Energy transport using natural convection boundary layers
Anderson, R
1986-04-01
Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.
Natural convection: Fundamentals and applications
NASA Astrophysics Data System (ADS)
Kakac, S.; Aung, W.; Viskanta, R.
Among the topics discussed are: stability solutions for laminar external boundary region flows; natural convection in plane layers and cavities with volumetric energy sources; and turbulence modelling equations. Consideration is also given to: natural convection in enclosures containing tube bundles; natural limiting behaviors in porous media cavity flows; numerical solutions in laminar and turbulent natural convection; and heat transfer in the critical region of binary mixtures. Additional topics discussed include: natural convective cooling of electronic equipment; natural convection suppression in solar collectors; and laser induced buoyancy and forced convection in vertical tubes.
Natural convection heat transfer simulation using energy conservative dissipative particle dynamics.
Abu-Nada, Eiyad
2010-05-01
Dissipative particle dynamics with energy conservation (eDPD) was used to study natural convection via Rayleigh-Bénard (RB) problem and a differentially heated enclosure problem (DHE). The current eDPD model implemented the Boussinesq approximation to model the buoyancy forces. The eDPD results were compared to the finite volume solutions and it was found that the eDPD method predict the temperature and flow fields throughout the natural convection domains properly. The eDPD model recovered the basic features of natural convection, such as development of plumes, development of thermal boundary layers, and development of natural convection circulation cells (rolls). The eDPD results were presented via temperature isotherms, streamlines, velocity contours, velocity vector plots, and temperature and velocity profiles. Further useful quantities, such as Nusselt number was calculated from the eDPD results and found to be in good agreement with the finite volume calculations.
Natural convective mixing flows
NASA Astrophysics Data System (ADS)
Ramos, Eduardo; de La Cruz, Luis; del Castillo, Luis
1998-11-01
Natural convective mixing flows. Eduardo Ramos and Luis M. de La Cruz, National University of Mexico and Luis Del Castillo San Luis Potosi University. The possibility of mixing a fluid with a natural convective flow is analysed by solving numerically the mass, momentum and energy equations in a cubic container. Two opposite vertical walls of the container are assumed to have temperatures that oscillate as functions of time. The phase of the oscillations is chosen in such a way that alternating corrotating vortices are formed in the cavity. The mixing efficiency of this kind of flow is examined with a Lagrangian tracking technique. This work was partially financed by CONACyT-Mexico project number GE0044
A theoretical analysis of natural convection towers for solar energy conversion
NASA Astrophysics Data System (ADS)
Lasier, D. D.; Jacobs, E. W.
1983-05-01
A theoretical study of solar-powered natural convection tower (chimney) performance is presented. Both heated and cooled towers are analyzed, the latter using evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important for cooled natural convection towers.
Theoretical analysis of solar-driven natural convection energy conversion systems
Jacobs, E.W.; Lasier, D.D.
1984-01-01
This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.
Mall, Gita; Hubig, Michael; Beier, Gundolf; Büttner, Andreas; Eisenmenger, Wolfgang
2002-06-01
The temperature-based determination of the time since death in the early post-mortem (pm) period plays an important role in medico-legal practice. In contrast to the common opinion according to which convection and conduction are mainly responsible for post-mortem heat loss, a considerable part of energy is emitted by thermal radiation. The present paper concentrates on the heat loss due to radiation and natural convection. Since both heat transfer mechanisms depend on the temperature gradient between skin and environment, the skin temperature was measured in corpses of different constitution (lean, medium and obese) and its decrease fitted by a single-exponential model. Heat loss due to radiation was calculated according to the non-linearized form of the law of Stefan and Boltzmann, heat loss due to natural convection according to the semi-empirical thermodynamic laws; the shape of the body in supine position was approximated to a semi-cylinder of finite length. The power due to radiation ranged between 386kJ/h (lean) and 550kJ/h (obese), that due to natural convection between 307kJ/h (lean) and 429kJ/h (obese) initially. Cumulative energy loss amounted to 2167kJ (lean) and 4239kJ (obese) by radiation and 1485kJ (lean) and 2922kJ (obese) by natural convection up to 20h pm. The energy loss due to radiation plus natural convection initially exceeded the energy loss due the decrease of the energy content of the body (mass x heat capacity x temperature decrease). This surplus can be explained only by exothermal processes in the phase of intermediary life and directly provides lower bounds for supravital energy production. Cumulative supravital energy ranges between 1139kJ up to 5h pm in the lean and 2516kJ up to 10h pm in the obese corpses. The courses of supravital energies and powers are presented as functions of time. Under standard conditions like still air (no forced convection) and insulating ground (little conductive heat transfer), the lower bounds represent
NASA Astrophysics Data System (ADS)
Baghaei Lakeh, Reza; Lavine, Adrienne S.; Kavehpour, H. Pirouz; Wirz, Richard E.
2013-11-01
Heat transfer can be a limiting factor in the operation of thermal energy storage, including sensible heat and latent heat storage systems. Poor heat transfer between the energy storage medium and the container walls impairs the functionality of the thermal storage unit by requiring excessively long times to charge or discharge the system. In this study, the effect of turbulent, unsteady buoyancy-driven flow on heat transfer in vertical storage tubes containing supercritical CO2 as the storage medium is investigated computationally. The heat transfer from a constant-temperature wall to the storage fluid is studied during the charge cycle. The results of this study show that turbulent natural convection dominates the heat transfer mechanism and significantly reduces the required time for charging compared to pure conduction. Changing the L/D ratio of the storage tube has a major impact on the charge time. The charge time shows a decreasing trend with RaL. The non-dimensional model of the problem shows that Nusselt number and non-dimensional mean temperature of the storage fluid in different configurations of the tube is a function Buoyancy-Fourier number defined as of FoL * RaLm* L/D. This study was supported by award No. DE-AR0000140 granted by U.S. Department of Energy under Advanced Research Projects Agency - Energy (ARPA-E) and by award No. 5660021607 granted by Southern California Gas Company.
Studies of heat source driven natural convection
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nagle, M. E.; Cassen, P.
1974-01-01
Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
A Generalized Convective Inhibition Energy
NASA Astrophysics Data System (ADS)
Tailleux, R.
2002-12-01
The common view about preconvecting soundings is that they possess both CAPE (Convective Available Potential Energy) and CINE (Convective INhibition Energy), the latter preventing the former to be spontaneously released. The two concepts of CAPE and CINE are ambiguous, however, because they depend upon the parcel used to compute the work of buoyancy forces, as well as upon the thermodynamic transformation (adiabatic, pseudo-adiabatic) assumed in lifting the parcel. To remove the ambiguity intrinsically associated with CAPE, Randall and Wang (1992) introduced the concept of GCAPE (Generalized CAPE), defined as the minimum achievable energy difference between the total nonkinetic energy (NKE) of the column of air considered minus the total NKE of a reference soundings obtained by reorganizing the parcels along the vertical by conserving mass. Because the method focuses on how to achieve a global energy minimum without addressing the issue of whether it is achievable or how to achieve it, the concept of CINE is lost. The present work shows how to remedy to this problem, and how to define a Generalized CINE within the same framework serving to define the GCAPE.
Kinetic energy budgets in areas of convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1979-01-01
Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.
Conjugate natural convection between horizontal eccentric cylinders
NASA Astrophysics Data System (ADS)
Nasiri, Davood; Dehghan, Ali Akbar; Hadian, Mohammad Reza
2017-03-01
This study involved the numerical investigation of conjugate natural convection between two horizontal eccentric cylinders. Both cylinders were considered to be isothermal with only the inner cylinder having a finite wall thickness. The momentum and energy equations were discretized using finite volume method and solved by employing SIMPLER algorithm. Numerical results were presented for various solid-fluid conductivity ratios ( KR) and various values of eccentricities in different thickness of inner cylinder wall and also for different angular positions of inner cylinder. From the results, it was observed that in an eccentric case, and for KR < 10, an increase in thickness of inner cylinder wall resulted in a decrease in the average equivalent conductivity coefficient (overline{{K_{eq} }}); however, a KR > 10 value caused an increase in overline{{K_{eq} }}. It was also concluded that in any angular position of inner cylinder, the value of overline{{K_{eq} }} increased with increase in the eccentricity.
A Simple Classroom Demonstration of Natural Convection
ERIC Educational Resources Information Center
Wheeler, Dean R.
2005-01-01
This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
A Simple Classroom Demonstration of Natural Convection
ERIC Educational Resources Information Center
Wheeler, Dean R.
2005-01-01
This article explains a simple way to demonstrate natural convection, such as from a lit candle, in the classroom using an overhead projector. The demonstration is based on the principle of schlieren imaging, commonly used to visualize variations in density for gas flows.
Solar Hot Water Heating by Natural Convection.
ERIC Educational Resources Information Center
Noble, Richard D.
1983-01-01
Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)
Heterogeneous nanofluids: natural convection heat transfer enhancement
2011-01-01
Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755
The Phenix ultimate natural convection test
Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.
2012-07-01
The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all
Self-propulsion via natural convection
NASA Astrophysics Data System (ADS)
Ardekani, Arezoo; Mercier, Matthieu; Allshouse, Michael; Peacock, Thomas
2014-11-01
Natural convection of a fluid due to a heated or cooled boundary has been studied within a myriad of different contexts due to the prevalence of the phenomenon in environmental systems such as glaciers, katabatic winds, or magmatic chambers; and in engineered problems like natural ventilation of buildings, or cooling of electronic components. It has, however, hitherto gone unrecognized that boundary-induced natural convection can propel immersed objects. We experimentally investigate the motion of a wedge-shaped object, immersed within a two-layer fluid system, due to a heated surface. The wedge resides at the interface between the two fluid layers of different density, and its concomitant motion provides the first demonstration of the phenomenon of propulsion via boundary-induced natural convection. Established theoretical and numerical models are used to rationalize the propulsion speed by virtue of balancing the propulsion force against the appropriate drag force. We successfully verified the influence of various fluid and heat parameters on the predicted speed. now at IMFT (Institut de Mécanique des Fluides de Toulouse).
Convective Available Potential Energy of World Ocean
NASA Astrophysics Data System (ADS)
Su, Z.; Ingersoll, A. P.; Thompson, A. F.
2012-12-01
Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open
Natural Convection Above A Horizontal Heat Source
1993-03-01
surface was a thermochromic liquid crystal (TLC) sheet. Used to ensure a smooth flat surface, the sheet also provided a visualization of the temperature...a flat horizontal heated surface surrounded by an unheated area. This can contribute significantly to studies in liquid immersion cooling...Gebhart, B., "The Transition of Plane Plumes," Int. J. Heat Mass Transfer, v.18., pp. 513-526, 1975. 13. Gaiser, A.O., "Natural Convection Liquid
Natural convective heat transfer from square cylinder
Novomestský, Marcel Smatanová, Helena Kapjor, Andrej
2016-06-30
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Education: DNA replication using microscale natural convection.
Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M
2012-12-07
There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.
Laminar natural convection under nonuniform gravity.
NASA Technical Reports Server (NTRS)
Lienhard, J.; Eichhorn, R.; Dhir, V.
1972-01-01
Laminar natural convection is analyzed for cases in which gravity varies with the distance from the leading edge of an isothermal plate. The study includes situations in which gravity varies by virtue of the varying slope of a surface. A general integral solution method which includes certain known integral solutions as special cases is developed to account for arbitrary position-dependence of gravity. A series method of solution is also developed for the full equations. Although it is more cumbersome it provides verification of the integral method.
Influence of geometry on natural convection in buildings
White, M.D.; Winn, C.B.; Jones, G.F.; Balcomb, J.D.
1985-01-01
Strong free convection airflows occur within passive solar buildings resulting from elevated temperatures of surfaces irradiated by solar energy compared with the cooler surfaces not receiving radiation. The geometry of a building has a large influence on the directions and magnitudes of natural airflows, and thus heat transfer between zones. This investigation has utilized a variety of reduced-scale building configurations to study the effects of geometry on natural convection heat transfer. Similarity between the reduced-scale model and a full-scale passive solar building is achieved by having similar geometries and by replacing air with Freon-12 gas as the model's working fluid. Filling the model with Freon-12 gas results in similarity in Prandtl numbers and Rayleigh numbers based on temperature differences in the range from 10/sup 9/ to 10/sup 11/. Results from four geometries are described with an emphasis placed on the effects of heat loss on zone temperature stratification shifts.
Fully decoupled monolithic projection method for natural convection problems
NASA Astrophysics Data System (ADS)
Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il
2017-04-01
To solve time-dependent natural convection problems, we propose a fully decoupled monolithic projection method. The proposed method applies the Crank-Nicolson scheme in time and the second-order central finite difference in space. To obtain a non-iterative monolithic method from the fully discretized nonlinear system, we first adopt linearizations of the nonlinear convection terms and the general buoyancy term with incurring second-order errors in time. Approximate block lower-upper decompositions, along with an approximate factorization technique, are additionally employed to a global linearly coupled system, which leads to several decoupled subsystems, i.e., a fully decoupled monolithic procedure. We establish global error estimates to verify the second-order temporal accuracy of the proposed method for velocity, pressure, and temperature in terms of a discrete l2-norm. Moreover, according to the energy evolution, the proposed method is proved to be stable if the time step is less than or equal to a constant. In addition, we provide numerical simulations of two-dimensional Rayleigh-Bénard convection and periodic forced flow. The results demonstrate that the proposed method significantly mitigates the time step limitation, reduces the computational cost because only one Poisson equation is required to be solved, and preserves the second-order temporal accuracy for velocity, pressure, and temperature. Finally, the proposed method reasonably predicts a three-dimensional Rayleigh-Bénard convection for different Rayleigh numbers.
Thermophoresis in natural convection with variable properties
NASA Astrophysics Data System (ADS)
Jayaraj, S.; Dinesh, K. K.; Pillai, K. L.
The present paper deals with thermophoresis in natural convection with variable properties for a laminar flow over a cold vertical flat plate. Variation of properties like density, viscosity and thermal conductivity with temperature is included in the formulation of the problem. Selection of components for the property ratio is made by fitting the property values between the desired temperature limits. For a selected fluid, Prandtl number variation with temperature is neglected and the Prandtl number corresponding to film temperature is used for the analysis. Solution is carried out by finite difference method. Variation of wall concentration and wall flux along the length of plate is studied. The effect of thermophoretic coefficient on wall concentration is also studied. Results are presented in the form of graphs. The result is compared with similarity solution by Runge-Kutta method and found to be accurate upto second decimal place.
Natural convection in a fluid layer periodically heated from above.
Hossain, M Z; Floryan, J M
2014-08-01
Natural convection in a horizontal layer subject to periodic heating from above has been studied. It is shown that the primary convection leads to the cooling of the bulk of the fluid below the mean temperature of the upper wall. The secondary convection may lead either to longitudinal rolls, transverse rolls, or oblique rolls. The global flow properties (e.g., the average Nusselt number for the primary convection and the critical conditions for the secondary convection) are identical to those of the layer heated from below. However, the flow and temperature patterns exhibit phase shifts in the horizontal directions.
Natural Convection in Enclosed Porous or Fluid Media
ERIC Educational Resources Information Center
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
Natural Convection in Enclosed Porous or Fluid Media
ERIC Educational Resources Information Center
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
Energy analysis of convectively induced wind perturbations
NASA Technical Reports Server (NTRS)
Fuelberg, Henry E.; Buechler, Dennis E.
1989-01-01
Budgets of divergent and rotational components of kinetic energy (KD and KR) are examined for four upper level wind speed maxima that develop during the fourth Atmospheric Variability Experiment (AVE IV) and the first AVE-Severe Environmental Storms and Mesoscale Experiment (AVE-SESAME I). A similar budget analysis is performed for a low-level jet stream during AVE-SESAME I. The energetics of the four upper level speed maxima is found to have several similarities. The dominant source of KD is cross-contour flow by the divergent wind, and KD provides a major source of KR via a conversion process. Conversion from available potential energy provides an additional source of KR in three of the cases. Horizontal maps reveal that the conversions involving KD are maximized in regions poleward of the convection. Low-level jet development during AVE-SESAME I appears to be assisted by convective activity to the west.
Natural convection around the human head.
Clark, R P; Toy, N
1975-01-01
1. Factors determining the convective flow patterns around the human head in 'still' conditions are discussed in relation to body posture. 2. The flow patterns have been visualized using a schlieren optical system which reveals that the head has a thicker 'insulating' layer of convecting air in the erect posture than in the supine position. 3. Local convective and radiative heat transfer measurements from the head have been using surface calorimeters. These results are seen to be closely related to the thickness of the convective boundary layer flows. 4. The total convective and radiative heat loss from the head of a subject in the erect and supine position has been evaluated from the local measurements. For the head of the supine subject the heat loss was found to be 30% more than when the subject was standing. Images Plate 1 PMID:1142118
Suppression of Natural Convection in a Thermoacoustic Pulse Tube Refrigerator
NASA Astrophysics Data System (ADS)
Han, Jun-Qing; Liu, Qiu-Sheng
2013-05-01
The effects of gravity on the efficiency of thermoacoustic engines are investigated theoretically and experimentally, especially for thermoacoustic pulse tube refrigerators. The significant effects of gravity are found to be due to the presence of natural convection in the thermoacoustic pulse tube when the hot side of the tube is lower than the cold side. This kind of natural convection influences and reduces the efficiency of the thermoacoustic working system. Thus, how to suppress this natural convection becomes important for increasing the efficiency of thermoacoustic engines. Unlike the method of inserting a silk screen in a pulse tube, the present study uses a numerical simulation method to research the natural convection in pulse tubes, and we try to change the shape of the pulse tube to suppress this convection.
Thermally induced natural convection effects in Yucca Mountain drifts.
Webb, Stephen W; Francis, Nicholas D; Dunn, Sandra Dalvit; Itamura, Michael T; James, Darryl L
2003-01-01
Thermally induced natural convection from the heat produced by emplaced waste packages is an important heat and mass transfer mechanism within the Yucca Mountain Project (YMP) drifts. Various models for analyzing natural convection have been employed. The equivalent porous medium approach using Darcy's law has been used in many YMP applications. However, this approach has questionable fidelity, especially for turbulent flow conditions. Computational fluid dynamics (CFD), which is based on the fundamental Navier-Stokes equations, is currently being evaluated as a technique to calculate thermally induced natural convection in YMP. Data-model comparisons for turbulent flow conditions show good agreement of CFD predictions with existing experiments including YMP-specific data.
Transient natural convection in heated inclined tubes
McEligot, D.M. . Oceanic Div.); Denbow, D.A. ); Murphy, H.D. )
1990-05-01
To simulate natural convection flow patterns in directionally drilled wellbores, experiments and analyses were conducted for a circular tube with length-to-diameter (L/D) ratio of 36 at angles of 0{degree}, 20{degree}, and 35{degree} from the vertical. The tube was heated at the bottom and cooled at the top, and the insulation was adjusted so that approximately one- to two-thirds of the power dissipated was transferred through the tube wall to the surroundings. An aqueous solution of polyvinyl alcohol was employed as the working fluid in order to obtain low Rayleigh numbers corresponding to conditions in geothermal wellbores. Results were primarily qualitative but were useful in providing insight into the phenomena occurring. Steady-state temperature distributions were measured for the three orientations and for several heating rates to demonstrate the effects of tube angle and Rayleigh number. transient measurements of the temperature distribution were obtained during cooling from a higher temperature without a heat source to calibrate the heat losses. With the electrical heat source, temporal data were taken during heating to examine the approach to steady state. Quasi-steady flow conditions were approached rapidly, but the overall time constant of the apparatus was of the order of one-third of a day. Predictions with the three-dimensional TEMPEST code were first tested by comparison with simple conduction analyses. Comparison with actual data showed good agreement of the predicted temperature levels for the maximum inclination, 35{degree}, and slightly poorer agreement for the other limit, a vertical tube. Trends of temperature level and Nusselt number with heating rate or Rayleigh number were reasonable, but the predicted variation of the end Nusselt number versus inclination was in the opposite direction from the experiment. 75 refs., 20 figs., 8 tabs.
Double-diffusive natural convection in a fluid saturated porous cavity with a freely convecting wall
Nithiarasu, P.; Sundararajan, T.; Seetharamu, K.N.
1997-12-01
Double-diffusive natural convection in fluid saturated porous medium has been investigated using a generalized porous medium model. One of the vertical walls of the porous cavity considered is subjected to convective heat and mass transfer conditions. The results show that the flow, heat and mass transfer become sensitive to applied mass transfer coefficient in both the Darcy and non-Darcy flow regimes. It is also observed that the Sherwood number approaches a constant value as the solutal Biot number increases. Double-diffusive natural convection in fluid saturated porous medium is encountered in applications such as food processing, contaminant transport in ground water, and others.
Laser-induced natural convection and thermophoresis
NASA Astrophysics Data System (ADS)
Wang, C. Y.; Morse, T. F.; Cipolla, J. W., Jr.
1985-02-01
The influence of axial laser volumetric heating and forced convection on the motion of aerosol particles in a vertical tube has been studied using the Boussinesq approximation. For constant wall temperature, an asymptotic case provides simple temperature and velocity profiles that determine the convection and thermophoretic motion of small aerosol particles. Laser heating induces upward buoyant motion near the tube center, and when forced convection is downward, there may be an inflection in the velocity profile. For constant laser heating (a small absorption limit), a velocity profile may be found that will minimize the distance over which particles are deposited on the wall. Such an observation may have some bearing on the manufacture of preforms from which optical fibers are drawn.
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
Study of heat transfer phenomenon during natural convection
NASA Astrophysics Data System (ADS)
Yousaf, Muhammad
The purpose of the present study was to numerically investigate the effects of the roughness elements on the heat transfer during natural convection. A computational algorithm was developed based on the Lattice Boltzmann method to conduct numerical study in two-dimensional rectangular cavities and Rayleigh-Benard cell. A single relaxation time Bhatnagar-Gross-Krook model of Lattice Boltzmann method was used to solve the coupled momentum and energy equations in two-dimensional lattices. Computational model was validated against previous benchmark solutions, and a good agreement was found to exist. A Newtonian fluid of Prandtl (Pr) number 1.0 was considered for this numerical study. The range of Ra numbers was investigated from 103 to 106. The roughness was introduced in the form of sinusoidal elements on a hot, cold, and both the hot and cold walls of the cavities and Rayleigh-Benard cell. The frequency or number of the roughness elements and the dimensionless amplitude (h/H) were varied from 2 to 10 and 0.015 to 0.15 respectively. Numerical results showed that thermal and hydrodynamic behaviors of the fluid were considerably affected in the presence of the roughness elements. A dimensionless amplitude of approximately 0.025 has no significant effects on the average heat transfer. In contrast, a dimensionless amplitude of ≥0.05 cause a degradation in the average heat transfer and delay in the onset of natural convection. The maximum reduction in the average heat transfer was calculated to be approximately 51 percent in the Rayleigh-Benard convection when the roughness was present on both the hot and cold walls with a dimensionless amplitude of 0.15 and the number of roughness elements equal to 10.
Analysis of natural convection in a low gravity environment
NASA Technical Reports Server (NTRS)
Mattor, Ethan E.; Durgin, William W.; Bloznalis, Peter; Schoenberg, Richard
1992-01-01
Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry.
Study of plasma natural convection induced by electron beam in atmosphere [
Deng, Yongfeng Han, Xianwei; Tan, Yonghua
2014-06-15
Using high-energy electron beams to ionize air is an effective way to produce a large-size plasma in the atmosphere. In particular, with a steady-state high power generator, some unique phenomena can be achieved, including natural convection of the plasma. The characteristics of this convection are studied both experimentally and numerically. The results show that an asymmetrical temperature field develops with magnitudes that vary from 295 K to 389 K at a pressure of 100 Torr. Natural convection is greatly enhanced under 760 Torr. Nevertheless, plasma transport is negligible in this convection flow field and only the plasma core tends to move upward. Parameter analysis is performed to discern influencing factors on this phenomenon. The beam current, reflecting the Rayleigh number Ra effect, correlates with convection intensity, which indicates that energy deposition is the underlying key factor in determining such convections. Finally, natural convection is concluded to be an intrinsic property of the electron beam when focused into dense air, and can be achieved by carefully adjusting equipment operations parameters.
Natural thermal convection in fractured porous media
NASA Astrophysics Data System (ADS)
Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.
2015-12-01
In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) < 150 (hence, the fluid is in thermal equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50
Double Diffusive Natural Convection in a Nuclear Waste Repository
Y. Hao; J. Nitao; T.A. Buscheck; Y. Sun
2006-03-28
In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport.
Double Diffusive Natural Convection in a Nuclear Waste Repository
Hao, Y; Nitao, J; Buscheck, T A; Sun, Y
2006-02-03
In this study, we conduct a two-dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have strong impacts on the in-drift convective flow and transport.
Double Diffusive Natural Convection in a Nuclear Waste Repository
Hao, Y; Nitao, J J; Buscheck, T A; Sun, Y
2006-07-24
In this study, we conduct a two dimensional numerical analysis of double diffusive natural convection in an emplacement drift for a nuclear waste repository. In-drift heat and moisture transport is driven by combined thermal- and compositional-induced buoyancy forces. Numerical results demonstrate buoyancy-driven convective flow patterns and configurations during both repository heat-up and cool-down phases. It is also shown that boundary conditions, particularly on the drip-shield surface, have a strong impact on in-drift convective flow and transport.
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Natural convection heat transfer within horizontal spent nuclear fuel assemblies
Canaan, R.E.
1995-12-01
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.
Study of Natural Convection Passive Cooling System for Nuclear Reactors
NASA Astrophysics Data System (ADS)
Abdillah, Habibi; Saputra, Geby; Novitrian; Permana, Sidik
2017-07-01
Fukushima nuclear reactor accident occurred due to the reactor cooling pumps and followed by all emergencies cooling systems could not work. Therefore, the system which has a passive safety system that rely on natural laws such as natural convection passive cooling system. In natural convection, the cooling material can flow due to the different density of the material due to the temperature difference. To analyze such investigation, a simple apparatus was set up and explains the study of natural convection in a vertical closed-loop system. It was set up that, in the closed loop, there is a heater at the bottom which is representing heat source system from the reactor core and cooler at the top which is showing the cooling system performance in room temperature to make a temperature difference for convection process. The study aims to find some loop configurations and some natural convection performances that can produce an optimum flow of cooling process. The study was done and focused on experimental approach and simulation. The obtained results are showing and analyzing in temperature profile data and the speed of coolant flow at some point on the closed-loop system.
Turbulent natural and mixed convection along a vertical plate
Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.; Zhao, J.Z.
1997-07-01
Measurements of turbulent boundary-layer air flow in natural and mixed convection adjacent to an isothermal vertical flat plate are reported. Laser-Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the mean turbulent velocity and temperature distributions were measured for a temperature difference, {Delta}T, of 30 C between the heated wall and the free stream air at a fixed location x = 3 m (with a corresponding Grashof number Gr{sub x} = 8.55 x 10{sup 10}), and for a range of free stream velocities 0 m/s {le} U{sub {infinity} } {le} 0.41 m/s. The effect of small free stream velocity on the turbulent natural convection is examined. These results reveal that the introduction of small free stream velocity on turbulent natural convection flow suppresses turbulence and decreases the heat transfer rate from the heated wall.
Analysis of natural convection in a low gravity environment
Mattor, E.E.; Durgin, W.W.; Bloznalis, P.; Schoenberg, R. NASA, Johnson Space Center, Houston, TX )
1992-01-01
Natural convection inside a spherical container was studied experimentally with two apparatuses at low buoyancy levels. The data generated by these experiments, plotted nondimensionally as the Nusselt versus Rayleigh numbers, give correlations for Rayleigh numbers between 1000 and 10 exp 8, a range previously untested. These results show that natural convection has significant effects at a Rayleigh number of 1000 and higher, although the behavior of the Nusselt number as the conduction limit is approached is still unknown for a spherical geometry. 11 refs.
Kinetic energy budget studies of areas of convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1979-01-01
Synoptic-scale kinetic energy budgets are being computed for three cases when large areas of intense convection occurred over the Central United States. Major energy activity occurs in the storm areas.
Decay Heat Removal from a GFR Core by Natural Convection
Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.
2004-07-01
One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a means for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)
Natural convection from vertical helical coiled tubes in air
Ali, M.E.
1999-07-01
Helically coiled tubes are used in many engineering applications, such as heating, refrigerating and HVAC systems. They are used also in steam generator and condenser design in power plants because of their large surface area per unit volume. In spite of their widespread use, there is very little information available in the literature on natural convection from such coils. Two experimental investigation have been reported on steady state laminar and transition natural convection from the outer surface of vertically oriented helical coiled tubes in air. Four coils at constant heat flux boundary condition have been used with coil diameter to tube diameter ratio of 16.45 and 23.94. Six more coils have been used at variable surface temperature boundary condition with coil diameter to tube diameter ratio 19.923, 15.904, and 12.798. Local average heat transfer coefficients are obtained for laminar and transition natural convection. The data are correlated with Rayleigh number using the tube diameter as a characteristic length. It has been found that the Nusselt number decreases as Rayleigh number increases for constant heat flux. Transition to turbulent natural convection regime has obtained at a critical Rayleigh number of about 5,000 and it characterizes by a waveform like relation between Nusselt number and Rayleigh number.
On the convective-absolute nature of river bedform instabilities
NASA Astrophysics Data System (ADS)
Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc
2014-12-01
River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.
Natural convection above circular disks of evaporating liquids
NASA Astrophysics Data System (ADS)
Dollet, Benjamin; Boulogne, François
2017-05-01
We investigate theoretically and experimentally the evaporation of liquid disks in the presence of natural convection due to a density difference between the vapor and the surrounding gas. From the analogy between thermal convection above a heated disk and our system, we derive scaling laws to describe the evaporation rate. The local evaporation rate depends on the presence of a boundary layer in the gas phase such that the total evaporation rate is given by a combination of different scaling contributions, which reflect the structure of the boundary layer. We compare our theoretical predictions to experiments performed with water in an environment controlled in humidity, which validate our approach.
Natural convection in tilted cylindrical cavities embedded in rocks.
Sánchez, F; Higuera, F J; Medina, A
2005-06-01
This paper presents a theoretical investigation of the low Rayleigh number conjugate natural convection in a slender tilted cylindrical cavity which is embedded in a solid that is subject to a uniform vertical temperature gradient. Two cases have been analyzed; a fluid-filled cavity and a cavity filled with a fluid-saturated porous medium. The temperature of the solid and the velocity, temperature, and pressure in the cavity have been determined by analytically solving the coupled problems within and around the cavity. The effect of the ratio of the thermal conductivity of the material in the cavity to the thermal conductivity of the solid on the structure of the convection flow is discussed. The theoretical results for convection in the fluid-filled cavity are shown to be in good agreement with experimental PIV measurements.
Natural convection from a buried pipe with external baffles
Facas, G.N.
1995-05-01
Numerical solutions are presented for the natural convection heat transfer from a pipe with two baffles attached along its surface buried beneath a semi-infinite, saturated, porous medium. The surface of the medium is assumed to be permeable. The governing equations for Darcy flow are solved using finite differences. The complicated geometry is handled through the use of a body-fitted curvilinear coordinate system. Results are presented for three baffle lengths and a range of burial depths and Rayleigh numbers. The numerical simulations indicate that substantial energy savings can be realized if baffles are used. The results obtained in terms of the Nusselt number for the case of no-baffles are used. The results obtained in terms of the Nusselt number for the case of no-baffle are in excellent agreement with analytical and experimental results available in the literature. A simple correlation for {ovr Nu} has been developed as a function or Ra, pipe burial depth h/R, and baffle length l/R.
Drift natural convection and seepage at the Yucca Mountain repository
NASA Astrophysics Data System (ADS)
Halecky, Nicholaus Eugene
The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock, from the hot drift center to the cool drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water- induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.
Talebi, Maryam; Setareh, Milad; Saffar-Avval, Majid; Hosseini Abardeh, Reza
2017-04-01
Application of ultrasonic waves for heat transfer augmentation has been proposed in the last few decades. Due to limited researches on acoustic streaming induced by ultrasonic oscillation, the effect of ultrasonic waves on natural convection heat transfer is the main purpose of this paper. At first, natural convection on up-ward-facing heating surface in a cylindrical enclosure filled with air is investigated numerically by the finite difference method, then the effect of upper surface oscillation on convection heat transfer is considered. The conservation equations in Lagrangian approach and compressible fluid are assumed for the numerical simulation. Results show that acoustic pressure will become steady after some milliseconds also pressure oscillation amplitude and acoustic velocity components will be constant therefore steady state velocity is used for solving energy equation. Results show that Enhancement of heat transfer coefficient can be up to 175% by induced ultrasonic waves. In addition, the effect of different parameters on acoustic streaming and heat transfer has been studied.
Weight and water loss in the neonate in natural and forced convection.
Thompson, M H; Stothers, J K; McLellan, N J
1984-01-01
We describe a simple method of determining weight loss and hence water loss of infants in incubators. Unlike previously reported methods, it does not interfere with the microenvironment surrounding the infant. Weight loss of 16 term and 32 preterm infants was measured in both forced and natural convection. No significant increase in water loss was observed in the term infants but in the preterm infants the mean loss in natural convection was 0.85 g/kg/hour compared with 1.26 g/kg/hour in forced convection: in the most extreme situation it was doubled. This water loss represents a substantial energy loss and suggestions to minimise it are discussed. Images Fig. 1 PMID:6497432
Estimating convective energy losses from solar central receivers
Siebers, D L; Kraabel, J S
1984-04-01
This report outlines a method for estimating the total convective energy loss from a receiver of a solar central receiver power plant. Two types of receivers are considered in detail: a cylindrical, external-type receiver and a cavity-type receiver. The method is intended to provide the designer with a tool for estimating the total convective energy loss that is based on current knowledge of convective heat transfer from receivers to the environment and that is adaptable to new information as it becomes available. The current knowledge consists of information from two recent large-scale experiments, as well as information already in the literature. Also outlined is a method for estimating the uncertainty in the convective loss estimates. Sample estimations of the total convective energy loss and the uncertainties in those convective energy loss estimates for the external receiver of the 10 MWe Solar Thermal Central Receiver Plant (Barstow, California) and the cavity receiver of the International Energy Agency Small Solar Power Systems Project (Almeria, Spain) are included in the appendices.
Determination of the natural convection coefficient in low-gravity
NASA Technical Reports Server (NTRS)
Goldmeer, J.; Motevalli, V.; Haghdoust, M.; Jumper, G.
1992-01-01
Fire safety is an important issue in the current space program; ignition in low-g needs to be studied. The reduction in the gravitational acceleration causes changes in the ignition process. This paper examines the effect of gravity on natural convection, which is one of the important parameters in the ignition process. The NASA-Lewis 2.2 Second Drop Tower provided the low-gravity environment for the experiments. A series of experiments was conducted to measure the temperature of a small copper plate which was heated by a high intensity lamp. These experiments verified that in low-gravity the plate temperature increased faster than in the corresponding 1-g cases, and that the natural convection coefficient rapidly decreased in the low-gravity environment.
Temporal response of laser power standards with natural convective cooling.
Xu, Tao; Gan, Haiyong; Yu, Jing; Zang, Erjun
2016-01-25
Laser power detectors with natural convective cooling are convenient to use and hence widely applicable in a power range below 150 W. However, the temporal response characteristics of the laser power detectors need to be studied in detail for accurate measurement. The temporal response based on the absolute laser power standards with natural convective cooling is studied through theoretical analysis, numerical simulations, and experimental verifications. Our results show that the response deviates from a single exponential function and that an ultimate response balance is difficult to achieve because the temperature rise of the heat sink leads to continuous increase of the response. To determine the measurement values, an equal time reading method is proposed and validated by the laser power calibrations.
Convective and absolute nature of hydrothermal waves instability
NASA Astrophysics Data System (ADS)
Chiffaudel, Arnaud; Garnier, Nicolas
1999-11-01
We experimentally produce nonlinear waves in a 1-dimensional finite geometry and study effects related to the convective/absolute nature of the instability. We impose an horizontal temperature gradient over a thin layer of silicone oil (Pr=10) to produce hydrothermal waves [1]. The aspect ratio of the cell is such that the problem is unidimensionnal, of extent L ~ 35 λ, where λ is the typical wavelength. Shadowgraphy is used to capture local and instantaneous wave-number, frequency, and amplitude. The experimental threshold is obserbed to be significantly higher ( 20% ) than the convective instability threshold found in periodic boundary condition, and corresponding to the convective/absolute transition. Moreover, at this point, localized wall modes are observed as predicted by the linear eigen value problem of the complex Ginzburg-Landau equation in finite geometry [2]. The convective/absolute transition of the secondary (Eckhaus) instability is also reported. [1] M.K. Smith and S.H. Davis, Journal of Fluid Mechanics, 132, 119 (1983) [2] S.M. Tobias, M.R.E. Proctor and E. Knobloch, Physica D 113, 43 (1998)
Nature, theory and modelling of geophysical convective planetary boundary layers
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2015-04-01
Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in
Topological analysis of a mixing flow generated by natural convection
NASA Astrophysics Data System (ADS)
Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo
2016-01-01
We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.
Three-dimensional natural convection in a narrow spherical shell
NASA Astrophysics Data System (ADS)
Liu, Ming; Egbers, Christoph
The convective motions in a shallow fluid layer between two concentric spheres in the presence of a constant axial force field have been studied numerically. The aspect ratio of the fluid layer to inner radius is beta =0.08, the Prandtl number Pra =37.5. A three-dimensional time-dependent numerical code is used to solve the governing equations in primitive variables. Convection in the sphe rical shell has then a highly three-dimensional nature. Characteristic flow patterns with a large number of banana-type cells, oriented in north-south direction and aligned in the azimuthal direction, are formed on the northern hemisphere, which grow gradually into the equatorial region accompanied by the generation of new cells as the Rayleigh number is increased. Various characteristics of these flows as well as their transient evolution are investigated for Rayleigh numbers up to 20 000.
Natural convection between a vertical cylinder and a surrounding array
McEligot, D.M.; O'Brien, J.E.; Stoots, C.M.; Larson, T.K.; Christenson, W.A.; Mecham, D.C.; Lussie, W.G.
1992-01-01
The generic situation considered is natural convection between a single heated, vertical cylinder and a surrounding array of cooler vertical cylinders in a triangular pattern. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6 by adjusting the electrical power. The Rayleigh number, based on test section diameter and air properties evaluated at cooling tube temperature, ranged from 2.9 x 10{sup 4} to 4.6 x 10{sup 5}. Results indicate that the convective heat transfer data could be approximated as Nu{sub D} (T{sub ts}/T{sub ct}){sup 0.14} = 0.156 Ra{sub D}{sup 1/3} in the apparent turbulent region for Ra{sub L} > 1.2 x 10{sup 11.}
Natural convection between a vertical cylinder and a surrounding array
McEligot, D.M.; O`Brien, J.E.; Stoots, C.M.; Larson, T.K.; Christenson, W.A.; Mecham, D.C.; Lussie, W.G.
1992-09-01
The generic situation considered is natural convection between a single heated, vertical cylinder and a surrounding array of cooler vertical cylinders in a triangular pattern. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6 by adjusting the electrical power. The Rayleigh number, based on test section diameter and air properties evaluated at cooling tube temperature, ranged from 2.9 x 10{sup 4} to 4.6 x 10{sup 5}. Results indicate that the convective heat transfer data could be approximated as Nu{sub D} (T{sub ts}/T{sub ct}){sup 0.14} = 0.156 Ra{sub D}{sup 1/3} in the apparent turbulent region for Ra{sub L} > 1.2 x 10{sup 11.}
Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy
NASA Astrophysics Data System (ADS)
Studholme, Joshua; Gulev, Sergey
2016-04-01
Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact
The efficiency of convective energy transport in the sun
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.
The efficiency of convective energy transport in the sun
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H.
1988-01-01
Mixing length theory (MLT) utilizes adiabatic expansion (as well as radiative transport) to diminish the energy content of rising convective elements. Thus in MLT, the rising elements lose their energy to the environment most efficiently and consequently transport heat with the least efficiency. On the other hand Malkus proposed that convection would maximize the efficiency of energy transport. A new stellar envelope code is developed to first examine this other extreme, wherein rising turbulent elements transport heat with the greatest possible efficiency. This other extreme model differs from MLT by providing a small reduction in the upper convection zone temperatures but greatly diminished turbulent velocities below the top few hundred kilometers. Using the findings of deep atmospheric models with the Navier-Stokes equation allows the calculation of an intermediate solar envelope model. Consideration is given to solar observations, including recent helioseismology, to examine the position of the solar envelope compared with the envelope models.
Instabilities of Natural Convection in a Periodically Heated Layer
NASA Astrophysics Data System (ADS)
Hossain, M. Z.; Floryan, Jerzy M.
2013-11-01
Natural convection in a horizontal layer subject to a spatially periodic heating along the lower wall has been investigated. The heating produces sinusoidal temperature variations characterized by the wave number α and the Rayleigh number Rap. The primary response has the form of stationary rolls with axis orthogonal to the heating wave vector. For large α convection is limited to a thin layer adjacent to the lower wall with a uniform conduction above it. Linear stability was used to determine conditions leading to a secondary convection. Two mechanisms of instability have been identified. For α = 0(1), the parametric resonance dominates and leads to the pattern of instability that is locked-in with the pattern of the heating according to the relation δcr = α /2, where δcr denotes the component of the critical disturbance wave vector parallel to the heating wave vector. The second mechanism, Rayleigh-Bénard (RB) mechanism, dominates for large α. Competition between these mechanisms gives rise to non-commensurable states and appearance of soliton lattices, to the formation of distorted transverse rolls, and to the appearance of the wave vector component in the direction perpendicular to the forcing direction.
Bursting near transition in non-Boussinesq natural convection
NASA Astrophysics Data System (ADS)
Weisman, Catherine; Barkley, Dwight; Le Quere, Patrick
2002-11-01
Natural convection of air in a differentially heated cavity with large temperature gradients can be described by the low Mach approximation equations obtained by Paolucci allowing for filtering of sound waves with the fluid viscosity a nonlinear function of temperature. Numerical simulations exhibit intriguing time-dependent solutions. The transition to time-dependence appears to be subcritical. In the vicinity of transition, an intermittent solution is observed, with periodic bursts separating quasi-steady states. These phenomena can be understood in terms of a slow passage through a Hopf bifurcation; model equations based on slow passage qualitatively explain the numerical observations.
Effect of enclosure shape on natural convection velocities
NASA Technical Reports Server (NTRS)
Robertson, S. J.; Nicholson, L. A.
1982-01-01
A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.
Natural convection heat transfer along vertical rectangular ducts
NASA Astrophysics Data System (ADS)
Ali, M.
2009-12-01
Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases.
Particle filter based on thermophoretic deposition from natural convection flow
Sasse, A.G.B.M.; Nazaroff, W.W. ); Gadgil, A.J. )
1994-04-01
We present an analysis of particle migration in a natural convection flow between parallel plates and within the annulus of concentric tubes. The flow channel is vertically oriented with one surface maintained at a higher temperature than the other. Particle migration is dominated by advection in the vertical direction and thermophoresis in the horizontal direction. From scale analysis it is demonstrated that particles are completely removed from air flowing through the channel if its length exceeds L[sub c] = (b[sup 4]g/24K[nu][sup 2]), where b is the width of the channel, g is the acceleration of gravity, K is a thermophoretic coefficient of order 0.5, and [nu] is the kinematic viscosity of air. Precise predictions of particle removal efficiency as a function of system parameters are obtained by numerical solution of the governing equations. Based on the model results, it appears feasible to develop a practical filter for removing smoke particles from a smoldering cigarette in an ashtray by using natural convection in combination with thermophoresis. 22 refs., 8 figs., 1 tab.
Luo, Kang; Yi, Hong-Liang Tan, He-Ping
2014-05-15
Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.
NASA Astrophysics Data System (ADS)
Luo, Kang; Yi, Hong-Liang; Tan, He-Ping
2014-05-01
Transitions and bifurcations of transient natural convection in a horizontal annulus with radiatively participating medium are numerically investigated using the coupled lattice Boltzmann and direct collocation meshless (LB-DCM) method. As a hybrid approach based on a common multi-scale Boltzmann-type model, the LB-DCM scheme is easy to implement and has an excellent flexibility in dealing with the irregular geometries. Separate particle distribution functions in the LBM are used to calculate the density field, the velocity field and the thermal field. In the radiatively participating medium, the contribution of thermal radiation to natural convection must be taken into account, and it is considered as a radiative term in the energy equation that is solved by the meshless method with moving least-squares (MLS) approximation. The occurrence of various instabilities and bifurcative phenomena is analyzed for different Rayleigh number Ra and Prandtl number Pr with and without radiation. Then, bifurcation diagrams and dual solutions are presented for relevant radiative parameters, such as convection-radiation parameter Rc and optical thickness τ. Numerical results show that the presence of volumetric radiation changes the static temperature gradient of the fluid, and generally results in an increase in the flow critical value. Besides, the existence and development of dual solutions of transient convection in the presence of radiation are greatly affected by radiative parameters. Finally, the advantage of LB-DCM combination is discussed, and the potential benefits of applying the LB-DCM method to multi-field coupling problems are demonstrated.
Tzeng, P.Y.; Soong, C.Y.; Sheu, T.S.
1997-02-07
The present work is concerned with a numerical investigation of transient laminar natural convection and the associated flow-mode transition in a two-dimensional rectangular enclosure. Navier-Stokes/Boussinesq equations for fluid flow and energy balance are solved by using the SIMPLE-C algorithm. Air of Pr = 0.71 in a differentially heated enclose of length-to-height aspect ratio As = 4 and at Ra = 5,000 is chosen as the flow model to examine the influences of the inclination. Calculations of time accuracy are performed to investigate the transient procedure of the flow-mode transition with increasing or decreasing inclination. The present results reveal that, at some critical situations, natural convection in inclined enclosures is very sensitive to the change in tilt angle, and the associated heat transfer rates are closely related to the correspondent cellular flow patterns.
Special session: computational predictability of natural convection flows in enclosures
Christon, M A; Gresho, P M; Sutton, S B
2000-08-14
Modern thermal design practices often rely on a ''predictive'' simulation capability--although predictability is rarely quantified and often difficult to confidently achieve in practice. The computational predictability of natural convection in enclosures is a significant issue for many industrial thermal design problems. One example of this is the design for mitigation of optical distortion due to buoyancy-driven flow in large-scale laser systems. In many instances the sensitivity of buoyancy-driven enclosure flows can be linked to the presence of multiple bifurcation points that yield laminar thermal convective processes that transition from steady to various modes of unsteady flow. This behavior is brought to light by a problem as ''simple'' as a differentially-heated tall rectangular cavity (8:1 height/width aspect ratio) filled with a Boussinesq fluid with Pr = 0.71--which defines, at least partially, the focus of this special session. For our purposes, the differentially-heated cavity provides a virtual fluid dynamics laboratory.
A new method to optimize natural convection heat sinks
NASA Astrophysics Data System (ADS)
Lampio, K.; Karvinen, R.
2017-08-01
The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.
Energy relaxation for transient convection in ferrofluids.
Singh, Jitender
2010-08-01
The onset of transient instability driven by a coupling of thermal and magnetic effects in an initially quiescent ferrofluid layer is investigated using the energy method. Following the work of Kim [Phys. Lett. A 372, 4709 (2008)], an energy stability criterion is derived for the underlying dynamical system by taking into account the different boundary conditions and the Prandtl number effects. The critical onset time of the instability is determined as a function of the Rayleigh number, the Prandtl number, and the thermomagnetic parameter. For larger times, our analysis predicts that the energy stability theory and the linear theory yield essentially the same results irrespective of whether the fluid under consideration is a magnetically polarizable or a nonmagnetic fluid and subcritical instabilities are not possible. For the global nonlinear stability boundary in the impulsively heated ferrofluid layer, the minimum critical onset time is found to occur when the values of the Rayleigh number and the thermomagnetic parameter are same.
Localized traveling pulses in natural doubly diffusive convection
NASA Astrophysics Data System (ADS)
Lo Jacono, D.; Bergeon, A.; Knobloch, E.
2017-09-01
Two-dimensional natural doubly diffusive convection in a vertical slot driven by an imposed temperature difference in the horizontal is studied using numerical continuation and direct numerical simulation. Two cases are considered and compared. In the first a concentration difference that balances thermal buoyancy is imposed in the horizontal and stationary localized structures are found to be organized in a standard snakes-and-ladders bifurcation diagram. Disconnected branches of traveling pulses TPn consisting of n ,n =1 ,2 ,⋯ , corotating cells are identified and shown to accumulate on a tertiary branch of traveling waves. With Robin or mixed concentration boundary conditions on one wall all localized states travel and the hitherto stationary localized states may connect up with the traveling pulses. The stability of the TPn states is determined and unstable TPn shown to evolve into spatio-temporal chaos. The calculations are done with no-slip boundary conditions in the horizontal and periodic boundary conditions in the vertical.
Chouikh, R.; Guizani, A.; Maalej, M.; Belghith, A.
1999-04-01
The amount of work accomplished in the area of natural convection heat transfer in interacting flow fields around an array of cylinders has increased in the last years. There is a growing demand for a better understanding of this phenomenon in areas like heat exchangers, electronic devices, solar heating and storing technology among others. Here, natural convection heat transfer from an array of heated cylinders has received attention in recent years. However, most of the previous investigations has been experimental and has been restricted to the influence of geometrical parameters on the overall heat transfer. The present work is devoted to the numerical study of laminar natural convection flow from an array of two horizontal isothermal cylinders. This work, that enters within the framework of general study dealing with an array of several cylinders, states the problem in Cartesian coordinates system, involves the use of a control-volume method and solves the full vorticity transport equation together with the stream function and energy equations. The modifications of the average Nusselt number evolution compared with the single cylinder are explained in terms of velocity and temperature fields of the flow around the cylinders. Results are obtained for variety of combinations of spacing and numbers of Rayleigh.
Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L
2017-04-01
Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less
NASA Astrophysics Data System (ADS)
Sun, Yujia; Zhang, Xiaobing; Howell, John R.
2017-06-01
This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.
Natural convection heat transfer analysis of ATR fuel elements
Langerman, M.A.
1992-05-01
Natural convection air cooling of the Advanced Test Reactor (ATR) fuel assemblies is analyzed to determine the level of decay heat that can be removed without exceeding the melting temperature of the fuel. The study was conducted to assist in the level 2 PRA analysis of a hypothetical ATR water canal draining accident. The heat transfer process is characterized by a very low Rayleigh number (Ra {approx} 10{sup {minus}5}) and a high temperature ratio. Since neither data nor analytical models were available for Ra < 0.1, an analytical approach is presented based upon the integral boundary layer equations. All assumptions and simplifications are presented and assessed and two models are developed from similar foundations. In one model, the well-known Boussinesq approximations are employed, the results from which are used to assess the modeling philosophy through comparison to existing data and published analytical results. In the other model, the Boussinesq approximations are not used, thus making the model more general and applicable to the ATR analysis.
Transient natural convection of cold water in a vertical channel
NASA Astrophysics Data System (ADS)
Chiba, Ryoichi
2016-05-01
The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. 4°C. Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.
Magnetohydrodynamic stability of natural convection in a vertical porous slab
NASA Astrophysics Data System (ADS)
Shankar, B. M.; Kumar, Jai; Shivakumara, I. S.
2017-01-01
The stability of the conduction regime of natural convection in an electrically conducting fluid saturated porous vertical slab is investigated in the presence of a uniform external transverse magnetic field. The flow in the porous medium is described by modified Brinkman-extended Darcy equation with fluid viscosity different from effective viscosity. The boundaries of the vertical porous slab are assumed to be rigid-isothermal and electrically non-conducting. The resulting stability equations are solved numerically using Galerkin method. The critical Grashof number Gc, the critical wave number αc and the critical wave speed cc are computed for a wide range of porous parameter σp, the ratio of effective viscosity to the fluid viscosity Λ, the Prandtl number Pr and the Hartmann number M. Based on these parameters, the stability characteristics of the system are discussed in detail. The presence of advective inertia is to instill instability on the flow in a porous medium and found that the magnetic field, porous parameter and ratio of viscosities have a stabilizing effect on both stationary and oscillatory wave instabilities. Besides, the value of Pr at which transition occurs from stationary to oscillatory mode of instability decreases with increasing M ,σp and Λ .
Experimental analysis of natural convection within a thermosyphon
Clarksean, R.
1993-09-01
The heat transfer characteristics of a thermosyphon designed to passively cool cylindrical heat sources are experimentally studied. The analysis is based on recognizing the physics of the flow within different regions of the thermosyphon to develop empirical heat transfer correlations. The basic system consists of three concentric cylinders, with an outer channel between the outer two cylinders, and an inner channel between the inner two cylinders. Tests were conducted. with two different process material container diameters, representing the inner cylinder, and several different power levels. The experimentally determined local and average Nu numbers for the inner channel are in good agreement with previous work for natural convection between vertical parallel plates, one uniformly heated and the other thermally insulated. The implication is that the heat transfer off of each surface is independent of the adjacent surface for sufficiently high Ra numbers. The heat transfer is independent because of limited interaction between the boundary layers at sufficiently high Ra numbers. As a result of the limited interaction, the maximum temperature within the system remained constant, or decreased slightly when the radii of the inner cylinders increased for the same amount of heat removal.
Stratification and energy fluxes in the anelastic convection model
NASA Astrophysics Data System (ADS)
Hejda, Pavel; Reshetnyak, Maxim
2013-04-01
Convection in the planetary cores is usually connected with the geostrophic state. At the onset of convection, the ratio of horizontal scale to the scale along the axis of rotation is proportional to the cube root of the Ekman number, which characterises the ratio of the viscous forces to the Coriolis force. The Ekman number is extremely small in the liquid cores, which is a source of strong anisotropy. Even if further increase of the heat sources leads to decrease of anisotropy, the final state is still highly anisotropic. The influence of the rapid rotation on the structure of the flows in the physical space is also manifested by a substantial change of the spectral properties of the turbulence in the core (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). If for the non-rotating flow the kinetic energy in the wave space propagates from the large scales to the small dissipative scales (the so-called direct Richardson-Kolmogorov cascade), then in presence of rotation the turbulence degenerates to the quasi two-dimensional state and the inverse cascade of the kinetic energy is observed. Having in mind that Cartesian and spherical geometries exhibit similar results and reproduce the inverse cascades of the kinetic energy (Reshetnyak and Hejda, 2012), there is an open question how this cascade contributes to the more general energy balance, which includes the heat flux equation. As the heat energy definition in the Boussinesq model is quite questionable, we consider the anelastic model, where the heat fluxes can be compared with the kinetic energy fluxes in the adequate way. Here we consider the spherical geometry model in the shell that limits our study to the cascades in the azimuthal wave-number. As the self-consistent anelastic model includes new term, the adiabatic cooling, which produces "stratification" in the outer part of the core, we consider its influence on convection in the physical and wave spaces. We show that even small cooling can change the
Natural convection in a horizontal cylinder with axial rotation
NASA Astrophysics Data System (ADS)
Sánchez, Odalys; Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa
2016-06-01
We study the problem of thermal convection in a laterally heated horizontal cylinder rotating about its axis. A cylinder of aspect ratio Γ =H /2 R =2 containing a small Prandtl number fluid (σ =0.01 ) representative of molten metals and molten semiconductors at high temperature is considered. We focus on a slow rotation regime (Ω <8 ), where the effects of rotation and buoyancy forces are comparable. The Navier-Stokes and energy equations with the Boussinesq approximation are solved numerically to calculate the basic states, analyze their linear stability, and compute several secondary flows originated from the instabilities. Due to the confined cylindrical geometry—the presence of lateral walls and lids—all the flows are completely three dimensional, even the basic steady states. Results characterizing the basic states as the rotation rate increases are presented. As it occurred in the nonrotating case for higher values of the Prandtl number, two curves of steady states with the same symmetric character coexist for moderate values of the Rayleigh number. In the range of Ω considered, rotation has a stabilizing effect only for very small values. As the value of the rotation rate approaches Ω =3.5 and Ω =4.5 , the scenario of bifurcations becomes more complex due to the existence in both cases of very close bifurcations of codimension 2, which in the latter case involve both curves of symmetric solutions.
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
NASA Astrophysics Data System (ADS)
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur
2012-06-01
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
Experimental study of natural convective heat transfer in a vertical hexagonal sub channel
Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur
2012-06-06
The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.
Joosik Yoo; Jun Young Choi; Moonuhn Kim . Dept. of Mechanical Engineering)
1994-01-01
Two-dimensional natural convection of a fluid of low Prandtl number (Pr = 0.02) in an annulus between two concentric horizontal cylinders is numerically investigated in a wide range of gap widths. For low Grashof numbers, a steady unicellular convection is obtained. Above a transition Grashof number that depends on the gap width, a steady bicellular flow occurs. With further increase of the Grashof number, steady or time-periodic multicellular convection occurs, and finally, complex unsteady convective flow appears. A plot is presented that predicts the type of flow patterns for various combination of gap widths and Grashof numbers.
Numerical study of natural convection in fully open tilted cavities
Elsayed, M.M.; Al-Najem, N.M.; El-Refaee, M.M.; Noor, A.A.
1999-09-01
A numerical simulation of two-dimensional laminar natural convection in a fully open tilted square cavity with an isothermally heated back wall is conducted. The remaining two walls of the cavity are adiabatic. Steady-state solutions are presented for Grashof numbers between 10{sup 2} and 10{sup 5} and for tilt angles ranging from {minus}60{degree} to 90{degree} (where 90{degree} represents a cavity with the opening facing down). The fluid properties are assumed to be constant except for the density variation with temperature that gives rise to the buoyancy forces, which is treated by the Boussinesq approximation. The fluid concerned is air with Prandtl number fixed at 0.71. The governing equations are expressed in a normalized primitive variables formulation. Numerical predictions of the velocity and temperature fields are obtained using the finite-volume-based power law (SIMPLER: Semi-Implicit Method for Pressure-Linked Equations Revised) algorithm. For a vertical open cavity ({alpha} = 0{degree}), the algorithm generated results that were in good agreement with those previously published. Flow patterns and isotherms are shown in order to give a better understanding of the heat transfer and flow mechanisms inside the cavity. Effects of the controlling parameters-Grashof number and tilt angle-on the heat transfer (average Nusselt number) are presented and analyzed. The results also revealed that the open-cavity Nusselt number approaches the flat-plate solution when either Grashof number or tilt angle increases. In addition, a correlation of the Nusselt number in terms of the Grashof number and tilt angle is developed and presented; a comparison is made with available data from other literature.
NASA Astrophysics Data System (ADS)
Neshat, E.; Hossainpour, S.; Bahiraee, F.
2014-06-01
Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.
Classical convective energy transport in large gradient regions
Hinton, F.L.
1996-12-31
Large gradients in density and temperature occur near the edge in H-mode plasmas and in the core of tokamak plasmas with negative central shear. Transport in these regions may be comparable to neoclassical. Standard neoclassical theory does not apply when the gradient lengths are comparable to an ion orbit excursion, or banana width. A basic question for neoclassical transport in large gradient regions is: do ion-ion collisions drive particle transport? Near the plasma edge in H-mode, where ion orbit loss requires that the ion energy transport be convective, neoclassical particle transport due to ion-ion collisions may play an important role. In negative central shear plasmas, where transport is inferred to be near neoclassical, it is important to have accurate predictions for the neoclassical rate of energy and particle transport. A simple 2-D slab model has been used, with a momentum-conserving collision operator, to show that ion-ion collisions do drive particle transport. When the gradients are large, the {open_quotes}field particle{close_quotes} contribution to the particle flux is non-local, and does not cancel the {open_quotes}test particle{close_quotes} contribution, which is local. Solutions of the kinetic equation are found which show that the steepness of the density profile, for increasing particle flux, is limited by orbit averaging. The gradient length is limited by the thermal gyroradius, and the convective energy flux is independent of ion temperature. This will allow an ion thermal runaway to occur, if there are no other ion energy loss mechanisms.
NASA Astrophysics Data System (ADS)
Lee, Sang-Min; Byun, Hi-Ryong
2011-10-01
This paper reports a theoretical study on the possibility of inducing artificial showery rain using the convective available potential energy, which is naturally stored in the troposphere. We calculated the environmental parameters (frequency of climatic values, extreme value of stability index, etc.) in the upper troposphere using rawinsonde data from six main stations in Korea from 2001 to 2008 and examined the temporal spatial convective energy according to region. Our results showed that convective available potential energy, which can induce artificial rainfall, existed in the troposphere mainly in summer and were low in other seasons. Its value was found to be highest during late afternoon and in inland regions. We examined the vertical structure of the atmosphere using moisture convergence and vertical velocity (omega) and found that precipitation occurred under strong real latent instability conditions with high convective available potential energy (>3,000 J/kg) in summer and was characterized by moisture convergence at 1,000-400 hPa, moisture divergence at 400-300 hPa, and continuous ascending air current at 1,000-300 hPa (-ω), on average. However, precipitation still did not occur in more than half the cases with high convective available potential energy because, according to the analysis, convective rainfall is affected to a greater extent by the value of convective inhibition than by convective available potential energy. It was also verified that in spite of zero convective inhibition, if the updrafts at a lower level were not sufficient to generate high convective available potential energy at a level higher than the level of free convection, convective rainfall would not occur under real latent instability. Therefore, we suggest it might be possible during the summer to secure the water resources in regions without precipitation by inducing ascending air current artificially under unstable atmospheric conditions to induce showery rain.
Natural convection of a high Prandlt number fluid in a cavity
Poujol, F.T.; Rojas, J.; Ramos, E.
2000-01-01
The dynamic and thermal properties of transient natural convection in cavities have been studied in the context of limnology, geophysics, solar energy and mixing applications as an effort to build realistic models of various physical phenomena. It is of interest to understand the heat transfer process to be able to enhance or reduce it, depending on the requirements. Here, transient natural convection in a square cavity heated with a time-dependent heat flux on one vertical wall and cooled by maintaining the opposite wall at a constant temperature was studied experimentally and numerically. The working fluid was silicon oil (Dow Corning fluid 20--200) with a prandtl number of 230. All experiments were carried out in a cubic cavity of 0.13 m in each side. The heating rate used was 460 W/m{sup 2}, which corresponds to a Rayleigh number of 2 x 10{sup 9}. Experimental data included temperature records at particular points and velocity measurements obtained from video images of tracers. The dynamics of the transition to the steady state is characterized by a vortex structure that forms near the heated wall. This structure is generated by shear at the heated wall boundary layer. The results were compared with a numerical simulation and qualitative agreement was obtained.
Natural convection during a phase change of sodium acetate trihydrate
NASA Astrophysics Data System (ADS)
Ouchi, Yasunori; Someya, Satoshi; Munakata, Tetsuo
2014-11-01
A latent heat storage system has higher storage capacity than a sensible heat storage system. Sodium acetate trihydrate has large latent heat at the temperature, 58°C, suitable for a hot-water supply system. The present study focused on convection in a phase change process to understand the heat transfer from the phase change material (PCM). The convection occurred only in certain conditions of supercooling temperature and PCM concentration. A spicular crystal grew quickly and the thermal convection couldn't be detected at large supercooling temperature with high concentration of PCM. In the range of 5 ~ 13°C of supercooling temperature, the buoyancy driven convection due to the latent heat of PCM was measured using the PIV. It was also observed that a part of CH3COONa-3H2O solution was sucked into the growing spicular crystals to supply CH3COONa at the condition with small concentration and at 5 ~ 13°C of supercooling temperature.
NASA Astrophysics Data System (ADS)
Kao, A.; Shevchenko, N.; Roshchupinka, O.; Eckert, S.; Pericleous, K.
2015-06-01
Using a fully coupled transient 3-dimensional numerical model, the effects of convection on the microstructural evolution of a thin sample of Ga-In25%wt. was predicted. The effects of natural convection, forced convection and thermoelectric magnetohydrodynamics were investigated numerically. A comparison of the numerical results is made to experimental results for natural convection and forced convection. In the case of natural convection, density variations within the liquid cause plumes of solute to be ejected into the bulk. When forced convection is applied observed effects include the suppression of solute plumes, preferential secondary arm growth and an increase in primary arm spacing. These effects were observed both numerically and experimentally. By applying an external magnetic field inter-dendritic flow is generated by thermoelectrically induced Lorentz forces, while bulk flow experiences an electromagnetic damping force. The former causes preferential secondary growth, while the latter slows the formation of solute plumes. This work highlights that the application of external forces can be a valuable tool for tailoring the microstructure and ultimately the macroscopic material properties.
Energy transport by thermocapillary convection during Sessile-Water-droplet evaporation.
Ghasemi, H; Ward, C A
2010-09-24
The energy transport mechanisms of a sessile-water droplet evaporating steadily while maintained on a Cu substrate are compared. Buoyancy-driven convection is eliminated, but thermal conduction and thermocapillary convection are active. The dominant mode varies along the interface. Although neglected in previous studies, near the three-phase line, thermocapillary convection is by far the larger mode of energy transport, and this is the region where most of the droplet evaporation occurs.
T. Hadgu; S. Webb; M. Itamura
2004-02-12
Yucca Mountain, Nevada has been designated as the nation's high-level radioactive waste repository and the U.S. Department of Energy has been approved to apply to the U.S. Nuclear Regulatory Commission for a license to construct a repository. Heat transfer in the Yucca Mountain Project (YMP) drift enclosures is an important aspect of repository waste emplacement. Canisters containing radioactive waste are to be emplaced in tunnels drilled 500 m below the ground surface. After repository closure, decaying heat is transferred from waste packages to the host rock by a combination of thermal radiation, natural convection and conduction heat transfer mechanism?. Current YMP mountain-scale and drift-scale numerical models often use a simplified porous medium code to model fluid and heat flow in the drift openings. To account for natural convection heat transfer, the thermal conductivity of the air was increased in the porous medium model. The equivalent thermal conductivity, defined as the ratio of total heat flow to conductive heat flow, used in the porous media models was based on horizontal concentric cylinders. Such modeling does not effectively capture turbulent natural convection in the open spaces as discussed by Webb et al. (2003) yet the approach is still widely used on the YMP project. In order to mechanistically model natural convection conditions in YMP drifts, the computational fluid dynamics (CFD) code FLUENT (Fluent, Incorporated, 2001) has been used to model natural convection heat transfer in the YMP emplacement drifts. A two-dimensional (2D) model representative of YMP geometry (e.g., includes waste package, drip shield, invert and drift wall) has been developed and numerical simulations made (Francis et al., 2003). Using CFD simulation results for both natural convection and conduction-only heat transfer in a single phase, single component fluid, equivalent thermal conductivities have been calculated for different Rayleigh numbers. Correlation
Radiation effect on natural convection over a vertical cylinder embedded in porous media
Yih, K.A.
1999-02-01
Study of buoyancy-induced convection flow and heat transfer in a fluid-saturated porous medium has recently attracted considerable interest because of a number of important energy-related engineering and geophysical applications such as thermal insulation of buildings, geothermal engineering, enhanced recovery of petroleum resources, filtration processes, ground water pollution and sensible heat storage beds. In this paper numerical solutions are presented for the effect of radiation on natural convection about an isothermal vertical cylinder embedded in a saturated porous medium. These partial differential equations are transformed into the nonsimilar boundary layer equations which are solved by an implicit finite-difference method (Keller box method). Numerical results for the dimensionless temperature profiles and the local Nusselt number are presented for the transverse curvature parameter {xi}, conduction-radiation parameter R{sub d} and surface temperature excess ratio H. In general, the local Nusselt number increases as the transverse curvature parameter {xi} increases. Furthermore, decreasing the conduction-radiation parameter R{sub d} and increasing surface temperature excess ratio H augments the local heat transfer rate.
Gurwich, Ilya
2010-06-23
1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.
3-D Velocity Measurement of Natural Convection Using Image Processing
NASA Astrophysics Data System (ADS)
Shinoki, Masatoshi; Ozawa, Mamoru; Okada, Toshifumi; Kimura, Ichiro
This paper describes quantitative three-dimensional measurement method for flow field of a rotating Rayleigh-Benard convection in a cylindrical cell heated below and cooled above. A correlation method for two-dimensional measurement was well advanced to a spatio-temporal correlation method. Erroneous vectors, often appeared in the correlation method, was successfully removed using Hopfield neural network. As a result, calculated 3-D velocity vector distribution well corresponded to the observed temperature distribution. Consequently, the simultaneous three-dimensional measurement system for temperature and flow field was developed.
Numerical simulation of magnetic nanofluid natural convection in porous media
NASA Astrophysics Data System (ADS)
Sheikholeslami, Mohsen
2017-02-01
Free convection of magnetic nanofluid in a porous curved cavity is investigated. Influence of external magnetic source is taken into account. Innovative numerical approach, namely CVFEM, is applied. Impacts of Darcy number (Da), Rayleigh (Ra), Hartmann (Ha) numbers and volume fraction of Fe3O4 (ϕ) on hydrothermal characteristics are examined. Results indicate that heat transfer augmentation augments with rise of Ha and reduces with rise of Da , Ra . Lorentz forces make the nanofluid motion to decrease and enhance the thermal boundary layer thickness. Temperature gradient enhances with increase of Da , Ra , ϕ, but it reduces with rise of Ha.
Natural-convection heat transfer of a spherical lighting fixture
Ikeda, Takamasa; Fujii, Tetsu
1994-09-01
The surface temperatures of the inner lamp and the outer globe of a spherical lighting fixture, the surfaces of which are painted black, were measured. From the results, the average convective heat-transfer coefficients between the inner lamp and the outer globe and on the outer surface of the globe were obtained. These data are correlated with the aid of existing equations for two concentric spheres and the outer surface of a single sphere. The relationships between the maximum and mean temperatures on the lamp and the globe were also obtained. By the use of these equations, a method for the optimal thermal design of spherical lighting fixtures is proposed.
Transient natural convection heat and mass transfer in crystal growth
NASA Technical Reports Server (NTRS)
Han, Samuel S.
1988-01-01
A numerical analysis of transient combined heat and mass transfer across a rectangular cavity is performed by a numerical method based on the SIMPLE algorithm. The physical parameters are selected to represent a range of possible crystal growth in solutions. Numerical results are compared with available experimental data to confirm the accuracy of the results. Good qualitative agreements are obtained for the average mass transfer rate across the cavity. Also, qualitative agreements are observed for the global development of thermal and solute fields. It is found that the thermal and solute fields become highly oscillatory when the thermal and solute Grashof numbers are large. Oscillations are probably caused by a number of different instability mechanisms. By reducing the gravity some of these instabilities were made to disappear at the lower Grashof numbers. Transient temperature and solute distribution near the crystal growing surface are highly non-uniform at the higher Grashof numbers. These non-uniformities are less severe in the reduced gravity environments but still exist. The effects of convection on the rate of average mass transfer are more than one order of magnitude higher than those of conduction in the range of Grashof numbers studied. Dependency of mass transfer rate on the Grashof number indicates that the convection effects many not be negligible even in the microgravity environments for the range of parameters investigated.
Natural convection heat transfer in vertical triangular subchannel in Zirconia-water nanofluid
NASA Astrophysics Data System (ADS)
Tandian, N. P.; Alkharboushi, A. A. K.; Kamajaya, K.
2015-09-01
Natural convection heat transfer in vertical triangular sub-channel has important role in cooling mechanism of the APWR and the PHWR nuclear reactors. Unfortunately, natural convection correlation equations for such geometry are scarcely available. Recent studies showed that ZrO2-water nanofluid has a good prospect to be used in the nuclear reactor technology due to its low neutron absorption cross section. Although several papers have reported transport properties of ZrO2-water nanofluids, practically there is no correlation equation for predicting natural convection heat transfer in a vertical triangular sub-channel in ZrO2-water nanofluid. Therefore, a study for finding such heat transfer correlation equation has been done by utilizing Computational Fluid Dynamics software and reported in this paper. In the study, natural convection heat transfer in a vertical triangular sub-channel has been simulated at several values of heat transfer flux within 9.1 to 30.9 kW/m2 range and ZrO2 concentrations of 0 (pure water), 0.27, and 3 volume-% of ZrO2. The study shows that the ZrO2 concentration has no significant influence to the natural convection heat transfer at those concentration levels. The obtained theoretical heat transfer correlation equations were verified through experiment, and they showed very similar results. The correlation equations are reported in this paper.
NASA Astrophysics Data System (ADS)
Miranda Fuentes, Johann; Kuznik, Frédéric; Johannes, Kévyn; Virgone, Joseph
2014-01-01
This article presents a new model to simulate melting with natural convection of a phase change material. For the phase change problem, the enthalpy formulation is used. Energy equation is solved by a finite difference method, whereas the fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method. The model is first verified and validated using the data from the literature. Then, the model is applied to a tall brick filled with a fatty acid eutectic mixture and the results are presented. The main results are (1) the spatial convergence rate is of second order, (2) the new model is validated against data from the literature and (3) the natural convection plays an important role in the melting process of the fatty acid mixture considered in our work.
NASA Astrophysics Data System (ADS)
Mohorič, Aleš; Stepišnik, Janez
2000-11-01
This paper describes the influence of natural convection on NMR measurement of a self-diffusion constant of fluid in the earth's magnetic field. To get an estimation of the effect, the Lorenz model of natural convection in a horizontally oriented cylinder, heated from below, is derived. Since the Lorenz model of natural convection is derived for the free boundary condition, its validity is of a limited value for the natural no-slip boundary condition. We point out that even a slight temperature gradient can cause significant misinterpretation of measurements. The chaotic nature of convection enhances the apparent self-diffusion constant of the liquid.
Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong
2016-11-16
Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.
Protoneutron star cooling with convection: the effect of the symmetry energy.
Roberts, L F; Shen, G; Cirigliano, V; Pons, J A; Reddy, S; Woosley, S E
2012-02-10
We model neutrino emission from a newly born neutron star subsequent to a supernova explosion to study its sensitivity to the equation of state, neutrino opacities, and convective instabilities at high baryon density. We find the time period and spatial extent over which convection operates is sensitive to the behavior of the nuclear symmetry energy at and above nuclear density. When convection ends within the protoneutron star, there is a break in the predicted neutrino emission that may be clearly observable.
Fossa, M.; Menezo, C.; Leonardi, E.
2008-02-15
An experimental study on natural convection in an open channel is carried out in order to investigate the effect of the geometrical configuration of heat sources on the heat transfer behaviour. To this aim, a series of vertical heaters are cooled by natural convection of air flowing between two parallel walls. The objective of the work is to investigate the physical mechanisms which influence the thermal behaviour of a double-skin photovoltaic (PV) facade. This results in a better understanding of the related phenomena and infers useful engineering information for controlling the energy transfers from the environment to the PV surfaces and from the PV surfaces to the building. Furthermore increasing the heat transfer rate from the PV surfaces increases the conversion efficiency of the PV modules since they operate better as their temperature is lower. The test section consists in a double vertical wall, 2 m high, and each wall is constituted by 10 different heating modules 0.2 m high. The heater arrangement simulates, at a reduced scale, the presence of a series of vertical PV modules. The heat flux at the wall ranges from 75 to 200 W/m{sup 2}. In this study, the heated section is 1.6 m in height, preceded by an adiabatic of 0.4 m in height. Different heating configurations are analyzed, including the uniform heating mode and two different configurations of non uniform, alternate heating. The experimental procedure allows the wall surface temperature, local heat transfer coefficient and local and average Nusselt numbers to be inferred. The experimental evidences show that the proper selection of the separating distance and heating configuration can noticeably decrease the surface temperatures and hence enhance the conversion efficiency of PV modules. (author)
Phase-field-lattice Boltzmann studies for dendritic growth with natural convection
NASA Astrophysics Data System (ADS)
Takaki, Tomohiro; Rojas, Roberto; Sakane, Shinji; Ohno, Munekazu; Shibuta, Yasushi; Shimokawabe, Takashi; Aoki, Takayuki
2017-09-01
Simulating dendritic growth with natural convection is challenging because of the size of the computational domain required when compared to the dendrite scale. In this study, a phase-field-lattice Boltzmann model was used to simulate dendritic growth in the presence of natural convection due to a difference in solute concentration. To facilitate and accelerate the large-scale simulation, a parallel computing code with multiple graphics processing units was developed. The effects of the computational domain size as well as those of gravity on the dendritic morphologies were examined by performing two-dimensional free dendritic growth simulations with natural convection. The effects of the gravity direction on the dendrite spacing and morphology were also investigated by simulating unidirectional solidification from multiple seeds.
Natural Gas Energy Educational Kit.
ERIC Educational Resources Information Center
American Gas Association, Arlington, VA. Educational Services.
Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…
Natural Gas Energy Educational Kit.
ERIC Educational Resources Information Center
American Gas Association, Arlington, VA. Educational Services.
Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-02-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Tagawa, Toshio; Ozoe, Hiroyuki
1996-08-23
Numerical calculations were carried out for natural convection of low-Prandtl-number fluid. These calculations include the inertial terms that were approximated by six kinds of schemes, i.e., upwind scheme, hybrid scheme, second-order central difference method, Kawamura-Kuwahara scheme, Utopia scheme, and fourth-order central difference method. The average Nusselt number depended significantly on the schemes. The occurrence of oscillatory flow also depended on the schemes for inertial terms. Higher order up-winding approximations for inertial terms appear to be required to calculate natural convection of low-Prandtl-number fluids like liquid metal, even if the Rayleigh number is not large enough.
Transient testing of the FFTF for decay-heat removal by natural convection
Beaver, T R; Johnson, H G; Stover, R L
1982-06-01
This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented.
Budgets of divergent and rotational kinetic energy during two periods of intense convection
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Fuelberg, H. E.
1986-01-01
The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.
Natural Convection Cooling of the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Hill, Dennis
2011-01-01
After fueling and prior to launch, the Advanced Stirling Radioisotope Generator (ASRG) will be stored for a period of time then moved to the launch pad for integration with the space probe and mounting on the launch vehicle. During this time, which could be as long as 3 years, the ASRG will operate continuously with heat rejected from the housing and fins. Typically, the generator will be cooled by forced convection using fans. During some of the ground operations, maintaining forced convection may add significant complexity, so allowing natural convection may simplify operations. A test was conducted on the ASRG Engineering Unit (EU) to quantify temperatures and operating parameters with natural convection only and determine if the EU could be safely operated in such an environment. The results show that with natural convection cooling the ASRG EU Stirling convertor pressure vessel temperatures and other parameters had significant margins while the EU was operated for several days in this configuration. Additionally, an update is provided on ASRG EU testing at NASA Glenn Research Center, where the ASRG EU has operated for over 16,000 hr and underwent extensive testing.
Bucknor, Matthew; Hu, Rui; Lisowski, Darius; Kraus, Adam
2016-04-17
The Reactor Cavity Cooling System (RCCS) is an important passive safety system being incorporated into the overall safety strategy for high temperature advanced reactor concepts such as the High Temperature Gas- Cooled Reactors (HTGR). The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at Argonne National Laboratory (Argonne) reflects a 1/2-scale model of the primary features of one conceptual air-cooled RCCS design. The project conducts ex-vessel, passive heat removal experiments in support of Department of Energy Office of Nuclear Energy’s Advanced Reactor Technology (ART) program, while also generating data for code validation purposes. While experiments are being conducted at the NSTF to evaluate the feasibility of the passive RCCS, parallel modeling and simulation efforts are ongoing to support the design, fabrication, and operation of these natural convection systems. Both system-level and high fidelity computational fluid dynamics (CFD) analyses were performed to gain a complete understanding of the complex flow and heat transfer phenomena in natural convection systems. This paper provides a summary of the RELAP5-3D NSTF model development efforts and provides comparisons between simulation results and experimental data from the NSTF. Overall, the simulation results compared favorably to the experimental data, however, further analyses need to be conducted to investigate any identified differences.
Natural convection in a liquid metal locally heated from above
NASA Astrophysics Data System (ADS)
Khalilov, R.; Kolesnichenko, I.; Teimurazov, A.; Mamykin, A.; Frick, P.
2017-06-01
A convective flow of liquid sodium generated nearby a hot round in the upper solid end face of a vertical cylinder has been studied experimentally and numerically. A developed turbulent flow is observed in the upper part of the cylinder. Strong velocity pulsations penetrate in the bulk of the metal up to a distance of about the diameter of the cylinder. Mean velocity fields reveal a toroidal vortex, which is localized in a narrow upper zone. Numerical simulations were done for two types of thermal boundary conditions (BCs): fixed temperature and fixed homogeneous heat flux on both heat exchangers. Experimental values of time-averaged velocity and temperature in the vortex are in good agreement with numerical data. The size and the intensity of the vortex weakly depend on BCs. The whole bulk of the metal is not involved in the motion. The temperature field depends much more on the BCs. Under fixed heat fluxes the temperature pulsations become much stronger and penetrate essentially deeper in the liquid metal, though the flow is slightly stronger under fixed boundary temperature. The considered flow is supposed to be a simplified model of the liquid magnesium flow in a reactor of metallothermic titanium reduction.
The Fractional Step Method Applied to Simulations of Natural Convective Flows
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Heinrich, Juan C.; Saxon, Jeff (Technical Monitor)
2002-01-01
This paper describes research done to apply the Fractional Step Method to finite-element simulations of natural convective flows in pure liquids, permeable media, and in a directionally solidified metal alloy casting. The Fractional Step Method has been applied commonly to high Reynold's number flow simulations, but is less common for low Reynold's number flows, such as natural convection in liquids and in permeable media. The Fractional Step Method offers increased speed and reduced memory requirements by allowing non-coupled solution of the pressure and the velocity components. The Fractional Step Method has particular benefits for predicting flows in a directionally solidified alloy, since other methods presently employed are not very efficient. Previously, the most suitable method for predicting flows in a directionally solidified binary alloy was the penalty method. The penalty method requires direct matrix solvers, due to the penalty term. The Fractional Step Method allows iterative solution of the finite element stiffness matrices, thereby allowing more efficient solution of the matrices. The Fractional Step Method also lends itself to parallel processing, since the velocity component stiffness matrices can be built and solved independently of each other. The finite-element simulations of a directionally solidified casting are used to predict macrosegregation in directionally solidified castings. In particular, the finite-element simulations predict the existence of 'channels' within the processing mushy zone and subsequently 'freckles' within the fully processed solid, which are known to result from macrosegregation, or what is often referred to as thermo-solutal convection. These freckles cause material property non-uniformities in directionally solidified castings; therefore many of these castings are scrapped. The phenomenon of natural convection in an alloy under-going directional solidification, or thermo-solutal convection, will be explained. The
Levin, A.E. ); Montgomery, B.H. )
1990-01-01
The Thermal-Hydraulic Out of Reactor Safety (THORS) Program at Oak Ridge National Laboratory (ORNL) had as its objective the testing of simulated, electrically heated liquid metal reactor (LMR) fuel assemblies in an engineering-scale, sodium loop. Between 1971 and 1985, the THORS Program operated 11 simulated fuel bundles in conditions covering a wide range of normal and off-normal conditions. The last test series in the Program, THORS-SHRS Assembly 1, employed two parallel, 19-pin, full-length, simulated fuel assemblies of a design consistent with the large LMR (Large Scale Prototype Breeder -- LSPB) under development at that time. These bundles were installed in the THORS Facility, allowing single- and parallel-bundle testing in thermal-hydraulic conditions up to and including sodium boiling and dryout. As the name SHRS (Shutdown Heat Removal System) implies, a major objective of the program was testing under conditions expected during low-power reactor operation, including low-flow forced convection, natural convection, and forced-to-natural convection transition at various powers. The THORS-SHRS Assembly 1 experimental program was divided up into four phases. Phase 1 included preliminary and shakedown tests, including the collection of baseline steady-state thermal-hydraulic data. Phase 2 comprised natural convection testing. Forced convection testing was conducted in Phase 3. The final phase of testing included forced-to-natural convection transition tests. Phases 1, 2, and 3 have been discussed in previous papers. The fourth phase is described in this paper. 3 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Missoum, Abdelkrim; Elmir, Mohamed; Bouanini, Mohamed; Belkacem, Abdellah; Draoui, Belkacem
2016-03-01
This study focuses on the numerical simulation of heat transfer by natural convection in a rectangular enclosure, filled with a liquid metal (low Prandtl number) partially heated from below with a sinusoidal temperature. The value of the study lies in its involvement in the crystal growth for the manufacture of semiconductors and electronics cooling. Indeed, the occurrence of convection during crystal growth can lead to in homogeneities that lead to striations and defects that affect the quality of the crystals obtained by the Bridgman techniques or Chochrawlski. Temperature of the oscillations, due to the instabilities of the convective flow in the liquid metal, also induces non-uniform cooling in the solidification front. Convection is then studied in order to reduce it. A modelling of the problem in two dimensions was conducted using Comsol computer code that is based on the finite element method, by varying the configuration of the control parameters, namely, the Rayleigh number, the nature of fluid (Prandtl number) and amplitude of temperature on heat transfer rate (Nusselt number) on convective structures that appear.
Transient natural convection in rectangular enclosures heated from one side and cooled from above
Aydin, O.
1999-01-01
Buoyancy-induced flows in enclosures play an important role in many engineering applications, such as heating and cooling of buildings, electronics cooling, solar energy collection systems, materials processing, energy storage systems, etc. Here, a numerical investigation into two-dimensional transient natural convection of single-phase fluids inside a completely filled square enclosure has been conducted for the Prandtl numbers of 0.71 and 7.1, and the Rayleigh number range 10{sup 3}--10{sup 7}. The fluid is assumed to be initially at a uniform temperature and motionless. Then, at time zero, the flow is driven by instantaneously raising and lowering the temperatures at the left side and the top wall, respectively. Adiabatic boundary conditions are used at the remaining walls. The unsteady Navier-Stokes equations, governing the flow under Boussinesq approximation, are solved with the vorticity-stream function formulation using the finite difference method. The development of the flow and temperature fields following these temperature changes are determined numerically. The transient behavior of the average Nusselt number at the hot wall is traced.
Asfia, F.; Dhir, V.
1998-03-01
One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen.
Carbon-nanotube nanofluid thermophysical properties and heat transfer by natural convection
NASA Astrophysics Data System (ADS)
Li, Y.; Suzuki, S.; Inagaki, T.; Yamauchi, N.
2014-11-01
We measured the thermophysical properties of suspensions of carbon nanotubes in water as a type of nanofluid, and experimentally investigated their heat transfer characteristics in a horizontal, closed rectangular vessel. Using a previously constructed system for high- reliability measurement, we quantitatively determined their thermophysical properties and the temperature dependence of these properties. We also investigated the as yet unexplained mechanism of heat transport in carbon-nanotube nanofluids and their flow properties from a thermal perspective. The results indicated that these nanofluids are non-Newtonian fluids, whose high viscosity impedes convection and leads to a low heat transfer coefficient under natural convection, despite their high thermal conductivity.
MHD natural convection in open inclined square cavity with a heated circular cylinder
NASA Astrophysics Data System (ADS)
Hosain, Sheikh Anwar; Alim, M. A.; Saha, Satrajit Kumar
2017-06-01
MHD natural convection in open cavity becomes very important in many scientific and engineering problems, because of it's application in the design of electronic devices, solar thermal receivers, uncovered flat plate solar collectors having rows of vertical strips, geothermal reservoirs, etc. Several experiments and numerical investigations have been presented for describing the phenomenon of natural convection in open cavity for two decades. MHD natural convection and fluid flow in a two-dimensional open inclined square cavity with a heated circular cylinder was considered. The opposite wall to the opening side of the cavity was first kept to constant heat flux q, at the same time the surrounding fluid interacting with the aperture was maintained to an ambient temperature T∞. The top and bottom wall was kept to low and high temperature respectively. The fluid with different Prandtl numbers. The properties of the fluid are assumed to be constant. As a result a buoyancy force is created inside the cavity due to temperature difference and natural convection is formed inside the cavity. The Computational Fluid Dynamics (CFD) code are used to discretize the solution domain and represent the numerical result to graphical form.. Triangular meshes are used to obtain the solution of the problem. The streamlines and isotherms are produced, heat transfer parameter Nu are obtained. The results are presented in graphical as well as tabular form. The results show that heat flux decreases for increasing inclination of the cavity and the heat flux is a increasing function of Prandtl number Pr and decreasing function of Hartmann number Ha. It is observed that fluid moves counterclockwise around the cylinder in the cavity. Various recirculations are formed around the cylinder. The almost all isotherm lines are concentrated at the right lower corner of the cavity. The object of this work is to develop a Mathematical model regarding the effect of MHD natural convection flow around
NASA Astrophysics Data System (ADS)
Shateyi, Stanford
2017-07-01
The spectral relaxation method is employed to examine natural convective heat and mass transfer, MHD flow over a permeable moving vertical plate with convective boundary condition in the presence of viscous dissipation, thermal radiation and chemical reaction. The governing partial differential equations were transformed into a system of nonlinear ordinary differential equations by using a similarity approach. The pertinent results are then displayed in tabular form and graphically.
Reddy, K.S.; Sendhil Kumar, N.
2009-10-15
A 2-D model has been proposed to investigate the approximate estimation of the natural convection heat loss from modified cavity receiver of without insulation (WOI) and with insulation (WI) at the bottom of the aperture plane in our previous article. In this paper, a 3-D numerical model is presented to investigate the accurate estimation of natural convection heat loss from modified cavity receiver (WOI) of fuzzy focal solar dish concentrator. A comparison of 2-D and 3-D natural convection heat loss from a modified cavity receiver is carried out. A parametric study is carried out to develop separate Nusselt number correlations for 2-D and 3-D geometries of modified cavity receiver for estimation of convective heat loss from the receiver. The results show that the 2-D and 3-D are comparable only at higher angle of inclinations (60 {<=} {beta} {<=} 90 ) of the receiver. The present 3-D numerical model is compared with other well known cavity receiver models. The 3-D model can be used for accurate estimation of heat losses from solar dish collector, when compared with other well known models. (author)
Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water
Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik
2004-12-15
An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes.
NASA Astrophysics Data System (ADS)
Danaila, Ionut; Moglan, Raluca; Hecht, Frédéric; Le Masson, Stéphane
2014-10-01
We present a new numerical system using finite elements with mesh adaptivity for the simulation of solid-liquid phase change systems. In the liquid phase, the natural convection flow is simulated by solving the incompressible Navier-Stokes equations with Boussinesq approximation. A variable viscosity model allows the velocity to progressively vanish in the solid phase, through an intermediate mushy region. The phase change is modeled by introducing an implicit enthalpy source term in the heat equation. The final system of equations describing the liquid-solid system by a single domain approach is solved using a Newton iterative algorithm. The space discretization is based on a P2-P1 Taylor-Hood finite elements and mesh adaptivity by metric control is used to accurately track the solid-liquid interface or the density inversion interface for water flows. The numerical method is validated against classical benchmarks that progressively add strong non-linearities in the system of equations: natural convection of air, natural convection of water, melting of a phase-change material and water freezing. Very good agreement with experimental data is obtained for each test case, proving the capability of the method to deal with both melting and solidification problems with convection. The presented numerical method is easy to implement using FreeFem++ software using a syntax close to the mathematical formulation.
Campbell, A N
2015-07-14
When any exothermic reaction proceeds in an unstirred vessel, natural convection may develop. This flow can significantly alter the heat transfer from the reacting fluid to the environment and hence alter the balance between heat generation and heat loss, which determines whether or not the system will explode. Previous studies of the effects of natural convection on thermal explosion have considered reactors where the temperature of the wall of the reactor is held constant. This implies that there is infinitely fast heat transfer between the wall of the vessel and the surrounding environment. In reality, there will be heat transfer resistances associated with conduction through the wall of the reactor and from the wall to the environment. The existence of these additional heat transfer resistances may alter the rate of heat transfer from the hot region of the reactor to the environment and hence the stability of the reaction. This work presents an initial numerical study of thermal explosion in a spherical reactor under the influence of natural convection and external heat transfer, which neglects the effects of consumption of reactant. Simulations were performed to examine the changing behaviour of the system as the intensity of convection and the importance of external heat transfer were varied. It was shown that the temporal development of the maximum temperature in the reactor was qualitatively similar as the Rayleigh and Biot numbers were varied. Importantly, the maximum temperature in a stable system was shown to vary with Biot number. This has important consequences for the definitions used for thermal explosion in systems with significant reactant consumption. Additionally, regions of parameter space where explosions occurred were identified. It was shown that reducing the Biot number increases the likelihood of explosion and reduces the stabilising effect of natural convection. Finally, the results of the simulations were shown to compare favourably with
Thermal instability and energy relations in the convective envelopes of slowly rotating stars
NASA Technical Reports Server (NTRS)
Yavorskaya, I. M.
1974-01-01
The nonstationary convection that arises due to thermal instability in the envelopes of lower Main Sequence stars (and the sun in particular) is investigated. The convection that arises in the envelopes as a result of thermal instability is of nonstationary turbulent nature. It is shown that construction of a consistent model of the zones of turbulent convection in the stars requires the use of the complete heat flux equation with consideration of the terms that appear because of turbulence. Expressions for these additional terms in terms of averaged characteristics of the motion and eddy viscosity coefficients are derived on the basis of the Prandtl-Wasiutinsky theory.
NASA Astrophysics Data System (ADS)
Seeley, J.; Romps, D. M.
2015-12-01
Recent work by Singh and O'Gorman has produced a theory for convective available potential energy (CAPE) in radiative-convective equilibrium. In this model, the atmosphere deviates from a moist adiabat—and, therefore, has positive CAPE—because entrainment causes evaporative cooling in cloud updrafts, thereby steepening their lapse rate. This has led to the proposal that CAPE increases with global warming because the strength of evaporative cooling scales according to the Clausius-Clapeyron (CC) relation. However, CAPE could also change due to changes in cloud buoyancy and changes in the entrainment rate, both of which could vary with global warming. To test the relative importance of changes in CAPE due to CC scaling of evaporative cooling, changes in cloud buoyancy, and changes in the entrainment rate, we subject a cloud-resolving model to a suite of natural (and unnatural) forcings. We find that CAPE changes are primarily driven by changes in the strength of evaporative cooling; the effect of changes in the entrainment rate and cloud buoyancy are comparatively small. This builds support for CC scaling of CAPE.
Turbulent Natural Convection in a Square Cavity with a Circular Cylinder
Aithal, S. M.
2016-07-19
In this paper, numerical simulations of high Rayleigh number flows (10^{8}-10^{10}) were conducted to investigate the turbulent fluid flow and thermal characteristics of natural convection induced by a centrally placed hot cylinder in a cold square enclosure. The effect of the aspect ratio (radius of the cylinder to the side of the cavity) was investigated for three values (0.1, 0.2, and 0.3) for each Rayleigh number. Effects of turbulence induced by the high Rayleigh number (>10^{7}) were computed by using the unsteady k-ω model. A spectral-element method with high polynomial order (high resolution) was used to solve the system of unsteady time-averaged equations of continuity, momentum, and energy, along with the turbulence equations. Detailed comparison with other numerical work is presented. Contours of velocity, temperature, and turbulence quantities are presented for various high Rayleigh numbers. Also presented is the influence of the Rayleigh number on the local Nusselt number on the centrally placed hot cylinder and the cold enclosure walls. Time-marching results show that the steady-state solutions can be obtained even for high Rayleigh numbers considered in this study. The results also show that the average and peak Nusselt numbers roughly double for each order of magnitude increase of the Rayleigh number for all radii considered. Finally, a correlation for the average Nusselt number as a function of Rayleigh number and aspect ratio is also presented.
Singh, Sonam; Bhargava, R
2014-01-01
This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, T c and T h , respectively, with T h > T c while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature.
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Le Quere, Patrick; Tuckerman, Laurette
2013-11-01
Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D), for Rayleigh numbers Ra up to three times the critical value Rac . The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In 2D, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasi-periodic, then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In 3D, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time-dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or else a spatial pattern modulation. Some of the computations were carried out at CNRS-IDRIS Project DARI0326.
Transition to chaos of natural convection between two infinite differentially heated vertical plates
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.
2013-08-01
Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.
Singh, Sonam; Bhargava, R.
2014-01-01
This paper presents a numerical study of natural convection within a wavy enclosure heated via corner heating. The considered enclosure is a square enclosure with left wavy side wall. The vertical wavy wall of the enclosure and both of the corner heaters are maintained at constant temperature, Tc and Th, respectively, with Th > Tc while the remaining horizontal, bottom, top and side walls are insulated. A penalty element-free Galerkin approach with reduced gauss integration scheme for penalty terms is used to solve momentum and energy equations over the complex domain with wide range of parameters, namely, Rayleigh number (Ra), Prandtl number (Pr), and range of heaters in the x- and y-direction. Numerical results are represented in terms of isotherms, streamlines, and Nusselt number. It is observed that the rate of heat transfer depends to a great extent on the Rayleigh number, Prandtl number, length of the corner heaters and the shape of the heat transfer surface. The consistent performance of the adopted numerical procedure is verified by comparison of the results obtained through the present meshless technique with those existing in the literature. PMID:24672383
Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S
2013-08-01
Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Ra(c)=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.
Turbulent Natural Convection in a Square Cavity with a Circular Cylinder
Aithal, S. M.
2016-07-19
In this paper, numerical simulations of high Rayleigh number flows (10^{8}-10^{10}) were conducted to investigate the turbulent fluid flow and thermal characteristics of natural convection induced by a centrally placed hot cylinder in a cold square enclosure. The effect of the aspect ratio (radius of the cylinder to the side of the cavity) was investigated for three values (0.1, 0.2, and 0.3) for each Rayleigh number. Effects of turbulence induced by the high Rayleigh number (>10^{7}) were computed by using the unsteady k-ω model. A spectral-element method with high polynomial order (high resolution) was used to solve the system of unsteady time-averaged equations of continuity, momentum, and energy, along with the turbulence equations. Detailed comparison with other numerical work is presented. Contours of velocity, temperature, and turbulence quantities are presented for various high Rayleigh numbers. Also presented is the influence of the Rayleigh number on the local Nusselt number on the centrally placed hot cylinder and the cold enclosure walls. Time-marching results show that the steady-state solutions can be obtained even for high Rayleigh numbers considered in this study. The results also show that the average and peak Nusselt numbers roughly double for each order of magnitude increase of the Rayleigh number for all radii considered. Finally, a correlation for the average Nusselt number as a function of Rayleigh number and aspect ratio is also presented.
NASA Astrophysics Data System (ADS)
Mostafa, Golam; Munshi, M. Jahirul Haque; Hossain, Sumon; Ali, M.
2017-06-01
Analysis of hydro-magnetic natural convection flow in a square cavity with internal elliptic shape cold block at the centre with Prandtl number of 0.711 has been investigated numerically. The governing equations, mass, momentum, energy and induction equations are applied to the cavity. The governing differential equations are solved by using finite element method (Galerkin weighted residual method). The top wall, left wall, right wall and elliptic obstacle are kept at cold Tc. The bottom wall is kept at heated Th. The study is performed for different Rayleigh numbers(103 ≤ Ra ≥ 106) and Hartmann numbers(0 ≤ Ha ≥ 100). A cold elliptic block is located at the centre of the cavity. The object of this study is to describe the effects of MHD on the field of buoyancy-driven and flow in presence of such cold block by visualization of graph. The obtained results showed that temperature distribution and flow pattern inside the cavity depend on both strength of the magnetic field and Rayleigh number. For all cases, two or more counter rotating eddies were formed inside the cavity. The results are illustrated with the streamlines, isotherms, velocity and temperature fields. Numerical results show good accuracy and stability of the proposal strategy.
Natural convection in a vertical plane channel: DNS results for high Grashof numbers
NASA Astrophysics Data System (ADS)
Kiš, P.; Herwig, H.
2014-07-01
The turbulent natural convection of a gas ( Pr = 0.71) between two vertical infinite walls at different but constant temperatures is investigated by means of direct numerical simulation for a wide range of Grashof numbers (6.0 × 106 > Gr > 1.0 × 103). The maximum Grashof number is almost one order of magnitude higher than those of computations reported in the literature so far. Results for the turbulent transport equations are presented and compared to previous studies with special attention to the study of Verteegh and Nieuwstadt (Int J Heat Fluid Flow 19:135-149, 1998). All turbulence statistics are available on the TUHH homepage (http://www.tu-harburg.de/tt/dnsdatabase/dbindex.en.html). Accuracy considerations are based on the time averaged balance equations for kinetic and thermal energy. With the second law of thermodynamics Nusselt numbers can be determined by evaluating time averaged wall temperature gradients as well as by a volumetric time averaged integration. Comparing the results of both approaches leads to a direct measure of the physical consistency.
Turbulent Natural Convection in a Square Cavity with a Circular Cylinder
Aithal, S. M.
2016-07-19
In this paper, numerical simulations of high Rayleigh number flows (108-1010) were conducted to investigate the turbulent fluid flow and thermal characteristics of natural convection induced by a centrally placed hot cylinder in a cold square enclosure. The effect of the aspect ratio (radius of the cylinder to the side of the cavity) was investigated for three values (0.1, 0.2, and 0.3) for each Rayleigh number. Effects of turbulence induced by the high Rayleigh number (>107) were computed by using the unsteady k-ω model. A spectral-element method with high polynomial order (high resolution) was used to solve the system ofmore » unsteady time-averaged equations of continuity, momentum, and energy, along with the turbulence equations. Detailed comparison with other numerical work is presented. Contours of velocity, temperature, and turbulence quantities are presented for various high Rayleigh numbers. Also presented is the influence of the Rayleigh number on the local Nusselt number on the centrally placed hot cylinder and the cold enclosure walls. Time-marching results show that the steady-state solutions can be obtained even for high Rayleigh numbers considered in this study. The results also show that the average and peak Nusselt numbers roughly double for each order of magnitude increase of the Rayleigh number for all radii considered. Finally, a correlation for the average Nusselt number as a function of Rayleigh number and aspect ratio is also presented.« less
Natural convection in tunnels at Yucca Mountain and impact on drift seepage
Halecky, N.; Birkholzer, J.T.; Peterson, P.
2010-04-15
The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity values, with reduced local seepage, form a more desirable waste package environment.
Prevention Methods of Natural Convection in Inclined Pipes - An Experimental Study
NASA Astrophysics Data System (ADS)
Langebach, Robin; Haberstroh, Christoph
It is widely known in cryogenics that interconnecting pipework between warm and cold temperature level contribute to the heat intake of a cryogenic storage tank, especially under critical inclination. With the help of a recently published correlation the additional heat intake by possibly upcoming convection can be estimated. However, for practical application the knowledge of additional heat leaks is only one thing that matters. Rather interesting are methods for an effective prevention of natural convection even under critical inclinations. Within this paper we discuss several approaches which presumably have potential to reduce convective heat transfer. With the help of theoretical analysis and experiments in our test cryostat we evaluated the impact of all approaches with remarkable results. Further, a comparison was carried out with literature hints for the prevention of natural convection in pipes. As the main result of our study we could clearly distinguish the most effective prevention methods and even more interesting is the almost useless ones which have been anticipated as effective in literature.
Convective kinetic energy equation under the mass-flux subgrid-scale parameterization
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2015-03-01
The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.
Uvarov, A. V.; Sakharova, N. A.; Vinnichenko, N. A.
2011-12-15
The parameters of the positive column of a glow discharge in neon are calculated with allowance for the induced hydrodynamic motion. It is shown that natural convection in the pressure range of {approx}0.1 atm significantly affects the profiles of the parameters of the positive column and its current-voltage characteristic. The convection arising at large deposited energies improves heat removal, due to which the temperature in the central region of the discharge becomes lower than that calculated from the heat conduction equation. As a result, the current-voltage characteristic is shifted. With allowance for convection, the current-voltage characteristic changes at currents much lower than the critical current at which a transition into the constricted state is observed. This change is uniquely related to the Rayleigh number in the discharge. Thus, a simplified analysis of thermal conduction and diffusion, even with detailed account of kinetic processes occurring in the positive column, does not allow one to accurately calculate the current-voltage characteristic and other discharge parameters at intermediate gas pressures.
Study of turbulent natural-circulation flow and low-Prandtl-number forced-convection flow. [LMFBR
Chung, K.S.; Thompson, D.H.
1980-01-01
Calculational methods and results are discussed for the coupled energy and momentum equations of turbulent natural circulation flow and low Prandtl number forced convection flow. The objective of this paper is to develop a calculational method for the study of the thermal-hydraulic behavior of coolant flowing in a liquid metal fast breeder reactor channel under natural circulation conditions. The two-equation turbulence model is used to evaluate the turbulent momentum transport property. Because the analogy between momentum transfer and heat transfer does not generally hold for low Prandtl number fluid and natural circulation flow conditions, the turbulent thermal conductivity is calculated independently using equations similar to the two-equation turbulence model. The numerical technique used in the calculation is the finite element method.
Effect of natural convection heat transfer during polymer optical fiber drawing
NASA Astrophysics Data System (ADS)
Reeve, Hayden Matane
The quality of polymer optical fiber is dependent on the diametral uniformity of the fiber and the applied drawing force. In this study, the force required to draw a polymer preform into optical fiber is predicted and measured as it is heated in an enclosed cylindrical furnace. The draw force is a function of the highly temperature dependent polymer viscosity. Therefore accurate prediction of the drawing force requires a detailed investigation of the heat transfer within the furnace. In this investigation, the full axi-symmetric conjugate problem (including both natural convection and thermal radiation) was solved. In addition, the location of the polymer/air interface was solved for as part of the problem and was not prescribed beforehand. Numerical results compared well with the experimentally measured draw tension and neck-down profiles for several preform diameters, draw speeds, and furnace temperatures. The experimental investigation also found that as the buoyant potential of the air within the furnace was increased the natural convection transitioned from time-invariant to oscillatory, and finally, to chaotic flow. The time-varying heating caused by the oscillatory and chaotic regimes alters the rheology of the elongating polymer preform, causing detrimental variations in the fiber diameter. When subjected to oscillatory and chaotic natural convection the standard deviation of the fiber diameter variations was up to 2.5 to 10 times greater, respectively, than that measured under time-invariant heating conditions. Experimental visualization of the unsteady natural convection flow indicates that the instability occurs at the interface between two counter-rotating cells. Numerical simulations of natural convection within a tall non-isothermal axi-symmetric annular cavity with an aspect ratio of 10 and a radius ratio of 0.6 predicted unsteady phenomena. At low Rayleigh numbers a steady bi-cellular flow was predicted. As the Rayleigh number was increased the
Chen, Bingyan; Fowler, Alex; Bhowmick, Sankha
2006-06-01
Trehalose is believed to offer desiccation protection to mammalian cells by forming stable glassy matrices. The goal of the current study was to explore the desiccation kinetics of thin films of trehalose-water solution under forced and natural convective conditions and to investigate the thermophysical state of mammalian cells at the bottom of the thin film. We developed a finite difference model based on the mass and energy conservation equations coupled to the water transport model from the cells. The boundary conditions were obtained from correlations or experimental measurements and the Gordon-Taylor equation was used to predict the glass transition temperature at every location. Results indicated that there are three distinct regimes for drying for both forced and natural convection, characterized by the slope of the moisture content plot as a function of time. Our results also indicate that the surface of the solution reached the glassy state in less than 10 min for the Reynolds (forced) numbers explored and approximately 30 min for some Rayleigh (natural convective) numbers; however, significant water was trapped at this instant. Larger drying force hastened quicker glass formation but trapped more water. The numerical model was capable of predicting the drying kinetics for the dilute region accurately, but deviated while predicting the other regimes. Based on these experimental validations of the model, the osmotic response of different cells located at the bottom of the solution with orders of magnitude difference in their membrane permeability (Lp) was predicted. The results suggested that extracellular glass formed around cells at the bottom of a trehalose-water solution by the propagation of glass into the solution; however it takes more than an order of magnitude time (approximately 7 min to >100 min for forced convective drying) to remove sufficient water to form glass around cells from the time when the first surface glass is formed. This is
NASA Astrophysics Data System (ADS)
Wang, Wei-Hsiang; Fu, Wu-Shung; Tsubokura, Makoto
2016-11-01
Unstable phenomena of low speed compressible natural convection are investigated numerically. Geometry contains parallel square plates or single heated plate with open boundaries is taken into consideration. Numerical methods of the Roe scheme, preconditioning and dual time stepping matching the DP-LUR method are used for low speed compressible flow. The absorbing boundary condition and modified LODI method is adopted to solve open boundary problems. High performance parallel computation is achieved by multi-GPU implementation with CUDA platform. The effects of natural convection by isothermal plates facing upwards in air is then carried out by the methods mentioned above Unstable behaviors appeared upon certain Rayleigh number with characteristic length respect to the width of plates or height between plates.
NASA Astrophysics Data System (ADS)
Alinejad, J.; Esfahani, J. A.
2017-01-01
The present study investigated fluid flow and natural convection heat transfer in an enclosure embedded with isothermal cylinder. The purpose was to simulate the three-dimensional natural convection by thermal lattice Boltzmann method based on the D3Q19 model. The effects of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different parameters such as particle volume fraction, particle diameters, and geometry aspect ratio. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) are effectively changed with different controlling parameters such as particle volume fraction (5 % ≤ φ ≤ 10 %), particle diameter ( d p = 10 nm to 30 nm) and aspect ratio (0.5 ≤ AR ≤ 2) with fixed Rayleigh number, Ra = 105. The present results give a good approximation for choosing an effective parameter to design a thermal system.
NASA Astrophysics Data System (ADS)
van Doormaal, J. P.; Raithby, G. D.; Strong, A. B.
1981-03-01
A method for generating a two-dimensional orthogonal grid within a polygonal geometry is discussed in order to predict natural convection in nonrectangular enclosures. The equations of motion are written for orthogonal curvilinear coordinates, using stream function and vorticity as dependent variables. An iterative technique is used to solve simultaneously for both dependent variables along lines in order to obtain the solution of the finite-difference equations, and seems to overcome the stability problems often encountered with stream function and vorticity variables. These techniques are applied to the problem of laminar two-dimensional natural convection in an air layer bounded above by an isothermal flat plate and below by a higher-temperature vee-corrugated isothermal surface. The dependence of heat transfer on Rayleigh number, aspect ratio and inclination angle is taken into consideration. This problem is an extension of the rectangular cavity problem, and is of practical interest for solar collector design
Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid
NASA Astrophysics Data System (ADS)
Aursand, Eskil; Gjennestad, Magnus Aa.; Lervåg, Karl Yngve; Lund, Halvor
2016-11-01
The feasibility of using a thermomagnetically pumped ferrofluid to enhance the performance of a natural convection cooling loop is investigated. First, a simplified analytical estimate for the thermomagnetic pumping action is derived, and then design rules for optimal solenoid and ferrofluid are presented. The design rules are used to set up a medium-scale (1 m, 10-1000 W) case study, which is modeled using a previously published and validated model (Aursand et al. [1]). The results show that the thermomagnetic driving force is significant compared to the natural convection driving force, and may in some cases greatly surpass it. The results also indicate that cooling performance can be increased by factors up to 4 and 2 in the single-phase and two-phase regimes, respectively, even when taking into the account the added heat from the solenoid. The performance increases can alternatively be used to obtain a reduction in heat-sink size by up to 75%.
NASA Astrophysics Data System (ADS)
Novak, Milos H.; Nowak, Edwin S.
1993-12-01
To analyze the laminar natural convection heat transfer and fluid flow distribution in vertical rectangular cavities with or without inner partitions, the personal computer finite difference program entitled CAV is used. The CAV program was tested successfully for slender cavities with aspect ratios as high as R = H/ L = 90 and for the Grashof numbers, based on the cavity height, up to GrH = 3 x10 9. To make the CAV program useful for a number of applications, various types of boundary conditions can also be imposed on the program calculations. Presented are program applications dealing with the 2-D numerical analysis of natural convection heat transfer in very slender window cavities with and without small inner partitions and recommendations are made for window design.
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
S. Webb; M. Itamura
2004-03-16
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt.
Numerical analysis of a natural convection cooling system for radioactive canisters storage
Tsal, R.J.; Anwar, S.; Mercada, M.G.
1995-02-01
This paper describes the use of numerical analysis for studying natural convection cooling systems for long term storage of heat producing radioactive materials, including special nuclear materials and nuclear waste. The paper explains the major design philosophy, and shares the experiences of numerical modeling. The strategy of storing radioactive material is to immobilize nuclear high-level waste by a vitrification process, convertion it into borosilicate glass, and cast the glass into stainless steel canisters. These canisters are seal welded, decontaminated, inspected, and temporarily stored in an underground vault until they can be sent to a geologic repository for permanent storage. These canisters generate heat by nuclear decay of radioactive isotopes. The function of the storage facility ventilation system is to ensure that the glass centerline temperature does not exceed the glass transition temperature during storage and the vault concrete temperatures remain within the specified limits. A natural convection cooling system was proposed to meet these functions. The effectiveness of a natural convection cooling system is dependent on two major factors that affect air movement through the vault for cooling the canisters: (1) thermal buoyancy forces inside the vault which create a stack effect, and (2) external wind forces, that may assist or oppose airflow through the vault. Several numerical computer models were developed to analyze the thermal and hydraulic regimes in the storage vault. The Site Model is used to simulate the airflow around the building and to analyze different air inlet/outlet devices. The Airflow Model simulates the natural convection, thermal regime, and hydraulic resistance in the vault. The Vault Model, internal vault temperature stratification; and, finally, the Hot Area Model is used for modeling concrete temperatures within the vault.
NASA Astrophysics Data System (ADS)
Shen, Chunyun; Yang, Mo; Zhang, Yuwen; Li, Zheng
2016-09-01
Natural convection in a cylinder with an internally slotted annulus was solved by SIMPLE algorithm, and the effects of different slotted structures on nonlinear characteristics of natural convection were investigated. The results show that the equivalent thermal conductivity Keq increases with Rayleigh number, and reaches the maximum in the vertical orientation. Nonlinear results were obtained by simulating the fluid flow at different conditions. With increasing Rayleigh number, heat transfer is intensified and the state of heat transfer changes from the steady to unsteady. We investigated different slotted structures effects on natural convection, and analyze the corresponding nonlinear characteristics.
Effects of natural convection on thermal explosion in a closed vessel.
Liu, Ting-Yueh; Campbell, Alasdair N; Cardoso, Silvana S S; Hayhurst, Allan N
2008-09-28
A new way of ascertaining whether or not a reacting mixture will explode uses just three timescales: that for chemical reaction to heat up the fluid containing the reactants and products, the timescale for heat conduction out of the reactor, and the timescale for natural convection in the fluid. This approach is developed for an nth order chemical reaction, A --> B occurring exothermically in a spherical, batch reactor without significant consumption of A. The three timescales are expressed in terms of the physical and chemical parameters of the system. Numerical simulations are performed for laminar natural convection occurring; also, a theoretical relation is developed for turbulent flow. These theoretical and numerical results agree well with previous experimental measurements for the decomposition of azomethane in the gas phase. The new theory developed here is compared with Frank-Kamenetskii's classical criterion for explosion. This new treatment has the advantage of separating the two effects inhibiting explosion, viz. heat removal by thermal conduction and by natural convection. Also, the approach is easily generalised to more complex reactions and flow systems.
Geophysical Imaging of Natural Free Convection in a Sabkha Aquifer near Abu Dhabi, UAE
NASA Astrophysics Data System (ADS)
Hyndman, D. W.; van Dam, R. L.; Simmons, C. T.; Wood, W. W.
2008-12-01
Natural free convection is important for a wide range of disciplines including hydrogeology. Recent studies have examined brine movement below salt lakes, contaminant plumes, carbon sequestration, nuclear waste disposal, and hydrothermal deposits. Despite its importance and the increase of research in this area, free convection has not yet been conclusively detected in natural groundwater field settings. Here, we present recent geophysical measurements in a sabkha aquifer approximately 60 km west of Abu Dhabi, UAE. The sabkha material consists of uncemented and uniform fine sand with a nearly uniform porosity and hydraulic conductivity. Potential drivers for instabilities in this system include (1) sabkha waters of high total dissolved solids (TDS) and density overlying Miocene formation water with lower TDS, and (2) episodic downward infiltration of higher density water that forms after significant rainfall events due to dissolution of a halite crust. We characterized the system in March 2008, about 2 months after two unusually large rain events, using electrical resistivity (ER) and frequency-domain electromagnetic methods. Geophysical sounding data are consistent with a model of lower TDS water entering the sabkha from deeper (Miocene) formations. ER imaging data show a low resistivity zone just below the water table, from which distinct fingers protrude into a higher resistivity background. These geophysical images provide clear evidence of complex fingering likely associated with natural free convection.
NASA Astrophysics Data System (ADS)
Bower, S. M.; Saylor, J. R.
2009-11-01
Presented are the results from an experimental investigation of the effects of surface conditions at an air/water interface on transport phenomena within the context of natural convection-driven evaporation. Experiments were conducted using tanks of heated water under several different surface conditions: 1) contamination with an oleyl alcohol monolayer, 2) contamination with a stearic acid monolayer, and 3) ``clean'' or surfactant-free. These surface conditions create the following hydrodynamic boundary conditions: 1) constant elasticity, 2) no-slip, and 3) shear-free. The effect of these boundary conditions on evaporation and air-side natural convection heat transfer is presented via the power law relationships between the Sherwood and Rayleigh numbers (for evaporation) and the Nusselt and Rayleigh numbers (for natural convection heat transfer). Additionally, infrared imagery of the water surface was collected during these experiments, yielding qualitative information on the effect of these boundary conditions on the flow near the interface. Few studies exist in which the effects of surface conditions on interfacial heat and mass transfer are investigated, making this work particularly relevant.
Delmas, A.A.; Wilkes, K.E.
1992-04-01
A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.
Delmas, A.A.; Wilkes, K.E.
1992-04-01
A two-dimensional code for solving equations of convective heat transfer in porous media is used to analyze heat transfer by conduction and convection in the attic insulation configuration. The particular cases treated correspond to loose-fill fiberglass insulation, which is characterized by high porosity and air permeability. The effects of natural convection on the thermal performance of the insulation are analyzed for various densities, permeabilities, and thicknesses of insulation. With convection increasing the total heat transfer through the insulation, the thermal resistance was found to decrease as the temperature difference across the insulating material increases. The predicted results for the thermal resistance are compared with data obtained in the large-scale climate simulator at the Roof Research Center using the attic test module, where the same phenomenon has already been observed. The way the wood joists within the insulation influence the start of convection is studied for differing thermophysical and dynamic properties of the insulating material. The presence of wood joists induces convection at a lower temperature difference.
The effect of perturbations of convective energy transport on the luminosity and radius of the Sun
NASA Technical Reports Server (NTRS)
Endal, A. S.; Twigg, L. W.
1982-01-01
The response of solar models to perturbations of the efficiency of convective energy transport is studied for a number of cases. Such perturbations primarily effect the shallow superadiabatic layer of the convective envelope (at depth of approx. 1000 km below the photosphere). Independent of the details of the perturbation scheme, the resulting change in the solar radius is always very small compared to the change in luminosity. This appears to be true for any physical mechanism of solar variability which operates in the outer layers of the convection zone. Changes of the solar radius have been inferred from historical observations of solar eclipses. Considering the constraints on concurrent luminosity changes, this type of solar variability must be indicative of changes in the solar structure at substantial depths below the superadiabatic layer of the convective envelope.
The effect of perturbation of convective energy transport on the luminosity and radius of the sun
NASA Technical Reports Server (NTRS)
Endal, A. S.; Twigg, L. W.
1982-01-01
The response of solar models to perturbations of the efficiency of convective energy transport is studied. Such perturbations primarily affect the shallow superadiabatic layer of the convective envelope. Independent of the details of the perturbation scheme, the resulting change in the solar radius is always very small compared to the change in luminosity. This appears to be true for any physical mechanism of solar variability which operates in the outer layers of the convection zone. Changes of the solar radius have been inferred from historical observations of solar eclipses in 1715 and 1925. Considering the constraints on concurrent luminosity changes, this type of solar variability must be indicative of changes in the solar structure at substantial depths below the superadiabatic layer of the convective envelope.
Aksenova, A.E.; Chudanov, V.V.; Strizhov, V.F.; Vabishchevich, P.N.
1995-09-01
Unsteady natural convection of a heat-generating fluid with phase transitions in the enclosures of a square section with isothermal rigid walls is investigated numerically for a wide range of dimensionless parameters. The quasisteady state solutions of conjugate heat and mass transfer problem are compared with available experimental results. Correlation relations for heat flux distributions at the domain boundaries depending on Rayleigh and Ostrogradskii numbers are obtained. It is shown that generally heat transfer is governed both by natural circulation and crust formation phenomena. Results of this paper may be used for analysis of experiments with prototypic core materials.
NASA Astrophysics Data System (ADS)
Chen, Yan-Jun; Wang, Ping-Yang; Liu, Zhen-Hua
2016-11-01
The natural convective heat transfer and flow characteristics of nanofluids in an enclosure are numerically simulated using the multiphase-flow model and single phase model respectively. The simulated results are compared with the experimental results from the published papers to investigate the applicability of these models for nanofluids from a macro standpoint. The effects of Rayleigh number, Grashof number and volume concentration of nanoparticles on the heat transfer and flow characteristics are investigated and discussed. Comparisons of the horizontal and vertical central dimensionless velocity profiles between nanofluid and water for various Grashof numbers are studied. In addition, both streamline contours and isotherms lines for different volume concentrations of nanofluids are analyzed as well. The study results show that a great deviation exists between the simulated result of the single phase model and the experimental data on the relation of Nusselt number and Rayleigh number, which indicates that the single phase model cannot reflect the heat transfer characteristic of nanofluid. While the simulated results using the multiphase-flow model show a good agreement with the experimental data of nanofluid, which means that the multiphase-flow model is more suitable for the numerical study of nanofluid. For the natural convection, the present study holds the point that using Grashof numbers as the benchmark would be more appropriate to describe the heat transfer characteristics of nanofluid. Moreover, the simulated results demonstrate that adding nanoparticles into the base fluid can enhance both the motion of fluid and convection in the enclosure significantly.
Solar drying of whole mint plant under natural and forced convection
Sallam, Y.I.; Aly, M.H.; Nassar, A.F.; Mohamed, E.A.
2013-01-01
Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s−1. The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10−11 and 1.33 × 10−11 m2 s−1. PMID:25750751
Triplett, C.E.
1996-12-01
This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.
Solar drying of whole mint plant under natural and forced convection.
Sallam, Y I; Aly, M H; Nassar, A F; Mohamed, E A
2015-03-01
Two identical prototype solar dryers (direct and indirect) having the same dimensions were used to dry whole mint. Both prototypes were operated under natural and forced convection modes. In the case of the later one the ambient air was entered the dryer with the velocity of 4.2 m s(-1). The effect of flow mode and the type of solar dryers on the drying kinetics of whole mint were investigated. Ten empirical models were used to fit the drying curves; nine of them represented well the solar drying behavior of mint. The results indicated that drying of mint under different operating conditions occurred in the falling rate period, where no constant rate period of drying was observed. Also, the obtained data revealed that the drying rate of mint under forced convection was higher than that of mint under natural convection, especially during first hours of drying (first day). The values of the effective diffusivity coefficient for the mint drying ranged between 1.2 × 10(-11) and 1.33 × 10(-11) m(2) s(-1).
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Emara, A. A.
1975-01-01
Natural convection energy transport in a horizontal layer of internally heated fluid was measured for Rayleigh numbers from 1890 to 2.17 x 10 to the 12th power. The fluid layer is bounded below by a rigid zero-heat-flux surface and above by a rigid constant-temperature surface. Joule heating by an alternating current passing horizontally through the layer provides the uniform volumetric energy source. The overall steady-state heat transfer coefficient at the upper surface was determined by measuring the temperature difference across the layer and power input to the fluid. The correlation between the Nusselt and Rayleigh numbers for the data of the present study and the data of the Kulacki study is given.
MHD natural convection in an inclined square porous cavity with a heat conducting solid block
NASA Astrophysics Data System (ADS)
Sivaraj, C.; Sheremet, M. A.
2017-03-01
This paper deals with natural convection in an inclined porous cavity with a heat conducting solid body placed at its center under the influence of the applied magnetic field of different orientations. The left and right vertical walls of the cavity are maintained at different temperatures Th and Tc, respectively, while the horizontal walls are adiabatic. The governing coupled partial differential equations were solved using a finite volume method on a uniformly staggered grid system. The effects of the inclination angles of the magnetic field and cavity and the Hartmann number on the flow and thermal fields are investigated in detail. Numerical results are presented in terms of isotherms, streamlines and average Nusselt numbers. In general, the results indicate that the inclusion of the magnetic field reduces the convective heat transfer rate in the cavity. It is also found that an increase in the angle of the applied magnetic field produces a non-linear variation in the average Nusselt numbers.
Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate
NASA Astrophysics Data System (ADS)
Mustafa, M.; Mushtaq, Ammar
2015-09-01
The present article addresses the classical problem of the natural convection flow past a vertical plate by considering visco-elastic nanofluid. The mathematical model is constructed by following the constitutive equations of the upper-convected Maxwell (UCM) fluid. The novel aspects of Brownian motion and thermophoresis are taken into account. The recently proposed condition of passively controlled wall nanoparticle volume fraction is used. The shooting approach combined with the fourth-fifth-order Runge-Kutta integration procedure is utilized for computing the numerical solutions. The results are in agreement with the available studies in limiting sense. Our results indicate that the velocity profile is parabolic and it decreases with an increment in the visco-elastic parameter.
Natural convective heat transfer within nanofluid-filled hemispherical horizontal enclosure
NASA Astrophysics Data System (ADS)
Haddad, O.; Baïri, A.
2016-10-01
This survey deals with some steady-state natural convection taking place in a hemispherical enclosure filled with nanofluid consisting of water based metallic nanoparticles, with volumetric fraction ranging between 0% (pure water) and 20%. The hot active wall of the cavity is its horizontal disk subjected to a wide range of constant heat fluxes. The 3D numerical approach is done by means of the finite volume method based on a mixture model. Temperature and velocity distributions are presented for some typical cases and the heat transfer is quantified by means of the Nusselt number versus Rayleigh number. A comparison done between the results with the water and the nanofluid clearly confirms enhancement of the convective heat transfer with the nanoparticles.
Modeling and analysis of low heat flux natural convection sodium boiling in LMFBRs
Khatib-Rahbar, M.; Cazzoli, E.G.
1982-09-01
Flow excursion induced dryout at low heat flux natural convection boiling, typical of liquid metal fast breeder reactor, is addressed. Steady state calculations indicate that low quality boiling is possible up to the point of Ledinegg instability leading to flow excursion and subsequent dryout in agreement with experimental data. A flow regime-dependent dryout heat flux relationship based upon saturated boiling criterion is also presented. Transient analysis indicates that premature flow excursion can not be ruled out and sodium boiling is highly transient dependent. Analysis of a high heat flux forced convection, loss-of-flow transient shows a significantly faster flow excursion leading to dryout in excellent agreement with parallel calculations using the two-dimensional THORAX code. 31 refs., 25 figs., 6 tabs.
Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.
Tilgner, A
2014-07-01
A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.
1994-03-24
NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A282 298 UUU1UII1HUL .2 <~o STA~To THESIS NATURAL CONVECTION COOLING OF A THREE BY THREE ARRAY OF...LEADLESS CHIP CARRIER PACKAGES IN A DIELECTRIC LIQUID by Joseph Matthew Bradley March 1994 Thesis Advisor: Yogendra Joshi Approved for public release...1994. Engineer’s Thesis 5. TITLE AND SUBTITLE NATURAL CONVECTION COOLING OF A FUNDING NUMBERS THREE-BY-THREE ARRAY OF LEADLESS CHIP CARRIER PACKAGES IN A
Studies of heat-source driven natural convection: A numerical investigation
NASA Technical Reports Server (NTRS)
Emara, A. A.; Kulacki, F. A.
1977-01-01
Thermal convection driven by uniform volumetric energy sources was studied in a horizontal fluid layer bounded from above by a rigid, isothermal surface and from below by a rigid, zero heat-flux surface. The side walls of the fluid domain were assumed to be rigid and perfectly insulating. The computations were formally restricted to two-dimensional laminar convection but were carried out for a range of Rayleigh numbers which spans the regimes of laminar and turbulent flow. The results of the computations consists of streamline and isotherm patterns, horizontally averaged temperature distributions, and horizontally averaged Nusselt numbers at the upper surface. Flow and temperature fields do not exhibit a steady state, but horizontally averaged Nusselt numbers reach limiting, quasi-steady values for all Rayleigh numbers considered. Correlations of the Nusselt number in terms of the Rayleigh and Prandtl numbers were determined.
NASA Astrophysics Data System (ADS)
Richmond, A. D.; Fang, T.-W.
2015-03-01
We analyze how the evening equatorial plasma vortex and the prereversal enhancement (PRE) of the vertical drift are influenced by the distributions of conductivity in the E and F regions in relation to the wind, through numerical simulations with the thermosphere-ionosphere-electrodynamics general circulation model coupled with the global ionosphere-plasmasphere model. The nightside electric potential satisfies an approximate minimization principle that unifies the connection of the horizontal and vertical components of plasma convection to the wind and conductivity distributions. The relative roles of E and F region conductivities on the convection and current closure are clarified. Evening time F region zonal winds at latitudes that encompass the equatorial ionization anomaly (EIA) region provide the main energy source to drive the convection, including the PRE. The E region helps regulate both the meridional and the zonal convection through drag on the meridional convection associated with Cowling current. For large nighttime E region conductivities, additional drag on the zonal convection comes from the Pedersen conductance. The minimization principle favors meridional plasma inflow to the EIA region from lower rather than higher magnetic apex heights, so long as the E region Cowling conductance is not too large. This upward/poleward inflow maximizes on field lines that traverse the lower F layer near the equatorward edge of the EIA region, producing a PRE with maximum vertical velocity within the equatorial F layer.
Natural energy and vernacular architecture
Fathy, H.
1986-01-01
This volume presents insights into the indigenous architectural forms in hot arid climates. The author presents his extensive research on climate control, particularly in the Middle East, to demonstrate the advantages of many locally available building materials and traditional building methods. He suggests improved uses of natural energy that can bridge the gap between traditional achievements and modern needs. He argues that various architectural forms in these climates have evolved intuitively from scientifically valid concepts. Such forms combine comfort and beauty, social and physical functionality. He discusses that in substituting modern materials, architects sometimes have ignored the environmental context of traditional architecture. As a result, individuals may find themselves physically and psychologically uncomfortable in modern structures. His approach, informed by a sensitive humanism, demonstrates the ways in which traditional architectural forms can be of use in solving problems facing contemporary architecture, in particular the critical housing situation in the Third World.
Natural Convection in a Stable Multi Layer Melt Pool with Volumetric Heat Generation
Sehgal, Bal Raj
2004-07-01
This paper describes the results obtained from several sets of experiments, performed over several years in the SIMECO facility a the NPS Division, KTH on natural convection in multi-layered liquid pools with volumetric heat generation in one or more layers. The safety issue, to which these experiments are directed, is that of the thermal loading on the reactor pressure vessel (RPV) wall due to corium melt pool convection in the lower head. Multi layer pools are considered due to the observations made in the RASPLAV (Asmolov et al., 1998) and the MASCA (Asmolov et al.,2003) experimental programs on convection of prototypic material (UO{sub 2}+ZrO{sub 2}+ZR+Fe) melt pools. The SIMECO is a slice facility of 1/8. scale and the corium melt simulants employed have been water, salt water, paraffin and molten salt. Cerrobend was employed as simulant for the metal layer. The implications of the experimental results on the accident management strategy of in-vessel retention, practiced for the Loviisa VVER-440, the Westinghouse's AP-600, AP- 1000, the Framatome's BWR-1000 and KEPCO's Advanced PWR-1400 reactors are discussed. (authors)
Numerical modeling of crystal growth on a centrifuge for unstable natural convection configurations
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Downey, J. P.; Curreri, P. A.; Jones, J. C.
1993-01-01
The fluid mechanics associated with crystal growth processes on centrifuges is modeled using 2D and 3D models. Two-dimensional calculations show that flow bifurcations exist in such crystal growth configurations where the ampoule is oriented in the same direction as the resultant gravity vector and a temperature gradient is imposed on the melt. A scaling analysis is formulated to predict the flow transition point from the natural convection dominated regime to the Coriolis force dominated regime. Results of 3D calculations are presented for two thermal configurations of the crystal growth cell: top heated and bottom heated with respect to the centrifugal acceleration. In the top heated configuration, a substantial reduction in the convection intensity within the melt can be attained by centrifuge operations, and close to steady diffusion-limited thermal conditions can be achieved over a narrow range of the imposed microgravity level. In the bottom heated configuration the Coriolis force has a stabilizing effect on fluid motion by delaying the onset of unsteady convection.
Local patches of turbulent boundary layer behaviour in classical-state vertical natural convection
NASA Astrophysics Data System (ADS)
Ng, Chong Shen; Ooi, Andrew; Lohse, Detlef; Chung, Daniel
2016-11-01
We present evidence of local patches in vertical natural convection that are reminiscent of Prandtl-von Kármán turbulent boundary layers, for Rayleigh numbers 105-109 and Prandtl number 0.709. These local patches exist in the classical state, where boundary layers exhibit a laminar-like Prandtl-Blasius-Polhausen scaling at the global level, and are distinguished by regions dominated by high shear and low buoyancy flux. Within these patches, the locally averaged mean temperature profiles appear to obey a log-law with the universal constants of Yaglom (1979). We find that the local Nusselt number versus Rayleigh number scaling relation agrees with the logarithmically corrected power-law scaling predicted in the ultimate state of thermal convection, with an exponent consistent with Rayleigh-Bénard convection and Taylor-Couette flows. The local patches grow in size with increasing Rayleigh number, suggesting that the transition from the classical state to the ultimate state is characterised by increasingly larger patches of the turbulent boundary layers.
The effect of natural and forced melt convection on dendritic solidification in Ga-In alloys
NASA Astrophysics Data System (ADS)
Shevchenko, N.; Roshchupkina, O.; Sokolova, O.; Eckert, S.
2015-05-01
The directional solidification of Ga-25 wt%In alloys within a Hele-Shaw cell was visualized by means of X-ray radioscopy. The experimental investigations are especially focused on the impact of melt convection on the dendritic growth. Natural convection occurs during a bottom up solidification because lighter solute is rejected at the solid-liquid interface leading to an unstable density stratification. Forced convection was produced by a rotating wheel with two parallel disks containing at their inner sides a set of permanent NdFeB magnets with alternating polarization. The direction of forced melt flow is almost horizontal at the solidification front whereas local flow velocities in the range between 0.1 and 1.0 mm/s were achieved by controlling the rotation speed of the magnetic wheel. Melt flow induces various effects on the grain morphology primarily caused by the convective transport of solute. Our observations show a facilitation of the growth of primary trunks or lateral branches, suppression of side branching, dendrite remelting and fragmentation. The manifestation of all phenomena depends on the dendrite orientation, local direction and intensity of the flow. The forced flow eliminates the solutal plumes and damps the local fluctuations of solute concentration. It provokes a preferential growth of the secondary arms at the upstream side of the primary dendrite arms, whereas the high solute concentration at the downstream side of the dendrites can inhibit the formation of secondary branches completely. Moreover, the flow changes the inclination angle of the dendrites and the angle between primary trunks and secondary arms.
NASA Astrophysics Data System (ADS)
Eustice, B. P.; Hyndman, D. W.; van Dam, R. L.; Wood, W. W.
2010-12-01
Free convection plays an important role in a variety of hydrological fields such as seawater-groundwater interactions, contaminant migration, and the behavior of groundwater in sabkhas and below saline lakes. Most free convection has been studied through theory, laboratory experiments, and numerical modeling, but electrical and electromagnetic geophysical methods have recently captured evidence of this phenomenon. In 2008, electrical resistivity tomography (ERT) at a field site in the United Arab Emirates documented the existence of fingering following precipitation-induced dissolution of an evaporite halite crust and subsequent infiltration to the shallow water table. We explore the transient character of these fingers (onset, growth, decay, and spatial and temporal scales). The field site consists of ~11.5 m of reworked sand dunes underlain by Miocene carbonates. The sands are effectively homogeneous, except for in the top meter of the sabkha which is characterized by authigenic evaporites that reduce the porosity relative to the underlying sands. Average rainfall near the site is approximately 70mm/year with a large standard deviation. To investigate the dynamics of the convective fingering, two surveys were conducted in spring of 2008, following two large precipitation events, and 2009, after an extended dry period. Measurements were taken using pole-pole and dipole-dipole configurations along perpendicular 84 electrode arrays with 1.0 and 0.5 m electrode spacing. The inverted ERT data illustrate that the fingering observed in 2008 was no longer present in the profiles in 2009. This more recent dataset does however suggest that a density inversion still exists near the water table. Modeling with COMSOL was used to test to test various hypotheses related to the nature of infiltration-driven fingering and episodic convection for this system.
NASA Astrophysics Data System (ADS)
Houze, R.; Rasmussen, K. L.; Zuluaga, M. D.; Brodzik, S. R.
2015-12-01
For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three-dimensional structure of significantly precipitating clouds in the tropics and subtropics. This talk reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multi-year dataset shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems may form by self-aggregation and generally have less intense embedded convection although they can form very wide stratiform regions, generally wider than seen over land. Continental mesoscale systems often have the most intense embedded convection. Some of these most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi-uniform precipitation with strong melting layers connected with intense convection. In monsoons and the intertropical convergence zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation.
Film boiling heat transfer from a sphere in natural and forced convection of freon-113
Dix, D.; Orozco, J. )
1990-01-01
Boiling heat transfer fluxes were measured on a 3.84-cm hollow copper sphere, in both forced convection and pool boiling, as a function of angular position in Freon 113. This paper reports on forced-convection tests run at speeds of 0.5 to 1.9 m/s. These tests were conducted in the stable film boiling region of the boiling curve. Significant heat transfer rates were measured in the vapor wake region of the sphere for flow film boiling. Video observations of the boiling process revealed that the flow film boiling vapor removal mechanism consisted of periodic formation and detachment of a vapor wake in the rear of the sphere. For pool boiling it was found that the heated surface had a uniform rate of energy dissipation in the stable film boiling regime, whereas in forced convection the film boiling rate was dependent on angular position. Pool film boiling tests also showed multiple humps (more than one maximum heat flux) in the boiling curve when the liquid was subcooled.
Coronal heating of M dwarfs: The flare-energy distribution of fully convective stars
NASA Astrophysics Data System (ADS)
Feng, Ying; Poppenhaeger, K.; Goulding, A. D.; Bulbul, E.
2014-01-01
Stochastic flaring is an important mechanism for the coronal heating of the Sun and solar-like stars. The driver for these flares is a magnetic dynamo anchored at the boundary layer between the convective zone and the radiative core. Fully convective M dwarfs have been observed to produce powerful flares as well, but they lack a radiative core and must possess a different dynamo mechanism. How their flaring behavior differs from the solar case is not fully understood yet. We have analyzed X-ray flares of 22 M dwarfs, including both fully and partially convective ones, using archival XMM-Newton data. We extracted flares from the individual X-ray light curves and determined the amount of energy released by each flare in the observed X-ray band. We constructed flare-energy distributions of the targets to investigate the degree to which flares heat stellar coronae. We fitted the slopes of the flare-energy distributions for individual targets and for groups of targets bundled by spectral type. Depending on the value of the slope, the total energy released by flares, as extrapolated from the flare-energy distributions, could be sufficient to heat the entire corona. We find that the slopes of the flare-energy distributions are very similar to that of the Sun, for both partially and fully convective M dwarfs. The dynamo process at work in the fully convective stars of our sample needs to have a flare production efficiency which is very close to the solar case. Further observations will cover ultracool targets near the brown dwarfs boundary to test for which masses this solar analogy is valid. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.
Effect of free surface shape on combined thermocapillary and natural convection
NASA Technical Reports Server (NTRS)
Kamotani, Yasuhiro; Platt, Jonathan
1992-01-01
Combined thermocapillary and natural convection in an open square cavity with differentially-heated side walls is studied numerically as well as experimentally. The test fluid is silicone oil with Prandtl number of 105. The shape of fluid-free surface is made either flat or curved to study its effect on the flow. A finite difference scheme to deal with a curved free surface is developed. The experimental results shown agree with the numerical results. With the curved-free surface, the flow and local heat transfer rate are reduced in the corner regions, and a sharp peak in heat transfer rate at the top edge of the cold wall disappears.
Passive decay heat removal by natural air convection after severe accidents
Erbacher, F.J.; Neitzel, H.J.; Cheng, X.
1995-09-01
The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.
Yamaguchi, Kenjiro
1984-01-01
The objective of this study is to obtain correlations between natural convection heat transfer through an aperture and temperature difference between the two rooms. A one-fifth similitude model of a two-room building is used. The model is filled with Freon gas to satisfy similarity of the experiment to full-scale conditions in air. The experimental apparatus and experimental techniques are explained. Experimental results are presented in terms of Grashof, Nusselt, and Prandtl numbers. The effects of the height, the width, and the vertical position of the apertures are investigated, as is the effect of the room volume.
Natural convection in binary gases due to horizontal thermal and solutal gradients
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, R.
1991-01-01
The influence of augmenting and opposing thermal and solutal buoyancy forces on natural convection of binary gases due to horizontal temperature and concentration gradients is examined through comparison of smoke flow visualization and measured temperature and concentration distributions with numerical predictions. The observed flow at the cold wall was unsteady for opposing body forces. The same basic flow structure was observed, but the unsteady flow intensifies as the opposing solutal buoyancy force increases as compared to the thermal buoyancy force. Comparison of predicted and measured temperatures and concentrations is fair overall, but the steady-state analytical model fails to predict the unsteady flow and heat and mass transport for opposing body forces.
NASA Astrophysics Data System (ADS)
Zeeshan, A.; Ellahi, R.; Hassan, M.
2014-12-01
In this study, the natural convection boundary layer flow along with inverted cone, magnetic and heat generation on water and ethylene glycol based nanofluids is considered by means of variable wall temperature. Porous medium is also taken into account. The physical problem is first modeled and then the governing equations are transformed into nonlinear ordinary differential equations under the assumptions of the Boussinesq approximation. Analytical solutions of nonlinear coupled equations are obtained by the homotopy analysis method. Correlation of skin friction and heat transfer rate corresponding to active parameters is also presented. Obtained results are illustrated by graphs and tables in order to see the effects of physical parameters.
Numerical Investigation of Turbulent Natural Convection in Differentially Heated Square Cavities
NASA Astrophysics Data System (ADS)
Schmelter, Sonja; Lindner, Gert; Wendt, Gudrun; Model, Regine
2011-09-01
This paper deals with the numerical simulation of turbulent natural convection in cavities heated from the side. Three cases are considered: an air-filled square cavity of size 0.75 m, a water-filled cavity of the same size, and a 20 times larger water-filled cavity. The Rayleigh numbers of these applications reach from 1.46ṡ109 to 2.77ṡ1015. For the air-filled cavity, the results are validated by comparison with experimental data from Tian & Karayiannis [1]. In addition, the investigations have the practical background to provide support for improving temperature measurements of liquids in large storage tanks.
Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer
Basunia, M.A.; Abe, T.
1999-07-01
Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.
Kinetic energy budgets in areas of intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.
1980-01-01
A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
In 1980, Zipser and LeMone estimated the convective available potential energy (CAPE) for the Thunderstorm Project cumulonimbus environment to be about 3000 J per kg. By assuming the most adiabat reported by Byers and Braham (1949) to be that of an undilute parcel rather than a reference moist adiabat, a significant error was introduced. On the basis of recent calculations made under similar conditions in Oklahoma and Florida, CAPE is now estimated to be considerably lower. These lower CAPE estimates shed doubt on the suggestion that differences in CAPE account for differences in the vertical velocities in convective updrafts over land and over the ocean.
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
In 1980, Zipser and LeMone estimated the convective available potential energy (CAPE) for the Thunderstorm Project cumulonimbus environment to be about 3000 J per kg. By assuming the most adiabat reported by Byers and Braham (1949) to be that of an undilute parcel rather than a reference moist adiabat, a significant error was introduced. On the basis of recent calculations made under similar conditions in Oklahoma and Florida, CAPE is now estimated to be considerably lower. These lower CAPE estimates shed doubt on the suggestion that differences in CAPE account for differences in the vertical velocities in convective updrafts over land and over the ocean.
NASA Astrophysics Data System (ADS)
Khani, F.; Darvishi, M. T.; Gorla, R. S.. R.; Gireesha, B. J.
2016-05-01
Heat transfer with natural convection and radiation effect on a fully wet porous radial fin is considered. The radial velocity of the buoyancy driven flow at any radial location is obtained by applying Darcy's law. The obtained non-dimensionalized ordinary differential equation involving three highly nonlinear terms is solved numerically with the spectral collocation method. In this approach, the dimensionless temperature is approximated by Chebyshev polynomials and discretized by Chebyshev-Gausse-Lobatto collocation points. A particular algorithm is used to reduce the nonlinearity of the conservation of energy equation. The present analysis characterizes the effect of ambient temperature in different ways and it provides a better picture regarding the effect of ambient temperature on the thermal performance of the fin. The profiles for temperature distributions and dimensionless base heat flow are obtained for different parameters which influence the heat transfer rate.
A new concept to harvest thermal energy using pyroeletric effect and Rayleigh-Benard convections
NASA Astrophysics Data System (ADS)
Zahra El fatnani, Fatima; Guyomar, Daniel; Belhora, Fouad; Mazroui, M'hammed; Boughaleb, Yahia; Hajjaji, Abdelowahed
2016-08-01
Thermal energy is one of the ambient energy sources surely exploitable but it has not drawn as much interest as mechanical energy. Our work aims to use thermal energy and to show that it is an important source for producing electrical energy using the pyroelectric effect. More precisely, we present in this paper a new concept to harvest thermal energy using the pyroelectric effect and Rayleigh-Benard convections. In fact, the convections will be created inside an oil bath, which can keep the pyroelectric element under temperature fluctuations (heating and cooling), making it possible to generate voltage by the pyroelectric effect. Our experimental findings show that with this original concept, based on Rayleigh-Benard convections, we harvested 0.28mW; this value was also improved by using the SSHI technique, which allows us to increase it up to 0.55mW. This obtained value of power is a heavy amount, which will certainly be useful in an extensive range of applications, including sensors and infrared detection. These results shed light on the thermoelectric energy conversion by PZT ceramic buzzer having the pyroelectric property, using a constant heat source.
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Hwang, Jin S.; Suh, Kune Y.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with top subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature
Natural Convection Heat Transfer Characteristics of Liquid Metal Cooled by Subcooled Water
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.; Suh, Kune Y.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the liquid metal is determined and compared with the correlations in the literature and experimental results. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with subcooled coolant are found to be similar to those predicted by the existing correlations or measured from previous experiments. The current experimental results are utilized to develop new engineering solutions. The new experimental correlations for predicting the natural convection heat transfer are applicable to low Prandtl number (Pr) materials that are heated from below and cooled by the external coolant above. Results from this study are slated to be used to design BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment in remote sites. Tests are performed with air, water and Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool while the lower surface is heated and the upper surface cooled by forced convection of water. The inner dimensions of the test section are 20 cm in length, 11.3 cm in height, and 15 cm in width. Wood's metal has a melting temperature of 78 deg. C. Constant temperature and heat flux condition is adopted for the bottom heating. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)
NASA Astrophysics Data System (ADS)
Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and
Mayor, T S; Couto, S; Psikuta, A; Rossi, R M
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow
Dynamics and Mechanisms of Time-Dependent Natural Convection in Porous Media
NASA Astrophysics Data System (ADS)
Graham, Michael David
Porous media and Hele-Shaw cells are attractive systems for studying nonlinear dynamics in natural convection systems heated from below, because vorticity transport and inertial effects can be eliminated, leaving only thermal effects. In this thesis, we study time-dependent convection in these systems at small aspect ratio in regimes where the flow varies from periodic to weakly chaotic. Emphasis is placed on phase space behavior, physical mechanisms and the relationship between temporal and spatial structures. The primary tools for this computational and theoretical study are continuation with the AUTO subroutine package and a pseudo-spectral initial value problem solver. In the course of the study, approximate inertial manifold techniques are tested and found to yield a moderate reduction in the order of the differential system needed to resolve bifurcation points. It is found that 3D convection in a cube of saturated porous medium undergoes Hopf bifurcations with mechanism and boundary layer structure analogous to what is found in 2D. Symmetry considerations show the equivalence between the 3D flow we consider and an orthogonal pair of 2D flows. In 2D convection in rectangular boxes, Hopf bifurcations interact to yield windows of stable periodic and quasiperiodic flow. Rigorous demonstration of this interaction mechanism is performed in the neighborhood of a double Hopf bifurcation. At higher Rayleigh numbers, periodic flows (born at a Hopf bifurcation) are found which obey the classical asymptotic boundary layer scaling as plumes form within and break free from the boundary layers. This plume formation process drives parametric instabilities that lead to windows of quasiperiodic or subharmonic behavior, and at sufficiently high Rayleigh number, to weak chaos. In experimental observations of convection in Hele-Shaw cells, a "diagonal" oscillation is found, which is not governed by a classical boundary layer mechanism. We show that this oscillation originates in
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.
Stoian, Floriana D; Holotescu, Sorin
2012-10-01
The effect of nanoparticles dispersed in a carrier fluid on the natural convection heat transfer is still raising controversies. While the reported experimental results show no improvement or even worsening of the heat transfer performance of nanofluids, the numerical simulations show an increase of the heat transfer coefficient, at least for certain ranges of Ra number. We report an experimental investigation regarding the natural convection heat transfer performance of a Fe3O4-water based nanofluid, in a cylindrical enclosure. The fluid was heated linearly from the bottom wall using an electric heater and cooled from the upper wall by a constant flow of water, such that a constant temperature difference between the upper and bottom walls was obtained at steady-state. The experiment was also carried out using water, in order to observe the effect of the addition of Fe3O4 nanoparticles on the heat transfer coefficient. Several regimes were tested, both for water and nanofluid. The experimental results showed that values obtained for the heat transfer coefficient for Fe3O4-water nanofluid were higher than those for water, at the same temperature difference. The present experimental results are also compared with our previous work and the reference literature.
NASA Astrophysics Data System (ADS)
Choi, Yeon Suk; Chang, Ho-Myung; Van Sciver, Steven W.
2006-05-01
Natural convection of subcooled liquid nitrogen under a horizontal flat plate is measured by experiment. This study is motivated mainly by our recent development of cryocooling systems for HTS power devices without any forced circulation of liquid nitrogen. Since the cold surface of a GM cryocooler is very limited, the cooling plate immersed in subcooled liquid nitrogen is thermally anchored to the cryocooler located at the top in order to serve as an extended surface. A vertical plate generating uniform heat flux is placed at a given distance under the cooling plate so that subcooled liquid may generate cellular flow by natural convection. The temperature distributions on the plates and liquid are measured during the cool-down and in steady state, from which the heat transfer coefficients are calculated and compared with the existing correlations for a horizontal surface with uniform temperature. A fair agreement is observed between two data sets, when the heat flux is small or the plate temperatures are relatively uniform in horizontal direction. Some discrepancy at higher heat flux is explained by the cellular flow pattern and the fin efficiency of the extended surface, resulting in the non-uniformity of the horizontal plate.
Cryogenic cooling system of HTS transformers by natural convection of subcooled liquid nitrogen
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Choi, Yeon Suk; Van Sciver, Steven W.; Choi, Kyeong Dal
2003-10-01
Heat transfer analysis on a newly proposed cryogenic cooling system is performed for HTS transformers to be operated at 63-66 K. In the proposed system, HTS pancake windings are immersed in a liquid nitrogen bath where the liquid is cooled simply by colder copper sheets vertically extended from the coldhead of a cryocooler. Liquid nitrogen in the gap between the windings and the copper sheets develops a circulating flow by buoyancy force in subcooled state. The heat transfer coefficient for natural convection is estimated from the existing engineering correlations, and then the axial temperature distributions are calculated analytically and numerically with taking into account the distributed AC loss in the windings and the thermal radiation on the walls of liquid-vessel. The calculation results show that the warm end of the HTS windings can be maintained at only 2-3 K above the freezing temperature of nitrogen, with acceptable values for the height of HTS windings and the thickness of copper sheets. It is concluded that the cooling by natural convection of subcooled liquid nitrogen can be an excellent option for compactness, efficiency, and reliability of HTS transformers.
Natural convection in a vertical rectangular enclosure with localized heating and cooling zones
NASA Astrophysics Data System (ADS)
Ishihara, I.; Matsumoto, R.; Senoo, A.
Experimental and numerical studies of natural convection in a single phase, closed thermosyphon were carried out using a vertical, rectangular enclosure model. Only one vertical plate plays the role of heat transfer surface having 100mm height and 100mm width, and others act as the adiabatic wall made of transparent plexi-glass. The heat transfer surface is separated into three horizontal zones with an equal height; top 1/3 and bottom 1/3 of the surface are cooling and heating zones, respectively and intermediate section is an adiabatic zone. Water is used as the working fluid. Variable parameters are distance D between the heat transfer surface and an adiabatic plate opposite to the heat transfer plate, and temperature difference ΔT between heating and cooling zones. By changing both D and ΔT, three regimes of the natural convection flow; quasi-two-dimensional steady, three-dimensional steady and unsteady flows are observed by means of thermo-sensitive liquid crystal powder and numerically simulated very well by solving a set of governing equations.
A new look at natural convection from isothermal vertical parallel plates
Li, H.H.; Chung, B.T.F.
1996-12-31
Natural convection between isothermal plates is solved numerically by applying the full Navier-Stokes equations. The elliptic formulation allows separating the effect of the Rayleigh number, Ra, and the aspect ratio, L/B. Calculations are made on a wide range of the Rayleigh number and the aspect ratio, and the Nusselt number is provided as a function of both Ra and B/L. The conventional correlations in the literature presenting the Nusselt number in terms of a single parameter, RaB/L, have been found inaccurate. At a small value of RaB/L, multiple values of Nusselt number are obtained for different combinations of Ra and B/L. Previous results are found to be the special cases of the present study. A minimum Rayleigh number is also obtained above which a fully-developed flow is possible. To simulate the natural convective flow, the ambient pressure is given at the exit while the pressure at the entrance is related to the ambient pressure by the Bernoulli equation. Velocities at the entrance and exit are also solved from the Navier-Stokes equations.
Numerical analysis of steady and transient natural convection in an enclosed cavity
NASA Astrophysics Data System (ADS)
Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul
2017-06-01
The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.
High magnetic field impact on the natural convection behaviour of a magnetic fluid
NASA Astrophysics Data System (ADS)
Kraszewska, Anna; Pyrda, Lukasz; Donizak, Janusz
2017-09-01
An experimental analysis of high magnetic field impact on the natural convection of a paramagnetic fluid was conducted. Two geometries of experimental enclosures were investigated: Enclosure no. 1 with an aspect ratio of 0.5 (AR aspect ratio = height/width) and Enclosure no. 2 with a higher aspect ratio equal to 2.0. Various magnetic field inductions were analysed and representative parts of the obtained results are shown in the present paper. Estimations of the Nusselt number and spectral analysis of the fluid's behaviour were performed. The obtained results led to the conclusion that magnetic field has an immense impact on paramagnetic fluid flow, on heat transferred by the flow, as well as the flow structure. Introducing an additional buoyancy force to the system, acting toward intensification of the fluid motion, causes significant enhancement of the Nusselt number in both geometries. Additionally, a spectral analysis of temperature changes indicates that large flow structures occurring in natural convection cases at low frequencies, under the influence of magnetic field, transform towards smaller structures in the whole frequency band.
Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.
2012-07-01
The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)
A convective-like energy-stable open boundary condition for simulations of incompressible flows
NASA Astrophysics Data System (ADS)
Dong, S.
2015-12-01
We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on a canonical wake flow and a jet flow in open domain to test the effectiveness and performance of the method developed herein. Simulation results are compared with the experimental data as well as with other previous simulations to demonstrate the accuracy of the current method. Long-time simulations are performed for a range of Reynolds numbers, at which strong vortices and backflows occur at the outflow/open boundaries. The results show that our method is effective in overcoming the backflow instability, and that it allows for the vortices to discharge from the domain in a fairly natural fashion even at high Reynolds numbers.
Natural and mixed convection in the cylindrical pool of TRIGA reactor
NASA Astrophysics Data System (ADS)
Henry, R.; Tiselj, I.; Matkovič, M.
2017-02-01
Temperature fields within the pool of the JSI TRIGA MARK II nuclear research reactor were measured to collect data for validation of the thermal hydraulics computational model of the reactor tank. In this context temperature of the coolant was measured simultaneously at sixty different positions within the pool during steady state operation and two transients. The obtained data revealed local peculiarities of the cooling water dynamics inside the pool and were used to estimate the coolant bulk velocity above the reactor core. Mixed natural and forced convection in the pool were simulated with a Computational Fluid Dynamics code. A relatively simple CFD model based on Unsteady RANS turbulence model was found to be sufficient for accurate prediction of the temperature fields in the pool during the reactor operation. Our results show that the simple geometry of the TRIGA pool reactor makes it a suitable candidate for a simple natural circulation benchmark in cylindrical geometry.
Lin, Wenxian; Armfield, S W; Patterson, J C; Lei, Chengwang
2009-06-01
In this paper, the scalings incorporating the Prandtl number (Pr) dependence have been obtained by a scaling analysis for the unsteady natural convection boundary layer of an initially quiescent isothermal Newtonian fluid of Pr>1 produced by the sudden imposition of a higher temperature on a vertical plate. It is shown that the transient flow behavior of the resulting boundary layer can be described by a three-region structure and at the start-up stage the boundary layer development is one dimensional and independent of height due to the dominance of pure conduction; however, at steady state it becomes two dimensional and height dependent as the flow becomes dominated by convection. Numerical results demonstrate that the scalings representing the thermal boundary layer development accurately represent their Pr dependence over the whole stage of flow development. The scalings representing the viscous boundary layer development are generally in good agreement with the numerical results with the Pr variation over the whole stage of flow development, although there are small deviations from the numerical results with the Pr variation that are within acceptable limits for scaling.
NASA Astrophysics Data System (ADS)
Sid, Samir; Terrapon, Vincent; Dubief, Yves
2015-11-01
Results of direct numerical simulation of turbulent channel flows under unstable stratification are reported. Two Reynolds number are considered: Reτ = 180 , 395 and the Rayleigh number ranges between Ra = [106 -109 ] . The Prandtl number is set to 1. The channel is periodic in both streamwise and spanwise directions and non-slip/isothermal boundary conditions are imposed at the walls. The temperature difference between the walls is set so that the stratification is unstable and the coupling between temperature and momentum is achieved using the Boussinesq approximation. The dependency of the typical large scale convective structures on both Reynolds and Rayleigh numbers are investigated through cross flow sectional statistics and instantaneous flow field visualizations. Moreover, the effects of the natural convection on the coherent structures associated to the cycle of wall-bounded turbulence (Jimenez, et al. JFM 1999), namely velocity streaks and streamwise vortices, are examined. Finally, macroscopic quantities such as friction coefficient and Nusselt number are reported as a function of the Rayleigh number and are compared for both Reynolds numbers. The Belgian Team acknowledges computational resources from CÉCI (F.R.S.-FNRS grant No.2.5020.11) and the PRACE infrastructure. YD acknowledges the support of NSF and DOE under grant NSF/DOE 1258697.
Convective-absolute nature of ripple instabilities on ice and icicles
NASA Astrophysics Data System (ADS)
Camporeale, Carlo; Vesipa, Riccardo; Ridolfi, Luca
2017-05-01
Film hydrodynamics is crucial in water-driven morphological pattern formation. A prominent example is given by icicle ripples and ice ripples, which are regular patterns developing on freezing-melting inclined surfaces bounding open-channel flows. By a suitable mathematical model based on conservation principles and the use of the cusp map method, in this paper we address the convective-absolute nature of these two kinds of instabilities. The obtained results show that icicle ripples, which develop at inverted (overhang) conditions, have subcentimetric wavelengths which are unstable when the Reynolds number of the liquid flow (Re ) is small and the supercooling is intensive. With the increase in Re , the instability switches from absolute to convective. Ice ripples instead exhibit the opposite dependance on Re and are highly affected by the surface slope. In addition, the evaluation of the so-called absolute wave number, which is responsible for the asymptotic impulse response, suggests a different interpretation of some recent experiments about ice ripples.
Inagaki, T. ); Kitamura, K. )
1990-01-01
The turbulent heat transfer of combined forced and natural convection along a vertical flat plate was investigated experimentally both with aiding and opposing flows of air. Local heat-transfer coefficients were measured in the vertical direction. The results show that the local Nusselt numbers for aiding flow become smaller than those for the forced and the natural convection, while the Nusselt numbers for the opposing flow are increased significantly. These results are compared with the previous results for water. It has been found that the nondimensional parameter Z(= Gr{sub x}*/Nu{sub x}Re{sub x}){sup 2.7}Pr{sup 0.6} can predict the behavior of heat transfer both for air and water. Furthermore, the natural, forced, and combined convection regions can be classified in terms of the above parameter.
Natural Convection Heat and Mass Transfer from Falling Films in Vertical Channels
NASA Astrophysics Data System (ADS)
Buck, Gregory Allen
1990-01-01
In the design of solar collector/regenerators for use in open cycle absorption refrigeration (OCAR) units, the problem of predicting evaporation rates and solution temperatures is of paramount importance in determining overall cycle performance. This transport of heat and mass is dominated by natural convection with buoyant forces primarily generated as a result of film heating by the solar flux, but aided by the evaporation of water (the lighter species) into the rising moist air stream. In order to better understand the mechanism of these combined buoyant interactions, the governing equations for natural convection flow in a vertical channel bounded by a heated falling film (simulating a glazed collector/regenerator) were solved using several different finite difference techniques. The numerical results were validated against existing experimental and numerical results for simplified boundary conditions. The appropriate nondimensionalization for the falling film boundary condition was established, ostensibly for the first time, and a parametric study for an air-water vapor mixture has been presented. Curve fits to the numerical results were determined for engineering design applications. To further confirm the validity of the numerical solutions, an experimental apparatus was constructed using electric resistance heat to simulate the constant heat flux of the solar source. Water was introduced at the top of this heated vertical surface at various flow rates and under various supplied heat fluxes, and a natural convection channel flow generated between the heated falling film and a parallel, plexiglass surface. Film temperatures and moist air velocity profiles were measured at various streamwise (vertical) locations for comparison with the numerical results. In general, measured film temperatures were 15 to 20 percent lower than the predicted values, but came to within 3 percent of the predictions when experimental uncertainty was incorporated into the numerical
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat
NASA Astrophysics Data System (ADS)
Baaziz, Inès; Ben Salah, Nizar; Kaddeche, Slim
2014-07-01
The present study investigates the electromagnetic braking of buoyancy convective flows occurring in differentially heated cavities, filled with low Prandtl, dilute, incompressible and electrically conducting alloys, and subjected to a constant horizontal temperature gradient. In practice, such flows known as 'Hadley circulation' are relevant in material processing technologies, such as the horizontal Bridgman configuration. A collocation spectral numerical method is developed to solve the two-dimensional Navier-Stokes equations, modelling the flow phenomena occurring in such configurations, using a vorticity-stream function formulation. The two components of the velocity are deduced from the stream function and the temperature distribution is obtained through the resolution of the energy conservation equation. The results in terms of velocity and temperature distributions for a given Grashof number are obtained for various Hartmann numbers and show that as the Hartmann number increases, the electromagnetic braking of the flow is observed. Moreover, the results illustrate the changes affecting the flow structure which becomes quasi-parallel in the core region of the cavity for sufficiently high values of Ha and the onset of the Hartmann and parallel layers along the boundaries. Also, with increasing Ha, the isotherms are less affected by the convective flow and become parallel to the vertical walls indicating that heat transfer is mainly achieved by conduction.
Turbulent natural convection between a perforated vertical cylinder and a surrounding array
McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O'Brien, J.E.; Mecham, D.C.; Lussie, W.G.
1992-01-01
A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.
Turbulent natural convection between a perforated vertical cylinder and a surrounding array
McEligot, D.M.; Stoots, C.M.; Christenson, W.A.; O`Brien, J.E.; Mecham, D.C.; Lussie, W.G.
1992-09-01
A number of situations can be hypothesized to occur in an advanced or special purpose nuclear reactor such that the core is filled with a gas but there is no forced flow to remove the thermal energy evolved. Experiments were conducted by resistively hearing a vertical circular cylinder of length-to-diameter ratio of about 160 centered inside a concentric perforated tube which was, in turn, surrounded by three larger diameter tubes cooled internally with water flow. The ratio of the test section temperature to the cooling tube temperature was varied up to 2.6; and the Rayleigh number, based on tube diameter and properties evaluated at the cooling tube temperature, ranged from 2.9 x 10{sup 4} to 9.2 x 10{sup 5}. Results indicate that the convective heat transfer parameters for the perforated tube are about fifteen per cent higher than for the smooth bare tube centered in the same position relative to the array. The Nusselt number for convective heat transfer across the annulus between the heated test section and the perforated tube corresponded to parallel laminar flow.
NASA Technical Reports Server (NTRS)
Diaguila, Anthony J; Freche, John C
1951-01-01
Blade-to-coolant heat-transfer data and operating data were obtained with a natural-convection water-cooled turbine over range of turbine speeds and inlet-gas temperatures. The convective coefficients were correlated by the general relation for natural-convection heat transfer. The turbine data were displaced from a theoretical equation for natural convection heat transfer in the turbulent region and from natural-convection data obtained with vertical cylinders and plates; possible disruption of natural convection circulation within the blade coolant passages was thus indicated. Comparison of non dimensional temperature-ratio parameters for the blade leading edge, midchord, and trailing edge indicated that the blade cooling effectiveness is greatest at the midchord and least at the trailing edge.
Convection in molten pool created by a concentrated energy flux on a solid metal target
Dikshit, B.; Zende, G. R.; Bhatia, M. S.; Suri, B. M.
2009-08-15
During surface evaporation of metals by use of a concentrated energy flux such as electron beam or lasers, a liquid metal pool having a very high temperature gradient is formed around the hot zone created by the beam. Due to temperature dependence of surface tension, density, and depression of the evaporating surface caused by back pressure of the emitted vapor in this molten pool, a strong convective current sets in the molten pool. A proposition is made that this convection may pass through three different stages during increase in the electron beam power depending upon dominance of the various driving forces. To confirm this, convective heat transfer is quantified in terms of dimensionless Nusselt number and its evolution with power is studied in an experiment using aluminum, copper, and zirconium as targets. These experimentally determined values are also compared to the theoretical values predicted by earlier researchers to test the validity of their assumptions and to know about the type of flow in the melt pool. Thus, conclusion about the physical characteristics of flow in the molten pool of metals could be drawn by considering the roles of surface tension and curvature of the evaporating surface on the evolution of convective heat transfer.
NASA Astrophysics Data System (ADS)
Celentano, Diego J.; Cruchaga, Marcela A.; Schulz, Bernd J.
2006-04-01
A coupled analysis involving natural convection, thermal balance, and microstructural evolution that take place in the solidification process of a hypoeutectic gray cast iron is presented in this work. The microstructural formulation used in this study includes classical models of primary-austenite and eutectic (gray and white) transformations. The influence of both natural convection and heat-transfer conditions on the thermal-microstructural response is particularly assessed in a simple cylindrical casting system. The evolutions of temperature and different microstructural variables are compared and validated with available experimental measurements.
NASA Astrophysics Data System (ADS)
Yovanovich, M. M.
1993-07-01
It is presently shown that the correlation equations for forced and natural convection-involving bloundary-layer flows, over isothermal flat plates, collapse into a simple expression directly relating the dimensionless wall-temperature excess to a novel Prandtl number function. This function is demonstrated to be applicable for the full, zero-to-infinity Prandtl number range. This formulation allows forced and natural convection heat-transfer results to appear on the same graph, as dimensionless temperature excess vs Prandtl number functions.
NASA Technical Reports Server (NTRS)
Lietzke, A F
1955-01-01
Results are presented of a theoretical and experimental investigation of heat transfer involving laminar natural convection of fluids enclosed between parallel walls oriented in the direction of the body force, where one wall is heated uniformly, and the other is cooled uniformly. For the experimental work, parallel walls were simulated by using an annulus with an inner-to-outer diameter ratio near 1. The results of the theoretical investigation are presented in the form of equations for the velocity and temperature profiles and the ratio of actual temperature drop across the fluid to the temperature drop for pure conduction. No experimental measurements were made of the velocity and temperature profiles, but the experimental results are compared with theory on the basis of the ratio of the actual temperature drop to the temperature drop for pure conduction. Good agreement was obtained between theory and experiment for axial temperature gradients of 10 degrees F. per foot or larger.
Sensible Heat Flux from the Earth's Surface under Natural Convective Conditions.
NASA Astrophysics Data System (ADS)
Kondo, Junsei; Ishida, Sachinobu
1997-02-01
A value for the exchange speed of sensible heat CHU under natural convective conditions was determined by both indoor and field experiments. Regardless of the type of experiment, the relationships for the CHU were obtained as CHU = b(TS T)1/3. For a wet surface, Tv should be substituted for (TS T). Here, TS is the ground surface temperature, T the air temperature, and Tv the virtual temperature difference. In addition, b is a coefficient having a value of 0.0011 m s1 K1/3 for a smooth surface and 0.0038 m s1 K1/3 over a rough surface. From the field observation data, it was concluded that under strongly unstable conditions (1 > > 477) the best pair of stability profile functions was proposed.
Javeri, V.
1995-03-01
After implementation of TOUGH2 at GRS in summer 91, it was first used to analyse the gas transport in a repository for the nuclear waste with negligible heat generation and to verify the results obtained with ECLIPSE/JAV 92/. Since the original version of TOUGH2 does not directly simulate the decay of radionuclide and the time dependent boundary conditions, it is not a appropriate tool to study the nuclide transport in a porous medium/PRU 87, PRU 91/. Hence, in this paper some modifications are proposed to study the nuclide transport under combined influence of natural convection diffusion, dispersion and time dependent boundary condition. Here, a single phase fluid with two liquid components is considered as in equation of state model for water and brine/PRU 91A/.
Fu, W.S.; Ke, W.W.
2000-01-01
A double diffusive natural convection in a rectangular enclosure filled with porous medium is investigated numerically. The distribution of porosity is based upon the random porosity model. The Darcy-Brinkman-Forchheimer model is used and the factors of heat flux, mean porosity and standard deviation are taken into consideration. The SIMPLEC method with iterative processes is adopted to solve the governing equations. The effects of the random porosity model on the distributions of local Nusselt number are remarkable and the variations of the local Nusselt number become disordered. The contribution of latent heat transfer to the total heat transfer of the high Rayleigh number is larger than that of the low Rayleigh number and the variations of the latent heat transfer are not in order.
NASA Astrophysics Data System (ADS)
Katamine, Eiji; Imai, Shinya; Mathmatical design Team; Computational mechanics Team
2016-11-01
This paper presents a numerical solution to shape identification of unsteady natural convection fields to control temperature to a prescribed distribution. The square error integral between the actual temperature distributions and the prescribed temperature distributions on the prescribed sub-boundaries during the specified period of time is used as the objective functional. Shape gradient of the shape identification problem is derived theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae of the material derivative. Reshaping is carried out by the traction method proposed as an approach to solving shape optimization problems. Numerical analyses program for the shape identification is developed based on FreeFem++, and the validity of proposed method is confirmed by results of 2D numerical analyses.
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, Raymond
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.
From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities
NASA Astrophysics Data System (ADS)
Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca
2011-07-01
Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.
Flow patterns of natural convection in an air-filled vertical cavity
NASA Astrophysics Data System (ADS)
Wakitani, Shunichi
1998-08-01
Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.
Numerical and experimental study of transient natural convection in an inclined wall cavity
Rojas, J.; Avila, F.
1995-09-01
Transient natural convection in an open cavity with one inclined wall is analyzed both numerically and experimentally. The fluid and the cavity are in thermal equilibrium at the onset of the experiment. The inclined wall is heated in such a way that the wall temperature increases uniformly according to an hyperbolic tangent function. The transport equations are solved using a 2-D transient model with a non-orthogonal body fitted coordinate system and an exponential grid distribution for better spatial resolution near the inclined wall. Measurements of velocity and temperature are performed at some key points of the boundary layer and intrusion layer. The fluid motion and heat transfer are analyzed from the time at which heat is applied though the inclined wall to the time at which its effect is detected at the opposite sidewall. The main patterns of the fluid flow and heat transfer are well predicted as comparisons against experimental results indicate.
Multi-objective optimization of electronics heat sinks cooled by natural convection
NASA Astrophysics Data System (ADS)
Lampio, K.; Karvinen, R.
2016-09-01
Fins and fin arrays with constant temperature at the fin base have known solutions for natural convection. However, in practical applications, no simple solution exists for maximum temperature of heat sink with many heat dissipating components located at the base plate. A calculation model is introduced here to solve this practical problem without time consuming CFD modelling of fluid flow and heat transfer. Solutions with the new model are compared with some simple analytical and CFD solutions to prove that the results are accurate enough for practical applications. Seminal here is that results are obtained many orders of magnitude faster than with CFD. This much shorter calculation time scale makes the model well suited for multi-objective optimization in, e.g., simultaneous minimization of heat sink maximum temperature, size, and mass. An optimization case is presented in which heat sink mass and size are significantly reduced over those of the original reference heat sink.
Two- and three-dimensional natural and mixed convection simulation using modular zonal models
Wurtz, E.; Nataf, J.M.; Winkelmann, F.
1996-07-01
We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis with respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.
Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate
NASA Astrophysics Data System (ADS)
Tippa, Sowmya; Narahari, Marneni; Pendyala, Rajashekhar
2016-11-01
Numerical analysis is performed to investigate the unsteady natural convection flow of a nanofluid past a semi-infinite isothermal vertical plate. Five different types of water based nanofluids are considered in this investigation where Silver (Ag), Copper (Cu), Copper Oxide (CuO), Alumina (Al2O3) and Titanium Oxide (TiO2) are the nanoparticles. The governing non-dimensional partial differential equations are solved by employing an implicit finite-difference method of Crank-Nicolson type. Numerical results are computed for different values of pertinent parameters. The results for nanofluid temperature, velocity, local Skin friction and Nusselt number, average Skin friction and Nusselt number are discussed through graphs. The present numerical results for local Nusselt number have been compared with the well-established pure fluid correlation results for the limiting case and the comparison shows that the results are in excellent agreement.
Simulation on Natural Convection of a Nanofluid along an Isothermal Inclined Plate
NASA Astrophysics Data System (ADS)
Mitra, Asish
2017-08-01
A numerical algorithm is presented for studying laminar natural convection flow of a nanofluid along an isothermal inclined plate. By means of similarity transformation, the original nonlinear partial differential equations of flow are transformed to a set of nonlinear ordinary differential equations. Subsequently they are reduced to a first order system and integrated using Newton Raphson and adaptive Runge-Kutta methods. The computer codes are developed for this numerical analysis in Matlab environment. Dimensionless velocity, temperature profiles and nanoparticle concentration for various angles of inclination are illustrated graphically. The effects of Prandtl number, Brownian motion parameter and thermophoresis parameter on Nusselt number are also discussed. The results of the present simulation are then compared with previous one available in literature with good agreement.
CFD characterization of natural convection in a two-cell enclosure with a ``door``
Williams, P.T.; Baker, A.J.
1994-12-31
Natural convection in a two-cell enclosure with a door has been investigated comparing the results of a CFD simulation to experimental data available in the literature. The continuity constraint method (CCM), implemented via a finite element weak statement, was employed to solve the unsteady three-dimensional Navier-Stokes equations for a buoyant, incompressible laminar flow. The CFD results predicted essentially all experimentally observed features of the flow field, including the vertical plume in the cold zone, boundary-layer, flows along the heated and cooled walls, and the hot zone`s horizontal jet. Vertical temperature stratification predictions were in agreement with the experimental data in the cold zone; however, the measured hot-zone stratification was not well predicted by the CFD simulation. An assessment of factors affecting the CFD results and comparisons to experimental data conclude this paper.
NASA Astrophysics Data System (ADS)
Pelletier, Quentin; Persoons, Tim; Murray, Darina B.
2016-09-01
This paper presents the results of a numerical study of unsteady natural convection heat transfer from a pair of isothermally heated horizontal cylinders in water. In conjunction with the developed numerical model, a genetic algorithm is designed to search for the optimal spacing between the two cylinders that maximizes their overall heat transfer. When the cylinders are vertically aligned, the heat transfer effectiveness of the upper cylinder is affected by buoyancy-induced fluid flow induced by the lower cylinder. The established and validated CFD model is used to analyse spectral data of local Nusselt number and velocity. The optimization procedure identifies the optimal spacing for Rayleigh numbers ranging from 1e+6 to 1e+7.
Energy Conversion in Natural and Artificial Photosynthesis
McConnell, Iain; Li, Gonghu; Brudvig, Gary W.
2010-01-01
Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342
Natural convection heat transfer on two horizontal cylinders in liquid sodium
Hata, K.; Shiotsu, M.; Takeuchi, Y.
1995-09-01
Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.
Birkholzer, J.T.; Webb, S.W.; Halecky, N.; Peterson, P.F.; Bodvarsson, G.S.
2005-12-14
The energy output of the high-level radioactive waste to beemplaced in the proposed geologic repository at Yucca Mountain, Nevada,will strongly affect the thermal-hydrological (TH) conditions in thenear-drift fractured rock. Heating of rock water to above-boilingconditions will induce large water saturation changes and fluxperturbations close to the waste emplacement tunnels (drifts) that willlast several thousand years. Understanding these perturbations isimportant for the performance of the repository, because they couldincrease, for example, the amount of formation water seeping into theopen drifts and contacting waste packages. Recent computational fluiddynamics (CFD) analysis has demonstrated that the drifts will act asimportant conduits for gas flows driven by natural convection. As aresult, vapor generated from boiling of formation water nearelevated-temperature sections of the drifts may effectively betransported to cooler end sections (where no waste is emplaced), wouldcondense there, and subsequently drain into underlying rock units. Thus,natural convection processes have great potential for reducing thenear-drift moisture content in heated drift sections, which has positiveramifications for repository performance. To study these processes, wehave developed a new simulation method that couples existing tools forsimulating TH conditions in the fractured formation with modules thatapproximate natural convection and evaporation conditions in heatedemplacement drifts. The new method is applied to evaluate the future THconditions at Yucca Mountain in a three-dimensional model domaincomprising a representative emplacement drift and the surroundingfractured rock.
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Browning, P. A.
1983-01-01
Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.
Natural lawns that save energy
Lowitt, P.
1980-05-01
There are 16 million acres of lawns in the U.S. and these represent a sizeable investment in time, maintenance, resources, and energy. It is pointed out that millions of gallons of gasoline, petrochemical fertilizers, herbicides, pesticides, and fungicides are necessary to keep these lawns. Alternatives to the energy intensive conventional lawns do exist as is demonstrated in the yard of Dr. William Niering, Professor of Botany at Connecticut College and the Director of the Connecticut Arboretum. The use of native plants, an edible garden, a miniature wildlife area, and a putting green make up the yard at Dr. Niering's house.
Model of convection mass transfer in titanium alloy at low energy high current electron beam action
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.; Gromov, V. E.
2017-01-01
The convection mixing model is proposed for low-energy high-current electron beam treatment of titanium alloys, pre-processed by heterogeneous plasma flows generated via explosion of carbon tape and powder TiB2. The model is based on the assumption vortices in the molten layer are formed due to the treatment by concentrated energy flows. These vortices evolve as the result of thermocapillary convection, arising because of the temperature gradient. The calculation of temperature gradient and penetration depth required solution of the heat problem with taking into account the surface evaporation. However, instead of the direct heat source the boundary conditions in phase transitions were changed in the thermal conductivity equation, assuming the evaporated material takes part in the heat exchange. The data on the penetration depth and temperature distribution are used for the thermocapillary model. The thermocapillary model embraces Navier-Stocks and convection heat transfer equations, as well as the boundary conditions with the outflow of evaporated material included. The solution of these equations by finite elements methods pointed at formation of a multi-vortices structure when electron-beam treatment and its expansion over new zones of material. As the result, strengthening particles are found at the depth exceeding manifold their penetration depth in terms of the diffusion mechanism.
Experimental verification of natural convective heat transfer phenomenon from isothermal cuboids
Radziemska, Ewa; Lewandowski, Witold M.
2008-02-15
The paper presents results of experimental investigations of the convective heat transfer from isothermal cuboid with relatively big dimensions (i.e. 1.5 m x 1 m x 0.5 m). The aim of this research was to obtain results, which could be comparable to those obtained for the relatively small cuboid, presented in our previous paper [E. Radziemska, W. Lewandowski, Natural convective heat transfer from isothermal cuboids, Int. J. Heat Mass Transfer 46 (2003) 2169-2178]. The analytical solution was performed, taking into account complete boundary layer length and the manner of its propagation around the isothermal cuboid. As the characteristic linear dimension L in Nusselt-Rayleigh theoretical and experimental correlations, we proposed the ratio of six volumes to the cuboids surface area, which allowed performing the experimental results independently from the orientation of the block. The experiment was then carried out for three possible positions of the tested cuboid with dimensions 0.2 m x 0.1 m x 0.045 m. In present the investigations the Rayleigh numbers based on the proposed characteristic length ranged from 10{sup 8} to 10{sup 9}, due to the cuboids size. The Nusselt number, describing the intensity of convective heat transfer from the cuboid, was expressed by Nu = X . Ra{sup 1/5} +Y . Ra{sup 1/4}, where X and Y are coefficients dependent on the cuboids dimensions. For the range of provided experiment the theoretical Nusselt-Rayleigh relation can be presented in the form: Nu{sub L}=0.452.Ra{sub L}{sup 1/5}+0.516.Ra{sub L}{sup 1/4}that is adequate to Nu{sub L}=0.743.Ra{sub L}{sup 1/4}. A better correlation is obtained for the experimental results: Nu{sub L}=0.90.Ra{sub L}{sup 1/4} has a 10% deviation to the value previously obtained, for the cuboid with small dimensions, results (Nu{sub L}=0.818.Ra{sub L}{sup 1/4}). (author)
NASA Astrophysics Data System (ADS)
Mahmoudinezhad, S.; Rezania, A.; Yousefi, T.; Shadloo, M. S.; Rosendahl, L. A.
2017-08-01
A steady state and two-dimensional laminar free convection heat transfer in a partitioned cavity with horizontal adiabatic and isothermal side walls is investigated using both experimental and numerical approaches. The experiments and numerical simulations are carried out using a Mach-Zehnder interferometer and a finite volume code, respectively. A horizontal and adiabatic partition, with angle of θ is adjusted such that it separates the cavity into two identical parts. Effects of this angel as well as Rayleigh number on the heat transfer from the side-heated walls are investigated in this study. The results are performed for the various Rayleigh numbers over the cavity side length, and partition angles ranging from 1.5 × 105 to 4.5 × 105, and 0° to 90°, respectively. The experimental verification of natural convective flow physics has been done by using FLUENT software. For a given adiabatic partition angle, the results show that the average Nusselt number and consequently the heat transfer enhance as the Rayleigh number increases. However, for a given Rayleigh number the maximum and the minimum heat transfer occurs at θ = 45°and θ = 90°, respectively. Two responsible mechanisms for this behavior, namely blockage ratio and partition orientation, are identified. These effects are explained by numerical velocity vectors and experimental temperatures contours. Based on the experimental data, a new correlation that fairly represents the average Nusselt number of the heated walls as functions of Rayleigh number and the angel of θ for the aforementioned ranges of data is proposed.
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Nakagawa, T.; Deschamps, F.; Connolly, J. A.
2007-12-01
Starting with [Christensen and Yuen, 1985 JGR], many isochemical convection models have demonstrated the existence of "intermittent" or "partial" layering enforced by the ringwoodite to perovskite+magnesiowustite phase transition over a certain range of Clapeyron slope values, which has often been cited as a possible mechanism for reconciling conflicting evidences for whole-mantle and layered convection. Current mineral physics constraints indicate, however, that the likely value of the Clapeyron slope is too low to enforce this mode, although studies have shown that a viscosity increase at 660 km depth might account for much of the observed variation in slab dynamics without appealing to a phase transition. When chemical variations are additionally taken into account, the dynamical effect of phase transitions can again become important. Firstly the additive effect of the '660' phase transition and chemical buoyancy can combine to keep denser than average material in the lower mantle and less dense than average material in the upper mantle, the so-called filter effect first identified by Weinstein [1992 EPSL]. Secondly, the pyroxene-garnet components transform to perovskite at a higher pressure than olivine components, giving positive buoyancy to MORB and negative buoyancy to harzburgite in the depth range 660-720 km, which has been shown to cause local chemical stratification around 660 km depth. Thirdly, MORB is likely denser than average mantle in the deep mantle, and some fraction of it settles into a layer above the CMB. These effects are here demonstrated and quantified in 3-D spherical convection calculations in which the mineralogy is calculated self-consistently as a function of temperature, pressure and composition (expressed as the ratios of 5 oxides) using free energy minimization. Compositional variations arise self-consistently from melting. These build on the earlier studies of Xie and Tackley [2004 PEPI, JGR], Nakagawa and Tackley [2005 Gcubed; 2006
NASA Astrophysics Data System (ADS)
Warda, Boudaoud; Amina, Sabeur; Souad, Morsli
2017-05-01
The aim of this work is to analyze the natural convection phenomena and entropy generation of water-based Al2O3 nanofluids in square enclosure. The simulated domain corresponds to a square cavity heated from below and cooled from the top. The left and right walls are heated up to a height H = (3/4 W) and are adiabatic in the remaining part (1-H). Numerical investigations have been carried out based on coupled partial differential equations of momentum and energy which are solved using finite volume method. The effective thermal conductivity of the nanofluid was expressed by the Maxwell-Garnetts model however the dynamic viscosity was calculated according to the Brinkman formula. The obtained results were presented by average Nusselt number, streamlines, isotherms and entropy generation with various pertinent parameters, namely, Rayleigh number (100 ≤ Ra ≤ 106), volumetric fraction of nanoparticles (1% ≤ ϕ ≤ 4% ). It was found that the heat transfer increases with the increase of Rayleigh number and volume fraction. The choice of these parameters is important to obtain maximum enhancement of heat transfer with minimum entropy generation. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
ERIC Educational Resources Information Center
Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.
2013-01-01
A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…
2013-01-01
Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect. PMID:23374509
Qi, Cong; He, Yurong; Yan, Shengnan; Tian, Fenglin; Hu, Yanwei
2013-02-04
Considering interaction forces (gravity and buoyancy force, drag force, interaction potential force, and Brownian force) between nanoparticles and a base fluid, a two-phase Lattice Boltzmann model for natural convection of nanofluid is developed in this work. It is applied to investigate the natural convection in a square enclosure (the left wall is kept at a high constant temperature (TH), and the top wall is kept at a low constant temperature (TC)) filled with Al2O3/H2O nanofluid. This model is validated by comparing numerical results with published results, and a satisfactory agreement is shown between them. The effects of different nanoparticle fractions and Rayleigh numbers on natural convection heat transfer of nanofluid are investigated. It is found that the average Nusselt number of the enclosure increases with increasing nanoparticle volume fraction and increases more rapidly at a high Rayleigh number. Also, the effects of forces on nanoparticle volume fraction distribution in the square enclosure are studied in this paper. It is found that the driving force of the temperature difference has the biggest effect on nanoparticle volume fraction distribution. In addition, the effects of interaction forces on flow and heat transfer are investigated. It is found that Brownian force, interaction potential force, and gravity-buoyancy force have positive effects on the enhancement of natural convective heat transfer, while drag force has a negative effect.
ERIC Educational Resources Information Center
Saatadjian, Esteban; Lesage, Francois; Mota, Jose Paulo B.
2013-01-01
A project that involves the numerical simulation of transport phenomena is an excellent method to teach this subject to senior/graduate chemical engineering students. The subject presented here has been used in our senior/graduate course, it concerns the study of natural convection heat transfer between two concentric, horizontal, saturated porous…
NASA Astrophysics Data System (ADS)
Siahaan, A. S.; Ambarita, H.; Kawai, H.; Daimaruya, M.
2017-01-01
In an oil refinery unit, coke drum is subjected cyclic thermal stress and mechanical loads due to cyclic heating and cooling loads. Thus, the useful life of a coke drum is much shorter than other equipment. One of the most severe locations due to thermal stress is shell to skirt junction. Here, a hot box is proposed. In this study effectiveness of a hot box will be analyzed numerically. The addition of hot box (triangular cavity) was expected to generate natural convection, which will enhance heat transfer. As for the result show that heat flux conduction and natural convection have the same trend. The peak of conduction heat flux is 122 W/m2 and for natural convection is 12 W/m2. In the heating stage of coke drum cycle it found that the natural convection only provide approximately 10 % of heat transfer compare to conduction heat transfer. In this study it was proved that in the heating stage, the addition of triangular enclosure is less effective to enhance the heat transfer than previously thought.
NASA Astrophysics Data System (ADS)
Featherstone, Nicholas A.; Hindman, Bradley W.
2016-10-01
We investigate how rotationally constrained, deep convection might give rise to supergranulation, the largest distinct spatial scale of convection observed in the solar photosphere. While supergranulation is only weakly influenced by rotation, larger spatial scales of convection sample the deep convection zone and are presumably rotationally influenced. We present numerical results from a series of nonlinear, 3D simulations of rotating convection and examine the velocity power distribution realized under a range of Rossby numbers. When rotation is present, the convective power distribution possesses a pronounced peak, at characteristic wavenumber {{\\ell }}{peak}, whose value increases as the Rossby number is decreased. This distribution of power contrasts with that realized in non-rotating convection, where power increases monotonically from high to low wavenumbers. We find that spatial scales smaller than {{\\ell }}{peak} behave in analogy to non-rotating convection. Spatial scales larger than {{\\ell }}{peak} are rotationally constrained and possess substantially reduced power relative to the non-rotating system. We argue that the supergranular scale emerges due to a suppression of power on spatial scales larger than {\\ell }≈ 100 owing to the presence of deep, rotationally constrained convection. Supergranulation thus represents the largest non-rotationally constrained mode of solar convection. We conclude that the characteristic spatial scale of supergranulation bounds that of the deep convective motions from above, making supergranulation an indirect measure of the deep-seated dynamics at work in the solar dynamo. Using the spatial scale of supergranulation in conjunction with our numerical results, we estimate an upper bound of 10 m s-1 for the Sun’s bulk rms convective velocity.
Betz, J; Straub, J
2002-10-01
In the presence of a temperature gradient at a liquid-gas or liquid-liquid interface, thermocapillary or Marangoni convection develops. This convection is a special type of natural convection that was not paid much attention in heat transfer for a long time, although it is strong enough to drive liquids against the direction of buoyancy on Earth. In a microgravity environment, however, it is the remaining mode of natural convection and supports heat and mass transfer. During boiling in microgravity it was observed at subcooled liquid conditions. Therefore, the question arises about its contribution to heat transfer without phase change. Thermocapillary convection was quantitatively studied at single gas bubbles in various liquids, both experimentally and numerically. A two-dimensional mathematical model described in this article was developed. The coupled mechanism of heat transfer and fluid flow in pure liquids around a single gas bubble was simulated with a control-volume FE-method. The simulation was accompanied and compared with experiments on Earth. The numerical results are in good accordance with the experiments performed on Earth at various Marangoni numbers using various alcohols of varying chain length and Prandtl numbers. As well as calculations on Earth, the numerical method also allows simulations at stationary spherical gas bubbles in a microgravity environment. The results demonstrate that thermocapillary convection is a natural heat transfer mechanism that can partially replace the buoyancy in a microgravity environment, if extreme precautions are taken concerning the purity of the liquids, because impurities accumulate predominantly at the interface. Under Earth conditions, an enhancement of the heat transfer in a liquid volume is even found in the case where thermocapillary flow is counteracted by buoyancy. In particular, the obstructing influence of surface active substances could be observed during the experiments on Earth in water and also in
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
2005-04-14
algebraic flux model (AFM hereafter) together with the low-Reynolds number turbulence model and applied it to the prediction of various natural...fvvk −−− ε model developed by Durbin [1] in the present study. Durbin [1] developed a fvvk −−−ε model around the elliptic relaxation method for... algebraic flux model for the natural convection problem. The relative performances between the original model and the modified model are investigated 2
NASA Astrophysics Data System (ADS)
Osnos, V. B.; Kuneevsky, V. V.; Larionov, V. M.; Saifullin, E. R.; Gainetdinov, A. V.; Vankov, Yu V.; Larionova, I. V.
2017-01-01
The method of natural thermal convection with heat agent recirculation (NTC HAR) in oil reservoirs is described. The analysis of the effectiveness of this method for oil reservoir heating with the values of water saturation from 0 to 0.5 units is conducted. As the test element Ashalchinskoye oil field is taken. CMG STARS software was used for calculations. Dynamics of cumulative production, recovery factor and specific energy consumption per 1 m3 of crude oil produced in the application of the heat exchanger with heat agent in cases of different initial water saturation are defined and presented as graphs.
Effects of finiteness on the thermo-fluid-dynamics of natural convection above horizontal plates
NASA Astrophysics Data System (ADS)
Guha, Abhijit; Sengupta, Sayantan
2016-06-01
A rigorous and systematic computational and theoretical study, the first of its kind, for the laminar natural convective flow above rectangular horizontal surfaces of various aspect ratios ϕ (from 1 to ∞) is presented. Two-dimensional computational fluid dynamic (CFD) simulations (for ϕ → ∞) and three-dimensional CFD simulations (for 1 ≤ ϕ < ∞) are performed to establish and elucidate the role of finiteness of the horizontal planform on the thermo-fluid-dynamics of natural convection. Great care is taken here to ensure grid independence and domain independence of the presented solutions. The results of the CFD simulations are compared with experimental data and similarity theory to understand how the existing simplified results fit, in the appropriate limiting cases, with the complex three-dimensional solutions revealed here. The present computational study establishes the region of a high-aspect-ratio planform over which the results of the similarity theory are approximately valid, the extent of this region depending on the Grashof number. There is, however, a region near the edge of the plate and another region near the centre of the plate (where a plume forms) in which the similarity theory results do not apply. The sizes of these non-compliance zones decrease as the Grashof number is increased. The present study also shows that the similarity velocity profile is not strictly obtained at any location over the plate because of the entrainment effect of the central plume. The 3-D CFD simulations of the present paper are coordinated to clearly reveal the separate and combined effects of three important aspects of finiteness: the presence of leading edges, the presence of planform centre, and the presence of physical corners in the planform. It is realised that the finiteness due to the presence of physical corners in the planform arises only for a finite value of ϕ in the case of 3-D CFD simulations (and not in 2-D CFD simulations or similarity theory
NASA Astrophysics Data System (ADS)
Pérez Grande, Isabel; Rodriguez Sevillano, Angel; Meseguer, Jos
In June, 8th, 2009 the balloon-borne solar telescope SUNRISE was launched from the Swedish Space Corporation balloon facility Esrange. A telescope with a mirror of 1 m in diameter ob-served the Sun during six days until the mission was terminated in Canada. The design process of SUNRISE and of any optical telescope requires the analysis of the effect of surrounding air on the quality of images. The turbulence encountered in the local telescope environment de-grades its optical performance. This phenomenon called `seeing' consists of optical aberrations produced by density non-homogeneities in the air along the optical path. The refraction index of air changes due to thermal non-uniformities so that the wavefront incident on the mirror is randomly distorted, and therefore, images are altered. When telescope mirrors are heated, as it happens in solar telescopes, and therefore they are at a temperature different from the environment's, natural convection occurs. It is then crucial to know whether the flow in front of the mirror is laminar or turbulent. After reviewing the literature, it was found that the scattering of results about the onset of the transition gives only rough orders of magnitude of the values of the critical Grashof numbers. Aiming to obtain more information about it, the problem of determination of the turbulence onset in natural convection on heated inclined plates in air environment was experimentally revisited. The transition has been determined from hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity perturbations start to grow. Experiments have shown that the onset depends not only on the Grashof number, but also on other parameters as the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting extraordinarily well the experimental data. The results are obtained in terms of non
Farmer, M. T.; Kilsdonk, D. J.; Tzanos, C.P.; Lomperski, S.; Aeschlimann, R.W.; Pointer, D.; Nuclear Engineering Division
2005-09-01
As part of the Department of Energy (DOE) Generation IV roadmapping activity, the Very High Temperature gas cooled Reactor (VHTR) has been selected as the principal concept for hydrogen production and other process-heat applications such as district heating and potable water production. On this basis, the DOE has selected the VHTR for additional R&D with the ultimate goal of demonstrating emission-free electricity and hydrogen production with this advanced reactor concept. One of the key passive safety features of the VHTR is the potential for decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-cooled RCCS concept is notably similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that was developed for the General Electric PRISM sodium-cooled fast reactor. As part of the DOE R&D program that supported the development of this fast reactor concept, the Natural Convection Shutdown Heat Removal Test Facility (NSTF) was developed at ANL to provide proof-of-concept data for the RVACS under prototypic natural convection flow, temperature, and heat flux conditions. Due to the similarity between RVACS and the RCCS, current VHTR R&D plans call for the utilization of the NSTF to provide RCCS model development and validation data, in addition to supporting design validation and optimization activities. Both air-cooled and water-cooled RCCS designs are to be included. In support of this effort, ANL has been tasked with the development of an engineering plan for mechanical and instrumentation modifications to NSTF to ensure that sufficiently detailed temperature, heat flux, velocity and turbulence profiles are obtained to adequately qualify the codes under the expected range of air-cooled RCCS flow conditions. Next year, similar work will be carried out for the alternative option of a water-cooled RCCS design. Analysis activities carried out in support of this experiment planning task have shown that: (a) in the RCCS, strong
Numerical analysis of natural convection in liquid droplets by phase change
NASA Technical Reports Server (NTRS)
Duh, J. C.; Yang, Wen-Jei
1989-01-01
A numerical analysis is performed on thermocapillary buoyancy convection induced by phase change in a liquid droplet. A finite-difference code is developed using an alternating-direction implicit (ADI) scheme. The intercoupling relation between thermocapillary force, buoyancy force, fluid property, heat transfer, and phase change, along with their effects on the induced flow patterns, are disclosed. The flow is classified into three types: thermocapillary, buoyancy, and combined convection. Among the three mechanisms, the combined convection simulates the experimental observations quite well, and the basic mechanism of the observed convection inside evaporating sessile drops is thus identified. It is disclosed that evaporation initiates unstable convection, while condensation always brings about a stable density distribution which eventually damps out all fluid disturbances. Another numerical model is presented to study the effect of boundary recession due to evaporation, and the 'peeling-off' effect (the removal of the surface layer of fluid by evaporation) is shown to be relevant.
NASA Astrophysics Data System (ADS)
Houze, Robert A.; Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-09-01
For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three-dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi-uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation.
Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.
Sekhar, Y Raja; Sharma, K V; Kamal, Subhash
2016-05-01
The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.
Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon
Roslan, R.; Saleh, H.; Hashim, I.
2014-01-01
The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 103 ≤ Ra ≤ 106. The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate. PMID:24991643
Kim, Sung-Jin; Wang, Fang; Burns, Mark A.; Kurabayashi, Katsuo
2009-01-01
Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks. PMID:19419189
Secondary stability and three-dimensional natural convection in a shallow cavity
NASA Astrophysics Data System (ADS)
Wang, Tzyy-Ming
1990-08-01
Natural convection in a shallow cavity whose top and bottom boundaries are made of insulated material is considered. The length and width of the cavity are considered to be much larger than its height. With the right wall heated, flow along it is driven upward by a bouyancy force. In the cold end on the left, cooler fluid sinks to the bottom. Because the lid and the base constrain the fluid to flow horizontally to the cold end through the top half and back to the hot end through the bottom half of the cavity, parallel fully viscous flow develops in the center. For low Prandtl number fluids, the central parallel flow region occupies most of the cavity. Since researchers were interested in the flow of liquid metals, they take the horizontal extent to be infinite for theoretical purposes and focus on the parallel flow in the central part of the cavity. Direct three dimensional simulations were carried out for a flow resulting from subharmonic resonance. The migration of the axes of the transverse cells as a result of tertiary flow changing in the spanwise direction is described.
Natural convection heat transfer of nanofluids along a vertical plate embedded in porous medium
2013-01-01
The unsteady natural convection heat transfer of nanofluid along a vertical plate embedded in porous medium is investigated. The Darcy-Forchheimer model is used to formulate the problem. Thermal conductivity and viscosity models based on a wide range of experimental data of nanofluids and incorporating the velocity-slip effect of the nanoparticle with respect to the base fluid, i.e., Brownian diffusion is used. The effective thermal conductivity of nanofluid in porous media is calculated using copper powder as porous media. The nonlinear governing equations are solved using an unconditionally stable implicit finite difference scheme. In this study, six different types of nanofluids have been compared with respect to the heat transfer enhancement, and the effects of particle concentration, particle size, temperature of the plate, and porosity of the medium on the heat transfer enhancement and skin friction coefficient have been studied in detail. It is found that heat transfer rate increases with the increase in particle concentration up to an optimal level, but on the further increase in particle concentration, the heat transfer rate decreases. For a particular value of particle concentration, small-sized particles enhance the heat transfer rates. On the other hand, skin friction coefficients always increase with the increase in particle concentration and decrease in nanoparticle size. PMID:23391481
Influence of baffle location on natural convection in a partially divided enclosure
Jetli, R.; Acharya, S.; Zimmerman, E.
1986-01-01
A numerical study has been made of natural convection in a square partitioned enclosure with two offset baffles and perfectly conducting horizontal end walls. The study is made for three different baffle locations and two different conductivities at Rayleigh numbers of 10/sup 4/, 10/sup 5/, and 3.55 X 10/sup 5/. The results clearly demonstrate that baffle position has a significant effect on the heat transfer. As the top baffle is moved toward the cold wall and the bottom baffle toward the hot wall the average Nusselt number value decreases, as does the tendency of the flow to separate behind the baffles. At high Rayleigh numbers the tendency for separation increases and the average Nusselt number value decreases with increasing baffle conductivity. The influence of baffle conductivity on the local Nusselt number distribution increases as the top baffle is moved toward the cold wall and the bottom baffle toward the hot wall. For all baffle locations, the average Nusselt number is smaller than the corresponding value in an enclosure with no baffles.
Numerical and experimental studies of the natural convection within a horizontal cylinder
NASA Technical Reports Server (NTRS)
Stewart, R. B.; Sabol, A. P.; Boney, L. R.
1974-01-01
Numerical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time-dependent natural convection within a horizontal cylinder. The early flow development and wall heat transfer are obtained after a uniformly cold wall is imposed as a boundary condition on the cylinder. Results are also obtained for a time-varying cold wall as a boundary condition with windward explicit differencing used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first-order accuracy is maintained in time and space. Experiments within a small-scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer as well as the decay of wall heat transfer with time. Agreement between temperature distributions obtained experimentally and numerically was generally good. The time decay of the dimensionless ratio of the Nusselt number to the one-fourth power of the Grashof number is found both numerically and experimentally, and good agreement is obtained between these two results over most of the cylinder wall.
Budroni, Marcello Antonio; Masia, Marco; Rustici, Mauro; Marchettini, Nadia; Volpert, Vitaly
2009-01-14
The transition to spatial-temporal complexity exhibited by spiral waves under the effect of gravitational field in the Belousov-Zhabotinsky reaction is numerically studied on the basis of spiral tip dynamics. Successive transformations in tip trajectories are characterized as a function of the hydrodynamical parameter and attributed to a Ruelle-Takens-Newhouse scenario to chaos. The analysis describes the emergence of complexity in terms of the interplay between the evolution of the velocity field and concentration waves. In particular, (i) by mapping the tip motion in relation to some hydrodynamical pseudopotentials, the general mechanism by which the velocity field affects the tip trajectory is pointed out, and, (ii) by comparing the dynamical evolutions of local and mean properties associated with the inhomogeneous structures and to the velocity field, a surprising correlation is found. The results suggest that the reaction-diffusion-convection (RDC) coupling addresses the system to some general regimes, whose nature is imposed by the hydrodynamical contribution. More generally, RDC coupling would be formalized as the phenomenon that governs the system and drives it to chaos.
Natural convection heat transfer from a horizontal wavy surface in a porous enclosure
Murthy, P.V.S.N.; Kumar, B.V.R.; Singh, P.
1997-02-07
The effect of surface undulations on the natural convection heat transfer from an isothermal surface in a Darcian fluid-saturated porous enclosure has been numerically analyzed using the finite element method on a graded nonuniform mesh system. The flow-driving Rayleigh number Ra together with the geometrical parameters of wave amplitude a, wave phase {phi}, and the number of waves N considered in the horizontal dimension of the cavity are found to influence the flow and heat transfer process in the enclosure. For Ra around 50 and above, the phenomenon of flow separation and reattachment is noticed on the walls of the enclosure. A periodic shift in the reattachment point from the bottom wall to the adjacent walls in the clockwise direction, leading to the manifestation of cycles of unicellular and bicellular clockwise and counterclockwise flows, is observed, with the phase varying between 0{degree} and 350{degree}. The counterflow in the secondary circulation zone is intensified with the increase in the value of Ra. The counterflow on the wavy wall hinders the heat transfer into the system. An increase in either wave amplitude or the number of waves considered per unit length decreases the global heat flux into the system. Only marginal changes in global heat flux are noticed with increasing Ra. On the whole, the comparison of global heat flux results in the wavy wall case with those of the horizontal flat wall case shows that, in a porous enclosure, the wavy wall reduces the heat transfer into the system.
Asako, Y.; Yamaguchi, Y.; Yamanaka, T.
1995-08-01
Unsteady three-dimensional natural convection heat transfer in an inclined air slot with a hexagonal honeycomb enclosure is investigated numerically. The numerical methodology is based on an algebraic coordinate transformation technique that maps the hexagonal cross section onto a rectangle. The transformed governing equations are solved with a control volume discretization scheme using a fully implicit method with time. The computations are performed for inclination angles in the range of 60 to 80 deg for Ra = 10{sup 4}, and in the range of 45 to 80 deg for Ra = 10{sup 5}, for Prandtl number of 0.7, and for a fixed aspect ratio of H/L = 5. A conductive thermal boundary condition for the honeycomb side walls is considered. Both periodic and nonperiodic oscillating solutions are obtained depending on the inclination angle and Rayleigh number. The complex flow patterns are presented in form of particle trajectory maps and are compared with the flow visualization results using microcapsulated liquid crystals. 17 refs., 10 figs., 2 tabs.
Study of natural convection cooling of a nanofluid subjected to a magnetic field
NASA Astrophysics Data System (ADS)
Mahmoudi, Ahmed; Mejri, Imen; Omri, Ahmed
2016-06-01
This paper presents a numerical study of natural convection cooling of water-Al2O3 nanofluid by two heat sinks vertically attached to the horizontal walls of a cavity subjected to a magnetic field. The left wall is hot, the right wall is cold, while the horizontal walls are insulated. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra =103 to 105, Hartmann number varied from Ha = 0 to 60 and the solid volume fraction of nanoparticles between ϕ = 0 and 6%. In order to investigate the effect of heat sinks location, three different configurations of heat sinks are considered. The effects of Rayleigh numbers, Hartmann number and heat sinks location on the streamlines, isotherms, Nusselt number are investigated. Results show that the heat transfer rate decreases with the increase of Hartmann number and increases with the rise of Rayleigh number. In addition it is observed that the average Nusselt number increases linearly with the increase of the nanoparticles solid volume fraction. Also, results show that the heat sinks positions greatly influence the heat transfer rate depending on the Hartmann number, Rayleigh number and nanoparticle solid volume fraction.
N.D. Francis, Jr; M.T. Itamura; S.W. Webb; D.L. James
2002-10-01
The objective of this heat transfer and fluid flow study is to assess the ability of a computational fluid dynamics (CFD) code to reproduce the experimental results, numerical simulation results, and heat transfer correlation equations developed in the literature for natural convection heat transfer within the annulus of horizontal concentric cylinders. In the literature, a variety of heat transfer expressions have been developed to compute average equivalent thermal conductivities. However, the expressions have been primarily developed for very small inner and outer cylinder radii and gap-widths. In this comparative study, interest is primarily focused on large gap widths (on the order of half meter or greater) and large radius ratios. From the steady-state CFD analysis it is found that the concentric cylinder models for the larger geometries compare favorably to the results of the Kuehn and Goldstein correlations in the Rayleigh number range of about 10{sup 5} to 10{sup 8} (a range that encompasses the laminar to turbulent transition). For Rayleigh numbers greater than 10{sup 8}, both numerical simulations and experimental data (from the literature) are consistent and result in slightly lower equivalent thermal conductivities than those obtained from the Kuehn and Goldstein correlations.
Characterization of Fuego for laminar and turbulent natural convection heat transfer.
Francis, Nicholas Donald, Jr.
2005-08-01
A computational fluid dynamics (CFD) analysis is conducted for internal natural convection heat transfer using the low Mach number code Fuego. The flow conditions under investigation are primarily laminar, transitional, or low-intensity level turbulent flows. In the case of turbulent boundary layers at low-level turbulence or transitional Reynolds numbers, the use of standard wall functions no longer applies, in general, for wall-bounded flows. One must integrate all the way to the wall in order to account for gradients in the dependent variables in the viscous sublayer. Fuego provides two turbulence models in which resolution of the near-wall region is appropriate. These models are the v2-f turbulence model and a Launder-Sharma, low-Reynolds number turbulence model. Two standard geometries are considered: the annulus formed between horizontal concentric cylinders and a square enclosure. Each geometry emphasizes wall shear flow and complexities associated with turbulent or near turbulent boundary layers in contact with a motionless core fluid. Overall, the Fuego simulations for both laminar and turbulent flows compared well to measured data, for both geometries under investigation, and to a widely accepted commercial CFD code (FLUENT).
Numerical and Experimental Studies of Transient Natural Convection with Density Inversion
NASA Astrophysics Data System (ADS)
Mizutani, Satoru; Ishiguro, Tatsuji; Kuwahara, Kunio
1996-11-01
In beer manufacturing process, we cool beer in storage tank down from 8 to -1 ^circC. The understanding of cooling process is very important for designing a fermentation tank. In this paper, flow and temperature distribution in a rectangular enclosure was studied. The unsteady incompressible Navier-Stokes equations were integrated by using the multi-directional third-order upwind finite difference method(MUFDM). A parabolic density-temperature relationship was assumed in water which has the maximum density at 3.98 ^circC. Cooling down from 8 to 0 ^circC of water in 10 cm cubical enclosure (Ra=10^7) was numerically done by keeping a vertical side wall at 0 ^circC. Vortex was caused by density inversion of water which was cooled bellow 4 ^circC, and it rose near the cold wall and reached water surface after 33 min from the start of cooling. Finally, cooling proceeded from upper surface. At the aim of verifing the accuracy of the numerical result, temperature distribution under the same condition was experimentally visualized using temperature sensitive liquid crystal. The results will be presented by using video movie. Comparison between the computation and the experiment showed that the present direct simulation based on the MUFDM was powerful tool for the understanding of the natural convection with density inversion and the application of cooling phenomenon to the design of beer storage tanks.
Lu, Qing; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Ye, Zhonghao
2010-01-15
This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60-24) and the ratio of length to gap clearance (800-320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel's integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m{sup 2}, the maximum wall temperature was lower than 350 C. All this work is valuable for the plate type reactor's design and safety analysis. (author)
NASA Astrophysics Data System (ADS)
Leahy, Martin J.; Phillip Schwarz, M.
2011-08-01
A computational fluid dynamics (CFD) model of copper electrorefining is discussed, where natural convection flow is driven by buoyancy forces caused by gradients in copper concentration at the electrodes. We provide experimental validation of the CFD model for several cases varying in size from a small laboratory scale to large industrial scale, including one that has not been compared with a CFD model. Previously, the large-scale systems have been thought to be turbulent by some workers and modeled accordingly with k-ɛ type turbulence models, but others have not considered turbulence effects in their modeling. We find that the turbulence model does not predict turbulence exists; however, we analyze carefully the fluctuation statistics predicted for a transient model, finding that most cases considered do exhibit a type of turbulence, an instability related to the interaction between velocity and copper concentration fields. We provide a comparison of the extent of turbulence for various electrode heights, and gap widths, and we emphasize industrial-sized electrorefining cells.
An experimental study of high Rayleigh number natural convection in a horizontal annulus
Fisher, C.E.; Kohli, A.; Ball, K.S.
1995-12-31
Experiments have been performed to obtain detailed measurements of the flow field and mean temperature distribution in a differentially heated horizontal annulus for air (Pr = 0.703) for 1.0 {times} 10{sup 6} < Ra{sub L} < 1.0 {times} 10{sup 8}. A two-component laser Doppler velocimeter is used to acquire time-resolved radial and azimuthal velocity measurements in the annulus, which are used to obtain power spectral density (PSD) estimates of the velocity fluctuations in the buoyant plume arising above the heated inner cylinder. The PSD provides information on the dynamical behavior of the flow within the plume and the turbulence scales produced by the buoyant flow. Probability density functions (PDF) are also determined from the velocity measurements, providing additional information about the instabilities associated with the plume. Flow visualization is also used to reveal information about the development of oscillatory flow regimes and the onset of turbulence as Ra{sub L} increases. In addition, axially averaged temperature distributions in the plume region are obtained by holographic interferometry. These measurements provide quantitative information regarding the thermal field in the plume region, including the extent of the plume and its effect on the flow. The results are consistent with the results of previous studies and give further insight into the onset and development of turbulence in natural convection flows.
Natural convection in a differentially heated square enclosure with a solid polygon.
Roslan, R; Saleh, H; Hashim, I
2014-01-01
The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 10(3) ≤ Ra ≤ 10(6). The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate.
Reda, D.C.
1983-01-01
An experimental effort is presently underway to investigate natural convection phenomena in liquid-saturated porous media utilizing a geometry, and hydrodynamic/thermal boundary conditions, relevant to the problem of nuclear-waste isolation in geologic repositories. During the first phase of this research program, detailed measurements were made of the steady-state thermal field throughout an annular test region bounded by a vertical, constant-heat-flux, inner cylinder and a concentrically-placed, constant-temperature, outer cylinder. An overlying, constant-pressure, fluid layer was utilized to supply a permeable upper surface boundary condition. Results showed the heater surface temperature to increase with increasing vertical distance due to the presence of a buoyantly-driven upflow. The measured temperature difference (..delta..T) between the average heater surface temperature and the constant, outer-surface, temperature was found to be progressively below the straight-line/conduction-only solution for ..delta..T vs power input as the latter was systematically increased. Comparisons between measured results and numerical predictions generated with the finite-element code MARIAH showed very good agreement, thereby contributing to the qualification of this code for repository-design applications.
NASA Astrophysics Data System (ADS)
Paul, Titan C.; Morshed, A. K. M. M.; Khan, Jamil A.
2016-07-01
The paper presents the numerical simulation of natural convection heat transfer of Al2O3 nanoparticle enhanced N-butyl-N-methylpyrrolidinium bis{trifluoromethyl)sulfonyl} imide ([C4mpyrr][NTf2]) ionic liquid. The simulation was performed in three different enclosures (aspect ratio: 0.5, 1, and 1.5) with heated from below. The temperature dependent thermophysical properties of base ionic liquids (ILs) and nanoparticle enhanced ionic liquids (NEILs) were applied in the numerical simulation. The numerical results were compared with the experimental result. The numerical results show that at a certain Rayleigh number NEILs has a lower Nusselt number compared to the base IL which are consistent with the experimental results. But the percentage of degradation is much less on the numerical results compared to the experimental. However the numerical results match well with the predicted model of using thermophysical properties of NEILs. From these observations it can be concluded that the extra degradation in the experimental results may occur due the particle-fluid interaction, clustering and sedimentation of nanoparticles.
Influence of wall roughness and thermal coductivity on turbulent natural convection
NASA Astrophysics Data System (ADS)
Orlandi, Paolo; Pirozzoli, Sergio; Bernardini, Matteo
2015-11-01
We study turbulent natural convection in enclosures with conjugate heat transfer. The simplest way to increase the heat transfer in this flow is through rough surfaces. In numerical simulations often constant temperatures are assigned on the walls, but this is an unrealistic condition in laboratory experiments. Therefore, in the DNS, to be of help to experimentalists, it is necessary to solve the heat conduction in the solid walls together with the turbulent flow between the hot and the cold walls. Here the cold wall, 0 . 5 h tick is smooth, and the hot wall has 2D and 3D rough elements of thickness 0 . 2 h above a solid layer 0 . 3 h tick. The simulation is performed in a bi-periodic domain 4 h wide. The Rayleigh number varies from 106 to 108. Two values of the thermal conductivity, one corresponding to copper and the other ten times higher were assumed. It has been found that the Nusselt number behaves as Nu = αRaγ , with α increasing with the solid conductivity and depending of the roughness shape. 3D elements produce a heat transfer greater than 2D elements. An imprinting of the flow structures on the thermal field inside the walls is observed. The one-dimensional spectra at the center, one decade wide, agree with those of forced isotropic turbulence.
Numerical Study of Conjugate Natural Convection Heat Transfer Using One Phase Liquid Cooling
NASA Astrophysics Data System (ADS)
Gdhaidh, F. A.; Hussain, K.; Qi, H. S.
2014-07-01
A numerical study in 3-D is performed using water as a cooling fluid to investigate the one phase natural convection heat transfer within enclosure. A heat source representing a computer CPU mounted on one vertical wall of a rectangular enclosure is simulated while a heat sink is installed on the opposite vertical wall of the enclosure. The air flow inside the computer compartment is created by using an exhaust fan, and the flow is assumed to be turbulent. The applied power considered ranges from 15 - 40 W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the dimension of the enclosure are investigated. The results illustrate that as the size of the enclosure increase the chip temperature declined. However the drop in the temperature is very small when the width increased more than 50 mm. When the enclosure was filled with water the temperature was reduced by 38%. Also the cooling system maintains the maximum chip temperature at 71.5 °C when the heat input of 40 W was assumed and this is within the current recommended computer electronic chips temperature of no more than 85°C.
Boyd, R.D.
1980-01-01
The natural convective heat transfer across an annulus with irregular boundaries was studied using a Mach-Zehnder interferometer. The annulus was formed by an inner hexagonal cylinder and an outer concentric circular cylinder. This configuration models, in two dimensions, a liquid metal fast breeder reactor spent fuel subassembly inside a shipping container. During the test, the annulus was filled with a single gas, either neon, air, argon, krypton, or xenon, at a pressure of about 0.5 MPa. From temperature measurements, both local and mean Nusselt numbers (Nu/sub ..delta../) at the surface of the inner cylinder were evaluated, with the mean Rayleigh number (anti Ra/sub ..delta../) varying from 4.54 x 10/sup 4/ to 0.915 x 10/sup 6/ (..delta.. is the local gas width). The data correlation for the mean Nusselt and Rayleigh numbers is given by anti Nu/sub ..delta../ = 0.183 anti Ra/sub ..delta..//sup 0/ /sup 310/.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
NASA Astrophysics Data System (ADS)
Ridouane, El Hassan; Hasnaoui, Mohammed; Campo, Antonio
2006-01-01
Coupled laminar natural convection with radiation in air-filled square enclosure heated from below and cooled from above is studied numerically for a wide variety of radiative boundary conditions at the sidewalls. A numerical model based on the finite difference method was used for the solution of mass, momentum and energy equations. The surface-to-surface method was used to calculate the radiative heat transfer. Simulations were performed for two values of the emissivities of the active and insulated walls (ɛ1=0.05 or 0.85, ɛ2=0.05 or 0.85) and Rayleigh numbers ranging from 103 to 2.3×106 . The influence of those parameters on the flow and temperature patterns and heat transfer rates are analyzed and discussed for different steady-state solutions. The existing ranges of these solutions are reported for the four different cases considered. It is founded that, for a fixed Ra, the global heat transfer across the enclosure depends only on the magnitude of the emissivity of the active walls. The oscillatory behavior, characterizing the unsteady-state solutions during the transitions from bicellular flows to the unicellular flow are observed and discussed.
NASA Astrophysics Data System (ADS)
Moufekkir, F.; Moussaoui, M. A.; Mezrhab, A.; Naji, H.; Lemonnier, D.
2012-09-01
This paper deals with the numerical solution for natural convection and volumetric radiation in an isotropic scattering medium within a heated square cavity using a hybrid thermal lattice Boltzmann method (HTLBM). The multiple relaxation time lattice Boltzmann method (MRT-LBM) has been coupled to the finite difference method (FDM) to solve momentum and energy equations, while the discrete ordinates method (DOM) has been adopted to solve the radiative transfer equation (RTE) using the S8 quadrature. Based on these approaches, the effects of various influencing parameters such as the Rayleigh number (Ra), the wall emissivity (ει), the Planck number (Pl), and the scattering albedo (ω), have been considered. The results presented in terms of isotherms, streamlines and averaged Nusselt number, show that in absence of radiation, the temperature and the flow fields are centro-symmetrics and the cavity core is thermally stratified. However, radiation causes an overall increase in the temperature and velocity gradients along both thermally active walls. The maximum heat transfer rate is obtained when the surfaces of the enclosure walls are regarded as blackbodies. It is also seen that the scattering medium can generate a multicellular flow.
NASA Astrophysics Data System (ADS)
Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie
2017-04-01
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L. It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.
NASA Astrophysics Data System (ADS)
Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie
2016-11-01
Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L ; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L . It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.
The analysis and kinetic energy balance of an upper-level wind maximum during intense convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Jedlovec, G. J.
1982-01-01
The purpose of this paper is to analyze the formation and maintenance of the upper-level wind maximum which formed between 1800 and 2100 GMT, April 10, 1979, during the AVE-SESAME I period, when intense storms and tornadoes were experienced (the Red River Valley tornado outbreak). Radiosonde stations participating in AVE-SESAME I are plotted (centered on Oklahoma). National Meteorological Center radar summaries near the times of maximum convective activity are mapped, and height and isotach plots are given, where the formation of an upper-level wind maximum over Oklahoma is the most significant feature at 300 mb. The energy balance of the storm region is seen to change dramatically as the wind maximum forms. During much of its lifetime, the upper-level wind maximum is maintained by ageostrophic flow that produces cross-contour generation of kinetic energy and by the upward transport of midtropospheric energy. Two possible mechanisms for the ageostrophic flow are considered.
CFD Validation Benchmark Dataset for Natural Convection in Nuclear Fuel Rod Bundles
NASA Astrophysics Data System (ADS)
Smith, Barton; Jones, Kyle
2016-11-01
The present study provide CFD validation benchmark data for coupled fluid flow/convection heat transfer on the exterior of heated rods arranged in a 2 × 2 array. The rod model incorporates grids with swirling veins to resemble a nuclear fuel bundle. The four heated aluminum rods are suspended in an open-circuit wind tunnel. Boundary conditions (BCs) are measured and uncertainties calculated to provide all quantities necessary to successfully conduct a CFD validation exercise. System response quantities (SRQs) are measured for comparing the simulation output to the experiment. Stereoscopic Particle Image Velocimetry (SPIV) is used to non-intrusively measure 3-component velocity fields. A through-plane measurement is used for the inflow while laser sheet planes aligned with the flow direction at several downstream locations are used for system response quantities. Two constant heat flux rod surface conditions are presented (400 W/m2 and 700 W/m2) achieving a peak Rayleigh number of 1010 . Uncertainty for all measured variables is reported. The boundary conditions, system response, and all material properties are now available online for download. The U.S. Department of Energy Nuclear Engineering University Program provided the funding for these experiments under Grant 00128493.
Natural solutal convection in magnetic fluids: First-order phase transition aspect
NASA Astrophysics Data System (ADS)
Ivanov, Aleksey S.
2016-10-01
Concentration stratification of magnetic fluids under the action of external magnetic field can disturb mechanical equilibrium in the system and cause intensive solutal convection. The current paper is devoted to the study of free solutal convection in magnetic fluids undergoing first-order phase transition. Simulation of solutal convection in OpenFOAM package makes it possible to compare numeric results with physical experiment observations. The numeric simulation of convective hydrodynamic flows was carried out in the framework of several theories of first-order phase transition in ferrocolloids. The numerical results are compared with experimental observations in order to choose the theory which predicts most accurately the concentration stratification in magnetic fluids undergoing magneto-controllable first-order phase transition.
Convective heat processing of turkey roll: effects on sensory quality and energy usage.
Brown, N E; Chyuan, J Y
1987-11-01
Twenty-four frozen, raw, boneless, ready-to-cook turkey rolls were cooked in an institutional electric convection oven to an internal temperature of 77 degrees C. Six treatment combinations of three cooking temperatures (105 degrees C, 135 degrees C, and 165 degrees C) and two holding conditions (not chilled and chilled for 24 hours) were studied. Turkey rolls from each treatment combination were subjected to three hot-holding times (0, 60, and 120 minutes). Electrical energy usage was monitored during heat processing of the turkey rolls, reheating the turkey slices, and hot holding the turkey slices. Aroma, juicy mouthfeel, texture, flavor, and flavor off-notes of the cooked turkey were evaluated by seven judges using 150-mm unstructured line scales. Chew counts also were recorded. Turkey cooked at 105 degrees C took significantly more time to cook (331 vs. 227 and 203 minutes) but consumed significantly less energy (3.4 vs. 3.8 and 4.5 kWh) than turkey rolls cooked at 135 degrees C and 165 degrees C, respectively. Significantly higher juicy mouthfeel scores were obtained when the turkey roll was cooked in the convection oven at an oven temperature of 105 degrees C, the turkey was not chilled, and the slices were held hot for 60 minutes or less.
NASA Astrophysics Data System (ADS)
Somavilla Cabrillo, Raquel; Schauer, Ursula; Budeus, Gedeon; Latarius, Katrin
2015-04-01
There are only a few sites where the deep ocean is ventilated from the surface. The responsible process known as deep convection is recognized to be a key process on the Earth's climate system, but still it is scarcely observed, and its good representation by global oceanographic and climate models remains unclear. In the Arctic Ocean, the halt of deep convection in the Greenland Sea during the last three decades serves as a natural experiment to study: (1) the conditions that drive the occurrence or not of deep convection and (2) the effects of the halt of deep convection on the thermohaline properties of the deep water masses and circulation both locally and in adjacent ocean basins. Combining oceanic and atmospheric in-situ data together with reanalysis data, we observe that not only on average the winter net heat losses from the ocean to the atmosphere (Qo) have decreased during the last three decades in the Greenland Sea (ΔQo (before the 1980s- after the 1980s) = 25 Wm-2) but the intensity and number of strong cooling events (Qo ≥ 800Wm-2). This last value for convection reaching 2000 m in the Greenland Sea seems critical to make the mixed layer deepening from being a non-penetrative process to one arrested by baroclinic instabilities. Besides, changes in the wind stress curl and preconditioning for deep convection have occurred, hindering also the occurrence of deep convection. Concerning the effects of the halt of deep convection, hydrographic data reveal that the temperature between 2000 meters depth and the sea floor has risen by 0.3 °C in the last 30 years, which is ten times higher than the temperature increase in the global ocean on average, and salinity rose by 0.02 because import of relatively warm and salty Arctic Ocean deep waters continued. The necessary transports to explain the observed changes suggest an increase of Arctic Ocean deep water transport that would have compensated the decrease in deep water formation rate after the 1980s. The
NASA Astrophysics Data System (ADS)
Bondareva, Nadezhda S.; Sheremet, Mikhail A.
2016-12-01
MHD natural convection melting in a square cavity with a local heater has been analyzed numerically. The domain of interest is an enclosure bounded by isothermal vertical walls of low constant temperature and adiabatic horizontal walls. A heat source of constant temperature is located on the bottom wall. An inclined uniform magnetic field affects the natural convective heat transfer and fluid flow inside the melt. The governing equations formulated in dimensionless stream function, vorticity and temperature with corresponding initial and boundary conditions have been solved using implicit finite difference method of the second-order accuracy. The effects of the Rayleigh number, Stefan number, Hartmann number, magnetic field inclination angle and dimensionless time on streamlines, isotherms and Nusselt number at the heat source surface have been analyzed.
Energy Stability of Thermocapillary Convection in Models of the Float Zone Process
NASA Technical Reports Server (NTRS)
Neitzel, G. P.; Jankowski, D. F.
1985-01-01
The energy-stability of thermocapillary convection in models of the float-zone, crystal-growing process was studied. Stability limits, as functions of pertinent parameters, that will identify conditions which will not allow the existence of an undesirable oscillatory flow instability were determined. Such instabilities may occur in the space processing of semiconductor materials. The determination of the stability limits will involve two sets of numerical computations: (1) solution of the nonlinear governing equations together with the appropriate boundary conditions to determine the basic state (in general, velocity, pressure and temperature fields and the displacement of free surfaces and interfaces); and (2) solution of a nonlinear Euler-Lagrange systems for the energy-stability limit. Both computations, while difficult, should be within the scope of available computer capability and available concepts in numerical analysis. Finite-element methods are attractive candidates for the numerical work.
Energy and natural resource policies in Colombia
DeLaPedraja, R. )
1989-01-01
Despite being richly endowed with mineral, metal, and water resources, Colombia has enjoyed neither economic prosperity nor abundant energy. This book explores the history and development of Colombia's petroleum, natural gas, electric, coal, and atomic energy industries. The author surveys the political and economic factors - both domestic and international - that have shaped the nation's energy and resource policies during the last fifty years. The book revolves around two central issues: Why has the role of the Colombian state in energy matters grown so vastly while private sector involvement has diminished drastically Why has the state consistently followed policies that have hindered rather than helped the development of Colombia's energy resources The author concludes that the defense of class interests in Colombia has been the real motivation behind the nation's energy policies.
NASA Astrophysics Data System (ADS)
Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.
In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.
NASA Astrophysics Data System (ADS)
Qi, Cong; Wang, Guiqing; Ma, Yifeng; Guo, Leixin
2017-06-01
The stability and natural convection heat transfer characteristics of TiO2-water nanofluid in enclosures with different rotation angles ( α = -45°, α = 0°, α = 45°, and α = 90°) are experimentally investigated. The effects of different pH values and doses ( m) of dispersant agent on the stability of TiO2-water nanofluid are investigated. It is found that TiO2-water nanofluid with m = 6 wt% and pH = 8 has the lowest transmittance and has the best stability. The effects of different rotation angles ( α = -45°, α = 0°, α = 45°, and α = 90°), nanoparticle mass fractions (wt% = 0.1%, wt% = 0.3%, and wt% = 0.5%) and heating powers ( Q = 1 W, Q = 5 W, Q = 10 W, Q = 15 W, and Q = 20 W) on the natural convection heat transfer characteristics are also studied. It is found that the enclosure with rotation angle α = 0° has the highest Nusselt number, followed by the enclosure with rotation angles α = 45° and α = 90°, the enclosure with rotation angle α = -45° has the lowest Nusselt number. It is also found that natural convection heat transfer performance increases with the nanoparticle mass fraction and heating power, but the enhancement ratio decreases with the heating power.
NASA Astrophysics Data System (ADS)
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
Restructuring Energy Industries: Lessons from Natural Gas
1997-01-01
For the past 20 years, the natural gas industry has been undergoing a restructuring similar to the transition now confronting the electric power industry. This article presents a summary of some of these gas industry experiences to provide a basis for some insights into energy industry restructuring.
NASA Astrophysics Data System (ADS)
Silva Dias, P. L.; Raupp, C. F.; Aravequia, J. A.
2003-04-01
The remote effect of tropical heat sources can be identified through the use of the Green's Functions (also known as Influence Functions -- IF), as discussed in Grimm and Silva Dias (J.Atmos.Sci., 1995). However, most of the previous work has been done with the IF of the barotropic non-divergent model and it is well known that tropical heat sources present significant transient behavior with significant energy in gravity-inertia waves which are not properly described by the simple model. This paper focuses on the possible impact of the diurnal variability of the tropical heat sources in the interhemispheric energy propagation with emphasis on the role of the heat source over tropical S. America using the barotropic divergent model (shallow water model -- SWM) which properly described the properties of fast waves such as Kelvin Waves. As a first step, an analysis of the IF of the SWM for target points located in Europe are presented for heat sources in S. Hemisphere summer. It is shown that the N. Hemisphere teleconnection patterns such as the Eurasian and the N. Atlantic patterns can be significantly influenced by anomalous convection in the S. Atlantic Convergence Zone (SACZ). Initial value experiments with enhanced heat sources in the SACZ are then performed in order to explore the possible role of the diurnal variability of convection over land. The results indicate that the higher latitude response is significantly more intense if the diurnal forcing is present. An analysis of the results indicates that the Kelvin waves generated by the diurnal heat source is responsible for generating strong westerly flow in the equatorial Atlantic which favors the northward energy propagation toward the action centers of the Eurasian and N. Atlantic patterns.
NASA Technical Reports Server (NTRS)
Nie, D.; Demetriades-Shah, T. D.; Kanemasu, E. T.
1993-01-01
One of the objectives of CaPE is to better understand the convective process in central and south Florida during the warm season. The energy and moisture exchanges between the surface and the atmosphere are closely related to this process. Some recent studies have shown that the surface energy balance plays an important role in the climatic fields (Shukla and Mintz, 1982; Sud and Smith, 1985; Sato et. al, 1989). Surface energy fluxes and related surface processes such as evapotranspiration and sensible heat transfer directly effect the temperature, humidity, cloud formation and precipitation. For example, mesoscale circulation around a discontinuity in vegetation type were shown to be stronger with wet soil than with dry soil using an evapotranspiration model (Pinty et. al, 1989). In order to better describe the processes in the atmosphere at various scales and improve our ability of modeling and predicting weather related events, it is crucial to understand the mechanism of surface energy transfer in relation to atmospheric events. Surface energy flux measurements are required to fully understand the interactions between the atmosphere and the surface.
The Oscillatory Nature of Rotating Convection in Liquid Metal
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Bertin, V. L.; Grannan, A. M.
2016-12-01
Earth's magnetic field is assumed to be generated by fluid motions in its liquid metal core. In this fluid, the heat diffuses significantly more than momentum and thus, the ratio of these two diffusivities, the Prandtl number Pr=ν/Κ, is well below unity. The convective flow dynamics of liquid metal is very different from Pr ≈ 1 fluids like water and those used in current dynamo simulations. In order to characterize rapidly rotating thermal convection in low Pr number fluids, we have performed laboratory experiments in a cylinder using liquid gallium (Pr ≈ 0.023) as the working fluid. The Ekman number, which characterizes the effect of rotation, varies from E = 4 10-5 to 4 10-6 and the dimensionless buoyancy forcing (Rayleigh number, Ra) varies from Ra =3 105 to 2 107. Using heat transfer measurements (Nusselt number, Nu) as well as temperature measurements within the fluid, we characterize the different styles of low Pr rotating convective flow. The convection threshold is first overcome in the form of a container scale inertial oscillatory mode. At stronger forcing, wall-localized modes are identified for the first time in liquid metal laboratory experiments. These wall modes coexist with the bulk inertial oscillatory modes. When the strengh of the buoyancy increases, the bulk flow becomes turbulent while the wall modes remain. Our results imply that rotating convective flows in liquid metals do not develop in the form of quasi-steady columns, as in Pr ≈ 1 dynamo models, but in the form of oscillatory motions. Therefore, the flows that drive thermally-driven dynamo action in low Pr geophysical and astrophysical fluids can differ substantively than those occuring in current-day Pr ≈ 1 numerical models. In addition, our results suggest that relatively low wavenumber, wall-attached modes may be dynamically important in rapidly-rotating convection in liquid metals.
Jiang, Shaohui; Liu, Changhong; Fan, Shoushan
2014-03-12
In this work, we report our studies related to the natural-convective heat transfer properties of carbon nanotube (CNT) sheets. We theoretically derived the formulas and experimentally measured the natural-convective heat transfer coefficients (H) via electrical heating method. The H values of the CNT sheets containing different layers (1, 2, 3, and 1000) were measured. We found that the single-layer CNT sheet had a unique ability on heat dissipation because of its great H. The H value of the single-layer CNT sheet was 69 W/(m(2) K) which was about twice of aluminum foil in the same environment. As the layers increased, the H values dropped quickly to the same with that of aluminum foil. We also discussed its roles on thermal dissipation, and the results indicated that the convection was a significant way of dissipation when the CNT sheets were applied on macroscales. These results may give us a new guideline to design devices based on the CNT sheets.
Impacts of convection on high-temperature aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Beyer, Christof; Hintze, Meike; Bauer, Sebastian
2016-04-01
Seasonal subsurface heat storage is increasingly used in order to overcome the temporal disparities between heat production from renewable sources like solar thermal installations or from industrial surplus heat and the heat demand for building climatisation or hot water supply. In this context, high-temperature aquifer thermal energy storage (ATES) is a technology to efficiently store and retrieve large amounts of heat using groundwater wells in an aquifer to inject or withdraw hot or cold water. Depending on the local hydrogeology and temperature amplitudes during high-temperature ATES, density differences between the injected hot water and the ambient groundwater may induce significant convective flow components in the groundwater flow field. As a consequence, stored heat may accumulate at the top of the storage aquifer which reduces the heat recovery efficiency of the ATES system. Also, an accumulation of heat at the aquifer top will induce increased emissions of heat to overlying formations with potential impacts on groundwater quality outside of the storage. This work investigates the impacts of convective heat transport on the storage efficiency of a hypothetical high-temperature ATES system for seasonal heat storage as well as heat emissions to neighboring formations by numerical scenario simulations. The coupled groundwater flow and heat transport code OpenGeoSys is used to simulate a medium scale ATES system operating in a sandy aquifer of 20 m thickness with an average groundwater temperature of 10°C and confining aquicludes at top and bottom. Seasonal heat storage by a well doublet (i.e. one fully screened "hot" and "cold" well, respectively) is simulated over a period of 10 years with biannual injection / withdrawal cycles at pumping rates of 15 m³/h and for different scenarios of the temperature of the injected water (20, 35, 60 and 90 °C). Simulation results show, that for the simulated system significant convective heat transport sets in when
Yih, K.A.
1998-10-01
Convective heat transfer in a porous medium has a number of thermal engineering applications such as ceramic processing, nuclear reactor cooling system, crude oil drilling, chemical reactor design, ground water pollution and filtration processes. In this paper, the authors have investigated a boundary layer analysis for uniform lateral mass flux effect on natural convection of non-Newtonian power-law fluids along an isothermal or isoflux vertical cone embedded in a porous medium. Numerical results for the dimensionless temperature profiles as well as the local Nusselt number are presented for the mass flux parameter, viscosity index n and geometry shape parameter {lambda}. The local surface heat transfer increases for the case withdrawal of fluid, the increase of the value of {lambda}. The local Nusselt number is found to be significantly affected by the surface mass flux than the viscosity index.
Convective combustion in porous media: singular limit of high activation energy
NASA Astrophysics Data System (ADS)
Gordon, Peter V.; Weiss, Georg S.
2013-01-01
In this paper, we consider a system of degenerate reaction diffusion equations which describes a convective (pressure driven) regime of combustion in porous media. The goal of this paper is to study the behaviour of this system in the limit of high activation energy. We show that the limit solution for this problem in arbitrary spatial dimension solves a parabolic equation with memory term similar to one arising in solid combustion. Moreover, under the additional assumption of the solution being time increasing, we prove that the limit problem coincides with Stefan problem for supercooled water with spatially inhomogeneous coefficients. We also obtain the precise limit problem for (not necessarily planar) travelling waves in any dimension.
NASA Astrophysics Data System (ADS)
Dhote, Yogesh; Thombre, Shashikant
2016-10-01
This paper presents the thermal performance of the proposed double flow natural convection solar air heater with in-built liquid (oil) sensible heat storage. Unused engine oil was used as thermal energy storage medium due to its good heat retaining capacity even at high temperatures without evaporation. The performance evaluation was carried out for a day of the month March for the climatic conditions of Nagpur (India). A self reliant computational model was developed using computational tool as C++. The program developed was self reliant and compute the performance parameters for any day of the year and would be used for major cities in India. The effect of change in storage oil quantity and the inclination (tilt angle) on the overall efficiency of the solar air heater was studied. The performance was tested initially at different storage oil quantities as 25, 50, 75 and 100 l for a plate spacing of 0.04 m with an inclination of 36o. It has been found that the solar air heater gives the best performance at a storage oil quantity of 50 l. The performance of the proposed solar air heater is further tested for various combinations of storage oil quantity (50, 75 and 100 l) and the inclination (0o, 15o, 30o, 45o, 60o, 75o, 90o). It has been found that the proposed solar air heater with in-built oil storage shows its best performance for the combination of 50 l storage oil quantity and 60o inclination. Finally the results of the parametric study was also presented in the form of graphs carried out for a fixed storage oil quantity of 25 l, plate spacing of 0.03 m and at an inclination of 36o to study the behaviour of various heat transfer and fluid flow parameters of the solar air heater.
NASA Astrophysics Data System (ADS)
Joshi, Pranit Satish; Pattamatta, Arvind
2017-07-01
In recent times, convective heat transfer using nanofluids has been an active field of research. However experimental studies pertaining to buoyancy induced convective heat transfer using various nanofluid is relatively scarce. In the present study, a square enclosure of dimensions (40 × 40 × 200) mm is used as test section. Initially, Al2O3/Water nanofluid with volume percentage of 0.1%, 0.3%, 1% and 2% and Rayleigh numbers ranging from 7 × 105 to 1 × 107 are studied. These results are then compared with Ho et al. (Int J Therm Sci 49(8):1345-1353, 2010) experimental data. Nusselt number (Nu) is calculated based on the thermophysical properties that are measured in-house for the given conditions. Further, MWCNT/Water nanofluid with volume percentage 0.1%, 0.3% and 0.5% is formulated and are studied for various Rayleigh numbers. Comparison of Al2O3/Water and MWCNT/Water nanofluid have been made for different volume fractions and for various range of Rayleigh numbers. It is observed that MWCNT/Water nanofluid when compared with Al2O3/Water nanofluid yields higher values of the Nusselt number for a given volume fractions. All the existing experimental studies using particle based nanofluid concluded a deterioration in natural convective heat transfer. This study for the first time demonstrates an enhancement in natural convection using MWCNT/Water nanofluid. Such enhancement cannot be simply explained based only on the relative changes in the thermophysical properties. Factors such as percolation network in MWCNT/Water nanofluid which increases the heat transfer pathway between two walls and the role of slip mechanisms might be the possible reasons for the enhancement.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.; Juhasz, A.
1991-01-01
Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.; Juhasz, A.
1991-01-01
Latent heat energy storage systems with both annular and countercurrent flows are modeled numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. It is found that the energy storage system with the countercurrent flow is an efficient way to absorb heat energy in a short period for pulsed power load space applications.
Eulerian-Lagrangian solution of the convection-dispersion equation in natural co-ordinates.
Cheng, R.T.; Casulli, V.; Milford, S.N.
1984-01-01
The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system.-from Authors
Convection in pulsating stars. I - Nonlinear hydrodynamics. II - RR Lyrae convection and stability
NASA Astrophysics Data System (ADS)
Stellingwerf, R. F.
1982-11-01
A nonlinear, nonlocal, time-dependent treatment of convection suitable for use in models of cool giant stars is presented. Local conservation equations plus a diffusive transport equation are used to derive the convective hydrodynamic equations for the case in which turbulent pressure, energy, and viscosity cannot be ignored. The effects of convective overshooting, superadiabatic gradients, convection/pulsation interaction, and time dependence enter this treatment in a natural way. Methods of treating turbulent viscosity and acoustic losses are discussed. Also, an efficient computational scheme for computing the derivatives needed for an implicit hydrodynamic code is outlined. Application to RR Lyrae star envelopes will be presented in a companion paper.
Turbulent kinetic energy generation in the convective boundary layer derived from thermodynamics
NASA Astrophysics Data System (ADS)
Slameršak, Aljoša; Renner, Maik; Ganzeveld, Laurens; Hartogensis, Oscar; Kolle, Olaf; Kleidon, Axel
2016-04-01
Turbulent heat fluxes facilitate the bulk of heat transfer between the surface and lower atmosphere, which results in the diurnal growth of convective boundary layer (CBL) and turbulent kinetic energy generation (TKE). Here we postulate the hypothesis that TKE generation in the CBL occurs as a result of heat transfer in a "Carnot-like" heat engine with temporal changes in the internal energy of the boundary layer. We used the Tennekes energy-balance model of CBL and extended it with the analysis of the entropy balance to derive the estimates of TKE generation in the CBL. These TKE generation estimates were compared to the turbulent dissipation from a simple dissipation model from Moeng and Sullivan, to test the validity of our heat engine hypothesis. In addition, to evaluate the performance of the dissipation model, this was independently validated by a comparison of its estimates with the turbulent dissipation calculations based on spectral analysis of eddy covariance wind measurements at a German field station. Our analysis demonstrates how a consistent application of thermodynamics can be used to obtain an independent physical constraint on the diurnal boundary layer evolution. Furthermore, our analysis suggests that the CBL operates at the thermodynamic limit, thus imposing a thermodynamic constraint on surface-atmosphere exchange.
Convective heat transfer inside passive solar buildings
NASA Astrophysics Data System (ADS)
Jones, R. W.; Balcomb, J. D.; Yamaguchi, K.
1983-11-01
Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.
Comments on "Tropical Convection and the Energy Balance at the Top of the Atmosphere"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Lau, William K. M. (Technical Monitor)
2002-01-01
Analyses of the Earth Radiation Budget Experiment (ERBE) data show that the effects of clouds on the solar and thermal infrared radiation in the tropical deep convective regions have a similar magnitude but opposite signs. This small difference in the effects of clouds on radiation led Hartmann et al. (2001) to conclude that the contrast in the net radiation at the top of the atmosphere between the convective and non-convective regions must also be small. However, we have found that the ERBE data do not generally show a small contrast in the radiation between the convective and non-convective regions, and the model used by Hartmann et al., therefore, seems unlikely to represent the real physical processes involving convection, radiation, and climate in an appropriate way.
NASA Astrophysics Data System (ADS)
Friedson, J.; Ingersoll, A. P.
1987-01-01
A model is presented for the thermodynamics of the seasonal meridional energy balance and thermal structure of the Uranian atmosphere. The model considers radiation and small-scale convection, and dynamical heat fluxes due to large-scale baroclinic eddies. Phase oscillations with a period of 0.5 Uranian year are discerned in the total internal power and global enthalpy storage. The variations in the identity of the main transport agent with the magnitude of the internal heat source are discussed. It is shown that meridional heat transport in the atmosphere is sufficient to lower seasonal horizontal temperature contrasts below those predicted with radiative-convection models.
NASA Technical Reports Server (NTRS)
Friedson, James; Ingersoll, Andrew P.
1987-01-01
A model is presented for the thermodynamics of the seasonal meridional energy balance and thermal structure of the Uranian atmosphere. The model considers radiation and small-scale convection, and dynamical heat fluxes due to large-scale baroclinic eddies. Phase oscillations with a period of 0.5 Uranian year are discerned in the total internal power and global enthalpy storage. The variations in the identity of the main transport agent with the magnitude of the internal heat source are discussed. It is shown that meridional heat transport in the atmosphere is sufficient to lower seasonal horizontal temperature contrasts below those predicted with radiative-convection models.
Rasmussen, Kristen L.; Zuluaga, Manuel D.; Brodzik, Stella R.
2015-01-01
Abstract For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three‐dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi‐uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation. PMID:27668295
Houze, Robert A; Rasmussen, Kristen L; Zuluaga, Manuel D; Brodzik, Stella R
2015-09-01
For over 16 years, the Precipitation Radar of the Tropical Rainfall Measuring Mission (TRMM) satellite detected the three-dimensional structure of significantly precipitating clouds in the tropics and subtropics. This paper reviews and synthesizes studies using the TRMM radar data to present a global picture of the variation of convection throughout low latitudes. The multiyear data set shows convection varying not only in amount but also in its very nature across the oceans, continents, islands, and mountain ranges of the tropics and subtropics. Shallow isolated raining clouds are overwhelmingly an oceanic phenomenon. Extremely deep and intense convective elements occur almost exclusively over land. Upscale growth of convection into mesoscale systems takes a variety of forms. Oceanic cloud systems generally have less intense embedded convection but can form very wide stratiform regions. Continental mesoscale systems often have more intense embedded convection. Some of the most intense convective cells and mesoscale systems occur near the great mountain ranges of low latitudes. The Maritime Continent and Amazonia exhibit convective clouds with maritime characteristics although they are partially or wholly land. Convective systems containing broad stratiform areas manifest most strongly over oceans. The stratiform precipitation occurs in various forms. Often it occurs as quasi-uniform precipitation with strong melting layers connected with intense convection. In monsoons and the Intertropical Convergence Zone, it takes the form of closely packed weak convective elements. Where fronts extend into the subtropics, broad stratiform regions are larger and have lower and sloping melting layers related to the baroclinic origin of the precipitation.
Environmental data energy technology characterizations: natural gas
Not Available
1980-04-01
Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides backup documentation on natural gas. The transformation of the energy in gas into a more useful form is described in this document in terms of major activity areas in the gas cycle; that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are exploration, extraction, purification, power-plants, storage and transportation of natural gas. These activities represent both well-documented and non-documented activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The other activity areas examined are those like exploration and extraction, where reliance on engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning, and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.
Qi, Cong; Wang, Guiqing; Ma, Yifeng; Guo, Leixin
2017-12-01
The stability and natural convection heat transfer characteristics of TiO2-water nanofluid in enclosures with different rotation angles (α = -45°, α = 0°, α = 45°, and α = 90°) are experimentally investigated. The effects of different pH values and doses (m) of dispersant agent on the stability of TiO2-water nanofluid are investigated. It is found that TiO2-water nanofluid with m = 6 wt% and pH = 8 has the lowest transmittance and has the best stability. The effects of different rotation angles (α = -45°, α = 0°, α = 45°, and α = 90°), nanoparticle mass fractions (wt% = 0.1%, wt% = 0.3%, and wt% = 0.5%) and heating powers (Q = 1 W, Q = 5 W, Q = 10 W, Q = 15 W, and Q = 20 W) on the natural convection heat transfer characteristics are also studied. It is found that the enclosure with rotation angle α = 0° has the highest Nusselt number, followed by the enclosure with rotation angles α = 45° and α = 90°, the enclosure with rotation angle α = -45° has the lowest Nusselt number. It is also found that natural convection heat transfer performance increases with the nanoparticle mass fraction and heating power, but the enhancement ratio decreases with the heating power.
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2015-12-01
Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni
On the episodic nature of derecho-producing convective systems in the United States
NASA Astrophysics Data System (ADS)
Ashley, Walker S.; Mote, Thomas L.; Bentley, Mace L.
2005-11-01
Convectively generated windstorms occur over broad temporal and spatial scales; however, one of the larger-scale and most intense of these windstorms has been given the name derecho. This study illustrates the tendency for derecho-producing mesoscale convective systems to group together across the United States - forming a derecho series. The derecho series is recognized as any succession of derechos that develop within a similar synoptic environment with no more than 72 h separating individual events. A derecho dataset for the period 1994-2003 was assembled to investigate the groupings of these extremely damaging convective wind events. Results indicate that over 62% of the derechos in the dataset were members of a derecho series. On average, nearly six series affected the United States annually. Most derecho series consisted of two or three events; though, 14 series during the period of record contained four or more events. Two separate series involved nine derechos within a period of nine days. Analyses reveal that derecho series largely frequent regions of the Midwest, Ohio Valley, and the south-central Great Plains during May, June, and July. Results suggest that once a derecho occurred during May, June, or July, there was a 58% chance that this event was the first of a series of two or more, and about a 46% chance that this was the first of a derecho series consisting of three or more events. The derecho series climatology reveals that forecasters in regions frequented by derechos should be prepared for the probable regeneration of a derecho-producing convective system after an initial event occurs. Copyright
Stability Analysis of Natural Convection in Vertical Cavities with Lateral Heating
NASA Astrophysics Data System (ADS)
Yahata, Hideo
1999-02-01
Thermal convection of air in two-dimensional vertical cavities is considered under the boundary conditions of the left and right vertical walls kept at different temperatures and the top and bottom horizontal walls subject to thermal insulation. Linear stability analysis of thermal convection is made with the aid of the Galerkin method in which the field variables are expanded in terms of Chebyshev polynomials and linear growth rates of steady states are computed using the QR algorithm.The results of the stability analysis for air with the Prandtl number 0.71 over the range of the cavity aspect ratio A from 1 to 10 show that with increase of the temperature difference between the two vertical walls the oscillatory motion first generated by the instability of steady convection is in the form of the Tollmien-Schlichting or the internal gravity waves according as A > 3.65 or A < 3.41 while for 3.41 < A < 3.65 the internal gravity waves are first generated after the preceding spatial flow transition of the hydraulic jump.
NASA Astrophysics Data System (ADS)
Torres, Juan F.; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao
2015-08-01
The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ ≈0∘ ), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ =90∘ ). We confirm the existence of critical angles during the transition θ :0∘→90∘ , and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.
Torres, Juan F; Henry, Daniel; Komiya, Atsuki; Maruyama, Shigenao
2015-08-01
The transition from the complex Rayleigh-Bénard convection to the simple heated-from-the-sides configuration in a cubical cavity filled with a Newtonian fluid is numerically studied. The cavity is tilted by an angle θ around its lower horizontal edge and is heated and cooled from two opposite tilted sides. We first analyze the effect of a marginal inclination angle on quasi-Rayleigh-Bénard convection (θ≈0∘), which is a realistic physical approximation to the ideal Rayleigh-Bénard convection. We then yield the critical angles where multiple solutions that were initially found for θ≈0∘ disappear, eventually resulting in the single steady roll solution found in the heated-from-the-sides configuration (θ=90∘). We confirm the existence of critical angles during the transition θ:0∘→90∘, and we demonstrate that such angles are a consequence of either singularities or collisions of bifurcation points in the Rayleigh-number-θ parameter space. We finally derive the most important critical angles corresponding to any Newtonian fluid of Prandtl number greater than that of air.
NASA Astrophysics Data System (ADS)
Ahmad, Bakhtiar; Ali Shah, Syed Inayat; Ul Haq, Sami; Ali Shah, Nehad
2017-09-01
In this paper the exact solution of the unsteady natural convection radiating flow in an open ended vertical channel is studied. The channel is stationary with non-uniform temperature. The governing equations are fractional differential equations with the Caputo time-fractional derivative. Closed form analytical solutions for the temperature and velocity fields are obtained by using the Laplace transform technique. These solutions are expressed with the Wright function, the Robotnov and Hartley function. The effects of the fractional order and physical parameters on temperature and fluid velocity are presented graphically.
Microwave energy versus convected hot air for rapidly drying ceramic tile
Earl, D.A.
1995-12-31
The purpose of this study was to determine if microwave energy could provide advantages over the conventional hot air method currently used for rapidly drying ceramic tile. Tiles consisting of a typical fast-fire body formula were dried to 0.5% moisture using a 2.45 GHz, 950W microwave oven and a natural gas-fired roller dryer. Statistical methods were employed to develop equations for predicting microwave energy consumption, tile % moisture and surface temperature given drying time, tile volume and % relative humidity. Microwave drying was found to require 36% less energy than hot air drying. Moisture was removed and surface temperature elevated at faster rates using microwave energy.
Energy harvesting from a convection-driven Rijke-Zhao thermoacoustic engine
NASA Astrophysics Data System (ADS)
Zhao, Dan; Chew, Y.
2012-12-01
A convection-driven Rijke-Zhao thermoacoustic engine is developed. It can produce intensive oscillations at two different temperatures. Furthermore, it does not involve any heat exchanger and stack/regenerator, which play critical roles in conduction-driven standing- or travelling-wave engines. Thus, the Rijke-Zhao engine is much simpler in design and lower cost in fabrication. To demonstrate its potential of energy-harvesting, a design for the conversion of heat into electricity via sound is proposed by integrating Rijke-Zhao engine with a piezoelectric generator. The preliminary experimental results are presented. And it is found that 60% more power is generated than that from conduction-driven standing-wave thermoacoustic-piezoelectric resonator [Smoker et al., J. Appl. Phys. 111, 104901, (2012)]. In order to gain insights on the generation mechanism of the thermoacoustic oscillations in the present energy-harvesting system, 2D numerical simulations are conducted. Comparing the numerical results with the experimental one reveals that good quantitative agreement is obtained.
Gu Weimin
2012-07-10
By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above {approx}0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Hoiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.
Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F
2012-07-01
Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
Cho, Jae Hyun; Batta, A.; Casamassima, V.; Cheng, X.; Choi, Yong Joon; Hwang, Il Soon; Lim, Jun; Meloni, P.; Nitti, F. S.; Dedul, V.; Kuznetsov, V.; Komlev, O.; Jaeger, W.; Sedov, A.; Kim, Ji Hak; Puspitarini, D.
2011-08-01
As highly promising coolant for new generation nuclear reactors, liquid Lead-Bismuth Eutectic has been extensively worldwide investigated. With high expectation about this advanced coolant, a multi-national systematic study on LBE was proposed in 2007, which covers benchmarking of thermal hydraulic prediction models for Lead-Alloy Cooled Advanced Nuclear Energy System (LACANES). This international collaboration has been organized by OECD/NEA, and nine organizations - ENEA, ERSE, GIDROPRESS, IAEA, IPPE, KIT/IKET, KIT/INR, NUTRECK, and RRC KI - contribute their efforts to LACANES benchmarking. To produce experimental data for LACANES benchmarking, thermal-hydraulic tests were conducted by using a 12-m tall LBE integral test facility, named as Heavy Eutectic liquid metal loop for integral test of Operability and Safety of PEACER (HELIOS) which has been constructed in 2005 at the Seoul National University in the Republic of Korea. LACANES benchmark campaigns consist of a forced convection (phase-I) and a natural circulation (phase-II). In the forced convection case, the predictions of pressure losses based on handbook correlations and that obtained by Computational Fluid Dynamics code simulation were compared with the measured data for various components of the HELIOS test facility. Based on comparative analyses of the predictions and the measured data, recommendations for the prediction methods of a pressure loss in LACANES were obtained. In this paper, results for the forced convection case (phase-I) of LACANES benchmarking are described.
NASA Astrophysics Data System (ADS)
Sheikholeslami, Mohsen; Rokni, Houman B.
2017-05-01
Magnetohydrodynamic nanofluid flow and convective heat transfer are studied considering thermal radiation. Effects of magnetic field and shape of nanoparticles on viscosity and thermal conductivity of the nanofluid are taken into account. The solutions of final equations are obtained by the control volume-based finite-element method (CVFEM). Roles of shape of nanoparticles, radiation parameter, ferrofluid volume fraction, Hartmann and Rayleigh numbers are presented graphically. Results demonstrate that selecting the Platelet shape for Fe3O4 nanoparticles leads to maximum Nusselt number. Rate of heat transfer increases with increasing Rayleigh number and radiation parameter but it decreases with increasing Hartmann number.
Existence of a steady state of a natural convective flow in a confined medium
NASA Astrophysics Data System (ADS)
Pignatel, J.-F.; Marcillat, J.
1983-04-01
Experimental results are presented from a study of convective flow in a parallelipiped-shaped cavity with walls maintained at different temperatures. Resistive heaters permitted varying the wall temperatures up to 150 C, and the container could be tilted from 0-90 deg. Air was used as the fluid medium, with Rayleigh numbers from 2000-1,000,000. The flows studied featured the appearances of both steady and unsteady instabilities. Attention was given to vertical movements and a two-dimensional numerical model was defined. Attempts were made to identify the limits of a steady state in terms of the Rayleigh number, the shape factors, and the tilt of the cavity.
Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors
NASA Technical Reports Server (NTRS)
Lowry, S.; Krishnan, A.; Clark, I.
1999-01-01
The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.
Three-Dimensional Transient Natural Convection in a Horizontal Cylinder: A Numerical Analysis
1980-02-01
difference approximation, Equation (6) C - constant, Equation (6) c -. specific heat at constant pressure P F - nondimensional function of the independent...e = F1 (R,4,Z) (2) w = F2 (R, p ,Z) (CONVECTIVE-STRATIFIED) CONDITION 0 = F3 (R,,Z) where the functions F1 , and F3 represents the assumed...direction. The system of equations solved is: (1) (0) An+ n (1) (0) (0) (0) A =C P ; (A + A ) + 6R(An) + 6z(An) + B] AT n+l n R. n Zn (2) (0) A - A n U
Lee, S.R.; Irvine, T.F. Jr.; Greene, G.A.
1998-04-01
An implicit finite difference method was applied to analyze laminar natural convection in a vertical channel with a modified power law fluid. This fluid model was chosen because it describes the viscous properties of a pseudoplastic fluid over the entire shear rate range likely to be found in natural convection flows since it covers the shear rate range from Newtonian through transition to simple power law behavior. In addition, a dimensionless similarity parameter is identified which specifies in which of the three regions a particular system is operating. The results for the average channel velocity and average Nusselt number in the asymptotic Newtonian and power law regions are compared with numerical data in the literature. Also, graphical results are presented for the velocity and temperature fields and entrance lengths. The results of average channel velocity and Nusselt number are given in the three regions including developing and fully developed flows. As an example, a pseudoplastic fluid (carboxymethyl cellulose) was chosen to compare the different results of average channel velocity and Nusselt number between a modified power law fluid and the conventional power law model. The results show, depending upon the operating conditions, that if the correct model is not used, gross errors can result.
Beckermann, C.; Ramadhyani, S.; Viskanta, R. )
1987-05-01
A numerical and experimental study is performed to analyze the steady-state natural convection fluid flow and heat transfer in a vertical rectangular enclosure that is partially filled with a vertical layer of a fluid-saturated porous medium. The flow in the porous layer is modeled utilizing the Brinkman-Forchheimer-extended Darcy equations. The numerical model is verified by conducting a number of experiments, with spherical glass beads as the porous medium and water and glycerin as the fluids, in rectangular test cells. The agreement between the flow visualization results and temperature measurements and the numerical model is, in general, good. It is found that the amount of fluid penetrating from the fluid region into the porous layer depends strongly on the Darcy (Da) and Rayleigh (Ra) numbers. For a relatively low product of Ra {times} Da, the flow takes place primarily in the fluid layers, and heat transfer in the porous layer is by conduction only. On other hand, fluid penetrating into a relatively highly permeable porous layer has a significant impact on the natural convection flow patterns in the entire enclosure.
O'Brien, J.E.
1991-12-01
Experimental measurements of surface emissivities of three metallic samples have been obtained in support of an experiment aimed at determining natural convection and total heat transfer for a heated vertical cylinder surrounded by an array of cooled vertical tubes. In some cases, the heated stainless steel cylinder was shrouded by a perforated aluminum outer cylinder. The surrounding cooled tubes were also aluminum. In this experiment, heat transfer from the heated tube and the surrounding outer cylinder will occur by a combination of natural convection and radiation. At temperatures near the melting point of aluminum, the radiant contribution is particularly important, accounting for 50% or more of the total heat transfer. Consequently, accurate knowledge of surface emissivities of the heated rods, outer cylinders and surrounding structures is needed in order to predict the system thermal response during the transient. Direct measurements of surface emissivities have been obtained for one stainless steel and two aluminum samples. The measurements were obtained using an infrared pyrometer sensitive to the 8--14 {mu}m wavelength range. A procedure for estimating total hemispherical emissivities based on the measured spectral, normal results is also provided.
Natural convection of a two-dimensional Boussinesq fluid does not maximize entropy production.
Bartlett, Stuart; Bullock, Seth
2014-08-01
Rayleigh-Bénard convection is a canonical example of spontaneous pattern formation in a nonequilibrium system. It has been the subject of considerable theoretical and experimental study, primarily for systems with constant (temperature or heat flux) boundary conditions. In this investigation, we have explored the behavior of a convecting fluid system with negative feedback boundary conditions. At the upper and lower system boundaries, the inward heat flux is defined such that it is a decreasing function of the boundary temperature. Thus the system's heat transport is not constrained in the same manner that it is in the constant temperature or constant flux cases. It has been suggested that the entropy production rate (which has a characteristic peak at intermediate heat flux values) might apply as a selection rule for such a system. In this work, we demonstrate with Lattice Boltzmann simulations that entropy production maximization does not dictate the steady state of this system, despite its success in other, somewhat similar scenarios. Instead, we will show that the same scaling law of dimensionless variables found for constant boundary conditions also applies to this system.
Buoyancy-Driven Natural Convection of Liquid Helium in an Electron Bubble Chamber
Ju, Y. L.; Dodd, J. R.; Willis, W. J.
2006-04-27
A small liquid helium test chamber with 1.5 L active volume has been designed and constructed, to make the fundamental measurements of physical properties of electron bubble transports in liquid helium, aimed at developing a new cryogenic neutrino detector, using liquid helium as the detecting medium, for the detection of solar neutrinos. The test chamber is a double-walled cylindrical container equipped with five optical windows and ten high voltage cables. A LN2/LHe cryostat and a needle valve for vapor helium cooling are used to provide a 1.7{approx}4.5 K low temperature environments for the test chamber. One of key issues for the cryogenic design and experimental sensitivity of electron bubble tracking is that of keeping a thermally uniform liquid helium bath. The external heat loads to the chamber will generate a buoyancy-induced convection of liquid helium, which will carry the electron bubbles and accelerate or decelerate their transportation and therefore must be reduced to the minimum, so that the slow motion of the electron bubbles will not be confused by this effect. This paper will present the computational simulation and analysis on thermal convection and uniformity of the test chamber.
Natural convection in horizontal porous layers with localized heating from below
Prasad, V. ); Kulacki, F.A. )
1987-08-01
Convective flow of fluid through saturated porous media heated from below is of considerable interest, and has been extensively studied. Most of these studies are concerned with either infinite horizontal porous layers or rectangular (or cylindrical) porous cavities with adiabatic vertical walls. A related problem of practical importance occurs when only a portion of the bottom surface is heated and the rest of it is either adiabatic or isothermally cooled. This situation is encountered in several geothermal areas which consists of troughs of volcanic debris contained by walls of nonfragmented ignimbrite. Thus, the model region considered is a locally heated long trough of isotropic porous medium confined by impermeable and insulating surroundings. Also, the recent motivation to study this problem has come from the efforts to identify a geologic repository for nuclear waste disposal. The purpose of the present work is to consider the effects of aspect ratio and Rayleigh number on free convection heat transfer from an isothermal heat source centrally located on the bottom surface of a horizontal porous cavity.
Fox, E.; Visser, A.; Bridges, N.
2011-07-18
This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.
Nathenson, Manuel
1975-01-01
This report contains background analyses for the estimates of Nathenson and Muffler (1975) of geothermal resources in hydrothermal convection systems and conduction-dominated areas. The first section discusses heat and fluid recharge potential of geothermal reservoirs. The second section analyzes the physical factors that determine the fraction of stored energy obtainable at the surface from a geothermal reservoir. Conversion of heat to electricity and the use of geothermal energy for direct-heating applications are discussed in the last two sections. Nathenson, Manuel, and Muffler, L.J.P., 1975, Geothermal resources in hydrothermal convection systems and conduction dominated areas, in White, D.E., and Williams, D.L., eds., Assessment of the Geothermal Resources of the United States--1975: U.S. Geological Survey Circular 726, p. 104-121, available at http://pubs.er.usgs.gov/usgspubs/cir/cir726
Natural convection on a vertical plate in a saturated porous medium with internal heat generation
NASA Astrophysics Data System (ADS)
Guedda, M.; Sriti, M.; Achemlal, D.
2014-08-01
The main goal of this paper is to re-exam a class of exact solutions for the two-dimensional free convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with an exponential decaying heat generation. The temperature distribution of the plate has been assumed to vary as a power of the axial coordinate measured from the leading edge of the plate and subjected to an applied lateral mass flux. The boundary layer equations are solved analytically and numerically using a fifth-order Runge-Kutta scheme coupled with the shooting iteration method. As for the classical problem without internal heat generation, it is proved that multiple (unbounded) solutions arise for any and for any suction/injection parameter. For such solutions, the asymptotic behavior as the similarity variable approaches infinity is determined.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.
Schlieren visualization of water natural convection in a vertical ribbed channel
NASA Astrophysics Data System (ADS)
Fossa, M.; Misale, M.; Tanda, G.
2015-11-01
Schlieren techniques are valuable tools for the qualitative and quantitative visualizations of flows in a wide range of scientific and engineering disciplines. A large number of schlieren systems have been developed and documented in the literature; majority of applications involve flows of gases, typically air. In this work, a schlieren technique is applied to visualize the buoyancy-induced flow inside vertical ribbed channels using water as convective fluid. The test section consists of a vertical plate made of two thin sheets of chrome-plated copper with a foil heater sandwiched between them; the external sides of the plate are roughened with transverse, square-cross-sectioned ribs. Two parallel vertical walls, smooth and unheated, form with the heated ribbed plate two adjacent, identical and asymmetrically heated, vertical channels. Results include flow schlieren visualizations with colour-band filters, reconstructions of the local heat transfer coefficient distributions along the ribbed surfaces and comparisons with past experiments performed using air as working fluid.
NASA Astrophysics Data System (ADS)
Rieger, Daniel; Bangert, Max; Vogel, Bernhard
2013-04-01
Shallow postfrontal convective clouds are thought to be sensitive to the aerosol burden. In our case study we present results of model runs, simulating April 25, 2008. On this day a cold front passes Germany from north to south. During this situation the sea salt aerosol transported by the northerly flow into the model domain replaces the preexisting anthropogenic aerosol. We quantify the effect of the aerosol on the microphysical properties of the convective clouds that develop after the passage of the cold front. The model system COSMO-ART (Vogel et al., 2009, Bangert et al., 2010) is a comprehensive online coupled model system to simulate the spatial and temporal distribution of reactive gaseous and particulate matter. It is used to quantify the feedback processes between aerosols and the. state of the atmosphere on the continental to the regional scale with two-way interactions between different atmospheric processes. The model system enables further investigations of the aerosol-cloud-interactions and associated feedback processes. The model framework contains a two-moment cloud microphysics scheme (Seifert and Beheng, 2006) in combination with sophisticated activation parameterizations (Bangert et al., 2012). We carried out sensitivity runs. One applies a bulk microphysics scheme as used in the operational forecasts of the German weather service. In two of them the aerosol was. prescribed (continental, maritime) and kept constant in space and time. In the fourth one we used the full capabilities of COSMO-ART to simulate the dynamic behavior of aerosol and its feedback with radiation and cloud microphysics. We compare our model results with radar data, satellite IR images, and rain gauges.
Basu, Sumita; Plawsky, Joel L; Wayner, Peter C
2004-11-01
In preparation for a microgravity flight experiment on the International Space Station, a constrained vapor bubble fin heat exchanger (CVB) was operated both in a vacuum chamber and in air on Earth to evaluate the effect of the absence of external natural convection. The long-term objective is a general study of a high heat flux, low capillary pressure system with small viscous effects due to the relatively large 3 x 3 x 40 mm dimensions. The current CVB can be viewed as a large-scale version of a micro heat pipe with a large Bond number in the Earth environment but a small Bond number in microgravity. The walls of the CVB are quartz, to allow for image analysis of naturally occurring interference fringes that give the pressure field for liquid flow. The research is synergistic in that the study requires a microgravity environment to obtain a low Bond number and the space program needs thermal control systems, like the CVB, with a large characteristic dimension. In the absence of natural convection, operation of the CVB may be dominated by external radiative losses from its quartz surface. Therefore, an understanding of radiation from the quartz cell is required. All radiative exchange with the surroundings occurs from the outer surface of the CVB when the temperature range renders the quartz walls of the CVB optically thick (lambda > 4 microns). However, for electromagnetic radiation where lambda < 2 microns, the walls are transparent. Experimental results obtained for a cell charged with pentane are compared with those obtained for a dry cell. A numerical model was developed that successfully simulated the behavior and performance of the device observed experimentally.
NASA Astrophysics Data System (ADS)
Sheikhzadeh, G. A.; Dastmalchi, M.; Khorasanizadeh, H.
2013-12-01
The effect of wall temperature variations on double diffusive natural convection of Al2O3-water nanofluid in a differentially heated square enclosure with constant temperature hot and cold vertical walls is studied numerically. Transport mechanisms of nanoparticles including Brownian diffusion and thermophoresis that cause heterogeneity are considered in non-homogeneous model. The hot and cold wall temperatures are varied, but the temperature difference between them is always maintained 5 °C. The thermophysical properties such as thermal conductivity, viscosity and density and thermophoresis diffusion and Brownian motion coefficients are considered variable with temperature and volume fraction of nanoparticles. The governing equations are discretized using the control volume method. The results show that nanoparticle transport mechanisms affect buoyancy force and cause formation of small vortexes near the top and bottom walls of the cavity and reduce the heat transfer. By increasing the temperature of the walls the effect of transport mechanisms decreases and due to enhanced convection the heat transfer rate increases.
NASA Astrophysics Data System (ADS)
Zhang, Heng-Yun; Ge, Xin-Shi
1997-03-01
Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection problem driven by buoyancy. Because of its complexity, no effective theoretical model is available despite of limited experimental work which is confined to one aspect. The present work aims to depict the convective heat transfer inside a two-ended inclined tube with East-West symmetric heat input using numerical methods. Based on reasonable assumptions, governing equations of the inside fluid are established. The corresponding discretizated equations are solved by employing numerical methods. The calculated results are displayed for velocity and temperature profiles on different cross-sectional planes, which present the flow pattern characterized by upflow and downflow along the axial direction and adherent flow along the peripheral direction, and the heat transfer process from the wall to the center. Furthermore, the transient Nusselt number and average temperature level are shown and discussed. Finally, the parametric effects of the tube radius and the heat input on the flow and heat transfer are also given.
Harsini, I.; Ashjaee, M.
2010-09-15
The effect of a vertical adiabatic wall on the natural convection heat transfer from vertical array of attached cylinders, which can be considered as wavy surface, was investigated experimentally and numerically. The experiments were carried out using Mach-Zehnder interferometer and the commercial FLUENT code was used for numerical study. This paper focuses on the effect of wall-wavy surface spacing and Rayleigh number variation on the local and average free convection heat transfer coefficients from the each cylinder and the wavy surface. Rayleigh number ranges from 2400 to 10,000 and from 300,000 to 1,250,000 based on cylinder diameter and wavy surface height respectively. The local and average Nusselt numbers were determined for the different Rayleigh numbers, and the ratio of wall- wavy surface spacing to cylinder diameter 0.75, 1, 1.5, 2, 3, 4, 5, and {infinity}. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of the wall-wavy surface spacing to cylinder diameter and the Rayleigh numbers. There is an optimum distance between the wall and wavy surface in which the Nusselt number attain its maximum value. This optimum distance depends on the Rayleigh number. (author)
NASA Astrophysics Data System (ADS)
Selimefendigil, Fatih; Öztop, Hakan F.
2016-11-01
In this numerical study, magnetohydrodynamics natural convection in a flexible sided triangular cavity with internal heat generation is investigated. The inclined wall of the cavity is cooled and flexible while the left vertical wall is partially heated. Galerkin weighted residual finite element method is used to solve the governing equations. The effects of pertinent parameters such as external Rayleigh number (between 104 and 106), internal Rayleigh number (between 104 and 107), elastic modulus of flexible wall (between 500 and 105), Hartmann number (between 0 and 40) and inclination angle of the magnetic field (between 0° and 90°) on the fluid flow and heat transfer characteristics were numerically investigated. It was observed local and averaged Nusselt number enhance with external Rayleigh number but in the vicinity of the upper location of the heater local heat transfer deteriorates due to the inclined wall deformation with increasing external Rayleigh number. Heat transfer reduces with internal Rayleigh number and Hartmann number. Averaged heat transfer decreases 13.25% when internal Rayleigh number is increased from 104 to 107 and decreases 40.56% when Hartmann number is increased from 0 to 10. The reduction in the convection with magnetic field is effective for higher values of external Rayleigh numbers and averaged heat transfer increases with magnetic field inclination angle.
Corvaro, F.; Paroncini, M.
2007-07-15
A numerical and experimental analysis was performed to study the natural convection heat transfer in a square cavity heated from below and cooled by the sidewalls. The enclosure was filled with air (Pr = 0.71) and a discrete heater was mounted on its lower surface; the effect of three different positions was evaluated. The air temperature distribution and the Nusselt numbers at different Rayleigh numbers on the heated strip were measured by an holographic interferometry thanks to the real-time and the double-exposure technique. The double-exposure technique was performed at steady-state and it was used to obtain the isothermal lines in the cavity at different Rayleigh numbers; while the real-time technique was used to control the presence of the plume oscillations and to determinate the achievement of the steady-state. A 2D particle image velocimetry (PIV) was utilized to measure the velocity fields at the same Rayleigh numbers. In particular we analysed the distribution of the velocity vectors and their modulus inside the cavity. The convective phenomenon was studied and the Nusselt numbers were presented as well as the Rayleigh numbers analysed. Moreover experimental and numerical correlations were determined for each position analysed to connect the Rayleigh numbers with the Nusselt numbers. Measured quantities were compared with the numerical results which were obtained with the finite volume code Fluent 6.2.16. (author)
NASA Astrophysics Data System (ADS)
Ullah, Imran; Khan, Ilyas; Shafie, Sharidan
2016-11-01
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.
Ullah, Imran; Khan, Ilyas; Shafie, Sharidan
2016-12-01
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.
NASA Astrophysics Data System (ADS)
Chiba, Ryoichi
2016-02-01
The transient natural convection of a viscous fluid in a heated vertical tube is studied using the two-dimensional differential transform method (DTM). A time-dependent Dirichlet boundary condition is imposed for tube wall temperature. The partial differential equations for the velocity and temperature fields within the tube are solved by the DTM while considering temperature-dependent viscosity and thermal conductivity of the fluid. As a result, tractable solutions in double-series form are derived for the temperature and flow velocity. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical results illustrate the effects of temperature-dependent properties on transient temperature and flow behaviour, including the Nusselt number and volumetric flow rate. The DTM gives accurate series solutions without any special functions for nonlinear transient heat transfer problems which are advantageous in finding the derivative or integral.
NASA Astrophysics Data System (ADS)
Martyushev, S. G.; Miroshnichenko, I. V.; Sheremet, M. A.
2015-11-01
We have performed a numerical analysis of the stationary regimes of thermogravitational convection and thermal surface radiation in a closed differentially heated parallelepiped. The mathematical model formulated in dimensionless natural velocity-pressure-temperature variables was realized numerically in the control volume approach. Analysis of the radiative heat exchange was carried out on the basis of the surface radiation approach with the use of the balance method in the Polyak variant. We have obtained three-dimensional temperature and velocity fields, as well as dependences for the mean Nusselt number reflecting the influence of the geometric parameter, the Rayleigh number, and the reduced emissive factor of the walls on the flow structure and the heat transfer.
NASA Astrophysics Data System (ADS)
Sannad, M.; Abourida, B.; Belarche, L.; Doghmi, H.; Mouzaouit
2017-03-01
This study focuses on heat transfer by natural convection in a three dimensional cavity filled with nanoparticles and partially heated from the side with a uniform temperature. The opposite wall of the cavity is maintained in a cold temperature. The effect of nanofluid type on thermal phenomena within the cavity was analyzed for different sizes of the heating section, using the control volume method. The governing parameters are: the Rayleigh number (103≤Ra ≤ 105), the volume fraction (0 ≤ Φ ≤ 0.1), the heating section size (0.5≤ ɛ ≤1), and the nanofluid type. The results represent a great interest in terms of the flow and heat transfer through the cavity depending on the chosen parameters sets.
NASA Astrophysics Data System (ADS)
Kozhevnikov, Danil A.; Sheremet, Mikhail A.
2017-07-01
The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.
NASA Astrophysics Data System (ADS)
Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.
2015-12-01
In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.
Lee, Jong K.; Lee, Seung D.; Suh, Kune Y.
2006-07-01
During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra'. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 10{sup 11} < Ra' < 10{sup 13}. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within {+-}0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra'c, whereas the convective heat transfer picked up above Ra'{sub c}. In the top and bottom boundary cooling condition, the upward Nusselt number Nu{sub up} was greater than the downward Nusselt number Nu{sub dn}. In particular, the discrepancy between Nu{sub up} and Nu{sub dn} widened with Ra'. The Nu{sub up} to Nu{sub dn} ratio was varied from 7.75 to 16.77 given 1.45 x 10{sup 12} < Ra' < 9.59 x 10{sup 13}. On the other hand, Nu{sub up} was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool
Seta, Takeshi
2013-06-01
In the present paper, we apply the implicit-correction method to the immersed-boundary thermal lattice Boltzmann method (IB-TLBM) for the natural convection between two concentric horizontal cylinders and in a square enclosure containing a circular cylinder. The Chapman-Enskog multiscale expansion proves the existence of an extra term in the temperature equation from the source term of the kinetic equation. In order to eliminate the extra term, we redefine the temperature and the source term in the lattice Boltzmann equation. When the relaxation time is less than unity, the new definition of the temperature and source term enhances the accuracy of the thermal lattice Boltzmann method. The implicit-correction method is required in order to calculate the thermal interaction between a fluid and a rigid solid using the redefined temperature. Simulation of the heat conduction between two concentric cylinders indicates that the error at each boundary point of the proposed IB-TLBM is reduced by the increment of the number of Lagrangian points constituting the boundaries. We derive the theoretical relation between a temperature slip at the boundary and the relaxation time and demonstrate that the IB-TLBM requires a small relaxation time in order to avoid temperature distortion around the immersed boundary. The streamline, isotherms, and average Nusselt number calculated by the proposed method agree well with those of previous numerical studies involving natural convection. The proposed IB-TLBM improves the accuracy of the boundary conditions for the temperature and velocity using an adequate discrete area for each of the Lagrangian nodes and reduces the penetration of the streamline on the surface of the body.
Nazaroff, W.W.; Kong, D.; Gadgil, A.J.
1992-02-01
We report numerical predictions of the deposition to enclosure surfaces of unattached {sup 218}Po and {sup 212}Pb, short-lived decay products of {sup 222}Rn and {sup 220}Rn, respectively. The simulations are conducted for square and rectangular two-dimensional enclosures under laminar natural convection flow with Grashof numbers in the range 7 x 10{sup 7} to 8 x 10{sup 10}. The predictions are based upon a finite-difference natural-convection fluid-mechanics model that has been extended to simulate the behavior of indoor radon decay products. In the absence of airborne particles, the deposition velocity averaged over the enclosure surface was found to be in the range (2-4) x 10{sup -4} m s{sup -1} for {sup 218}Po and (1-3) x 10{sup -4} m s{sup -1} for {sup 212}Pb. In each simulation, the deposition rate varied by more than an order of magnitude around the surface of the enclosure with the largest rates occurring near corners. Attachment of decay products to airborne particles increased the deposition velocity; for example, attachment of {sup 218}Po at a rate of 50 h{sup -1} increased the predicted average deposition velocity by 30-70% over values in the absence of attachment. The simulation results have significance for assessing the health risk associated with indoor exposure to {sup 222}Rn and {sup 220}Rn decay products and for investigating the more general problem of the interaction of air pollutants with indoor surfaces.
Natural convection in inclined pipes - A new correlation for heat transfer estimations
NASA Astrophysics Data System (ADS)
Langebach, R.; Haberstroh, Ch.
2014-01-01
Heat intake minimization is one of the main challenges during the design process of cryogenic storage tanks. It is widely known that connection pipes significantly contribute to this residual heat transfer from ambient temperature conditions to the cold inner vessel. A certain pipe inclination can cause a convective flow field within the fluid. This effect usually increases the total heat transfer much more dramatically than anticipated. In several previous papers we discussed the impact of pipe geometry as well as boundary conditions intensively. However, there is no suitable correlation in literature available which could be used to estimate the total heat transfer properly. The large number of experimental data we gained during our investigations allows us to propose a new correlation in order to predict the total heat transfer through an inclined pipe in function of the inclination angle. In this paper we derivate this new correlation and show its application for heat transfer estimations. Several comparisons are carried out against our own measurements as well as literature data.
Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan; Meng, Sheng; Cheng, Shuiyuan
2007-07-15
Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barrier and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)
MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid
NASA Astrophysics Data System (ADS)
Sheremet, M. A.; Oztop, H. F.; Pop, I.
2016-10-01
A mathematical modelling of MHD free convection in an inclined wavy enclosure filled with a Cu-water nanofluid in the presence of an isothermal corner heater has been carried out. The cavity is heated from the left bottom corner and cooled from the top wavy wall while the rest walls are adiabatic. Uniform magnetic field affects the heat transfer and fluid flow with an inclination angle to the axis xbar. Wavy cavity is inclined to the horizontal direction. Mathematical model formulated using the single-phase nanofluid approach in dimensionless variables stream function, vorticity and temperature has been solved by finite difference method of the second order accuracy in a wide range of governing parameters: Hartmann number (Ha=0-100), inclination angle of the magnetic field (χ = 0 - π) , undulation number (κ=0-4), inclination angle of the cavity (ζ = 0 - π) , solid volume fraction parameter of nanoparticles (φ=0.0-0.05), and dimensionless time (τ=0-0.27). Main efforts have been focused on the effects of these parameters on the fluid flow and heat transfer inside the cavity. Numerical results have been presented in the form of streamlines, isotherms and average Nusselt numbers.
Energy stability of thermocapillary convection in a model of the float-zone crystal-growth process
NASA Technical Reports Server (NTRS)
Shen, Y.; Neitzel, G. P.; Jankowski, D. F.; Mittelmann, H. D.
1990-01-01
Energy stability theory has been applied to a basic state of thermocapillary convection occurring in a cylindrical half-zone of finite length to determine conditions under which the flow will be stable. Because of the finite length of the zone, the basic state must be determined numerically. Instead of obtaining stability criteria by solving the related Euler-Lagrange equations, the variational problem is attacked directly by discretization of the integrals in the energy identity using finite differences. Results of the analysis are values of the Marangoni number below which axisymmetric disturbances to the basic state will decay, for various values of the other parameters governing the problem.
Hawaii Natural Energy Institute annual report, 1984
Not Available
1984-01-01
This tenth anniversary special reviews each project over the past 10 years, with research in progress included for FY83-84 for biomass, geothermal, ocean energy, solar energy, wind research and other renewable energy research. (PSB)
NASA Technical Reports Server (NTRS)
Halverson, Jeffrey B.; Roy, Biswadev; O'CStarr, David (Technical Monitor)
2002-01-01
An overview of mean convective thermodynamic and wind profiles for the Tropical Rainfall Measuring Mission (TRMM) Large Scale Biosphere-Atmosphere Experiment (LBA) and Kwajalein Experiment (KWAJEX) field campaigns will be presented, highlighting the diverse continental and marine tropical environments in which rain clouds and mesoscale convective systems evolved. An assessment of ongoing sounding quality control procedures will be shown. Additionally, we will present preliminary budgets of sensible heat source (Q1) and apparent moisture sink (Q2), which have been diagnosed from the various sounding networks.
Energy resource potential of natural gas hydrates
Collett, T.S.
2002-01-01
The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.
ARM - Midlatitude Continental Convective Clouds
Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-19
Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.
NASA Astrophysics Data System (ADS)
Lin, Wenxian; Armfield, S. W.
2013-12-01
It is of fundamental significance, especially with regard to application, to fully understand the flow behavior of unsteady natural convection boundary layers on a vertical plate heated by a time-dependent heat flux. Such an understanding is currently scarce. In this paper, the scaling analysis by Lin et al. [Phys. Rev. E 79, 066313 (2009), 10.1103/PhysRevE.79.066313] using a simple three-region structure for the unsteady natural convection boundary layer of a homogeneous Newtonian fluid with Pr >1 under isothermal heating was substantially extended for the case when the heating is due to a time-varying sinusoidal heat flux. A series of scalings was developed for the thermal boundary thickness, the plate temperature, the viscous boundary thicknesses, and the maximum vertical velocity within the boundary layer, which are the major parameters representing the flow behavior, in terms of the governing parameters of the flow, i.e., the Rayleigh number Ra, the Prandtl number Pr, and the dimensionless natural frequency fn of the time-varying sinusoidal heat flux, at the start-up stage, at the transition time scale which represents the ending of the start-up stage and the beginning of the transitional stage of the boundary-layer development, and at the quasi-steady stage. These scalings were validated by comparison to 10 full numerical solutions of the governing equations with Ra, Pr, and fn in the ranges 106≤Ra≤109, 3≤Pr≤100, and 0.01≤fn≤0.1 and were shown in general to provide an accurate description of the flow at different development stages, except for high-Pr runs in which a further, although weak, Pr dependence is present, which cannot be accurately predicted by the current scaling analysis using the simple three-region structure, attributed to the non-boundary-layer nature of the velocity field with high-Pr fluids. Some scalings at the transition time scale and at the quasi-steady stage also produce noticeable deviations from the numerical results when
Energy balance in the newborn baby: use of a manikin to estimate radiant and convective heat loss.
Wheldon, A E
1982-02-01
Convective and radiant heat loss from a baby in an incubator were studied using a heated manikin. The mean radiant temperature of surrounding surfaces other than those vertically below the manikin was measured. The coefficients Af and hr were calculated as though this was the mean radiant temperature of the whole environment. The fraction (Af) of the body surface area which exchanged radiant energy with the surroundings increased from 0.48 for a foetal posture to 0.76 for a spreadeagle posture due to a decrease in radiant exchange between opposing body surfaces. The corresponding increase in the coefficient for heat exchange by radiation (hr) was from 3.1 to 4.9 Wm-2 K-1. The coefficient for convection (hc) increased from 4.0 to 5.4 WM-2 K-1 due to a decrease in effective body diameter as the limbs moved away from the trunk. These changes in Af, hr and hc show that posture is important in regulating heat loss from a baby. As the radiant temperature of the incubator canopy was between 2 and 4K below incubator air temperature, a baby loses more heat by radiation than by convection.
Oosthuizen, P.H.; Paul, J.T.
1997-07-01
Natural convective flow in a square enclosure with a section of one of the vertical walls heated and with the opposite wall cooled to a uniform temperature, the remaining walls being adiabatic, has been numerically studied. The temperature of the heated wall section is constant but that of the cold wall varies, in general, in a non-periodic way with time. The main aim of the study was to determine how the nature of the temperature variation at the cooled surface influences the heat transfer rate from the hot surface. The flow has been assumed to be laminar and two-dimensional. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form. The resultant equations have been solved using the finite-element method. The solution has the Rayleigh number, the Prandtl number, the dimensionless size and position of the heated wall section and the form of the cold wall dimensionless temperature variation with dimensionless time as parameters. Because of the possible applications that motivated the study, results have only been obtained for a Prandtl number of 0.7. The dimensionless cold section temperature has been assumed to undergo a sharp rise in value followed a short time later by a sharp drop in its value. Results have then been obtained for modified Rayleigh numbers between 1,000 and 1,000,000 for heated wall sections of various dimensionless size and position.
Alternative Natural Energy Sources in Building Design.
ERIC Educational Resources Information Center
Davis, Albert J.; Schubert, Robert P.
This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…
Alternative Natural Energy Sources in Building Design.
ERIC Educational Resources Information Center
Davis, Albert J.; Schubert, Robert P.
This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…
Passive Safety of the STAR-LM HLMC Natural Convection Reactor
Sienicki, James J.; Petkov, Plamen V.
2002-07-01
The STAR-LM 300 to 400 MWt class modular, factory fabricated, fully transportable, proliferation resistant, autonomous, reactor system achieves passive safety by taking advantage of the intrinsic benefits of inert lead-bismuth eutectic heavy liquid metal coolant, 100+% natural circulation heat transport, a fast neutron spectrum core utilizing high thermal conductivity transuranic nitride fuel, redundant passive air cooling of the outside of the guard/containment vessel driven by natural circulation, and seismic isolation where required by site conditions. Postulated loss-of-heat sink without scram, overcooling without scram, and unprotected transient overpower accidents are analyzed for the 300 MWt STAR-LM design using a coupled thermal hydraulics-neutron kinetics plant dynamics analysis computer code. In all cases, STAR-LM is calculated to exhibit passive safety with peak cladding and coolant temperatures remaining within the existing database for lead-bismuth eutectic coolant and ferritic steel core materials. (authors)
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
NASA Astrophysics Data System (ADS)
Ahmed, Mahmoud; Eslamian, Morteza
2015-07-01
Laminar natural convection in differentially heated ( β = 0°, where β is the inclination angle), inclined ( β = 30° and 60°), and bottom-heated ( β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
NASA Astrophysics Data System (ADS)
Kamajaya, K.; Umar, E.; Sudjatmi
2015-09-01
Study on convection heat transfer using water-Al2O3 nanofluid as the working fluid in the vertical sub-channel has been conducted. The results of the study have been compared with the water-ZrO2 nanofluid and pure-water as the working fluid. The equipment used in this experiment is a vertical triangular sub-channel, equipped by primary cooling system, heat exchanger and a secondary cooling system. As a heating source used three vertical cylinders that have a uniform heat flux with a pitch to diameter ratio (P/D) 01:16. Cooling is used is water-Al2O3 colloid at 0.05 wt. %. Heat transfer from heating to cooling would occur in natural or forced convection. However, in this study will be discussed only natural convection heat transfer. The results showed that the natural convection heat transfer of water-Al2O3 nanofluid in a triangular sub-channels depending on the position. The results of the correlation as follows,
NASA Technical Reports Server (NTRS)
Neitzel, G. P.; Law, C. C.; Jankowski, D. F.; Mittelmann, H. D.
1991-01-01
Energy-stability theory has been applied to investigate the stability properties of thermocapillary convection in a half-zone model of the float-zone crystal-growth process. An earlier axisymmetric model has been extended to permit nonaxisymmetric disturbances, thus determining sufficient conditions for stability to disturbances of arbitrary amplitude. The results for nonaxisymmetric disturbances are compared with earlier axisymmetric results, with linear-stability results for a geometry with an infinitely long aspect ratio and with stability boundaries from recent laboratory experiments.
Ingersoll; Gierasch; Banfield; Vasavada
2000-02-10
Jupiter's dominant large-scale weather patterns (dimensions approximately 10,000 km) are zonal jets and long-lived ovals. The jets have been flowing east and west at constant speeds of up to 180 m s(-1) for over 100 years. These jets receive energy from small-scale eddies, which pump eastward momentum into the eastward jets and westward momentum into the westward jets. This momentum transfer was predicted by numerical models before it was observed on Jupiter. The large ovals roll between the jets in an anticyclonic direction-clockwise in the northern hemisphere and counterclockwise in the southern hemisphere--where they regularly assimilate small anticyclonic eddies. But from where the eddies receive their energy has been an open question. Here we argue that the eddies, which ultimately drive both the jets and the ovals, receive their energy from moist convection. This hypothesis is consistent with observations of jovian lightning, which is an indicator of moist convection. It also explains the anticyclonic rotation and poleward drift of the eddies, and suggests patterns of upwelling and downwelling that resemble the patterns of large-scale axisymmetric overturning in the Earth's atmosphere.
Effect of Increased Natural Gas Exports on Domestic Energy Markets
2012-01-01
This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.
Using Mother Nature to Subdue Energy Costs.
ERIC Educational Resources Information Center
Fickes, Michael
1997-01-01
Describes a Kansas City elementary school's successful energy conservation via its environmental design that includes the use of ground source heat pumps and computer energy management systems. Also discusses how this design concept contributes to the educational experience of the school's students. (GR)
Erdogdu, Ferruh; Tutar, Mustafa
2011-01-01
Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions.
Identifying the nature of high energy Astroparticles
NASA Astrophysics Data System (ADS)
Salomé Caballero Mora, Karen
2016-10-01
High energy Astroparticles include Cosmic Ray (CR), gamma ray and neutrinos, all of them coming from the universe. The origin and production, acceleration and propagation mechanisms of ultrahigh-energy CR (UHECR ∼ 1020 eV) are still unknown. Knowledge on particle interactions taking place at those energies, useful for studying current theories on particle physics, can be obtained only from measurements of high energy astroparticles. In the present document some techniques on data analysis of mass composition of UHECR with the Pierre Auger Observatory are described. The relevance of the muon component of air showers produced by the primary CR, as well as some low energy simulations of that component, are explained.
An experimental study of natural convection in open-cell aluminum foam
NASA Astrophysics Data System (ADS)
De Jaeger, P.; Reynders, R.; De Schampheleire, S.; T'Joen, C.; Huisseune, H.; Amee, B.; De Paepe, M.
2012-11-01
Natural convecton n air-saturated alumnum foam has been measured. A carefully designed experimental setup is built for his ask. The calibraton is done by comparing he results of a flat plate wh literature data, revealing excellent agreement. The nvestigated foams have a pore densiy of 10 and 20 PPI. The bondng of the foam is performed via brazing, or by applying a single epoxy which is enriched wh highly conductve alumna particles. The Rayleigh number is varied between 2500 and 6000, wh he rato of he surface area o he perimeter of he substrate as characteristc length. The foam height is varied between 12 and 25.4 mm. A major difference between both he bondng methods is observed. The brazed samples showed a beter heat ransfer n all cases. Furthermore, when ncreasing he foam height, a clear augmentaton of he heat ransfer is observed. Based on hese results, a correlaton is presented.
NASA Astrophysics Data System (ADS)
Kuznetsov, G. V.; Nee, A. E.
2016-05-01
The mathematical modeling of the conjugate heat transfer in a closed rectangular region has been carried out under the conditions of the radiation supply of energy. The temperature and stream function fields obtained by the modeling illustrate a substantially unsteady nature of the conjugate heat exchange process under study. An analysis of temperature distributions in typical cross sections of the solution domain has shown a considerable inhomogeneity of the temperature field. It is found that an increase in the Rayleigh number leads to substantial modifications of the temperature and stream function fields. The influence of the distribution of radiation fluxes over the internal interfaces on the temperature fields and the airflow character is shown. The influence of the turbulization on the heat transfer intensity near the interfaces between media has been estimated. Comparisons of the obtained numerical results with experimental data have shown their good agreement.
The secondary flow and its stability for natural convection in a tall vertical enclosure
NASA Technical Reports Server (NTRS)
Chait, Arnon; Korpela, Seppo A.
1989-01-01
The multicellular flow between two vertical parallel plates is numerically simulated using a time-splitting pseudospectral method. The steady flow of air and the time-periodic flow of oil are investigated, and descriptions of these flows using both physical and spectral approaches are presented. The time dependence of the flow and temperature fields of oil are shown, and the dynamics of the process is discussed. The spectral transfer of energy among the axial modes comprising the flow is explored. The three-dimensional linear stabiltiy of the multicellular air flow is parametrically studied. The domain of stable two-dimensional cellular motion is found to be constrained by the Eckhaus instability and by two types of monotone instability. The two-dimensional multicellular flow is unstable above a Grashof number of about 8550.
The secondary flow and its stability for natural convection in a tall vertical enclosure
NASA Astrophysics Data System (ADS)
Chait, Arnon; Korpela, Seppo A.
1989-03-01
The multicellular flow between two vertical parallel plates is numerically simulated using a time-splitting pseudospectral method. The steady flow of air and the time-periodic flow of oil are investigated, and descriptions of these flows using both physical and spectral approaches are presented. The time dependence of the flow and temperature fields of oil are shown, and the dynamics of the process is discussed. The spectral transfer of energy among the axial modes comprising the flow is explored. The three-dimensional linear stabiltiy of the multicellular air flow is parametrically studied. The domain of stable two-dimensional cellular motion is found to be constrained by the Eckhaus instability and by two types of monotone instability. The two-dimensional multicellular flow is unstable above a Grashof number of about 8550.
Effect of adiabatic square ribs on natural convection in an asymmetrically heated channel
NASA Astrophysics Data System (ADS)
Abidi-Saad, Aissa; Kadja, Mahfoud; Popa, Catalin; Polidori, Guillaume
2017-02-01
A 2-D numerical simulation is carried out to investigate the effect of two adiabatic square ribs on laminar flow and heat transfer in an asymmetrically heated channel. The two ribs are symmetrically located on each wall, exactly above the heating zone. The computational procedure is made by solving the unsteady bi-dimensional continuity, momentum and energy equations with the finite volume method. The investigations focused more specifically on the influence of ribs sizes on the flow structure and heat transfer enhancement. The results showed that the variation of ribs sizes significantly alters the heat transfer and fluid flow distribution along the channel, especially in the vicinity of protrusions. Also, the results show that streamlines, isotherms, and the number, sizes and formation of vortex structures inside the channel strongly depend on the size of protrusions. The changes in heat transfer parameters have also been presented.
On the stability of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
Shankar, B. M.; Shivakumara, I. S.
2017-06-01
The stability of the conduction regime of natural convection in a porous vertical slab saturated with an Oldroyd-B fluid has been studied. A modified Darcy's law is utilized to describe the flow in a porous medium. The eigenvalue problem is solved using Chebyshev collocation method and the critical Darcy-Rayleigh number with respect to the wave number is extracted for different values of physical parameters. Despite the basic state being the same for Newtonian and Oldroyd-B fluids, it is observed that the basic flow is unstable for viscoelastic fluids—a result of contrast compared to Newtonian as well as for power-law fluids. It is found that the viscoelasticity parameters exhibit both stabilizing and destabilizing influence on the system. Increase in the value of strain retardation parameter Λ _2 portrays stabilizing influence on the system while increasing stress relaxation parameter Λ _1 displays an opposite trend. Also, the effect of increasing ratio of heat capacities is to delay the onset of instability. The results for Maxwell fluid obtained as a particular case from the present study indicate that the system is more unstable compared to Oldroyd-B fluid.
NASA Astrophysics Data System (ADS)
Thohura, Sharaban; Molla, Md. Mamun; Sarker, M. M. A.
2016-07-01
A study on the natural convection flow of non-Newtonian fluid along a vertical thin cylinder with constant wall temperature using modified power law viscosity model has been done. The basic equations are transformed to non dimensional boundary layer equations and the resulting systems of nonlinear partial differential equations are then solved employing marching order implicit finite difference method. The evolution of the surface shear stress in terms of local skin-friction, the rate of heat transfer in terms of local Nusselt number, velocity and temperature profiles for shear thinning as well as shear-thickening fluid considering the different values of Prandtl number have been focused. For the Newtonian fluids the present numerical results are compared with available published results which show a good agreement indeed. From the results it can be concluded that, at the leading edge, a Newtonian-like solution exists as the shear rate is not large enough to trigger non-Newtonian effects. Non-Newtonian effects can be found when the shear-rate increases beyond a threshold value.
NASA Astrophysics Data System (ADS)
Chowdhury, Raju; Parvin, Salma; Khan, Md. Abdul Hakim
2016-07-01
The problem of natural convective heat and mass transfer in a triangular enclosure filled with nanofluid saturated porous medium in presence of heat generation has been studied in this paper. The bottom wall of the cavity is heated uniformly, the left inclined wall is heated linearly and the right inclined wall is considered to be cold. The concentration is higher at bottom wall, lower at right inclined wall and linearly concentrated at left inclined wall of the cavity. The governing equations are transformed to the dimensionless form and solved numerically using Galerkin weighted residual technique of finite element method. The results are obtained in terms of streamline, isotherms, isoconcentrations, Nusselt number (Nu) and Sherwood number (Sh) for the parameters thermal Rayleigh number (RaT), Heat generation parameter (λ) and Lewis number (Le) while Prandtl number (Pr), Buoyancy ratio (N) and Darcy number (Da) are considered to be fixed. It is observed that flow pattern, temperature fields and concentration fields are affected by the variation of above considered parameters.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1984-01-01
Galerkin finite-element approximations and Newton's method for solving free boundary problems are combined with computer-implemented techniques from nonlinear perturbation analysis to study solidification problems with natural convection in the melt. The Newton method gives rapid convergence to steady state velocity, temperature and pressure fields and melt-solid interface shapes, and forms the basis for algebraic methods for detecting multiple steady flows and assessing their stability. The power of this combination is demonstrated for a two-phase Rayleigh-Benard problem composed of melt and solid in a veritical cylinder with the thermal boundary conditions arranged so that a static melt with a flat melt-solid interface is always a solution. Multiple cellular flows bifurcating from the static state are detected and followed as Rayleigh number is varied. Changing the boundary conditions to approach those appropriate for the vertical Bridgman solidification system causes imperfections that eliminate the static state. The flow structure in the Bridgman system is related to those for the Rayleigh-Benard system by a continuous evolution of the boundary conditions.
NASA Astrophysics Data System (ADS)
Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.
2016-03-01
This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k-ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.
NASA Astrophysics Data System (ADS)
Fant, Daniel Bartholemew
1987-05-01
Multicellular flow instability due to natural convection between narrow horizontal isothermal cylindrical annuli was investigated numerically and analytically. Bouyancy-induced steady or unsteady flow fields between the annuli are determined using the Boussinesq approximated two-dimensional (2-D) Navier-Stokes (N-S) equations and the viscous dissipated neglected thermal energy equations. The vorticity-stream function formulation of the N-S equations is adopted. Both thermal and hydrodynamic instabilities are explored. An asymptotic expansion theory is applied to the N-S equations in the double-limit of Rayleigh number approaching infinity and gap width approaching zero. Thermal instability of air near the top portions of narrow annuli is considered for various size small gap widths. Numerical solutions of the 2-D N-S equations also yield hysteresis behavior for the two-to-six and two-to four cellular states, with respect to diameter ratios of 1.100 and 1.200. In all cases, finite-differenced solutions to the governing equations are obtained using a stable second-order, fully-implicit time-accurate Gauss-Seidel iterative procedure.
NASA Astrophysics Data System (ADS)
Li, Hongmin; Xing, Changhu; Braun, Minel J.
2007-07-01
This paper presents an experimental and numerical investigation on the natural convection flow and heat transfer in an enclosure with a single-hole baffle at the median height. The temperature in the fluid is quantified by means of temperature sensitive thermo-chromic liquid crystal (TLC) particles. The fluid flow velocity is measured non-intrusively with a full field particle tracking technique. The three-dimensional numerical model, developed and validated with experimental data, provides a computational tool for further investigation of mass and energy transport through the baffle openings in these types of enclosures. The experimentally visualized and numerically simulated flow structures show a pair of streams across the baffle-hole. The two chambers communicate through this pair of streams which carry the fluid exchange and heat transfer between the two chambers. At the baffle opening, the two streams are aligned in a diagonal direction across of the enclosure. The streams are accelerated and form jet-like flows that drive the whole circulation in the chambers. The jet-like flows leave the baffle opening, approach the vertical centerline of the cavity, and finally impinge on the top/bottom walls.
Secondary flow and its stability for natural convection in tall vertical enclosures
Chait, A.
1986-01-01
The multicellular flow in a tall vertical rectangular and annular enclosure was studied by solving the Boussinesq equations with time-splitting pseudospectral methods. Comparison between two time-splitting algorithms is presented, and results show that the method that introduces a time-splitting error in the calculation is unacceptable for simulations of time-dependent large Prandtl number flows. The steady flow of air and the time-periodic flow of oil were investigated, and descriptions of these flows based on physical and spectral approaches are presented. The dependency of the flow on the axial wave length was established and it was found that the maximum heat transfer appears to coincide with the natural axial wave length. Three-dimensional linear stability of the multicellular flow of air in a cartesian slot was also investigated. The domain of stable two-dimensional cellular motions was found to be constrained by the Eckhaus instability and by two types of monotone instabilities. These limit the two-dimensional multicellular flow to Grashof numbers below about 8550. For this reason the flow of air in a sufficiently tall vertical cavity is likely to be three-dimensional in many practical cases.
Yih, K.A.
1999-04-01
Coupled heat and mass transfer (or double-diffusion) driven by buoyancy, due to temperature and concentration variations in a saturated porous medium, has several important applications in geothermal and geophysical engineering such as the migration of moisture through the air contained in fibrous insulation, the extraction of geothermal energy, underground disposal of nuclear wastes, and the spreading of chemical contaminants through water-saturated soil. Here, the heat and mass transfer characteristics of free convection about a permeable horizontal cylinder embedded in porous media under the coupled effects of thermal and mass diffusion are numerically analyzed. The surface of the horizontal cylinder is maintained at a uniform wall temperature and uniform wall concentration. The transformed governing equations are obtained and solved by Keller box method. Numerical results for the dimensionless temperature profiles, the dimensionless concentration profiles, the Nusselt number and the Sherwood number are presented. Increasing the buoyancy ratio N and the transpiration parameter f{sub w} increases the Nusselt number and the Sherwood number. For thermally assisting flow, when Lewis number Le increases, the Nusselt (Sherwood) number decreases (increases). Whereas, for thermally opposing flow, both the Nusselt number and the Sherwood number increase with increasing the Lewis number.
NASA Astrophysics Data System (ADS)
Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.
2017-06-01
The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.
NASA Astrophysics Data System (ADS)
Zannouni, K.; El Abrach, H.; Dhahri, H.; Mhimid, A.
2016-12-01
The present paper reports a numerical study to investigate the drying of rectangular gypsum sample based on a diffusive model. Both vertical and low sides of the porous media are treated as adiabatic and impermeable surfaces plate. The upper face of the plate represents the permeable interface. The energy equation model is based on the local thermal equilibrium assumption between the fluid and the solid phases. The lattice Boltzmann method (LBM) is used for solving the governing differential equations system. The obtained numerical results concerning the moisture content and the temperature within a gypsum sample were discussed. A comprehensive analysis of the influence of the mass transfer coefficient, the convective heat transfer coefficient, the external temperature, the relative humidity and the diffusion coefficient on macroscopic fields are also investigated. They all presented results in this paper and obtained in the stable regime correspond to time superior than 4000 s. Therefore the numerical error is inferior to 2%. The experimental data and the descriptive information of the approach indicate an excellent agreement between the results of our developed numerical code based on the LBM and the published ones.
2011-01-01
A boundary layer analysis is presented for the mixed convection past a vertical wedge in a porous medium saturated with a nano fluid. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient, implicit, iterative, finite-difference method. A parametric study illustrating the influence of various physical parameters is performed. Numerical results for the velocity, temperature, and nanoparticles volume fraction profiles, as well as the friction factor, surface heat and mass transfer rates have been presented for parametric variations of the buoyancy ratio parameter Nr, Brownian motion parameter Nb, thermophoresis parameter Nt, and Lewis number Le. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed. PMID:21711715
Analysis of Phenix end-of-life natural convection test with the MARS-LMR code
Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.
2012-07-01
The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)
Convective adjustment timescale (τ) for cumulus clouds is one of the most influential parameters controlling parameterized convective precipitation in climate and weather simulation models at global and regional scales. Due to the complex nature of deep convection, a pres...
Tropical deep convective cloud morphology
NASA Astrophysics Data System (ADS)
Igel, Matthew R.
A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are
Triplett, C.E.; Canaan, R.E.; Klein, D.E.
2000-04-01
Natural convection heat transfer was experimentally investigated in a staggered array of heated cylinders, oriented horizontally within a rectangular isothermal enclosure. The test conditions were characteristic of a spent-fuel assembly during transport or horizontal dry storage. The assembly was configured with a pitch-to-diameter ratio of 1.33 and backfilled with pressurized helium or nitrogen. The backfill pressure was varied between 1 and 5 atm, while the assembly power was varied between 1 and 5 W per heater rod. The resulting data are presented in the form of Nusselt-Rayleigh number correlations, where the Nusselt number has been corrected for thermal radiation using a numerical technique. The staggered-array data are compared to previous data for a similar-pitch aligned rod array (a simulated boiling water reactor fuel assembly) to determine if convective heat transfer is enhanced or hindered in a staggered configuration. For the overall array, both the staggered and aligned configurations yield Nusselt-Rayleigh curves with a three-regime trend, which suggests distinct conduction and convection regimes separated by a transition regime. For lower Rayleigh numbers (10{sup 6}), representative of the conduction regime, the aligned-array Nusselt number is 10 to 12% higher than the corresponding staggered-array value. However, in the convection regime at higher Rayleigh numbers, the staggered-array Nusselt number slightly exceeds the aligned-array Nusselt number. This is attributed to the fact that the staggered array begins to transition into the convection regime at lower Rayleigh number than the aligned array. For both configurations, the slope of the Nusselt-Rayleigh curve in the convection regime suggests turbulent flow conditions.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1982-01-01
Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1982-01-01
Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.
Lee, Seung-Hyun; Jang, Seok Pil
2012-07-01
In this paper, numerical and experimental investigations are systematically performed to identify the effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method (THWM), a widely accepted technique for measuring the thermal conductivity of various media, especially nanofluids. To validate our numerical simulation code, the numerical results are compared with theoretical solutions as well as with experimental results. Based on the results, we show that the onset time of natural convection in THWM decreases rapidly with the increase of the wire's tilting angle from vertical position. Also, we systematically show the effect of the wire's tilting angle on the linear region, which is a suitable measurement interval, and on the measurement error of THWM.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1975-01-01
The basic relation is described between conversion of thermal energy into convective fluid motion and convective transport of thermal energy, and the equilibrium configuration of a sunspot's magnetic field is shown to be unstable to the hydromagnetic exchange instability. It is determined that heat transport necessarily accompanies convective driving of fluid motion and that the formation of cool sunspots requires convection extending coherently over several scale heights, a distance of at least 500 km. Several theoretical possibilities for sunspot stabilization are reviewed, and it is suggested that a suitable redistribution of cooling in the umbra may be the stabilization mechanism. It is believed that if cooling extends to a great depth in an elongated portion of a sunspot, the magnetic pressure on the boundary will be reduced, tending to reduce the elongation.
NASA Technical Reports Server (NTRS)
Parker, E. N.
1975-01-01
The basic relation is described between conversion of thermal energy into convective fluid motion and convective transport of thermal energy, and the equilibrium configuration of a sunspot's magnetic field is shown to be unstable to the hydromagnetic exchange instability. It is determined that heat transport necessarily accompanies convective driving of fluid motion and that the formation of cool sunspots requires convection extending coherently over several scale heights, a distance of at least 500 km. Several theoretical possibilities for sunspot stabilization are reviewed, and it is suggested that a suitable redistribution of cooling in the umbra may be the stabilization mechanism. It is believed that if cooling extends to a great depth in an elongated portion of a sunspot, the magnetic pressure on the boundary will be reduced, tending to reduce the elongation.
NASA Astrophysics Data System (ADS)
Zheng, Dong; Zhang, Yijun; Meng, Qing; Chen, Luwen; Dan, Jianru
2016-03-01
This study examined lightning activity and its relationship to precipitation and convective available potential energy (CAPE) in South China during 2001-12, based on data from the Guangdong Lightning Location System, the Tropical Rainfall Measuring Mission satellite, and the ERA-Interim dataset. Two areas of high lightning density are identified: one over the Pearl River Delta, and the other to the north of Leizhou Peninsula. Large peak-current cloud-to-ground (LPCCG) lightning (>75 kA) shows weaker land-offshore contrasts than total CG lightning, in which negative cloud-to-ground (NCG) lightning occurs more prominently than positive cloud-to-ground (PCG) lightning on land. While the frequency of total CG lightning shows a main peak in June and a second peak in August, the LPCCG lightning over land shows only a single peak in June. The ratio of positive LPCCG to total lightning is significantly greater during February-April than during other times of the year. Diurnally, CG lightning over land shows only one peak in the afternoon, whereas CG lightning offshore shows morning and afternoon peaks. The rain yield per flash is on the order of 107-108 kg per flash across the analysis region, and its spatial distribution is opposite to that of lightning density. Our data show that lightning activity over land is more sensitive than that over offshore waters to CAPE. The relationships between lightning activity and both precipitation and CAPE are associated with convection activity in the analysis region.
Lance, Blake W.; Smith, Barton L.
2016-06-23
Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less
Lance, Blake W.; Smith, Barton L.
2016-06-23
Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.
Lance, Blake W.; Smith, Barton L.
2016-06-23
Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified. Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.
NASA Astrophysics Data System (ADS)
Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.; Le Quéré, P.
2014-02-01
The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 108, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.
Vilim, R .B.; Feldman, E. E.; Nuclear Engineering Division
2007-08-07
Passive safety in the Very High Temperature Reactor (VHTR) is strongly dependent on the thermal performance of the Reactor Cavity Cooling System (RCCS). Scaled experiments performed in the Natural Shutdown Test Facility (NSTF) are to provide data for assessing and/or improving computer code models for RCCS phenomena. Design studies and safety analyses that are to support licensing of the VHTR will rely on these models to achieve a high degree of certainty in predicted design heat removal rate. To guide in the selection and development of an appropriate set of experiments a scaling analysis has been performed for the air-cooled RCCS option. The goals were to (1) determine the phenomena that dominate the behavior of the RCCS, (2) determine the general conditions that must be met so that these phenomena and their relative importance are preserved in the experiments, (3) identify constraints specific to the NSTF that potentially might prevent exact similitude, and (4) then to indicate how the experiments can be scaled to prevent distortions in the phenomena of interest. The phenomena identified as important to RCCS operation were also the subject of a recent PIRT study. That work and the present work collectively indicate that the main phenomena influencing RCCS heat removal capability are (1) radiation heat transport from the vessel to the air ducts, (2) the integral effects of momentum and heat transfer in the air duct, (3) buoyancy at the wall inside the air duct giving rise to mixed convection, and (4) multidimensional effects inside the air duct caused by non-uniform circumferential heat flux and non-circular geometry.
Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.
2014-02-15
The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.
Kinetic energy budgets during the life cycle of intense convective activity
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1978-01-01
Synoptic-scale data at three- and six-hour intervals are employed to study the relationship between changing kinetic energy variables and the life cycles of two severe squall lines. The kinetic energy budgets indicate a high degree of kinetic energy generation, especially pronounced near the jet-stream level. Energy losses in the storm environment are due to the transfer of kinetic energy from grid to subgrid scales of motion; large-scale upward vertical motion carries aloft the kinetic energy generated by storm activity at lower levels. In general, the time of maximum storm intensity is also the time of maximum energy conversion and transport.
NASA Astrophysics Data System (ADS)
Batubara, Fatimah; Misran, Erni; Dina, Sari Farah; Heppy
2017-06-01
Research on potato drying using the indirect solar dryer with flat-plate finned collector and forced convection has been done. The research was conducted at the outdoor field of Laboratory of Institute for Research and Standardization of Industry on June 14th-23rd, 2016 from 9:00 am to 4:00 pm. This research aims to obtain the drying kinetics model of potato (Solanumtuberosum L.) using an indirect solar dryer's (ISD) with flat plate-finned collector and forced convection. The result will be compared to the open sun drying (OSD) method. Weather conditions during the drying process took place as follows; surrounding air temperature was in the range 27 to 34.7 °C, relative humidity (RH) 29.5 to 61.0% and the intensity of solar radiation 105.6 to 863.1 Watt/m2. The dried potato thicknesses were 1.0 cm, 1.5 cm and 2.0 cm, with the average initial water content of 76.46%. The average temperature in the collector chamber ranged from 42.2 to 57.4 °C and the drying chamber was at 46.2 °C. The best drying result was obtained from a sample size of 1 cm thickness using the IDS method with an average drying rate of 0.018 kg H2O per kg dry-weight.hour and the water content was constant at 5.02% in 21 hours of drying time. The most suitable kinetics model is Page model, equation MR = exp (-0.049 t1,336) for 1.0 cm thickness, exp (-0.066 t1,222) for 1.5 cm thickness and exp (-0.049 t1,221) for 2.0 cm thickness. The quality of potato drying using ISD method is better than using OSD which can be seen from the color produced.
Hawaii Natural Energy Institute: Annual report, 1992
Not Available
1992-01-01
This progress report from the University of Hawaii at Manoa's School of Ocean and Earth Science and Technology describes state of the art research in tapping the energy in and around the Hawaiian Islands. Researchers are seeking new ways of generating electricity and producing methanol from sugarcane waste and other biomass. They are finding ways to encourage the expanded use of methanol as a transportation fuel. They are creating innovative and cost-efficient methods of producing and storing hydrogen gas, considered the fuel of the future''. Researchers are also developing the techniques and technologies that will enable us to tap the unlimited mineral resources of the surrounding ocean. they are testing methods of using the oceans to reduce the carbon dioxide being discharged to the atmosphere. And they are mapping the strategies by which the seas can become a major source of food, precious metals, and space for living and for industry. The achievements described in this annual report can be attributed to the experience, creativity, painstaking study, perseverance, and sacrifices of our the dedicated corps of researchers.
NASA Astrophysics Data System (ADS)
Chaudhuri, Sutapa
2010-05-01
Thunderstorms are perennial features of India. However, the severe thunderstorms of pre — monsoon season (April-May) over Kolkata (22°32'N, 88°20'E) are of great concern for imparting devastating effect on life and property on the ground and aviation aloft. The study is thus, focused on developing one hidden layer neural network model with variable learning rate back propagation algorithm to forecast such thunderstorms. Convective available potential energy (CAPE) and convective inhibition energy (CIN) are selected as the input parameters of the model after the estimation of various skill scores like, Probability of Detection (POD), False Alarm Ratio (FAR), Heidke Skill Score (HSS) and Odds Ratio Skill Score (Yule's Q) on different stability indices. During training the model, the squared error for forecasting severe thunderstorms is observed to be 0.0022 when the values of CIN within the range of 0 to 140 J kg-1 is taken as the input whereas the error is observed to be 0.0114 while the values of CAPE within the range of 2000 to 7000 J kg-1 is considered as the input. The values of CIN and CAPE at twelve to six hours prior to the occurrence of severe thunderstorms are considered in this study. During validation of the model, the percentage of prediction error with the values of CIN as input is observed to be 0.042% and that with CAPE as input is 0.162%. The values of CIN within the range of 0-140 J kg-1 are observed to be more persistent in forecasting severe thunderstorms over Kolkata than the values of CAPE within the range of 2000-7000 J kg-1.
World Energy Projection System Plus Model Documentation: Natural Gas Model
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
World Energy Projection System Plus Model Documentation: Natural Gas Module
2011-01-01
This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Natural Gas Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.
NASA Astrophysics Data System (ADS)
Campo, A.; Cortés, C.
This paper is concerned with a distinct and effective technique to insulate horizontal tubes carrying hot fluids without using the variety of insulating materials traditionally utilized in industry. The tubes transport hot fluids and are exposed to a natural convection environment of air at standard atmospheric temperature and pressure. Essentially, an ``equivalent quantity of insulation'' is provided by an envelope of straight symmetric baffles made from a low conductivity material that is affixed to the outer surface of the horizontal tubes. A simple 1-D lumped model of comparable precision to the customary 2-D differential model serves to regulate the thermal interaction between the two perpendicular fluid streams, one horizontal due to internal forced convection and the other vertical due to external natural convection in air. All computations are algebraic and lead to a rapid determination of the two quantities that are indispensable to design engineers: the mean bulk temperatures of the internal hot fluid moving either laminarly or turbulently, together with the degraded levels of heat transfer rates.
Kumar, Varun; Kumar, Manoj; Shakher, Chandra
2014-09-20
In this paper, the local convective heat transfer coefficient (h) is measured along the surface of an electrically heated vertical wire using digital holographic interferometry (DHI). Experiments are conducted on wires of different diameters. The experimentally measured values are within the range as given in the literature. DHI is expected to provide a more accurate local convective heat transfer coefficient (h) as the value of the temperature gradient required for the calculation of "h" can be obtained more accurately than by other existing optical interferometric techniques without the use of a phase shifting technique. This is because in digital holography phase measurement accuracy is expected to be higher.
Numerical simulation of melt convection in Czochralski growth
Rajaram, S.
1987-01-01
The temperature distribution and fluid flow in the crucible for growth of silicon crystals by the Czochralski process are obtained by simultaneously solving the Navier-Stokes equations and the energy equation numerically using finite differences. Probable flows are outlined for combinations of forced convection due to crystal rotation and natural convection due to imposed temperature gradients. Crystal rotation appears to be effective in isolating the crystal growth interface from the deleterious effects of buoyant convective flow. Crucible rotation counter to crystal rotation suppresses forced convection due to crystal rotation and imparts rotational velocity to a large portion of the melt. An increase in the aspect ratio of the melt (ratio of melt depth to crucible radius ) reduces thermal convection while thermal radiation losses from the free surface of the melt enhances it.
Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization
Bjorn Gunnarsson; Maria-Victoria Gunnarsson
2002-01-01
Icelandâs natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....
Internal Wave Generation by Convection
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel Michael
In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the
Wiser, Ryan; Bolinger, Mark; St. Clair, Matt
2004-12-21
Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.
Restoring Equilibrium to Natural Gas Markets: Can Renewable Energy Help?
Wiser, Ryan; Bolinger, Mark
2005-01-01
Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy technologies identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) can hedge natural gas price risk in more than one way, but a recent report by Berkeley Lab evaluates one such benefit in detail: by displacing gas-fired electricity generation, RE reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE. The Berkeley Lab report summarizes recent modeling studies that have evaluated the impact of RE deployment on gas prices, reviews the reasonableness of the results of these studies in light of economic theory and other research, and develops a simple tool that can be used to evaluate the impact of RE on gas prices without relying on a complex national energy model.
NASA Astrophysics Data System (ADS)
Kim, Chae Bin; Janes, Dustin; Arshad, Talha; Katzenstein, Joshua; Prisco, Nathan; McGuffin, Dana; Bonnecaze, Roger; Ellison, Christopher
2015-03-01
The Marangoni effect describes how fluid flows in response to gradients in surface energy. We recently developed a method for photochemically preprograming spatial surface energy patterns in glassy polystyrene (PS) thin films. UV irradiation through a mask selectively dehydrogenates the PS, thus increasing surface energy in the UV exposed regions compared to the unexposed regions. After heating the film to the liquid state, transport of polymer occurs from regions of low surface energy to regions of high surface energy. This method can be harnessed to rapidly manufacture polymer films possessing prescribed three-dimensional topographies reflective of the original light exposure pattern. To quantify and verify this phenomenon, a theoretical model that gives a more thorough understanding of the physics of this process, its limits and ways to apply it efficiently for various target metrics will also be presented along with comparisons between theoretical predictions and experimental observations. Finally, while PS dehydrogenation can be used to produce a variety of topographical patterns, judicious selection of the photosensitizing compounds in an otherwise transparent polymer expands the use of this method to more readily available light sources.
Alsabery, A I; Chamkha, A J; Saleh, H; Hashim, I
2017-05-24
This work analyses free convection flow of a nanofluid in an inclined square enclosure consisting of a porous layer and a nanofluid layer using the finite difference methodology. Sinusoidal temperature boundary conditions are imposed on the two opposing vertical walls. Nanofluids with water as base and Ag or Cu or Al2O3 or TiO2 nanoparticles are considered for the problem. The related parameters of this study are the Darcy number, nanoparticle volume fraction, phase deviation, amplitude ratio, porous layer thickness and the inclination angle of the cavity. A comparison with previously published work is performed and the results are in good agreement. Detailed numerical data for the fluid flow and thermal distributions inside the square enclosure, and the Nusselt numbers are presented. The obtained results show that the heat transfer is considerably affected by the porous layer increment. Several nanoparticles depicted a diversity improvement on the convection heat transfer.
Potential for natural evaporation as a reliable renewable energy resource.
Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur
2017-09-26
About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.
NASA Astrophysics Data System (ADS)
Yang, Xuegeng; Mühlenhoff, Sascha; Nikrityuk, Petr A.; Eckert, Kerstin
2013-03-01
Magnetic fields are well-established in electrochemistry as an attractive tool to improve both the quality of the deposit as well as the deposition rate. The key mechanism is a mass transfer enhancement by Lorentz-force-driven convection. However, during electrolysis this convection interacts with buoyancy-driven convection, which arises from concentration differences, in a sometimes intriguing way. In the case of a Lorentz force opposing buoyancy, this is due to the growth of a bubble-like zone of less-concentrated cupric ion solution at the lower part of the vertical cathode when copper electrolysis is performed. If buoyancy is strong enough to compete with the Lorentz force, this zone rises along the cathode and causes surprisingly unsteady initial transient behaviour. We explore this initial transient under galvanostatic conditions by analyzing the development of the concentration and velocity boundary layers obtained by Mach-Zehnder interferometry and particle image velocimetry. Particular attention is also paid to higher current densities above the limiting current, obtained from potentiodynamic measurements, at which a chaotic advection takes place. The results are compared by scaling analysis.
NASA Astrophysics Data System (ADS)
Raju, S. Suresh Kumar; Narahari, Marneni; Pendyala, Rajashekhar
2016-11-01
In the present study, a numerical analysis is made for unsteady magnetohydrodynamic (MHD) natural convective boundary-layer flow past an impulsively started semi-infinite vertical plate with variable surface temperature and mass flux in the presence of thermal radiation and chemical reaction. The Crank-Nicolson implicit finite difference technique is implemented to solve the system of governing equations. Numerical results are obtained for different values of system parameters and analyzed through graphs. The velocity profiles of the present study have been compared with the available results for the limiting case and a good agreement is found between the results.
NASA Technical Reports Server (NTRS)
Abramzon, B.; Edwards, D. K.; Sirignano, W. A.
1986-01-01
A numerical study has been made of transient heat transfer and fluid flow in a cylindrical enclosure containing a two-layer gas-and-liquid system. The geometric configuration and the boundary conditions of the problem are relevant to the analysis of the preignition processes during the fire accident situation involving a pool of liquid fuel in the vicinity of an ignition source. It is demonstrated that the effects of the natural and thermocapillary convection, radiative transfer, thermal inertia and conduction of the walls bounding the enclosure, as well as, the magnitude of the gravity field play important roles in the development of the temperature and velocity fields in the container.
NASA Technical Reports Server (NTRS)
Abramzon, B.; Edwards, D. K.; Sirignano, W. A.
1986-01-01
A numerical study has been made of transient heat transfer and fluid flow in a cylindrical enclosure containing a two-layer gas-and-liquid system. The geometric configuration and the boundary conditions of the problem are relevant to the analysis of the preignition processes during the fire accident situation involving a pool of liquid fuel in the vicinity of an ignition source. It is demonstrated that the effects of the natural and thermocapillary convection, radiative transfer, thermal inertia and conduction of the walls bounding the enclosure, as well as, the magnitude of the gravity field play important roles in the development of the temperature and velocity fields in the container.
Okada, Kazuto . Interdisciplinary Graduate School of Engineering Science); Ozoe, Hiroyuki . Inst. of Advanced Material Study)
1993-03-01
The finite-difference computational scheme is developed for two-dimensional oscillatory natural convection of zero Prandtl number fluid in an open boat heated and cooled from opposing vertical walls. Various computational conditions are tested, such as the initial condition, time step length, finite-difference width, and finite-difference scheme. Instantaneous contour maps and velocity vectors in oscillatory states are presented in a series of maps to represent the fluctuating characteristics of two-dimensional roll cells. The physical conditions are for a boat with aspect ratio A = 3[minus]5 at Pr = 0 and Gr = 14,000-40,000.
Phenomenology of turbulent convection
NASA Astrophysics Data System (ADS)
Verma, Mahendra; Chatterjee, Anando; Kumar, Abhishek; Samtaney, Ravi
2016-11-01
We simulate Rayleigh-Bénard convection (RBC) in which a fluid is confined between two thermally conducting plates. We report results from direct numerical simulation (DNS) of RBC turbulence on 40963 grid, the highest resolution hitherto reported, on 65536 cores of Cray XC40, Shaheen II, at KAUST. The non-dimensional parameters of our simulation are: the Rayleigh number Ra = 1 . 1 ×1011 (the highest ever for a pseudo-spectral simulation) and Prandtl number of unity. We present energy flux diagnostics of shell-to-shell (in wave number space) transfer. Furthermore, noting that convective flows are anisotropic due to buoyancy, we quantify anisotropy by subdividing each wavenumber shell into rings and quantify ring energy spectrum. An outstanding question in convective turbulence is the wavenumber scaling of the energy spectrum. Our pseudo-spectral simulations of turbulent thermal convection coupled with novel energy transfer diagnostics have provided a definitive answer to this question. We conclude that convective turbulence exhibits behavior similar to fluid turbulence, that is, Kolmogorov's k - 5 / 3 spectrum with forward and local energy transfers, along with a nearly isotropic energy distribution. The supercomputer Shaheen at KAUST was utilized for the simulations.
Optimal Energy Consumption Analysis of Natural Gas Pipeline
Liu, Enbin; Li, Changjun; Yang, Yi
2014-01-01
There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410
Optimal energy consumption analysis of natural gas pipeline.
Liu, Enbin; Li, Changjun; Yang, Yi
2014-01-01
There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent.
THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE
Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam E-mail: jdolence@astro.princeton.edu
2013-07-01
Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K{sub r} {approx} K{sub {theta}} + K{sub {phi}}). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.
NASA Astrophysics Data System (ADS)
Sooraj, K. P.; Seo, Kyong-Hwan
2013-09-01
The NCEP Climate Forecast System (CFS) with the relaxed Arakawa Schubert (RAS, hereafter referred to as CTRL) convection scheme of Moorthi and Suarez exhibits better performance in representing boreal summer tropical intraseasonal variability as compared with a simulation using simplified Arakawa-Schubert scheme. The intraseasonal moist static energy (MSE) budget is analyzed in this version of the CFS model (CTRL), which produces realistic eastward and northward propagation characteristics. The moist and thermodynamic processes involved in the maintenance and propagation of the poleward moving intraseasonal oscillation (ISO) disturbances are examined here. Budget diagnostics show that horizontal MSE advection is the principal component of the budget, contributing to the poleward movement of the convection. The injection of MSE moistens the atmosphere north of the convective area causing the poleward movement of convection by destabilization of the atmosphere. The moistening process is mainly contributed by the climatological wind acting on the anomalous moisture gradient as confirmed from the examination of moisture advection equation. While surface enthalpy fluxes (consisting of radiative and surface turbulent heat fluxes) maintain the ISO anomalies, they oppose the MSE tendency due to horizontal advection thus regulating the poleward propagation characteristics. In addition, the model results show that wind-evaporation feedback dominates over cloud-radiation feedback for ISO propagation; this is in contrast to our estimates using the newly available European Centre for Medium Range Weather Forecasts Interim reanalysis. Sensitivity experiments suggest that intraseasonal variability in the CFS model with the RAS scheme is highly sensitive to the parameterization of both the shallow convection and the convective rain evaporation and downdrafts. Removal of these components adversely affects the propagation characteristics and greatly reduces the amplitude of
Stein, Robert F
2012-07-13
Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.
Energy expenditure on recreational visits to different natural environments.
Elliott, Lewis R; White, Mathew P; Taylor, Adrian H; Herbert, Stephen
2015-08-01
Physical inactivity poses a significant challenge to physical and mental health. Environmental approaches to tackle physical inactivity have identified natural environments as potentially important public health resources. Despite this, little is known about characteristics of the activity involved when individuals visit different types of natural environment. Using Natural England's Monitor of Engagement with the Natural Environment Survey, we examined 71,603 English respondents' recreational visits to natural environments in the past week. Specifically, we examined the intensity of the activities they undertook on the visits (METs), the duration of their visit, and the associated total energy expenditure (MET minutes). Visits to countryside and urban greenspace environments were associated with more intense activities than visits to coastal environments. However, visits to coastal environments were associated with the most energy expenditure overall due to their relatively long duration. Results differed by the urbanity or rurality of the respondent's residence and also how far respondents travelled to their destination. Knowledge of what types of natural environment afford the highest volumes and intensities of physical activity could inform landscape architecture and exercise prescriptions. Isolating activity-supporting characteristics of natural environments that can be translated into urban design is important in providing physical activity opportunities for those less able to access expansive environments.
NASA Astrophysics Data System (ADS)
Puhales, Franciano Scremin; Rizza, Umberto; Degrazia, Gervásio Annes; Acevedo, Otávio Costa
2013-02-01
In this work a parametrization for the transport terms of the turbulent kinetic energy (TKE) budget equation, valid for a convective boundary layer (CBL) is presented. This is a hard task to accomplish from experimental data, especially because of the difficulty associated to the measurements of pressure turbulent fluctuations, which are necessary to determine the pressure correlation TKE transport term. Thus, employing a large eddy simulation (LES) a full diurnal planetary boundary layer (PBL) cycle was simulated. In this simulation a forcing obtained from experimental data is used, so that the numerical experiment represents a more realistic case than a stationary PBL. For this study all terms of the TKE budget equation were determined for a CBL. From these data, polynomials that describe the TKE transport terms’ vertical profiles were adjusted. The polynomials found are a good description of the LES data, and from them it is shown that a simple formulation that directly relates the transport terms to the TKE magnitude has advantages on other parameterizations commonly used in CBL numerical models. Furthermore, the present study shows that the TKE turbulent transport term dominates over the TKE transport by pressure perturbations and that for most of the CBL these two terms have opposite signs.
Natural Regulation of Energy Flow in a Green Quantum Photocell.
Arp, Trevor B; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M
2016-12-14
Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light energy harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light-harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we compare the theoretical minimum energy fluctuations in nanoscale quantum heat engine photocells that incorporate one or two photon-absorbing channels and show that fluctuations are naturally suppressed in the two-channel photocell. This intrinsic suppression acts as a passive regulation mechanism that enables the efficient conversion of varying incident solar power into a steady output for absorption over a broad range of the solar spectrum on Earth. Remarkably, absorption in the green portion of the spectrum provides no inherent regulatory benefit, indicating that green light should be rejected in a photocell whose primary role is the regulation of energy flow.
Lisowski, D. D.; Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Bremer, N.; Aeschlimann, R. W.
2014-06-01
The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m^{2} to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.
Takeuchi, Y.; Hata, K.; Shiotsu, M.; Sakurai, A.
1995-12-31
The natural convection heat transfer coefficients on single horizontal cylinders with uniform surface heat fluxes were derived numerically from the fundamental equations for laminar natural convection heat transfer by finite difference method without the boundary layer approximation for a wide range of Rayleigh numbers for the Prandtl numbers ranging from 0.005 to 3000. Based on the numerical solutions for the Prandtl numbers, a correlation which describes the numerical solutions of the average Nusselt numbers for the investigated Prandtl numbers within {+-}5 percent is presented. The average Nusselt numbers calculated from the correlation are compared with the experimental results for various fluids with the Prandtl numbers ranging from 0.005 to about 18000 obtained by the authors and by other workers: the authors` experimental results for various liquids such as water, ethanol, glycerin, liquid sodium, liquid nitrogen and liquid helium obtained under a wide range of bulk liquid temperatures and system pressures with a variety of cylinder diameters agree with the correlation within {+-}20 percent differences when the fluid properties are evaluated at the reference temperature.
Resonance versus aerodynamics for energy savings in agile natural flyers
NASA Astrophysics Data System (ADS)
Kok, Jia M.; Chahl, Javaan
2014-03-01
Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.
NASA Astrophysics Data System (ADS)
Robertson, Franklin R.; Spencer, Roy W.; Fitzjarrald, Daniel E.
The tropical atmosphere is continually overturning, with deep moist convective cloud systems exporting energy from the subcloud layer and depositing it in the upper troposphere. A new satellite index of this deep convective activity is based upon measurements of large ice particles in the upper portions of tropical convective complexes. This 20-year record reveals a strong signal of the El Niño Southern Oscillation (ENSO), with 10 to 15% upward (downward) swings in the deep convective index during El Niño (La Niña). Warming of tropical sea surface temperatures (SST), whether from anthropogenically-produced greenhouse gases or natural climate variability, is expected to be associated with more convective overturning of the atmosphere. While other tropical precipitation climatologies vary dramatically in their support of this relationship, the present deep convective ice (DCI) index shows a strong correlation between interannual variations of tropical convection and SST.
NASA Astrophysics Data System (ADS)
Javed, Tariq; Mehmood, Z.; Abbas, Z.
2017-02-01
This article contains numerical results for free convection through square enclosure enclosing ferrofluid saturated porous medium when uniform magnetic field is applied upon the flow along x-axis. Heat is provided through bottom wall and a square blockage placed near left or right bottom corner of enclosure as a heat source. Left and right vertical boundaries of the cavity are considered insulated while upper wall is taken cold. The problem is modelled in terms of system of nonlinear partial differential equations. Finite element method has been adopted to compute numerical simulations of mathematical problem for wide range of pertinent flow parameters including Rayleigh number, Hartman number, Darcy number and Prandtl number. Analysis of results reveals that the strength of streamline circulation is an increasing function of Darcy and Prandtl number where convection heat transfer is dominant for large values of these parameters whereas increase in Hartman number has opposite effects on isotherms and streamline circulations. Thermal conductivity and hence local heat transfer rate of fluid gets increased when ferroparticles are introduced in the fluid. Average Nusselt number increases with increase in Darcy and Rayleigh numbers while it is decreases when Hartman number is increased.
Thermal convection in vertically suspended soap films
NASA Astrophysics Data System (ADS)
Zhang, Jie
In normal fluids, a temperature difference can create a density difference. In the presence of the gravitational field, denser fluid will fall and lighter fluid will rise, causing fluid motion known as thermal convection. This type of convection can occur on different scales, from a single growing crystal to mantle movement inside the earth. Although many experiments have been conducted in unstably stratified fluids, there have been few laboratory experiments studying convective turbulence in stably stratified fluids, which is more common in nature. Here I present a two-dimensional (2D) convection in a stably stratified vertical soap film. It was found that the interaction between the gravitational potential energy, due to the 2D density fluctuation, and the kinetic energy is important. This interplay between the two energy sources manifests itself in the statistical properties of velocity and 2D density fluctuations in the system. Our experimental findings shed new lights to a turbulent system that strongly couples to a non-passive field.
Scaling of heat flux and energy spectrum for very large Prandtl number convection.
Pandey, Ambrish; Verma, Mahendra K; Mishra, Pankaj K
2014-02-01
Under the limit of infinite Prandtl number, we derive analytical expressions for the large-scale quantities, e.g., Péclet number Pe, Nusselt number Nu, and rms value of the temperature fluctuations θ(rms). We complement the analytical work with direct numerical simulations, and show that Nu ∼ Ra(γ) with γ ≈ (0.30-0.32), Pe ∼ Ra(η) with η ≈ (0.57-0.61), and θ(rms) ∼ const. The Nusselt number is observed to be an intricate function of Pe, θ(rms), and a correlation function between the vertical velocity and temperature. Using the scaling of large-scale fields, we show that the energy spectrum E(u)(k) ∼ k(-13/3), which is in a very good agreement with our numerical results. The entropy spectrum E(θ)(k), however, exhibits dual branches consisting of k(-2) and k(0) spectra; the k(-2) branch corresponds to the Fourier modes θ[over ̂](0,0,2n), which are approximately -1/(2 nπ). The scaling relations for Prandtl number beyond 10(2) match with those for infinite Prandtl number.
Campbell, A.N.; Cardoso, S.S.S.; Hayhurst, A.N.
2008-07-15
When cool flames, or indeed any exothermic chemical reaction, occur in a fluid inside an unstirred vessel, the heat from the reaction often induces temperature gradients and consequently motion, i.e., natural convection. The intensity of the resulting flow is governed by the Rayleigh number (Ra). This work simulates numerically the behavior of Sal'nikov's reaction, P{yields} A{yields}B, under the influence of natural convection in an unstirred spherical reactor. This reaction is the simplest to exhibit the thermokinetic oscillations characterizing cool flames. The behavior of this system can be represented on a three-dimensional regime diagram, whose axes are ratios of the characteristic timescales ({tau}) for chemical reaction, diffusion (of both heat and mass), and natural convection. Previous work has identified a region of oscillations on this diagram in the purely diffusive limit, when Ra=0. This work extends this analysis to the general 3D space, where diffusion and natural convection are both important. A region in which oscillations are observed has been found for fixed values of the first-order rate constants for Sal'nikov's reaction. There is a distinct change in the shape of the region of oscillations around the critical value of Ra{proportional_to}500, when natural convection becomes important. When diffusion dominates transport (Ra<500), the boundaries between oscillatory and nonoscillatory solutions are largely independent of the ratio of timescales {tau}{sub step}2/{tau}{sub convection} and agree well with the values found previously in the purely diffusive limit. When natural convection is important (Ra>500), the oscillations occur over a wider range of parameters than is the case for a diffusive system. The presence of natural convection also leads to various, more complex behaviors than are seen in the diffusive or well-mixed limits. A region in the regime diagram was found where the oscillations in temperature and the concentration of A have
Precision Photometry to Study the Nature of Dark Energy
Lorenzon, Wolfgang; Schubnell, Michael
2011-01-30
Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.
Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices
Wiser, Ryan; Bolinger, Mark
2005-06-01
High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.
Convective heat transfer in buildings: recent research results. Rev
Bauman, F.; Gadgil, A.; Kammerud, R.; Altmayer, E.; Nansteel, M.W.
1982-10-01
Recent experimental and numerical studies of convective heat transfer in buildings are described, and important results are presented. The experimental work has been performed on small-scale, water-filled enclosures; the numerical analysis results have been produced by a computer program based on a finite-difference scheme. The convective processes investigated in this research are: (1) natural convective heat transfer between room surfaces and the adjacent air, (2) natural convective heat transfer between adjacent rooms through a doorway or other openings, and (3) forced convection between the building and its external environment (such as wind-driven ventilation through windows, doors, or other openings). Results obtained at Lawrence Berkeley Laboratory (LBL) for surface convection coefficients are compared with existing ASHRAE correlations, and differences can have a significant impact on the accuracy of building energy analysis computer simulations. Interzone coupling correlations obtained from experimental work are in reasonable agreement with recently published experimental results and with earlier published work. Numerical simulations of wind-driven natural ventilation are presented. They exhibit good qualitative agreement with published wind-tunnel data.
Asian natural gas pipeline proposed for easing energy, feedstock strains
Haggin, J. )
1994-06-06
Nearly every country on the program at the recent Asian Natural Gas 5 Conference in Singapore reported on attempts to maximize the use of natural gas as a fuel and a feedstock. But no one made a more startling presentation than Masaru Hirata, chairman of the National Pipeline Research Society of Japan. His proposal: construct an international trunk pipeline network linking natural gas fields in Central Asia, Southeast Asia, Siberia, and North America with the main markets of Asia, primarily Japan and China. Total length -- 25,500 miles. He cites International Energy Agency data projecting a 70% increase in energy demand in the Pacific region between 1989 and 2000. Natural gas will be expected to satisfy anticipated energy needs into the next century. An important element in Hirata's thinking is the promotion of international cooperation among the beneficiaries of the network. In the Asia-Pacific region, natural gas is more plentiful than oil. Liquefied natural gas (LNG) plants have been built in Brunei, Indonesia, Malaysia, and Australia. All of them sell LNG to Japan (the world's largest importer of LNG), South Korea, and Taiwan. Additional vast reserves are known to exist in Siberia, near Sakhalin Island, and in the western regions of China. Hirata's network is aimed at bringing the gas from these distant deposits to consumers in the coastal regions of Asia. There are six major parts to the proposed network: Turkmenistan-West China-Japan; Yakutsk-China-Korea-Japan; Alaska-Sakhalin Island-Japan; ASEAN-South China; Within ASEAN; and Australia-ASEAN. The estimated cost of the project is about $66 billion in current dollars.
NASA Astrophysics Data System (ADS)
Timchenko, V.; Tkachenko, O. A.; Giroux-Julien, S.; Ménézo, C.
2015-05-01
Numerical and experimental investigations of the flow and heat transfer in open-ended channel formed by the double skin façade have been undertaken in order to improve understanding of the phenomena and to apply it to passive cooling of building integrated photovoltaic systems. Both uniform heating and non-uniform heating configurations in which heat sources alternated with unheated zones on both skins were studied. Different periodic and asymmetric heating modes have been considered for the same aspect ratio 1/15 of wall distance to wall height and for periodicity 1/15 and 4/15 of heated/unheated zones and heat input, 220 W/m2. In computational study three dimensional transient LES simulation was carried out. It is shown that in comparison to uniformly heating configuration, non-uniformly heating configuration enhances both convective heat transfer and chimney effect.
Natural atomic orbital based energy density analysis: Implementation and applications
NASA Astrophysics Data System (ADS)
Baba, Takeshi; Takeuchi, Mari; Nakai, Hiromi
2006-06-01
We present an improvement of energy density analysis (EDA), which partitions the total energy obtained by Hartree-Fock and/or density functional theory calculations, with the use of the natural atomic orbital (NAO) [A.E. Reed et al., J. Chem. Phys. 83 (1985) 735] and Löwdin's symmetric-orthogonal orbital (LSO). The present NAO- and LSO-EDA schemes are applied to analyses of CO 2 and Li9+ with various basis sets. Numerical results confirm that NAO-EDA exhibits less basis-set dependence, while the conventional results are very sensitive to the adopted basis sets.
Scales of Free Convection around a Vertical Cylinder
ERIC Educational Resources Information Center
Lira, Ignacio
2008-01-01
The natural scales of the laminar steady-state free convection flow regime surrounding an isothermal vertical cylinder are established. It is shown that nondimensionalizing the momentum and energy equations in terms of the Rayleigh or Boussinesq numbers allows the use of the Prandtl number as a criterion to establish whether the motive buoyancy…
Scales of Free Convection around a Vertical Cylinder
ERIC Educational Resources Information Center
Lira, Ignacio
2008-01-01
The natural scales of the laminar steady-state free convection flow regime surrounding an isothermal vertical cylinder are established. It is shown that nondimensionalizing the momentum and energy equations in terms of the Rayleigh or Boussinesq numbers allows the use of the Prandtl number as a criterion to establish whether the motive buoyancy…
Department of Energy power generation programs for natural gas
Bajura, R.A.
1995-04-01
The U.S. Department of Energy (DOE) is sponsoring two major programs to develop high efficiency, natural gas fueled power generation technologies. These programs are the Advanced Turbine Systems (ATS) Program and the Fuel Cell Program. While natural gas is gaining acceptance in the electric power sector, the improved technology from these programs will make gas an even more attractive fuel, particularly in urban areas where environmental concerns are greatest. Under the auspices of DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE), the 8-year ATS Program is developing and will demonstrate advanced gas turbine power systems for both large central power systems and smaller industrial-scale systems. The large-scale systems will have efficiencies significantly greater than 60 percent, while the industrial-scale systems will have efficiencies with at least an equivalent 15 percent increase over the best 1992-vintage technology. The goal is to have the system ready for commercial offering by the year 2000.
Disruptions in Energy Balance: Does Nature overcome Nurture?
Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya
2008-01-01
Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193
Disruptions in energy balance: does nature overcome nurture?
Fernández, José R; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya
2008-04-22
Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments supports the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual's genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities.
Aaiza, Gul; Khan, Ilyas; Shafie, Sharidan
2015-12-01
Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.
NASA Astrophysics Data System (ADS)
Martyushev, S. G.; Miroshnichenko, I. V.; Sheremet, M. A.
2014-01-01
Unsteady regimes of convective-radiative heat transfer in a cubic enclosure with finitely thick heat-conducting walls in the presence of a constant-temperature energy source have been modeled mathematically under the conditions of convective heat exchange with the environment. A mathematical model has been formulated in dimensionless variables "vector potential-vorticity vector-temperature;" the model was realized numerically by the finite-difference method. An analysis of radiative heat transfer has been made on the basis of the surface-radiation approximation with the balance method in Polyak's version. Three-dimensional temperature and velocity fields and dependences for the average Nusselt number have been obtained; they reflect the influence of the reduced emissivity factor of interior surfaces of enclosing walls, of the relative thermal conductivity, and of the unsteadiness factor on the flow regimes and heat transfer.
Tzanos, C. P.
2007-05-16
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel
On sound generation by turbulent convection: A new look at old results
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.; Stein, R. F.; Ulmschneider, P.
1994-01-01
We have revisited the problem of acoustic wave generation by turbulent convection in stellar atmospheres. The theory of aerodynamically generated sound, originally developed by Lighthill and later modified by Stein to include the effects of stratification, has been used to estimate the acoustic wave energy flux generated in solar and stellar convection zones. We correct the earlier computations by incorporating an improved description of the spatial and temporal spectrum of the turbulent convection. We show the dependence of the resulting wave fluxes on the nature of the turbulence, and compute the wave energy spectra and wave energy fluxes generated in the Sun on the basis of a mixing-length model of the solar convection zone. In contrast to the previous results, we show that the acoustic energy generation does not depend very sensitively on the turbulent energy spectrum. However, typical total acoustic fluxes of order F(sub A) = 5 x 10(exp 7) ergs/sq cm/s with a peak of the acoustic frequency spectrum near omega = 100 mHz are found to be comparable to those previously calculated. The acoustic flux turns out to be strongly dependent on the solar model, scaling with the mixing-length parameter alpha as alpha(exp 3.8). The computed fluxes most likely constitute a lower limit on the acoustic energy produced in the solar convection zone if recent convection simulations suggesting the presence of shocks near the upper layers of the convection zone apply to the Sun.
On sound generation by turbulent convection: A new look at old results
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.; Stein, R. F.; Ulmschneider, P.
1994-01-01
We have revisited the problem of acoustic wave generation by turbulent convection in stellar atmospheres. The theory of aerodynamically generated sound, originally developed by Lighthill and later modified by Stein to include the effects of stratification, has been used to estimate the acoustic wave energy flux generated in solar and stellar convection zones. We correct the earlier computations by incorporating an improved description of the spatial and temporal spectrum of the turbulent convection. We show the dependence of the resulting wave fluxes on the nature of the turbulence, and compute the wave energy spectra and wave energy fluxes generated in the Sun on the basis of a mixing-length model of the solar convection zone. In contrast to the previous results, we show that the acoustic energy generation does not depend very sensitively on the turbulent energy spectrum. However, typical total acoustic fluxes of order F(sub A) = 5 x 10(exp 7) ergs/sq cm/s with a peak of the acoustic frequency spectrum near omega = 100 mHz are found to be comparable to those previously calculated. The acoustic flux turns out to be strongly dependent on the solar model, scaling with the mixing-length parameter alpha as alpha(exp 3.8). The computed fluxes most likely constitute a lower limit on the acoustic energy produced in the solar convection zone if recent convection simulations suggesting the presence of shocks near the upper layers of the convection zone apply to the Sun.
On sound generation by turbulent convection: A new look at old results
NASA Astrophysics Data System (ADS)
Musielak, Z. E.; Rosner, R.; Stein, R. F.; Ulmschneider, P.
1994-03-01
We have revisited the problem of acoustic wave generation by turbulent convection in stellar atmospheres. The theory of aerodynamically generated sound, originally developed by Lighthill and later modified by Stein to include the effects of stratification, has been used to estimate the acoustic wave energy flux generated in solar and stellar convection zones. We correct the earlier computations by incorporating an improved description of the spatial and temporal spectrum of the turbulent convection. We show the dependence of the resulting wave fluxes on the nature of the turbulence, and compute the wave energy spectra and wave energy fluxes generated in the Sun on the basis of a mixing-length model of the solar convection zone. In contrast to the previous results, we show that the acoustic energy generation does not depend very sensitively on the turbulent energy spectrum. However, typical total acoustic fluxes of order FA = 5 x 107 ergs/sq cm/s with a peak of the acoustic frequency spectrum near omega = 100 mHz are found to be comparable to those previously calculated. The acoustic flux turns out to be strongly dependent on the solar model, scaling with the mixing-length parameter alpha as alpha3.8. The computed fluxes most likely constitute a lower limit on the acoustic energy produced in the solar convection zone if recent convection simulations suggesting the presence of shocks near the upper layers of the convection zone apply to the Sun.
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
NASA Astrophysics Data System (ADS)
Jha, B. K.; Aina, B.; Muhammad, S. A.
2015-03-01
This study investigates analytically the hydrodynamic and thermal behaviour of a fully developed natural convection flow in a vertical micro-porous-annulus (MPA) taking into account the velocity slip and temperature jump at the outer surface of inner porous cylinder and inner surface of outer porous cylinder. A closed — form solution is presented for velocity, temperature, volume flow rate, skin friction and rate of heat transfer expressed as a Nusselt number. The influence of each governing parameter on hydrodynamic and thermal behaviour is discussed with the aid of graphs. During the course of investigation, it is found that as suction/injection on the cylinder walls increases, the fluid velocity and temperature is enhanced. In addition, it is observed that wall surface curvature has a significant effect on flow and thermal characteristics.
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge-Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter.
NASA Technical Reports Server (NTRS)
Griffin, P. R.; Motakef, S.
1989-01-01
Consideration is given to the influence of temporal variations in the magnitude of gravity on natural convection during unidirectional solidification of semiconductors. It is shown that the response time to step changes in g at low Rayleigh numbers is controlled by the momentum diffusive time scale. At higher Rayleigh numbers, the response time to increases in g is reduced because of inertial effects. The degree of perturbation of flow fields by transients in the gravitational acceleration on the Space Shuttle and the Space Station is determined. The analysis is used to derive the requirements for crystal growth experiments conducted on low duration low-g vehicles. Also, the effectiveness of sounding rockets and KC-135 aircraft for microgravity experiments is examined.