) Å, β = 90.6805(13)°, V = 1592.21(4) Å3, space group C2/c. We argue that pseudowollastonite is so scarce in nature because its formation requires joint action of several uncommon factors: availability of hot melts of T > 1200 °C that bear free calcium but are poor in Mg and Fe (mostly as Fe3 +) and their crystallization in the shallow crust followed by quenching.

  20. Dichroism and birefringence of natural violet diamond crystals

    SciTech Connect

    Konstantinova, A. F. Titkov, S. V.; Imangazieva, K. B.; Evdishchenko, E. A.; Sergeev, A. M.; Zudin, N. G.; Orekhova, V. P.

    2006-05-15

    Investigation of the optical properties of natural violet diamonds from the Yakutian kimberlites is performed. A red shift of the absorption edge is revealed in the absorption spectra of these crystals. This shift is indicative of the presence of a high concentration of nitrogen in the diamonds studied. Along with the strong band at 0.550 {mu}m, weaker bands at 0.390, 0.456 and 0.496 {mu}m are revealed. It is shown that violet diamond crystals have birefringence and dichroism of about 10{sup -5} and 10{sup -6}, respectively. When a light beam propagates perpendicularly to colored lamellas, the dichroism is much larger and the birefringence is smaller than in the case where the beam direction is parallel to lamellas.

  1. Differences in crystal habitus of natural and synthetic colloids

    NASA Astrophysics Data System (ADS)

    Wieczorek, Arkadiusz K.; Händel, Matthias; Totsche, Kai Uwe

    2014-05-01

    The formation of colloids from natural aqueous solutions is influenced by a multitude of biogeochemical and physicochemical processes and the presence of a large diversity of geogen and biogen, inorganic and organic solution phase components. A thereby frequently neglected class of components is the dissolved and colloidal phase organic matter (DOM). As DOM will interact with other solution phase components, we hypothesize that nanosized and colloidal particles formed in DOM bearing solutions may differ from synthetic precipitates either by size, shape, crystal habitus, crystallinity, composition or combinations of that. To investigate this, we analyzed natural colloidal particles collected from a limestone aquifer of the Upper Muschelkalk formation at Hainich National Park, Thuringia, Germany. Major groundwater components are Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- , and about 1 ppm of total organic carbon (TOC) in dissolved and colloidal form. Synthetic nanoparticles were precipitated from a series of oversaturated solutions containing single or mixtures of the following salts CaSO4, MgSO4, Ca(HCO3)2 NaCl typical for limestone environments. The solutions were produced with both natural groundwater and pure water (milli-Q). Droplets of such produced colloidal suspension were pipetted on silicon wafers and subject to air drying. The wafers were then analyzed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We found that particles from oversaturated CaSO4 solution in pure water precipitate as large needle shaped crystals, whereas precipitates from CaSO4 solution in natural water were much smaller and showed a rosette like shape - similar in size and shape to gypsum crystals collected from the limestone formation water. Similar differences we found for other aqueous solution compositions. From this pilot study we presume that even minute amounts of dissolved and colloidal phase organic matter in

  2. The dynamic nature of crystal growth in pores

    PubMed Central

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-01-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks. PMID:27615371

  3. The dynamic nature of crystal growth in pores

    DOE PAGESBeta

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-12

    We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominatemore » and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less

  4. The dynamic nature of crystal growth in pores.

    PubMed

    Godinho, Jose R A; Gerke, Kirill M; Stack, Andrew G; Lee, Peter D

    2016-01-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks. PMID:27615371

  5. The dynamic nature of crystal growth in pores

    NASA Astrophysics Data System (ADS)

    Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; Lee, Peter D.

    2016-09-01

    The kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocities predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.

  6. Imaging in natural light with nematic liquid crystals (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Galstian, Tigran V.

    2015-10-01

    Nametic liquid crystals (NLC) are most commonly used liquid crystal (LC) materials in various light modulators [1], displays [2] and lenses [3]. However those materials have a fundamental limitation: they are polarization sensitive since the refractive index modulation here is achieved by the electric field induced reorientation of their local anisotropy axis. Thus, the standard imaging optical systems (used in consumer electronic products and dealing with natural light sources [4]) have to use double NLC structures in a cross oriented way and in rather requiring geometrical conditions. We describe a simple but very efficient optical device that allows the dynamic focusing of unpolarized light using a single NLC layer. The operation principle of the proposed device is based on the combination of an electrically variable "single layer lens" with two fixed optical elements for light reflection and 90° polarization flip. Such an approach is made possible thanks to the close integration of thin film wave plate and mirror. Preliminary experimental studies of the obtained electrically variable mirror show very promising results. Several standard camera geometries, using the double layer approach, and possible new geometries, using the reflective approach, will be described. References 1. Gordon D. Love, Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator, Applied Optics, Vol. 36, Issue 7, pp. 1517-1524 (1997). 2. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, Wiley, 1999. 3. T. Galstian, Smart Mini-Cameras, CRC Press, Taylor and Francis group, 2013. 4. www.lensvector.com

  7. Mineralogical and geochemical investigation of emerald and beryl mineralisation, Pan-African Belt of Egypt: genetic and exploration aspects

    NASA Astrophysics Data System (ADS)

    Abdalla, H. M.; Mohamed, F. H.

    1999-04-01

    Mineralogical, geochemical and fluid inclusion studies reveal two favorable environments for the localisation of beryl mineralisations in the Precambrian rocks of Egypt: (1) emerald-schist; and (2) beryl-specialised granitoid associations. Emerald occurs within the mica schists and is typically confined to the Nugrus major shear zone. However, beryl associated with granitoids occurs in pegmatite veins, greisen bodies, and cassiterite quartz veins cutting the granites and the exocontacts of the volcanosedimentary country rocks. Compositionally, emerald is of octahedral type and its cell edge is lengthened along the a-axis, while beryl associated with granitoids is normal in composition and structural constants. Emerald is thought to be formed as the result of epitactic nucleation of Be, Al and alkali-rich solutions on the mica of the schist country rocks. Fluid inclusion studies show that the solutions are saline (8-22 wt% NaCl equiv.) and the reactions proceeded in the temperature range 260-382°C. On the other hand, aqueous inclusions in beryl associated with granitoids show the following sequence of formation with decreasing temperatures and salinities: beryl pegmatite (320-480°C and 7-16 wt% NaCl equiv.)→greisen bodies (190-400°C and 4-7 wt% NaCl equiv.)→cassiterite-quartz veins (190-380°C and 2-4 wt% NaCk equiv.). This study suggests that factors such as the chemistry of the Be-bearing fluids (rather than that of the bulk host schists) and syn-tectonic intrusions of leucogranites and pegmatites (Bederiving sources) along major ductile shear zones are the important factors controlling emerald formation. However, the endogreisens and exogreisens are the most important targets characterising the metasomatically- and magmatically-specialised, Be-granitoids, respectively. The aqueous inclusions examined in greisen beryls of metasomatised granites show a shorter range of homogenisation temperatures (260-390°C) and salinities(4.8-7 wt% NaCl equiv.) as compared

  8. Crystal chemistry of natural and synthetic trioctahedral micas: Exploring the limits of geometric crystal chemical models

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick H. J.

    Seventy-five synthetic powder trioctahedral mica samples (between Mg, Co, Ni, and Fe end members, with different degrees of oxidation, vacancy and Al/Si contents, and including an OH/F substitution series) were studied by room-temperature powder X-ray diffraction. The iron-bearing samples were studied by 57Fe Mossbauer spectroscopy. Subsets of the samples were also characterized by scanning electron microscopy combined with energy dispersive spectroscopy, optical microscopy, X-ray fluorescence spectroscopy, and gas chromatography. Lattice parameters (refined under the 1M stacking polytype, space group C2/m) were determined for all powder samples and iron site populations ([4]Fe 3+, [6]Fe2+, and [6]Fe 2+) were obtained from Mossbauer spectroscopy. The relation (c/a)cosbeta* = 113 was found to hold exactly (within experimental error) for all synthetic powders whereas it does not hold in general for synthetic and natural 1M single-crystals. The above relation is predicted to hold for geometric home-octahedral sheets (having equal M1 and M2 site bond lengths) and not to hold for geometric meso-octahedral sheets (having unequal M1 and M2 site bond lengths). The counter-rotation of the M2 site of 1M single-crystals exactly (within experimental error) follows the geometric meso-octahedral sheet model, which, assuming a uniform octahedral sheet height and site-specific M1 and M2 bond lengths, predicts site-specific flattening angles and a counter-rotation angle for the M2 site which is uniquely determined by the bond length difference between the M1 and M2 sites. A geometric meso-octahedral 2:1 layer silicate was shown to require corrugated tetrahedral sheets composed of bond-distorted tetrahedra. Key geometric meso-octahedral distortions in 1M single-crystals were identified and elucidated: (i) intra-layer top-bottom displacements within a TOT layer; and (ii) a tetrahedral bending angle between the apical bond and the pyramidal base formed by the three basal bonds. Plots

  9. Lung function, biological monitoring, and biological effect monitoring of gemstone cutters exposed to beryls

    PubMed Central

    Wegner, R.; Heinrich-Ramm, R.; Nowak, D.; Olma, K.; Poschadel, B.; Szadkowski, D.

    2000-01-01

    OBJECTIVES—Gemstone cutters are potentially exposed to various carcinogenic and fibrogenic metals such as chromium, nickel, aluminium, and beryllium, as well as to lead. Increased beryllium concentrations had been reported in the air of workplaces of beryl cutters in Idar-Oberstein, Germany. The aim of the survey was to study the excretion of beryllium in cutters and grinders with occupational exposure to beryls—for example, aquamarines and emeralds—to examine the prevalence of beryllium sensitisation with the beryllium lymphocyte transformation test (BeLT), to examine the prevalence of lung disease induced by beryllium, to describe the internal load of the respective metals relative to work process, and to screen for genotoxic effects in this particular profession.
METHODS—In a cross sectional investigation, 57 out of 100 gemstone cutters working in 12 factories in Idar-Oberstein with occupational exposure to beryls underwent medical examinations, a chest radiograph, lung function testing (spirometry, airway resistance with the interrupter technique), and biological monitoring, including measurements of aluminium, chromium, and nickel in urine as well as lead in blood. Beryllium in urine was measured with a newly developed direct electrothermal atomic absorption spectroscopy technique with a measurement limit of 0.06 µg/l. Also, cytogenetic tests (rates of micronuclei and sister chromatid exchange), and a BeLT were performed. Airborne concentrations of beryllium were measured in three factories. As no adequate local control group was available, the cutters were categorised into those with an exposure to beryls of >4 hours/week (group A) and ⩽4 hours/week (group B).
RESULTS—Clinical, radiological, or spirometric abnormalities indicating pneumoconiosis were detected in none of the gemstone cutters. Metal concentrations in biological material were far below the respective biological limit values, and beryllium in urine was only measurable in

  10. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    NASA Astrophysics Data System (ADS)

    Rastsvetaeva, R. K.; Aksenov, S. M.; Verin, I. A.

    2010-07-01

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) Å, b = 17.1823(4) Å, c = 23.5718(5) Å, β = 90°, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with | F| > 7σ( F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula ( Z = 4) is Ca2Mg{2/IV}Fe{2/(2+)IV}[Al{14/VI}O31(OH)][Al{2/IV}O][AlIV]ALIV(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe2+ tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  11. Crystal structure of complex natural aluminum magnesium calcium iron oxide

    SciTech Connect

    Rastsvetaeva, R. K. Aksenov, S. M.; Verin, I. A.

    2010-07-15

    The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) A, b = 17.1823(4) A, c = 23.5718(5) A, {beta} = 90{sup o}, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with vertical bar F vertical bar > 7{sigma}(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca{sub 2}Mg{sub 2}{sup IV}Fe{sub 2}{sup (2+)IV}[Al{sub 14}{sup VI}O{sub 31}(OH)][Al{sub 2}{sup IV}O][Al{sup IV}]AL{sup IV}(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe{sup 2+} tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.

  12. Natural polymer crystals of hydrocarbons as models of prebiological organisms

    NASA Astrophysics Data System (ADS)

    Yushkin, N. P.

    1996-09-01

    Among solid hydrocarbons (bitumens) widely spread in the lithosphere, forms representing various degrees of molecular ordering, like globules, fibers, quasicrystals, fullerenes, etc., have been recently discovered. The most perfect ones are original fibrous, spiral and spherical crystals of kerite found in chamber pegmatities of Korosten granitoid massive in the Ukraine. The age of the pegmatites is 1,700 million years, they originated at a depth of 1.5-2 km. The kerite composition is C 491H 386O 87S(N). Kerite crystallization took place in a chamber of a pegmatite body in a steam-and-gas environment at T = 500 dash280°C and P = 20 MPa from hydrocarbon gases of igneous origin in the presence of catalysts. The fibrous kerite's structure and properties are very similar to those of simple organisms. Its chemical composition, for example, is nearly identical to that of a protein. The presence of a large number of minerals in association with fibrous kerite, including zeolite (natrolite) acting as a membrane, abundant release of hydrocarbon gases on heating, complex morphology and the presence of both internal and external actively growing surfaces account for a much more complex (in comparison with ionic inorganic crystals) "life" for fibrous kerite crystals and stimulate an evolution of various metabolic processes. The finding of hydrocarbon crystals with a composition, form and structure similar to living organisms is a convincing confirmation of the conception of "crystallization of life" that occurred under the same conditions as crystallization of minerals.

  13. On the nature of 2D crystal unbending.

    PubMed

    Gil, Debora; Carazo, Jose Maria; Marabini, Roberto

    2006-12-01

    Crystal unbending, the process that aims to recover a perfect crystal from experimental data, is one of the more important steps in electron crystallography image processing. The unbending process involves three steps: estimation of the unit cell displacements from their ideal positions, extension of the deformation field to the whole image and transformation of the image in order to recover an ideal crystal. In this work, we present a systematic analysis of the second step oriented to address two issues. First, whether the unit cells remain undistorted and only the distance between them should be changed (rigid case) or should be modified with the same deformation suffered by the whole crystal (elastic case). Second, the performance of different extension algorithms (interpolation versus approximation) is explored. Our experiments show that there is no difference between elastic and rigid cases or among the extension algorithms. This implies that the deformation fields are constant over large areas. Furthermore, our results indicate that the main source of error is the transformation of the crystal image.

  14. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-10

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < −35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L–W relationships of columns

  15. Dimensions and aspect ratios of natural ice crystals

    DOE PAGESBeta

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-15

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore » distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 < T < -35 °C and at −40 < T < −15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L

  16. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2014-12-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns derived using

  17. Dimensions and aspect ratios of natural ice crystals

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

    2015-04-01

    During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns

  18. Inducing uniform single-crystal like orientation in natural rubber with constrained uniaxial stretch.

    PubMed

    Zhou, Weiming; Meng, Lingpu; Lu, Jie; Wang, Zhen; Zhang, Wenhua; Huang, Ningdong; Chen, Liang; Li, Liangbin

    2015-07-01

    The effect of flow on crystallization is commonly attributed to entropic reduction, which is caused by stretch and orientation of polymer chains but overlooks the role of flow on final-state free energy. With the aid of in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) and a homemade constrained uniaxial tensile testing machine, polycrystals possessing single-crystal-like orientation rather than uniaxial orientation are found during the constrained stretch of natural rubber, whereas the c-axis and a-axis align in the stretch direction (SD) and constrained direction (CD), respectively. Molecular dynamics simulation shows that aligning the a-axis of crystal nuclei in CD leads to the lowest free energy increase and favors crystal nucleation. This indicates that the nomenclature of strain-induced crystallization may not fully account for the nature of flow-induced crystallization (FIC) as strain mainly emphasizes the entropic reduction of initial melt, whereas stress rather than strain plays the dominant role in crystal deformation. The current work not only contributes to a comprehensive understanding of the mechanism of flow-induced crystallization but also demonstrates the potential application of constrained uniaxial tensile stretch for the creation of functional materials containing polycrystals that possess single-crystal-like orientation.

  19. Dynamic crystallization of chondrule melts of porphyritic olivine composition - Textures experimental and natural

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    1989-01-01

    A full range of textures characteristic for porphyritic olivine chondrules was reproduced in melts of the same composition, crystallized under dynamic crystallization conditions (under controlled cooling), as determined by electron microprobe analyses. The primary differences between the natural and experimentally produced porphyritic olivine textures were the nature and the extent of matrix crystallization, which reflected the subsolidus or low-temperature cooling history. The most confining limits on the chondrule-forming process were found to be the presence of crystalline precursors for the chondrule melts and the upper temperature limit of melting.

  20. Novel photonic crystals: incorporation of nano-CdS into the natural photonic crystals within peacock feathers.

    PubMed

    Han, Jie; Su, Huilan; Song, Fang; Gu, Jiajun; Di, Zhang; Jiang, Limin

    2009-03-01

    In this investigation, the natural 2D photonic crystals (PhCs) within peacock feathers are applied to incorporate CdS nanocrystallites. Peacock feathers are activated by ethylenediaminetetraacetic/dimethylformamide suspension to increase the reactive sites on the keratin component, on which CdS nanoparticles (nano-CdS) are in situ formed in succession and serve as the "seeds" to direct further incorporation during the following solvothermal procedure. Thus, homogeneous nano-CdS are loaded both on the feathers' surface layer and inside the 2D PhCs. The obtained nano-CdS/peacock feathers hybrids are novel photonic crystals whose photonic stop bands are markedly different from that of the natural PhCs within original peacock feathers, as observed by the reflection spectra.

  1. Statistical Nature of Atomic Disorder in Irradiated Crystals.

    PubMed

    Boulle, A; Debelle, A

    2016-06-17

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ=0.73-0.37 range, i.e., far from the commonly assumed Gaussian case (γ=2)]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter f_{D}^{XRD} to quantify the disordering. f_{D}^{XRD} is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations. PMID:27367393

  2. Statistical Nature of Atomic Disorder in Irradiated Crystals

    NASA Astrophysics Data System (ADS)

    Boulle, A.; Debelle, A.

    2016-06-01

    Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ =0.73 - 0.37 range, i.e., far from the commonly assumed Gaussian case (γ =2 )]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter fDXRD to quantify the disordering. fDXRD is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.

  3. Thermal diffusion boron doping of single-crystal natural diamond

    NASA Astrophysics Data System (ADS)

    Seo, Jung-Hun; Wu, Henry; Mikael, Solomon; Mi, Hongyi; Blanchard, James P.; Venkataramanan, Giri; Zhou, Weidong; Gong, Shaoqin; Morgan, Dane; Ma, Zhenqiang

    2016-05-01

    With the best overall electronic and thermal properties, single crystal diamond (SCD) is the extreme wide bandgap material that is expected to revolutionize power electronics and radio-frequency electronics in the future. However, turning SCD into useful semiconductors requires overcoming doping challenges, as conventional substitutional doping techniques, such as thermal diffusion and ion implantation, are not easily applicable to SCD. Here we report a simple and easily accessible doping strategy demonstrating that electrically activated, substitutional doping in SCD without inducing graphitization transition or lattice damage can be readily realized with thermal diffusion at relatively low temperatures by using heavily doped Si nanomembranes as a unique dopant carrying medium. Atomistic simulations elucidate a vacancy exchange boron doping mechanism that occurs at the bonded interface between Si and diamond. We further demonstrate selectively doped high voltage diodes and half-wave rectifier circuits using such doped SCD. Our new doping strategy has established a reachable path toward using SCDs for future high voltage power conversion systems and for other novel diamond based electronic devices. The novel doping mechanism may find its critical use in other wide bandgap semiconductors.

  4. Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.

    USGS Publications Warehouse

    Konnert, J.A.; Evans, H.T.

    1987-01-01

    The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.

  5. Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber

    SciTech Connect

    Ozbas, Bulent; Toki, Shigeyuki; Hsiao, Benjamin S.; Chu, Benjamin; Register, Richard A.; Aksay, Ilhan A.; Prud'homme, Robert K.; Adamson, Douglas H.

    2012-03-11

    The effects of functionalized graphene sheets (FGSs) on the mechanical properties and strain-induced crystallization of natural rubber (NR) are investigated. FGSs are predominantly single sheets of graphene with a lateral size of several hundreds of nanometers and a thickness of 1.5 nm. The effect of FGS and that of carbon black (CB) on the strain-induced crystallization of NR is compared by coupled tensile tests and X-ray diffraction experiments. Synchrotron X-ray scattering enables simultaneous measurements of stress and crystallization of NR in real time during sample stretching. The onset of crystallization occurs at significantly lower strains for FGS-filled NR samples compared with CB-filled NR, even at low loadings. Neat-NR exhibits strain-induced crystallization around a strain of 2.25, while incorporation of 1 and 4 wt % FGS shifts the crystallization to strains of 1.25 and 0.75, respectively. In contrast, loadings of 16 wt % CB do not significantly shift the critical strain for crystallization. Two-dimensional (2D) wide angle X-ray scattering patterns show minor polymer chain alignment during stretching, in accord with previous results for NR. Small angle X-ray scattering shows that FGS is aligned in the stretching direction, whereas CB does not show alignment or anisotropy. The mechanical properties of filled NR samples are investigated using cyclic tensile and dynamic mechanical measurements above and below the glass transition of NR.

  6. Using natural seeding material to generate nucleation in protein crystallization experiments.

    PubMed

    D'Arcy, Allan; Mac Sweeney, Aengus; Haber, Alexander

    2003-07-01

    The nucleation event in protein crystallization is a part of the process that is poorly controlled. It is generally accepted that the protein should be in the metastable phase for crystal growth, but for nucleation higher levels of saturation are needed. Formation of nuclei in bulk solvent requires interaction of protein molecules until a critical size of aggregate is created. In many crystallization experiments sufficiently high levels of saturation are not reached to allow this critical nucleation event to occur. If an environment can be created that favours a higher local concentration of macromolecules, the energy barrier for nucleation may be lowered. When seeds are introduced at lower levels of saturation in a crystallization experiment, nucleation may be facilitated and crystal growth initiated. In this study, the use of natural materials as stable seeds for nucleation has been investigated. The method makes it possible to introduce seeds into crystallization trials at any stage of the experiment using both microbatch and vapour-diffusion methods.

  7. Crystallization of An-rich plagioclase in 'dacitic' melt at Arenal volcano: Natural occurrence and experiments

    NASA Astrophysics Data System (ADS)

    Parat, F.; Streck, M.; Holtz, F.; Almeev, R.

    2006-12-01

    High-An plagioclase (An85-94) is ubiquitous in crystal-rich basaltic andesitic lavas of the current eruption and of the entire eruptive history of Arenal volcano, Costa Rica. An85-91 plagioclase was found to host glassy melt inclusions of dacitic composition suggesting that high An plagioclase may also crystallize in melts as silicic as ~63 wt.% SiO2 (Streck &Wacaster, 2006). Such dacitic melt inclusion compositions resemble dacite tephra units that erupted a few times in Arenal's history. We investigated one pumice clast from the dacitic ET2 tephra (e.g. Borgia et al., 1988) to shed light on the possibility to crystallize high An plagioclase from dacitic melt. The natural ET2 pumice sample is phenocryst poor (~7 wt.%) with a fine-grained, vesicular, and mostly crystalline matrix. Phenocrysts are dominated by plagioclase with subordinate amphibole, pyroxenes and oxides. Apatite occurs as accessory phase. Plagioclase cores indeed display high An between An94 to An85. On the other hand, rim compositions tend to be significantly less anorthitic (~An75 to 65). A natural glass made from a split of the natural ET2 pumice clast was utilized as starting material for an experimental investigation into phase equilibria of this dacite magma. The first experiments were carried out at high pressure (4 kbar), high temperature (900-950°C) and water-rich conditions (4-9 wt.% H2O in melt) in an internally heated pressure vessel (ΔlogfO2~NNO+3). Plagioclase with up to 83 mole % anorthite crystallizes at 900°C and for H2Omelt=9 wt.% (water-saturated). An-rich plagioclase coexists with amphibole (Mg#~70) and magnetite (Xulvo=10) in 60 wt.% SiO2 melt. As expected, An content increases with increasing temperature and water content in the melt. At 950°C, current experiments found plagioclase (An75) to be stable with H2Omelt<6.4 wt.% (no plagioclase at water-saturated conditions, only magnetite crystallizes). We infer that plagioclase begins crystallizing at H2Omelt = 8 wt.% and is

  8. Salt or cocrystal of salt? Probing the nature of multicomponent crystal forms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    da Silva, Cameron Capeletti; Guimarães, Freddy Fernandes; Ribeiro, Leandro; Martins, Felipe Terra

    2016-10-01

    The recognition of the nature of a multicomponent crystal form (solvate, salt, cocrystal or cocrystal of salt) is of great importance for pharmaceutical industry because it is directly related to the performance of a pharmaceutical ingredient, since there is interdependence between the structure, its energy and its physical properties. In this context, here we have identified the nature of multicomponent crystal forms of the anti-HIV drug lamivudine with mandelic acid through infrared spectroscopy. These investigated crystal forms were the known S-mandelic acid cocrystal of lamivudine R-mandelate trihydrate (1), a cocrystal of salt, and lamivudine R-mandelate (2), a salt. This approach also supports the identification and distinction of both ionized and unionized forms of mandelic acid in the infrared spectrum of 1. In this way, infrared spectroscopy can be useful to distinguish a cocrystal of salt from either salt or cocrystal forms. In the course of this study, for the first time we have also characterized and determined the crystal structure of R-mandelic acid cocrystal of sodium R-mandelate (3).

  9. Evidence for weak ferromagnetic moment within the basal plane of hematite natural crystals at low temperature

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Fatima; Hirt, Ann M.

    2013-10-01

    Low-temperature magnetization of hematite within the basal plane has been studied in a collection of natural crystals by means of torque magnetometry. Comparison between the torque curves at room temperature and at 77 K allows identification of a weak ferromagnetic moment constrained within the basal plane at temperatures well below the Morin transition. Annealing the samples produces the expected reduction of the weak ferromagnetic moment, but there is also a relationship between the ferromagnetic moment before and after annealing. Low-temperature measurements after the annealing experiment reveal the presence of a weak ferromagnetic moment that survives the annealing. This observation suggests the magnetic structure of natural hematite crystals below the Morin transition can still be a carrier of magnetization.

  10. Characterization of single-crystal diamond grown from the vapor phase on substrates of natural diamond

    SciTech Connect

    Altukhov, A. A.; Vikharev, A. L.; Gorbachev, A. M.; Dukhnovsky, M. P.; Zemlyakov, V. E.; Ziablyuk, K. N.; Mitenkin, A. V.; Muchnikov, A. B. Radishev, D. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2011-03-15

    The results of studies of single-crystal diamond layers with orientation (100) grown on substrates of IIa-type natural diamond by chemical-vapor deposition and of semiconductor diamond obtained subsequently by doping by implantation of boron ions are reported. Optimal conditions of postimplantation annealing of diamond that provide the hole mobility of 1150 cm{sup 2} V{sup -1} s{sup -1} (the highest mobility obtained so far for semiconductor diamond after ion implantation) are given.

  11. Exploring crystallization kinetics in natural rhyolitic melts using high resolution CT imagery of spherulites

    NASA Astrophysics Data System (ADS)

    Clow, T. W.; Befus, K. S.; Gardner, J. E.

    2014-12-01

    Little of our understanding of crystallization kinetics has been directly derived from studies of natural samples. We examine crystallization of rhyolitic melts by quantifying spherulite sizes and number densities in obsidian collected from Yellowstone caldera using high-resolution x-ray computed tomography (CT) imagery. Spherulites are spherical to ellipsoidal masses of intergrown alkali feldspar and quartz in a radiating, fibrous structure. They are thought to form in response to relatively rapid crystallization of melt in response to large amounts of undercooling. Recent research using compositional gradients that form outside of spherulites has suggested that they nucleate at 700 to 500 ˚C and their growth slows exponentially until it eventually ceases at ~400 ˚C. By quantifying spherulite textures, and using those temperature constraints, we derive new kinetic information regarding crystallization in natural rhyolitic systems. We find that spherulites range from 0.2 to 12.3 mm in diameter, and are 0.004 to 49.5 mm3 in volume. Such values generate number densities of 70 to 185 spherulites cm-3. Histograms of size display positively skewed distributions indicating small spherulites are far more abundant than larger ones. Those distributions imply nucleation rates change as a function of temperature. At higher temperatures where the melt is undercooled by 400-500 ˚C, nucleation is rare and growth is favored. With decreasing temperature, nucleation rates increase rapidly until cold enough temperatures are reached that diffusion limits crystallization and causes it to cease (undercoolings of ~650 ˚C). Assuming a cooling rate for the host obsidian of 10-5 ˚C s-1, then overall spherulite nucleation rates are 0.01 to 0.03 spherulites cm-3 hour-1.

  12. Crystal Structures of Non-Natural Nucleobase Pairs in A- and B-DNA†

    PubMed Central

    Georgiadis, Millie M.; Singh, Isha; Kellett, Whitney F.; Hoshika, Shuichi; Benner, Steven A.; Richards, Nigel G. J.

    2015-01-01

    The extent to which synthetic biology can be used to expand genetic information systems compatible with natural enzymes and cells will depend on the extent to which multiple and contiguous non-natural nucleobase pairs fit within the standard double helical conformations of DNA. Toward this goal, two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but with rearranged hydrogen bond donor and acceptor groups. Here, we present the crystal structures of two self-complementary 16-mer oligonucleotides containing Z:P pairs. The first contained two consecutive Z:P nucleobase pairs and was found to crystallize within a host-guest complex in B-form. The second contained six consecutive Z:P pairs; it was found to crystallize as an A-form DNA duplex, although it can adopt B-form in solution as inferred from circular dichroism spectra. Although Z:P pairs have some structural properties that are similar to those of G:C pairs, unique features include stacking of the nitro group on Z with the adjacent heterocyclic nucleobase ring in A-DNA. In both B-and A-DNA, major groove widths associated with the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs potentially due to the presence of the nitro group in Z. Thus, our structural studies suggest that multiple and consecutive Z:P pairs are readily accommodated in DNA duplex structures recognized by natural polymerases, and therefore the GACTZP synthetic genetic system has the requisite properties to expand sequence space. PMID:25961938

  13. Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.

    1993-01-01

    The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.

  14. Pegmatites of the Crystal Mountain district, Larimer County, Colorado

    USGS Publications Warehouse

    Thurston, William R.

    1952-01-01

    The Front Range of Colorado is composed chiefly of schists of the pre-Cambrian Idaho Springs formation which have been intruded by a variety of granitic batholiths. In the Crystal Mountain district the Mount Olympus granite, a satellite of the Longs Peak batholith, forms sills and essentially concordant multiple intrusions in quartz-mica schist that dips southward at moderate to steep angles. A great number of pegmatites accompanied and followed the intrusion of the sills, and formed concordant and discordant bodies in schist and granite. Over 1,300 pegmatites in the Hyatt area north of the Big Thompson River are mapped and individually described. There are 27 pegmatites in the area that are made up of a wall zone and a core, and one, the pegmatite at the Hyatt mine, is composed of five zones. The largest pegmatites in the area are discordant in schist and occupy zones that are interpreted to be tear faults and tension fractures produced by the successive intrusions of granite that formed multiple sills. The majority of pegmatites in the large multiple sills were emplaced along the foliation and fractures. The composition of 96 percent of the pegmatites is granitic, 3.5 percent are quartz-rich pegmatites, and a few are tourmaline-rich. The pegmatites were intruded over a period of time and probably were derived from a granitic magma at different stages during differentiation. Solutions escaping from many of the pegmatites tournalinized and silicified the wall rocks for a few inches to two feet, but chemical and spectrographic analyses fail to show the transport of any other constituents. Perthite, plagioclase, and quartz are the essential minerals of the pegmatites, and muscovite is a minor but widespread constituent. Tourmaline, garnet, beryl, and apatite are common accessory minerals, and lithiophillitite-triphylite, bismuthinite, uraninite, columbite-tantalite, and chrysoberyl are rare constituents. Beryl is found in 250 or 27 percent of the pegmatites and makes

  15. Nature of Hydrogen Bonds and S···S Interactions in the l-Cystine Crystal.

    PubMed

    Flores-Huerta, Anaid G; Tkatchenko, Alexandre; Galván, Marcelo

    2016-06-23

    The intermolecular interactions that govern the stability of the l-cystine crystal were studied. This task is accomplished by using density-functional theory (DFT) with the generalized-gradient approximation (GGA) and including many-body dispersion (MBD) interactions. The strengths of the different interactions within the molecular crystal were obtained by a decomposition of the total interaction energy in two-, three-, and four-body contributions. It was determined that most of the hydrogen bonds formed within the crystal are strong (13, 15, and 19 kcal/mol) and the van der Waals nature of the S···S interaction is fully confirmed. Also, the presence of strong repulsive three-body contributions is determined. The results obtained support the idea of designing crystal growth inhibitors for this system in such a way that, when inserted in the crystal, they maintain the disulfide bridge environment but its capacity of generate hydrogen-bond networks is removed.

  16. Crystallization and sublimation of non-racemic mixtures of natural amino acids: a path towards homochirality

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Guillemin, Jean-Claude

    2012-07-01

    Homochirality of biologically important molecules such as amino acids and sugars is a prerequisite for the origin of life. There are different forces or mechanisms in the Universe to trigger off the primary imbalance in the enantiomeric ratio. Very likely the initial bias of one type of enantiomers over the other on Earth was arisen from the inflow of extraterrestrial matter (carbonaceous meteorites). The phase transitions (crystallization, sublimation) of non-racemic mixtures of enantiomers are ones of the most probable mechanisms for the homochirogenesis[1]. The sublimation, almost uninvestigated subject and forgotten for 30 years, revealed recently a pathway to the enantioenrichment of natural amino acids[2]. Starting from a mixture with a low content of an enantiopure amino acid a partial sublimation gives a considerable enrichment. In our further experiments we combined two first-order phase transitions of amino acid(s) mixtures: crystallization and sublimation. The results show the possibility of the transfer of enantiopurity between different amino acids[3]. Subliming a crystallized mixture of racemic amino acids with an enantiopure one we found that the sublimate is a non-racemic mixture of the same handedness for all components. The significance of the studies can be realized taking into account that just 5 of 22 proteinogenic amino acids are able to homochiral self-organization. The relevance of these studies to the Prebiotic Earth and to the evolution of the single handedness of biological molecules will be discussed. [1] Blackmond, Phil. Trans. R. Soc. B 2011, 366, 2878. [2] Guillemin et al., Chem. Commun. 2010 , 46, 1482. [3] Tarasevych, Guillemin et al., submitted.

  17. Nature of Defects Induced by Au Implantation in Hexagonal Silicon Carbide Single Crystals

    SciTech Connect

    Gentils, Aurelie; Barthe, Marie-France; Egger, Werner; Sperr, Peter

    2009-03-10

    Pulsed-slow-positron-beam-based positron lifetime spectroscopy was used to investigate the nature of vacancy defects induced by 20 MeV Au implantation in single crystals 6H-SiC. Preliminary analysis of the data shows that at lower fluence, below 10{sup 14} cm{sup -2}, a positron lifetime of 220 ps has been obtained: it could be associated with the divacancy V{sub Si}-V{sub C} in comparison with the literature. At higher fluence, above 10{sup 15} cm{sup -2}, a positron lifetime of 260-270 ps, increasing with the incident positron energy, has been observed after decomposition of the lifetime spectra. By comparison with lifetime calculations, open-volumes such as quadrivacancy (V{sub Si}-V{sub C}){sub 2} clusters could be associated with this value.

  18. Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal

    PubMed Central

    Cartwright, Julyan H. E.; Checa, Antonio G.; Escribano, Bruno; Sainz-Díaz, C. Ignacio

    2009-01-01

    Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48–54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton–Cabrera–Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299–358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications. PMID:19528636

  19. Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal.

    PubMed

    Cartwright, Julyan H E; Checa, Antonio G; Escribano, Bruno; Sainz-Díaz, C Ignacio

    2009-06-30

    Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48-54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton-Cabrera-Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299-358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications.

  20. Thermoluminescence, electron paramagnetic resonance and optical absorption in natural and synthetic rhodonite crystals

    NASA Astrophysics Data System (ADS)

    Paião, J. R. B.; Watanabe, S.

    2008-10-01

    Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340°C TL peaks are observed; the difference occurs in their relative intensities, but only 340°C peak grows strongly for high doses. Al2O3 and Al2O3 + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4°C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn3+ in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe2+. It decays under heating up to 900°C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600°C.

  1. Spectroscopic studies of excitons in cuprous oxide: Natural crystals and synthetic thick films on magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sun, Yi

    2001-10-01

    We observed exciton photoluminescence from Cu2O natural bulk crystals under two-photon excitation to the 1s, as well as to the 2s level, over a wide temperature range. The direct recombination emission, denoted as Xo, and a phonon- assisted, electric-dipole radiative transition involving G-12 longitudinal optical phonons, denoted as Xo- G-12 , were observed for 1s excitation. We have studied the angular (at 1.8K) and temperature (from 1.8K to 297K) dependence of the time integrated photoluminescence intensity of both emission features. For resonant pumping to the 1s level, the direct emission is strongly enhanced at low temperature. It is forward directed, however, with an angular width substantially larger than the divergence of the excitation beam; excitation to the 2s level (which subsequently decays into a 1s level) results in a more isotropic angular distribution of Xo emission. The lifetime of the Xo emission resulting from resonant excitation to the 1s level at 1.8K is ~2ns, shorter than the decay time of thermalized orthoexcitons. The results support the idea that resonant two-photon excitation to the 1s level results primarily in a quadrupole-orthoexciton-polariton formation. A theory involving the Green's function and coupled photon-exciton wave equations was developed to simulate the coherent polariton propagation. To study excitons in a spatially confined geometry, we developed an ex situ growth technique to obtain single-crystal like Cu2O thick films on MgO substrates. The optical absorption spectrum exhibits the exciton absorption series up to n = 5p at low temperature. 1s orthoexciton direct emission and phonon-assisted emission features were observed to split into three (on MgO (110)) and two (on MgO (111)) peaks. The distortion of film crystal structure and the effective Hamiltonian including a deformation potential were used to explain the energy level splitting and shift of the 1s orthoexcitons in Cu2O films. Cu2O dots and waveguides were also

  2. Playing with light in diatoms: small water organisms with a natural photonic crystal structure

    NASA Astrophysics Data System (ADS)

    De Stefano, Luca; De Stefano, Mario; Maddalena, Pasqualino; Moretti, Luigi; Rea, Ilaria; Mocella, Vito; Rendina, Ivo

    2007-05-01

    Complex micro- and nano-structured materials for photonic applications are designed and fabricated using top technologies. A completely different approach to engineering systems at the sub-micron-scale consists in recognizing the nanostructures and morphologies that nature has optimized during life's history on earth. In fact, biological organisms could exhibit ordered geometries and complex photonic structures which often overcome the products of the best available fabrication technologies. An example is given by diatoms. They are microalgae with a peculiar cell wall made of amorphous hydrated silica valves, reciprocally interconnected in a structure called the frustule. Valve surfaces exhibit specie-specific patterns of regular arrays of chambers, called areolae, developed into the frustule depth. Areolae range in diameter from few hundreds of nanometers up to few microns, and can be circular, polygonal or elongate. The formation of these patterns can be modeled by self-organised phase separation. Despite of the high level of knowledge on the genesis and morphology of diatom frustules, their functions are not completely understood. In this work, we show that the silica skeletons of marine diatoms, characterized by a photonic crystal-like structure, have surprising optical properties, being capable of filtering and focalizing light, as well as exhibiting optical sensing capabilities.

  3. Natural olivine crystal-fabrics in the western Pacific convergent region

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.

    2015-12-01

    Crystallographic preferred orientations (CPOs) within a natural peridotite commonly consist three pole figures for [100], [010] and [001] axes and are categorized into the well-known five olivine fabric types: A, B, C, D and E, which are easily connected with olivine slip systems: A as (010)[100], B as (010)[001], C as (001)[001], D as {0kl}[100] and E as (001)[100]. The five fabric types have been discussed on flow stress, water contents and pressure effect in mantle. In addition, AG type has also been proposed in recognition of its common occurrence in nature. The development of AG-type is not clear and could require some factors such as complex slip systems, non-coaxial strain types or the effect of melt during plastic flow. Here, we present our olivine fabric database mainly for the convergent margin in the western Pacific region. We introduce a new index named fabric-index angle (FIA) related to P-wave property of a single olivine crystal instead of a tentative classification of CPOs into the six fabric types, so that a set of CPOs can be expressed as a single angle in a range between -90° and 180°. The six olivine fabric types can have unique FIA: 63° for A type, -28° for B type, 158° for C type, 90° for D type, 106° for E type and 0° for AG type. We divided our olivine database into five tectonic groups: ophiolites, ridge peridotites, trench peridotites, peridotite xenoliths and peridotites enclosed in high-pressure metamorphic rocks. Our result shows that although our database is not yet large enough except the trench peridotites to define the characteristic of the five tectonic groups, the natural olivine fabrics vary in a range of the FIA: 0° to 150° for the ophiolites, 40° to 80° for the ridge peridotites, -40° to 100° for the trench peridotites, 0° to 100° for the peridotite xenoliths and -40° to 10° for the peridotites enclosed in high-pressure metamorphic rocks. The trench peridotites show statistically bimodal distribution of FIA

  4. Syntheses, spectroscopic characterization, crystal structure and natural rubber vulcanization activity of new disulfides derived from sulfonyldithiocarbimates

    NASA Astrophysics Data System (ADS)

    Alves, Leandro de Carvalho; Rubinger, Mayura Marques Magalhães; Tavares, Eder do Couto; Janczak, Jan; Pacheco, Elen Beatriz Acordi Vasques; Visconte, Leila Lea Yuan; Oliveira, Marcelo Ribeiro Leite

    2013-09-01

    The compounds (Bu4N)2[(4-RC6H4SO2NCS2)2] [Bu4N = tetrabutylammonium cation; R = H (1), F (2), Cl (3) and Br (4)] and (Ph4P)2[(4-RC6H4SO2NCS2)2]ṡH2O [Ph4P = tetraphenylphosphonium cation and R = I (5)] were synthesized by the reaction of the potassium dithiocarbimates (4-RC6H4SO2NCS2K2ṡ2H2O) with I2 and Bu4NBr or Ph4PCl. The IR data were consistent with the formation of the dithiocarbimatodisulfides anions. The NMR spectra showed the expected signals for the cations and anions in a 2:1 proportion. The structures of compounds 1-5 were determined by the single crystal X-ray diffraction. The compounds 2, 3 and 4 are isostructural and crystallise in the centrosymmetric space group C2/c of the monoclinic system. Compound 1 crystallises in the monoclinic system in the space group of P21/n and the compound 5 crystallises in the centrosymmetric space group P-1 of the triclinic system. The complex anions of compounds 2, 3 and 4 exhibit similar conformations having twofold symmetry, while in 1 and 5 the anions exhibit C1 symmetry. The activity of the new compounds in the vulcanization of the natural rubber was evaluated and compared to the commercial accelerators ZDMC, TBBS and TMTD. These studies confirm that the sulfonyldithiocarbimato disulfides anions are new vulcanization accelerators, being slower than the commercial accelerators, but producing a greater degree of crosslinking, and scorch time values compatible with good processing safety for industrial applications. The mechanical properties, stress and tear resistances were determined and compared to those obtained with the commercial accelerators.

  5. Photoinduced chemical reactions on natural single crystals and synthesized crystallites of mercury(II) sulfide in aqueous solution containing naturally occurring amino acids.

    PubMed

    Pal, Bonamali; Ikeda, Shigeru; Ohtani, Bunsho

    2003-03-10

    Photoirradiation at >300 nm of aqueous suspensions of several natural crystal specimens and synthesized crystallites of mercury(II) sulfide (HgS) induced deaminocyclization of optically active or racemic lysine into pipecolinic acid (PCA) under deaerated conditions. This is the first example, to the best of our knowledge, of photoinduced chemical reactions of natural biological compounds over natural minerals. It was found that the natural HgS crystals had activity higher than those of synthesized ones but lower than those of other sulfides of transition metals, e.g., CdS and ZnS, belonging to the same II-IV chalcogenides. In almost all of the photoreactions, decompostion of HgS occurred to liberate hydrogen sulfide (H(2)S) and Hg(2+), and the latter seemed to have undergone in-situ reductive deposition on HgS as Hg(0) after a certain induction period (24-70 h) during the photoirradiation, as indicated by the darkened color of the suspensions. The formation of PCA, presumably through combination of oxidation of lysine and reduction of an intermediate, cyclic Schiff base, could also be seen after a certain induction time of the Hg(0) formation. This was supported by the fact that the addition of small amount of Hg(2+) (0.5 wt % of HgS) increased the PCA yield by almost 2-fold. We also tried to elucidate certain aspects of the plausible stereochemical reactions in relation to the chiral crystal structure of HgS. Although, in some experiments, slight enantiomeric excess of the product PCA was observed, the excess was below or equal to the experimental error and no other supporting analytical data could not be obtained; we cannot conclude the enantiomeric photoproduction of PCA by the natural chiral HgS specimen. PMID:12611518

  6. Pegmatites of the Crystal Mountain district, Larimer County, Colorado

    USGS Publications Warehouse

    Thurston, William R.

    1952-01-01

    The Front Range of Colorado is composed chiefly of schists of the pre-Cambrian Idaho Springs formation which have been intruded by a variety of granitic batholiths. In the Crystal Mountain district the Mount Olympus granite, a satellite of the Longs Peak batholith, forms sills and essentially concordant multiple intrusions in quartz-mica schist that dips southward at moderate to steep angles. A great number of pegmatites accompanied and followed the intrusion of the sills, and formed concordant and discordant bodies in schist and granite. Over 1,300 pegmatites in the Hyatt area north of the Big Thompson River are mapped and individually described. There are 27 pegmatites in the area that are made up of a wall zone and a core, and one, the pegmatite at the Hyatt mine, is composed of five zones. The largest pegmatites in the area are discordant in schist and occupy zones that are interpreted to be tear faults and tension fractures produced by the successive intrusions of granite that formed multiple sills. The majority of pegmatites in the large multiple sills were emplaced along the foliation and fractures. The composition of 96 percent of the pegmatites is granitic, 3.5 percent are quartz-rich pegmatites, and a few are tourmaline-rich. The pegmatites were intruded over a period of time and probably were derived from a granitic magma at different stages during differentiation. Solutions escaping from many of the pegmatites tournalinized and silicified the wall rocks for a few inches to two feet, but chemical and spectrographic analyses fail to show the transport of any other constituents. Perthite, plagioclase, and quartz are the essential minerals of the pegmatites, and muscovite is a minor but widespread constituent. Tourmaline, garnet, beryl, and apatite are common accessory minerals, and lithiophillitite-triphylite, bismuthinite, uraninite, columbite-tantalite, and chrysoberyl are rare constituents. Beryl is found in 250 or 27 percent of the pegmatites and makes

  7. Crystal Systems.

    ERIC Educational Resources Information Center

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  8. Use of hydrogen peroxide treatment and crystal violet agar plates for selective recovery of bacteriophages from natural environments

    SciTech Connect

    Asghari, A.; Farrah, S.R.; Bitton, G. )

    1992-04-01

    Hydrogen peroxide inactivated bacteriophages and bacteria at different rates. A concentration of 0.1% hydrogen peroxide reduced the numbers of several bacteria by an average of 94% but caused an average of 25% inactivation in the numbers of bacteriophages tested. Treating natural samples with hydrogen peroxide selectively reduced the indigenous bacterial flora and permitted better visualization of plaques of lawns of Escherichia coli C-3000. In some cases indigenous gram-positive bacteria were relatively resistant to hydrogen peroxide, but their growth could be limited by incorporation of crystal violet into the bottom agar used for plaque assays. The use of hydrogen peroxide treatment and crystal violet-containing plates permitted recovery of more phages from natural samples than did other procedures, such as chloroform pretreatment or the use of selective plating agar such as EC medium.

  9. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.

    PubMed

    Kajander, Tommi; Cortajarena, Aitziber L; Mochrie, Simon; Regan, Lynne

    2007-07-01

    The structure and stability of repeat proteins has been little studied in comparison to the properties of the more familiar globular proteins. Here, the structure and stability of designed tetratricopeptide-repeat (TPR) proteins is described. The TPR is a 34-amino-acid motif which adopts a helix-turn-helix structure and occurs as tandem repeats. The design of a consensus TPR motif (CTPR) has previously been described. Here, the crystal structures and stabilities of proteins that contain eight or 20 identical tandem repeats of the CTPR motif (CTPR8 and CTPR20) are presented. Both CTPR8 and CTPR20 adopt a superhelical overall structure. The structures of the different-length CTPR proteins are compared with each other and with the structures of natural TPR domains. Also, the unusual and perhaps unique crystal-packing interactions resulting in pseudo-infinite crystalline superhelices observed in the different crystal forms of CTPR8 and CTPR20 are discussed. Finally, it is shown that the thermodynamic behavior of CTPR8 and CTPR20 can be predicted from the behavior of other TPRs in this series using an Ising model-based analysis. The designed protein series CTPR2-CTPR20 covers the natural size repertoire of TPR domains and as such is an excellent model system for natural TPR proteins.

  10. A comparative study on the crystal structure of bicycle analogues to the natural phytotoxin helminthosporins

    NASA Astrophysics Data System (ADS)

    Barbosa, Luiz Cláudio de Almeida; Teixeira, Robson Ricardo; Nogueira, Leonardo Brandão; Maltha, Celia Regina Alvares; Doriguetto, Antônio Carlos; Martins, Felipe Terra

    2016-02-01

    Herein we described structural insights of a series of analogues to helminthosporin phytotoxins. The key reaction used to prepare the compounds corresponded to the [3 + 4] cycloaddition between the oxyallyl cation generated from 2,4-dibromopentan-3-one and different furans. Their structures were confirmed upon IR, NMR and X-ray diffraction analyses. While bicycles 7, 8 and 9 crystallize in the centrosymmetric monoclinic space group P21/c, compound 10 was solved in the noncentrosymmetric orthorhombic space group P212121. The solid materials obtained were shown to be racemic crystals (7, 8, 9) or racemic conglomerate (10). In all compounds, there is formation of a bicycle featured by fused tetrahydropyranone and 2,5-dihydrofuran rings. They adopt chair and envelope conformations, respectively. Crystal packing of all compounds is stabilized through C-H•••O contacts. Conformational aspects as well as similarities and differences among the crystal structures of the synthesized analogues are discussed.

  11. High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa

    NASA Astrophysics Data System (ADS)

    Qin, Fei; Wu, Xiang; Wang, Ying; Fan, Dawei; Qin, Shan; Yang, Ke; Townsend, Joshua P.; Jacobsen, Steven D.

    2016-06-01

    The comparative compressibility and high-pressure stability of a natural epidote (0.79 Fe-total per formula unit, Fetot pfu) and clinozoisite (0.40 Fetot pfu) were investigated by single-crystal X-ray diffraction and Raman spectroscopy. The lattice parameters of both phases exhibit continuous compression behavior up to 30 GPa without evidence of phase transformation. Pressure-volume data for both phases were fitted to a third-order Birch-Murnaghan equation of state with V 0 = 461.1(1) Å3, K 0 = 115(2) GPa, and K0' = 3.7(2) for epidote and V 0 = 457.8(1) Å3, K 0 = 142(3) GPa, and K0' = 5.2(4) for clinozoisite. In both epidote and clinozoisite, the b-axis is the stiffest direction, and the ratios of axial compressibility are 1.19:1.00:1.15 for epidote and 1.82:1.00:1.19 for clinozoisite. Whereas the compressibility of the a-axis is nearly the same for both phases, the b- and c-axes of the epidote are about 1.5 times more compressible than in clinozoisite, consistent with epidote having a lower bulk modulus. Raman spectra collected up to 40.4 GPa also show no indication of phase transformation and were used to obtain mode Grüneisen parameters (γ i) for Si-O vibrations, which were found to be 0.5-0.8, typical for hydrous silicate minerals. The average pressure coefficient of Raman frequency shifts for M-O modes in epidote, 2.61(6) cm-1/GPa, is larger than found for clinozoisite, 2.40(6) cm-1/GPa, mainly due to the different compressibility of FeO6 and AlO6 octahedra in M3 sites. Epidote and clinozoisite contain about 2 wt% H2O are thus potentially important carriers of water in subducted slabs.

  12. High-pressure behavior of natural single-crystal epidote and clinozoisite up to 40 GPa

    NASA Astrophysics Data System (ADS)

    Qin, Fei; Wu, Xiang; Wang, Ying; Fan, Dawei; Qin, Shan; Yang, Ke; Townsend, Joshua P.; Jacobsen, Steven D.

    2016-10-01

    The comparative compressibility and high-pressure stability of a natural epidote (0.79 Fe-total per formula unit, Fetot pfu) and clinozoisite (0.40 Fetot pfu) were investigated by single-crystal X-ray diffraction and Raman spectroscopy. The lattice parameters of both phases exhibit continuous compression behavior up to 30 GPa without evidence of phase transformation. Pressure-volume data for both phases were fitted to a third-order Birch-Murnaghan equation of state with V 0 = 461.1(1) Å3, K 0 = 115(2) GPa, and K0' = 3.7(2) for epidote and V 0 = 457.8(1) Å3, K 0 = 142(3) GPa, and K0' = 5.2(4) for clinozoisite. In both epidote and clinozoisite, the b-axis is the stiffest direction, and the ratios of axial compressibility are 1.19:1.00:1.15 for epidote and 1.82:1.00:1.19 for clinozoisite. Whereas the compressibility of the a-axis is nearly the same for both phases, the b- and c-axes of the epidote are about 1.5 times more compressible than in clinozoisite, consistent with epidote having a lower bulk modulus. Raman spectra collected up to 40.4 GPa also show no indication of phase transformation and were used to obtain mode Grüneisen parameters ( γ i) for Si-O vibrations, which were found to be 0.5-0.8, typical for hydrous silicate minerals. The average pressure coefficient of Raman frequency shifts for M-O modes in epidote, 2.61(6) cm-1/GPa, is larger than found for clinozoisite, 2.40(6) cm-1/GPa, mainly due to the different compressibility of FeO6 and AlO6 octahedra in M3 sites. Epidote and clinozoisite contain about 2 wt% H2O are thus potentially important carriers of water in subducted slabs.

  13. Evidence For Weak Ferromagnetic Moment Within The Basal Plane Of Hematite Natural Crystals At Low-Temperature

    NASA Astrophysics Data System (ADS)

    Hernandez, F. M.; Hirt, A. M.

    2013-12-01

    Hematite is an iron oxide (α-Fe2O3) that represents the most oxidized state in the wüstite-magnetite-hematite system. Hematite is antiferromagnetic (AFM) at room temperature with a small canted moment lying within the crystal symmetry plane or basal plane (weak ferromagnetism, WFM). Al low temperatures hematite undergoes a magnetic phase transition from WFM to a pure antiferromagnetic configuration (AF), which is known as the Morin transition. Low-temperature magnetization of hematite within the basal has been studied in a collection of natural crystals by means of torque magnetometry. Comparison between the torque curves at room temperature and at 77 K allows identification of a weak ferromagnetic moment constrained within the basal plane at temperatures well below the Morin transition. Annealing the samples produces the expected reduction of the weak ferromagnetic moment, but there is also a relationship between the ferromagnetic moment before and after annealing. Low temperature measurements after the annealing experiment reveal the presence of a weak ferromagnetic moment that survives the annealing. This observation suggests the magnetic structure of natural hematite crystals below the Morin transition can still be a carrier of magnetization.

  14. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve. PMID:26277189

  15. Radiation dosimetry using decreasing TL intensity in a few variety of silicate crystals.

    PubMed

    Watanabe, Shigueo; Cano, Nilo F; Gundu Rao, T K; Oliveira, Letícia M; Carmo, Lucas S; Chubaci, Jose F D

    2015-11-01

    This study shows that there are some ionic crystals which after irradiation with high gamma dose Dm and subsequent irradiation with low doses ranging up to 500Gy present a decreasing TL intensity as dose increases. This interesting feature can be used as a calibration curve in radiation dosimetry. Such behavior can be found in green quartz, three varieties of beryl and pink tourmaline. In all these silicate crystals it can be shown that irradiation with increasing γ-dose there is a dose Dm for which the TL intensity is maximum. Of course, Dm varies depending on the crystal and irradiated crystal with the dose Dm is stable. If one of these crystals is taken and irradiated with doses from low values up to 400-500Gy, a curve of decreasing TL intensity is obtained; such a curve can be used as a calibration curve.

  16. Nature of the gel to liquid crystal transition of synthetic phosphatidylcholines.

    PubMed Central

    Albon, N; Sturtevant, J M

    1978-01-01

    High sensitivity differential scanning calorimetry is employed in the study of the gel to liquid crystal phase transition of a highly purified sample of dipalmitoylphosphatidylcholine in multilamellar bilayer suspension. It is concluded from the calorimetric data that the purity of the sample is better than 99.94 mol % and that the transition closely approximates an isothermal first-order transition. PMID:276866

  17. Nature of multiplet structure of luminescence spectra of doped naphthalene and benzophenone crystals

    NASA Astrophysics Data System (ADS)

    Curmei, N. D.; Klishevich, G. V.; Melnyk, V. I.; Tereshchenko, A. G.; Zloba, D. I.; Sherban, D.

    2013-09-01

    Luminescence spectra of naphthalene and benzophenone doped with their monosubstituted derivatives at 4.2 K were studied. The multiplet structure of these spectra was analyzed using the symmetry properties of the free molecules and crystal structures. It was shown that fl uorescence and phosphorescence spectra of the studied objects had a doublet character.

  18. Role of Stearic Acid in the Strain-Induced Crystallization of Crosslinked Natural Rubber and Synthetic Cis-1,4-Polyisoprene

    SciTech Connect

    Kohjiya,S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B.

    2007-01-01

    Strain-induced crystallization of crosslinked natural rubber (NR) and its synthetic analogue, cis-1,4-polyisoprene (IR), both mixed with various amounts of stearic acid (SA), were investigated by time-resolved X-ray diffraction using a powerful synchrotron radiation source and simultaneous mechanical (tensile) measurement. No acceleration or retardation was observed on NR in spite of the increase of SA amount. Even the SA-free IR crystallized upon stretching, and the overall crystallization behavior of IR shifted to the larger strain ratio with increasing SA content. No difference due to the SA was detected in the deformation of crystal lattice by stress for both NR and IR. These results suggested that the extended network chains are effective for the initiation of crystallization upon stretching, while the role of SA is trivial. These behaviors are much different from their crystallization at low temperature by standing, where SA acts as a nucleating agent.

  19. Nature of the deformation crystallization of iron-based amorphous alloys upon megaplastic deformation

    NASA Astrophysics Data System (ADS)

    Sundeev, P. V.; Glezer, A. M.; Shalimova, A. V.; Umnova, N. V.; Nosova, G. I.

    2014-10-01

    Specific features of the crystallization of amorphous alloys Fe83Cr13B4, Fe80B13Si7, Fe76Cr16Zr4.5B3C0.5, Fe58Ni25B17, Fe57Co24Cr16B3, and Fe50Ni33B17 during megaplastic deformation (MPD) in a Bridgman chamber have been studied at room temperature. It is found that the volume fraction of the crystalline phase formed in each of the amorphous alloys during deformation increases when its crystallization temperature decreases. The obtained results are explained on the assumption of adiabatic heating in a shear band and also the hypothesis regarding an increase in the concentration of excess free volume regions in shear bands during deformation.

  20. Microscopic nature of crystal phase quantum dots in ultrathin GaAs nanowires by nanoscale luminescence characterization

    NASA Astrophysics Data System (ADS)

    Loitsch, Bernhard; Müller, Marcus; Winnerl, Julia; Veit, Peter; Rudolph, Daniel; Abstreiter, Gerhard; Finley, Jonathan J.; Bertram, Frank; Christen, Jürgen; Koblmüller, Gregor

    2016-06-01

    Crystal phase quantum dots (CPQD) embedded in a nanowire (NW) geometry have recently emerged as efficient single photon emitters. In typical III–V semiconductor NWs such CPQDs are linked to the well-known zincblende (ZB)/wurtzite (WZ) polytypism that occurs mostly randomly along the NW axis, making it difficult to assess the exact position and microscopic nature of a particular emitter. Here, we employ highly spatially-resolved cathodoluminescence (CL) spectroscopy directly in a scanning transmission electron microscope to unambiguously identify type, microscopic nature, position and luminescence characteristics of single polytype defects in ultrathin GaAs–AlGaAs core–shell NWs with nanometer-scale resolution. Importantly, we find that individual twin defects (1 ML-inclusion of WZ in a ZB crystal) are the predominant source for QD emission, where the spectral position depends sensitively on the strength of radial confinement by the ultrathin GaAs NW core. By analyzing the temperature-dependent luminescence properties of a ∼1 ML thick/7 nm wide twin-defect CPQD, we determine a thermal activation energy of ∼7.4 meV for the confined excitons, as well as an evolution in linewidth that reflects phonon-mediated broadening processes, corroborating the QD-like behavior. Our findings also reveal the presence of effective carrier diffusion in-between isolated CPQDs.

  1. New Insights into the Relationship Between Network Structure and Strain Induced Crystallization in Unvolcanized Natural Rubber by Synchrotron X-ray Diffraction

    SciTech Connect

    Toki, S.; Hsiao, B; Amnuaypornsri, S; Sakdapipanich, J

    2009-01-01

    The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.

  2. Effects of Cr 3+ impurity concentration on the crystallography of synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Huang, Eugene; Lee, Jan-Shing; Yu, Shu-Cheng

    2011-06-01

    Flux method has been adopted for the synthesis of emerald crystals using PbO-V 2O 5 as a flux in order to study the crystallography of the synthetic crystals. In general, the hue of green color of emerald deepens with the addition of Cr 3+. The molar volume of the synthesized crystals was found to increase with the incorporation of Cr 2O 3 dopant. The substitution of Cr 3+ for Al 3+ in the octahedral sites of beryl results in the expansion of a-axis, while c-axis remains nearly unchanged. The maximum Cr 2O 3-content allowed in the crystal lattice of emerald has been found to be about 3.5 wt%. When the doping Cr 2O 3-content exceeds 3.5 wt%, a significant anomaly in lattice parameters starts to take place, accompanying the precipitation of an unknown phase in the emerald matrix.

  3. Structure analysis on synthetic emerald crystals

    NASA Astrophysics Data System (ADS)

    Lee, Pei-Lun; Lee, Jiann-Shing; Huang, Eugene; Liao, Ju-Hsiou

    2013-05-01

    Single crystals of emerald synthesized by means of the flux method were adopted for crystallographic analyses. Emerald crystals with a wide range of Cr3+-doping content up to 3.16 wt% Cr2O3 were examined by X-ray single crystal diffraction refinement method. The crystal structures of the emerald crystals were refined to R 1 (all data) of 0.019-0.024 and w R 2 (all data) of 0.061-0.073. When Cr3+ substitutes for Al3+, the main adjustment takes place in the Al-octahedron and Be-tetrahedron. The effect of substitution of Cr3+ for Al3+ in the beryl structure results in progressively lengthening of the Al-O distance, while the length of the other bonds remains nearly unchanged. The substitution of Cr3+ for Al3+ may have caused the expansion of a axis, while keeping the c axis unchanged in the emerald lattice. As a consequence, the Al-O-Si and Al-O-Be bonding angles are found to decrease, while the angle of Si-O-Be increases as the Al-O distance increases during the Cr replacement.

  4. Pulverization of quartz single crystal and natural quartzite induced by possible super-shear rupture during stick -slips

    NASA Astrophysics Data System (ADS)

    Nishikawa, O.; Muto, J.; Otsuki, K.

    2011-12-01

    Intensely pulverized rocks have been reported from large scale strike slip faults such as San Andreas Fault (e.g., Dor et al., 2006). These rocks are characterized by apparent lack of shear deformation, suggesting shattering and comminuation of grains possibly resulting from a rapid decrease in normal stress and perhaps transient fault opening during passage of the dynamic rupture front. Doan and Gary (2009) experimentally reported that the pulverization of granite requires high strain rates and could be explained by a super shear rupture. So far, there has been almost few experimental study on damage formation of wall rocks of fault in association with rupture propagation during a stick-slip using crustal materials. In order to clarify how rupture propagates and damages wall rocks during a stick-slip , we have performed experiments on a stick-slip with a single crystal of synthetic quartz and natural quartzite. We used a gas apparatus, and performed the experiments at confining pressures of 120-180 MPa and axial strain rate of 10-3/s. Single crystal s of dry synthetic quartz and natural quartzite were cored with a diameter of 20 mm and cut to a length of about 40 mm. Then the cores were cut 50° to the long axis of the core, and the precut surfaces were mirror polished. Axial stresses and shear strains along the fault surfaces were measured by strain gauges, and the data were sampled at 5 MHz . Our experimental results on single crystal of quartz yielded two different frictional behaviors and final states of samples: 1) simple fracturing state associated with multiple small stick-slips at the confining pressure (Pc) less than 160 MPa, where samples were split into fragments but no intense pulverization, 2) intense pulverization state associated with large stick-slips at Pc of 180 MPa, where samples were intensely pulverized into numerous small fragments. The size of the fragments extends down to submicron in the vicinity of the slip plane. In pulverized samples

  5. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    PubMed

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions.

  6. Aqueous photofate of crystal violet under simulated and natural solar irradiation: Kinetics, products, and pathways.

    PubMed

    Li, Yong; Yang, Shaogui; Sun, Cheng; Wang, Lianhong; Wang, Qingeng

    2016-01-01

    In this work photodegradation rates and pathways of an illegal veterinary drug, crystal violet, were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in the aquatic environment. Factors influencing the photodegradation process under simulated sunlight were investigated, including pH, humic acid, Fe(2+), Ca(2+), [Formula: see text] , and [Formula: see text] , of which favorable conditions were optimized by the orthogonal array design. The degradation processes of crystal violet conformed to pseudo first-order kinetics, with different rate constants under different conditions. Reactive oxygen species such as hydroxyl radical, singlet oxygen, and superoxide anion participated in the indirect photolysis process, leading to much higher decolorization efficiencies than those of direct photolysis and hydrolysis. Contrasting to simulated irradiation, solar irradiation led to complete decolorization. Sixty-four products were identified by high resolution liquid chromatography-time-of-flight mass spectrometry and gas chromatography-mass spectrometry, elucidating relatively complete mineralization through photolysis. Based on the analyses of the degradation products and calculations of the frontier electron density, transformation pathways were proposed as singlet oxygen addition, N-demethylation, hydroxyl addition, decomposition of conjugated structure, the removal of benzene ring and the ring-opening reaction. As a result, small products generated as carboxylic acids, alcohols and amines, which were not likely to cause severe hazards to the environment. This study provided both a reference for photodegradation of crystal violet and future safety applications and predictions of decontamination of related triphenylmethane veterinary drug under environmental conditions. PMID:26497275

  7. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    SciTech Connect

    Vorob'eva, N. V.

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  8. Sites of the N1 nitrogen paramagnetic centers in natural diamond crystals: Dissymmetrization of the structure as a result of plastic deformation

    NASA Astrophysics Data System (ADS)

    Titkov, S. V.; Mineeva, R. M.; Ryabchikov, I. D.; Speransky, A. V.

    2016-05-01

    Using the method of EPR spectroscopy, it is shown that the N1 nitrogen centers (N-C-N+) are unevenly distributed over possible sites in natural brown crystals of plastically deformed diamonds. The influence of deformational dissymmetrization of the structure on the anisotropy of some physical properties of natural diamonds is discussed.

  9. Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces.

    PubMed

    Addou, Rafik; McDonnell, Stephen; Barrera, Diego; Guo, Zaibing; Azcatl, Angelica; Wang, Jian; Zhu, Hui; Hinkle, Christopher L; Quevedo-Lopez, Manuel; Alshareef, Husam N; Colombo, Luigi; Hsu, Julia W P; Wallace, Robert M

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication.

  10. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  11. Crystal structure and theoretical calculations of Julocrotine, a natural product with antileishmanial activity

    NASA Astrophysics Data System (ADS)

    Moreira, Rafael Y. O.; Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Santos, Lourivaldo S.; Arruda, Mara S. P.; Müller, Adolfo H.; Barbosa, Patrícia S.; Abreu, Alcicley S.; Silva, Edilene O.; Rumjanek, Victor M.; Souza, Jaime, Jr.; da Silva, Albérico B. F.; Santos, Regina H. De A.

    Julocrotine, N-(2,6-dioxo-1-phenethyl-piperidin-3-yl)-2-methyl-butyramide, is a potent antiproliferative agent against the promastigote and amastigote forms of Leishmania amazonensis (L.). In this work, the crystal structure of Julocrotine was solved by X-ray diffraction, and its geometrical parameters were compared with theoretical calculations at the B3LYP and HF level of theory. IR and NMR spectra also have been obtained and compared with theoretical calculations. IR absorptions calculated with the B3LYP level of theory employed together with the 6-311G+(d,p) basis set, are close to those observed experimentally. Theoretical NMR calculations show little deviation from experimental results. The results show that the theory is in accordance with the experimental data.0

  12. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  13. Crystal-structure properties and the molecular nature of hydrostatically compressed realgar

    NASA Astrophysics Data System (ADS)

    Hejny, Clivia; Sagl, Raffaela; Többens, Daniel M.; Miletich, Ronald; Wildner, Manfred; Nasdala, Lutz; Ullrich, Angela; Balic-Zunic, Tonci

    2012-05-01

    The structure of realgar, As4S4, and its evolution with pressure have been investigated employing in situ X-ray diffraction, optical absorption and vibrational spectroscopy on single-crystal samples in diamond-anvil cells. Compression under true hydrostatic conditions up to 5.40 GPa reveals equation-of-state parameters of V 0 = 799.4(2.4) Å3 and K 0 = 10.5(0.4) GPa with K_0^' = 8.7. The remarkably high compressibility can be attributed to a denser packing of the As4S4 molecules with shortening of the intermolecular bonds of up to 12 %, while the As4S4 molecules remain intact showing rigid-unit behaviour. From ambient pressure to 4.5 GPa, Raman spectra exhibit a strong blue shift of the Raman bands of the lattice-phonon regime of 24 cm-1, whereas frequencies from intramolecular As-S stretching modes show negligible or no shifts at all. On pressurisation, realgar shows a continuous and reversible colour change from bright orange over deep red to black. Optical absorption spectroscopy shows a shift of the absorption edge from 2.30 to 1.81 eV up to 4.5 GPa, and DFT calculations show a corresponding reduction in the band gap. Synchrotron-based measurements on polycrystalline samples up to 45.5 GPa are indexed according to the monoclinic structure of realgar.

  14. Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system

    SciTech Connect

    Egli, Martin; Pallan, Pradeep S.; Pattanayek, Rekha; Wilds, Christopher J.; Lubini, Paolo; Minasov, George; Dobler, Max; Leumann, Christian J.; Eschenmoser, Albert

    2010-03-05

    An experimental rationalization of the structure type encountered in DNA and RNA by systematically investigating the chemical and physical properties of alternative nucleic acids has identified systems with a variety of sugar-phosphate backbones that are capable of Watson-Crick base pairing and in some cases cross-pairing with the natural nucleic acids. The earliest among the model systems tested to date, (4{prime} {yields} 6{prime})-linked oligo(2{prime},3{prime}-dideoxy-{beta}-d-glucopyranosyl)nucleotides or homo-DNA, shows stable self-pairing, but the pairing rules for the four natural bases are not the same as those in DNA. However, a complete interpretation and understanding of the properties of the hexapyranosyl (4{prime} {yields} 6{prime}) family of nucleic acids has been impeded until now by the lack of detailed 3D-structural data. We have determined the crystal structure of a homo-DNA octamer. It reveals a weakly twisted right-handed duplex with a strong inclination between the hexose-phosphate backbones and base-pair axes, and highly irregular values for helical rise and twist at individual base steps. The structure allows a rationalization of the inability of allo-, altro-, and glucopyranosyl-based oligonucleotides to form stable pairing systems.

  15. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.

    PubMed

    Braham, R R

    1959-01-16

    On the basis of presently available data, combined with present-day knowledge of the physics and chemistry of cloud particle development, it is possible to make the following generalizations about the mode of precipitation in natural clouds. 1) The all-water mechanism begins to operate as soon as a parcel of cloud air is formed and continues to operate throughout the life of the cloud. The ice-crystal mechanism, on the other hand, can begin to operate only after the top of the cloud has reached levels where ice nuclei can be effective (about -15 degrees C). Some clouds never reach this height; any precipitation from them must be through the all-water mechanism. In cold climates and at high levels in the atmosphere, the cloud bases may be very close to this critical temperature. In the tropics, approximately 25,000 feet separate the bases of low clouds from the natural ice level. 2) The number of large hygroscopic nuclei in maritime air over tropical oceans is entirely adequate to rain-out any cloud with a base below about 10,000 feet, provided the cloud duration and cloud depth is sufficient for the precipitation process to operate. Extensive trajectories over land will decrease the number of sea-salt particles, both because of sedimentation and removal in rain. Measurements show an order-of-magnitude decrease in the number of large particles as maritime air moves from the Gulf of Mexico to the vicinity of St. Louis, during the summer months. Measurements in Arizona and New Mexico show even smaller chloride concentrations, presumably because of the long overland trajectories required in reaching these areas. The maritime particles lost in overland trajectories apparently are more than replaced by particles of land origin. The latter are usually of mixed composition and are less favorable for the formation of outsized solution droplets. 3) Ice nuclei, required for the formation of ice crystals and for droplet freezing, are rather rare at temperatures higher than

  16. Tracking the nature and duration of magma transfer beneath Mauna Loa using a crystal population and kinetic modelling approach

    NASA Astrophysics Data System (ADS)

    Kahl, M.; Morgan, D. J.; Thornber, C. R.; Trusdell, F. A.

    2014-12-01

    Deep long period (DPL) seismic swarms recently detected beneath Mauna Loa fuel speculation whether the volcano could enter a renewed phase of unrest. To mitigate threats from future eruptions, a better understanding of how and over which timescales magma moves within Mauna Loa is required. We present a novel approach linking the compositions preserved in the chemical stratigraphy of 158 olivine crystals with kinetic modelling to provide timescales and routes of magma migration beneath Mauna Loa prior to the voluminous (376 million m3, [1]) 1950 eruption of Mauna Loa. We have studied a total of 8 near-vent samples erupted from fissures that opened progressively at elevations from 12,000ft to 8,500ft within the first 24h of the eruption (June 1-23, 1950). The samples contain olivine crystals with different populations of core (Fo89, Fo87-88, Fo85-86, Fo82-84), and rim compositions (majority Fo78-81) and zoning patterns (normal, reverse and complex). The diverging compositional and zoning record can be best explained as the product of magma evolution in five distinct magmatic environments (MEs): M0 (=Fo89), M1 (=Fo87-88), M2 (=Fo85-86), M3 (=Fo82-84), M4 (=Fo78-81) with melt transfer and mixing among them. Modelling the diffusive relaxation of the compositional zoning profiles constrains the timescales and durations over which crystals (and melt) are transferred between the different MEs. Diffusion models were performed at temperatures of 1133-1168°C and fO2 at ∆NNO -0.55 [2]. The derived timescales range from ~20 days up to 11 months, with the majority of the timescales being shorter than 4 months. The nature and duration of magma transfer beneath Mauna Loa prior to the catastrophic 1950 eruption is interpreted as follows: (i) Three dominant magma migration pathways connecting the environments M1:M4, M3:M4 and M2:M4 can be identified; and (ii) transfer of magma along these routes occurs in multiples pulses commencing up to 8 months before, and becoming more

  17. 57Fe Mössbauer spectroscopy, X-ray single-crystal diffractometry, and electronic structure calculations on natural alexandrite

    NASA Astrophysics Data System (ADS)

    Weber, Sven-Ulf; Grodzicki, Michael; Lottermoser, Werner; Redhammer, Günther J.; Tippelt, Gerold; Ponahlo, Johann; Amthauer, Georg

    2007-09-01

    Natural alexandrite Al2BeO4:Cr from Malyshevo near Terem Tschanka, Sverdlovsk, Ural, Russia, has been characterized by 57Fe Mössbauer spectroscopy, electron microprobe, X-ray single-crystal diffractometry and by electronic structure calculations in order to determine oxidation state and location of iron. The sample contains 0.3 wt% of total iron oxide. The 57Fe Mössbauer spectrum can be resolved into three doublets. Two of them with hyperfine parameters typical for octahedrally coordinated high-spin Fe3+ and Fe2+, respectively, are assigned to iron substituting for Al in the octahedral M2-site. The third doublet is attributed to Fe3+ in hematite. Electronic structure calculations in the local spin density approximation are in reasonable agreement with experimental data provided that expansion and/or distortion of the coordination octahedra are presumed upon iron substitution. The calculated hyperfine parameters of Fe3+ are almost identical for the M1 and M2 positions, but the calculated ligand-field splitting is by far too large for high-spin Fe3+ on M1.

  18. Natural olivine crystal-fabrics in the western Pacific convergence region: A new method to identify fabric type

    NASA Astrophysics Data System (ADS)

    Michibayashi, Katsuyoshi; Mainprice, David; Fujii, Ayano; Uehara, Shigeki; Shinkai, Yuri; Kondo, Yusuke; Ohara, Yasuhiko; Ishii, Teruaki; Fryer, Patricia; Bloomer, Sherman H.; Ishiwatari, Akira; Hawkins, James W.; Ji, Shaocheng

    2016-06-01

    Crystallographic preferred orientations (CPOs) of olivine within natural peridotites are commonly depicted by pole figures for the [100], [010], and [001] axes, and they can be categorized into five well-known fabric types: A, B, C, D, and E. These fabric types can be related to olivine slip systems: A with (010)[100], B with (010)[001], C with (001)[001], D with {0kl}[100], and E with (001)[100]. In addition, an AG type is commonly found in nature, but its origin is controversial, and could involve several contributing factors such as complex slip systems, non-coaxial strain types, or the effects of melt during plastic flow. In this paper we present all of our olivine fabric database published previously as well as new data mostly from ocean floor, mainly for the convergent margin of the western Pacific region, and we introduce a new index named Fabric-Index Angle (FIA), which is related to the P-wave property of a single olivine crystal. The FIA can be used as an alternative to classifying the CPOs into the six fabric types, and it allows a set of CPOs to be expressed as a single angle in a range between -90° and 180°. The six olivine fabric types have unique values of FIA: 63° for A type, -28° for B type, 158° for C type, 90° for D type, 106° for E type, and 0° for AG type. We divided our olivine database into five tectonic groups: ophiolites, ridge peridotites, trench peridotites, peridotite xenoliths, and peridotites enclosed in high-pressure metamorphic rocks. Our results show that although our database is not yet large enough (except for trench peridotites) to define the characteristics of the five tectonic groups, the natural olivine fabrics vary in their range of FIA: 0° to 150° for the ophiolites, 40° to 80° for the ridge peridotites, -40° to 100° for the trench peridotites, 0° to 100° for the peridotite xenoliths, and -40° to 10° for the peridotites enclosed in high-pressure metamorphic rocks. The trench peridotites show a statistically

  19. A comparison of the abilities of natural rubber (NR) and synthetic polyisoprene cis-1,4 rubber (IR) to crystallize under strain at high strain rates.

    PubMed

    Candau, Nicolas; Chazeau, Laurent; Chenal, Jean-Marc; Gauthier, Catherine; Munch, Etienne

    2016-02-01

    Strain induced crystallization (SIC) of a natural rubber (NR) and a synthetic rubber (IR) with a high amount of cis-1,4 units (98.6%) is studied, thanks to in situ wide angle X-ray (WAXS) experiments at room temperature performed in a large range of strain rates. During stretching at a low strain rate (4.2 × 10(-3) s(-1)), SIC in IR occurs at a larger stretching ratio than in NR. As a result, the crystallinity index at a given stretching ratio is lower in IR than in NR, in spite of the similar crosslink densities of the chains involved in the crystallization in both materials. This lower ability for crystallization in IR is attributed to the presence of branching along its backbone and its lower stereoregularity. Conversely, dynamic experiments performed at high strain rates (10(1)/10(2) s(-1)) show for both materials a similar ability to crystallize. This unexpected result is confirmed by monotonic tensile tests performed in a large range of strain rates. The reason is thermodynamic: the chain extension plays a predominant role compared to the role of the microstructure defects when the strain rate is high, i.e. when the kinetics of the crystallite nucleation forces the crystallization to occur at a large stretching ratio. A thermodynamic model enables qualitative reproduction of the experimental results. PMID:26750589

  20. The nature of photogenerated charge separation among different crystal facets of BiVO4 studied by density functional theory.

    PubMed

    Liu, Taifeng; Zhou, Xin; Dupuis, Michel; Li, Can

    2015-09-28

    Charge separation among different crystal facets of a semiconductor has been observed experimentally, but the underlying reasons behind this phenomenon are unknown. In this work, the activation energies of carrier hopping and the mobility of electron/hole transport along seven low-index crystal orientations of bulk BiVO4 have been calculated using a small polaron model. The calculated mobility and our previous experimental results reveal that there is a parallel relationship between the carrier mobility along the crystal axis and the carrier preferred accumulation on the corresponding crystal facets. It is proposed that the mobility of electrons (or holes) along the crystal axis [hkl] might be essentially related to the charge separation among the indices of corresponding facets (hkl); namely, the mobility of electrons (or holes) along the crystal axis [hkl] is the largest among all possible crystal axes, and the photogenerated electrons (or holes) tend to be accumulated on the indices of the corresponding facet (hkl) when the surface factors like surface band bending, surface energetic differences, etc. are not considered.

  1. Crystallization and electron paramagnetic resonance characterization of the complex of photosystem I with its natural electron acceptor ferredoxin.

    PubMed Central

    Fromme, Petra; Bottin, Hervé; Krauss, Norbert; Sétif, Pierre

    2002-01-01

    The formation of a transient complex between photosystem I and ferredoxin is involved in the process of ferredoxin photoreduction in oxygenic photosynthetic organisms. Reduced ferredoxin is an essential redox intermediate involved in many assimilatory processes and is necessary for the reduction of NADP(+) to NADPH. Single crystals from a complex of photosystem I with ferredoxin were grown using PEG 400 and CaCl(2) as precipitation agents. The crystals diffract x-rays to a resolution of 7-8 A. The space group was determined to be orthorhombic with the unit cell dimensions a = 194 A, b = 208 A, and c = 354 A. The crystals contain photosystem I and ferredoxin in a 1:1 ratio. Electron paramagnetic resonance (EPR) measurements on these crystals are reported, where EPR signals of the three [4Fe-4S] clusters F(A), F(B), F(X), and the [2Fe-2S] cluster of ferredoxin were detected. From the EPR spectra observed at three particular orientations of the crystal in the magnetic field, the full orientation pattern of the F g-tensor was simulated. This simulation is consistent with the presence of 12 magnetically inequivalent F clusters per unit cell with the C(3) axis of the PSI trimers oriented at (23 degrees, 72 degrees, 77 degrees ) to the unit cell axes. PMID:12324399

  2. Nature of inhomogeneities and luminescence centers in low-resistance Al-doped ZnS single crystals

    SciTech Connect

    Morosova, N.K.; Filipova, V.A.; Galstyan, V.G.; Malyshev, A.A.; Muratova, V.I.

    1985-12-01

    The authors study low-resistance Al-doped ZnS single crytals and find that they exhibit a banding nonuniformity, which is explained by the nonuniform distribution of aluminum and oxygen impurities in them. The intense blue emission of the crystals is caused by the high-resistance layer, in which oxygen concentrates, while aluminum is completely bound to the oxygen. The emission is caused by the annihilation of localized excitons. The low-resistance layers with the weak blue luminescence are intercalations of oxygen-depleted Al-doped ZnS. ZnS crystals containing Al and O in equal concentrations are stable.

  3. High-frequency electromagnetic properties of soft magnetic Nd2Co17 micron flakes fractured along c crystal plane with natural resonance frequency exceeding 10 GHz

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbo; Wang, Peng; Ma, Tianyong; Wang, Ying; Qiao, Liang; Wang, Tao

    2016-02-01

    Planar anisotropy Nd2Co17 flakes fractured along c crystal plane were fabricated by surfactant-assisted high-energy ball milling technique. The magnetic flakes have a diameter range of 5-20 μm and a typical thickness of approximately 120 nm. The frequency dependence of complex permeability of Nd2Co17 epoxy resin composite has been investigated in the frequency range of 0.1-18 GHz. The measurement results show that the natural resonance frequency reaches 12.5 GHz while the initial permeability survives up to 2.26. The superior high frequency properties come from the large out-of-plane anisotropy field and the flake structure fractured along the c crystal plane of Nd2Co17. The planar anisotropic Nd2Co17 flakes have significant potential applications in the high-frequency devices working in the frequency beyond 10 GHz.

  4. The mechanism of self-reversal of thermoremanence in natural hemoilmenite crystals: new experimental data and model

    NASA Astrophysics Data System (ADS)

    Prévot, Michel; Hoffman, Kenneth A.; Goguitchaichvili, Avto; Doukhan, Jean-Claude; Shcherbakov, Valera; Bina, Mansour

    2001-10-01

    New magnetic and mineralogical findings on self-reversing hemoilmenite (Fe 2- y Ti yO 3) grains from Pinatubo lavas (1991 eruption) provide important clues regarding the acquisition process of reverse thermoremanent magnetization (rTRM) in this solid solution series. Magnetic force microscopy indicates the presence of multidomain magnetic structures in coexisting strongly and weakly magnetic crystallographic regions having compositions of y≅0.54 and 0.53, respectively. Continuous thermal demagnetization of natural and laboratory TRM carried out on both whole rock samples and single hemoilmenite crystals shows that the magnitude of a normal TRM (nTRM) component, observed at temperatures above the Curie point of the self-reversing phase, is much too large to be carried by a phase that is entirely cation-disordered. Consistent with this observation are findings using transmission electron microscopy (TEM) which, in contrast to that what is commonly assumed, reveals the weakly magnetic regions to be magnetically heterogeneous. Specifically, these regions are found to contain tiny (20-40 nm) domains that are cation-ordered and evidently ferrimagnetic dispersed within the cation-disordered, presumably spin-canted antiferromagnetic matrix. Given these findings, we argue that the so-called nTRM-carrying x-phase is itself partially cation-ordered, and, thus, ferrimagnetic, as postulated first by Ishikawa and Syono (J. Phys. Soc., Jpn. 17 (1962) 714). We propose a "nanophase" self-reversal model for the ilmenite-hematite solid solution series in which the rTRM and nTRM components are carried by the cores and margins, respectively, of the tiny, partially cation-ordered nano-sized domains observed by TEM. Due to the partial cation order, both the core and the margin of each domain are expected to behave in a ferrimagnetic fashion at temperatures below their respective Curie points. However, given the kinetics of the ordering process, their cation distributions need be

  5. Micro-gravity: Superconducting coils for crystal growth. Influence of the levitation force on natural convection in the fluid

    NASA Astrophysics Data System (ADS)

    Quettier, L.; Vincent-Viry, O.; Mailfert, A.; Juster, F. P.

    2003-04-01

    This paper presents a novel design of superconducting coils able to generate a micro-gravity environment for protein crystal growth in aqueous solution. The structures have been calculated thanks to a method for “inverse source synthesis problem" developed at the GREEN Choice of the angular offset between the directions of magnetic force field and magnetic field in the working area as well as convection phenomena are also studied.

  6. The anisotropic nature of the superconducting properties of single crystal Y 1Ba 2Cu 3O 7 - x

    NASA Astrophysics Data System (ADS)

    Worthington, T. K.; Gallagher, W. J.; Kaiser, D. L.; Holtzberg, F. H.; Dinger, T. R.

    1988-06-01

    A series of noncontact magnetic measurements on high-quality single crystals of Y 1Ba 2Cu 3O 7 - x have enabled us to demonstrate that the superconducting-state properties of Y 1Ba 2Cu 3O 7 - x are those of a conventional, anisotropic superconductor with the anisotropy being associated with the highly conducting Cu sbnd O sheets in the Y 1Ba 2Cu 3O 7 - x crystal structure. The anisotropy in the superconducting state is reflected most strongly in the critical current anisotropy, which is as large as 20 to 1 at low temperatures and low fields and gets arbitrarily large at higher temperatures and higher fields. The upper critical field H C2 shows an anisotropy that varies from 6:1 to 10:1 in different crystals of high quality. Along the copper-oxygen sheets the upper critical field is enormous, extrapolating to ∼60 Tesla by 77 K and implying a low-temperature Ginzburg-Landau coherence length normal to the layers of 2Å- 4Å. Strong upward curvature is evident in the H C2 data in both orientations of applied field. This curvature can be interpreted in terms of thermodynamic fluctuations, and, if this explanation is correct, the critical region is enormous, extending more than 25 K below T C.

  7. Synchrotron X-ray Scattering; Sensile Strength and Strain-Induced Crystallization in Carbon Black Filled Natural Rubber

    SciTech Connect

    Toki,S.; Minouchi, N.; Sics, I.; Hsiao, B.; Kohjiya, S.

    2008-01-01

    The tensile strength of rubber depends on a combination of contributions, in particular on the finite extensibility of chain segments between network points and on strain-induced crystallization. In order to achieve high tensile strength at high strain at break, we optimized the composition and processing parameters to gain high molecular flexibility by the cure conditions, to acquire high flexibility of sulfur bridges by the accelerator, and to increase the modulus level without losing rubber molecule flexibility by carbon black. As a result, our formula performed a tensile strength of 42.5 MPa at 25 C under ISO-37, as officially measured by the Society of Rubber Industry, Japan, in 2004.

  8. Analysis of the nature of electrical conductivity in nominally undoped LiNbO{sub 3} crystals

    SciTech Connect

    Pritulenko, A. S. Yatsenko, A. V.; Yevdokimov, S. V.

    2015-03-15

    The temperature dependence of electrical conductivity and admittance of two nominally undoped lithium niobate crystals of congruent composition has been investigated in the temperature range of 293–450 K and simulated in the range of 350–700 K. It is shown that the ion conductivity at T < 450 K is mainly determined by OH{sup −} groups; however, some other mechanisms may manifest themselves at higher temperatures; a likely one is diffusion of oxygen vacancies, which leads to an increase in the “averaged” conductivity activation energy.

  9. Controllable reflection properties of nanocomposite photonic crystals constructed by semiconductor nanocrystallites and natural periodic bio-matrices.

    PubMed

    Han, Jie; Su, Huilan; Song, Fang; Zhang, Di; Chen, Zhixin

    2010-10-01

    In this contribution, the subtle periodic nanostructures in butterfly wings and peacock feathers are applied as natural PhC matrices to in situ embed CdS nanocrystallites (nano-CdS) on the structure surface via a convenient solution process. The resulting nano-CdS/natural PhCs nanocomposites show typical 1D, quasi 1D and 2D PhC structures at the nanoscale, which is inherited from the corresponding natural periodic bio-matrices. Moreover, their reflection properties are investigated and show dependence on PhC type, structure parameter, loading amount, as well as collecting angle. This work suggests that natural periodic bio-structures could be perfect matrices to construct novel nanocomposite PhCs, whose photonic band structures are tunable and thus achieve controllable optical properties. Related ideas could inspire the design and synthesis of future nanocomposite PhCs.

  10. Single-crystal elasticity of natural Fe-bearing orthoenstatite across a high-pressure phase transition

    NASA Astrophysics Data System (ADS)

    Zhang, Jin S.; Bass, Jay D.

    2016-08-01

    Sound velocities and elastic moduli have been measured on Fe-bearing orthoenstatite (OEN) single crystals up to 12 GPa by Brillouin spectroscopy. The ambient adiabatic bulk modulus (Ks0) and shear modulus (G0) are determined to be 113(1) GPa and 75.9(7) GPa, respectively. A fourth-order finite strain fit to the data yields pressure derivatives of Ks0' = 8.8(1), Ks0″ = -0.68(6), G0' = 2.9(1), and G0″ = -0.40(2). These values are significantly higher than those for other major mantle minerals up to 10.5 GPa but lower than some previous measurements on OEN. A pronounced increase of shear anisotropy was observed at a pressure of 12.06(9) GPa, coinciding with a phase transition from orthoenstatite to a recently discovered high-pressure phase with space group P21/c. A high-pressure phase transition in OEN is unlikely to be the cause of the X discontinuity in the 250-325 km depth range. Rather, a change in seismic anisotropy would be expected to accompany the orthoenstatite-to-P21/c phase transition in the upper mantle at greater depths.

  11. Heat capacities and thermodynamic functions for beryl, Be3Al2Si6O18, phenakite, Be2SiO4, euclase, BeAlSiO4(OH), bertrandite, Be4Si2O7(OH)2, and chrysoberyl, BeAl2O4.

    USGS Publications Warehouse

    Hemingway, B.S.; Barton, M.D.; Robie, R.A.; Haselton, H.T.

    1986-01-01

    The heat capacities of beryl, phenakite, euclase and bertrandite have been measured between approx 5 and 800 K by combined quasi-adiabatic cryogenic calorimetry and differential scanning calorimetry. The heat capacities of chrysoberyl have been measured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimental data and simultaneously adjusted using the programme PHAS20 to provide an internally consistent set of thermodynamic properties for several important beryllium phases. The experimental heat capacities and tables of derived thermodynamic properties are presented.-J.A.Z.

  12. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2

    PubMed Central

    Oberthür, Dominik; Achenbach, John; Gabdulkhakov, Azat; Buchner, Klaus; Maasch, Christian; Falke, Sven; Rehders, Dirk; Klussmann, Sven; Betzel, Christian

    2015-01-01

    We report the crystal structure of a 40mer mirror-image RNA oligonucleotide completely built from nucleotides of the non-natural L-chirality in complex with the pro-inflammatory chemokine L-CLL2 (monocyte chemoattractant protein-1), a natural protein composed of regular L-amino acids. The L-oligonucleotide is an L-aptamer (a Spiegelmer) identified to bind L-CCL2 with high affinity, thereby neutralizing the chemokine's activity. CCL2 plays a key role in attracting and positioning monocytes; its overexpression in several inflammatory diseases makes CCL2 an interesting pharmacological target. The PEGylated form of the L-aptamer, NOX-E36 (emapticap pegol), already showed promising efficacy in clinical Phase II studies conducted in diabetic nephropathy patients. The structure of the L-oligonucleotide·L-protein complex was solved and refined to 2.05 Å. It unveils the L-aptamer's intramolecular contacts and permits a detailed analysis of its structure–function relationship. Furthermore, the analysis of the intermolecular drug–target interactions reveals insight into the selectivity of the L-aptamer for certain related chemokines. PMID:25901662

  13. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2.

    PubMed

    Oberthür, Dominik; Achenbach, John; Gabdulkhakov, Azat; Buchner, Klaus; Maasch, Christian; Falke, Sven; Rehders, Dirk; Klussmann, Sven; Betzel, Christian

    2015-04-22

    We report the crystal structure of a 40 mer mirror-image RNA oligonucleotide completely built from nucleotides of the non-natural L-chirality in complex with the pro-inflammatory chemokine L-CLL2 (monocyte chemoattractant protein-1), a natural protein composed of regular L-amino acids. The L-oligonucleotide is an L-aptamer (a Spiegelmer) identified to bind L-CCL2 with high affinity, thereby neutralizing the chemokine's activity. CCL2 plays a key role in attracting and positioning monocytes; its overexpression in several inflammatory diseases makes CCL2 an interesting pharmacological target. The PEGylated form of the L-aptamer, NOX-E36 (emapticap pegol), already showed promising efficacy in clinical Phase II studies conducted in diabetic nephropathy patients. The structure of the L-oligonucleotide[Symbol: see text]L-protein complex was solved and refined to 2.05 Å. It unveils the L-aptamer's intramolecular contacts and permits a detailed analysis of its structure-function relationship. Furthermore, the analysis of the intermolecular drug-target interactions reveals insight into the selectivity of the L-aptamer for certain related chemokines.

  14. Crystal structure of a mirror-image L-RNA aptamer (Spiegelmer) in complex with the natural L-protein target CCL2

    NASA Astrophysics Data System (ADS)

    Oberthür, Dominik; Achenbach, John; Gabdulkhakov, Azat; Buchner, Klaus; Maasch, Christian; Falke, Sven; Rehders, Dirk; Klussmann, Sven; Betzel, Christian

    2015-04-01

    We report the crystal structure of a 40mer mirror-image RNA oligonucleotide completely built from nucleotides of the non-natural L-chirality in complex with the pro-inflammatory chemokine L-CLL2 (monocyte chemoattractant protein-1), a natural protein composed of regular L-amino acids. The L-oligonucleotide is an L-aptamer (a Spiegelmer) identified to bind L-CCL2 with high affinity, thereby neutralizing the chemokine's activity. CCL2 plays a key role in attracting and positioning monocytes; its overexpression in several inflammatory diseases makes CCL2 an interesting pharmacological target. The PEGylated form of the L-aptamer, NOX-E36 (emapticap pegol), already showed promising efficacy in clinical Phase II studies conducted in diabetic nephropathy patients. The structure of the L-oligonucleotide.L-protein complex was solved and refined to 2.05 Å. It unveils the L-aptamer's intramolecular contacts and permits a detailed analysis of its structure-function relationship. Furthermore, the analysis of the intermolecular drug-target interactions reveals insight into the selectivity of the L-aptamer for certain related chemokines.

  15. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.

    PubMed

    Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling

    2015-11-21

    Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties. PMID:26455593

  16. Ferroindialite (Fe2+,Mg)2Al4Si5O18, a new beryl-group mineral from the Eifel volcanic region, Germany

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Aksenov, S. M.; Pekov, I. V.; Ternes, B.; Schüller, W.; Belakovskiy, D. I.; Van, K. V.; Blass, G.

    2014-12-01

    A new mineral, ferroindialite, a Fe2+-dominant analog of indialite, has been found in a pyrometamorphosed xenolith of pelitic rock hosted in alkaline basalts. Associated minerals are phlogopite, sanidine, sillimanite, pyroxenes of the enstatite-ferrosilite series, wagnerite, fluorapatite, tridymite, zircon and almandine. Ferroindialite forms brown-purple to gray with a violet-blue tint short prismatic or thick tabular hexagonal crystals up to 1.5 mm in size. The new mineral is brittle, with a Mohs' hardness of 7. Cleavage is not observed. D meas = 2.66(1), D calc = 2.667 g/cm3. IR spectrum shows neither H2O nor OH groups. Ferroindialite is anomalously biaxial (-), α = 1.539(2), β = 1.552(2), γ = 1.554(2), 2 V meas = 30(10)°. The mineral is weakly pleochroic, ranging from colorless on X to pale violet on Z. Dispersion is weak, r < v. The chemical composition (electron microprobe, mean of five point analyses, wt %) is as follows: 0.14 Na2O, 0.46 K2O, 4.95 MgO, 1.13 MnO, 12.66 FeO, 2.64 Fe2O3, 30.45 Al2O3, 47.22 SiO2, total is 99.65. The distribution of total iron content between Fe2+ and Fe3+ was carried out according to structural data. The empirical formula of ferroindialite is: (K0.06Na0.03)(Fe{1.12/2+}Mg0.78Mn0.10)Σ2.00(Al3.79Fe{0.21/3+})Σ4.00Si4.98O18. The simplified formula is: (Fe2+,Mg)2Al4Si5O18. The crystal structure has been refined on a single crystal, R = 0.049. Ferroindialite is hexagonal, space group P6/ mcc; a = 9.8759(3), c = 9.3102(3) Å, V = 786.40(3) Å3, Z = 2. The strongest lines in the X-ray powder diffraction pattern [ d, Å ( I, %) ( hkl)] are: 8.59 (100) (100), 4.094 (27) (102), 3.390 (35) (112), 3.147 (19) (202), 3.055 (31) (211), 2.657 (12) (212), 1.695 (9) (224). The type specimen of ferroindialite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, registration number 4400/1.

  17. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    USGS Publications Warehouse

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  18. Crystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.

    PubMed

    Chavas, Leonard M G; Tringali, Cristina; Fusi, Paola; Venerando, Bruno; Tettamanti, Guido; Kato, Ryuichi; Monti, Eugenio; Wakatsuki, Soichi

    2005-01-01

    Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.

  19. Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India

    PubMed Central

    2012-01-01

    Background Goa is a coastal state in India and salt making is being practiced for many years. This investigation aimed in determining the culturable haloarchaeal diversity during two different phases of salt production in a natural solar saltern of Ribandar, Goa. Water and sediment samples were collected from the saltern during pre-salt harvesting phase and salt harvesting phase. Salinity and pH of the sampling site was determined. Isolates were obtained by plating of the samples on complex and synthetic haloarchaeal media. Morphology of the isolates was determined using Gram staining and electron microscopy. Response of cells to distilled water was studied spectrophotometrically at 600nm. Molecular identification of the isolates was performed by sequencing the 16S rRNA. Results Salinity of salt pans varied from 3-4% (non-salt production phase) to 30% (salt production phase) and pH varied from 7.0-8.0. Seven haloarchaeal strains were isolated from water and sediment samples during non-salt production phase and seventeen haloarchaeal strains were isolated during the salt production phase. All the strains stained uniformly Gram negative. The orange-red acetone extract of the pigments showed similar spectrophotometric profile with absorption maxima at 393, 474, 501 and 535 nm. All isolates obtained from the salt dilute phase were grouped within the genus Halococcus. This was validated using both total lipid profiling and 16S rRNA data sequencing. The isolates obtained from pre-salt harvesting phase were resistant to lysis. 16S rRNA data showed that organisms belonging to Halorubrum, Haloarcula, Haloferax and Halococcus genera were obtained during the salt concentrated phase. The isolates obtained from salt harvesting phase showed varied lysis on suspension in distilled water and /or 3.5% NaCl. Conclusion Salterns in Goa are transiently operated during post monsoon season from January to May. During the pre-salt harvesting phase, all the isolates obtained belonged to

  20. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  1. Hemimorphite as a natural sink for arsenic in zinc deposits and related mine tailings: Evidence from single-crystal EPR spectroscopy and hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Mao, Mao; Lin, Jinru; Pan, Yuanming

    2010-05-01

    Hemimorphite is a refractory mineral in surface environments and occurs commonly in supergene non-sulfide Zn deposits and Zn mine tailings. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated hemimorphite from Mapimi (Durango, Mexico) reveal two arsenic-associated oxyradicals: [AsO 4] 4- and [AsO 4] 2-. Inductively coupled plasma mass spectrometry analyses confirm this sample to contain 270 ppm As and that hemimorphite from other Zn deposits has appreciable amounts of arsenic as well. Spin Hamiltonian parameters, including matrices g, A ( 75As) and P( 75As), show that the [AsO 4] 4- radical formed from electron trapping by a locally uncompensated [AsO 4] 3- ion substituting for [SiO 4] 4-. Matrices g, A( 75As) and P( 75As) of the [AsO 4] 2- radical show it to have the unpaired spin on the bridging oxygen of an [AsO 4] 3- ion at a Si site and linked to a monovalent impurity ion. This structural model for the [AsO 4] 2- radical is further supported by observed 29Si and 1H superhyperfine structures arising from interactions with a single Si atom (A/g eβe = ˜1 mT at B// c) and two equivalent H atoms (A/g eβe = ˜0.3 mT at B∧ b = 10°), respectively. Hydrothermal experiments at 200 °C and ˜9.5 MPa show that hemimorphite contains up to ˜2.5 wt% As 2O 5 and suggest that both the arsenate concentration and the pH value in the solution affect the As content in hemimorphite. These results demonstrate that hemimorphite is capable of sequestering arsenate in its crystal lattice, hence is a natural sink for attenuating As in supergene non-sulfide Zn deposits and Zn mine tailings. Moreover, results from hemimorphite potentially have more far-reaching implications for major silicates such as zeolites in the immobilization and removal of arsenic in surface environments.

  2. Crystal Creations.

    ERIC Educational Resources Information Center

    Whipple, Nona; Whitmore, Sherry

    1989-01-01

    Presents a many-faceted learning approach to the study of crystals. Provides instructions for performing activities including crystal growth and patterns, creating miniature simulations of crystal-containing rock formations, charcoal and sponge gardens, and snowflakes. (RT)

  3. Comparison of the inhibitory capacity of two groups of pure natural extract on the crystallization of two types of material compound urinary stones in vitro study

    NASA Astrophysics Data System (ADS)

    Beghalia, Mohamed; Ghalem, Said; Allali, Hocine

    2015-10-01

    Urolithiasis is defined as the result of an abnormal precipitation within the urinary tract. This precipitation is most often from the normal constituents of the urine. This is a fairly common condition in the population. She is happy and recurrent etiology is often unknown if hypothetical. In Algeria, as in many countries, a large number of patients use herbal medicines in the treatment of their diseases including urolithiasis. Thus the aim of this study is the most widely used to evaluate the effectiveness of aqueous extracts of medicinal plants, in the treatment of calcium urolithiasis oxalo-and magnesium-amoniaco in vitro. The study also examines the effect of these extracts on the states of crystallization (nucleation, crystal growth, crystal aggregation), followed by photography on polarized light microscope.In this regard, we are devoted to studying the crystallization steps from oxalo-calcium and phospho-calcic prepared as artificial urine and supersaturated aqueous solutions, maintained at 37 °C to remain close to biological conditions. Extracts of the first group of herbs: Ammodaucus leucotrichus, Ajuga iva, Globularia alypum, Atriplex halimus are studied on the crystallization calcium oxalate, we cite the Ammodaucus leucotrichus which acts on the stages of nucleation, growth and the aggregation with a total inhibition. The second group of extracts plants tested on calcium phosphate crystallization : Acacia raddiana, Citrullus colocynthis, Rhus tripartita, Pistacia lentiscu, Warionia saharae, are able to significantly reduce phosphate crystallization in vitro. It is easily proved by FTIR and optical microscope. In conclusion the results of our work allows us to confirm the use of these plants as an aqueous decoction, in the field of urolithiasis. These activities may help to strengthen the body in depressed situations.

  4. Hypersonic phononic crystals.

    PubMed

    Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L

    2005-03-25

    In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.

  5. Quantum Hall Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2003-03-01

    Liquid-crystals, defined as states of matter intermediate in their properties between fully disordered isotropic liquids and fully ordered crystals are ubiquitous in nature. Recent transport measurements on two-dimensional electron systems in moderate magnetic fields suggest the existence of a spontaneously orientationally-ordered, compressible liquid state. I will discuss electronic liquid-crystals interpretation of these experiments, focusing on a recently proposed quantum Hall nematic state that is predicted to exhibit a novel, highly anisotropic q^3 density-director mode and other interesting phenomenology.

  6. Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiO-66(Zr)-Type MOFs.

    PubMed

    Ragon, Florence; Chevreau, Hubert; Devic, Thomas; Serre, Christian; Horcajada, Patricia

    2015-05-01

    The influence of the constitutive dicarboxylate linkers (size, functional group) over the crystallization kinetics of a series of porous Zr metal-organic frameworks with the UiO-66 topology has been investigated by in situ time-resolved energy dispersive X-ray diffraction (EDXRD). Both large aromatic spacers (2,6-naphthalene-, 4,4'-biphenyl- and 3,3'-dichloro-4,4'-azobenzene-dicarboxylates) and a series of X-functionalized terephthalates (X=NH2 , NO2 , Br, CH3 ) were investigated in dimethylformamide (DMF) at different temperatures and compared with the parent UiO-66. Using different crystallization models, rate constants and further kinetic parameters (such as activation energy) have been extracted. Finally, the impact of the replacement of the toxic DMF by water on the crystallization kinetics was studied through the synthesis of the functionalized UiO-66-NO2 solid.

  7. Virtual Crystallizer

    SciTech Connect

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  8. Crystal growing

    NASA Technical Reports Server (NTRS)

    Neville, J. P.

    1990-01-01

    One objective is to demonstrate the way crystals grow and how they affect the behavior of material. Another objective is to compare the growth of crystals in metals and nonmetals. The procedures, which involve a supersaturated solution of a salt that will separate into crystals on cooling and the pouring off of an eutectic solution to expose the crystals formed by a solid solution when an alloy of two metals forms a solid and eutectic solution on cooling, are described.

  9. On the nature of fracture of SrB{sub 4}O{sub 7} and PbB{sub 4}O{sub 7} single crystals

    SciTech Connect

    Dolzhenkova, E. F. Baumer, V. N.; Tolmachev, A. V.; Oseledchik, Yu. S.

    2007-09-15

    The crack resistance and peculiarities of the internal structure of isostructural SrB{sub 4}O{sub 7} and PbB{sub 4}O{sub 7} single crystals of the framework type have been studied. It is shown that the cleavage of these crystals, which is atypical of this type and inherent in strontium and lead tetraborates, is due to the presence of boron-oxygen layers (bound by a relatively small number of covalent bonds) in their 3D boron-oxygen frameworks; crystals are cleaved along these layers. It is established that cracks propagate in SrB{sub 4}O{sub 7} and PbB{sub 4}O{sub 7} single crystals as a result of breakage of both the bonds between bridge atoms and the bonds in B{sub 3}O{sub 3} boron-oxygen cycles-the main elements of the boron-oxygen framework. The break of bonds in the boron-oxygen cycles is explained by the presence of an unusual oxygen position in these cycles, which is shared by three boron-oxygen tetrahedra and whose B-O bonds are much weaker in comparison with the bonds typical of BO{sub 4} groups.

  10. Determining Magma Mixing Duration Prior to the 1915 Eruption of Lassen Peak, California by Comparing Experimental Growth of Reaction Rims and Natural Olivine Crystals in Black Dacite

    NASA Astrophysics Data System (ADS)

    Graham, N. A.; Schwab, B. E.; Castro, J. M.; Clynne, M. A.

    2015-12-01

    Lassen Peak, located in northern California, last erupted in 1915 producing hybrid black dacite containing xenocrystic olivine grains with morphologically complex reaction rims of orthopyroxene. These rims are interpreted to have grown during magma mixing/mingling of admixed basaltic andesite and dacite reservoir magma prior to eruption. Reaction rim growth rates were determined from a series of hydrothermal experiments performed on starting materials consisting of powdered natural dacite pumice from the 1915 eruption and ~5 wt. % of Fo85 olivine separated from a spinel lherzolite xenolith (UM-5) from Kilbourne Hole, NM to constrain the length of time between magma recharge and eruption. Time series experiments were performed with run durations of 50, 100, 200, 400, and 600 hours at 50 and 100 MPa, 825oC and 875oC. The experiments produced a range in reaction rim growth rates where rim thickness generally increased with time. Average rim growth rate for each series is as follows: 0.031 μm²h-1 for 50 MPa at 825oC, 0.010 μm²h-1 for 50 MPa at 875oC, 0.158 μm²h-1 for 100 MPa at 825oC, and 0.088 μm²h-1 for 100 MPa at 875oC. Overall, the 100 MPa experiments resulted in faster growth rates and thicker reaction rims than the 50 MPa experiments. At a given pressure, the higher temperature (875 oC) experiments show slower average growth rates, but thicker reaction rims than the 825oC equivalents. This suggests that growth rate is not constant over time, but likely is more rapid at the early stages of the experiments/heating event, and then slows over time. Reaction rim widths on 100 olivine grains from samples of black dacite were determined by analysis of SEM BSE images and average 26.1 ± 21.7 μm. This average rim width corresponds to a range of mixing durations of 5.8 months (100 MPa, 825oC) to 93 months (50 MPa, 875oC). Average reaction duration of 10.6 months (at 100 MPa, 875oC) is most consistent with our previous experimental work on the 1915 dacite. Reaction

  11. Unifying the crystallization behavior of hexagonal and square crystals with the phase-field-crystal model

    NASA Astrophysics Data System (ADS)

    Tao, Yang; Zheng, Chen; Jing, Zhang; Yongxin, Wang; Yanli, Lu

    2016-03-01

    By employing the phase-field-crystal models, the atomic crystallization process of hexagonal and square crystals is investigated with the emphasis on the growth mechanism and morphological change. A unified regime describing the crystallization behavior of both crystals is obtained with the thermodynamic driving force varying. By increasing the driving force, both crystals (in the steady-state) transform from a faceted polygon to an apex-bulged polygon, and then into a symmetric dendrite. For the faceted polygon, the interface advances by a layer-by-layer (LL) mode while for the apex-bulged polygonal and the dendritic crystals, it first adopts the LL mode and then transits into the multi-layer (ML) mode in the later stage. In particular, a shift of the nucleation sites from the face center to the area around the crystal tips is detected in the early growth stage of both crystals and is rationalized in terms of the relation between the crystal size and the driving force distribution. Finally, a parameter characterizing the complex shape change of square crystal is introduced. Project supported by the National Natural Science Foundation of China (Grant Nos. 54175378, 51474176, and 51274167), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7261), and the Doctoral Foundation Program of Ministry of China (Grant No. 20136102120021).

  12. Purification, crystallization and preliminary crystallographic analysis of a natural complex of phospholipase A2 from Echis carinatus (saw-scaled viper).

    PubMed

    Nagpal, A; Chandra, V; Kaur, P; Singh, T P

    1999-06-01

    A novel complex of phospholipase A2 complexed with another venom protein has been isolated and purified from saw-scaled viper (Echis carinatus) venom. The molecular weights of the two components are 16 and 14 kDa, respectively. The complex was purified using an Affigel blue column and an anion-exchange (DEAE Sephacel) column. Long diamond-shaped crystals were obtained by hanging-drop vapour diffusion. The protein complex was dissolved at a concentration of 10 mg ml-1 in 20 mM sodium cacodylate, 1 mM CaCl2 and 2% dioxane at pH 6.0. The reservoir contained the same buffer with 7%(w/v) PEG 4000. Crystals appeared within 2-3 weeks. Native data to 2.9 A resolution have been obtained at 291 K. The crystals belong to the monoclinic space group P21 with unit-cell parameters a = 74.47, b = 47.87, c = 106.39 A, beta = 104.5 degrees and contain two molecules per asymmetric unit. Structure determination by molecular replacement is in progress. PMID:10329797

  13. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  14. Crystal structure of Rb{sub 2}[Ti(VO{sub 2}){sub 3}(PO{sub 4}){sub 3}

    SciTech Connect

    Yakubovich, O. V. Yakovleva, E. V.; Dimitrova, O. V.

    2010-03-15

    The crystal structure of the new compound Rb{sub 2}[Ti(VO{sub 2}){sub 3}(PO{sub 4}){sub 3}] obtained by hydrothermal synthesis in the RbCl-TiPO{sub 4}-V{sub 2}O{sub 5}-B{sub 2}O{sub 3}-H{sub 2}O system (a = 13.604(2) A, c = 9.386(2) A, sp. gr. P6cc, Z = 4, {rho}{sub calcd} = 3.32 g/cm{sup 3}) has been studied by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.038). It is shown that the isotypism of Rb{sub 2}[Ti(VO{sub 2}){sub 3}(PO{sub 4}){sub 3}] and Cs{sub 2}[Ti(VO{sub 2}){sub 3}(PO{sub 4}){sub 3}] is caused by the flexibility of a mixed anionic framework composed of phosphorus tetrahedra, vanadium five-vertex polyhedra, and titanium octahedra (bases of the crystal structures of these compounds). The topological correlations between the structures of titanium-vanadyl phosphates and benitoite and beryl silicates are analyzed.

  15. Dispersion in photonic crystals

    NASA Astrophysics Data System (ADS)

    Witzens, Jeremy

    2005-11-01

    Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are

  16. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  17. Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Chernov, Alexander A.

    2005-01-01

    Nucleation, growth and perfection of protein crystals will be overviewed along with crystal mechanical properties. The knowledge is based on experiments using optical and force crystals behave similar to inorganic crystals, though with a difference in orders of magnitude in growing parameters. For example, the low incorporation rate of large biomolecules requires up to 100 times larger supersaturation to grow protein, rather than inorganic crystals. Nucleation is often poorly reproducible, partly because of turbulence accompanying the mixing of precipitant with protein solution. Light scattering reveals fluctuations of molecular cluster size, its growth, surface energies and increased clustering as protein ages. Growth most often occurs layer-by-layer resulting in faceted crystals. New molecular layer on crystal face is terminated by a step where molecular incorporation occurs. Quantitative data on the incorporation rate will be discussed. Rounded crystals with molecularly disordered interfaces will be explained. Defects in crystals compromise the x-ray diffraction resolution crucially needed to find the 3D atomic structure of biomolecules. The defects are immobile so that birth defects stay forever. All lattice defects known for inorganics are revealed in protein crystals. Contribution of molecular conformations to lattice disorder is important, but not studied. This contribution may be enhanced by stress field from other defects. Homologous impurities (e.g., dimers, acetylated molecules) are trapped more willingly by a growing crystal than foreign protein impurities. The trapped impurities induce internal stress eliminated in crystals exceeding a critical size (part of mni for ferritin, lysozyme). Lesser impurities are trapped from stagnant, as compared to the flowing, solution. Freezing may induce much more defects unless quickly amorphysizing intracrystalline water.

  18. Computational crystallization.

    PubMed

    Altan, Irem; Charbonneau, Patrick; Snell, Edward H

    2016-07-15

    Crystallization is a key step in macromolecular structure determination by crystallography. While a robust theoretical treatment of the process is available, due to the complexity of the system, the experimental process is still largely one of trial and error. In this article, efforts in the field are discussed together with a theoretical underpinning using a solubility phase diagram. Prior knowledge has been used to develop tools that computationally predict the crystallization outcome and define mutational approaches that enhance the likelihood of crystallization. For the most part these tools are based on binary outcomes (crystal or no crystal), and the full information contained in an assembly of crystallization screening experiments is lost. The potential of this additional information is illustrated by examples where new biological knowledge can be obtained and where a target can be sub-categorized to predict which class of reagents provides the crystallization driving force. Computational analysis of crystallization requires complete and correctly formatted data. While massive crystallization screening efforts are under way, the data available from many of these studies are sparse. The potential for this data and the steps needed to realize this potential are discussed.

  19. Quadrupolar susceptibility of LiTmF4 crystal and the nature of forbidden 3H6(Γ2)-3F2(Γ2) transition

    NASA Astrophysics Data System (ADS)

    Altshuler, N. S.; Larionov, Alexander L.; Rodionova, M. P.; Stolov, A. L.

    2002-07-01

    The narrow low intensity line with maximum at (lambda) -1 equals 15104 cm-1 and width (delta) equals 0.7 cm-1 at T equals 4.2 K have been detected in absorption spectrum of regular LiTmF4 crystal. The observed line belongs to transition form ground state 3H6((Gamma) 2) to lowest level (Gamma) 2 of 3F2 term of Tm3+(4f12) ion. The perturbation, which induces (Gamma) 2 - (Gamma) 2 transition, does not break S4 symmetry of Tm3+ sites. The perturbation of this kind is the interaction of Tm3+ 4f-electrons with electric field, created by quadrupolar moments of lattice ions, which are induced, int urn, by incident electromagnetic wave. To calculate the components of the quadrupolar moment tensors for ions in LiTmF4 single crystal, we have formulated and solved the system of self-consistent linear equations. We take into account interactions between all induced dipolar and quadrupolar moments and their interactions with electric fields of incident wave. The calculated transition probailities per second are in qualitative accordance with experimental data.

  20. Crystal Data

    National Institute of Standards and Technology Data Gateway

    SRD 3 NIST Crystal Data (PC database for purchase)   NIST Crystal Data contains chemical, physical, and crystallographic information useful to characterize more than 237,671 inorganic and organic crystalline materials. The data include the standard cell parameters, cell volume, space group number and symbol, calculated density, chemical formula, chemical name, and classification by chemical type.

  1. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  2. Soliton assisted control of source to drain electron transport along natural channels - crystallographic axes - in two-dimensional triangular crystal lattices

    NASA Astrophysics Data System (ADS)

    Chetverikov, A. P.; Ebeling, W.; Velarde, M. G.

    2016-09-01

    We present computational evidence of the possibility of fast, supersonic or subsonic, nearly loss-free ballistic-like transport of electrons bound to lattice solitons (a form of electron surfing on acoustic waves) along crystallographic axes in two-dimensional anharmonic crystal lattices. First we study the structural changes a soliton creates in the lattice and the time lapse of recovery of the lattice. Then we study the behavior of one electron in the polarization field of one and two solitons with crossing pathways with suitably monitored delay. We show how an electron surfing on a lattice soliton may switch to surf on the second soliton and hence changing accordingly the direction of its path. Finally we discuss the possibility to control the way an excess electron proceeds from a source at a border of the lattice to a selected drain at another border by following appropriate straight pathways on crystallographic axes.

  3. Magnetically actuated liquid crystals.

    PubMed

    Wang, Mingsheng; He, Le; Zorba, Serkan; Yin, Yadong

    2014-07-01

    Ferrimagnetic inorganic nanorods have been used as building blocks to construct liquid crystals with optical properties that can be instantly and reversibly controlled by manipulating the nanorod orientation using considerably weak external magnetic fields (1 mT). Under an alternating magnetic field, they exhibit an optical switching frequency above 100 Hz, which is comparable to the performance of commercial liquid crystals based on electrical switching. By combining magnetic alignment and lithography processes, it is also possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Developing such magnetically responsive liquid crystals opens the door toward various applications, which may benefit from the instantaneous and contactless nature of magnetic manipulation.

  4. Microfluidic crystallization.

    PubMed

    Leng, Jacques; Salmon, Jean-Baptiste

    2009-01-01

    Microfluidics offers a wide range of new tools that permit one to revisit the formation of crystals in solution and yield insights into crystallization processes. We review such recent microfluidic devices and particularly emphasize lab-on-chips dedicated to the high-throughput screening of crystallization conditions of proteins with nanolitre consumption. We also thoroughly discuss the possibilities offered by the microfluidic tools to acquire thermodynamic and kinetic data that may improve industrial processes and shed a new light on nucleation and growth mechanisms.

  5. Crystal Furnace

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A "melt recharging" technique which eliminates the cooldown and heating periods in a crystal "growing" crucible, resulted from a Jet Propulsion Laboratory (JPL)/Kayex Corporation program. Previously, the cost of growing the silicon solar cells had been very high. The JPL/Kayex system improved productivity by serially growing crystals from the same crucible using a melt recharger which made it possible to add raw silicon to an operating crucible. An isolation value, developed by Kayex, allowed the hopper to be lowered into the crucible without disturbing the inert gas atmosphere. The resulting product, a CG6000 crystal growing furnace, has become the company's major product.

  6. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N.

    PubMed

    Ganji, Roopa Jones; Reddi, Ravikumar; Gumpena, Rajesh; Marapaka, Anil Kumar; Arya, Tarun; Sankoju, Priyanka; Bhukya, Supriya; Addlagatta, Anthony

    2015-05-01

    Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.

  7. Crystal Structure of a Schistosoma mansoni Septin Reveals the Phenomenon of Strand Slippage in Septins Dependent on the Nature of the Bound Nucleotide*

    PubMed Central

    Zeraik, Ana E.; Pereira, Humberto M.; Santos, Yuri V.; Brandão-Neto, José; Spoerner, Michael; Santos, Maiara S.; Colnago, Luiz A.; Garratt, Richard C.; Araújo, Ana P. U.; DeMarco, Ricardo

    2014-01-01

    Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments. PMID:24464615

  8. Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide.

    PubMed

    Zeraik, Ana E; Pereira, Humberto M; Santos, Yuri V; Brandão-Neto, José; Spoerner, Michael; Santos, Maiara S; Colnago, Luiz A; Garratt, Richard C; Araújo, Ana P U; DeMarco, Ricardo

    2014-03-14

    Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments. PMID:24464615

  9. Viscoelastic and photoresponsive properties of microparticle/liquid-crystal composite gels: tunable mechanical strength along with rapid-recovery nature and photochemical surface healing using an azobenzene dopant.

    PubMed

    Yamamoto, Takahiro; Yoshida, Masaru

    2012-06-01

    We investigated viscoelastic and photoresponsive properties of the microparticle/liquid-crystal (LC) composite gels. The mechanical strength of the colloidal gels can be widely tuned by varying particle concentrations. With increasing particle concentration, a storage modulus of the particle/LC composite gels increased and reached over 10(4) Pa, showing good self-supporting ability. We demonstrated for the first time that the particle/LC composite gels exhibited rapid and repetitive recovery of the mechanical strength after large-amplitude oscillatory breakdown. In addition, photoresponsive properties of the composite gels were investigated by the cis-trans photoisomerization of the azobenzene compound doped into the host LCs. The photochemical gel-sol transition could be repeatedly induced by changing the phase structure of the host LCs between nematic and isotropic, using the photoisomerization. The particle/LC composite gels can be applied to optically healable materials by the site-selective gel-sol transition based on the photochemical modulation of the phase structures of the host LCs.

  10. A novel high-temperature commensurate superstructure in a natural bariopyrochlore: A structural study by means of a multiphase crystal structure refinement

    SciTech Connect

    Bindi, L. . E-mail: lbindi@geo.unifi.it; Petricek, V.; Withers, R.L.; Zoppi, M.; Bonazzi, P.

    2006-03-15

    Additional X-ray diffraction effects yielding an eightfold commensurate superstructure [a=20.974(5)A] of the ideal pyrochlore structure were observed after annealing at 873K of a thallium-doped bariopyrochlore single crystal. Electron diffraction indicated the coexistence of two cubic phases, the pyrochlore structure and a new F-centred, cubic phase. The superstructure was solved and refined in the space group F4-bar 3m. The two phases were combined together and refined as independently diffracting to R=0.0628. The resulting unit-cell content is (A,-bar ){sub 20}Nb{sub 16}Ti{sub 2}O{sub 53}(Z=8), with A=Ba, Tl, Ce, Th. For some atomic positions of the superstructure, third- and fourth-order anharmonic ADP's were used to account for the specific density shape having a continuous character as typical for ionic conductors. There are three distinct clusters in the superstructure, leading to a new structure type no longer strictly of pyrochlore-structure type.

  11. Nature of red luminescence band in research-grade ZnO single crystals: A “self-activated” configurational transition

    SciTech Connect

    Chen, Y. N.; Xu, S. J. Zheng, C. C.; Ning, J. Q.; Ling, F. C. C.; Anwand, W.; Brauer, G.; Skorupa, W.

    2014-07-28

    By implanting Zn{sup +} ions into research-grade intentionally undoped ZnO single crystal for facilitating Zn interstitials (Zn{sub i}) and O vacancies (V{sub O}) which is revealed by precise X-Ray diffraction rocking curves, we observe an apparent broad red luminescence band with a nearly perfect Gaussian lineshape. This red luminescence band has the zero phonon line at ∼2.4 eV and shows distinctive lattice temperature dependence which is well interpreted with the configurational coordinate model. It also shows a low “kick out” thermal energy and small thermal quenching energy. A “self-activated” optical transition between a shallow donor and the defect center of Zn{sub i}-V{sub O} complex or V{sub Zn}V{sub O} di-vacancies is proposed to be responsible for the red luminescence band. Accompanied with the optical transition, large lattice relaxation simultaneously occurs around the center, as indicated by the generation of multiphonons.

  12. Structural basis for the inhibition of M1 family aminopeptidases by the natural product actinonin: Crystal structure in complex with E. coli aminopeptidase N

    PubMed Central

    Ganji, Roopa Jones; Reddi, Ravikumar; Gumpena, Rajesh; Marapaka, Anil Kumar; Arya, Tarun; Sankoju, Priyanka; Bhukya, Supriya; Addlagatta, Anthony

    2015-01-01

    Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases. PMID:25644575

  13. Introduction to protein crystallization.

    PubMed

    McPherson, Alexander; Gavira, Jose A

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid-liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies.

  14. Introduction to protein crystallization

    PubMed Central

    McPherson, Alexander; Gavira, Jose A.

    2014-01-01

    Protein crystallization was discovered by chance about 150 years ago and was developed in the late 19th century as a powerful purification tool and as a demonstration of chemical purity. The crystallization of proteins, nucleic acids and large biological complexes, such as viruses, depends on the creation of a solution that is supersaturated in the macromolecule but exhibits conditions that do not significantly perturb its natural state. Supersaturation is produced through the addition of mild precipitating agents such as neutral salts or polymers, and by the manipulation of various parameters that include temperature, ionic strength and pH. Also important in the crystallization process are factors that can affect the structural state of the macromolecule, such as metal ions, inhibitors, cofactors or other conventional small molecules. A variety of approaches have been developed that combine the spectrum of factors that effect and promote crystallization, and among the most widely used are vapor diffusion, dialysis, batch and liquid–liquid diffusion. Successes in macromolecular crystallization have multiplied rapidly in recent years owing to the advent of practical, easy-to-use screening kits and the application of laboratory robotics. A brief review will be given here of the most popular methods, some guiding principles and an overview of current technologies. PMID:24419610

  15. 1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    PubMed Central

    Molnár, Ferdinand; Sigüeiro, Rita; Sato, Yoshiteru; Araujo, Clarisse; Schuster, Inge; Antony, Pierre; Peluso, Jean; Muller, Christian; Mouriño, Antonio; Moras, Dino; Rochel, Natacha

    2011-01-01

    Background The 1α,25-dihydroxy-3-epi-vitamin-D3 (1α,25(OH)2-3-epi-D3), a natural metabolite of the seco-steroid vitamin D3, exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1α,25(OH)2-3-epi-D3 is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1α,25(OH)2D3. To further unveil the structural mechanism and structure-activity relationships of 1α,25(OH)2-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1α,25(OH)2D3. We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1α,25(OH)2-3-epi-D3 in primary human keratinocytes and biochemical properties are comparable to 1α,25(OH)2D3. Conclusions/Significance The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1α,25(OH)2D3 lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1α,25(OH)2D3. PMID:21483824

  16. Active and driven hydrodynamic crystals.

    PubMed

    Desreumaux, N; Florent, N; Lauga, E; Bartolo, D

    2012-08-01

    Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543

  17. The discovery of X-rays diffraction: From crystals to DNA. A case study to promote understanding of the nature of science and of its interdisciplinary character

    NASA Astrophysics Data System (ADS)

    Guerra, Francesco; Leone, Matteo; Robotti, Nadia

    2016-05-01

    The advantages of introducing history of science topics into the teaching of science has been advocated by a large number of scholars within the science education community. One of the main reasons given for using history of science in teaching is its power to promote understanding of the nature of science (NOS). In this respect, the historical case of X-rays diffraction, from the discovery of Max von Laue (1912) to the first X-rays diffraction photographs of DNA (1953), is a case in point for showing that a correct experimental strategy and a favourable theoretical context are not enough to make a scientific discovery.

  18. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  19. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    PubMed

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient. PMID:27348970

  20. Effect of crystal habit on the dissolution behaviour of simvastatin crystals and its relationship to crystallization solvent properties.

    PubMed

    Bukovec, P; Benkic, P; Smrkolj, M; Vrecer, F

    2016-05-01

    Simvastatin crystals, having same crystal structure but different types of habits and hence different intrinsic dissolution rate, were prepared by recrystallization from solvents selected according to their polarity index. Scanning electron microscopy, laser diffraction, image analysis, X-ray powder diffractometry, Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals. The isolated crystals exhibited different crystal habits but possessed the same internal crystal structure. In this study the comparative intrinsic dissolution behaviour of the simvastatin crystals with different types of habits was studied and explained by surface energy and correlated to different solvent systems that were used for crystallization. In our work we diminished the influence of all other physical parameters that could influence the dissolution rate, e.g. particle size, specific surface area and polymorphism in order to focus the study onto the impact of crystal shape itself on the dissolution rate of simvastatin crystals. Rod shaped crystals isolated from more hydrophilic solvent mixture dissolved faster than plate-like crystals obtained from solvent mixture with lower polarity index. We correlated this fact to the different growth rate of the individual faces which resulted in different relative size of the individual crystal faces exposed to the dissolution medium as well as the chemical nature of those faces which in turn influenced the wettability and subsequent dissolution of the active pharmaceutical ingredient.

  1. Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany

    NASA Astrophysics Data System (ADS)

    Zubkova, N. V.; Chukanov, N. V.; Pekov, I. V.; Turchkova, A. G.; Lykova, I. S.; Schüller, W.; Ternes, B.; Pushcharovsky, D. Yu.

    2016-03-01

    A Ba-dominant (Ba > K) analogue of hydrodelhayelite (BDAH) from Löhley (Eifel Mts., Rhineland-Palatinate, Germany) and Ba-enriched varieties of related double- and triple-layer phyllosilicates from Eifel are studied. The crystal structure of BDAH was solved by direct methods and refined to R = 0.0698 [1483 unique reflections with I > 2σ(I)]. It is orthorhombic, Pmmn, a = 23.9532(9), b = 7.0522(3), c = 6.6064(3) Å, V = 1115.97(8) Å3, Z = 2. The structure is based upon delhayelite-type double-layer tetrahedral blocks [(Al,Si)4Si12O34(OH,O)4] connected by chains of (Ca,Fe)-centered octahedra. Ba2+ and subordinate K+ occur at partially vacant sites in zeolitic channels within the tetrahedral blocks. The crystal-chemical formula of BDAH is: (Ba0.42K0.34□0.24)(Ca0.88Fe0.12)2(□0.90Mg0.10)2[Si6(Al0.5Si0.5)2O17(OH0.71O0.29)2]ṡ6H2O. The formation of BDAH and Ba-rich varieties of altered delhayelite/fivegite, günterblassite and hillesheimite is considered as a result of leaching of Na, Cl, F and, partially, K and Ca accompanied with hydration and the capture of Ba as a result of natural ion exchange. These minerals are structurally a "bridge" between single-layer phyllosilicates and zeolites having the open three-dimensional tetrahedral Al-Si-O frameworks.

  2. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    NASA Astrophysics Data System (ADS)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains

  3. Laser Crystal

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lightning Optical Corporation, under an SBIR (Small Business Innovative Research) agreement with Langley Research Center, manufactures oxide and fluoride laser gain crystals, as well as various nonlinear materials. The ultimate result of this research program is the commercial availability in the marketplace of a reliable source of high-quality, damage resistant laser material, primarily for diode-pumping applications.

  4. Comparing Crystals

    ERIC Educational Resources Information Center

    Sharp, Janet; Hoiberg, Karen; Chumbley, Scott

    2003-01-01

    This standard lesson on identifying salt and sugar crystals expands into an opportunity for students to develop their observation, questioning, and modeling skills. Although sugar and salt may look similar, students discovered that they looked very different under a magnifying glass and behaved differently when dissolved in water. In addition,…

  5. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  6. Therapeutic Crystals

    ERIC Educational Resources Information Center

    Bond, Charles S.

    2014-01-01

    Some readers might not fully know what the difference is between crystallography, and the "new age" practice of dangling crystals around the body to capitalise on their healing energy. The latter is often considered to be superstition, while ironically, the former has actually resulted in real rationally-based healing of human diseases…

  7. Butterfly wing color: A photonic crystal demonstration

    NASA Astrophysics Data System (ADS)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  8. Radiating dipoles in photonic crystals

    PubMed

    Busch; Vats; John; Sanders

    2000-09-01

    The radiation dynamics of a dipole antenna embedded in a photonic crystal are modeled by an initially excited harmonic oscillator coupled to a non-Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the photonic crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.

  9. Viewing Ice Crystals Using Polarized Light.

    ERIC Educational Resources Information Center

    Kinsman, E. M.

    1992-01-01

    Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…

  10. Chesnokovite, Na2[SiO2(OH)2] · 8H2O, the first natural sodium orthosilicate from the Lovozero alkaline pluton, Kola Peninsula: Description and crystal structure of a new mineral species

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Zadov, A. E.; Zubkova, N. V.; Pushcharovsky, D. Yu.

    2007-12-01

    Chesnokovite, a new mineral species, is the first natural sodium orthosilicate. It has been found in an ussingite vein uncovered by underground mining at Mt. Kedykverpakhk, Lovozero alkaline pluton, Kola Peninsula, Russia. Natrolite, sodalite, vuonnemite, steenstrupine-(Ce), phosinaite-(Ce), natisite, gobbinsite, villiaumite, and natrosilite are associated minerals. Chesnokovite occurs as intergrowths with natrophospate in pockets up to 4 × 6 × 10 cm in size consisting of chaotic segregations of coarse lamellar crystals (up to 0.05 × 1 × 2 cm in size) flattened along [010]. The crystals are colorless and transparent. The aggregates are white to pale brownish yellowish, with a white streak and a vitreous luster. The cleavage is perfect parallel to (010) and distinct to (100) and (001). The fracture is stepped. The Mohs’ hardness is 2.5. The measured density is 1.68 g/cm3; the density calculated on the basis of an empirical formula is 1.60 g/cm3 and 1.64 g/cm3 on the basis of an idealized formula. The new mineral is optically biaxial, positive, α = 1.449, β = 1.453, γ = 1.458, 2 V meas = 80°, and Z = b. The infrared spectrum is given. The chemical composition (Si determined with electron microprobe; Na, K, and Li, with atomic emission analysis; and H2O, with the Alimarin method) is as follows, wt %: 21.49 Na2O, 0.38 K2O, 0.003 Li2O, 21.42 SiO2, 54.86 H2O, total is 98.153. The empirical formula calculated on the basis of O2(OH)2 is as follows: (Na1.96K0.02)Σ1.98Si1.005O2(OH)2 · 7.58H2O. The simplified formula ( Z = 8) is Na2[SiO2(OH)2] · 8H2O. The new mineral is orthorhombic, and the space group is Ibca. The unit-cell dimensions are: a = 11.7119, b = 19.973, c = 11.5652 Å, and V = 2299.0 Å3. The strongest reflections in the X-ray powder pattern [ d, Å ( I, %)( hkl)] are: 5.001(30)(211), 4.788(42)(022), 3.847(89)(231), 2.932(42)(400), 2.832(35)(060), 2.800(97)(332, 233), and 2.774(100)(341, 143, 114). The crystal structure was studied using the Rietveld

  11. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates.

    PubMed

    Fonseca, Emanuella M B; Trivella, Daniela B B; Scorsato, Valéria; Dias, Mariana P; Bazzo, Natália L; Mandapati, Kishore R; de Oliveira, Fábio L; Ferreira-Halder, Carmen V; Pilli, Ronaldo A; Miranda, Paulo C M L; Aparicio, Ricardo

    2015-08-01

    Low molecular weight protein tyrosine phosphatases (LMW-PTP, EC 3.1.3.48) are a family of single-domain enzymes with molecular weight up to 18 kDa, expressed in different tissues and considered attractive pharmacological targets for cancer chemotherapy. Despite this, few LMW-PTP inhibitors have been described to date, and the structural information on LMW-PTP druggable binding sites is scarce. In this study, a small series of phosphonic acids were designed based on a new crystallographic structure of LMW-PTP complexed with benzylsulfonic acid, determined at 2.1Å. In silico docking was used as a tool to interpret the structural and enzyme kinetics data, as well as to design new analogs. From the synthesized series, two compounds were found to act as competitive inhibitors, with inhibition constants of 0.124 and 0.047 mM. We also report the 2.4Å structure of another complex in which LMW-PTP is bound to benzylphosphonic acid, and a structure of apo LMW-PTP determined at 2.3Å resolution. Although no appreciable conformation changes were observed, in the latter structures, amino acid residues from an expression tag were found bound to a hydrophobic region at the protein surface. This regions is neighbored by positively charged residues, adjacent to the active site pocket, suggesting that this region might be not a mere artefact of crystal contacts but an indication of a possible anchoring region for the natural substrate-which is a phosphorylated protein. PMID:26117648

  12. Partitioning behavior and stabilization of hydrophobically coated HfO2, ZrO2 and Hfx Zr 1-x O2 nanoparticles with natural organic matter reveal differences dependent on crystal structure.

    PubMed

    Navarro, Divina A; Depner, Sean W; Watson, David F; Aga, Diana S; Banerjee, Sarbajit

    2011-11-30

    The interactions of engineered nanomaterials with natural organic matter (NOM) exert a profound influence on the mobilities of the former in the environment. However, the influence of specific nanomaterial structural characteristics on the partitioning and colloidal stabilization of engineered nanomaterials in various ecological compartments remains underexplored. Herein, we present a systematic study of the interactions of humic acid (HA, as a model for NOM) with monodisperse, well-characterized, ligand-passivated HfO(2), ZrO(2), and solid-solution Hf(x)Zr(1-x)O(2) nanoparticles (NPs). We note that mixing with HA induces the almost complete phase transfer of hydrophobically coated monoclinic metal oxide (MO) NPs from hexane to water. Furthermore, HA is seen to impart appreciable colloidal stabilization to the NPs in the aqueous phase. In contrast, phase transfer and aqueous-phase colloidal stabilization has not been observed for tetragonal MO-NPs. A mechanistic model for the phase transfer and aqueous dispersal of MO-NPs is proposed on the basis of evidence from transmission electron microscopy, ζ-potential measurements, dynamic light scattering, Raman and infrared spectroscopies, elemental analysis, and systematic experiments on a closely related set of MO-NPs with varying composition and crystal structure. The data indicate the synergistic role of over-coating (micellar), ligand substitution (coordinative), and electrostatic processes wherein HA acts both as an amphiphilic molecule and a charged chelating ligand. The strong observed preference for the phase transfer of monoclinic instead of tetragonal NPs indicates the importance of the preferential binding of HA to specific crystallographic facets and suggests the possibility of being able to design NPs to minimize their mobilities in the aquatic environment.

  13. Biological Macromolecule Crystallization Database

    National Institute of Standards and Technology Data Gateway

    SRD 21 Biological Macromolecule Crystallization Database (Web, free access)   The Biological Macromolecule Crystallization Database and NASA Archive for Protein Crystal Growth Data (BMCD) contains the conditions reported for the crystallization of proteins and nucleic acids used in X-ray structure determinations and archives the results of microgravity macromolecule crystallization studies.

  14. Fluorite-related one-dimensional units in natural bismuth oxysulfates: the crystal structures of Bi14O16(SO4)5 and Bi30O33(SO4)9(AsO4)2.

    PubMed

    Pinto, Daniela; Garavelli, Anna; Bindi, Luca

    2015-10-01

    The crystal structures of two new natural Bi oxysulfates with the formula Bi14O16(SO4)5 [labelled new phase I; monoclinic, space group C2, a = 21.658 (4), b = 5.6648 (9), c = 15.092 (3) Å, β = 119.433 (11)° and Z = 2] and Bi30O33(SO4)9(AsO4)2 [labelled new phase II; triclinic, space group P1, a = 5.670 (3), b = 13.9408 (9), c = 22.7908 (18) Å, α = 80.903 (5), β = 82.854 (14), γ = 78.27 (2)° and Z = 1] from the high-temperature fumarole deposit of the La Fossa crater at Vulcano (Aeolian Islands, Italy) are reported. The structures are built up by a combination of fluorite-related Bi-O units and isolated (SO4)(2-) tetrahedra (new phase I) or both (SO4)(2-) and (AsO4)(3-) tetrahedra (new phase II). Owing to the effect of stereoactive lone pairs of Bi(3+), Bi-O units in both the structures can be suitably described in terms of oxo-centered OBi4 tetrahedra. The structure of Bi14O16(SO4)5 is based upon one-dimensional [O16Bi14](10+) ribbons formed by six chains of edge-sharing OBi4 tetrahedra extending along [010]. In the structure of Bi30O33(SO4)9(AsO4)2 the same ribbon type coexists with another one-dimensional ribbon formed by seven chains of edge-sharing OBi4 tetrahedra and with the composition [O17Bi16](14+). Ribbons of the same type are joined by (SO4)(2-) and (AsO4)(3-) tetrahedra along [010] – if a reduced triclinic unit-cell setting is considered – so forming two different (001) slabs which alternate to each other along [001] and are joined by additional (SO4)(2-) tetrahedra. New phase I represents the natural analogues of synthetic Bi14O16(SO4)5, but with an ordered structure model. PMID:26428401

  15. Photonic crystal horn and array antennas.

    PubMed

    Weily, Andrew R; Esselle, Karu P; Sanders, Barry C

    2003-07-01

    We introduce a defect-based horn antenna in a two-dimensional photonic crystal. Our numerical simulations demonstrate the efficient, highly directional nature of the antenna. It has a large operating bandwidth, low loss, and an operating frequency that is scalable to various regions of the electromagnetic spectrum. We also show that the photonic crystal horn antenna can be successfully used in an array configuration that uses a feed network made from photonic crystal waveguide circuits. The feed network and antennas have been integrated into a single photonic crystal device. This photonic crystal array antenna is shown to have high directivity and compact size while retaining the advantages of the photonic crystal horn antenna.

  16. Crystals and Crystals: On the Mythology of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Marsh, B.

    2008-12-01

    The intimate records of the deep functioning of magmatic systems reside in the temporal and spatial records of magma flux, composition and crystal load. The records for a single system are piecemeal: Plutons show good spatial records, but poor temporal records. Volcanoes give through lava sequences good temporal records, but no spatial context. Because of this dichotomy, two, almost mutually exclusive, branches of magmatology have developed, whereas in Nature there is only a single process. The processes envisioned in these schools necessary to deliver the end rock record are distinct. It is our tools and historic perspectives that have steered the science, not the subject itself. Due to this approach an almost mythical conception of how magmas function has become commonplace. The circumvention of this dilemma rests in carefully evaluating the records on hand in the light of a broad understanding of the fundamental mechanics of how magma lives and dies. It is these basic principles that promise to unify plutonic and volcanic evidence to reveal the full nature of magmatism on all scales. The two most basic features of all magmatic processes are the universal presence of solidification fronts and the presence or absence of a crystal cargo. Almost without exception (e.g., shallow pressure quenching) all first generation crystals grow in marginal solidification fronts (SFs) bordering all magmas. The package of isotherms bounded by the liquidus and solidus define SFs, which propagate in response to the rate of cooling. All physical and chemical processes occurring within SFs compete with the advancement or retreat of solidification. SFs are governed by crystallinity regimes: Suspension Zone (<25 % xtals), Capture Front (~25 %), Mush Zone (25-55%), Rigidity Front (~55%; Critical Crystallinity), and Rigid Crust Zone (>55% xtals). Magmas are laced with nuclei that multiply and grow when overtaken. Crystal growth rates are bounded; tiny crystals reside at the front of SFs

  17. Sponge-like nanoporous single crystals of gold

    NASA Astrophysics Data System (ADS)

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  18. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  19. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-10

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  20. Crystallization process

    DOEpatents

    Adler, Robert J.; Brown, William R.; Auyang, Lun; Liu, Yin-Chang; Cook, W. Jeffrey

    1986-01-01

    An improved crystallization process is disclosed for separating a crystallizable material and an excluded material which is at least partially excluded from the solid phase of the crystallizable material obtained upon freezing a liquid phase of the materials. The solid phase is more dense than the liquid phase, and it is separated therefrom by relative movement with the formation of a packed bed of solid phase. The packed bed is continuously formed adjacent its lower end and passed from the liquid phase into a countercurrent flow of backwash liquid. The packed bed extends through the level of the backwash liquid to provide a drained bed of solid phase adjacent its upper end which is melted by a condensing vapor.

  1. Ribbon crystals.

    PubMed

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order.

  2. Ribbon Crystals

    PubMed Central

    Bohr, Jakob; Markvorsen, Steen

    2013-01-01

    A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet–Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order. PMID:24098360

  3. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  4. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  5. Growth and surface topography of WSe2 single crystal

    NASA Astrophysics Data System (ADS)

    Dixit, Vijay; Vyas, Chirag; Pataniya, Pratik; Jani, Mihir; Pathak, Vishal; Patel, Abhishek; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2016-05-01

    Tungsten Di-Selenide belongs to the family of TMDCs showing their potential applications in the fields of Optoelectronics and PEC solar cells. Here in the present investigation single crystals of WSe2 were grown by Direct Vapour Transport Technique in a dual zone furnace having temperature difference of 50 K between the two zones. These single crystals were characterized by EDAX which confirms the stiochiometry of the grown crystals. Surface topography of the crystal was studied by optical micrograph showing the left handed spirals on the surface of WSe2 crystals. Single crystalline nature of the crystals was confirmed by SAED.

  6. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  7. Laser-induced crystallization and crystal growth.

    PubMed

    Sugiyama, Teruki; Masuhara, Hiroshi

    2011-11-01

    Recent streams of laser studies on crystallization and crystal growth are summarized and reviewed. Femtosecond multiphoton excitation of solutions leads to their ablation at the focal point, inducing local bubble formation, shockwave propagation, and convection flow. This phenomenon, called "laser micro tsunami" makes it possible to trigger crystallization of molecules and proteins from their supersaturated solutions. Femtosecond laser ablation of a urea crystal in solution triggers the additional growth of a single daughter crystal. Intense continuous wave (CW) near infrared laser irradiation at the air/solution interface of heavy-water amino acid solutions results in trapping of the clusters and evolves to crystallization. A single crystal is always prepared in a spatially and temporally controlled manner, and the crystal polymorph of glycine depends on laser power, polarization, and solution concentration. Upon irradiation at the glass/solution interface, a millimeter-sized droplet is formed, and a single crystal is formed by shifting the irradiation position to the surface. Directional and selective crystal growth is also possible with laser trapping. Finally, characteristics of laser-induced crystallization and crystal growth are summarized.

  8. Using Inorganic Crystals To Grow Protein Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.; Mcpherson, Alexander A.

    1989-01-01

    Solid materials serve as nucleating agents. Protein crystals induced by heterogeneous nucleation and in some cases by epitaxy to grow at lower supersaturations than needed for spontaneous nucleation. Heterogeneous nucleation makes possible to grow large, defect-free single crystals of protein more readily. Such protein crystals benefits research in biochemistry and pharmacology.

  9. X-ray Microscopic Characterization of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Holmes, A.; Thomas, B.R.; Chernov, a. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    The microscopic mapping of the variation in degree of perfection and in type of defects in entire protein crystals by x-rays may well be a prerequisite for better understanding causes of lattice imperfections, the growth history, and properties of protein crystals. However, x-ray microscopic characterization of bulk protein crystals, in the as-grown state, is frequently more challenging than that of small molecular crystals due to the experimental difficulties arising largely from the unique features possessed by protein crystals. In this presentation, we will illustrate ssme recent activities in employing coherence-based phase contrast x-ray imaging and high-angular-resolution diffraction techniques for mapping microdefects and the degree of perfection of protein crystals, and demonstrate a correlation between crystal perfection, diffraction phenomena., and crystallization conditions. The observed features and phenomena will be discussed in context to gain insight into the nature of defects, nucleation and growth, and the properties of protein crystals.

  10. Cycloid crystals by topology change

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Matsuyama, T.; Tanda, S.

    2013-05-01

    A cycloid, formerly known as a roulette, is a curve arising from a point on a circumference that rolls on its plane over a fixed straight line, and the cycloid shape is observed in many natural objects formed under a constraint. Here we report the discovery of cycloid-shaped crystals of TaSe3 obtained via the "topology-change surgery" of thin ring-shaped crystals. We cut the ring-shaped crystals with a focused ion beam. After being cut, they formed a cycloidal shape similar to Cyclotron trajectories of electrons under magnetic and electric fields. We conclude that the inhomogeneous curvature distribution minimizes the bending energy and shear modulation, which corresponds to our shear-less model.

  11. Surface adsorption of Cs137 ions on quartz crystals

    USGS Publications Warehouse

    Antkiw, Stephen; Waesche, H.; Senftle, F.

    1954-01-01

    Adsorption tests were made on four large synthetic and three natural quartz crystals to see if surface defects might be detected by subsequent autoradiography techniques. The adsorbent used was radioactive Cs137 in a solution of Cs 137Cl. Natural quartz crystals adsorbed more cesium than the synthetic crystals. Certain surface defects were made evident by this method, but twinning features could not be detected.

  12. Drilling technique for crystals

    NASA Technical Reports Server (NTRS)

    Hunter, T.; Miyagawa, I.

    1977-01-01

    Hole-drilling technique uses special crystal driller in which drill bit rotates at fixed position at speed of 30 rpm while crystal slowly advances toward drill. Technique has been successfully applied to crystal of Rochell salt, Triglycine sulfate, and N-acetyglycine. Technique limits heat buildup and reduces strain on crystal.

  13. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  14. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  15. Mixed crystal organic scintillators

    DOEpatents

    Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

    2014-09-16

    A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

  16. Crystal Compton Camera

    SciTech Connect

    Ziock, Klaus-Peter; Braverman, Joshua B.; Harrison, Mark J.; Hornback, Donald Eric; Fabris, Lorenzo; Newby, Jason

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  17. Pressure cryocooling protein crystals

    DOEpatents

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  18. Crystallization of lithium borate glasses

    NASA Technical Reports Server (NTRS)

    Goktas, A. A.; Neilson, G. F.; Weinberg, M. C.

    1992-01-01

    The glass-forming ability and crystallization behavior of lithium borate compositions, in the diborate-to-metaborate-range, were studied. In particular, the nature and sequence of formation of crystalline phases and the tendency toward devitrification were investigated as functions of temperature, thermal history and batch composition. It was found that the sequence of crystalline phase formation was sensitive to all of the three latter factors, and it was observed that under certain conditions metastable defect structures of the metaborate can appear.

  19. Crystal chemistry and real structure of crystals

    NASA Astrophysics Data System (ADS)

    Bartl, H.; Bats, J. W.; Dyck, W.; Fuess, H.; Gregory, A.; Joswig, W.; Lottermoser, W.; Koerfer, M.; Mueller, R.; Schweiss, B. P.

    1984-03-01

    Elastic and inelastic scattering, X-ray diffraction and spectroscopy were combined to obtain a comprehensive picture of the properties of crystals. The electron density distribution allows one to verify the models of the theoretical chemistry. Systematic investigations of chemically similar anions (ClO3 and ClO4; S2O3, SO3 and SO4) show differences in bonding and reaction capability. The X-ray-neutron method applied to these anions shows maxima between 0.2 and 0.4 eXA to the power-3 in the bondings of the unbound electrons on S and D. For the SO3-group good agreement is found with theoretical calculations. The effect of the Mg (two times ionized) cation on the density is demonstrated on the water molecules of MgS2O3.6H2O and MgSO3.6H2O. Magnetic structure and magnetization density were investigated on CO3V2O8, Fe2SiO4 and Mn2SiO4 with polarized neutrons. The differences in magnetic moments of both cation states is also demonstrated for Fe2SiO4 with complementary Mossbauer measurements. Inelastic time of flight experiments allow predictions concerning the motion of the NH3-group in aniliniumbromide and of the water molecule in natural zeolites. The theoretical model to calculate the photon dispersion on CaSO4 shows good agreement with the measured dispersion curves.

  20. Nonequilibrium molecular dynamics of liquid crystals

    NASA Astrophysics Data System (ADS)

    Sarman, S. S.; Cummings, P. T.; Evans, D. J.

    1994-11-01

    During the last 15 years, noneyuilibrium molecular dynamics (NEMD) has been successfully applied to study transport phenomena in fluids that are isotropic at equilibrium. A natural extension is therefore to study liquid crystals, which are anisotropic al equilibrium. The lower symmetry of these systems means that the linear transport coefficients are considerably more complicated than in an isotropic system. Part of the reason for this is that there are crosscouplings between tensors of different rank and parity. Such couplings arc symmetry-forbidden in isotropic phases. In this paper. we review some of fundamental theoretical results we have derived concerning the rheology of liquid crystals. report NEMD simulations of thermal conductivity and shear viscosity of liquid crystals, and present NEMD simulations of shear cessation phenomena. All of the NEMD results are presented for a model liquid crystal fluid which is a modification of the Gay-Borne fluid. The results obtained are in qualitative agreement with experimental measurements on liquid crystal systems.

  1. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  2. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  3. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  4. Growth of dopamine crystals

    NASA Astrophysics Data System (ADS)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  5. Apparatus for growing crystals

    NASA Technical Reports Server (NTRS)

    Jasinski, Thomas J. (Inventor); Witt, August F. (Inventor)

    1986-01-01

    An improved apparatus and method for growing crystals from a melt employing a heat pipe, consisting of one or more sections, each section serving to control temperature and thermal gradients in the crystal as it forms inside the pipe.

  6. Controlling spontaneous emission in bioreplica photonic crystals

    NASA Astrophysics Data System (ADS)

    Jorgensen, Matthew R.; Butler, Elizabeth S.; Bartl, Michael H.

    2012-04-01

    Sophisticated methods have been created by nature to produce structure-based colors as a way to address the need of a wide variety of organisms. This pallet of available structures presents a unique opportunity for the investigation of new photonic crystal designs. Low-temperature sol-gel biotemplating methods were used to transform a single biotemplate into a variety of inorganic oxide structures. The density of optical states was calculated for a diamond-based natural photonic crystal, as well as several structures templated from it. Calculations were experimentally probed by spontaneous emission studies using time correlated single photon counting measurements.

  7. Apparatus for mounting crystal

    DOEpatents

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  8. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  9. Crystal Growth, Thermal, Optical, and Dielectric Properties of L-Lysine Doped Kdp Crystals

    NASA Astrophysics Data System (ADS)

    Parikh, Ketan D.; Dave, Dipak J.; Joshi, Mihir J.

    Single crystals of pure and various amount of L-lysine doped KDP crystals were grown from aqueous solution. The doping of L-lysine was confirmed by CHN analysis and FT-IR spectroscopy. Powder XRD was carried out to assess the single phase nature of the samples. The effect of doping on thermal stability of the crystals was carried out by TGA and the kinetic and thermodynamic parameters of dehydration were evaluated. It was found that as the amount of doping of amino acid, L-lysine, increased the thermal stability of the grown crystals decreased. However, the second-harmonic generation (SHG) efficiency of Nd:YAG laser and UV-vis spectroscopy studies indicated that as the L-lysine doping increased in KDP crystals the SHG efficiency and optical transmission percentage increased. The dielectric constant and the dielectric loss of L-lysine doped KDP crystals are lower than the pure KDP crystals. Hence L-lysine doped KDP crystals are found to be more beneficial from an application point of view as compared to pure KDP crystals. The results are discussed.

  10. Protein Crystal Based Nanomaterials

    NASA Technical Reports Server (NTRS)

    Bell, Jeffrey A.; VanRoey, Patrick

    2001-01-01

    This is the final report on a NASA Grant. It concerns a description of work done, which includes: (1) Protein crystals cross-linked to form fibers; (2) Engineering of protein to favor crystallization; (3) Better knowledge-based potentials for protein-protein contacts; (4) Simulation of protein crystallization.

  11. Total immersion crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Crystals of wide band gap materials are produced by positioning a holder receiving a seed crystal at the interface between a body of molten wide band gap material and an overlying layer of temperature-controlled, encapsulating liquid. The temperature of the layer decreases from the crystallization temperature of the crystal at the interface with the melt to a substantially lower temperature at which formation of crystal defects does not occur, suitably a temperature of 200 to 600 C. After initiation of crystal growth, the leading edge of the crystal is pulled through the layer until the leading edge of the crystal enters the ambient gas headspace which may also be temperature controlled. The length of the column of liquid encapsulant may exceed the length of the crystal such that the leading edge and trailing edge of the crystal are both simultaneously with the column of the crystal. The crystal can be pulled vertically by means of a pulling-rotation assembly or horizontally by means of a low-angle withdrawal mechanism.

  12. Food Crystalization and Eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food Crystalization and Eggs Deana R. Jones, Ph.D. USDA Agricultural Research Service Egg Safety and Quality Research Unit Athens, Georgia, USA Deana.Jones@ars.usda.gov Sugar, salt, lactose, tartaric acid and ice are examples of constituents than can crystallize in foods. Crystallization in a foo...

  13. Triangular ice crystals

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin; Salzmann, Christoph; Heymsfield, Andrew; Neely, Ryan

    2014-05-01

    We are all familiar with the hexagonal form of snow crystals and it is well established that this shape is derived from the arrangement of water molecules in the crystal lattice. However, crystals with a triangular form are often found in the Earth's atmosphere and the reason for this non-hexagonal shape has remained elusive. Recent laboratory work has shed light on why ice crystals should take on this triangular or three-fold scalene habit. Studies of the crystal structure of ice have shown that ice which initially crystallises can be made of up of hexagonal layers which are interlaced with cubic layers to produce a 'stacking disordered ice'. The degree of stacking disorder can vary from crystals which are dominantly hexagonal with a few cubic stacking faults, through to ice where the cubic and hexagonal sequences are fully randomised. The introduction of stacking disorder to ice crystals reduces the symmetry of the crystal from 6-fold (hexagonal) to 3-fold (triangular); this offers an explanation for the long standing problem of why some atmospheric ice crystals have a triangular habit. We discuss the implications of triangular crystals for halos, radiative properties, and also discuss the implications for our understanding of the nucleation and early stages of ice crystal growth for ice crystals in the atmosphere.

  14. Artistic Crystal Creations

    ERIC Educational Resources Information Center

    Lange, Catherine

    2008-01-01

    In this inquiry-based, integrative art and science activity, Grade 5-8 students use multicolored Epsom salt (magnesium sulfate) crystallizing solutions to reveal beautiful, cylindrical, 3-dimensional, needle-shaped structures. Through observations of the crystal art, students analyze factors that contribute to crystal size and formation, compare…

  15. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  16. Optical properties of natural topaz

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.; Chikvaidze, G.

    2013-12-01

    The results of investigation of infrared, Raman and UV-Visible absorption spectra of natural topaz crystals from Ukraine before and after fast neutron irradiation are presented. We assume that the ~ 620 nm band in topaz crystals is associated with the presence of Cr3+, Fe2+ and Mn2+ impurities. The broad band with maxima at 650 cm-1 observed in Raman spectra for topaz irradiated by fast neutrons may be connected with lattice disorder. Exchange interaction between radiation defect and impurity ions during neutron irradiation leads to appearance of additional absorption band in UV-VIS spectra and bands broadening in infrared and Raman spectra of investigated crystals.

  17. Fast Crystals and Strong Glasses

    SciTech Connect

    Weitz, David

    2009-11-04

    This talk describes new results on model colloid systems that provide insight into the behavior of fundamental problems in colloid physics, and more generally, for other materials as well. By visualizing the nucleation and growth of colloid crystals, we find that the incipient crystallites are much more disordered than expected, leading to a larger diversity of crystal morphologies. When the entropic contribution of these diverse morphologies is included in the free energy, we are able to describe the behavior very well, and can predict the nucleation rate surprisingly accurately. The talk also describes the glass transition in deformable colloidal particles, and will show that when the internal elasticity of the particles is included, the colloidal glass transition mimics that of molecular glass formers much more completely. These results also suggest that the elasticity at the scale of the fundamental unit, either colloid particle or molecule, determines the nature of the glass transition, as described by the "fragility."

  18. Crystal chemistry of meteoritic hibonites

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Burns, V. M.

    1984-01-01

    The characteristics of cation vacancies and site occupancies of natural hibonites in meteors are discussed. Note is taken of the effect of the specific locations of the hibonites in the matrices on the crystal chemistry, electronic stabilities, and spectral features of the metal ions which replace the Al(3+). Hibonites form beta-alumina hexagonal cells with 26 cation sites. Fe cations are found in octahedral, tetrahedral, and five-fold coordinations. Fe(2+) is found in face-shared Al(3) octahedra, a siting explained in terms of ionic radius and crystal field stabilization energy criteria. Spectral colors are attributed to V(3+) and Ti(3+) field transitions at 400 and 700 nm, respectively, although the 700 nm line may arise from transitions of Ti(3+) to Ti(4+) or Fe(2+) to Fe(3+) during heating. Excesses of Mg-26 can be traced to decay of nebular Al-26.

  19. Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

  20. Protein crystallization with paper

    NASA Astrophysics Data System (ADS)

    Matsuoka, Miki; Kakinouchi, Keisuke; Adachi, Hiroaki; Maruyama, Mihoko; Sugiyama, Shigeru; Sano, Satoshi; Yoshikawa, Hiroshi Y.; Takahashi, Yoshinori; Yoshimura, Masashi; Matsumura, Hiroyoshi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Takano, Kazufumi

    2016-05-01

    We developed a new protein crystallization method that incorporates paper. A small piece of paper, such as facial tissue or KimWipes, was added to a drop of protein solution in the traditional sitting drop vapor diffusion technique, and protein crystals grew by incorporating paper. By this method, we achieved the growth of protein crystals with reducing osmotic shock. Because the technique is very simple and the materials are easy to obtain, this method will come into wide use for protein crystallization. In the future, it could be applied to nanoliter-scale crystallization screening on a paper sheet such as in inkjet printing.

  1. In vivo protein crystallization opens new routes in structural biology.

    PubMed

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; Deponte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-03-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.

  2. In vivo protein crystallization opens new routes in structural biology

    PubMed Central

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; DePonte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-01-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. PMID:22286384

  3. In vivo protein crystallization opens new routes in structural biology.

    PubMed

    Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; Deponte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

    2012-03-01

    Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. PMID:22286384

  4. Understanding single-crystal superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.

    1986-01-01

    The unique properties of single crystals are considered. The anisotropic properties of single crystals, and the relation between crystal orientation and the fatigue life and slip systems of the crystals are examined. The effect of raft formation on the creep-rupture life of the crystals is studied. Proposed research on the properties of and new applications for single crystals is discussed.

  5. Synthesis, crystal growth and physiochemical characterization of organic NLO crystal: L-ornithinium dipicrate (LODP)

    NASA Astrophysics Data System (ADS)

    Balaprabhakaran, S.; Chandrasekaran, J.; Babu, B.; Thirumurugan, R.; Anitha, K.

    2015-02-01

    L-ornithinium dipicrate (LODP) has been synthesized and good quality single crystals were grown by slow evaporation method at room temperature. Single crystal XRD confirms that the grown crystal belongs to the monoclinic system with the noncentrosymmetric space group P21. Powder X-ray diffraction study confirms the crystalline nature of the compound. FTIR spectral analysis confirms the functional group in the synthesized compound. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. The optical absorption spectrum shows the absence of absorption between 475 nm and 800 nm. The dielectric measurements were carried out to estimate the dielectric parameters of the grown crystal in the frequency range from 50 Hz to 5 MHz at various temperatures. The second harmonic property has been investigated by Kurtz-Perry powder technique. The relative SHG efficiency of LODP is found to be 14.57 times greater than that of the reference material KDP.

  6. Crystal growth and characterization of L-valine cadmium acetate a semiorganic NLO crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, J.; Ilayabarathi, P.; Maadeswaran, P.

    2012-08-01

    A new semiorganic nonlinear optical material, L-valine cadmium acetate, was grown successfully from aqueous solution by slow evaporation method. The grown crystals characterized by using Powder X-ray diffraction analysis confirms the structure of the grown title compound. The functional groups have been identified using FTIR spectral data. Transmittance compound was analyzed by using UV-vis spectrum. The thermal behavior of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The dielectric constant was studied as a function of frequency for various temperatures. The grown crystal has positive photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.4479 eV. Second order nonlinear optical property of the grown crystal has been confirmed by modified Kurtz-Perry powder second harmonic generation (SHG) test.

  7. Formation of curved micrometer-sized single crystals.

    PubMed

    Koifman Khristosov, Maria; Kabalah-Amitai, Lee; Burghammer, Manfred; Katsman, Alex; Pokroy, Boaz

    2014-05-27

    Crystals in nature often demonstrate curved morphologies rather than classical faceted surfaces. Inspired by biogenic curved single crystals, we demonstrate that gold single crystals exhibiting curved surfaces can be grown with no need of any fabrication steps. These single crystals grow from the confined volume of a droplet of a eutectic composition melt that forms via the dewetting of nanometric thin films. We can control their curvature by controlling the environment in which the process is carried out, including several parameters, such as the contact angle and the curvature of the drops, by changing the surface tension of the liquid drop during crystal growth. Here we present an energetic model that explains this phenomenon and predicts why and under what conditions crystals will be forced to grow with the curvature of the microdroplet even though the energetic state of a curved single crystal is very high.

  8. An approach to crystallizing proteins by synthetic symmetrization.

    PubMed

    Banatao, D Rey; Cascio, Duilio; Crowley, Christopher S; Fleissner, Mark R; Tienson, Heather L; Yeates, Todd O

    2006-10-31

    Previous studies of symmetry preferences in protein crystals suggest that symmetric proteins, such as homodimers, might crystallize more readily on average than asymmetric, monomeric proteins. Proteins that are naturally monomeric can be made homodimeric artificially by forming disulfide bonds between individual cysteine residues introduced by mutagenesis. Furthermore, by creating a variety of single-cysteine mutants, a series of distinct synthetic dimers can be generated for a given protein of interest, with each expected to gain advantage from its added symmetry and to exhibit a crystallization behavior distinct from the other constructs. This strategy was tested on phage T4 lysozyme, a protein whose crystallization as a monomer has been studied exhaustively. Experiments on three single-cysteine mutants, each prepared in dimeric form, yielded numerous novel crystal forms that cannot be realized by monomeric lysozyme. Six new crystal forms have been characterized. The results suggest that synthetic symmetrization may be a useful approach for enlarging the search space for crystallizing proteins.

  9. Controlled crystallization of emerald from the fluxed melt

    NASA Astrophysics Data System (ADS)

    Barilo, S. N.; Bychkov, G. L.; Kurnevich, L. A.; Leonuk, N. I.; Mikhailov, V. P.; Shiryaev, S. V.; Koyava, V. T.; Smirnova, T. V.

    1999-03-01

    The problem of controlled crystallization of emerald single crystals from a fluxed melt, its colour characteristics and optic parameters are discussed. Properties of the as-grown single crystals are very much like those of natural gems. Emeralds weighting as much as 150 ct grown on oriented seeds in dynamical regime feature small dichroism, uniform distribution of colour in the volume to offer good jewelry characteristics. The (1 0 1¯ 0) and (1 1 2¯ 0) cuts of previously grown crystals is established to be the optimal seed. The technique has the advantage of maintaining the optimal concentration ratio of the solute near the crystallization front through adequate stirring by a platinum crystal holder is rotated at a rate of 30 rounds per minute, and seed positioning. To examine emerald crystals quality we have performed a laser experiment and threshold measurements. Lasing was achieved at absorbed pump energy threshold of less than 0.6 mJ.

  10. Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.

  11. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems.

  12. Photonic crystal light source

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  13. Macromolecular Crystal Growth by Means of Microfluidics

    NASA Technical Reports Server (NTRS)

    vanderWoerd, Mark; Ferree, Darren; Spearing, Scott; Monaco, Lisa; Molho, Josh; Spaid, Michael; Brasseur, Mike; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We have performed a feasibility study in which we show that chip-based, microfluidic (LabChip(TM)) technology is suitable for protein crystal growth. This technology allows for accurate and reliable dispensing and mixing of very small volumes while minimizing bubble formation in the crystallization mixture. The amount of (protein) solution remaining after completion of an experiment is minimal, which makes this technique efficient and attractive for use with proteins, which are difficult or expensive to obtain. The nature of LabChip(TM) technology renders it highly amenable to automation. Protein crystals obtained in our initial feasibility studies were of excellent quality as determined by X-ray diffraction. Subsequent to the feasibility study, we designed and produced the first LabChip(TM) device specifically for protein crystallization in batch mode. It can reliably dispense and mix from a range of solution constituents into two independent growth wells. We are currently testing this design to prove its efficacy for protein crystallization optimization experiments. In the near future we will expand our design to incorporate up to 10 growth wells per LabChip(TM) device. Upon completion, additional crystallization techniques such as vapor diffusion and liquid-liquid diffusion will be accommodated. Macromolecular crystallization using microfluidic technology is envisioned as a fully automated system, which will use the 'tele-science' concept of remote operation and will be developed into a research facility for the International Space Station as well as on the ground.

  14. Neutron detection with single crystal organic scintillators

    SciTech Connect

    Zaitseva, N; Newby, J; Hamel, S; Carman, L; Faust, M; Lordi, V; Cherepy, N; Stoeffl, W; Payne, S

    2009-07-15

    Detection of high-energy neutrons in the presence of gamma radiation background utilizes pulse-shape discrimination (PSD) phenomena in organics studied previously only with limited number of materials, mostly liquid scintillators and single crystal stilbene. The current paper presents the results obtained with broader varieties of luminescent organic single crystals. The studies involve experimental tools of crystal growth and material characterization in combination with the advanced computer modeling, with the final goal of better understanding the relevance between the nature of the organic materials and their PSD properties. Special consideration is given to the factors that may diminish or even completely obscure the PSD properties in scintillating crystals. Among such factors are molecular and crystallographic structures that determine exchange coupling and exciton mobility in organic materials and the impurity effect discussed on the examples of trans-stilbene, bibenzyl, 9,10-diphenylanthracene and diphenylacetylene.

  15. Gravitational crystal inside the black hole

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2015-10-01

    Crystals, as quantum objects typically much larger than their lattice spacing, are counterexamples to a frequent prejudice that quantum effects should not be pronounced at macroscopic distances. We propose that the Einstein theory of gravity only describes a fluid phase and that a phase transition of crystallization can occur under extreme conditions such as those inside the black hole. Such a crystal phase with lattice spacing of the order of the Planck length offers a natural mechanism for pronounced quantum-gravity effects at distances much larger than the Planck length. A resolution of the black hole information paradox is proposed, according to which all information is stored in a crystal-phase remnant with size and mass much above the Planck scale.

  16. Macromolecular Crystallization in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Helliwell, John R.

    2004-01-01

    The key concepts that attracted crystal growers, macromolecular or solid state, to microgravity research is that density difference fluid flows and sedimentation of the growing crystals are greatly reduced. Thus, defects and flaws in the crystals can be reduced, even eliminated, and crystal volume can be increased. Macromolecular crystallography differs from the field of crystalline semiconductors. For the latter, crystals are harnessed for their electrical behaviors. A crystal of a biological macromolecule is used instead for diffraction experiments (X-ray or neutron) to determine the three-dimensional structure of the macromolecule. The better the internal order of the crystal of a biological macromolecule then the more molecular structure detail that can be extracted. This structural information that enables an understanding of how the molecule functions. This knowledge is changing the biological and chemical sciences with major potential in understanding disease pathologies. Macromolecular structural crystallography in general is a remarkable field where physics, biology, chemistry, and mathematics meet to enable insight to the basic fundamentals of life. In this review, we examine the use of microgravity as an environment to grow macromolecular crystals. We describe the crystallization procedures used on the ground, how the resulting crystals are studied and the knowledge obtained from those crystals. We address the features desired in an ordered crystal and the techniques used to evaluate those features in detail. We then introduce the microgravity environment, the techniques to access that environment, and the theory and evidence behind the use of microgravity for crystallization experiments. We describe how ground-based laboratory techniques have been adapted to microgravity flights and look at some of the methods used to analyze the resulting data. Several case studies illustrate the physical crystal quality improvements and the macromolecular structural

  17. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals.

    PubMed

    Nirmala, L Ruby; Thomas Joseph Prakash, J

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  18. Effect of L-Valine on the growth and characterization of Sodium Acid Phthalate (SAP) single crystals

    NASA Astrophysics Data System (ADS)

    Nirmala, L. Ruby; Prakash, J. Thomas Joseph

    2013-06-01

    Undoped and amino acid doped good quality single crystals of Sodium Acid Phthalate crystals (SAP) were grown by slow evaporation solution growth technique which are semiorganic in nature. The effect of amino acid (L-Valine) dopant on the growth and the properties of SAP single crystal was investigated. The single crystal X-ray diffraction studies and FT-IR studies were carried out to identify the crystal structure and the presence of functional groups in undoped and L-Valine doped SAP crystals. The transparent nature of the grown crystal was observed using UV-Visible spectrum. The thermal decomposition of the doped SAP crystals was investigated by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA). The enhancement in the NLO property of the undoped and L-Valine doped SAP crystals using KDP crystal as a reference was studied using SHG measurements. Vickers micro hardness measurements are used for the study of mechanical strength of the grown crystals.

  19. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  20. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Atomic force microscopy uses laser technology to reveal a defect, a double-screw dislocation, on the surface of this crystal of canavalin, a major source of dietary protein for humans and domestic animals. When a crystal grows, attachment kinetics and transport kinetics are competing for control of the molecules. As a molecule gets close to the crystal surface, it has to attach properly for the crystal to be usable. NASA has funded investigators to look at those attachment kinetics from a theoretical standpoint and an experimental standpoint. Dr. Alex McPherson of the University of California, Irvine, is one of those investigators. He uses X-ray diffraction and atomic force microscopy in his laboratory to answer some of the many questions about how protein crystals grow. Atomic force microscopy provides a means of looking at how individual molecules are added to the surface of growing protein crystals. This helps McPherson understand the kinetics of protein crystal growth. McPherson asks, How fast do crystals grow? What are the forces involved? Investigators funded by NASA have clearly shown that such factors as the level of supersaturation and the rate of growth all affect the habit [characteristic arrangement of facets] of the crystal and the defects that occur in the crystal.

  1. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  2. SSZ-13 Crystallization by Particle Attachment and Deterministic Pathways to Crystal Size Control.

    PubMed

    Kumar, Manjesh; Luo, Helen; Román-Leshkov, Yuriy; Rimer, Jeffrey D

    2015-10-14

    Many synthetic and natural crystalline materials are either known or postulated to grow via nonclassical pathways involving the initial self-assembly of precursors that serve as putative growth units for crystallization. Elucidating the pathway(s) by which precursors attach to crystal surfaces and structurally rearrange (postattachment) to incorporate into the underlying crystalline lattice is an active and expanding area of research comprising many unanswered fundamental questions. Here, we examine the crystallization of SSZ-13, which is an aluminosilicate zeolite that possesses exceptional physicochemical properties for applications in separations and catalysis (e.g., methanol upgrading to chemicals and the environmental remediation of NO(x)). We show that SSZ-13 grows by two concerted mechanisms: nonclassical growth involving the attachment of amorphous aluminosilicate particles to crystal surfaces and classical layer-by-layer growth via the incorporation of molecules to advancing steps on the crystal surface. A facile, commercially viable method of tailoring SSZ-13 crystal size and morphology is introduced wherein growth modifiers are used to mediate precursor aggregation and attachment to crystal surfaces. We demonstrate that small quantities of polymers can be used to tune crystal size over 3 orders of magnitude (0.1-20 μm), alter crystal shape, and introduce mesoporosity. Given the ubiquitous presence of amorphous precursors in a wide variety of microporous crystals, insight of the SSZ-13 growth mechanism may prove to be broadly applicable to other materials. Moreover, the ability to selectively tailor the physical properties of SSZ-13 crystals through molecular design offers new routes to optimize their performance in a wide range of commercial applications. PMID:26376337

  3. Inexpensive Electrooptic Experiments on Liquid Crystal Displays.

    ERIC Educational Resources Information Center

    Ciferno, Thomas M.; And Others

    1995-01-01

    Describes the construction and use of an electrooptic apparatus that can be incorporated into the classroom to test liquid crystal displays (LCDs) and introduce students to experiments of an applied physics nature with very practical implications. Presents experiments that give students hands-on experience with technologies of current interest to…

  4. Crystallization of pegmatites: Insights from chemistry of garnet, Jacumba pegmatites, San Diego County, California

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Sirbescu, M. C.

    2013-12-01

    Systematic mineral and textural variations from the border zone to the core of a zoned pegmatite sheet may reflect the kinetic or equilibrium fractionation processes that occurred during sequential crystallization of the pegmatite magma. Rhythmic layering, also named 'line rock', is a salient textural feature of world famous San Diego Co. pegmatites, that consists of alternating garnet × tourmaline layers and albite - quartz layers, mm's to cm's thick. Slowly diffusing, incompatible elements in the felsic magma including B, Fe, and Mn may become enriched in boundary layers formed ahead of rapidly crystallized quartzo-felspathic assemblages. This study explores whether the chemistry of garnet concentrated in the border and foot-wall zones and dispersed in the graphic feldspar, core, and pocket zones of Garnet Ledge pegmatite, Jacumba district, might fingerprint the diffusion-controlled oscillatory boundary layers. The lithium-cesium-tantalum (LCT) Jacumba pegmatite district, late product of the Eastern Peninsular Ranges Batholith, consists of numerous subparallel dikes, 3 to 7 m thick, intruding pre-batholitic metasedimentary rocks. The composite aplite-pegmatite dikes are texturally diverse. Comb-textured tourmaline, other unidirectional textures, garnet × tourmaline 'line rock', and coarse graphic K-feldspar crystals occur in the outer zones, followed by massive feldspar-quartz cores, vuggy cleavlandite- euhedral garnet, and miarolitic cavities. The Jacumba pegmatites have produced gem spodumene, beryl, and garnet from several open cuts such as the Beebe Hole and Pack Rat - Garnet Ledge workings. Systematic mineralogical and textural variations, and SEM-EDS garnet compositions were recorded from border to core at Garnet Ledge outcrop and thin section scale, focusing on continuous traverses across the line rock. Garnet from Garnet Ledge belongs to the spessartine-almandine series (Sp42 to Sp65) with minor contents of Mg, Ca, and Ti, consistent with garnet

  5. Growth and characterization of diammonium copper disulphate hexahydrate single crystal

    SciTech Connect

    Siva Sankari, R.; Perumal, Rajesh Narayana

    2014-03-01

    Graphical abstract: Diammonium copper disulphate hexahydrate (DACS) is one of the most promising inorganic dielectric crystals with exceptional mechanical properties. Good quality crystals of DACS were grown by using solution method in a period of 30 days. The grown crystals were subjected to single crystal X-ray diffraction analysis in order to establish their crystalline nature. Thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis were performed for the crystal. Several solid state physical parameters have been determined for the grown crystals. The dielectric constant and the dielectric loss and AC conductivity of the grown crystal were studied as a function of frequency and temperature has been calculated and plotted. - Highlights: • Diammonium copper disulphate is grown for the first time and CCDC number obtained. • Thermal analysis is done to see the stability range of the crystals. • Band gap and UV cut off wavelength of the crystal are determined to be 2.4 eV and 472.86 nm, respectively. • Dielectric constant, dielectric loss and AC conductivity are plotted as a function of applied field. - Abstract: Diammonium copper disulphate hexahydrate is one of the most promising inorganic crystals with exceptional dielectric properties. A good quality crystal was harvested in a 30-day period using solution growth method. The grown crystal was subjected to various characterization techniques like single crystal X-ray diffraction analysis, thermo gravimetric, differential thermal analysis, FTIR, and UV–vis–NIR analysis. Unit cell dimensions of the grown crystal have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Thermal stability of the samples was checked by TG/DTA studies. Band gap of the crystal was calculated. The dielectric constant and dielectric loss were studied as a function of frequency of the applied field. AC conductivity was plotted as a function

  6. Large-scale crystallization of proteins for purification and formulation.

    PubMed

    Hekmat, Dariusch

    2015-07-01

    Since about 170 years, salts were used to create supersaturated solutions and crystallize proteins. The dehydrating effect of salts as well as their kosmotropic or chaotropic character was revealed. Even the suitability of organic solvents for crystallization was already recognized. Interestingly, what was performed during the early times is still practiced today. A lot of effort was put into understanding the underlying physico-chemical interaction mechanisms leading to protein crystallization. However, it was understood that already the solvation of proteins is a highly complex process not to mention the intricate interrelation of electrostatic and hydrophobic interactions taking place. Although many basic questions are still unanswered, preparative protein crystallization was attempted as illustrated in the presented case studies. Due to the highly variable nature of crystallization, individual design of the crystallization process is needed in every single case. It was shown that preparative crystallization from impure protein solutions as a capture step is possible after applying adequate pre-treatment procedures like precipitation or extraction. Protein crystallization can replace one or more chromatography steps. It was further shown that crystallization can serve as an attractive alternative means for formulation of therapeutic proteins. Crystalline proteins can offer enhanced purity and enable highly concentrated doses of the active ingredient. Easy scalability of the proposed protein crystallization processes was shown using the maximum local energy dissipation as a suitable scale-up criterion. Molecular modeling and target-oriented protein engineering may allow protein crystallization to become part of a platform purification process in the near future.

  7. Crystallization of Macromolecules

    PubMed Central

    Friedmann, David; Messick, Troy; Marmorstein, Ronen

    2014-01-01

    X-ray crystallography has evolved into a very powerful tool to determine the three-dimensional structure of macromolecules and macromolecular complexes. The major bottleneck in structure determination by X-ray crystallography is the preparation of suitable crystalline samples. This unit outlines steps for the crystallization of a macromolecule, starting with a purified, homogeneous sample. The first protocols describe preparation of the macromolecular sample (i.e., proteins, nucleic acids, and macromolecular complexes). The preparation and assessment of crystallization trials is then described, along with a protocol for confirming whether the crystals obtained are composed of macromolecule as opposed to a crystallization reagent . Next, the optimization of crystallization conditions is presented. Finally, protocols that facilitate the growth of larger crystals through seeding are described. PMID:22045560

  8. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  9. Function photonic crystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai

    2011-07-01

    In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.

  10. Single Crystal Membranes

    NASA Technical Reports Server (NTRS)

    Stormont, R. W.; Morrison, A.

    1974-01-01

    Single crystal a- and c-axis tubes and ribbons of sodium beta-alumina and sodium magnesium beta-alumina were grown from sodium oxide rich melts. Additional experiments grew ribbon crystals containing sodium magnesium beta, beta double prime, beta triple prime, and beta quadruple prime. A high pressure crystal growth chamber, sodium oxide rich melts, and iridium for all surfaces in contact with the melt were combined with the edge-defined, film-fed growth technique to grow the single crystal beta-alumina tubes and ribbons. The crystals were characterized using metallographic and X-ray diffraction techniques, and wet chemical analysis was used to determine the sodium, magnesium, and aluminum content of the grown crystals.

  11. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  12. The Crystals Cave in a test tube

    NASA Astrophysics Data System (ADS)

    Puig, C.; Romero, M. L.

    2012-04-01

    It's quite easy to understand formation of crystals in Nature by evaporation of the solutions that contain minerals, but many times we have realised that our pupils hardly understand that precipitation is a process mostly caused by changing parameters in a solution, like pH, temperature, etc. and not necessarily depending on evaporation. We propose a hands-on activity using the context of the Cave of the Crystals in Naica's mine, Mexico. The Crystals Cave is a wonderful place where giant crystals of selenite (gypsum) have grown feeding from a supersaturated anhydrite solution1. Miners discovered the cave filled with hot water, and drained it to explore the gallery. The cave is now a giant laboratory where scientists are looking for the keys to understand geological processes. Teaching sequence (for students 15 years old) is as follows: DISCOVERING A MARVELLOUS PLACE: We showed our pupils several images and a short video of the Cave of the Crystals and ask them about the process that may have caused the phenomenon. Whole-class discussion. PRESENTING A CHALLENGE TO OUR STUDENTS: "COULD WE CREATE A CRYSTALS CAVE IN A TEST TUBE?" EXPERIMENTING TO IMITATE NATURE: Students tried to grow crystals simulating the same conditions as those in Naica's mine. We have chosen KNO3, a salt more soluble than gypsum. We added 85 g of salt to 200 ml of water (solubility of KNO3 at 25°C is 36 g per 100 gr of water) and heated it until it is dissolved. Afterwards, we poured the solution into some test tubes and other recipients and let them cool at room temperature. And they got a beautiful crystals cave!! THINKING A LITTLE MORE: we asked pupils some questions to make them think about the process and to predict what would happen in different situations. For example: a) What would happen with crystals if we heated the tubes again? or b) What would happen if we took the remaining solution from the tubes and keep it in the fridge? PROVING A NEW HYPOTHESIS: Pupils collected the remaining

  13. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  14. Tunable plasmonic crystal

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  15. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  16. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  17. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  18. Crystallization Stages of the Bishop Tuff Magma Body Recorded in Crystal Textures in Pumice Clasts

    SciTech Connect

    Pamukcu, Ayla; Gualda, Guilherme A.R.; Anderson, Jr. , Alfred T.

    2012-07-25

    The Bishop Tuff is a giant silicic ignimbrite erupted at 0.76 Ma in eastern California, USA. Five pumice clasts from the late-erupted Bishop Tuff (Aeolian Buttes) were studied in an effort to better understand the pre- and syn-eruptive history of the Bishop magma body and place constraints on the timescales of its existence. This study complements and expands on a previous study that focused on early-erupted Bishop Tuff pumice clasts. Bulk densities of pumice clasts were measured using an immersion method, and phenocryst crystal contents were determined using a sieving and winnowing procedure. X-ray tomography was used to obtain qualitative and quantitative textural information, particularly crystal size distributions (CSDs). We have determined CSDs for crystals ranging in size from {approx}10 to {approx}1000 {micro}m for three groups of mineral phases: magnetite ({+-}ilmenite), pyroxene + biotite, quartz + feldspar. Similar to early-erupted pumice, late-erupted pumice bulk density and crystal contents are positively correlated, and comparison of crystal fraction vs size trends suggests that the proportion of large crystals is the primary control on crystallinity. Porosity is negatively correlated with crystal content, which is difficult to reconcile with closed-system crystallization. Magnetite and pyroxene + biotite size distributions are fractal in nature, often attributed to fragmentation; however, crystals are mostly whole and euhedral, such that an alternative mechanism is necessary to explain these distributions. Quartz + feldspar size distributions are kinked, with a shallow-sloped log-linear section describing large crystals (> 140 {micro}m) and a steep-sloped log-linear section describing small crystals (< 140 {micro}m). We interpret these two crystal populations as resulting from a shift in crystallization regime. We suggest that the shallow-sloped section describes a pre-eruptive quartz + feldspar growth-dominated regime, whereas the steep

  19. Advanced Protein Crystallization Facility (APCF)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication contains articles entitled: (1) Crystallization of EGFR-EGF; (2) Crystallization of Apocrustacyanin C1; (3) Crystallization and X-ray Analysis of 5S rRNA and the 5S rRNA Domain A; (4) Growth of Lysozyme Crystals at Low Nucleation Density; (5) Comparative Analysis of Aspartyl tRNA-synthetase and Thaumatin Crystals Grown on Earth and In Microgravity; (6) Lysosome Crystal Growth in the Advanced Protein Crystallization Facility Monitored via Mach-Zehnder Interferometry and CCD Video; (7) Analysis of Thaumatin Crystals Grown on Earth and in Microgravity; (8) Crystallization of the Nucleosome Core Particle; (9) Crystallization of Photosystem I; (10) Mechanism of Membrane Protein Crystal Growth: Bacteriorhodopsin-mixed Micelle Packing at the Consolution Boundary, Stabilized in Microgravity; (11) Crystallization in a Microgravity Environment of CcdB, a Protein Involved in the Control of Cell Death; and (12) Crystallization of Sulfolobus Solfataricus

  20. Photonic crystal waveguide created by selective infiltration

    NASA Astrophysics Data System (ADS)

    Casas Bedoya, A.; Domachuk, P.; Grillet, C.; Monat, C.; Mägi, E. C.; Li, E.; Eggleton, B. J.

    2012-06-01

    The marriage of photonics and microfluidics ("optofluidics") uses the inherent mobility of fluids to reversibly tune photonic structures beyond traditional fabrication methods by infiltrating voids in said structures. Photonic crystals (PhCs) strongly control light on the wavelength scale and are well suited to optofluidic tuning because their periodic airhole microstructure is a natural candidate for housing liquids. The infiltration of a single row of holes in the PhC matrix modifies the effective refractive index allowing optical modes to be guided by the PhC bandgap. In this work we present the first experimental demonstration of a reconfigurable single mode W1 photonic crystal defect waveguide created by selective liquid infiltration. We modified a hexagonal silicon planar photonic crystal membrane by selectively filling a single row of air holes with ~300nm resolution, using high refractive index ionic liquid. The modification creates optical confinement in the infiltrated region and allows propagation of a single optical waveguide mode. We describe the challenges arising from the infiltration process and the liquid/solid surface interaction in the photonic crystal. We include a detailed comparison between analytic and numerical modeling and experimental results, and introduce a new approach to create an offset photonic crystal cavity by varying the nature of the selective infiltration process.

  1. Homochiral Crystallization of Microporous Framework Materials from Achiral Precursors by Chiral Catalysis

    PubMed Central

    Zhang, Jian; Chen, Shumei; Wu, Tao; Feng, Pingyun; Bu, Xianhui

    2009-01-01

    While it is not uncommon to form chiral crystals during crystallization, the formation of bulk porous homochiral materials from achiral building units is rare. Reported here is the homochiral crystallization of microporous materials through the chirality induction effect of natural alkaloids. The resulting material possesses permanent microporosity and has a uniform pore size of 9.3Å. PMID:18774816

  2. Dynamic crystallization of silicate melts

    NASA Technical Reports Server (NTRS)

    Russell, W. J.

    1984-01-01

    Two types of furnaces with differing temperature range capabilities were used to provide variations in melt temperatures and cooling rates in a study of the effects of heterogeneous nucleation on crystallization. Materials of chondrule composition were used to further understanding of how the disequilibrium features displayed by minerals in rocks are formed. Results show that the textures of natural chondrules were duplicated. It is concluded that the melt history is dominant over cooling rate and composition in controlling texture. The importance of nuclei, which are most readily derived from preexisting crystalline material, support an origin for natural chondrules based on remelting of crystalline material. This would be compatible with a simple, uniform chondrule forming process having only slight variations in thermal histories resulting in the wide range of textures.

  3. Crystal growth and vibrational spectroscopic studies of the semiorganic non-linear optical crystal--bisthiourea magnesium sulphate.

    PubMed

    Krishnakumar, V; Ramachandraraja, C; Sundararajan, R S

    2007-09-01

    The semiorganic non-linear optical crystal bisthiourea magnesium sulphate (BTMS) was grown by slow evaporation technique using water as solvent. Vibrational spectra were recorded to determine the symmetries of molecular vibrations. The observed Raman and infrared bands were also assigned and discussed. The optical transmission spectral study was carried out to test the transmitting ability of the crystal in the visible range. The second harmonic generation test of BTMS revealed the non-linear nature of the crystal. The TGA/DTA curve was also recorded for the experimental crystal. PMID:17185029

  4. Vaterite Crystals Contain Two Interspersed Crystal Structures

    NASA Astrophysics Data System (ADS)

    Kabalah-Amitai, Lee; Mayzel, Boaz; Kauffmann, Yaron; Fitch, Andrew N.; Bloch, Leonid; Gilbert, Pupa U. P. A.; Pokroy, Boaz

    2013-04-01

    Calcite, aragonite, and vaterite are the three anhydrous polymorphs of calcium carbonate, in order of decreasing thermodynamic stability. Although vaterite is not commonly found in geological settings, it is an important precursor in several carbonate-forming systems and can be found in biological settings. Because of difficulties in obtaining large, pure, single crystals, the crystal structure of vaterite has been elusive for almost a century. Using aberration-corrected high-resolution transmission electron microscopy, we found that vaterite is actually composed of at least two different crystallographic structures that coexist within a pseudo-single crystal. The major structure exhibits hexagonal symmetry; the minor structure, existing as nanodomains within the major matrix, is still unknown.

  5. Pattern information extraction from crystal structures

    NASA Astrophysics Data System (ADS)

    Okuyan, Erhan; Güdükbay, Uğur; Gülseren, Oğuz

    2007-04-01

    Determining the crystal structure parameters of a material is an important issue in crystallography and material science. Knowing the crystal structure parameters helps in understanding the physical behavior of material. It can be difficult to obtain crystal parameters for complex structures, particularly those materials that show local symmetry as well as global symmetry. This work provides a tool that extracts crystal parameters such as primitive vectors, basis vectors and space groups from the atomic coordinates of crystal structures. A visualization tool for examining crystals is also provided. Accordingly, this work could help crystallographers, chemists and material scientists to analyze crystal structures efficiently. Program summaryTitle of program: BilKristal Catalogue identifier: ADYU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYU_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Programming language used: C, C++, Microsoft .NET Framework 1.1 and OpenGL Libraries Computer: Personal Computers with Windows operating system Operating system: Windows XP Professional RAM: 20-60 MB No. of lines in distributed program, including test data, etc.:899 779 No. of bytes in distributed program, including test date, etc.:9 271 521 Distribution format:tar.gz External routines/libraries: Microsoft .NET Framework 1.1. For visualization tool, graphics card driver should also support OpenGL Nature of problem: Determining crystal structure parameters of a material is a quite important issue in crystallography. Knowing the crystal structure parameters helps to understand physical behavior of material. For complex structures, particularly, for materials which also contain local symmetry as well as global symmetry, obtaining crystal parameters can be quite hard. Solution method: The tool extracts crystal parameters such as primitive vectors, basis vectors and identify the space group from

  6. Channeling through Bent Crystals

    SciTech Connect

    Mack, Stephanie; /Ottawa U. /SLAC

    2012-09-07

    Bent crystals have demonstrated potential for use in beam collimation. A process called channeling is when accelerated particle beams are trapped by the nuclear potentials in the atomic planes within a crystal lattice. If the crystal is bent then the particles can follow the bending angle of the crystal. There are several different effects that are observed when particles travel through a bent crystal including dechanneling, volume capture, volume reflection and channeling. With a crystal placed at the edge of a particle beam, part of the fringe of the beam can be deflected away towards a detector or beam dump, thus helping collimate the beam. There is currently FORTRAN code by Igor Yazynin that has been used to model the passage of particles through a bent crystal. Using this code, the effects mentioned were explored for beam energy that would be seen at the Facility for Advanced Accelerator Experimental Tests (FACET) at a range of crystal orientations with respect to the incoming beam. After propagating 5 meters in vacuum space past the crystal the channeled particles were observed to separate from most of the beam with some noise due to dechanneled particles. Progressively smaller bending radii, with corresponding shorter crystal lengths, were compared and it was seen that multiple scattering decreases with the length of the crystal therefore allowing for cleaner detection of the channeled particles. The input beam was then modified and only a portion of the beam sent through the crystal. With the majority of the beam not affected by the crystal, most particles were not deflected and after propagation the channeled particles were seen to be deflected approximately 5mm. After a portion of the beam travels through the crystal, the entire beam was then sent through a quadrupole magnet, which increased the separation of the channeled particles from the remainder of the beam to a distance of around 20mm. A different code, which was developed at SLAC, was used to

  7. Fluorescent Applications to Crystallization

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    By covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and tests with model proteins have shown that labeling u to 5 percent of the protein molecules does not affect the X-ray data quality obtained . The presence of the trace fluorescent label gives a number of advantages. Since the label is covalently attached to the protein molecules, it "tracks" the protein s response to the crystallization conditions. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a darker background. Non-protein structures, such as salt crystals, do not show up under fluorescent illumination. Crystals have the highest protein concentration and are readily observed against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. Preliminary tests, using model proteins, indicates that we can use high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that more rapid amorphous precipitation kinetics may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Experiments are now being carried out to test this approach using a wider range, of proteins. The trace fluorescently labeled crystals will also

  8. Protein crystal growth

    NASA Technical Reports Server (NTRS)

    Bugg, Charles E.

    1993-01-01

    Proteins account for 50% or more of the dry weight of most living systems and play a crucial role in virtually all biological processes. Since the specific functions of essentially all biological molecules are determined by their three-dimensional structures, it is obvious that a detailed understanding of the structural makeup of a protein is essential to any systematic research pertaining to it. At the present time, protein crystallography has no substitute, it is the only technique available for elucidating the atomic arrangements within complicated biological molecules. Most macromolecules are extremely difficult to crystallize, and many otherwise exciting and promising projects have terminated at the crystal growth stage. There is a pressing need to better understand protein crystal growth, and to develop new techniques that can be used to enhance the size and quality of protein crystals. There are several aspects of microgravity that might be exploited to enhance protein crystal growth. The major factor that might be expected to alter crystal growth processes in space is the elimination of density-driven convective flow. Another factor that can be readily controlled in the absence of gravity is the sedimentation of growing crystal in a gravitational field. Another potential advantage of microgravity for protein crystal growth is the option of doing containerless crystal growth. One can readily understand why the microgravity environment established by Earth-orbiting vehicles is perceived to offer unique opportunities for the protein crystallographer. The near term objectives of the Protein Crystal Growth in a Microgravity Environment (PCG/ME) project is to continue to improve the techniques, procedures, and hardware systems used to grow protein crystals in Earth orbit.

  9. Molecular Models of Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Rajshekhar

    Liquid crystal elastomers combine the elastic properties of conventional rubbers with the optical properties of liquid crystals. This dual nature gives rise to unusual physical properties, including the stress induced transition from a polydomain state, consisting of multiple nematic regions with independent orientations, to a monodomain state consisting of a single nematic region with a uniform director. We propose several molecular-scale coarse-grained models of liquid crystal elastomers with varying degrees of resolution. The models employ the Gay-Berne soft potential, and exhibit the chain connectivity of a diamond network. Simulation results show that these models are able to capture the polydomain state exhibited by liquid crystal elastomers in the absence of any external stress. When subjected to uniaxial stress, our models exhibit a polydomain to monodomain transition. We explain that the polydomain state occurs through the aggregation of liquid crystal molecules assisted by crosslinking sites, and conclude that the transition mechanism to the monodomain state is based on the reorientation of nematic domains along the direction of applied stress. Our modeling efforts are primarily focused on three models. The first two models consider the effects of rigid and flexible crosslinkers in liquid crystal elastomers with a diamond topology for chain connectivity. The third model deviates from the diamond network topology and adopts a random network topology.

  10. Trace fluorescent labeling for protein crystallization

    PubMed Central

    Pusey, Marc; Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-01-01

    Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent. PMID:26144224

  11. Crystallization of insulin and lysozyme under reduced convection condition in a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Yin, D. C.; Wakayama, N. I.; Fujiwara, M.; Harata, K.; Xue, X. P.; Fu, Z. X.; Zhang, S. W.; Shang, P.; Tanimoto, Y.

    The crystallization of protein from solution is governed by the process of transport phenomenon Any reason affecting the process of solute transport will impose effects on the crystallization process thus further affects the crystal quality Recent advancement in superconducting magnet technology makes it possible to provide a low cost long-time durable low effective gravity environment for the control of convection which is similar to the environment in the space As an ideal means to damp natural convection in a non-conductive solution on the Earth it may find applications in the field of protein crystallization In this presentation the authors investigated the crystallization of orthorhombic lysozyme crystals tetragonal lysozyme crystals and insulin crystals in a large gradient magnetic field Three effective gravity levels were used milli-gravity around 0G normal gravity 1G and hypergravity 1 8G Comparisons of the crystal quality obtained inside and outside the magnetic field showed that both the magnetic field and the effective gravity could affect the crystal quality But the effect also depends on the crystal and protein type For lysozyme crystals in tetragonal form the magnetic field and effective gravity showed no obvious effect on the quality whereas for the crystals in orthorhombic form both the magnetic field and effective gravity improved the crystal quality For insulin crystal which is highly symmetrical magnetic field and effective gravity showed no strong effect on the crystal quality It is well known that

  12. Symmetric Satellite Swarms and Choreographic Crystals

    NASA Astrophysics Data System (ADS)

    Boyle, Latham; Khoo, Jun Yong; Smith, Kendrick

    2016-01-01

    In this Letter, we introduce a natural dynamical analogue of crystalline order, which we call choreographic order. In an ordinary (static) crystal, a high degree of symmetry may be achieved through a careful arrangement of the fundamental repeated elements. In the dynamical analogue, a high degree of symmetry may be achieved by having the fundamental elements perform a carefully choreographed dance. For starters, we show how to construct and classify all symmetric satellite constellations. Then we explain how to generalize these ideas to construct and classify choreographic crystals more broadly. We introduce a quantity, called the "choreography" of a given configuration. We discuss the possibility that some (naturally occurring or artificial) many-body or condensed-matter systems may exhibit choreographic order, and suggest natural experimental signatures that could be used to identify and characterize such systems.

  13. Crystal growth and crystallography

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    1998-01-01

    Selected topics that may be of interest for both crystal-structure and crystal-growth communities are overviewed. The growth of protein crystals, along with that of some other compounds, is one of the topics, and recent insights into related phenomena are considered as examples of applications of general principles. The relationship between crystal growth shape and structure is reviewed and an attempt to introduce semiquantitative characterization of binding for proteins is made. The concept of kinks for complex structures is briefly discussed. Even at sufficiently low supersaturations, the fluctuation of steps may not be sufficient to implement the Gibbs-Thomson law if the kink density is low enough. Subsurface ordering of liquids and growth of rough interfaces from melts is discussed. Crystals growing in microgravity from solution should be more perfect if they preferentially trap stress-inducing impurities, thus creating an impurity-depleted zone around themselves. Evidently, such a zone is developed only around the crystals growing in the absence of convection. Under terrestrial conditions, the self-purified depleted zone is destroyed by convection, the crystal traps more impurity and grows stressed. The stress relief causes mosaicity. In systems containing stress-inducing but poorly trapped impurities, the crystals grown in the absence of convection should be worse than those of their terrestrial counterparts.

  14. Demonstration of Crystal Structure.

    ERIC Educational Resources Information Center

    Neville, Joseph P.

    1985-01-01

    Describes an experiment where equal parts of copper and aluminum are heated then cooled to show extremely large crystals. Suggestions are given for changing the orientation of crystals by varying cooling rates. Students are more receptive to concepts of microstructure after seeing this experiment. (DH)

  15. Walkout in Crystal City

    ERIC Educational Resources Information Center

    Barrios, Greg

    2009-01-01

    When students take action, they create change that extends far beyond the classroom. In this article, the author, who was a former teacher from Crystal City, Texas, remembers the student walkout that helped launch the Latino civil rights movement 40 years ago. The Crystal City student walkout remains a high point in the history of student activism…

  16. Crystals for stellar spectrometers

    NASA Technical Reports Server (NTRS)

    Alexandropoulos, N. G.; Cohen, G. G.

    1974-01-01

    Crystal evaluation as it applies to instrumentation employed in X-ray astronomy is reviewed, and some solutions are offered to problems that are commonly encountered. A general approach for selecting the most appropriate crystals for a given problem is also suggested. The energy dependence of the diffraction properties of (002) PET, (111) Ge, (101) ADP, (101) KAP, and (001) RAP are reported.

  17. Crystal Shape Bingo.

    ERIC Educational Resources Information Center

    Rule, Audrey C.

    This document describes a game that provides students with practice in recognizing three dimensional crystal shapes and planar geometric shapes of crystal faces. It contains information on the objective of the game, game preparation, and rules for playing. Play cards are included (four to a page). (ASK)

  18. Thermal equation of state of natural tourmaline at high pressure and temperature

    NASA Astrophysics Data System (ADS)

    Xu, Jingui; Kuang, Yunqian; Zhang, Bo; Liu, Yonggang; Fan, Dawei; Li, Xiaodong; Xie, Hongsen

    2016-05-01

    Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P-T range of the current experiment in this study. The pressure-volume-temperature data were fitted by the high-temperature Birch-Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of K0^' } = 12.5 (4), thermal expansion coefficient of α 0 = 4.39 (27) × 10-5 K-1 and temperature derivative of the bulk modulus ( ∂K/∂T) P = -0.009 (6) GPa K-1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, K_{a0}^' } = 11.5 (7) and α a0 = 1.00 (11) × 10-5 K-1 for the a-axis, and K c0 = 59 (1) GPa, K_{c0}^' } = 11.4 (5) and α c0 = 2.41 (24) × 10-5 K-1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.

  19. Trace fluorescent labeling for protein crystallization

    SciTech Connect

    Pusey, Marc Barcena, Jorge; Morris, Michelle; Singhal, Anuj; Yuan, Qunying; Ng, Joseph

    2015-06-27

    The presence of a covalently bound fluorescent probe at a concentration of <0.5% does not affect the outcome of macromolecule crystallization screening experiments. Additionally, the fluorescence can be used to determine new, not immediately apparent, lead crystallization conditions. Fluorescence can be a powerful tool to aid in the crystallization of proteins. In the trace-labeling approach, the protein is covalently derivatized with a high-quantum-yield visible-wavelength fluorescent probe. The final probe concentration typically labels ≤0.20% of the protein molecules, which has been shown to not affect the crystal nucleation or diffraction quality. The labeled protein is then used in a plate-screening experiment in the usual manner. As the most densely packed state of the protein is the crystalline form, then crystals show as the brightest objects in the well under fluorescent illumination. A study has been carried out on the effects of trace fluorescent labeling on the screening results obtained compared with nonlabeled protein, and it was found that considering the stochastic nature of the crystal nucleation process the presence of the probe did not affect the outcomes obtained. Other effects are realised when using fluorescence. Crystals are clearly seen even when buried in precipitate. This approach also finds ‘hidden’ leads, in the form of bright spots, with ∼30% of the leads found being optimized to crystals in a single-pass optimization trial. The use of visible fluorescence also enables the selection of colors that bypass interfering substances, and the screening materials do not have to be UV-transparent.

  20. Polymer Crystallization under Confinement

    NASA Astrophysics Data System (ADS)

    Floudas, George

    Recent efforts indicated that polymer crystallization under confinement can be substantially different from the bulk. This can have important technological applications for the design of polymeric nanofibers with tunable mechanical strength, processability and optical clarity. However, the question of how, why and when polymers crystallize under confinement is not fully answered. Important studies of polymer crystallization confined to droplets and within the spherical nanodomains of block copolymers emphasized the interplay between heterogeneous and homogeneous nucleation. Herein we report on recent studies1-5 of polymer crystallization under hard confinement provided by model self-ordered AAO nanopores. Important open questions here are on the type of nucleation (homogeneous vs. heterogeneous), the size of critical nucleus, the crystal orientation and the possibility to control the overall crystallinity. Providing answers to these questions is of technological relevance for the understanding of nanocomposites containing semicrystalline polymers. In collaboration with Y. Suzuki, H. Duran, M. Steinhart, H.-J. Butt.

  1. Direct preparation of spherically agglomerated salicylic acid crystals during crystallization.

    PubMed

    Kawashima, Y; Okumura, M; Takenaka, H; Kojima, A

    1984-11-01

    Needle-like salicylic acid crystals were transformed into a spherically shaped dense form during crystallization by the spherical crystallization technique. Agitation of a mixture of ethanol-water-chloroform containing salicylic acid yielded spherically agglomerated salicylic acid crystals. The crystallinity of the agglomerated salicylic acid the amount of ethanol in the solvent mixture was decreased. The wettability of the agglomerated crystals increased when the amount of ethanol in the solvent mixture was decreased, and this enhanced the dissolution rate of the crystals. The remarkable improvements in the flow and packing of the agglomerated crystals enabled the direct compression of the crystals.

  2. Solubility, thermal, photoconductivity and laser damage threshold studies on L-serine acetate (LSA) single crystal

    NASA Astrophysics Data System (ADS)

    Rajesh, K.; Thayanithi, V.; Mani, A.; Amudha, M.; Kumar, P. Praveen

    2015-06-01

    L-serine acetate crystal was grown by slow evaporation technique. Solubility of L-Serine Acetate was determined at different temperatures. L-Serine Acetate was characterized by SEM is to identify the morphology of the crystal. TG and DTA study reveals the thermal stability of the grown crystal. Dielectric measurement was carried out for different temperature ranges. Photo conductivity study revealed the nature of conductivity of the crystal under halogen light. Laser damage threshold of the crystal was measured using Nd:YAG laser source. NLO property of the crystal is confirmed by Kurtz-Perry powder technique.

  3. High resolution synchrotron X-radiation diffraction imaging of crystals grown in microgravity and closely related terrestrial crystals

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Fripp, Archibald; Simchik, Richard

    1991-01-01

    Irregularities in three crystals grown in space and in four terrestrial crystals grown under otherwise comparable conditions have been observed in high resolution diffraction imaging. The images provide important new clues to the nature and origins of irregularities in each crystal. For two of the materials, mercuric iodide and lead tin telluride, more than one phase (an array of non-diffracting inclusions) was observed in terrestrial samples; but the formation of these multiple phases appears to have been suppressed in directly comparable crystals grown in microgravity. The terrestrial seed crystal of triglycine sulfate displayed an unexpected layered structure, which propagated during directly comparable space growth. Terrestrial Bridgman regrowth of gallium arsenide revealed a mesoscopic structure substantially different from that of the original Czochralski material. A directly comparable crystal is to be grown shortly in space.

  4. Crystal growth and characterization of CuI single crystals by solvent evaporation technique

    SciTech Connect

    Gu, Mu; Gao, Pan; Liu, Xiao-Lin; Huang, Shi-Ming; Liu, Bo; Ni, Chen; Xu, Rong-Kun; Ning, Jia-min

    2010-05-15

    Cuprous iodide (CuI) crystals are grown by slow evaporation technique in three different solvents. Large CuI single crystals with dimensions of 7.5 mm x 5 mm x 3 mm are obtained in pure acetonitrile solvent at 40 {sup o}C. The as-grown crystals are analyzed by X-ray diffraction, energy-dispersive X-ray analysis, differential scanning calorimetry, current-voltage characteristic and photoluminescence spectrum. The results show that the CuI crystal has the zinc-blende structure with no secondary phase. The elemental Cu/I ratio is 1.09:1. The melting point of the crystal is 875 K and two phase transitions occur from room temperature to its melting point. The electrical conductivity of CuI platelet crystal is in the range of 1.11-2.38 {Omega}{sup -1} cm{sup -1}. Under ultraviolet excitation, the CuI crystals exhibit three emission bands with peak positions at 426, 529 and 671 nm. The nature of the luminescence is discussed.

  5. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments.

    PubMed

    De Yoreo, James J; Gilbert, Pupa U P A; Sommerdijk, Nico A J M; Penn, R Lee; Whitelam, Stephen; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D; Navrotsky, Alexandra; Banfield, Jillian F; Wallace, Adam F; Michel, F Marc; Meldrum, Fiona C; Cölfen, Helmut; Dove, Patricia M

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. The particles involved in these nonclassical pathways to crystallization are diverse, in contrast to classical models that consider only the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle-attachment processes and show that multiple pathways result from the interplay of free-energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects, particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems, biominerals, and patterns of mineralization in natural environments. PMID:26228157

  6. Crystallization of macromolecular complexes: combinatorial complex crystallization

    NASA Astrophysics Data System (ADS)

    Stura, Enrico A.; Graille, Marc; Charbonnier, Jean-Baptiste

    2001-11-01

    The usefulness of antibody complexation, as a way of increasing the chances of crystallization needs to be re-evaluated after many antibody complexes have been crystallized and their structure determined. It is somewhat striking that among these, only a small number is a complex with a large protein antigen. The problem is that the effort of raising, cleaving and purifying an Fab is rewarded only by an extra chance of getting crystals; depending on the relative likelihood of crystallization of the complexed and uncomplexed protein. The example of the complex between HIV gp120, CD4 and an Fab fragment from a neutralizing antibody suggests that further complexation of an antigen-antibody complex with a third protein could, by increasing the number of possible combinations, improve the likelihood of crystallization. We propose the use of Ig-binding proteins as a way of extending the method from HIV gp120 to all proteins for which there are monoclonal antibodies. We discuss this technique, combinatorial complex crystallization (CCC), as part of a multi-component system for the enhancement of crystallization of macromolecular complexes. The method makes use of single Ig-binding domains from Staphylococcus aureus protein A (SpA), Peptostreptococcus magnus protein L (PpL) and the streptococcal protein G (SpG). The generality of the method depends on the ability of these domains to interact with a large repertoire of antibodies without affecting antigen binding. There is strong evidence to suggest that these Ig-binding domains bind outside the antigen-combining site of the antibody without perturbing antigen binding. It is clear from the crystal structure of the single SpG domain complexed with an Fab that the interaction involves mainly the immunoglobulin CH1 domain, a region not involved in antigen recognition. We have recently determined the structure of the complex between a human Fab and the domain D from SpA and found that steric hindrance is unlikely even for large

  7. Capillarity creates single-crystal calcite nanowires from amorphous calcium carbonate.

    PubMed

    Kim, Yi-Yeoun; Hetherington, Nicola B J; Noel, Elizabeth H; Kröger, Roland; Charnock, John M; Christenson, Hugo K; Meldrum, Fiona C

    2011-12-23

    Single-crystal calcite nanowires are formed by crystallization of morphologically equivalent amorphous calcium carbonate (ACC) particles within the pores of track etch membranes. The polyaspartic acid stabilized ACC is drawn into the membrane pores by capillary action, and the single-crystal nature of the nanowires is attributed to the limited contact of the intramembrane ACC particle with the bulk solution. The reaction environment then supports transformation to a single-crystal product.

  8. Modeling habit forms of sapphire crystals using the principles of periodic-bond-chain method

    NASA Astrophysics Data System (ADS)

    Bakholdin, S. I.; Maslov, V. N.

    2015-03-01

    The potential of the periodic-bond-chain method for calculating the sequence of manifestation of faces of corundum single crystals is considered. The leading role of the faces of the pinacoid, high rhombohedron, and hexagonal prism is demonstrated. The calculation results are compared with the experimental data on faceting the lateral surface of cylindrical sapphire single crystals grown by the Stepanov method and with the faceting data for crystals grown by the flux method and natural crystals.

  9. Crystallization kinetics in magmas during decompression

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Burton, Mike; Carroll, Michael R.

    2016-04-01

    Many variables play a role during magma crystallization at depth or in a volcanic conduit, and through experimentally derived constraints we can better understand pre- and syn-eruptive magma crystallization behavior. The thermodynamic properties of magmas have been extensively investigated as a function of T, P, fO2 and magma composition [1], and this allows estimation of the stability of equilibrium phases and physical parameters (e.g., density, viscosity). However, many natural igneous rocks contain geochemical, mineralogical and textural evidence of disequilibrium, suggesting that magmas frequently follow non-equilibrium, time-dependent pathways that are recorded in the geochemical and petrographic characteristics of the rocks. There are currently no suitable theoretical models capable of calculating nucleation and growth rates in disequilibrium conditions without experimental constraints. The aim of this contribution is provide quantitative data on growth and nucleation rates of feldspar crystals in silicate melts obtained through decompression experiments, in order to determine the magma evolution in pre- and sin-eruptive conditions. Decompression is one of the main processes that induce the crystallization of feldspar during the magma ascent in the volcanic conduit. Decompression experiments have been carried out on trachytic and basaltic melts to investigate crystallization kinetics of feldspar as a function of the effect of the degassing, undercooling and time on nucleation and crystal growth process [2; 3]. Furthermore, feldspar is the main crystals phase present in magmas, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. Crystallization kinetics of trachytic melts show that long experiment durations involve more nucleation events of alkali feldspar than short experiment durations [2]. This is an important

  10. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  11. Magnetic Control of Convection during Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  12. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Smith, Craig D.; Smith, H. Wilson; Vijay-Kumar, Senadhi; Senadhi, Shobha E.; Ealick, Steven E.; Carter, Daniel C.; Snyder, Robert S.

    1989-01-01

    The crystals of most proteins or other biological macromolecules are poorly ordered and diffract to lower resolutions than those observed for most crystals of simple organic and inorganic compounds. Crystallization in the microgravity environment of space may improve crystal quality by eliminating convection effects near growing crystal surfaces. A series of 11 different protein crystal growth experiments was performed on U.S. Space Shuttle flight STS-26 in September 1988. The microgravity-grown crystals of gamma-interferon D1, porcine elastase, and isocitrate lyase are larger, display more uniform morphologies, and yield diffraction data to significantly higher resolutions than the best crystals of these proteins grown on earth.

  13. Physicochemical properties of dimethylammonium p-nitrophenolate- p-nitrophenol: A nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Rathika, A.; Prasad, L. Guru; Raman, R. Ganapathi

    2016-03-01

    Single crystals of Dimethylammonium p-nitrophenolate-p-nitrophenol have been grown from aqueous solution by slow evaporation solution growth technique. Unit cell parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis and the synthesized compound is crystallized in monoclinic system. Various functional groups and their vibrational frequencies were recognized from the FT-IR and FT-Raman spectrum. Thermal stability of the crystal was examined by recording the TGA/DTA curve. The grown crystal has wider transparency nature in the visible region and the lower cut-off wavelength is found at 465 nm. Mechanical property of the crystal was studied by analyzing the Vicker's microhardness measurements. The fluorescence emission from the crystal is observed at 350 nm which arise due to the presence of aromatic ring. Relative SHG conversion efficiency of the grown crystal is about 0.59 times that of KDP.

  14. Growth and characterization of Cu (II) doped negatively soluble lithium sulfate monohydrate crystals

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Ramasamy, P.; Bhagavannarayana, G.

    2014-01-01

    Single crystals of pure and Cu (II) doped negatively soluble lithium sulfate monohydrate have been grown by slow evaporation solution technique. In the present work, to improve the crystalline quality of lithium sulfate monohydrate crystal, metal dopant was incorporated into the pure crystals. The as grown crystals are clear, transparent and the sizes of the crystals were up to 18×12×3 mm3 and 50×15×5 mm3. The presence of metal dopant has been confirmed by energy dispersive spectroscopy, atomic absorption spectroscopy analysis. Single crystal and powder X-ray diffraction studies were carried out to ascertain lattice parameters and identify different phase nature. Optical transmission spectrum of the grown crystals was recorded. FT-IR and thermal analysis were carried out to investigate the functional group and thermal behavior of the grown crystals respectively. The grown crystal was subjected to Vickers micro hardness, HRXRD, piezoelectric, laser damage threshold measurements and second harmonic generation efficiency studies.

  15. Quartz crystal growth

    DOEpatents

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  16. Glycine lithium nitrate crystals

    NASA Astrophysics Data System (ADS)

    González-Valenzuela, R.; Hernández-Paredes, J.; Medrano-Pesqueira, T.; Esparza-Ponce, H. E.; Jesús-Castillo, S.; Rodriguez-Mijangos, R.; Terpugov, V. S.; Alvarez-Ramos, M. E.; Duarte-Möller, A.

    Crystals of glycine lithium nitrate with non-linear optical properties have been grown in a solution by slow evaporation at room temperature. The crystal shows a good thermal stability from room temperature to 175 °C where the crystal begins to degrade. This property is desirable for future technological applications. Also, a good performance on the second harmonic generation was found, characterizing the emitted dominant wavelength by a customized indirect procedure using luminance and chromaticity measured data based on the CIE-1931 standard. Additionally, the 532 nm signal was detected by using a variant to the Kurtz and Perry method.

  17. Biomolecular membrane protein crystallization

    NASA Astrophysics Data System (ADS)

    Reddy Bolla, Jani; Su, Chih-Chia; Yu, Edward W.

    2012-07-01

    Integral membrane proteins comprise approximately 30% of the sequenced genomes, and there is an immediate need for their high-resolution structural information. Currently, the most reliable approach to obtain these structures is X-ray crystallography. However, obtaining crystals of membrane proteins that diffract to high resolution appears to be quite challenging, and remains a major obstacle in structural determination. This brief review summarizes a variety of methodologies for use in crystallizing these membrane proteins. Hopefully, by introducing the available methods, techniques, and providing a general understanding of membrane proteins, a rational decision can be made about now to crystallize these complex materials.

  18. Raman scattering in crystals

    SciTech Connect

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  19. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  20. Molecules in crystals

    NASA Astrophysics Data System (ADS)

    Spackman, Mark A.

    2013-04-01

    Hirshfeld surface analysis has developed from the serendipitous discovery of a novel partitioning of the crystal electron density into discrete molecular fragments, to a suite of computational tools used widely for the identification, analysis and discussion of intermolecular interactions in molecular crystals. The relationship between the Hirshfeld surface and very early ideas on the internal structure of crystals is outlined, and applications of Hirshfeld surface analysis are presented for three molecules of historical importance in the development of modern x-ray crystallography: hexamethylbenzene, hexamethylenetetramine and diketopiperazine.

  1. Crystallization kinetics of alkali feldspars in cooling and decompression-induced crystallization experiments in trachytic melt

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Carroll, Michael R.

    2013-10-01

    Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspar, the effect of the degree of undercooling ( ΔT = T liquidus - T experimental) and time on nucleation and crystal growth process. This experimental work gives us new data about crystallization kinetics of trachytic melts, and it that will be useful to better understand the natural system of Campi Flegrei volcanoes. Experiments have been conducted using cold seal pressure vessel apparatus, at pressure between 30 and 200 MPa, temperature between 750 and 855 °C, time between 7,200 and 57,600 s and redox condition close to the NNO +0.8 buffer. These conditions are ideal to reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes, where the "conditions" pertain to the complete range of pressures, temperatures and time at which the experiments were performed. Alkali feldspar is the main phase present in this trachyte, and its abundance can strongly vary with small changes in pressure, temperature and water content in the melt, implying appreciable variations in the textures and in the crystallization kinetics. The obtained results show that crystallization kinetics are strictly related to ΔT, time, final pressure, superheating (- ΔT) and water content in the melt. ΔT is the driving force of the crystallization, and it has a strong influence on nucleation and growth processes. In fact, the growth process dominates crystallization at small ΔT, whereas the nucleation dominates crystallization at large ΔT. Time also is an important variable during crystallization process, because long experiment durations involve more nucleation events of alkali feldspar than short experiment durations. This is an important aspect to understand magma evolution in the magma chamber and in the conduit, which in turn has strong effects on magma rheology.

  2. Shaping Crystal-Crystal Phase Transitions

    NASA Astrophysics Data System (ADS)

    Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon

    Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.

  3. Photonic crystal beam splitters.

    PubMed

    Chen, Chii-Chang; Chien, Hung-Da; Luan, Pi-Gang

    2004-11-20

    This work studies two-dimensional photonic crystal beam splitters with two input ports and two output ports. The beam splitter structure consists of two orthogonally crossed line defects and one point defect in square-lattice photonic crystals. The point defect is positioned at the intersection of the line defects to divide the input power into output ports. If the position and the size of the point defect are varied, the power of two output ports can be identical. The beam splitters can be used in photonic crystal Mach-Zehnder interferometers or switches. The simulation results show that a large bandwidth of the extinction ratio larger than 20 dB can be obtained while two beams are interfered in the beam splitters. This enables photonic crystal beam splitters to be used in fiber optic communication systems.

  4. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  5. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  6. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  7. Crystal-Clear Technology.

    ERIC Educational Resources Information Center

    Ondris-Crawford, Renate J.; And Others

    1993-01-01

    Provides diagrams to aid in discussing polymer dispersed liquid crystal (PDLC) technology. Equipped with a knowledge of PDLC, teachers can provide students with insight on how the gap between basic science and technology is bridged. (ZWH)

  8. Crystal Field Handbook

    NASA Astrophysics Data System (ADS)

    Newman, D. J.; Ng, Betty

    2007-09-01

    List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.

  9. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell, Post-Doctoral Fellow the National Research Council (NRC) uses a reciprocal space mapping diffractometer for macromolecular crystal quality studies. The diffractometer is used in mapping the structure of macromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystallized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  10. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  11. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    SciTech Connect

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  12. Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Borgstahl, Gloria E. O.; Bellamy, Henry D.; Curreri, Peter A. (Technical Monitor)

    2001-01-01

    There are many ways of judging a good crystal. Which we use depends on the qualities we seek. For gemstones size, clarity and impurity levels (color) are paramount. For the semiconductor industry purity is probably the most important quality. For the structural crystallographer the primary desideratum is the somewhat more subtle concept of internal order. In this chapter we discuss the effect of internal order (or the lack of it) on the crystal's diffraction properties.

  13. Rugged and drapable cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, Irina; Khan, Asad; Green, Seth; Magyar, Greg; Pishnyak, Oleg; Doane, J. W.

    2005-05-01

    We developed a novel technology for the fabrication of reflective cholesteric liquid crystal displays coatable on a single substrate using a layer-by-layer approach. Encapsulated cholesteric liquid crystals serving as an electro-optical layer and transparent conducting polymer films serving as electrodes are coated and printed on a variety of unconventional substrates, including ultra-thin plastic, paper, and textile materials to create conformable displays. The displays are capable of offering excellent electro-optical properties of the bulk cholesteric liquid crystals, including full-color, IR capability, bistability, low power, high brightness and contrast, combined with the ruggedness and pressure insensitivity of the liquid crystal droplets embedded in a polymer matrix. Durability of encapsulated cholesteric liquid crystals and single substrate approach allows for display flexing, folding, rolling and draping during image addressing without any image distortion. Our single substrate approach with natural cell-gap control significantly simplifies the fabrication process of the LCDs especially for large area displays. This paper will discuss the development, status, and merits of this novel display technology.

  14. Acoustic emission and the plasticity of crystals

    NASA Astrophysics Data System (ADS)

    Pawelek, Andrzej; Malecki, Ignacy

    This treatise is mainly devoted to a discussion of the application of acoustic emission in basic research on the plastic deformation mechanisms of metal and alloy single crystals. The acoustic emission method also provides the possibility of obtaining additional information on the nature of these mechanisms. Knowledge of the basic relationships between acoustic emission and deformation mechanisms will also facilitate the use of acoustic emission in industrial conditions (for industrial process control and for early problem detection). The material contained in this article is divided into three sections. The first section discusses the basic types of plastic deformation mechanisms in metal single crystals with simple crystal structures. The rest of this section is devoted to the problem of locating deformations, which is currently one of the most important problems in plastic deformation mechanics. The next section is based on extant literature and presents experiment data on measurements of acoustic emission during the plastic deformation of single crystals. The authors also use the results of their own research in a discussion of the most frequently encountered models and theoretical concepts concerning the causes of acoustic emission during the plastic deformation of crystals. The final section describes the basic mathematics behind these concepts and a brief attempt to assess the consistency of theoretical results and extant experimental results.

  15. Enzymatically Controlled Vacancies in Nanoparticle Crystals.

    PubMed

    Barnaby, Stacey N; Ross, Michael B; Thaner, Ryan V; Lee, Byeongdu; Schatz, George C; Mirkin, Chad A

    2016-08-10

    In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.

  16. Raman gains of ADP and KDP crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Liang; Zhang, Qing-Hua; Wang, Bo; Xu, Xin-Guang; Wang, Zheng-Ping; Sun, Xun; Zhang, Fang; Zhang, Li-Song; Liu, Bao-An; Chai, Xiang-Xu

    2015-04-01

    In this paper, the Raman gain coefficients of ammonium dihydrogen phosphate (ADP) and potassium dihydrogen phosphate (KDP) crystals are measured. By using a pump source of a 30-ps, 532-nm laser, the gain coefficients of ADP and KDP are 1.22 cm/GW, and 0.91 cm/GW, respectively. While for a 20-ps, 355-nm pump laser, the gain coefficients of these two crystals are similar, which are 1.95 cm/GW for ADP and 1.86 for KDP. The present results indicate that for ultra-violet frequency conversion, the problem of stimulated Raman scattering for ADP crystal will not be more serious than that for KDP crystal. Considering other advantages such the larger nonlinear optical coefficient, higher laser damage threshold, and lower noncritical phase-matching temperature, it can be anticipated that ADP will be a powerful competitor to KDP in large aperture, high energy third-harmonic generation or fourth-harmonic generation applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51323002 and 51402173), the Independent Innovation Foundation of Shandong University, China (Grant Nos. IIFSDU and 2012JC016), the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0552), the Fund from the Key Laboratory of Neutron Physics, China Academy of Engineering Physics (Grant No. 2014BB07), and the Natural Science Foundation for Distinguished Young Scholar of Shandong Province, China (Grant No. JQ201218).

  17. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  18. High-throughput crystallization screening.

    PubMed

    Skarina, Tatiana; Xu, Xiaohui; Evdokimova, Elena; Savchenko, Alexei

    2014-01-01

    Protein structure determination by X-ray crystallography is dependent on obtaining a single protein crystal suitable for diffraction data collection. Due to this requirement, protein crystallization represents a key step in protein structure determination. The conditions for protein crystallization have to be determined empirically for each protein, making this step also a bottleneck in the structure determination process. Typical protein crystallization practice involves parallel setup and monitoring of a considerable number of individual protein crystallization experiments (also called crystallization trials). In these trials the aliquots of purified protein are mixed with a range of solutions composed of a precipitating agent, buffer, and sometimes an additive that have been previously successful in prompting protein crystallization. The individual chemical conditions in which a particular protein shows signs of crystallization are used as a starting point for further crystallization experiments. The goal is optimizing the formation of individual protein crystals of sufficient size and quality to make them suitable for diffraction data collection. Thus the composition of the primary crystallization screen is critical for successful crystallization.Systematic analysis of crystallization experiments carried out on several hundred proteins as part of large-scale structural genomics efforts allowed the optimization of the protein crystallization protocol and identification of a minimal set of 96 crystallization solutions (the "TRAP" screen) that, in our experience, led to crystallization of the maximum number of proteins.

  19. Crystal growth of artificial snow

    NASA Technical Reports Server (NTRS)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  20. Allium To Zircon: Mathematics and Nature.

    ERIC Educational Resources Information Center

    Harrell, Marvin E.; Fosnaugh, Linda S.

    1997-01-01

    Discusses how nature can illustrate mathematical structures and concepts in the classroom. For example, the upper surface of a typical leaf structure illustrates the notion of tessellating with polygons. Also lists classroom applications and hands-on activities such as growing crystals to investigate the natural forms of polyhedra and measuring…

  1. An assessment of calcite crystal growth mechanisms based on crystal size distributions

    USGS Publications Warehouse

    Kile, D.E.; Eberl, D.D.; Hoch, A.R.; Reddy, M.M.

    2000-01-01

    was established and maintained during the constant-composition experiments. CSDs having shapes intermediate between lognormal and Ostwald also were generated by varying the initial levels of supersaturation (initial Ω = 28.2 to 69.2) in rapidly mixed solutions. Lognormal CSDs were observed for natural calcite crystals that are found in septarian concretions occurring in southeastern Colorado. Based on the model described above, these CSDs indicate initial growth by surface control, followed by supply-controlled growth. Thus, CSDs may be used to deduce crystal growth mechanisms from which geologic conditions early in the growth history of a mineral can be inferred. Conversely, CSD shape can be predicted during industrial crystallization by applying the appropriate conditions for a particular growth mechanism.

  2. Synthesis, crystal structure, crystal growth and physical properties of N,N-diethyl anilinium picrate

    NASA Astrophysics Data System (ADS)

    Subramaniyan @ Raja, R.; Anandha Babu, G.; Ramasamy, P.

    2011-11-01

    Crystalline substance of N,N-diethyl anilinium picrate (NNDEAP) has been synthesized and single crystals of NNDEAP were successfully grown for the first time by the slow evaporation solution growth technique at room temperature with dimensions 14×10×10 mm3. The formation of the new crystal has been confirmed by single crystal X-ray diffraction studies. The structural perfection of the grown crystal was analyzed by high resolution X-ray diffraction (HRXRD) measurements. The functional groups of NNDEAP have been identified by Fourier transform infrared spectral studies. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) have also been carried out and the thermal behavior of NNDEAP has been studied. The UV-vis-NIR studies have been carried out to identify the optical transmittance and the cut off wavelength of NNDEAP is identified. The dielectric loss and the dielectric constant as a function of frequency and temperature were measured for the grown crystal and the nature of variation of dielectric constant εr and dielectric losses (tan δ) were studied. Vicker's hardness test has been carried out on NNDEAP to measure the load dependent hardness. The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser.

  3. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    SciTech Connect

    Jones, B.; Renaut, R.W.

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  4. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  5. Synthesis, growth and characterisations of semi-organic nonlinear optical crystal glycine barium nitrate (GBN)

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Ravi Kumar, S. M.; Elango, G.; Ravisankar, R.

    2014-12-01

    Transparent crystal of glycine barium nitrate (GBN) has been grown from aqueous solution by slow evaporation technique at room temperature. Powder XRD study reveals the crystalline nature of the grown sample. Single crystal XRD study shows that the GBN belongs to orthorhombic crystal system. FTIR spectral study confirms the presence of the functional groups in the grown crystal. The presence of wide transparency window in the UV-visible region makes GBN crystal suitable for opto-electronic device applications. The grown sample has SHG efficiency is 0.8 times that of standard KDP crystal. Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  6. Optical Properties of Irradiated Topaz Crystals

    NASA Astrophysics Data System (ADS)

    Skvortsova, V.; Mironova-Ulmane, N.; Trinkler, L.

    2015-04-01

    The results of an investigation of UV-Visible absorption and photoluminescence spectra of colorless topaz before and after neutron irradiation, natural blue topaz from Ukraine, and yellow topaz are presented. We assume that the absorption band ∼ 620 nm and broad emission band 300-700 nm in topaz crystals are associated with exchange interaction between a radiation defect (anion vacancies, which capture one or two electrons) and impurity ions Cr3+, Fe3+ and Mn2+.

  7. Graphene chiral liquid crystals and macroscopic assembled fibres

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Gao, Chao

    2011-12-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles.

  8. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  9. Physical properties of superconducting single crystal iron sulfide

    NASA Astrophysics Data System (ADS)

    Rodriguez, Efrain E.; Borg, Christopher K. H.; Zhou, Xiuquan; Paglione, Johnpierre; University of Maryland Collaboration

    Recently, the simple binary tetragonal iron sulfide, FeS, was found to be a superconductor with a Tc = 5 K. We have prepared single crystals of tetragonal iron sulfide through hydrothermal de-intercalation of KxFe2-yS2. The KxFe2-yS2 single crystal precursors were grown by slow cooling of stoichiometric melts of K, Fe and S. The silver, plate-like FeS single crystals were highly crystalline with a superconducting transition temperature (Tc) of 4 K. The high quality of the FeS crystals revealed highly anisotropic nature of the magnetic and electronic properties intrinsic to FeS. The physical properties and thermal stability of single crystal FeS will be discussed in detail.

  10. Observation and Analysis of Polymer Crystal Structures at the Stem Level. Implications Regarding Polymer Crystallization Processes.

    NASA Astrophysics Data System (ADS)

    Lotz, Bernard

    2003-03-01

    The building element of chain folded polymer crystals is the individual stem that spans the lamellar thickness. For chiral but racemic helical polymers such as polyolefins (e.g. isotactic and syndiotactic polypropylene and poly(1-butene)), stems can be right- or left-handed helices. These polymers can exist in various crystal polymorphs that are either "racemic" or "chiral" (made of both, or of only one helical hand). Upon crystallization, each stem has a conformational "choice", but must adapt to the crystal structure and, once crystallized, is characterized by a "conformational tag" (right or left hand). Various means exist to determine or observe helical hands in polyolefin lamellae: Atomic Force Microscopy on epitaxially crystallized samples, or, for the alpha phase of isotactic polypropylene, analysis of its specific lamellar branching. These observations and analyses indicate that the helical hand of stems is tightly determined by the substrate or growth face topography, i.e. indicate that the depositing stem probes and adapts to the surface structure prior to successful attachment. This "post-mortem" analysis of the crystal structure and stem chirality emphasizes the "sequential" nature of the growth process (successive attachment of individual stems). It is in line with early views on polymer crystallization. It is at variance with recently introduced models or scenarios that assume either some pre-ordering of the polymer melt as a result of spinodal decomposition and/or accretion of polymer chains in pseudo-crystalline bundles followed by (solid state) reorganization of the bundles to generate fully grown lamellae.

  11. Identification of surface domain structure on enamel crystals using polyamidoamine dendrimer

    NASA Astrophysics Data System (ADS)

    Chen, Haifeng; Clarkson, Brian H.; Orr, Bradford; Majoros, Istvan; Banaszak Holl, Mark M.

    2002-03-01

    The control of hydroxyapatite crystal nucleation and crystal growth is central to the mineralization and remineralization of enamel and dentin of teeth. However, the precise biomolecular mechanisms involved remain obscure. The intimate association between the crystal's surface and extracellular protein components implies a modulating role for organic crystal interactions probably mediated via specific crystal surface domains. These include lattice defects and specific stereochemical arrays on associated organic molecules. The nature of protein-crystal interaction depends upon the physical forces of attraction / repulsion between specific biomolecular groups and crystal surface domains. The proposed study is to utilize specific polyamidoamine (PAMAM) dendrimers, also known as “artificial proteins”, acting as nanoprobe. These will be used to probe specific surface domain on the surface of the naturally derived crystals of hydroxyapatite and to determine how control of growth and dissolution may be affected at the biomolecular level. The hydroxyapatite crystals are extracted from the maturation stage enamel of rats. Three types of PAMAM dendrimers, respectively with amine-, carboxylic acid and methyl-capped surface, will be applied in the study. The dendrimer binding on the surface of the hydoxyapatite crystals will be characterized using atomic force microscopy (AFM). The different dendrimer binding on the crystals will disclose the specific surface domain structure on the crystals, which is assumed to be important in binding the extracellular protein.

  12. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.

    PubMed

    Knaus, Tanja; Paul, Caroline E; Levy, Colin W; de Vries, Simon; Mutti, Francesco G; Hollmann, Frank; Scrutton, Nigel S

    2016-01-27

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost.

  13. Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes.

    PubMed

    Knaus, Tanja; Paul, Caroline E; Levy, Colin W; de Vries, Simon; Mutti, Francesco G; Hollmann, Frank; Scrutton, Nigel S

    2016-01-27

    The search for affordable, green biocatalytic processes is a challenge for chemicals manufacture. Redox biotransformations are potentially attractive, but they rely on unstable and expensive nicotinamide coenzymes that have prevented their widespread exploitation. Stoichiometric use of natural coenzymes is not viable economically, and the instability of these molecules hinders catalytic processes that employ coenzyme recycling. Here, we investigate the efficiency of man-made synthetic biomimetics of the natural coenzymes NAD(P)H in redox biocatalysis. Extensive studies with a range of oxidoreductases belonging to the "ene" reductase family show that these biomimetics are excellent analogues of the natural coenzymes, revealed also in crystal structures of the ene reductase XenA with selected biomimetics. In selected cases, these biomimetics outperform the natural coenzymes. "Better-than-Nature" biomimetics should find widespread application in fine and specialty chemicals production by harnessing the power of high stereo-, regio-, and chemoselective redox biocatalysts and enabling reactions under mild conditions at low cost. PMID:26727612

  14. Can computed crystal energy landscapes help understand pharmaceutical solids?

    PubMed

    Price, Sarah L; Braun, Doris E; Reutzel-Edens, Susan M

    2016-06-01

    Computational crystal structure prediction (CSP) methods can now be applied to the smaller pharmaceutical molecules currently in drug development. We review the recent uses of computed crystal energy landscapes for pharmaceuticals, concentrating on examples where they have been used in collaboration with industrial-style experimental solid form screening. There is a strong complementarity in aiding experiment to find and characterise practically important solid forms and understanding the nature of the solid form landscape. PMID:27067116

  15. Crystalline perfection, spectroscopic investigations and transport properties of trisglycine zinc chloride NLO single crystal

    NASA Astrophysics Data System (ADS)

    Sugandhi, K.; Dinakaran, S.; Jose, M.; Uthrakumar, R.; Jeya Rejendran, A.; Bhagvannarayana, G.; Joseph, V.; Jerome Das, S.

    2010-09-01

    Bulk single crystals of trisglycine zinc chloride have been grown from aqueous solution by slow cooling technique. Single crystal and powder XRD analyses confirmed orthorhombic crystal structure with non-centrosymmetric space group Pbn2 1. High resolution X-ray diffraction results have established that the quality of the grown crystal is quite good for device fabrication. The crystal was characterized by FTIR and NMR spectral analyses. Optical absorption studies show that the material has very low absorption in the wavelength range 240-2000 nm. The analysis of absorption coefficient in the absorption region reveals a direct band gap of 4.21 eV. The crystal possesses remarkable thermal stability up to 229 °C. Photoconductivity studies of the grown crystal revealed the positive photoconducting nature. The grown crystal exhibited considerable hardness anisotropy with Vicker’s hardness tester. Dielectric constant and dielectric loss were calculated by varying frequencies at different temperatures.

  16. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules.

    PubMed

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds-known as plastic crystals-can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications. PMID:27657871

  17. Measuring Curved Crystal Performance for a High Resolution, Imaging X-ray Spectrometer

    SciTech Connect

    Michael Haugh and Richard Stewart

    2010-06-07

    This paper describes the design, crystal selection, and crystal testing for a vertical Johann spectrometer operating in the 13 keV range to measure ion Doppler broadening in inertial confinement plasmas. The spectrometer is designed to use thin, curved, mica crystals to achieve a resolving power of E/ΔE>2000. A number of natural mica crystals were screened for flatness and X-ray diffraction width to find samples of sufficient perfection for use in the instrument. Procedures to select and mount high quality mica samples are discussed. A diode-type X-ray source coupled to a dual goniometer arrangement was used to measure the crystal reflectivity curve. A procedure was developed for evaluating the goniometer performance using a set of diffraction grade Si crystals. This goniometer system was invaluable for identifying the best original crystals for further use and developing the techniques to select satisfactory curved crystals for the spectrometer.

  18. Proline: Mother Nature;s cryoprotectant applied to protein crystallography

    SciTech Connect

    Pemberton, Travis A.; Still, Brady R.; Christensen, Emily M.; Singh, Harkewal; Srivastava, Dhiraj; Tanner, John J.

    2012-09-05

    L-Proline is one of Mother Nature's cryoprotectants. Plants and yeast accumulate proline under freeze-induced stress and the use of proline in the cryopreservation of biological samples is well established. Here, it is shown that L-proline is also a useful cryoprotectant for protein crystallography. Proline was used to prepare crystals of lysozyme, xylose isomerase, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase for low-temperature data collection. The crystallization solutions in these test cases included the commonly used precipitants ammonium sulfate, sodium chloride and polyethylene glycol and spanned the pH range 4.6-8.5. Thus, proline is compatible with typical protein-crystallization formulations. The proline concentration needed for cryoprotection of these crystals is in the range 2.0-3.0 M. Complete data sets were collected from the proline-protected crystals. Proline performed as well as traditional cryoprotectants based on the diffraction resolution and data-quality statistics. The structures were refined to assess the binding of proline to these proteins. As observed with traditional cryoprotectants such as glycerol and ethylene glycol, the electron-density maps clearly showed the presence of proline molecules bound to the protein. In two cases, histidine acid phosphatase and 1-pyrroline-5-carboxylate dehydrogenase, proline binds in the active site. It is concluded that L-proline is an effective cryoprotectant for protein crystallography.

  19. Shear induced orientation of edible fat and chocolate crystals

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  20. Crystal splitting in the growth of Bi2S3.

    PubMed

    Tang, Jing; Alivisatos, A Paul

    2006-12-01

    Bi2S3 nanostructures with a sheaflike morphology are obtained via reaction of bismuth acetate-oleic acid complex with elemental sulfur in 1-octadecence. These structures may form by the splitting crystal growth mechanism, which is known to account for the morphology some mineral crystals assume in nature. By control of the synthetic parameters, different shapes are obtained, analogous to those which have been observed to occur by crystal splitting in minerals. These new and complex Bi2S3 nanostructures are characterized by transmission and scanning electron microscopy, and electron and X-ray diffraction.

  1. Fullerene solar cells with cholesteric liquid crystal doping

    NASA Astrophysics Data System (ADS)

    Jiang, Lulu; Jiang, Yurong; Zhang, Congcong; Chen, Zezhang; Qin, Ruiping; Ma, Heng

    2016-09-01

    This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative. With a doping ratio of 0.3 wt%, the device achieves an ideal improvement on the shunt resistor and the fill factor. Compared with the reference cell, the power conversion efficiency of the doped cell is improved 24%. The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect. Project supported by the National Natural Science Foundation of China (Grant No. 61540016).

  2. Protein Crystals and their Growth

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.

    2004-01-01

    Recent results on binding between protein molecules in crystal lattice, crystal-solution surface energy, elastic properties and strength and spontaneous crystal cracking are reviewed and discussed in the first half of this paper (Sea 2-4). In the second par&, some basic approaches to solubility of proteins are followed by overview on crystal nucleation and growth (Sec 5). It is argued that variability of mixing in batch crystallization may be a source for scattering of crystal number ultimately appearing in the batch. Frequency at which new molecules join crystal lattice is measured by kinetic coefficient and related to the observable crystal growth rate. Numerical criteria to discriminate diffusion and kinetic limited growth are discussed on this basis in Sec 7. In Sec 8, creation of defects is discussed with the emphasis on the role of impurities and convection on macromolecular crystal I;erfection.

  3. The rheology of crystal-rich magmas (Kuno Award Lecture)

    NASA Astrophysics Data System (ADS)

    Huber, Christian; Aldin Faroughi, Salah; Degruyter, Wim

    2016-04-01

    The rheology of magmas controls not only eruption dynamics but also the rate of transport of magmas through the crust and to a large extent the rate of magma differentiation and degassing. Magma bodies stalled in the upper crust are known to spend most of their lifespan above the solidus at a high crystal content (Cooper and Kent, 2014; Huber et al., 2009), where the probability of melt extraction (crystal fractionation) is the greatest (Dufek and Bachmann, 2010). In this study, we explore a new theoretical framework to study the viscosity of crystal bearing magmas. Since the seminal work of A. Einstein and W. Sutherland in the early 20th century, it has been shown theoretically and tested experimentally that a simple self-similar behavior exist between the relative viscosity of dilute (low crystal content) suspensions and the particle volume fraction. The self-similar nature of that relationship is quickly lost as we consider crystal fractions beyond a few volume percent. We propose that the relative viscosity of crystal-bearing magmas can be fully described by two state variables, the intrinsic viscosity and the crowding factor (a measure of the packing threshold in the suspension). These two state variables can be measured experimentally under different conditions, which allows us to develop closure relationships in terms of the applied shear stress and the crystal shape and size distributions. We build these closure equations from the extensive literature on the rheology of synthetic suspensions, where the nature of the particle shape and size distributions is better constrained and apply the newly developed model to published experiments on crystal-bearing magmas. We find that we recover a self-similar behavior (unique rheology curve) up to the packing threshold and show that the commonly reported break in slope between the relative viscosity and crystal volume fraction around the expected packing threshold is most likely caused by a sudden change in the state

  4. Photonic Crystal Microchip Laser

    PubMed Central

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-01-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation. PMID:27683066

  5. Flexible ferroelectric organic crystals

    NASA Astrophysics Data System (ADS)

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-10-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity--the properties that originate from their non-centrosymmetric crystal lattice--but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

  6. Flexible ferroelectric organic crystals

    PubMed Central

    Owczarek, Magdalena; Hujsak, Karl A.; Ferris, Daniel P.; Prokofjevs, Aleksandrs; Majerz, Irena; Szklarz, Przemysław; Zhang, Huacheng; Sarjeant, Amy A.; Stern, Charlotte L.; Jakubas, Ryszard; Hong, Seungbum; Dravid, Vinayak P.; Stoddart, J. Fraser

    2016-01-01

    Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity—the properties that originate from their non-centrosymmetric crystal lattice—but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals. PMID:27734829

  7. Frequency doubling crystals

    DOEpatents

    Wang, Francis; Velsko, Stephan P.

    1989-01-01

    A systematic approach to the production of frequency conversion crystals is described in which a chiral molecule has attached to it a "harmonic generating unit" which contributes to the noncentrosymmetry of the molecule. Certain preferred embodiments of such harmonic generating units include carboxylate, guanadyly and imidazolyl units. Certain preferred crystals include L-arginine fluoride, deuterated L-arginine fluoride, L-arginine chloride monohydrate, L-arginine acetate, dithallium tartrate, ammonium N-acetyl valine, N-acetyl tyrosine and N-acetyl hydroxyproline. Chemical modifications of the chiral molecule, such as deuteration, halogenation and controlled counterion substitution are available to adapt the dispersive properties of a crystal in a particular wavelength region.

  8. Photonic Crystal Microchip Laser

    NASA Astrophysics Data System (ADS)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  9. Crystallization of atactic polystyrene

    NASA Astrophysics Data System (ADS)

    Chai, Yu; Forrest, James

    Atactic polystyrene is often used as an archetypical example of a material that has no crystalline ground state due to the lack of order in the arrangement of phenyl groups along the backbone. However, even in polymers with perfect Bernoullian (random) statistics, there is a probability that a given molecule will have larger blocks of a given stereoregularity. These blocks, in turn, could allow the formation of nanocrysalline domains. As a model system to investigate whether such blocks could lead to nanoscale crystallinity, we consider PS with Mw less than 1000 where there is a reasonable probability of a molecule having all meso or racemo diads . For the case of Mw 600, there are clear indications of crystal growth with two characteristic temperatures below which two different crystal species can nucleate and grow. Similar crystal growth and melting behavior is observed for Mw 1000.

  10. Biomolecular Modification of Inorganic Crystal Growth

    SciTech Connect

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  11. Single crystal tungsten kinetic energy penetrators

    SciTech Connect

    Cline, C.F.; Gogolewski, R.P.

    1992-05-01

    We have explored the terminal ballistic performance of single crystal tungsten as a kinetic energy penetrator. Scientific speculation as to the anticipated penetration performance and nature of the interaction between such a kinetic energy penetrator and semi-infinite and spaced metallic targets has led us to perform laboratory scale experiments and metallographic examinations of post-impact penetrator materials. The single tungsten crystals were ground into kinetic energy penetrators with the [l angle]111[r angle] and [l angle]100[r angle] crystal direction being coincident with the axis of symmetry of the penetrators. The crystals were electro-polished to their final diameter. We, compared the terminal performance at current ordnance speeds of [l angle]111[r angle] single crystal tungsten to 90W-10 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against a spaced steel (triple) target at sixty-five degrees obliquity. We also compared the terminal performance of [l angle]100[r angle] and [l angle]111[r angle] single crystal tungsten with 90W-10 and 98W02 (NiFe) cemented tungsten and textured pure tungsten in laboratory scale ballistic experiments against monolithic 4340 alloy steel (HRC = 36) at normal impact. We radiographed the penetrators during the interactions with the targets, we recovered portions of the penetrators after the ballistic experiments, and we conducted metallographic examinations of penetrator remnants. From the radiographic records and the metallographic examinations, we drew conclusions pertaining to insights into the terminal interactions of the penetrators with the targets and suggestions as to improved compositions of the cemented tungsten penetrators.

  12. Cirrus Crystal Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  13. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  14. Protein Crystal Malic Enzyme

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Malic Enzyme is a target protein for drug design because it is a key protein in the life cycle of intestinal parasites. After 2 years of effort on Earth, investigators were unable to produce any crystals that were of high enough quality and for this reason the structure of this important protein could not be determined. Crystals obtained from one STS-50 were of superior quality allowing the structure to be determined. This is just one example why access to space is so vital for these studies. Principal Investigator is Larry DeLucas.

  15. Protein Crystal Quality Studies

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Eddie Snell (standing), Post-Doctoral Fellow the National Research Council (NRC),and Marc Pusey of Marshall Space Flight Center (MSFC) use a reciprocal space mapping diffractometer for marcromolecular crystal quality studies. The diffractometer is used in mapping the structure of marcromolecules such as proteins to determine their structure and thus understand how they function with other proteins in the body. This is one of several analytical tools used on proteins crystalized on Earth and in space experiments. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  16. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  17. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition.

    PubMed

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G; Mpourmpakis, Giannis; Asplin, John R; Rimer, Jeffrey D

    2016-08-25

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization--citrate and hydroxycitrate--exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation of

  18. Crystallization seeds favour crystallization only during initial growth

    PubMed Central

    Allahyarov, E.; Sandomirski, K.; Egelhaaf, S.U.; Löwen, H.

    2015-01-01

    Crystallization represents the prime example of a disorder–order transition. In realistic situations, however, container walls and impurities are frequently present and hence crystallization is heterogeneously seeded. Rarely the seeds are perfectly compatible with the thermodynamically favoured crystal structure and thus induce elastic distortions, which impede further crystal growth. Here we use a colloidal model system, which not only allows us to quantitatively control the induced distortions but also to visualize and follow heterogeneous crystallization with single-particle resolution. We determine the sequence of intermediate structures by confocal microscopy and computer simulations, and develop a theoretical model that describes our findings. The crystallite first grows on the seed but then, on reaching a critical size, detaches from the seed. The detached and relaxed crystallite continues to grow, except close to the seed, which now prevents crystallization. Hence, crystallization seeds facilitate crystallization only during initial growth and then act as impurities. PMID:25975451

  19. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  20. Effect of storage temperature on crystal formation rate and growth rate of calcium lactate crystals on smoked Cheddar cheeses.

    PubMed

    Rajbhandari, P; Patel, J; Valentine, E; Kindstedt, P S

    2013-06-01

    Previous studies have shown that storage temperature influences the formation of calcium lactate crystals on vacuum-packaged Cheddar cheese surfaces. However, the mechanisms by which crystallization is modulated by storage temperature are not completely understood. The objectives of this study were to evaluate the effect of storage temperature on smoked Cheddar cheese surfaces for (1) the number of discrete visible crystals formed per unit of cheese surface area; (2) growth rate and shape of discrete crystals (as measured by area and circularity); (3) percentage of total cheese surface area occupied by crystals. Three vacuum-packaged, random weight (∼300 g) retail samples of naturally smoked Cheddar cheese, produced from the same vat of cheese, were obtained from a retail source. The samples were cut parallel to the longitudinal axis at a depth of 10mm from the 2 surfaces to give six 10-mm-thick slabs, 4 of which were randomly assigned to 4 different storage temperature treatments: 1, 5, 10°C, and weekly cycling between 1 and 10°C. Samples were stored for 30 wk. Following the onset of visible surface crystals, digital photographs of surfaces were taken every other week and evaluated by image analysis for number of discrete crystal regions and total surface area occupied by crystals. Specific discrete crystals were chosen and evaluated biweekly for radius, area, and circularity. The entire experiment was conducted in triplicate. The effects of cheese surface, storage temperature, and storage time on crystal number and total crystal area were evaluated by ANOVA, according to a repeated-measures design. The number of discrete crystal regions increased significantly during storage but at different rates for different temperature treatments. Total crystal area also increased significantly during storage, at rates that varied with temperature treatment. Storage temperature did not appear to have a major effect on the growth rates and shapes of the individual crystals

  1. Temporal naturalism

    NASA Astrophysics Data System (ADS)

    Smolin, Lee

    2015-11-01

    Two people may claim both to be naturalists, but have divergent conceptions of basic elements of the natural world which lead them to mean different things when they talk about laws of nature, or states, or the role of mathematics in physics. These disagreements do not much affect the ordinary practice of science which is about small subsystems of the universe, described or explained against a background, idealized to be fixed. But these issues become crucial when we consider including the whole universe within our system, for then there is no fixed background to reference observables to. I argue here that the key issue responsible for divergent versions of naturalism and divergent approaches to cosmology is the conception of time. One version, which I call temporal naturalism, holds that time, in the sense of the succession of present moments, is real, and that laws of nature evolve in that time. This is contrasted with timeless naturalism, which holds that laws are immutable and the present moment and its passage are illusions. I argue that temporal naturalism is empirically more adequate than the alternatives, because it offers testable explanations for puzzles its rivals cannot address, and is likely a better basis for solving major puzzles that presently face cosmology and physics. This essay also addresses the problem of qualia and experience within naturalism and argues that only temporal naturalism can make a place for qualia as intrinsic qualities of matter.

  2. Sizes and spatial relationships of crystals in granitic plutons: Exploring the crystallization gaps, heterogeneous nucleation, and mechanical clustering of crystals

    NASA Astrophysics Data System (ADS)

    Špillar, V.; Dolejš, D.

    2012-04-01

    Quantitative measurements on magmatic textures provide an important insight into nucleation and growth rates as well as mechanical effects such as crystal settling and melt extraction in magma reservoirs. Crystal size distribution (CSD) measurements and spatial analysis are routinely applied to dilute volcanic suspensions but comparable data on holocrystalline multiphase plutonic rocks are uncommon. We present quantitative description of CSDs and spatial relationships for all rock-forming minerals from an intrusive suite of the Fichtelgebirge/Smrčiny granite batholith in central Europe. This composite body represents two spatially unrelated chambers, consisting of peraluminous biotite, two-mica, and tourmaline-muscovite granites, crystallized as texturally diverse batches covering equigranular, serial porphyritic, and hiatal porphyritic fine- to coarse-grained types. All granite samples exhibit straight to concave-up CSDs in the natural log of population density vs. crystal size projection. Straight CSDs were only found in fine-grained biotite-rich granites representing early crystallizing roof facies of the batholith. For all other samples, the slope decreases from -65 to nearly 0 mm-1 as grain size increases. The curvature can result from superposition of two quasilinear segments. It cannot be produced by two separate crystallization events because the population of larger grains is about 10 times more abundant by volume than the fine one. Instead, we propose that the concave-up CSDs developed in situ, with enhanced nucleation and/or reduced growth rates during the final stage of solidification. Spatial analysis and measurements of contact relationships reveal significant clustering of crystals except near the roof of the batholith. The clustering index decreases to 0.6 for the smallest crystals (random = 1), Ripley's Ľ-function reaches 0.8 mm, and the clusters are mineral sensitive: pairs of like phases appear to be more clustered than the unlike pairs. The

  3. Design of photonic crystal splitters/combiners

    NASA Astrophysics Data System (ADS)

    Kim, Sangin; Park, Ikmo; Lim, Hanjo

    2004-10-01

    Photonic band gap (PBG) structures or photonic crystals have attracted a lot of interest since one of their promising applications is to build compact photonic integrated circuits (PIC). One of key components in PICs is a 1 x 2 optical power splitter or a 2 x 1 combiner. Design of 1 x 2 optical power splitters based on photonic crystal has been investigated by several research groups, but no attention has been paid to the design of 2 x 1 optical combiners. In conventional dielectric waveguide based circuits, optical combiners are obtained just by operating the splitters in the opposite direction and the isolation between two input ports in the combiners is naturally achieved. In photonic crystal based circuits, however, we have found that reciprocal operation of the splitters as combiners will not provide proper isolation between the input ports of the combiners. In this work, microwave-circuit concept has been adopted to obtain isolation between two input ports of the combiner and compact optical power splitters/combiners of good performance have been designed using 2-D photonic crystal. Numerical analysis of the designed splitters/combiners has been performed with the finite-difference time-domain method. The designed splitters/combiners show good isolation between input ports in combiner operation with small return losses.

  4. Bridgman crystal growth

    NASA Technical Reports Server (NTRS)

    Carlson, Frederick

    1990-01-01

    The objective of this theoretical research effort was to improve the understanding of the growth of Pb(x)Sn(1-x)Te and especially how crystal quality could be improved utilizing the microgravity environment of space. All theoretical growths are done using the vertical Bridgman method. It is believed that improved single crystal yields can be achieved by systematically identifying and studying system parameters both theoretically and experimentally. A computational model was developed to study and eventually optimize the growth process. The model is primarily concerned with the prediction of the thermal field, although mass transfer in the melt and the state of stress in the crystal were of considerable interest. The evolution is presented of the computer simulation and some of the important results obtained. Diffusion controlled growth was first studied since it represented a relatively simple, but nontheless realistic situation. In fact, results from this analysis prompted a study of the triple junction region where the melt, crystal, and ampoule wall meet. Since microgravity applications were sought because of the low level of fluid movement, the effect of gravitational field strength on the thermal and concentration field was also of interest. A study of the strength of coriolis acceleration on the growth process during space flight was deemed necessary since it would surely produce asymmetries in the flow field if strong enough. Finally, thermosolutal convection in a steady microgravity field for thermally stable conditions and both stable and unstable solutal conditions was simulated.

  5. Protein Crystal Bovine Insulin

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comparison of protein crystal, Bovine Insulin space-grown (left) and earth-grown (right). Facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  6. Laser schlieren crystal monitor

    NASA Technical Reports Server (NTRS)

    Owen, Robert B. (Inventor); Johnston, Mary H. (Inventor)

    1987-01-01

    A system and method for monitoring the state of a crystal which is suspended in a solution is described which includes providing a light source for emitting a beam of light along an optical axis. A collimating lens is arranged along the optical axis for collimating the emitted beam to provide a first collimated light beam consisting of parallel light rays. By passing the first collimated light beam through a transparent container, a number of the parallel light rays are deflected off the surfaces of said crystal being monitored according to the refractive index gradient to provide a deflected beam of deflected light rays. A focusing lens is arranged along optical axis for focusing the deflected rays towards a desired focal point. A knife edge is arranged in a predetermined orientation at the focal point; and a screen is provided. A portion of the deflected beam is blocked with the knife edge to project only a portion of the deflected beam. A band is created at one edge of the image of the crystal which indicates the state of change of the surface of the crystal being monitored.

  7. The Crystal Set

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    2014-01-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought…

  8. Computer-assisted Crystallization.

    ERIC Educational Resources Information Center

    Semeister, Joseph J., Jr.; Dowden, Edward

    1989-01-01

    To avoid a tedious task for recording temperature, a computer was used for calculating the heat of crystallization for the compound sodium thiosulfate. Described are the computer-interfacing procedures. Provides pictures of laboratory equipment and typical graphs from experiments. (YP)

  9. Single crystals of inulin.

    PubMed

    André, I; Putaux, J L; Chanzy, H; Taravel, F R; Timmermans, J W; de Wit, D

    1996-04-01

    Lamellar crystals of inulin were grown by crystallizing sharp fractions of low molecular weight inulin from dilute aqueous ethanol solutions. The crystals were analyzed using three-dimensional electron diffraction and X-ray powder diagrams. Two crystalline polymorphs were observed, depending on the hydration conditions: a hydrated form which indexed on an orthorhombic unit cell, with space group P2(1)2(1)2(1) and with cell dimensions of a = 1.670 nm, b = 0.980 nm and c (chain axis) = 1.47 nm, together with a pseudo-hexagonal semi-hydrated form with unit cell parameters a = 1.670 nm, b = 0.965 nm and c (chain axis) = 1.44 nm. These parameters, together with the density data, indicate that inulin crystallizes along a pseudo-hexagonal six-fold symmetry with an advance per monomer of 0.24 nm. The difference between the hydrated and the semi-hydrated unit cells does not seem to correspond to any change in the conformation of inulin, but rather to a variation in water content.

  10. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  11. Copolymer Crystallization: Approaching Equilibrium

    NASA Astrophysics Data System (ADS)

    Crist, Buckley; Finerman, Terry

    2002-03-01

    Random ethylene-butene copolymers of uniform chemical composition and degree of polymerization are crystallized by evaporation of thin films (1 μ m - 5 μ m) from solution. Macroscopic films ( 100 μm) formed by sequential layer deposition are characterized by density, calorimetry and X-ray techniques. Most notable is the density, which in some cases implies a crystalline fraction nearly 90% of the equilibrium value calculated from Flory theory. Melting temperature of these solution deposited layers is increased by as much as 8 ^oC over Tm for the same polymer crystallized from the melt. Small-angle X-ray scattering indicates that the amorphous layer thickness is strongly reduced by this layered crystallization process. X-ray diffraction shows a pronounced orientation of chain axes and lamellar normals parallel to the normal of the macroscopic film. It is clear that solvent enhances chain mobility, permitting proper sequences to aggregate and crystallize in a manner that is never achieved in the melt.

  12. Nature Detectives

    ERIC Educational Resources Information Center

    Harr, Natalie; Lee, Richard E.; Jr.

    2010-01-01

    Richard Louv's "Last Child in the Woods" (2008) added to a growing consensus to get children outside and experiencing nature. Using ideas from place-based education, the authors present a simple year-long project that brings science, nature, and other curriculum standards to life right in your school yard. With a focus on journaling, this project…

  13. Nature plants.

    PubMed

    2014-06-01

    We welcome our new sister journal Nature Plants and the increased commitment to the plant science community that it represents. This is an opportunity for Nature Genetics to emphasize the use of genetic and genomic tools and resources in discovering new plant biology and solving major agricultural challenges.

  14. Matematica Natural.

    ERIC Educational Resources Information Center

    Lozano, Patricia; Medearis, Linda

    Matematica Natural (Natural Mathematics) is a mathematics curriculum for young children based on the assumption that they learn mathematics through concrete, real life, relevant experiences and that educational differences rather than cultural differences influence math achievement. The curriculum uses hands-on materials and activities to teach…

  15. Natural Beauty

    ERIC Educational Resources Information Center

    Coy, Mary

    2006-01-01

    In this article, the author describes how her art class students were able to create, in just four class periods, clay relief plaques depicting nature. A lesson on texture speeds up the completion of such a project. Seeing that clay is a natural material with its own unique texture, it seemed fitting that the final product should depict a variety…

  16. Protein crystal growth in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenblum, William M.; Delucas, Lawrence J.; Wilson, William W.

    1989-01-01

    Major advances have been made in several of the experimental aspects of protein crystallography, leaving protein crystallization as one of the few remaining bottlenecks. As a result, it has become important that the science of protein crystal growth is better understood and that improved methods for protein crystallization are developed. Preliminary experiments with both small molecules and proteins indicate that microgravity may beneficially affect crystal growth. For this reason, a series of protein crystal growth experiments using the Space Shuttle was initiated. The preliminary space experiments were used to evolve prototype hardware that will form the basis for a more advanced system that can be used to evaluate effects of gravity on protein crystal growth. Various optical techniques are being utilized to monitor the crystal growth process from the incipient or nucleation stage and throughout the growth phase. The eventual goal of these studies is to develop a system which utilizes optical monitoring for dynamic control of the crystallization process.

  17. Protein crystal growth in space

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Bugg, Charles E.

    1991-01-01

    Studies of protein crystal growth in the microgravity environment in space are described with special attention given to the crystal growth facilities and the techniques used in Space Shuttle experiments. The properties of large space-grown crystals of gamma interferon, elastase, lathyros ochrus lectin I, and few other proteins grown on various STS flights are described. A comparison of the microgravity-grown crystals with the bast earth-grown crystals demonstrated that the space-grown crystals are more highly ordered at the molecular level than their earth-grown counterparts. When crystallization conditions were optimized, the microgravity-grown protein crystals were larger, displayed more uniform morphologies, and yielded diffraction data to significantly higher resolution than their earth-grown counterparts.

  18. Controlling Chirality of Entropic Crystals

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Karas, Andrew S.; Schultz, Benjamin A.; Engel, Michael; Glotzer, Sharon C.

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  19. Macromolecular crystal growth in microgravity

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander

    1996-03-01

    Two T=1 and one T=3 plant viruses, along with a protein were crystallized in microgravity during the International Microgravity Laboratory-2 (IML-2) mission in July of 1994 (Koszelak, et al. 1995). The method employed was liquid-liquid diffusion in the European Space Agency's Advanced Protein Crystallization Facility (APCF). Distinctive alterations in the habits of Turnip Yellow Mosaic Virus (TYMV) crystals and hexagonal canavalin crystals were observed. Crystals of cubic Satellite Tobacco Mosaic Virus (STMV) more than thirty times the volume of crystals grown in the laboratory were produced in microgravity. X-ray diffraction analysis demonstrated that both crystal forms of canavalin and the cubic STMV crystals diffracted to significantly higher resolution and had superior diffraction properties as judged by relative Wilson plots.

  20. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  1. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-01

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams. PMID:26550757

  2. Fundamental Studies of Crystal Growth of Microporous Materials

    NASA Technical Reports Server (NTRS)

    Dutta, P.; George, M.; Ramachandran, N.; Schoeman, B.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (1) Nature of the molecular units responsible for the crystal nuclei formation; (2) Nature of the nuclei and nucleation process; (3) Growth process of the nuclei into crystal; (4) Morphological control and size of the resulting crystal; (5) Surface structure of the resulting crystals; (6) Transformation of frameworks into other frameworks or condensed structures. The NASA-funded research described in this report focuses to varying degrees on all of the above issues and has been described in several publications. Following is the presentation of the highlights of our current research program. The report is divided into five sections: (1) Fundamental aspects of the crystal growth process; (2) Morphological and Surface properties of crystals; (3) Crystal dissolution and transformations; (4) Modeling of Crystal Growth; (5) Relevant Microgravity Experiments.

  3. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils. PMID:27617640

  4. Dichroism in Helicoidal Crystals.

    PubMed

    Cui, Xiaoyan; Nichols, Shane M; Arteaga, Oriol; Freudenthal, John; Paula, Froilanny; Shtukenberg, Alexander G; Kahr, Bart

    2016-09-21

    Accounting for the interactions of light with heterogeneous, anisotropic, absorbing, optically active media is part of the characterization of complex, transparent materials. Stained biological structures in thin tissue sections share many of these features, but systematic optical analyses beyond the employ of the simple petrographic microscopes have not be established. Here, this accounting is made for polycrystalline, spherulitic bundles of twisted d-mannitol lamellae grown from melts containing light-absorbing molecules. It has long been known that a significant percentage of molecular crystals readily grow as helicoidal ribbons with mesoscale pitches, but a general appreciation of the commonality of these non-classical crystal forms has been lost. Helicoidal crystal twisting was typically assayed by analyzing refractivity modulation in the petrographic microscope. However, by growing twisted crystals from melts in the presence of dissolved, light-absorbing molecules, crystal twisting can be assayed by analyzing the dichroism, both linear and circular. The term "helicoidal dichroism" is used here to describe the optical consequences of anisotropic absorbers precessing around radii of twisted crystalline fibrils or lamellae. d-Mannitol twists in two polymorphic forms, α and δ. The two polymorphs, when grown from supercooled melts in the presence of a variety of histochemical stains and textile dyes, are strongly dichroic in linearly polarized white light. The bis-azo dye Chicago sky blue is modeled because it is most absorbing when parallel and perpendicular to the radial axes in the respective spherulitic polymorphs. Optical properties were measured using Mueller matrix imaging polarimetry and simulated by taking into account the microstructure of the lamellae. The optical analysis of the dyed, patterned polycrystals clarifies aspects of the mesostructure that can be difficult to extract from bundles of tightly packed fibrils.

  5. Using textons to rank crystallization droplets by the likely presence of crystals.

    PubMed

    Ng, Jia Tsing; Dekker, Carien; Kroemer, Markus; Osborne, Michael; von Delft, Frank

    2014-10-01

    The visual inspection of crystallization experiments is an important yet time-consuming and subjective step in X-ray crystallography. Previously published studies have focused on automatically classifying crystallization droplets into distinct but ultimately arbitrary experiment outcomes; here, a method is described that instead ranks droplets by their likelihood of containing crystals or microcrystals, thereby prioritizing for visual inspection those images that are most likely to contain useful information. The use of textons is introduced to describe crystallization droplets objectively, allowing them to be scored with the posterior probability of a random forest classifier trained against droplets manually annotated for the presence or absence of crystals or microcrystals. Unlike multi-class classification, this two-class system lends itself naturally to unidirectional ranking, which is most useful for assisting sequential viewing because images can be arranged simply by using these scores: this places droplets with probable crystalline behaviour early in the viewing order. Using this approach, the top ten wells included at least one human-annotated crystal or microcrystal for 94% of the plates in a data set of 196 plates imaged with a Minstrel HT system. The algorithm is robustly transferable to at least one other imaging system: when the parameters trained from Minstrel HT images are applied to a data set imaged by the Rock Imager system, human-annotated crystals ranked in the top ten wells for 90% of the plates. Because rearranging images is fundamental to the approach, a custom viewer was written to seamlessly support such ranked viewing, along with another important output of the algorithm, namely the shape of the curve of scores, which is itself a useful overview of the behaviour of the plate; additional features with known usefulness were adopted from existing viewers. Evidence is presented that such ranked viewing of images allows faster but more

  6. Overexpression, Isolation, and Crystallization of Proteins

    NASA Astrophysics Data System (ADS)

    Skelly, Jane V.; Madden, C. Bernadette

    Rapid developments in recombinant technology have made it possible to overproduce selected proteins of specific interest to the levels required for structural analysis by X-ray crystallography. High-level gene expression has facilitated the purification of many proteins that are normally only expressed at low concentrations, as well as those that have proven difficult to purify to homogeneity from natural sources. Furthermore, advances in oligonucleotide site-directed mutagenesis have enabled proteins to be engineered so as to possess certain features that may confer stability or assist in then isolation. There are several examples of proteins that, despite rigorous purification from their natural source, have defied crystallization attempts, e.g., human growth hormone, but have been successfully crystallized from recombinant sources (1). The lack of posttranslational processing in bacterial expressed proteins can often be an advantage to the crystallographer where microheterogeneity presents a problem. Indeed, certain features or residues of a protein that are believed to impede crystal formation by preventing a close-packing arrangement may be successfully deleted by genetic manipulation without destroying its essential functionality (2).

  7. Petrologic Regime Diagrams: Parameterizing Kinetic Controls on Vesiculation and Crystallization

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.

    2014-12-01

    Regime diagrams are commonly employed in geophysical fluid dynamics to classify experimental results and, ideally, to define non-dimensional parameters that allow those results to be applied to natural systems. Petrologic experiments, in contrast, are typically run to mimic a specific natural system, and to infer conditions of magma storage, cooling or decompression. This approach has produced important insight into specific volcanoes, but the results are difficult to generalize. Additionally, very few experimental studies evaluate the vesiculation, crystallization and degassing histories of the same sample suite, an omission that is understandable given the time-consuming nature of the experiments and analysis, but which leaves important gaps in our general understanding of the interplay between gas exsolution, crystal formation and eruption dynamics. One way to bridge these gaps is to construct a regime diagram for conditions of vesiculation and crystallization. As both are controlled by the effective supercooling experienced by the magma during cooling or decompression, one key parameter is supersaturation, although in practice, decompression rate (cooling rate) are commonly used as proxies for supersaturation. Vesiculation and crystallization are also modulated by diffusion (dependent on individual species and melt viscosity), which can be simply approximated by melt composition. Using these parameters and published data for water-saturated decompression experiments, the following fields can be (partially) defined: (1) non-equilibrium volatile exsolution, (2) equilibrium volatile exsolution, and (3) exsolution accompanied by crystallization. Melt compositions, volatile contents and crystal textures of natural samples can be measured, and thus related (crudely) to the regime diagram. Additional information required for fully linking experiments and volcanic pyroclasts includes phase proportions (crystallization efficiency), pyroclast textures (phase change

  8. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  9. Physical vapor transport crystal growth

    NASA Technical Reports Server (NTRS)

    Yoel, Dave W.; Anderson, Elmer; Wu, Maw-Kuen; Cheng, H. Y.

    1987-01-01

    The goals of this research are two-fold: to study effective means of growing ZnSe crystals of good optical quality and to determine the advantages of growing such crystals in microgravity. As of this date the optimal conditions for crystal growth have not been determined. However, successful growth runs were made in two furnances and the results are given.

  10. Growing Crystals for Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.

    1984-01-01

    Unidirectional solidification yields bulk crystals with compositional homogeneity. Unidirectionaly crystal-growth furnace assembly travels vertically so crystal grows upward from bottom tapered end of ampoule. Separately controlled furnaces used for hot (upper) and cold (lower) zones. New process produces ingots with radial compositional homogeneity suitable for fabricating infrared detectors.

  11. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  12. Surface properties of HMX crystal

    NASA Technical Reports Server (NTRS)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  13. Small Business Innovations (Crystal Components)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Scientific Materials Corporation, Bozeman, MT developed the SciMax line of improved Nd:Yag crystals under an Small Business Innovation Research (SBIR) contract with Langley Research Center. They reduced the amount of water trapped in the crystals during growth to improve the optical quality and efficiency. Applications of the crystals include fiber optics, telecommunications, welding, drilling, eye surgery and medical instrumentation.

  14. Growth and characterization of bis-glycine sodium nitrate (BGSN), a novel semi-organic nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Sankar, R.; Ragahvan, C. M.; Mohan Kumar, R.; Jayavel, R.

    2007-11-01

    Single crystals of bis-glycine sodium nitrate (BGSN), a semi-organic nonlinear optical (NLO) material, have been grown by slow cooling method. Good optical quality single crystals with dimensions up to 1.6×1.6×1.0 cm 3 are obtained. Using a single-crystal diffractometer, the morphology of BGSN crystal was identified. Powder X-ray diffraction confirms the crystalline nature of BGSN. The grown crystals were characterized by optical transmission spectrum (UV) and FTIR studies. The NLO property of the crystal was confirmed by Kurtz second harmonic generation (SHG) test, and the output power generated by the crystal was compared with that of KDP. The thermal stability of the crystal was studied by thermo-gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Micro hardness study was carried out for different planes, and the anisotropy behavior of the crystal was observed.

  15. Abnormal incorporation of amino acids into the gas hydrate crystal lattice.

    PubMed

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Ahn, Docheon; Lee, Kun-Hong

    2014-12-28

    Gas hydrates are crystalline ice-like solid materials enclosing gas molecules inside. The possibility of the presence of gas hydrates with amino acids in the universe is of interest when revealing the potential existence of life as they are evidence of a source of water and organic precursors, respectively. However, little is known about how they can naturally coexist, and their crystallization behavior would become far more complex as both crystallize with formation of hydrogen bonds. Here, we report abnormal incorporation of amino acids into the gas hydrate crystal lattice that is contrary to the generally accepted crystallization mode, and this resulted in lattice distortion and expansion. The present findings imply the potential for their natural coexistence by sharing the crystal lattice, and will be helpful for understanding the role of additives in the gas hydrate crystallization.

  16. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  17. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  18. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  19. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  20. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor–crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor–crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of

  1. Crystallization-induced properties from morphology-controlled organic crystals.

    PubMed

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  2. Measuring induction times and crystal nucleation rates.

    PubMed

    Brandel, Clément; ter Horst, Joop H

    2015-01-01

    A large variation is observed in induction times measured under equal conditions in 1 ml solutions. Ruling out experimental errors, this variation originates from the nucleation process. The induction time distribution is explained by the stochastic nature of nucleation if the number of nuclei formed is approaching 1 per vial. Accurate heterogeneous crystal nucleation rates were determined from the induction time distributions on a 1 ml scale for racemic diprophylline in two solvents. The difference in nucleation behaviour in the two solvents originates from the energy barrier for nucleation, which is much higher in the solvent in which induction times are much longer. In addition the pre-exponential factor for the crystal nucleation rate in both solvents is rather low compared to predictions using Classical Nucleation Theory. Unfortunately, concentration and surface characteristics of the effective heterogeneous particles are not known which clouds a further molecular interpretation.

  3. Bacillus thuringiensis and Its Pesticidal Crystal Proteins

    PubMed Central

    Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H.

    1998-01-01

    During the past decade the pesticidal bacterium Bacillus thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the complex relationships between the structure, mechanism of action, and genetics of the organism’s pesticidal crystal proteins, and a coherent picture of these relationships is beginning to emerge. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins, their performance in agricultural and other natural settings, and the evolution of resistance mechanisms in target pests. Armed with this knowledge base and with the tools of modern biotechnology, researchers are now reporting promising results in engineering more-useful toxins and formulations, in creating transgenic plants that express pesticidal activity, and in constructing integrated management strategies to insure that these products are utilized with maximum efficiency and benefit. PMID:9729609

  4. Nanostructural magnetism of polymeric fullerene crystals

    SciTech Connect

    Sheka, E. F. Zaets, V. A.; Ginzburg, I. Ya.

    2006-11-15

    The nature of magnetism in all-carbon crystals composed of polymeric layers of covalently bound fullerene (C{sub 60}) molecules is considered. The results of quantum-chemical calculations performed using the unrestricted Hartree-Fock approximation and the semiempirical AM1 method are presented. It is shown that the exchange integrals J of both a free C{sub 60} molecule and a monomer unit of the polymer are too large ensure the required magnetic susceptibility of the fullerene crystal. However, the J value exhibits an approximately n-fold decrease for an oligomer molecule consisting of n C{sub 60} units. Therefore, in the case of large n, the exchange integral can be reduced to a low level sufficient to provide for a significant magnetic susceptibility. A nanosize (scaly) model of the observed magnetism is proposed that is consistent with recent experimental data, which are indicative of a nanostructural character of magnetic fullerene samples.

  5. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  6. Growth and characterization of new semiorganic nonlinear optical and piezoelectric lithium sulfate monohydrate oxalate single crystals

    SciTech Connect

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2015-04-15

    Highlights: • A new semiorganic single crystal of LSO grown by slow evaporation technique. • Morphological studies of the LSO crystal deduced by BFDH law. • In the UV–vis spectrum wide transparent region and large band gap were found. • SHG is equal to KDP crystal and d{sub 33} was found to be equal to 6pC/N. • Grown crystal belongs to softer category. - Abstract: New semiorganic crystal of lithium sulfate monohydrate oxalate (LSO) for nonlinear application was synthesized by controlled slow evaporation method. The growth rate of various planes of the grown crystal was estimated by morphological study. Single crystal XRD analysis confirmed that the crystal belongs to triclinic lattice with space group P1. High transparency (∼95%) with large band gap (4.57 eV) was analyzed by UV–vis studies. FTIR and Raman spectroscopy were used to identify various functional groups present in the LSO crystal. SHG efficiency was found to be equal to the KDP crystal. Thermal stability (up to 117.54 °C) and melting point (242 °C) of the crystal were studied by TG-DTA. In dielectric measurements, the value of dielectric constant decreases with increase in frequency. Hardness studies confirmed soft nature of crystals. The piezoelectric coefficient was found to be 6pC/N along [0 0 1].

  7. Molecular dynamics simulations of glycine crystal-solution interface

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumik; Briesen, Heiko

    2009-11-01

    Glycine is an amino acid that has several applications in the pharmaceutical industry. Hence, growth of α-glycine crystals through solution crystallization is an important process. To gain a fundamental understanding of the seeded growth of α-glycine from aqueous solution, the (110) face of α-glycine crystal in contact with a solution of glycine in water has been simulated with molecular dynamics. The temporal change in the location of the interface of the α-glycine crystal seed has been characterized by detecting a density gradient. It is found that the α-glycine crystal dissolves with time at a progressively decreasing rate. Diffusion coefficients of glycine adjacent to (110) face of α-glycine crystal have been calculated at various temperatures (280, 285, 290, 295, and 300 K) and concentrations (3.6, 4.5, and 6.0 mol/l) and compared to that in the bulk solution. In order to gain a fundamental insight into the nature of variation in such properties at the interface and the bulk, the formation of hydrogen bonds at various temperatures and concentrations has been investigated. It is found that the nature of interaction between various atoms of glycine molecules, as characterized by radial distribution functions, can provide interesting insight into the formation of hydrogen bonds that in turn affect the diffusion coefficients at the interface.

  8. Liquid crystals: a new topic in physics for undergraduates

    NASA Astrophysics Data System (ADS)

    Pavlin, Jerneja; Vaupotič, Nataša; Čepič, Mojca

    2013-05-01

    This paper presents a teaching module about liquid crystals. Since liquid crystals are linked to everyday student experiences and are also a topic of current scientific research, they are an excellent candidate for a modern topic to be introduced into education. We show that liquid crystals can provide a pathway through several fields of physics such as thermodynamics, optics and electromagnetism. We discuss what students should learn about liquid crystals and what physical concepts they should know before considering them. In the presentation of the teaching module, which consists of a lecture and experimental work in a chemistry and physics laboratory, we focus on experiments on phase transitions, polarization of light, double refraction and colours. A pilot evaluation of the module was performed among pre-service primary school teachers who have no special preference for natural sciences. The evaluation shows that the module is very efficient in transferring knowledge. A prior study showed that the informally obtained pre-knowledge on liquid crystals of the first-year students from several different fields of study was negligible. Since social science students are the least interested in natural sciences, it can be expected that students in any study programme will on average achieve at least as good qualitative knowledge of phenomena related to liquid crystals as the group involved in the pilot study.

  9. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  10. Plenum type crystal growth process

    DOEpatents

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  11. Unprecedented crystal dynamics: reversible cascades of single-crystal-to-single-crystal transformations.

    PubMed

    Lv, Gao-Chao; Wang, Peng; Liu, Qing; Fan, Jian; Chen, Kai; Sun, Wei-Yin

    2012-10-21

    A series of Cu(II) complexes showed unprecedented reversible cascades of single-crystal-to-single-crystal (SCSC) transformations, and more interestingly, very rapid crystal dynamic processes were observed in this system via the substitution of coordinating components without loss of single crystallinity.

  12. Surrogate Seeds For Growth Of Crystals

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1989-01-01

    Larger crystals of higher quality grown. Alternative method for starting growth of crystal involves use of seed crystal of different material instead of same material as solution. Intended for growing single-crystal proteins for experiments but applicable in general to growth of crystals from solutions and to growth of semiconductor or other crystals from melts.

  13. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

    NASA Astrophysics Data System (ADS)

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

  14. EDITORIAL: Photonic Crystal Devices

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pallab K.

    2007-05-01

    The engineering of electromagnetic modes at optical frequencies in artificial dielectric structures with periodic and random variation of the refractive index, enabling control of the radiative properties of the materials and photon localization, was first proposed independently by Yablonovitch and John in 1987. It is possible to control the flow of light in the periodic dielectric structures, known as photonic crystals (PC). As light waves scatter within the photonic crystal, destructive interference cancels out light of certain wavelengths, thereby forming a photonic bandgap, similar to the energy bandgap for electron waves in a semiconductor. Photons whose energies lie within the gap cannot propagate through the periodic structure. This property can be used to make a low-loss cavity. If a point defect, such as one or more missing periods, is introduced into the periodic structure a region is obtained within which the otherwise forbidden wavelengths can be locally trapped. This property can be used to realize photonic microcavities. Similarly, a line of defects can serve as a waveguide. While the realization of three-dimensional (3D) photonic crystals received considerable attention initially, planar two-dimensional (2D) structures are currently favoured because of their relative ease of fabrication. 2D photonic crystal structures provide most of the functionality of 3D structures. These attributes have generated worldwide research and development of sub-μm and μm size active and passive photonic devices such as single-mode and non- classical light sources, guided wave devices, resonant cavity detection, and components for optical communication. More recently, photonic crystal guided wave devices are being investigated for application in microfludic and biochemical sensing. Photonic crystal devices have been realized with bulk, quantum well and quantum dot active regions. The Cluster of articles in this issue of Journal of Physics D: Applied Physics provides a

  15. CRYSTAL/FACE

    NASA Technical Reports Server (NTRS)

    Baumgardner, Darrel; Kok, Greg; Anderson, Bruce

    2004-01-01

    Droplet Measurement Technologies (DMT), under funding from NASA, participated in the CRYSTAL/FACE field campaign in July, 2002 with measurements of cirrus cloud hydrometeors in the size range from 0.5 to 1600 microns. The measurements were made with the DMT Cloud, Aerosol and Precipitation Spectrometer (CAPS) that was flown on NASA's WB57F. With the exception of the first research flight when the data system failed two hours into the mission, the measurement system performed almost flawlessly during the thirteen flights. The measurements from the CAPS have been essential for interpretation of cirrus cloud properties and their impact on climate. The CAPS data set has been used extensively by the CRYSTAL/FACE investigators and as of the date of this report, have been included in five published research articles, 10 conference presentations and six other journal articles currently in preparation.

  16. Graphite polyhedral crystals.

    PubMed

    Gogotsi, Y; Libera, J A; Kalashnikov, N; Yoshimura, M

    2000-10-13

    Polyhedral nano- and microstructures with shapes of faceted needles, rods, rings, barrels, and double-tipped pyramids, which we call graphite polyhedral crystals (GPCs), have been discovered. They were found in pores of glassy carbon. They have nanotube cores and graphite faces, and they can exhibit unusual sevenfold, ninefold, or more complex axial symmetry. Although some are giant radially extended nanotubes, Raman spectroscopy and transmission electron microscopy suggest GPCs have a degree of perfection higher than in multiwall nanotubes of similar size. The crystals are up to 1 micrometer in cross section and 5 micrometers in length, and they can probably be grown in much larger sizes. Preliminary results suggest a high electrical conductivity, strength, and chemical stability of GPC.

  17. Macromolecular crystal growing system

    NASA Technical Reports Server (NTRS)

    Snyder, Robert S. (Inventor); Herren, Blair J. (Inventor); Carter, Daniel C. (Inventor); Yost, Vaughn H. (Inventor); Bugg, Charles E. (Inventor); Delucas, Lawrence J. (Inventor); Suddath, Fred L. (Inventor)

    1991-01-01

    A macromolecular crystal growing system especially designed for growing crystals in the low gravity of space as well as the gravity of earth includes at least one tray assembly, a carrier assembly which receives the tray, and a refrigeration-incubation module in which the carrier assembly is received. The tray assembly includes a plurality of sealed chambers with a plastic syringe and a plug means for the double tip of the syringe provided therein. Ganging mechanisms operate the syringes and plugs simultaneously in a precise and smooth operation. Preferably, the tray assemblies are mounted on ball bearing slides for smooth operation in inserting and removing the tray assemblies into the carrier assembly. The plugging mechanism also includes a loading control mechanism. A mechanism for leaving a syringe unplugged is also provided.

  18. Twisted aspirin crystals.

    PubMed

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-01

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the <010> growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites. PMID:23425247

  19. Crystal plasticity of natural garnet: New microstructural evidence

    NASA Astrophysics Data System (ADS)

    Prior, David J.; Wheeler, John; Brenker, Frank E.; Harte, Ben; Matthews, Mike

    2000-11-01

    Scanning electron microscope (SEM) orientation contrast images of mantle nodules show that garnets contain cellular domains of different crystallographic orientation. Electron backscatter diffraction shows small crystallographic mismatches (<3°) across cell boundaries. A transmission electron microscope examination of an area containing these substructures shows that the cell boundaries comprise arrays of dislocations and are subgrain boundaries. The observed garnet substructures relate to high-temperature dislocation creep and recovery. This is the first time that subgrains have been shown to occur in a significant volume of an individual garnet. Wider application of new SEM techniques may enable us to use garnet microstructures to determine deformation conditions more exactly and will aid interpretation of garnet microchemical data.

  20. Path to protein crystallization

    SciTech Connect

    2010-01-01

    Growth of two-dimensional S-layer crystals on supported lipid bilayers observed in solution using in situ atomic force microscopy. This movie shows proteins sticking onto the supported lipid bilayer, forming a mobile phase that condenses into amorphous clusters, and undergoing a phase transition to crystalline clusters composed of 2 to 15 tetramers. These initial clusters then enter a growth phase in which new tetramers form exclusively at unoccupied lattice sites along the cluster edges.

  1. The Crystal Set

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2014-04-01

    In past issues of this journal, the late H. R. Crane wrote a long series of articles under the running title of "How Things Work." In them, Dick dealt with many questions that physics teachers asked themselves, but did not have the time to answer. This article is my attempt to work through the physics of the crystal set, which I thought I knew, but actually did not.

  2. Protein Crystal Isocitrate Lyase

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The comparison of protein crystal, Isocitrate Lyase earth-grown (left) and space-grown (right). This is a target enzyme for fungicides. A better understanding of this enzyme should lead to the discovery of more potent fungicides to treat serious crop diseases such as rice blast; it regulates the flow of metabolic intermediates required for cell growth. Principal Investigator is Larry DeLucas.

  3. Photonic crystal optical memory

    NASA Astrophysics Data System (ADS)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  4. High density protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rouleau, Robyn (Inventor); Delucas, Lawrence (Inventor); Hedden, Douglas Keith (Inventor)

    2004-01-01

    A protein crystal growth assembly including a crystal growth cell and further including a cell body having a top side and a bottom side and a first aperture defined therethrough, the cell body having opposing first and second sides and a second aperture defined therethrough. A cell barrel is disposed within the cell body, the cell barrel defining a cavity alignable with the first aperture of the cell body, the cell barrel being rotatable within the second aperture. A reservoir is coupled to the bottom side of the cell body and a cap having a top side is disposed on the top side of the cell body. The protein crystal growth assembly may be employed in methods including vapor diffusion crystallization, liquid to liquid crystallization, batch crystallization, and temperature induction batch mode crystallization.

  5. Crystallization of human nicotinamide phosphoribosyltransferase

    SciTech Connect

    Takahashi, Ryo; Nakamura, Shota; Yoshida, Takuya; Kobayashi, Yuji; Ohkubo, Tadayasu

    2007-05-01

    Human nicotinamide phosphoribosyltransferase has been crystallized using microseeding methods and X-ray diffraction data have been collected at 2.0 Å resolution. In the NAD biosynthetic pathway, nicotinamide phosphoribosyltransferase (NMPRTase; EC 2.4.2.12) plays an important role in catalyzing the synthesis of nicotinamide mononucleotide from nicotinamide and 5′-phosphoribosyl-1′-pyrophosphate. Because the diffraction pattern of the initally obtained crystals was not suitable for structure analysis, the crystal quality was improved by successive use of the microseeding technique. The resultant crystals diffracted to 2.0 Å resolution. These crystals belonged to space group P21, with unit-cell parameters a = 60.56, b = 106.40, c = 82.78 Å. Here, the crystallization of human NMPRTase is reported in the free form; the crystals should be useful for inhibitor-soaking experiments on the enzyme.

  6. Modern trends in technical crystallization

    NASA Astrophysics Data System (ADS)

    Matz, G.

    1980-04-01

    Interesting and significant developments have occurred in the last decade in both crystallization equipment and in the theory of crystallization process. In the field of technical crystallization new crystallizers have been developed and computer modelling has become important in scaling up and in the achievement of increased performance. The DP-Kristaller developed by Escher-Wyss-Tsukishima, the Brodie purifier, the sieve tray column having dancing balls, the automated multiple crystallization process due to Mützenberg and Saxer and the double belt cooler, all of which represent technical developments, are described in the first section. The second part of the paper reviews computer modelling of the fluidized bed crystallizer, chemical precipitation, flaking and prilling. Finally, there is a brief discussion of the impact of technical crystallization processes on environmental protection.

  7. Crystallization of undercooled liquid fenofibrate.

    PubMed

    Amstad, Esther; Spaepen, Frans; Weitz, David A

    2015-11-28

    Formulation of hydrophobic drugs as amorphous materials is highly advantageous as this increases their solubility in water and therefore their bioavailability. However, many drugs have a high propensity to crystallize during production and storage, limiting the usefulness of amorphous drugs. We study the crystallization of undercooled liquid fenofibrate, a model hydrophobic drug. Nucleation is the rate-limiting step; once seeded with a fenofibrate crystal, the crystal rapidly grows by consuming the undercooled liquid fenofibrate. Crystal growth is limited by the incorporation of molecules into its surface. As nucleation and growth both entail incorporation of molecules into the surface, this process likely also limits the formation of nuclei and thus the crystallization of undercooled liquid fenofibrate, contributing to the good stability of undercooled liquid fenofibrate against crystallization.

  8. Liquid crystals based sensing platform-technological aspects.

    PubMed

    Hussain, Zakir; Qazi, Farah; Ahmed, Muhammad Imran; Usman, Adil; Riaz, Asim; Abbasi, Amna Didar

    2016-11-15

    In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.

  9. Liquid crystals based sensing platform-technological aspects.

    PubMed

    Hussain, Zakir; Qazi, Farah; Ahmed, Muhammad Imran; Usman, Adil; Riaz, Asim; Abbasi, Amna Didar

    2016-11-15

    In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme. PMID:27162142

  10. Gelled Lyotropic Liquid Crystals.

    PubMed

    Xu, Yang; Laupheimer, Michaela; Preisig, Natalie; Sottmann, Thomas; Schmidt, Claudia; Stubenrauch, Cosima

    2015-08-11

    In our previous work we were able to prove that gelled bicontinuous microemulsions are a novel type of orthogonal self-assembled system. The study at hand aims at complementing our previous work by answering the question of whether gelled lyotropic liquid crystals are also orthogonal self-assembled systems. For this purpose we studied the same system, namely, water-n-decane/12-hydroxyoctadecanoic acid (12-HOA)-n-decyl tetraoxyethylene glycol ether (C10E4). The phase boundaries of the nongelled and the gelled lyotropic liquid crystals were determined visually and with (2)H NMR spectroscopy. Oscillating shear measurements revealed that the absolute values of the storage and loss moduli of the gelled liquid crystalline (LC) phases do not differ very much from those of the binary organogel. While both the phase behavior and the rheological properties of the LC phases support the hypothesis that gelled lyotropic liquid crystals are orthogonal self-assembled systems, freeze-fracture electron microscopy (FFEM) seems to indicate an influence of the gel network on the structure of the Lα phase and vice versa.

  11. Slotted Photonic Crystal Sensors

    PubMed Central

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  12. Slotted photonic crystal sensors.

    PubMed

    Scullion, Mark G; Krauss, Thomas F; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  13. Quartz Crystal Microbalance Data

    SciTech Connect

    Baxamusa, S H

    2011-11-16

    We are using a Qpod quartz crystal microbalance (manufactured by Inficon) for use as a low-volume non-volatile residue analysis tool. Inficon has agreed to help troubleshoot some of our measurements and are requesting to view some sample data, which are attached. The basic principle of an NVR analysis is to evaporate a known volume of solvent, and weigh the remaining residue to determine the purity of the solvent. A typical NVR analysis uses 60 g of solvent and can measure residue with an accuracy of +/- 0.01 mg. The detection limit is thus (0.01 mg)/(60 g) = 0.17 ppm. We are attempting to use a quartz crystal microbalance (QCM) to make a similar measurement. The attached data show the response of the QCM as a 5-20 mg drop of solvent evaporates on its surface. The change in mass registered by the QCM after the drop evaporates is the residue that deposits on the crystal. On some measurements, the change in mass in less than zero, which is aphysical since the drop will leave behind {>=}0 mass of residue. The vendor, Inficon, has agreed to look at these data as a means to help troubleshoot the cause.

  14. Specific features of seeding and growth of bulk polar crystals

    NASA Astrophysics Data System (ADS)

    Tsvetkov, E. G.; Tyurikov, V. I.

    2000-07-01

    Formal analysis of seeding and growth of crystals exhibiting spontaneous polarization has been attempted using lithium iodate (α-LiIO 3) and barium metaborate (β-BaB 2O 4) as representative materials grown from aqueous and high-temperature solutions, respectively. We suggest that the specific growth features of nonlinear optical α-LiIO 3 and β-BaB 2O 4 crystals are being determined by formation and evolutionary restructuring of a double electric layer (DEL) at the growth interface. Both composition and structure of the DEL are governed by potential-determining ions of the growth medium as well as by the nature of crystal polarization and its properties. We have found that the composition and structure of the DEL together with the magnitude and direction of spontaneous polarization of the seed (crystal) predetermine the macrotwinning boundaries during seeding and subsequent stages of crystal growth as well as the formation of microtwin structures of various sizes. Similar reasoning is applied to possible crystal asymmetry, cellular growth, extinction of growth, etc. Model concepts of seeding and growth of bulk polar crystals are discussed.

  15. Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments

    SciTech Connect

    De Yoreo, James J.; Gilbert, Pupa U.; Sommerdijk, Nico; Penn, R. Lee; Whitelam, Stephen B.; Joester, Derk; Zhang, Hengzhong; Rimer, Jeffrey D.; Navrotsky, Alexandra; Banfield, Jillian F.; Wallace, Adam F.; Michel, F. M.; Meldrum, Fiona C.; Colfen, Helmut; Dove, Patricia M.

    2015-07-31

    Field and laboratory observations show that crystals commonly form by the addition and attachment of particles that range from multi-ion complexes to fully formed nanoparticles. These non-classical pathways to crystallization are diverse, in contrast to classical models that consider the addition of monomeric chemical species. We review progress toward understanding crystal growth by particle attachment processes and show that multiple pathways result from the interplay of free energy landscapes and reaction dynamics. Much remains unknown about the fundamental aspects; particularly the relationships between solution structure, interfacial forces, and particle motion. Developing a predictive description that connects molecular details to ensemble behavior will require revisiting long-standing interpretations of crystal formation in synthetic systems and patterns of mineralization in natural environments.

  16. Invariant patterns in crystal lattices: Implications for protein folding algorithms

    SciTech Connect

    HART,WILLIAM E.; ISTRAIL,SORIN

    2000-06-01

    Crystal lattices are infinite periodic graphs that occur naturally in a variety of geometries and which are of fundamental importance in polymer science. Discrete models of protein folding use crystal lattices to define the space of protein conformations. Because various crystal lattices provide discretizations of the same physical phenomenon, it is reasonable to expect that there will exist invariants across lattices related to fundamental properties of the protein folding process. This paper considers whether performance-guaranteed approximability is such an invariant for HP lattice models. The authors define a master approximation algorithm that has provable performance guarantees provided that a specific sublattice exists within a given lattice. They describe a broad class of crystal lattices that are approximable, which further suggests that approximability is a general property of HP lattice models.

  17. Polymer single crystal membrane from liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Wang, Wenda; Li, Christopher; Soft Matter Research Group-Drexel University Team

    2013-03-01

    Vesicles, mimicking the structure of cell membrane at the molecular scale, are small membrane-enclosed sacks that can store or transport substances. The weak mechanical properties and the nature of environment-sensitivity of the current available vesicles: liposomes, polymersomes, colloidsomes limit their applications as an excellent candidate for targeting delivery of drugs/genes in biomedical engineering and treatment. Recently, we developed an emulsion-based method to grow curved polymer single crystals. Varying the polymer concentration and/or the emulsification conditions (such as surfactant concentration, water-oil volume ratio), curved crystals with different sizes and different openness could be obtained. This growing process was attributed to polymer crystal growth along the liquid/liquid interface. In addition, the liquid/liquid interfacial crystal growth is promising for synthesis of enclosed hollow sphere.

  18. Teaching Protein Crystallization by the Gel Acupuncture Method

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan Manuel; Moreno, Abel; Otálora, F.; Rondón, D.; Viedma, C.; Zauscher, F.

    1998-04-01

    This paper provides a detailed description of a simple method to obtain large protein single crystals inside glass capillaries. The method is based upon the properties of gels, which are used to hold capillaries containing the protein solution, and also to act as the mass transport medium for the precipitating agent. Recipes for a set of selected experiments bringing a hands-on experience on the crystallization of different soluble proteins are supplied. These experiments are inexpensive and straightforward enough for teaching at the undergraduate level that large biological macromolecules that are the gate our structural studies and drug design can be crystallized. Using simple equations accounting for the solubility of proteins and for the nucleation process, the experimental results are explained to provide a rational approach to the problem. In addition, because of the nature of the crystallization method which is based on diffusion-reactions systems, the student is introduced to the meaning of self-organization.

  19. Polymer-controlled crystallization of unique mineral superstructures.

    PubMed

    Chen, Shao-Feng; Zhu, Jian-Hua; Jiang, Jun; Cai, Guo-Bin; Yu, Shu-Hong

    2010-01-26

    The origin of complex superstructures of biomaterials in biological systems and the amazing self-assembly mechanisms of their emergence have attracted a great deal of attention recently. Mimicking nature, diverse kinds of hydrophilic polymers with different functionalities and organic insoluble matrices have been designed for the morphogenesis of inorganic crystals. In this Research News, emerging new strategies for morphogenesis and controlled crystal growth of minerals, that is, selective adsorption and mesoscale transformation for highly ordered superstructures, the combination of a synthetic hydrophilic polymer with an insoluble matrix, a substrate, or the air/solution interface, and controlled crystallization in a mixed solvent are highlighted. It is shown that these new strategies can be even further extended to morphogenesis and controlled crystallization of diverse inorganic or inorganic-organic hybrid materials with structural complexity, structural specialties, and improved functionalities. PMID:20217750

  20. Tunable optical anisotropy in three-dimensional photonic crystals

    SciTech Connect

    Che Ming; Li Zhiyuan; Liu Rongjuan

    2007-08-15

    Artificial optical birefringence can be realized in three-dimensional photonic crystals with a uniaxial structural symmetry: e.g., woodpile photonic crystals with a tetragonal lattice structure in the long-wavelength limit. The ordinary and extraordinary indices of refraction are determined from calculation of the reflection coefficient for a plane wave incident on the surface of a semi-infinite photonic crystal at different angles. We find that the anisotropy can be widely tuned by simply changing the width and thickness of the dielectric rod. A large relative negative anisotropy over 33% is found. A transition from positive anisotropy to negative anisotropy can be readily achieved. At certain parameters, a structurally anisotropic nanostructure can behave like an optically isotropic medium. Our study opens a window to use artificial nanostructures to create an arbitrary optical anisotropy that is not possible in natural crystals.

  1. Crystal Quality, the Long and the Short of It

    NASA Technical Reports Server (NTRS)

    Snell, Eddie H.

    2004-01-01

    The term "crystal quality" is ambiguous and implies different meanings to different crystallographers. For the physical crystallographer who aims to understand long-range aspects of crystal growth mosaicity is one of the leading measures of perfection. For the structural crystallographer and those seeking to understand growth at a short-range, molecular level, the detail in the resulting structure is a key goal. Different quality measures have been developed due to different needs. Each of the measures has advantages and each has limitations. In this talk a sample of these measures will be discussed with particular emphasis applied to their application in the analysis of microgravity grown crystals. The advantages and limitations of each will be discussed. Ultimately, the choice of crystal quality measurement lies in the nature of the question asked. It is scfill to remember that beauty is often in the eye of the beholder.

  2. Simulation and visualization of crystal shapes and interfaces

    NASA Astrophysics Data System (ADS)

    Adler, Joan; Saltoun, Lilach; Polturak, Emil

    2016-09-01

    Nature often arranges atoms in the shape of perfect crystals, but sometimes she creates defects and multiple domains. The optimal crystal shape at zero kelvin can be found via the Wulff construction, which can be only be carried out analytically for those trivial cases where next nearest neighbour interactions can be neglected. For our system of interest - videlicit the HCP non-Bravais case, numerical simulation is needed. This system is of relevance because we are modeling helium crystals. We have modeled two adjacent crystallites with different orientations in contact creating twist or tilt grain boundaries, and calculated the surface energy of the interface. Experience gained from several aspects of this project have a wider applications, including the condensed matter simulation application to sample construction for multi-domain crystals, and a visualization one for representation in the presence of grain boundaries. The optimization of sample shapes into their groundstates is also related to wavefront optimization in multimirror telescopes.

  3. Macroscale Janus polymer single crystal film and its wettability analysis

    NASA Astrophysics Data System (ADS)

    Qi, Hao; Wang, Wenda; Zhou, Tian; Li, Christopher

    2014-03-01

    Liquid-liquid interface between two immiscible solvents is crucial to studying amphiphile and colloidal self-assembly. It can also guide chain folding during the crystallization process. In this presentation, we show that crystallization of dicarboxy end functionalized poly(ɛ-caprolactone) at water/pentyl acetate interface result in millimeter scale, uniform polymer single crystal (PSC) film. Due to the asymmetric nature at the liquid-liquid interface, the PSC film exhibit Janus property - a hydrophobic side and a hydrophilic side, which is confirmed by in-situ nano-condensation experiment using an environmental scanning electron microscope. The thickness of the PSC film changes with different polymer solution concentration, revealing a surface tension dominated crystallization process.

  4. Natural Radioactivity in Bananas

    SciTech Connect

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-07

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  5. Optical Investigation of Nanoconfined Crystal Growth

    NASA Astrophysics Data System (ADS)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G

  6. A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

    NASA Astrophysics Data System (ADS)

    Konovalenko, Sergey I.; Ananyev, Sergey A.; Chukanov, Nikita V.; Rastsvetaeva, Ramiza K.; Aksenov, Sergey M.; Baeva, Anna A.; Gainov, Ramil R.; Vagizov, Farit G.; Lopatin, Oleg N.; Nebera, Tatiana S.

    2015-11-01

    A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine-spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm-1 (with shoulders at 500 and 600 cm-1) corresponding to cation-oxygen stretching vibrations and weak bands at 1093 and 1185 cm-1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: {{Mn}}_{0.06}^{2 + } {{Fe}}_{0.21}^{2 + } {{Fe}}_{0.47}^{3 + } Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/ c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern

  7. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  8. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  9. Crystallization Optimum Solubility Screening: using crystallization results to identify the optimal buffer for protein crystal formation

    SciTech Connect

    Collins, Bernard; Stevens, Raymond C.; Page, Rebecca

    2005-12-01

    It is shown how protein crystallization results can be used to identify buffers that improve protein solubility and, in turn, crystallization success. An optimal solubility screen is described that uses the results of crystallization trials to identify buffers that improve protein solubility and, in turn, crystallization success. This screen is useful not only for standard crystallization experiments, but also can easily be implemented into any high-throughput structure-determination pipeline. As a proof of principle, the predicted novel-fold protein AF2059 from Archaeoglobus fulgidus, which was known to precipitate in most buffers and particularly during concentration experiments, was selected. Using the crystallization results of 192 independent crystallization trials, it was possible to identify a buffer containing 100 mM CHES pH 9.25 that significantly improves its solubility. After transferring AF2059 into this ‘optimum-solubility’ buffer, the protein was rescreened for crystal formation against these same 192 conditions. Instead of extensive precipitation, as observed initially, it was found that 24 separate conditions produced crystals and the exchange of AF2059 into CHES buffer significantly improved crystallization success. Fine-screen optimization of these conditions led to the production of a crystal suitable for high-resolution (2.2 Å) structure determination.

  10. Crystal growth in salt efflorescence

    NASA Astrophysics Data System (ADS)

    Zehnder, Konrad; Arnold, Andreas

    1989-09-01

    Salt efflorescences strongly affect wall paintings and other monuments. The external factors governing the crystal habits and aggregate forms are studied phenomenologically in laboratory experiments. As salt contaminated materials dry, slats crystallize forming distinct sequences of crystal habits and aggregate forms on and underneath the surfaces. Four phases may be distinguished: (1) Large individual crystals with equilibrium forms grow immersed in a thick solution film; (2) granular crusts of small isometric crystals grow covered by a thin solution film; (3) fibrous crusts of columnar crystals grow from a coherent but thin solution film so that the crystals are in contact with solution only at their base; (4) whiskers grow from isolated spots of very thin solution films into the air. The main factor governing these morphologies is the humidity of the substrate. A porous material cracks while granular crystals (approaching their equilibrium forms) grow within the large pores. As the fissures widen, the habits pass into columnar crystals and then into whiskers. Because this succession corresponds to the crystallization sequence on the substrate surface it can be traced back to the same growth conditions.

  11. DDA Computations of Porous Aggregates with Forsterite Crystals: Effects of Crystal Shape and Crystal Mass Fraction

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Lindsay, Sean S.; Harker, David; Woodward, Charles; Kelley, Michael S.; Kolokolova, Ludmilla

    2015-01-01

    Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 < or = fcrystal < or = 0.74. Radial transport models that predict the enrichment of the outer disk (>25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 < or = fcrystal < or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial

  12. [Natural selection].

    PubMed

    Mayr, E

    1985-05-01

    Much of the resistance against Darwin's theory of natural selection has been due to misunderstandings. It is shown that natural selection is not a tautology and that it is a two-step process. The first step, the production of variation, is under the control of chance; the second step, selection proper, is an anti-chance process, but subject to many constraints. The target of selection is the individual as a whole, and many neutral mutations can be retained as hitchhikers of successful genotypes. Sexual selection results from selection for pure reproductive success.

  13. Crystal deodorant dermatitis: irritant dermatitis to alum-containing deodorant.

    PubMed

    Gallego, H; Lewis, E J; Crutchfield, C E

    1999-07-01

    Two patients developed an irritant dermatitis of the axillae shortly after using an over-the-counter "natural deodorant crystal" product containing alum. We discuss this previously unreported, untoward reaction to alum, an ancient agent with newfound popularity as an alternative health product. PMID:10431678

  14. Crystallization process to reduce NORM-containing waste

    SciTech Connect

    Hayden, C.G.; Kraemer, T.F.

    1995-11-01

    This paper describes a process of Naturally Occurring Radioactive Material (NORM) waste reduction for scales, sludges, and soils. The process involves dissolution and fractional crystallization steps that concentrate the radioactive material into a small mass of barite. The concentration of radium in the product, barite, can be increased or decreased. The NORM-containing barite product is suitable for slurry injection into sandstone formations.

  15. Geometric Potential and Transport in Photonic Topological Crystals

    SciTech Connect

    Szameit, Alexander; Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Nolte, Stefan; Tuennermann, Andreas; Longhi, Stefano

    2010-04-16

    We report on the experimental realization of an optical analogue of a quantum geometric potential for light wave packets constrained on thin dielectric guiding layers fabricated in silica by the femtosecond laser writing technology. We further demonstrate the optical version of a topological crystal, with the observation of Bloch oscillations and Zener tunneling of a purely geometric nature.

  16. Liquid Crystal Television For Optical Correlation

    NASA Astrophysics Data System (ADS)

    Perng, Wen-Sheng; Cheng, Yih-Shyang; Chang, Ming-Wen

    1987-08-01

    In this paper, we present a newly developed hybrid multi-channel real-time pattern recognition system. Two modified commercial liquid crystal televisions are applied as a real-time incoherent to coherent image transducer and a device to produce converging wavelets with different focal positions. Taking advantages of the cross-grating nature of the LCTV screen, a multi-channel correlator becomes possible. This hybrid system has both the high processing speed of an optical system and the flexibility of an electronic system.

  17. Reversed Doppler effect in photonic crystals.

    PubMed

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  18. Deformation of ⊥m single quartz crystals

    NASA Astrophysics Data System (ADS)

    Krasner, P.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The rheology of quartz deformed by dislocation creep is essential to understanding the strength of the mid to lower continental crust. Our current understanding of quartz rheology is derived primarily from studies of polycrystalline quartz and little is known about the temperature, strain rate, or water dependence of the individual quartz slip systems. In order to better understand the rheology of quartz slip systems, we have deformed synthetic quartz single crystals with the prism oriented at 45° to the compression direction (⊥m orientation). We converted the gel-type water found in synthetic quartz crystals to free water fluid inclusions, similar to water observed in milky quartz crystals, by annealing the crystals at 900°C/0.1 MPa for 24 hours. The single crystals were deformed at a confining pressure of 1.5 GPa with temperatures of 850 to 1000°C and strain rates of 10-6 to 10-4/s. FTIR measurements of water concentrations in the starting material, annealed synthetic crystals and deformed synthetic quartz crystals indicate that the water concentrations (125-300 H/106Si) are not affected by the annealing process or deformation. However, the spectra in the annealed and deformed samples are similar to those of natural milky quartz rather than those of synthetic quartz. Results of temperature and strain rate stepping experiments indicate that the strength of the crystals decreases with increasing temperature and/or decreasing strain rate. Undulatory extinction is the predominant microstructure observed in deformed samples, which is consistent with deformation by dislocation creep. The strength of the ⊥m oriented quartz crystals deformed in this study with free water is greater than those of the studies of synthetic quartz with gel type water (Linker and Kirby, 1981 and Muto et al., 2011).

  19. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  20. X-ray Diffraction Crystal Calibration and Characterization

    SciTech Connect

    Michael J. Haugh; Richard Stewart; Nathan Kugland

    2009-06-05

    National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidence mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.

  1. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    2003-01-01

    A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.

  2. VO{sub 2} (A): Reinvestigation of crystal structure, phase transition and crystal growth mechanisms

    SciTech Connect

    Rao Popuri, Srinivasa; Artemenko, Alla; Labrugere, Christine; Miclau, Marinela; Villesuzanne, Antoine; Pollet, Michaël

    2014-05-01

    Well crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal reaction in the presence of V{sub 2}O{sub 5} and oxalic acid. With the advantage of high crystalline samples, we propose P4/ncc as an appropriate space group at room temperature. From morphological studies, we found that the oriented attachment and layer by layer growth mechanisms are responsible for the formation of VO{sub 2} (A) micro rods. The structural and electronic transitions in VO{sub 2} (A) are strongly first order in nature, and a marked difference between the structural transition temperatures and electronic transitions temperature was evidenced. The reversible intra- (LTP-A to HTP-A) and irreversible inter- (HTP-A to VO{sub 2} (M1)) structural phase transformations were studied by in-situ powder X-ray diffraction. Attempts to increase the size of the VO{sub 2} (A) microrods are presented and the possible formation steps for the flower-like morphologies of VO{sub 2} (M1) are described. - Graphical abstract: Using a single step and template free hydrothermal synthesis, well crystallized VO{sub 2} (A) microrods were prepared and the P4/ncc space group was assigned to the room temperature crystal structure. Reversible and irreversible phase transitions among different VO{sub 2} polymorphs were identified and their progressive nature was highlighted. Attempts to increase the microrods size, involving layer by layer formation mechanisms, are presented. - Highlights: • Highly crystallized VO{sub 2} (A) microrods were grown via a single step hydrothermal process. • The P4/ncc space group was determined for VO{sub 2} (A) at room temperature. • The electronic structure and progressive nature of the structural phase transition were investigated. • A weak coupling between structural and electronic phase transitions was identified. • Different crystallite morphologies were discussed in relation with growth mechanisms.

  3. Uranium, natural

    Integrated Risk Information System (IRIS)

    Uranium , natural ; CASRN 7440 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  4. Nature Watch

    ERIC Educational Resources Information Center

    Sterling, Donna R.

    2010-01-01

    Children are naturally curious about the world in which they live. To focus this sense of wonder, have your students investigate their local habitat as it changes over the year. This multiseason study will build connections and add relevance to the habitats that children learn about. This series of activities for grades 4-6 explores the changing…

  5. Nature's Palette

    ERIC Educational Resources Information Center

    McBride, Brooke B.; Brewer, Carol A.

    2010-01-01

    Flower petals, acorn hats, exoskeletons of beetles, and lichens are just a few of the objects students may find in a surprising array of vivid colors. These tiny examples from nature's palette can be discovered in a school yard, a park, or even along the edges of a paved sidewalk...it simply takes careful observation! This article describes a…

  6. Natural restoration

    SciTech Connect

    Kamlet, K.S.

    1993-02-01

    After a company pays millions of dollars to clean up contaminated site, its liability may not be over. It may have to spend tens of millions more to restore damaged natural resources under an oft-overlooked Superfund program. Examples of liability are cited in this report from the Exxon Valdez oil spill and a pcb leak which contaminated a harbor.

  7. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  8. Microphase Separation Controlled beta-Sheet Crystallization Kinetics in Fibrous Proteins

    SciTech Connect

    Hu, X.; Lu, Q; Kaplan, D; Cebe, P

    2009-01-01

    Silk is a naturally occurring fibrous protein with a multiblock chain architecture. As such, it has many similarities with synthetic block copolymers, including the possibility for e-sheet crystallization restricted within the crystallizable blocks. The mechanism of isothermal crystallization kinetics of e-sheet crystals in silk multiblock fibrous proteins is reported in this study. Kinetics theories, such as Avrami analysis which was established for studies of synthetic polymer crystal growth, are for the first time extended to investigate protein self-assembly in e-sheet rich Bombyx mori silk fibroin samples, using time-resolved Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and synchrotron real-time wide-angle X-ray scattering (WAXS). The Avrami exponent, n, was close to 2 for all methods and crystallization temperatures, indicating formation of e-sheet crystals in silk proteins is different from the 3-D spherulitic crystal growth found in synthetic polymers. Observations by scanning electron microscopy support the view that the protein structures vary during the different stages of crystal growth, and show a microphase separation pattern after chymotrypsin enzyme biodegradation. We present a model to explain the crystallization of the multiblock silk fibroin protein, by analogy to block copolymers: crystallization of e-sheets occurs under conditions of geometrical restriction caused by phase separation of the crystallizable and uncrystallizable blocks. This crystallization model could be widely applicable in other proteins with multiblock (i.e., crystallizable and noncrystallizable) domains.

  9. Lasing from fluorescent protein crystals.

    PubMed

    Oh, Heon Jeong; Gather, Malte C; Song, Ji-Joon; Yun, Seok Hyun

    2014-12-15

    We investigated fluorescent protein crystals for potential photonic applications, for the first time to our knowledge. Rod-shaped crystals of enhanced green fluorescent protein (EGFP) were synthesized, with diameters of 0.5-2 μm and lengths of 100-200 μm. The crystals exhibit minimal light scattering due to their ordered structure and generate substantially higher fluorescence intensity than EGFP or dye molecules in solutions. The magnitude of concentration quenching in EGFP crystals was measured to be about 7-10 dB. Upon optical pumping at 485 nm, individual EGFP crystals located between dichroic mirrors generated laser emission with a single-mode spectral line at 513 nm. Our results demonstrate the potential of protein crystals as novel optical elements for self-assembled, micro- or nano-lasers and amplifiers in aqueous environment.

  10. Dissipation by a crystallization process

    NASA Astrophysics Data System (ADS)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  11. Invisible defects in complex crystals

    SciTech Connect

    Longhi, Stefano Della Valle, Giuseppe

    2013-07-15

    We show that invisible localized defects, i.e. defects that cannot be detected by an outside observer, can be realized in a crystal with an engineered imaginary potential at the defect site. The invisible defects are synthesized by means of supersymmetric (Darboux) transformations of an ordinary crystal using band-edge wavefunctions to construct the superpotential. The complex crystal has an entire real-valued energy spectrum and Bragg scattering is not influenced by the defects. An example of complex crystal synthesis is presented for the Mathieu potential. -- Highlights: •We show the existence of invisible localized defects in complex crystals. •They turn out to be fully invisible to Bloch waves belonging to any lattice band. •An example of invisible defect is presented for a PT-symmetric Mathieu crystal.

  12. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  13. Gradient equivalent crystal theory.

    PubMed

    Zypman, F R; Ferrante, J

    2006-07-01

    This paper presents an extension of the formalism of equivalent crystal theory (ECT) by introducing an electron density gradient term so that the total model density becomes a more accurate representation of the real local density. Specifically, we allow for the electron density around a lattice site to have directionality, in addition to an average value, as assumed in ECT. We propose that an atom senses its neighbouring density as a weighted sum-the weights given by the its own electronic probability. As a benchmark, the method is used to compute vacancy migration energy curves of iron. These energies are in good agreement with previously published results. PMID:21690822

  14. Crystallization modifiers in lipid systems.

    PubMed

    Ribeiro, Ana Paula Badan; Masuchi, Monise Helen; Miyasaki, Eriksen Koji; Domingues, Maria Aliciane Fontenele; Stroppa, Valter Luís Zuliani; de Oliveira, Glazieli Marangoni; Kieckbusch, Theo Guenter

    2015-07-01

    Crystallization of fats is a determinant physical event affecting the structure and properties of fat-based products. The stability of these processed foods is regulated by changes in the physical state of fats and alterations in their crystallization behavior. Problems like polymorphic transitions, oil migration, fat bloom development, slow crystallization and formation of crystalline aggregates stand out. The change of the crystallization behavior of lipid systems has been a strategic issue for the processing of foods, aiming at taylor made products, reducing costs, improving quality, and increasing the applicability and stability of different industrial fats. In this connection, advances in understanding the complex mechanisms that govern fat crystallization led to the development of strategies in order to modulate the conventional processes of fat structuration, based on the use of crystallization modifiers. Different components have been evaluated, such as specific triacyglycerols, partial glycerides (monoacylglycerols and diacylglycerols), free fatty acids, phospholipids and emulsifiers. The knowledge and expertise on the influence of these specific additives or minor lipids on the crystallization behavior of fat systems represents a focus of current interest for the industrial processing of oils and fats. This article presents a comprehensive review on the use of crystallization modifiers in lipid systems, especially for palm oil, cocoa butter and general purpose fats, highlighting: i) the removal, addition or fractionation of minor lipids in fat bases; ii) the use of nucleating agents to modify the crystallization process; iii) control of crystallization in lipid bases by using emulsifiers. The addition of these components into lipid systems is discussed in relation to the phenomena of nucleation, crystal growth, morphology, thermal behavior and polymorphism, with the intention of providing the reader with a complete panorama of the associated mechanisms

  15. Inorganic Crystal Structure Database (ICSD)

    National Institute of Standards and Technology Data Gateway

    SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

  16. Mechanisms of dendrites occurrence during crystallization: Features of the ice crystals formation

    NASA Astrophysics Data System (ADS)

    Perel'man, Mark E.; Rubinstein, Galina M.; Tatartchenko, Vitali A.

    2008-05-01

    Dendrites formation in the course of crystallization presents very general phenomenon, which is analyzed in details via the example of ice crystals growth in deionized water. Neutral molecules of water on the surface are combined into the double electric layer (DEL) of oriented dipoles; its field reorients approaching dipoles with observable radio-emission in the range of 150 kHz. The predominant attraction of oriented dipoles to points of gradients of this field induces dendrites growth from them, e.g., formation of characteristic form of snowflakes at free movement of clusters through saturated vapor in atmosphere. The constant electric field strengthens DELs' field and the growth of dendrites. Described phenomena should appear at crystallization of various substances with dipole molecules, features of radio-emission can allow the monitoring of certain processes in atmosphere and in technological processes. Crystallization of particles without constant moments can be stimulated by DELs of another nature with attraction of virtual moments of particles to gradients of fields and corresponding dendrites formation.

  17. Analysis of voids in crystal structures: the methods of 'dual' crystal chemistry.

    PubMed

    Blatov, V A; Shevchenko, A P

    2003-01-01

    The theoretical basics of the analysis of voids in crystal structures by means of Voronoi-Dirichlet polyhedra (VDP) and of the graph theory are stated. Topological relations are considered between VDPs and atomic domains in a crystal field. These relations allow the separation of two non-intersecting topological subspaces in a crystal structure, whose connectednesses are defined by two finite 'reduced' graphs. The first, 'direct', subspace includes the atoms (VDP centres) and the network of interatomic bonds (VDP faces), the second, 'dual', one comprises the void centres (VDP vertices) and the system of channels (VDP edges) between them. Computer methods of geometrical-topological analysis of the 'dual' subspace are developed and implemented within the program package TOPOS. They are designed for automatically restoring the system of channels, visualizing and sizing voids and void conglomerates, dimensional analysis of continuous void systems, and comparative topological analysis of 'dual' subspaces for various substances. The methods of analysis of 'dual' and 'direct' subspaces are noted to differ from each other only in some details that allows the term 'dual' crystal chemistry to be introduced. The efficiency of the methods is shown with the analysis of compounds of different chemical nature: simple substances, ionic structures, superionic conductors, zeolites, clathrates, organic supramolecular complexes. PMID:12496460

  18. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  19. Crystal engineering using functionalized adamantane.

    PubMed

    Garcia, J C; Assali, L V C; Machado, W V M; Justo, J F

    2010-08-11

    We performed a first-principles investigation on the structural, electronic and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zinc blende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electromechanical systems.

  20. Photonic crystal fibers in biophotonics

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.