Alternative Fuels Data Center: Natural Gas Fueling Infrastructure
Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural
Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and
Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on
Critical Infrastructure Rebuild Prioritization using Simulation Optimization
2007-03-01
23 Figure 2.9 Production by temperature and production made from a crude oil (EIA.com)24 Figure 2.10 Natural gas industry... Oil infrastructure physical layer ...................................................................... 45 Figure 3.6 Natural gas infrastructure...information layer.......................................................... 55 Figure 3.11 Oil infrastructure information layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, John
2015-04-02
Presentation by Senior Engineer John Gonzales on Evaluating Investments in Natural Gas Vehicles and Infrastructure for Your Fleet using the Vehicle Infrastructure Cash-flow Estimation (VICE) 2.0 model.
Bernath-Plaisted, Jacy; Nenninger, Heather; Koper, Nicola
2017-07-01
The rapid expansion of oil and natural gas development across the Northern Great Plains has contributed to habitat fragmentation, which may facilitate brood parasitism of ground-nesting grassland songbird nests by brown-headed cowbirds ( Molothrus ater ), an obligate brood parasite, through the introduction of perches and anthropogenic edges. We tested this hypothesis by measuring brown-headed cowbird relative abundance and brood parasitism rates of Savannah sparrow ( Passerculus sandwichensis ) nests in relation to the presence of infrastructure features and proximity to potential perches and edge habitat. The presence of oil and natural gas infrastructure increased brown-headed cowbird relative abundance by a magnitude of four times, which resulted in four times greater brood parasitism rates at infrastructure sites. While the presence of infrastructure and the proximity to roads were influential in predicting brood parasitism rates, the proximity of perch sites was not. This suggests that brood parasitism associated with oil and natural gas infrastructure may result in additional pressures that reduce productivity of this declining grassland songbird.
Nenninger, Heather; Koper, Nicola
2017-01-01
The rapid expansion of oil and natural gas development across the Northern Great Plains has contributed to habitat fragmentation, which may facilitate brood parasitism of ground-nesting grassland songbird nests by brown-headed cowbirds (Molothrus ater), an obligate brood parasite, through the introduction of perches and anthropogenic edges. We tested this hypothesis by measuring brown-headed cowbird relative abundance and brood parasitism rates of Savannah sparrow (Passerculus sandwichensis) nests in relation to the presence of infrastructure features and proximity to potential perches and edge habitat. The presence of oil and natural gas infrastructure increased brown-headed cowbird relative abundance by a magnitude of four times, which resulted in four times greater brood parasitism rates at infrastructure sites. While the presence of infrastructure and the proximity to roads were influential in predicting brood parasitism rates, the proximity of perch sites was not. This suggests that brood parasitism associated with oil and natural gas infrastructure may result in additional pressures that reduce productivity of this declining grassland songbird. PMID:28791134
How Critical Is Critical Infrastructure?
2015-09-01
electrical power, telecommunications, transportation, petroleum liquid , or natural gas as shown in Figure 34 from the National Infrastructure Protection...Natural Gas Segment Food and Agriculture Sector Government facilities Sector Healthcare and Public Health Sector Information Technology...514 religious meeting places, 127 gas 69 “Current United States GDP,” 2015, http
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William
This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supplymore » chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.« less
Natural Gas in the Rocky Mountains: Developing Infrastructure
2007-01-01
This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.
Building a Business Case for Compressed Natural Gas in Fleet Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
2015-03-19
Natural gas is a clean-burning, abundant, and domestically produced source of energy. Compressed natural gas (CNG) has recently garnered interest as a transportation fuel because of these attributes and because of its cost savings and price stability compared to conventional petroleum fuels. The National Renewable Energy Laboratory (NREL) developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG vehicle and CNG fueling infrastructure projects.
Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.; Gonzales, J.
2014-09-01
This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.
Natural Gas Imports and Exports
2017-01-01
Natural gas net imports set a record low of 685 billion cubic feet (Bcf) in 2016, continuing a decline for the 10th consecutive year. U.S. exports were more than three times larger than the level 10 years ago as a result of significant infrastructure improvements to natural gas pipelines and liquefied natural gas facilities. These changes are discussed in the U.S. Natural Gas Imports & Exports 2016 report.
2014-09-01
President Obama lamented, “Our infra- structure used to be the best, but our lead has slipped ... Countries in Eu- rope and Russia invest more in...gas generators. Natural gas turbine generators would al- low the Iraqis to make use of large natural gas reserves within their coun- try. However...power authority? How do the operators keep the turbine from silting up? Who provides training for the operators and maintainers? Who trains the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Two online resources help fleets evaluate the economic soundness of a compressed natural gas program. The National Renewable Energy Laboratory's (NREL's) Vehicle Infrastructure and Cash-Flow Evaluation (VICE 2.0) model and the accompanying report, Building a Business Case for Compressed Natural Gas in Fleet Applications, are uniquely designed for fleet managers considering an investment in CNG and can help ensure wise investment decisions about CNG vehicles and infrastructure.
ISO New England Dual Fuel Capabilities to Limit Natural Gas and Electricity Interdependencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adder, Justin M.
Since 2000, natural gas has seen tremendous growth as a fuel source for electricity generation in the United States (U.S.) with annual installations exceeding 20 GW in all but four years. It also accounts for an increasingly significant share of the nation’s electricity generation, growing from around 15 percent in the early part of the 2000s to between 26 and 29 percent in the last three years. (1) Increasing reliance on natural gas has led to concerns that an extreme weather event – which may cause curtailments in gas delivery – or a natural gas infrastructure failure could lead tomore » local or regional electric reliability issues. (2) These concerns stem from differences in delivery methods of natural gas to electric generating units (EGUs) contrasted with the fuel delivery and storage methods for traditional baseload power systems (i.e. coal and nuclear units).1 (3) Although it seems that there is an abundance of natural gas in a post-shale gas world, infrastructure limitations and differences in electric and natural gas markets persist that differentiate natural gas-fired generators from traditional baseload power generators. Such concerns can be partially mitigated by modifying natural gas EGUs for operation on secondary fuels and installing on-site fuel storage for the secondary fuel, thus ensuring continuity of operation in the case of a gas delivery problem.2 This report examines technical, regulatory, and market issues associated with operating power plants primarily fueled with natural gas, on a secondary fuel, such as fuel oil or liquefied natural gas (LNG). In addition, a regional case study was completed to identify the current and near-term potential for dual fuel operation in New England, along with a market impact analysis of potential cost savings during an extreme weather event. The New England Independent System Operator (ISO-NE) was selected as the study area based on a preponderance of natural gas-fired generators contributing to the regional generating capacity mix (nearly 50 percent natural gas), limited natural gas supply infrastructure, and the potential for natural gas delivery disruptions due to cold weather events, exacerbated by the lack of bulk natural gas storage in the region.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...
Cascading of Fluctuations in Interdependent Energy Infrastructures. Gas-Grid Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Lebedev, Vladimir; Backhaus, Scott N.
2014-09-05
The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generatorsmore » results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipelines and use this model to explore the effect of intermittent wind generation on the fluctuations of pressure in natural gas pipelines. The mean square pressure fluctuations are found to grow linearly in time with points of maximum deviation occurring at the locations of flow reversals.« less
Effects of Hydrocarbon Extraction on Landscapes of the Appalachian Basin
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Kalaly, Siddiq S.
2015-09-30
The need for energy resources has created numerous economic opportunities for hydrocarbon extraction in the Appalachian basin. The development of alternative energy natural gas resources from deep-shale drilling techniques, along with conventional natural gas extraction methods, has created a flurry of wells, roads, pipelines, and related infrastructure across many parts of the region. An unintended and sometimes overlooked consequence of these activities is their effect on the structure and function of the landscape and ecosystems. The collective effect of over 100,000 hydrocarbon extraction permits for oil, coal bed methane, Marcellus and Utica Shale natural gas wells, and other types of hydrocarbon gases and their associated infrastructure has saturated much of the landscape and disturbed the natural environment in the Appalachian basin. The disturbance created by the sheer magnitude of the development of these collective wells and infrastructure directly affects how the landscape and ecosystems function and how they provide ecological goods and services.
DOT National Transportation Integrated Search
2017-03-01
The emergence of natural gas as an abundant, inexpensive fuel in the United States has highlighted the possibility that natural gas could play a significant role in the transition to low carbon fuels. Natural gas is often cited as a bridge to l...
The Spatial Footprint of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.
2015-12-01
Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.
Natural Gas Transportation - Infrastructure Issues and Operational Trends
2001-01-01
This report examines how well the current national natural gas pipeline network has been able to handle today's market demand for natural gas. In addition, it identifies those areas of the country where pipeline utilization is continuing to grow rapidly and where new pipeline capacity is needed or is planned over the next several years.
Alternative Fuels Data Center: Codes and Standards Resources
codes and standards. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Electric Vehicle and Infrastructure Codes and Standards Chart Ethanol Vehicle and Infrastructure Codes and Standards Chart Natural Gas Vehicle and Infrastructure Codes and Standards Chart Propane Vehicle and Infrastructure Codes and
NASA Astrophysics Data System (ADS)
Fields, Damon E.
Critical Infrastructure Protection (CIP) is a construct that relates preparedness and responsiveness to natural or man-made disasters that involve vulnerable assets deemed essential for the functioning of our economy and society. Infrastructure systems (power grids, bridges, airports, etc.) are vulnerable to disastrous types of events--natural or man-made. Failures of these systems can have devastating effects on communities and entire regions. CIP relates our willingness, ability, and capability to defend, mitigate, and re-constitute those assets that succumb to disasters affecting one or more infrastructure sectors. This qualitative research utilized ethnography and employed interviews with subject matter experts (SMEs) from various fields of study regarding CIP with respect to oil and natural gas pipelines in the New Madrid Seismic Zone. The study focused on the research question: What can be done to mitigate vulnerabilities in the oil and natural gas infrastructures, along with the potential cascading effects to interdependent systems, associated with a New Madrid fault event? The researcher also analyzed National Level Exercises (NLE) and real world events, and associated After Action Reports (AAR) and Lessons Learned (LL) in order to place a holistic lens across all infrastructures and their dependencies and interdependencies. Three main themes related to the research question emerged: (a) preparedness, (b) mitigation, and (c) impacts. These themes comprised several dimensions: (a) redundancy, (b) node hardening, (c) education, (d) infrastructure damage, (e) cascading effects, (f) interdependencies, (g) exercises, and (h) earthquake readiness. As themes and dimensions are analyzed, they are considered against findings in AARs and LL from previous real world events and large scale exercise events for validation or rejection.
Operation and planning of coordinated natural gas and electricity infrastructures
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
Natural gas is becoming rapidly the optimal choice for fueling new generating units in electric power system driven by abundant natural gas supplies and environmental regulations that are expected to cause coal-fired generation retirements. The growing reliance on natural gas as a dominant fuel for electricity generation throughout North America has brought the interaction between the natural gas and power grids into sharp focus. The primary concern and motivation of this research is to address the emerging interdependency issues faced by the electric power and natural gas industry. This thesis provides a comprehensive analysis of the interactions between the two systems regarding the short-term operation and long-term infrastructure planning. Natural gas and renewable energy appear complementary in many respects regarding fuel price and availability, environmental impact, resource distribution and dispatchability. In addition, demand response has also held the promise of making a significant contribution to enhance system operations by providing incentives to customers for a more flat load profile. We investigated the coordination between natural gas-fired generation and prevailing nontraditional resources including renewable energy, demand response so as to provide economical options for optimizing the short-term scheduling with the intense natural gas delivery constraints. As the amount and dispatch of gas-fired generation increases, the long-term interdependency issue is whether there is adequate pipeline capacity to provide sufficient gas to natural gas-fired generation during the entire planning horizon while it is widely used outside the power sector. This thesis developed a co-optimization planning model by incorporating the natural gas transportation system into the multi-year resource and transmission system planning problem. This consideration would provide a more comprehensive decision for the investment and accurate assessment for system adequacy and reliability. With the growing reliance on natural gas and widespread utilization of highly efficient combined heat and power (CHP), it is also questionable that whether the independent design of infrastructures can meet potential challenges of future energy supply. To address this issue, this thesis proposed an optimization framework for a sustainable multiple energy system expansion planning based on an energy hub model while considering the energy efficiency, emission and reliability performance. In addition, we introduced the probabilistic reliability evaluation and flow network analysis into the multiple energy system design in order to obtain an optimal and reliable network topology.
Algeria Country Analysis Brief
2016-01-01
Algeria is the leading natural gas producer in Africa, the second-largest natural gas supplier to Europe, and is one of the top three oil producers in Africa. Algeria is estimated to hold the third-largest amount of shale gas resources in the world. However, gross natural gas and crude oil production have gradually declined over the past decade, mainly because new production and infrastructure projects have repeatedly been delayed.
Changes in the Arctic: Background and Issues for Congress
2016-05-12
discovery of new oil and gas deposits far from existing storage, pipelines , and shipping facilities cannot be developed until infrastructure is built...markets. Other questions in need of answers include the status of port, pipeline , and liquid natural gas infrastructure; whether methane hydrates...Changes to the Arctic brought about by warming temperatures will likely allow more exploration for oil, gas , and minerals. Warming that causes
Effects of natural gas development on forest ecosystems
Mary Beth Adams; W. Mark Ford; Thomas M. Schuler; Melissa Thomas-Van Gundy
2011-01-01
In 2004, an energy company leased the privately owned minerals that underlie the Fernow Experimental Forest in West Virginia. The Fernow, established in 1934, is dedicated to long-term research. In 2008, a natural gas well was drilled on the Fernow and a pipeline and supporting infrastructure constructed. We describe the impacts of natural gas development on the...
NASA Astrophysics Data System (ADS)
Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina
2017-10-01
North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.
Alternative Fuels Data Center: Maps and Data
different types of transportation infrastructure Last update July 2014 View Graph Graph Download Data gas pipelines are primarily for natural gas. This chart shows the distance covered by various types of distance covered by various types of transportation infrastructure in the U.S. Highways and other roads
Bangladesh to prepare for rise in gas demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-06-01
Bangladesh is moving to expand its natural gas infrastructure in response to rising domestic demand. This paper reports that Bangladesh natural gas demand is expected to rise to 700-850 MMcfd in the next few years from the current level of about 500 MMcfd, the Prime Minister Khaleda Zia.
Changes in U.S. Natural Gas Transportation Infrastructure in 2004
2005-01-01
This report looks at the level of growth that occurred within the U.S. natural gas transportation network during 2004. In addition, it includes discussion and an analysis of recent gas pipeline development activities and an examination of additional projects proposed for completion over the next several years.
Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M
2018-02-20
In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.
Alternative Fuels Data Center: Ohio Transportation Data for Alternative
Sustainable Fleet Plan into On-Road Reality Jan. 26, 2016 Video thumbnail for Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest Smith Dairy Deploys Natural Gas Vehicles and Fueling
2012-01-01
Natural gas comprises about a quarter of the United States’ energy use. It is more environmentally friendly than oil and coal due to lower carbon dioxide (CO2) emissions per unit, less costly per unit of energy and more readily available domestically in abundant supply. However, due to a number of barriers in the political, infrastructural, pricing and other arenas, the use of natural gas as a significant energy source in the United States has been limited. In our paper, we highlight the favorable qualities of natural gas and its benefits for the consumer, producer, and environment, having compared the costs of the various components of the natural gas business such as drilling and transport to that of coal and oil. Moreover, we touch upon the major issues that have prevented a more prevalent use of the gas, such as the fact that the infrastructure of natural gas is more costly since it is transported though pipelines whereas other energy sources such as oil and coal have flexible systems that use trains, trucks and ships. In addition, the powerful lobbies of the coal and oil businesses, along with the inertia in the congress to pass a national climate change bill further dampens incentives for these industries to invest in natural gas, despite its various attractive qualities. We also include discussions of policy proposals to incentive greater use of natural gas in the future. PMID:22540989
Methane Gas Emissions - is Older Infrastructure Leakier?
NASA Astrophysics Data System (ADS)
Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.
2015-12-01
Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.
Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems
NASA Astrophysics Data System (ADS)
Ally, Jamie; Pryor, Trevor
The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The LCAs of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, Marc; Muratori, Matteo; McLaren, Joyce
Increased interest in the use of alternative transportation fuels, such as natural gas, hydrogen, and electricity, is being driven by heightened concern about the climate impacts of gasoline and diesel emissions and our dependence on finite oil resources. A key barrier to widespread adoption of low- and zero-emission passenger vehicles is the availability of refueling infrastructure. Recalling the 'chicken and egg' conundrum, limited adoption of alternative fuel vehicles increases the perceived risk of investments in refueling infrastructure, while lack of refueling infrastructure inhibits vehicle adoption. In this paper, we present the results of a study of the perceived risks andmore » barriers to investment in alternative fuels infrastructure, based on interviews with industry experts and stakeholders. We cover barriers to infrastructure development for three alternative fuels for passenger vehicles: compressed natural gas, hydrogen, and electricity. As an early-mover in zero emission passenger vehicles, California provides the early market experience necessary to map the alternative fuel infrastructure business space. Results and insights identified in this study can be used to inform investment decisions, formulate incentive programs, and guide deployment plans for alternative fueling infrastructure in the U.S. and elsewhere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.A.; Hines, T.L.
Utilization of remote gas resources in developing countries continues to offer challenges and opportunities to producers and contractors. The Aguaytia Gas and Power Project is an example where perseverance and creativity resulted in successful utilization of natural gas resources in the Ucayali Region of Central Peru, a country which previously had no natural gas infrastructure. The resource for the project was first discovered by Mobil in 1961, and remained undeveloped for over thirty years due to lack of infrastructure and markets. Maple Gas won a competitively bid contract to develop the Aguaytia gas reserves in March of 1993. The challengesmore » facing Maple Gas were to develop downstream markets for the gas, execute contracts with Perupetro S.A. and other Peruvian government entities, raise financing for the project, and solicit and execute engineering procurement and construction (EPC) contracts for the execution of the project. The key to development of the downstream markets was the decision to generate electric power and transmit the power over the Andes to the main electrical grid along the coast of Peru. Supplemental revenue could be generated by gas sales to a small regional power plant and extraction of LPG and natural gasoline for consumption in the Peruvian market. Three separate lump sum contracts were awarded to Asea Brown Boveri (ABB) companies for the gas project, power project and transmission project. Each project presented its unique challenges, but the commonalities were the accelerated schedule, high rainfall in a prolonged wet season and severe logistics due to lack of infrastructure in the remote region. This presentation focuses on how the gas plant contractor, ABB Randall, working in harmony with the developer, Maple Gas, tackled the challenges to monetize a remote gas resource.« less
NREL + Southern California Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdahl, Sonja E
2017-10-09
NREL and Southern California Gas Company are evaluating a new 'power-to-gas' approach - one that produces methane through a biological pathway and uses the expansive natural gas infrastructure to store it. This approach has the potential to change how the power industry approaches renewable generation and energy storage.
DoD’s Compressed Natural Gas Filling Station in Afghanistan: An Ill-conceived $43 Million Project
2015-10-01
advantage of Afghanistan’s natural gas reserves and reduce the country’s reliance on expensive imported gasoline . The project consisted of the...approximately 50 percent less than a comparable amount of gasoline in Afghanistan and burns cleaner than gasoline , reducing the production of pollutants...with gasoline in markets that lacked “well-developed” transmission and distribution infrastructure.13 There is only one operational natural gas
Nigeria Country Analysis Brief
2016-01-01
Nigeria is currently the largest oil producer in Africa and was the world's fourth-largest exporter of LNG in 2015. Nigeria's oil production is hampered by instability and supply disruptions, while its natural gas sector is restricted by the lack of infrastructure to commercialize natural gas that is currently flared (burned off).
On the sources of methane to the Los Angeles atmosphere.
Wennberg, Paul O; Mui, Wilton; Wunch, Debra; Kort, Eric A; Blake, Donald R; Atlas, Elliot L; Santoni, Gregory W; Wofsy, Steven C; Diskin, Glenn S; Jeong, Seongeun; Fischer, Marc L
2012-09-04
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
On the Sources of Methane to the Los Angeles Atmosphere
NASA Technical Reports Server (NTRS)
Wennberg, Paul O.; Mui, Wilton; Fischer, Marc L.; Wunch, Debra; Kort, Eric A.; Blake, Donald R.; Atlas, Elliot L.; Santoni, Gregory W.; Wofsy, Steven C.; Diskin, Glenn S.;
2012-01-01
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH4) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH4 emissions are 0.44 +/- 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH4), ethane (C2H6), and carbon monoxide (CO), together with measured C2H6 to CH4 enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C2H6 to CH4 ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C2H6 is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 +/- 0.15 Tg yr-1) of the excess CH4 in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C2H6 in the region. In particular, emissions of C2H6 (and CH4) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH4 emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G
2016-06-01
Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... pipeline infrastructure to receive natural gas produced from Marcellus Shale production areas for delivery to existing interstate pipeline systems of Tennessee Gas Pipeline Company (TGP), CNYOG, and Transcontinental Gas Pipeline Corporation (Transco). It would also provide for bi-directional transportation...
77 FR 51795 - Coordination Between Natural Gas and Electricity Markets
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... and even sub-regional approaches to gas-electric coordination, in light of the different market... capacity to accommodate this growth in gas-fired generation. Approaches to addressing infrastructure... regionally-based approaches to determine whether this is demand for additional pipeline capacity and services...
NASA Astrophysics Data System (ADS)
Lee, Allen
The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions unless a significant station capital subsidy, upwards of 50 percent and even then it might not be enough. However, a doubling of LNG truck demand will initialize network commercialization in the modeling base year, 2012 (the same year Clean Energy Corp. launched their national LNG network) in California and then gradually establish in other hotspot regions in Mid-West and Mid-Atlantic throughout the time horizon. The model shows that trucking routes in California are highly commercial due to high traffic volume and regional advantages. The model can be used by industry to inform necessary policies and to plan future infrastructure deployment along trucking routes that are likely to provide the highest returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-30
This study, conducted by Radian International, was funded by the U.S. Trade and Development Agency. The report assesses the feasibility (technical, economic and environmental) of converting the Uzbek transportation fleets to natural gas operation. The study focuses on the conversion of high fuel use vehicles and locomotives to liquefied natural gas (LNG) and the conversion of moderate fuel use veicles to compressed natural gas (CNG). The report is divided into the following sections: Executive Summary; (1.0) Introduction; (2.0) Country Background; (3.0) Characterization of Uzbek Transportation Fuels; (4.0) Uzbek Vehicle and Locomotive Fleet Characterization; (5.0) Uzbek Natural Gas Vehicle Conversion Shops;more » (6.0) Uzbek Natural Gas Infrastructure; (7.0) Liquefied Natural Gas (LNG) for Vehicular Fuel in Uzbekistan; (8.0) Economic Feasibility Study; (9.0) Environmental Impact Analysis; References; Appendices A - S.« less
Alternative Fuels Data Center: Tools
Calculator Compare cost of ownership and emissions for most vehicle models. mobile Petroleum Reduction ROI and payback period for natural gas vehicles and infrastructure. AFLEET Tool Calculate a fleet's , hydrogen, or fuel cell infrastructure. GREET Fleet Footprint Calculator Calculate your fleet's petroleum
Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun
2016-10-03
Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.
Engineering Infrastructures: Problems of Safety and Security in the Russian Federation
NASA Astrophysics Data System (ADS)
Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.
Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.
NASA Astrophysics Data System (ADS)
Browne, Joshua B.
Anthropogenic greenhouse gas emissions (GHG) contribute to global warming, and must be mitigated. With GHG mitigation as an overarching goal, this research aims to study the potential for newfound and abundant sources of natural gas to play a role as part of a GHG mitigation strategy. However, recent work suggests that methane leakage in the current natural gas system may inhibit end-use natural gas as a robust mitigation strategy, but that natural gas as a feedstock for other forms of energy, such as electricity generation or liquid fuels, may support natural-gas based mitigation efforts. Flaring of uneconomic natural gas, or outright loss of natural gas to the atmosphere results in greenhouse gas emissions that could be avoided and which today are very large in aggregate. A central part of this study is to look at a new technology for converting natural gas into methanol at a unit scale that is matched to the size of individual natural gas wells. The goal is to convert stranded or otherwise flared natural gas into a commercially valuable product and thereby avoid any unnecessary emission to the atmosphere. A major part of this study is to contribute to the development of a novel approach for converting natural gas into methanol and to assess the environmental impact (for better or for worse) of this new technology. This Ph. D. research contributes to the development of such a system and provides a comprehensive techno-economic and environmental assessment of this technology. Recognizing the distributed nature of methane leakage associated with the natural gas system, this work is also intended to advance previous research at the Lenfest Center for Sustainable Energy that aims to show that small, modular energy systems can be made economic. This thesis contributes to and analyzes the development of a small-scale gas-to-liquids (GTL) system aimed at addressing flared natural gas from gas and oil wells. This thesis includes system engineering around a design that converts natural gas to synthesis gas (syngas) in a reciprocating internal combustion engine and then converts the syngas into methanol in a small-scale reactor. With methanol as the product, this research aims to show that such a system can not only address current and future natural gas flaring regulation, but eventually can compete economically with historically large-scale, centralized methanol production infrastructure. If successful, such systems could contribute to a shift away from large, multi-billion dollar capital cost chemical plants towards smaller systems with shorter lifetimes that may decrease the time to transition to more sustainable forms of energy and chemical conversion technologies. This research also quantifies the potential for such a system to contribute to mitigating GHG emissions, not only by addressing flared gas in the near-term, but also supporting future natural gas infrastructure ideas that may help to redefine the way the current natural gas pipeline system is used. The introduction of new, small-scale, distributed energy and chemical conversion systems located closer to the point of extraction may contribute to reducing methane leakage throughout the natural gas distribution system by reducing the reliance and risks associated with the aging natural gas pipeline infrastructure. The outcome of this thesis will result in several areas for future work. From an economic perspective, factors that contribute to overall system cost, such as operation and maintenance (O&M) and capital cost multiplier (referred to as the Lang Factor for large-scale petro-chemical plants), are not yet known for novel systems such as the technology presented here. From a technical perspective, commercialization of small-scale, distributed chemical conversion systems may create a demand for economical compression and air-separation technologies at this scale that do not currently exist. Further, new business cases may arise aimed at utilizing small, remote sources of methane, such as biogas from agricultural and municipal waste. Finally, while methanol was selected as the end-product for this thesis, future applications of this technology may consider methane conversion to hydrogen, ammonia, and ethylene for example, challenging the orthodoxy in the chemical industry that "bigger is better."
Energy Systems Integration Laboratory | Energy Systems Integration Facility
systems test hub includes a Class 1, Division 2 space for performing tests of high-pressure hydrogen Laboratory offers the following capabilities. High-Pressure Hydrogen Systems The high-pressure hydrogen infrastructure. Key Infrastructure Robotic arm; high-pressure hydrogen; natural gas supply; standalone SCADA
Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin
2017-09-18
Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.
Impact of oil and gas infrastructure development in La Manga Canyon, NM
USDA-ARS?s Scientific Manuscript database
La Manga Canyon is a small watershed (~20km2) in the San Juan Basin that has historically been developed for natural gas and recently for coal bed methane. Since gas production began in the 1940s, an extensive network of dirt roads have transected the watershed, providing access to well sites. There...
Natural Gas Imports and Exports. Third Quarter Report 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
none
1999-10-01
The second quarter 1997 Quarterly Report of Natural Gas Imports and Exports featured a Quarterly Focus report on cross-border natural gas trade between the United States and Mexico. This Quarterly Focus article is a follow-up to the 1997 report. This report revisits and updates the status of some of the pipeline projects discussed in 1997, and examines a number of other planned cross-border pipeline facilities which were proposed subsequent to our 1997 report. A few of the existing and proposed pipelines are bidirectional and thus have the capability of serving either Mexico, or the United States, depending on market conditionsmore » and gas supply availability. These new projects, if completed, would greatly enhance the pipeline infrastructure on the U.S.-Mexico border and would increase gas pipeline throughput capacity for cross-border trade by more than 1 billion cubic feet (Bcf) per day. The Quarterly Focus is comprised of five sections. Section I includes the introduction as well as a brief historic overview of U.S./Mexican natural gas trade; a discussion of Mexico's energy regulatory structure; and a review of trade agreements and a 1992 legislative change which allows for her cross-border gas trade in North America. Section II looks at initiatives that have been taken by the Mexican Government since 1995to open its energy markets to greater competition and privatization. Section III reviews Mexican gas demand forecasts and looks at future opportunities for U.S. gas producers to supplement Mexico's indigenous supplies in order to meet the anticipated rapid growth in demand. Section IV examines the U.S.-Mexico natural gas trade in recent years. It also looks specifically at monthly import and export volumes and prices and identifies short-term trends in this trade. Finally, Section V reviews the existing and planned cross-border gas pipeline infrastructure. The section also specifically describes six planned pipelines intended to expand this pipeline network and their planned in-service dates.« less
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is “biodiversity offsetting” (wherein biodiversity impacted is “replaced” through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of “linear” infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with “hub” infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km2 across the Ustyurt (total ∼ 100,000 km2), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes. PMID:24455163
Quantifying habitat impacts of natural gas infrastructure to facilitate biodiversity offsetting.
Jones, Isabel L; Bull, Joseph W; Milner-Gulland, Eleanor J; Esipov, Alexander V; Suttle, Kenwyn B
2014-01-01
Habitat degradation through anthropogenic development is a key driver of biodiversity loss. One way to compensate losses is "biodiversity offsetting" (wherein biodiversity impacted is "replaced" through restoration elsewhere). A challenge in implementing offsets, which has received scant attention in the literature, is the accurate determination of residual biodiversity losses. We explore this challenge for offsetting gas extraction in the Ustyurt Plateau, Uzbekistan. Our goal was to determine the landscape extent of habitat impacts, particularly how the footprint of "linear" infrastructure (i.e. roads, pipelines), often disregarded in compensation calculations, compares with "hub" infrastructure (i.e. extraction facilities). We measured vegetation cover and plant species richness using the line-intercept method, along transects running from infrastructure/control sites outward for 500 m, accounting for wind direction to identify dust deposition impacts. Findings from 24 transects were extrapolated to the broader plateau by mapping total landscape infrastructure network using GPS data and satellite imagery. Vegetation cover and species richness were significantly lower at development sites than controls. These differences disappeared within 25 m of the edge of the area physically occupied by infrastructure. The current habitat footprint of gas infrastructure is 220 ± 19 km(2) across the Ustyurt (total ∼ 100,000 km(2)), 37 ± 6% of which is linear infrastructure. Vegetation impacts diminish rapidly with increasing distance from infrastructure, and localized dust deposition does not conspicuously extend the disturbance footprint. Habitat losses from gas extraction infrastructure cover 0.2% of the study area, but this reflects directly eliminated vegetation only. Impacts upon fauna pose a more difficult determination, as these require accounting for behavioral and demographic responses to disturbance by elusive mammals, including threatened species. This study demonstrates that impacts of linear infrastructure in regions such as the Ustyurt should be accounted for not just with respect to development sites but also associated transportation and delivery routes.
Vehicle-based Methane Mapping Helps Find Natural Gas Leaks and Prioritize Leak Repairs
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Weller, Z.; Roscioli, J. R.; Lamb, B. K.; Ferrara, T.
2017-12-01
Recently, mobile methane sensing platforms have been developed to detect and locate natural gas (NG) leaks in urban distribution systems and to estimate their size. Although this technology has already been used in targeted deployment for prioritization of NG pipeline infrastructure repair and replacement, one open question regarding this technology is how effective the resulting data are for prioritizing infrastructure repair and replacement. To answer this question we explore the accuracy and precision of the natural gas leak location and emission estimates provided by methane sensors placed on Google Street View (GSV) vehicles. We find that the vast majority (75%) of methane emitting sources detected by these mobile platforms are NG leaks and that the location estimates are effective at identifying the general location of leaks. We also show that the emission rate estimates from mobile detection platforms are able to effectively rank NG leaks for prioritizing leak repair. Our findings establish that mobile sensing platforms are an efficient and effective tool for improving the safety and reducing the environmental impacts of low-pressure NG distribution systems by reducing atmospheric methane emissions.
Azerbaijan Country Analysis Brief
2016-01-01
Azerbaijan, one of the oldest oil-producing countries in the world, is an important oil and natural gas supplier in the Caspian Sea region, particularly for European markets. Although traditionally it has been a prolific oil producer, Azerbaijan's importance as a natural gas supplier will grow in the future as field development and export infrastructure expand. Conflicting claims over the maritime and seabed boundaries of the Caspian Sea between Azerbaijan and Iran continue to cause uncertainty.
NASA Astrophysics Data System (ADS)
Ramaswami, A.
2016-12-01
Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
McKain, Kathryn; Down, Adrian; Raciti, Steve M; Budney, John; Hutyra, Lucy R; Floerchinger, Cody; Herndon, Scott C; Nehrkorn, Thomas; Zahniser, Mark S; Jackson, Robert B; Phillips, Nathan; Wofsy, Steven C
2015-02-17
Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4 ⋅ m(-2) ⋅ y(-1). Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼ 60-100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory.
McKain, Kathryn; Down, Adrian; Raciti, Steve M.; Budney, John; Hutyra, Lucy R.; Floerchinger, Cody; Herndon, Scott C.; Nehrkorn, Thomas; Zahniser, Mark S.; Jackson, Robert B.; Phillips, Nathan; Wofsy, Steven C.
2015-01-01
Methane emissions from natural gas delivery and end use must be quantified to evaluate the environmental impacts of natural gas and to develop and assess the efficacy of emission reduction strategies. We report natural gas emission rates for 1 y in the urban region of Boston, using a comprehensive atmospheric measurement and modeling framework. Continuous methane observations from four stations are combined with a high-resolution transport model to quantify the regional average emission flux, 18.5 ± 3.7 (95% confidence interval) g CH4⋅m−2⋅y−1. Simultaneous observations of atmospheric ethane, compared with the ethane-to-methane ratio in the pipeline gas delivered to the region, demonstrate that natural gas accounted for ∼60–100% of methane emissions, depending on season. Using government statistics and geospatial data on natural gas use, we find the average fractional loss rate to the atmosphere from all downstream components of the natural gas system, including transmission, distribution, and end use, was 2.7 ± 0.6% in the Boston urban region, with little seasonal variability. This fraction is notably higher than the 1.1% implied by the most closely comparable emission inventory. PMID:25617375
Emissions from oil and gas operations in the United States and their air quality implications.
Allen, David T
2016-06-01
The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both energy production and use should be considered in assessing air quality implications of changes in energy infrastructures, and that impacts are likely to vary among regions. The energy supply infrastructure in the United States has been changing dramatically over the past decade, leading to changes in emissions from oil and natural gas supply chain sources. In many source categories along these supply chains, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. Effective emission reductions will require technologies for both identifying super-emitters and reducing their emission magnitudes.
Interdependency Assessment of Coupled Natural Gas and Power Systems in Energy Market
NASA Astrophysics Data System (ADS)
Yang, Hongzhao; Qiu, Jing; Zhang, Sanhua; Lai, Mingyong; Dong, Zhao Yang
2015-12-01
Owing to the technological development of natural gas exploration and the increasing penetration of gas-fired power generation, gas and power systems inevitably interact with each other from both physical and economic points of view. In order to effectively assess the two systems' interdependency, this paper proposes a systematic modeling framework and constructs simulation platforms for coupled gas and power systems in an energy market environment. By applying the proposed approach to the Australian national electricity market (NEM) and gas market, the impacts of six types of market and system factors are quantitatively analyzed, including power transmission limits, gas pipeline contingencies, gas pipeline flow constraints, carbon emission constraints, power load variations, and non-electric gas load variations. The important interdependency and infrastructure weakness for the two systems are well studied and identified. Our work provides a quantitative basis for grid operators and policy makers to support and guide operation and investment decisions for electric power and natural gas industries.
Greater focus needed on methane leakage from natural gas infrastructure.
Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P
2012-04-24
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Greater focus needed on methane leakage from natural gas infrastructure
Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.
2012-01-01
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226
The costs of avoiding environmental impacts from shale-gas surface infrastructure.
Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R
2016-12-01
Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.
2016-11-28
infrastructure typically include energy, water, wastewater, electricity, natural gas , liquid fuel distribution systems, communication lines (e.g...with state off-road regulations would further reduce air quality and greenhouse gas emissions. Cultural Resources. The waste footprint as well as...maintenance of the prescriptive final cover and erosion control, landfill gas monitoring and well maintenance, groundwater monitoring and well maintenance
Problems of elimination of low emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepniowski, A.
1995-12-31
The Cracow Municipal Gas Distribution Enterprises is subordinated to the Carpathian Regional Gas Engineering Plant in Tarnow, which - in turn - is a part of Polish Oil Mining and Gas Engineering with its seat in Warsaw. The required quick development of power engineering in Poland needs harmonized development of all branches of power engineering, including the gas production and distribution industry which constitutes an element of technical infrastructure of Poland influencing the direction of development. After World War II, the gas engineering industry was transformed from a typical communal service to a big industrial structure which covers the entiremore » territory of the state and has considerable technical and material measures at its disposal. Programming of the gas industry development ranges from development of installation of gas-supply arrangements for communal purposes including modification of local gas generators - to the development of gas transportation, storage and purification system. At present gas is taken from following sources: import, own natural gas deposits (high-methane content gas and high-nitrogen content gas within Polish Lowland); cokeries, and local gas generators. Gas sorts obtained in these sources have differentiated physico-chemical properties and they are distributed by three independent transmission systems assigned for high-methane natural gas, high-nitrogen natural gas, and coke-oven gas. Taking into consideration the forecast demand and potential capacity of natural gas production in Poland, the required import of natural gas is estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey; Medlock, III, Kenneth B.; Boyd, William C.
2015-10-15
This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entiremore » eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.« less
The Resilient Infrastructure Initiative
Clifford, Megan
2016-10-01
Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less
Proceedings of the 1995 SAE alternative fuels conference. P-294
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.
2016-03-01
wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, food and beverage, and discrete manufacturing (e.g...dams, energy infrastructure, banks, farms, food processing facilities, hospitals, nuclear reactors, transportation carriers, and water treatment... food and agriculture sector” is, “almost entirely under private ownership and is comprised of an estimated 2.2 million farms, 900,000 restaurants, and
Preliminary report on the commercial viability of gas production from natural gas hydrates
Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.
2009-01-01
Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Atherton, E. E.; Risk, D. A.; Fougère, C. R.; Lavoie, M.; Marshall, A. D.; Werring, J.
2016-12-01
If we are to attain the recent North American goals to reduce methane (CH4) emissions, we must understand emission patterns across developments of different types. In this study we quantified the incidence of CH4 emissions from unconventional natural gas infrastructure accessing the Montney play in British Columbia, Canada. We used mobile surveying to collect CH4 and CO2 measurements over 11,000 km of survey campaigns. Our routes brought us past more than 1600 unique well pads and facilities, and we repeated the six routes 7-10 times during summer (2015) and winter (2016) to explore temporal variability. Well pads and facilities were considered probable emission sources only if they were upwind by 500 m or less from the survey vehicle, and on-road concentrations were in excess of local background. In the summer campaigns we found that 47% of individual active production wells emitted CH4-rich plumes, and most of them emitted persistently across repeat surveys. Older infrastructure tended to emit more frequently (per unit), with comparable severity to younger infrastructure in terms of measured excess concentrations on-road. About 26% of abandoned wells were also found to be emitting. Extrapolating our emission incidence values across all abandoned oil and gas infrastructure in the BC portion of the Montney, we estimate that there are more than 550 abandoned wells in this area that could be emitting CH4-rich plumes. The results of this study suggest that analyzing emitting infrastructure by ages and operational differences can help delineate emission trends. Considering the recent industry downturn, our results also highlight the importance of focusing emission reduction efforts on abandoned and suspended infrastructure, as well as active. This is the first bottom-up monitoring study of fugitive emissions in the Canadian energy sector, and the results can be used to inform policy development to reduce energy-related emissions.
[Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].
Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe
2003-05-01
In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.
Front Range Infrastructure Resources Project: water-resources activities
Robson, Stanley G.; Heiny, Janet S.
1998-01-01
Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.
Howard, Touché; Ferrara, Thomas W; Townsend-Small, Amy
2015-07-01
Quantification of leaks from natural gas (NG) infrastructure is a key step in reducing emissions of the greenhouse gas methane (CH4), particularly as NG becomes a larger component of domestic energy supply. The U.S. Environmental Protection Agency (EPA) requires measurement and reporting of emissions of CH4 from NG transmission, storage, and processing facilities, and the high-flow sampler (or high-volume sampler) is one of the tools approved for this by the EPA. The Bacharach Hi-Flow Sampler (BHFS) is the only commercially available high-flow instrument, and it is also used throughout the NG supply chain for directed inspection and maintenance, emission factor development, and greenhouse gas reduction programs. Here we document failure of the BHFS to transition from a catalytic oxidation sensor used to measure low NG (~5% or less) concentrations to a thermal conductivity sensor for higher concentrations (from ~5% to 100%), resulting in underestimation of NG emission rates. Our analysis includes both our own field testing and analysis of data from two other studies (Modrak et al., 2012; City of Fort Worth, 2011). Although this failure is not completely understood, and although we do not know if all BHFS models are similarly affected, sensor transition failure has been observed under one or more of these conditions: (1) Calibration is more than ~2 weeks old; (2) firmware is out of date; or (3) the composition of the NG source is less than ~91% CH4. The extent to which this issue has affected recent emission studies is uncertain, but the analysis presented here suggests that the problem could be widespread. Furthermore, it is critical that this problem be resolved before the onset of regulations on CH4 emissions from the oil and gas industry, as the BHFS is a popular instrument for these measurements. An instrument commonly used to measure leaks in natural gas infrastructure has a critical sensor transition failure issue that results in underestimation of leaks, with implications for greenhouse gas emissions estimates as well as safety.
Huge natural gas reserves central to capacity work, construction plans in Iran
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-11
Questions about oil production capacity in Iran tend to mask the country's huge potential as a producer of natural gas. Iran is second only to Russia in gas reserves, which National Iranian Gas Co. estimates at 20.7 trillion cu m. Among hurdles to Iran's making greater use of its rich endowment of natural gas are where and how to sell gas not used inside the country. The marketing logistics problem is common to other Middle East holders of gas reserves and a reason behind the recent proliferation of proposals for pipeline and liquefied natural gas schemes targeting Europe and India.more » But Iran's challenges are greater than most in the region. Political uncertainties and Islamic rules complicate long-term financing of transportation projects and raise questions about security of supply. As a result, Iran has remained mostly in the background of discussions about international trade of Middle Eastern gas. The country's huge gas reserves, strategic location, and existing transport infrastructure nevertheless give it the potential to be a major gas trader if the other issues can be resolved. The paper discusses oil capacity plans, gas development, gas injection for enhanced oil recovery, proposals for exports of gas, and gas pipeline plans.« less
NASA Technical Reports Server (NTRS)
Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt
2014-01-01
Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a significant number rely on oil production as their primary source of revenue. Relative to its size and population density, the continent has a wealth of natural resources, including oil and natural gas deposits. The exploration of these resources is not a new endeavor, but rather one that spans decades, up to a century in some places. Their resources, if realized, could provide a great means of economic and social mobility for the people of Africa. Currently, Africa represents about 12 % of the energy market, yet at the same time, consumes only 3 % of the world's energy (Kasekende 2009). The higher
NASA Astrophysics Data System (ADS)
Giranza, M. J.; Bergmann, A.
2018-05-01
Indonesia has abundant natural gas resources, however the primary fuel used for electricity generation is coal and oil. Insufficient natural gas infrastructure with-in the country acts as a barrier to increased natural gas usage. In Indonesia LNG is the most efficient and effective method for distributing natural gas given the difficult geographical conditions, the world’s largest archipelago and located in a deep sea area. The Government is planning to initiate natural gas imports by 2019 to meet the country’s energy demands. In order to allocate adequate amounts of natural gas across the geographic regions Indonesia must build more LNG regasification terminals. The Indonesia government has not yet determined if the additional regasification terminals will be floating or land-based facilities. This paper assesses the two options and identifies which facility attains greater profitability. The financial analysis of investing in the Sorong LNG regasification terminal project is conducted using NPV, IRR, and sensitivity analysis. This analysis demonstrates that FSRU facilities have greater economic viability than onshore LNG regasification facilities. The FSRU project earns greater than a 12% IRR as compared to a negative IRR earned by an onshore project. The government can make the onshore projects viable by increasing the sales fee from US10.00/MMBTU to US10.60/MMBTU.
Natural Gas Pipeline Replacement Programs Reduce Methane Leaks and Improve Consumer Safety
NASA Astrophysics Data System (ADS)
Jackson, R. B.
2015-12-01
From production through distribution, oil and natural gas infrastructure provide the largest source of anthropogenic methane in the U.S. and the second largest globally. To examine the prevalence of natural gas leaks downstream in distribution systems, we mapped methane leaks across 595, 750, and 247 road miles of three U.S. cities—Durham, NC, Cincinnati, OH, and Manhattan, NY, respectively—at different stages of pipeline replacement of cast iron and other older materials. We compare results with those for two cities we mapped previously, Boston and Washington, D.C. Overall, cities with pipeline replacement programs have considerably fewer leaks per mile than cities without such programs. Similar programs around the world should provide additional environmental, economic, and consumer safety benefits.
The Role of State and Local Jurisdictions in Identifying and Protecting Critical Infrastructure
2013-12-01
economic security, public health or safety, or any combination thereof.”22 This definition amended to include intentional acts as a result of the...operators, associations, and other entities—both large and small —within a sector. U.S. Department of Homeland Security, National Infrastructure...fossil fuels (coal, natural gas or oil).122 A 2008 inventory of the electricity subsector shows that there are: 6,413 power plants ; 30,320
Making a Difference Through Engineer Capacity Building in Africa
2014-05-22
expense is 10 percent in Africa whereas in China energy it is only 3 percent.37 A lack of transportation infrastructure in Africa means that businesses...Africa. In 2012, China committed to provide $20 billion in loans for agriculture and infrastructure development. While this level of aid is roughly the...using wind, solar, hydropower, natural gas, and geothermal sources. This program is being executed in six sub-Saharan African nations. They are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifford, Megan
Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less
Understanding the life cycle surface land requirements of natural gas-fired electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan
The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less
Understanding the life cycle surface land requirements of natural gas-fired electricity
Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; ...
2017-10-02
The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less
Understanding the life cycle surface land requirements of natural gas-fired electricity
NASA Astrophysics Data System (ADS)
Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle
2017-10-01
The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-25
... recovery projects and issues associated with fugitive methane. Bruce Hedman, ICF International, on behalf... associated with fugitive methane. Richard D. Murphy, S.V.P. Energy Solutions Services, National Grid, on...
Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches
NASA Astrophysics Data System (ADS)
Egging, Rudolf Gerardus
This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in shorter solution times relative to solving the extensive-forms. Larger problems, up to 117,481 variables, were solved in extensive-form, but not when applying BD due to numerical issues. It is discussed how BD could significantly reduce the solution time of large-scale stochastic models, but various challenges remain and more research is needed to assess the potential of Benders decomposition for solving large-scale stochastic MCP. 1 www.gecforum.org
Burma (Myanmar) Country Analysis Brief
2016-01-01
Burma (Myanmar) is an important natural gas producer in Southeast Asia, although its upstream hydrocarbons sector is severely underdeveloped. Financial constraints by Burma’s national oil company, a lack of technical capacity, opaque regulatory policy, insufficient investment by foreign firms, and international sanctions have significantly impeded the country’s efforts to realize its oil and natural gas production potential. These factors have also severely hampered the development of necessary energy infrastructure. However, U.S. and European Union sanctions were eased or suspended in 2012 and 2013 in response to political and economic reforms in Burma.
Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures
Zlotnik, Anatoly; Roald, Line; Backhaus, Scott; ...
2016-03-24
The extensive installation of gas-fired power plants in many parts of the world has led electric systems to depend heavily on reliable gas supplies. The use of gas-fired generators for peak load and reserve provision causes high intraday variability in withdrawals from high-pressure gas transmission systems. Such variability can lead to gas price fluctuations and supply disruptions that affect electric generator dispatch, electricity prices, and threaten the security of power systems and gas pipelines. These infrastructures function on vastly different spatio-temporal scales, which prevents current practices for separate operations and market clearing from being coordinated. Here in this article, wemore » apply new techniques for control of dynamic gas flows on pipeline networks to examine day-ahead scheduling of electric generator dispatch and gas compressor operation for different levels of integration, spanning from separate forecasting, and simulation to combined optimal control. We formulate multiple coordination scenarios and develop tractable physically accurate computational implementations. These scenarios are compared using an integrated model of test networks for power and gas systems with 24 nodes and 24 pipes, respectively, which are coupled through gas-fired generators. The analysis quantifies the economic efficiency and security benefits of gas-electric coordination and dynamic gas system operation.« less
77 FR 37879 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... provide greater security for its critical oil and natural gas infrastructure, and significant national... survivability equipment, displays, and sensors. The airframe itself does not contain sensitive technology...), Electro-Optic Missile Sensors (EOMSs), and Sequencer and Improved Countermeasures Dispenser (ICMD). The...
Energy developments and the transportation infrastructure in Texas : impacts and strategies.
DOT National Transportation Integrated Search
2012-03-01
In recent years, Texas has experienced a boom in energy-related activities, particularly in wind power : generation and extraction of oil and natural gas. While energy developments contribute to enhance the : states ability to produce energy relia...
Conceptual design of multi-source CCS pipeline transportation network for Polish energy sector
NASA Astrophysics Data System (ADS)
Isoli, Niccolo; Chaczykowski, Maciej
2017-11-01
The aim of this study was to identify an optimal CCS transport infrastructure for Polish energy sector in regards of selected European Commission Energy Roadmap 2050 scenario. The work covers identification of the offshore storage site location, CO2 pipeline network design and sizing for deployment at a national scale along with CAPEX analysis. It was conducted for the worst-case scenario, wherein the power plants operate under full-load conditions. The input data for the evaluation of CO2 flow rates (flue gas composition) were taken from the selected cogeneration plant with the maximum electric capacity of 620 MW and the results were extrapolated from these data given the power outputs of the remaining units. A graph search algorithm was employed to estimate pipeline infrastructure costs to transport 95 MT of CO2 annually, which amount to about 612.6 M€. Additional pipeline infrastructure costs will have to be incurred after 9 years of operation of the system due to limited storage site capacity. The results show that CAPEX estimates for CO2 pipeline infrastructure cannot be relied on natural gas infrastructure data, since both systems exhibit differences in pipe wall thickness that affects material cost.
Venezuela natural gas for vehicles project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsicobetre, D.; Molero, T.
1998-12-31
The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and servingmore » domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.« less
Mobile mapping of methane emissions and isoscapes
NASA Astrophysics Data System (ADS)
Takriti, Mounir; Ward, Sue; Wynn, Peter; Elias, Dafydd; McNamara, Niall
2017-04-01
Methane (CH4) is a potent greenhouse gas emitted from a variety of natural and anthropogenic sources. It is crucial to accurately and efficiently detect CH4 emissions and identify their sources to improve our understanding of changing emission patterns as well as to identify ways to curtail their release into the atmosphere. However, using established methods this can be challenging as well as time and resource intensive due to the temporal and spatial heterogeneity of many sources. To address this problem, we have developed a vehicle mounted mobile system that combines high precision CH4 measurements with isotopic mapping and dual isotope source characterisation. We here present details of the development and testing of a unique system for the detection and isotopic analysis of CH4 plumes built around a Picarro isotopic (13C/12C) gas analyser and a high precision Los Gatos greenhouse gas analyser. Combined with micrometeorological measurements and a mechanism for collecting discrete samples for high precision dual isotope (13C/12C, 2H/1H) analysis the system enables mapping of concentrations as well as directional and isotope based source verification. We then present findings from our mobile methane surveys around the North West of England. This area includes a variety of natural and anthropogenic methane sources within a relatively small geographical area, including livestock farming, urban and industrial gas infrastructure, landfills and waste water treatment facilities, and wetlands. We show that the system was successfully able to locate leaks from natural gas infrastructure and emissions from agricultural activities and to distinguish isotope signatures from these sources.
Digital representation of oil and natural gas well pad scars in southwest Wyoming
Garman, Steven L.; McBeth, Jamie L.
2014-01-01
The recent proliferation of oil and natural gas energy development in southwest Wyoming has stimulated the need to understand wildlife responses to this development. Central to many wildlife assessments is the use of geospatial methods that rely on digital representation of energy infrastructure. Surface disturbance of the well pad scars associated with oil and natural gas extraction has been an important but unavailable infrastructure layer. To provide a digital baseline of this surface disturbance, we extracted visible oil and gas well pad scars from 1-meter National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7 million-hectare region of southwest Wyoming. Scars include the pad area where wellheads, pumps, and storage facilities reside, and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, and the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. Our extraction method was a two-step process starting with automated extraction followed by manual inspection and clean up. We used available well-point information to guide manual clean up and to derive estimates of year of origin and duration of activity on a pad scar. We also derived estimates of the proportion of non-vegetated area on a scar using a Normalized Difference Vegetation Index derived using 1-meter NAIP imagery. We extracted 16,973 pad scars of which 15,318 were oil and gas well pads. Digital representation of pad scars along with time-stamps of activity and estimates of non-vegetated area provides important baseline (circa 2009) data for assessments of wildlife responses, land-use trends, and disturbance-mediated pattern assessments.
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...
2017-11-01
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or 'NEMS' model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. We explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
Sensitivity of natural gas deployment in the US power sector to future carbon policy expectations
Mignone, Bryan K.; Showalter, Sharon; Wood, Frances; ...
2017-09-07
One option for reducing carbon emissions in the power sector is replacement of coal-fired generation with less carbon-intensive natural gas combined cycle (NGCC) generation. In the United States, where there is abundant, low-cost natural gas supply, increased NGCC deployment could be a cost-effective emissions abatement opportunity at relatively modest carbon prices. However, under scenarios in which carbon prices rise and deeper emissions reductions are achieved, other technologies may be more cost-effective than NGCC in the future. In this analysis, using a US energy system model with foresight (a version of the National Energy Modeling System or “NEMS” model), we findmore » that varying expectations about carbon prices after 2030 does not materially affect NGCC deployment prior to 2030, all else equal. An important implication of this result is that, under the set of natural gas and carbon price trajectories explored here, myopic behavior or other imperfect expectations about potential future carbon policy do not change the natural gas deployment path or lead to stranded natural gas generation infrastructure. Lastly, we explain these results in terms of the underlying economic competition between available generation technologies and discuss the broader relevance to US climate change mitigation policy.« less
2010 Homeland Security Symposium and Exhibition Held in Arlington, Virginia on September 28-29, 2010
2010-09-29
Natural gas pipelines • Oil terminals; Pump stations • Electric substations • Water facilities • Wastewater facilities • Airports • Roads • Railroads... Gas /Crude Oil Telecommunications Water Healthcare/Public Health Critical Infrastructure Interdependencies BUILDING STRONG® DSES-10 Regional...Preparedness Policy, Office on Resilience, National Security Council, The White House • Mr. Paul Molitor, Senior Industry Director, Smart Grid and
NASA Astrophysics Data System (ADS)
Senyel, Muzeyyen Anil
Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically significant at the aggregate and disaggregate levels. Local electricity and natural gas distribution networks are characterized by a natural monopoly cost structure and economies of scale and density. The results provide evidence for the economies of scale and density for the aggregate electricity and natural gas distribution systems. However, distribution components have varying economic characteristics. The backbones of the networks (overhead conductors for electricity, and mains for natural gas) display economies of scale and density, but services in both systems and street lighting display diseconomies of scale and diseconomies of density. Finally multi-utility network cost analyses are presented for aggregate and disaggregate electricity and natural gas capital investments. Economies of scope analyses investigate whether providing electricity and natural gas jointly is economically advantageous, as compared to providing these products separately. Significant economies of scope are observed for both the total network and the underground capital investments.
Functionalized multi-walled carbon nanotube based sensors for distributed methane leak detection
This paper presents a highly sensitive, energy efficient and low-cost distributed methane (CH4) sensor system (DMSS) for continuous monitoring, detection and localization of CH4 leaks in natural gas infrastructure such as transmission and distribution pipelines, wells, and produc...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... available through http://www.ferc.gov . Anyone with Internet access who desires to view this event can do so... for the free Webcasts. It also offers access to this event via television in the Washington, DC area...
NASA Astrophysics Data System (ADS)
Wunch, D.; Toon, G. C.; Hedelius, J.; Vizenor, N.; Roehl, C. M.; Saad, K.; Blavier, J. F.; Blake, D. R.; Wennberg, P. O.
2016-12-01
In California's South Coast Air Basin (SoCAB), the methane emissions inferred from atmospheric measurements exceed estimates based on inventories. We seek to provide insight into the sources of the discrepancy with two records of atmospheric trace gas total column abundances in the SoCAB: one temporally sparse dataset that began in the late 1980s, and a temporally dense dataset that began in 2012. We use their measurements of ethane and methane to partition the sources of the excess methane. The early few years of the sparse record show a rapid decline in ethane emissions at a much faster rate than decreasing vehicle exhaust or natural gas and crude oil production can explain. Between 2010 and 2015, ethane emissions have grown gradually, which is in contrast to the steady production of natural gas liquids over that time. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing; these ratios are tracked in our atmospheric measurements with about half of the rate of increase. From this, we infer that about half of the excess methane in the SoCAB between 2012-2015 is attributable to losses from the natural gas infrastructure.
Light-Duty Alternative Fuel Vehicle Rebates Clean Vehicle and Infrastructure Grants Clean Fleet Grants Clean School Bus Program Clean Vehicle Replacement Vouchers Diesel Fuel Blend Tax Exemption Idle Reduction Weight Exemption Natural Gas Vehicle (NGV) Weight Exemption Utility/Private Incentives Plug-In
Coal conversion products Industrial applications
NASA Technical Reports Server (NTRS)
Warren, D.; Dunkin, J.
1980-01-01
The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.
Super-emitters in natural gas infrastructure are caused by abnormal process conditions
NASA Astrophysics Data System (ADS)
Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.
2017-01-01
Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.
Natural Gas Value-Chain and Network Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobos, Peter H.; Outkin, Alexander V.; Beyeler, Walter E.
2015-09-01
The current expansion of natural gas (NG) development in the United States requires an understanding of how this change will affect the natural gas industry, downstream consumers, and economic growth in order to promote effective planning and policy development. The impact of this expansion may propagate through the NG system and US economy via changes in manufacturing, electric power generation, transportation, commerce, and increased exports of liquefied natural gas. We conceptualize this problem as supply shock propagation that pushes the NG system and the economy away from its current state of infrastructure development and level of natural gas use. Tomore » illustrate this, the project developed two core modeling approaches. The first is an Agent-Based Modeling (ABM) approach which addresses shock propagation throughout the existing natural gas distribution system. The second approach uses a System Dynamics-based model to illustrate the feedback mechanisms related to finding new supplies of natural gas - notably shale gas - and how those mechanisms affect exploration investments in the natural gas market with respect to proven reserves. The ABM illustrates several stylized scenarios of large liquefied natural gas (LNG) exports from the U.S. The ABM preliminary results demonstrate that such scenario is likely to have substantial effects on NG prices and on pipeline capacity utilization. Our preliminary results indicate that the price of natural gas in the U.S. may rise by about 50% when the LNG exports represent 15% of the system-wide demand. The main findings of the System Dynamics model indicate that proven reserves for coalbed methane, conventional gas and now shale gas can be adequately modeled based on a combination of geologic, economic and technology-based variables. A base case scenario matches historical proven reserves data for these three types of natural gas. An environmental scenario, based on implementing a $50/tonne CO 2 tax results in less proven reserves being developed in the coming years while demand may decrease in the absence of acceptable substitutes, incentives or changes in consumer behavior. An increase in demand of 25% increases proven reserves being developed by a very small amount by the end of the forecast period of 2025.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishkov, A.; Akopova, Gretta; Evans, Meredydd
This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trendsmore » as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.« less
A GIS-based Model for Natural Gas Data Conversion
NASA Astrophysics Data System (ADS)
Bitik, E.; Seker, D. Z.; Denli, H. H.
2014-12-01
In Turkey gas utility sector has undergone major changes in terms of increased competition between gas providers, efforts in improving services, and applying new technological solutions. This paper discusses the challenges met by gas companies to switch from long workflows of gas distribution, sales and maintenance into IT driven efficient management of complex information both spatially and non-spatially. The aim of this study is migration of all gas data and information into a GIS environment in order to manage and operate all infrastructure investments with a Utility Management System. All data conversion model for migration was designed and tested during the study. A flowchart is formed to transfer the old data layers to the new structure based on geodatabase.
US Rockies gas focus points up need for access, risk takers, infrastructure
Thomasson, M.R.; Belanger, P.E.; Cook, L.
2004-01-01
The last 20 yr of the Rocky Mountains oil and gas exploration and production business have been turbulent. Most of the major companies have left; they have been replaced with, independents and small to larger private and public companies. Natural gas become the primary focus of exploration. A discussion covers the shift of interest from drilling for oil to gas exploration and development in the Rockies since 1980; resource pyramid, showing relative volumes, reserves, resources, and undiscovered gas; the Wyoming fields that boost US gas supply, i.e., Jonah (6-12 tcf), Pinedale Anticline (10-20 tcf); Big Piney-LaBarge (15-25 tcf), Madden (3-5 tcf), and Powder river (24-27 tcf); and the future.
2011-10-27
rather than its present division into independent sectors. This move towards integration would unify all parts of PEMEX, from exploration of oil...private investment in electrical power production. The number of independent 12 power producers (IPP) in Mexico is growing rapidly and many are...pipelines from LNG terminals. For medium, small and micro businesses , as well as municipalities and residential customers, gaining access to natural
SUNY Contracts for Cogeneration.
ERIC Educational Resources Information Center
Freeman, Laurie
1996-01-01
The State University of New York-Stony Brook forged a public-private partnership to fund a new plan for cogeneration, a two-step process that uses one fuel source--natural gas--to make two forms of energy. The agreement is designed to free the university from the need to make ongoing capital investment in its utility infrastructure. (MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, M. W.; Heath, G.; Sandor, D.
2013-04-01
Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehiclesmore » in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.« less
NASA Astrophysics Data System (ADS)
Barkley, Z.; Lauvaux, T.; Davis, K. J.; Deng, A.; Miles, N. L.; Richardson, S.; Martins, D. K.; Cao, Y.; Sweeney, C.; McKain, K.; Schwietzke, S.; Smith, M. L.; Kort, E. A.
2016-12-01
Leaks in natural gas infrastructure release CH4, a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of the energy's greenhouse footprint. This study presents two applications of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in northeastern Pennsylvania. First, we used the WRF-Chem mesoscale model at 3km resolution to simulate CH4 enhancements and compared them to observations obtained from a three-week flight campaign in May 2015 over the Marcellus shale region. Methane emission rates were adjusted to minimize the errors between aircraft observations and the model-simulated concentrations for each flight. Second, we present the first tower-based high resolution atmospheric inversion of CH4 emission rates from unconventional natural gas production activities. A year of continuous CH4 and calibrated δ13C isotope measurements were collected at four tower locations in northeastern Pennsylvania. The adjoint model used here combines a backward-in-time Lagrangian Particle Dispersion Model coupled with the WRF-Chem model at the same resolution. The prior for both optimization systems was compiled for major sources of CH4 within the Mid-Atlantic states, accounting for emissions from natural gas sources as well as emissions related to farming, waste management, coal, and other sources. Optimized natural gas emission rates are found to be 0.36% of total gas production, with a 2σ confidence interval between 0.27-0.45% of production. We present the results from the tower inversion over one year at 3km resolution providing additional information on spatial and temporal variability of emission rates from production and gathering facilities within the natural gas industry in comparison to flux estimates from the aircraft campaign.
Quantifying methane emissions from natural gas production in north-eastern Pennsylvania
NASA Astrophysics Data System (ADS)
Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.
2017-11-01
Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any other basin using a top-down methodology, and may be indicative of some characteristics of the basin that make sources from the north-eastern Marcellus region unique.
NASA Astrophysics Data System (ADS)
Jalbert, Kirk
A recent wave of advanced technologies for collecting and interpreting data offer new opportunities for laypeople to contribute to environmental monitoring science. This dissertation examines the conditions in which building knowledge infrastructures and embracing data "cultures" empowers and disempowers communities to challenge polluting industries. The processes and technologies of data cultures give people new capacities to understand their world, and to formulate powerful scientific arguments. However, data cultures also make many aspects of social life invisible, and elevate quantitative objective analysis over situated, subjective observation. This study finds that data cultures can empower communities when concerned citizens are equal contributors to research partnerships; ones that enable them to advocate for more nuanced data cultures permitting of structural critiques of status-quo environmental governance. These arguments are developed through an ethnographic study of participatory watershed monitoring projects that seek to document the impacts of shale gas extraction in Pennsylvania, New York, and West Virginia. Energy companies are drilling for natural gas using highly controversial methods of extraction known as hydraulic fracturing. Growing evidence suggests that nearby watersheds can be impacted by a myriad of extraction related problems including seepage from damaged gas well casing, improper waste disposal, trucking accidents, and the underground migration of hydraulic fracking fluids. In response to these risks, numerous organizations are coordinating and carrying out participatory water monitoring efforts. All of these projects embrace data culture in different ways. Each monitoring project has furthermore constructed its own unique infrastructure to support the sharing, aggregation, and analysis of environmental data. Differences in data culture investments and infrastructure building make some projects more effective than others in empowering affected communities. Four key aspects of these infrastructures are consequential to data culture formations and affordances: 1) the development of standardized monitoring protocols, 2) the politics of data collection technologies, 3) the frictions of database management systems, and 4) the power dynamics of organizational partnerships that come together around water monitoring efforts. Lessons from this analysis should inform future efforts to build infrastructures that address problems of environmental pollution in ways that also generate long-term capacity for empowering at-risk communities.
Modeling And Detecting Anomalies In Scada Systems
NASA Astrophysics Data System (ADS)
Svendsen, Nils; Wolthusen, Stephen
The detection of attacks and intrusions based on anomalies is hampered by the limits of specificity underlying the detection techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose constraints that potentially reduce error rates. At the same time, attackers can use their knowledge of system behavior to mask their manipulations, causing adverse effects to observed only after a significant period of time. This paper describes elementary statistical techniques that can be applied to detect anomalies in critical infrastructure networks. A SCADA system employed in liquefied natural gas (LNG) production is used as a case study.
Wing Infrastructure Development Outlook: Programmatic Environmental Assessment
2005-07-01
supplied by TXU Electric & Gas by two transmission lines. One transmission line feeds the eastern base area and the second line feeds the western base...destruction, loss , or degradation of wetlands and to preserve and enhance the natural and beneficial values of wetlands. 1.6.3 Public Health EO 12088...action to reduce the risk of flood loss , minimize the impact of floods on human safety, health and welfare, and to restore and preserve the natural and
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.
2007-09-01
Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleummore » infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate« less
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; ...
2018-01-04
Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less
NASA Astrophysics Data System (ADS)
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; Czader, Beata; Cohan, Daniel S.; Tittel, Frank K.; Griffin, Robert J.
2018-03-01
The extensive use of natural gas (NG) in urban areas for heating and cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CH4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH4 and ethane (C2H6) monitoring during a period of over 14 days, corresponding to ∼ 90 h of effective data collection during summer 2016. The sampling campaign covered ∼250 exclusive road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH4 and C2H6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH4 concentration episodes. The volumetric fraction of C2H6 in the sources associated with the thermogenic CH4 spikes varied between 2.7 and 5.9%, concurring with the C2H6 content in NG distributed in the GHA. Isolated CH4 peak events with significantly higher C2H6 enhancements (∼11%) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston's thermogenic CH4 sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin
Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less
NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.
2003-08-01
The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
The Eastring gas pipeline in the context of the Central and Eastern European gas supply challenge
NASA Astrophysics Data System (ADS)
Mišík, Matúš; Nosko, Andrej
2017-11-01
Ever since the 2009 natural gas crisis, energy security has been a crucial priority for countries of Central and Eastern Europe. Escalating in 2014, the conflict between Ukraine and Russia further fuelled negative expectations about the future development of energy relations for the region predominantly supplied by Russia. As a response to the planned cessation of gas transit through the Brotherhood pipeline, which brings Russian gas to Europe via Ukraine and Slovakia, the Slovak transmission system operator Eustream proposed the Eastring pipeline. This Perspective analyses this proposal and argues that neither the perceived decrease in Slovak energy security nor the loss of economic rent from the international gas transit should be the main policy driver behind such a major infrastructure project. Although marketed as an answer to current Central and Eastern European gas supply security challenges, the Eastring pipeline is actually mainly focused on issues connected to the Slovak gas transit.
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick
2016-01-01
Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
GAS INJECTION/WELL STIMULATION PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
John K. Godwin
2005-12-01
Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learnedmore » form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.« less
Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations
infrastructure: time-fill and fast-fill. The main structural differences between the two systems are the amount fuel dispensed and the time it takes for CNG to be delivered. Most CNG stations include one of these into account. Learn more about filling CNG tanks. Time-Fill CNG Station Enlarge illustration Time-fill
Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin
2017-12-01
A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.
Investigating the Methane Footprint of Compressed Natural Gas Stations in the Los Angeles Basin
NASA Astrophysics Data System (ADS)
Carranza, V.; Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Miu, J.
2013-12-01
In recent years, natural gas has taken on a larger role in the United States' discourse on energy policy because it is seen as a fuel that can alleviate the country's dependence on foreign energy while simultaneously reducing greenhouse gas emissions. To this end, the State of California promotes the use of vehicles fueled by compressed natural gas (CNG). However, the implications of increased CNG vehicles for greenhouse gas emission reduction are not fully understood. Specifically, methane (CH4) leakages from natural gas infrastructure could make the switch from conventional to CNG vehicles a source of CH4 to the atmosphere, and negate the greenhouse-gas reduction benefit of this policy. The goal of our research is to provide an analysis of potential CH4 leakages from thirteen CNG filling stations in Orange County, California. To improve our understanding of CH4 leakages, we used a mobile laboratory, which is a Ford Transit van equipped with cavity-ring down Picarro spectrometers, to measure CH4 mixing ratios in these CNG stations. MATLAB and ArcGIS were used to conduct statistical analysis and to construct spatial and temporal maps for each transect. We observed mean levels of excess CH4 (relative to background CH4 mixing ratios) ranging from 60 to 1700 ppb at the CNG stations we sampled. Repeated sampling of CNG stations revealed higher levels of excess CH4 during the daytime compared to the nighttime. From our observations, CNG storage tanks and pumps have approximately the same CH4 leakage levels. By improving our understanding of the spatial and temporal patterns of CH4 emissions from CNG stations, our research can provide valuable information to reduce the climate footprint of the natural gas industry.
Promoting International Energy Security. Volume 2: Turkey and the Caspian
2012-01-01
RAND reports un- dergo rigorous peer review to ensure that they meet high standards for research quality and objectivity. Promoting International...Russian invasion of Georgia in 2008 did not directly target energy infrastructure, most export routes for oil and natural gas from Azerbai- jan to...particular focus on the three countries with appreciable energy export potential: Azerbai- jan , Kazakhstan, and Turkmenistan. It also provides an
Development of an Open Global Oil and Gas Infrastructure Inventory and Geodatabase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Kelly
This submission contains a technical report describing the development process and visual graphics for the Global Oil and Gas Infrastructure database. Access the GOGI database using the following link: https://edx.netl.doe.gov/dataset/global-oil-gas-features-database
Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.
2014-12-01
Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis. Results of this research will provide a step towards better quantifying the land footprint of energy production activities and a methodologically consistent baseline from which more robust comparisons with alternative energy choices can be made.
Effective hydrogen generator testing for on-site small engine
NASA Astrophysics Data System (ADS)
Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.
2009-07-01
We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.
Mobile Measurements of Gas and Particle Emissions from Marcellus Shale Gas Development
NASA Astrophysics Data System (ADS)
DeCarlo, P. F.; Goetz, J. D.; Floerchinger, C. R.; Fortner, E.; Wormhoudt, J.; Knighton, W. B.; Herndon, S.; Kolb, C. E.; Shaw, S. L.; Knipping, E. M.
2013-12-01
Production of natural gas in the Marcellus shale is increasing rapidly due to the vast quantities of natural gas stored in the formation. Transient and long-term activities have associated emissions to the atmosphere of methane, volatile organic compounds, NOx, particulates and other species from gas production and transport infrastructure. In the summer of 2012, a team of researchers from Drexel University and Aerodyne Research deployed the Aerodyne mobile laboratory (AML) and measured in-situ concentrations of gas-phase and aerosol chemical components in the main gas producing regions of Pennsylvania, with the overall goal of understanding the impacts to regional ozone and particulate matter (PM) concentrations. State-of-the-art instruments including quantum cascade laser systems, proton transfer mass spectrometry, tunable diode lasers and a soot particle aerosol mass spectrometer, were used quantify concentrations of pollutants of interest. Chemical species measured include methane, ethane, NO, NO2, CO, CO2, SO2, and many volatile organic compounds, and aerosol size and chemical composition. Tracer-release techniques were employed to link sources with emissions and to quantify emission rates from gas facilities, in order to understand the regional burden of these chemical species from oil and gas development in the Marcellus. Measurements were conducted in two regions of Pennsylvania: the NE region that is predominantly dry gas (95% + methane), and the SW region where wet gas (containing greater than 5% higher hydrocarbons) is found. Regional scale measurements of current levels of air pollutants will be shown and will put into context how further development of the gas resource in one of the largest natural gas fields in the world impacts air quality in a region upwind of the highly urbanized east coast corridor.
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan
2004-07-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less
Oil, Gas and Conflict: A Mathematical Model for the Resource Curse
Cai, Yiyong; Newth, David
2013-01-01
Oil and natural gas are highly valuable natural resources, but many countries with large untapped reserves suffer from poor economic and social-welfare performance. This conundrum is known as the resource curse. The resource curse is a result of poor governance and wealth distribution structures that allow the elite to monopolize resources for self-gain. When rival social groups compete for natural resources, civil unrest soon follows. While conceptually easy to follow, there have been few formal attempts to study this phenomenon. Thus, we develop a mathematical model that captures the basic elements and dynamics of this dilemma. We show that when resources are monopolized by the elite, increased exportation leads to decreased domestic production. This is due to under-provision of the resource-embedded energy and industrial infrastructure. Decreased domestic production then lowers the marginal return on productive activities, and insurgency emerges. The resultant conflict further displaces human, built, and natural capital. It forces the economy into a vicious downward spiral. Our numerical results highlight the importance of governance reform and productivity growth in reducing oil-and-gas-related conflicts, and thus identify potential points of intervention to break the downward spiral. PMID:23826115
NASA Astrophysics Data System (ADS)
Siemek, Jakub; Nagy, Stanisław
2012-11-01
This paper discusses forecasts of energy carrier use with particular emphasis on the changing position of natural gas due to global climatic conditions and the increasing role of unconventional natural gas reservoirs. Allocation of natural gas resources in the world are discussed as well as global gas consumption and conditions for development of transport infrastructure and storage. The most important indicators of the energy security of countries are presented. The basic properties of unconventional deposits, and differences in the production/extraction of gas from the conventional and unconventional fields are given. In the paper are also discussed natural gas reserves in Poland, including possible non-conventional resources in the fields and issues of increasing the role of gas as an energy carrier in Poland in the background of the energy changes in Europe and the world. W pracy omówiono prognozy energetyczne wykorzystania energii ze szczególnym uwzględnieniem zmieniającej się pozycji gazu ziemnego z uwagi na uwarunkowania klimatyczne oraz wzrastającą role niekonwencjonalnych złóż gazu ziemnego. Omówiono alokację zasobów gazu ziemnego w świecie, zużycie gazu w regionach oraz warunki rozbudowy infrastruktury transportu i magazynowania. Przedstawiono najważniejsze wskaźniki dotyczące bezpieczeństwa energetycznego krajów. Omówiono podstawowe własności złóż niekonwencjonalnych oraz różnice w charakterze wydobycia gazu ze złóż konwencjonalnych i niekonwencjonalnych. Omówiono zasoby gazu w Polsce, w tym możliwe zasoby w złożach niekonwencjonalnych oraz zagadnienia zwiększenia roli gazu jako nośnika energii w Polsce w tle energetycznych zmian Europy i świata.
Project Startup: Evaluating the Performance of Electric Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-04-01
The National Renewable Energy Laboratory (NREL) is evaluating the in-service performance of fast-charge battery electric buses compared to compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. Launched in 2015 in collaboration with the California Air Resources Board, this study aims to improve understanding of the overall use and effectiveness of fast-charge electric buses and associated charging infrastructure in transit operation.
Systematic risk assessment methodology for critical infrastructure elements - Oil and Gas subsectors
NASA Astrophysics Data System (ADS)
Gheorghiu, A.-D.; Ozunu, A.
2012-04-01
The concern for the protection of critical infrastructure has been rapidly growing in the last few years in Europe. The level of knowledge and preparedness in this field is beginning to develop in a lawfully organized manner, for the identification and designation of critical infrastructure elements of national and European interest. Oil and gas production, refining, treatment, storage and transmission by pipelines facilities, are considered European critical infrastructure sectors, as per Annex I of the Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Besides identifying European and national critical infrastructure elements, member states also need to perform a risk analysis for these infrastructure items, as stated in Annex II of the above mentioned Directive. In the field of risk assessment, there are a series of acknowledged and successfully used methods in the world, but not all hazard identification and assessment methods and techniques are suitable for a given site, situation, or type of hazard. As Theoharidou, M. et al. noted (Theoharidou, M., P. Kotzanikolaou, and D. Gritzalis 2009. Risk-Based Criticality Analysis. In Critical Infrastructure Protection III. Proceedings. Third Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection. Hanover, New Hampshire, USA, March 23-25, 2009: revised selected papers, edited by C. Palmer and S. Shenoi, 35-49. Berlin: Springer.), despite the wealth of knowledge already created, there is a need for simple, feasible, and standardized criticality analyses. The proposed systematic risk assessment methodology includes three basic steps: the first step (preliminary analysis) includes the identification of hazards (including possible natural hazards) for each installation/section within a given site, followed by a criterial analysis and then a detailed analysis step. The criterial evaluation is used as a ranking system in order to establish the priorities for the detailed risk assessment. This criterial analysis stage is necessary because the total number of installations and sections on a site can be quite large. As not all installations and sections on a site contribute significantly to the risk of a major accident occurring, it is not efficient to include all installations and sections in the detailed risk assessment, which can be time and resource consuming. The selected installations are then taken into consideration in the detailed risk assessment, which is the third step of the systematic risk assessment methodology. Following this step, conclusions can be drawn related to the overall risk characteristics of the site. The proposed methodology can as such be successfully applied to the assessment of risk related to critical infrastructure elements falling under the energy sector of Critical Infrastructure, mainly the sub-sectors oil and gas. Key words: Systematic risk assessment, criterial analysis, energy sector critical infrastructure elements
,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.
2014-01-01
There are many documented examples at YNP and elsewhere where human infrastructure and natural thermal features have negatively affected each other. Unless action is taken, human conflicts with the Old Faithful hydrothermal system are likely to increase over the coming years. This is partly because of the increase in park visitation over the past decades, but also because the interval between eruptions of Old Faithful has increased, lengthening the time spent (and services needed) for each visitor at Old Faithful. To avoid an increase in visitor impacts, the National Park Service should consider 2 alternate strategies to accommodate people, vehicles, and services in the Upper Geyser Basin, such as shuttle services from staging (parking and dining) areas with little or no recent hydrothermal activity. We further suggest that YNP consider a zone system to guide maintenance and development of infrastructure in the immediate Old Faithful area. A “red” zone includes hydrothermally active land where new development is discouraged and existing infrastructure is modified with great care. An outer “green” zone represents areas where cooler temperatures and less hydrothermal flow are thought to exist, and where development and maintenance could proceed as occurs elsewhere in the park. An intermediate “yellow” zone would require preliminary assessment of subsurface temperatures and gas concentrations to assess suitability for infrastructure development. The panel recommends that YNP management follow the lead of the National Park System Advisory Board Science Committee (2012) by applying the “precautionary principle” when making decisions regarding the interaction of hydrothermal phenomena and park infrastructure in the Old Faithful area and other thermal areas within YNP.
Digital representation of oil and natural gas well pad scars in southwest Wyoming: 2012 update
Garman, Steven L.; McBeth, Jamie L.
2015-01-01
The recent proliferation of oil and natural gas energy development in the Greater Green River Basin of southwest Wyoming has accentuated the need to understand wildlife responses to this development. The location and extent of surface disturbance that is created by oil and natural gas well pad scars are key pieces of information used to assess the effects of energy infrastructure on wildlife populations and habitat. A digital database of oil and natural gas pad scars had previously been generated from 1-meter (m) National Agriculture Imagery Program imagery (NAIP) acquired in 2009 for a 7.7-million hectare (ha) (19,026,700 acres) region of southwest Wyoming. Scars included the pad area where wellheads, pumps, and storage facilities reside and the surrounding area that was scraped and denuded of vegetation during the establishment of the pad. Scars containing tanks, compressors, the storage of oil and gas related equipment, and produced-water ponds were also collected on occasion. This report updates the digital database for the five counties of southwest Wyoming (Carbon, Lincoln, Sublette, Sweetwater, Uinta) within the Wyoming Landscape Conservation Initiative (WLCI) study area and for a limited portion of Fremont, Natrona, and Albany Counties using 2012 1-m NAIP imagery and 2012 oil and natural gas well permit information. This report adds pad scars created since 2009, and updates attributes of all pad scars using the 2012 well permit information. These attributes include the origination year of the pad scar, the number of active and inactive wells on or near each pad scar in 2012, and the overall status of the pad scar (active or inactive). The new 2012 database contains 17,404 pad scars of which 15,532 are attributed as oil and natural gas well pads. Digital data are stored as shapefiles projected to the Universal Transverse Mercator (zones 12 and 13) coordinate system. These data are available from the U.S. Geological Survey (USGS) at http://dx.doi.org/10.3133/ds934.
NASA Astrophysics Data System (ADS)
Kern, Jordan D.; Characklis, Gregory W.; Foster, Benjamin T.
2015-04-01
Prolonged periods of low reservoir inflows (droughts) significantly reduce a hydropower producer's ability to generate both electricity and revenues. Given the capital intensive nature of the electric power industry, this can impact hydropower producers' ability to pay down outstanding debt, leading to credit rating downgrades, higher interests rates on new debt, and ultimately, greater infrastructure costs. One potential tool for reducing the financial exposure of hydropower producers to drought is hydrologic index insurance, in particular, contracts structured to payout when streamflows drop below a specified level. An ongoing challenge in developing this type of insurance, however, is minimizing contracts' "basis risk," that is, the degree to which contract payouts deviate in timing and/or amount from actual damages experienced by policyholders. In this paper, we show that consideration of year-to-year changes in the value of hydropower (i.e., the cost of replacing it with an alternative energy source during droughts) is critical to reducing contract basis risk. In particular, we find that volatility in the price of natural gas, a key driver of peak electricity prices, can significantly degrade the performance of index insurance unless contracts are designed to explicitly consider natural gas prices when determining payouts. Results show that a combined index whose value is derived from both seasonal streamflows and the spot price of natural gas yields contracts that exhibit both lower basis risk and greater effectiveness in terms of reducing financial exposure.
NASA Astrophysics Data System (ADS)
Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.
2015-12-01
Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability. The current model also does not distinguish between natural gas emissions during the different stages of transportation. We finally discuss the use of additional tracers such as the 13CH4 isotopic ratio and ethane concentrations to separate the various contributors to the regional atmospheric CH4 enhancement.
A life-cycle comparison of alternative automobile fuels.
MacLean, H L; Lave, L B; Lankey, R; Joshi, S
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
A Life-Cycle Comparison of Alternative Automobile Fuels.
MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C 2 H 5 OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C 2 H 5 OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
Analysis of Operational Data: A Proof of Concept for Assessing Electrical Infrastructure Impact
2015-11-01
cogeneration, solar, wind , geothermal, etc.) or by prime mover (i.e., steam turbine , water turbine , gas turbine , etc.). Power plants are typically...and Time SDR Sensor Data Record TRADOC U.S. Army Training and Doctrine Command UTC Coordinated Universal Time VCM VIIRS Cloud Mask VIIRS Visible...power, and other natural sources (water or wind ). The generating facilities or power plants can run by fuel (e.g., fossil fuel, hydroelectric, nuclear
DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles
2014-04-10
based fuels and biodiesel , in DoD vehicles; (2) current and projected actions by the DoD to increase the use of alternative fuels in vehicles; (3) a...fuels and vehicles. 15. SUBJECT TERMS alternative fuel infrastructure, electric vehicles, biofuels, ethanol, biodiesel , drop-in, synthetic fuel...of: (1) use and potential use of domestically-produced alternative fuels including but not limited to, natural gas based fuels and biodiesel , in DoD
Quantifying methane emissions from coal and natural gas sources along the northwestern Appalachian
NASA Astrophysics Data System (ADS)
Barkley, Z.; Lauvaux, T.; Davis, K. J.; Fried, A.
2017-12-01
According to the EPA's 2012 gridded inventory (Maasakkers et al., 2016), more than 10% of all CH4 emissions in the U.S. are located along the western edge of the Appalachian with the majority of these emissions coming from natural gas infrastructure and coal mines. However, top-down studies of unconventional wells in southwestern Pennsylvania have found emission rates to be much higher than EPA estimates (Caulton et al., 2014, Ren et al., 2017). Furthermore, although 9 of the 10 largest sources of CH4 in the EPA Greenhouse Gas Reporting Program are coal mines located in this region, no top down studies have been performed to assess the accuracy of these enormous point sources. This study uses aircraft data from the ACT-America flight campaign in conjunction with techniques previously used to solve for CH4 emissions from the northeastern Marcellus (Barkley et al., 2017) to quantify the total CH4 flux from the western Pennsylvania/West Virginia region and constrain emissions from natural gas and coal with an upper limit for each source. We use the WRF-Chem mesoscale model at 3 km resolution to simulate CH4 enhancements from a customized emissions inventory and compare the modelled enhancements to observations from 7 flights that were downwind of coal and gas sources. Coal and natural gas emissions are adjusted in the model to minimize a cost function that accounts for the difference between the modelled and observed CH4 values, and a range of likely combinations for natural gas and coal emission rates are obtained for each flight. We then overlap this range of likely emission rates across all flights to further limit the range of possible emission rates. Influence functions created using a lagrangian particle dispersion model for segments of each flight provide information on what area emissions are being optimized for. Preliminary results find that CH4 emissions from gas and coal along the northwestern Appalachian are lower than EPA estimates by 20-50%. In particular, upper limits on CH4 emissions from unconventional natural gas are less than 1% of total production, significantly lower than previous top-down estimates in the region. Future work will use ethane data to better distinguish between coal and natural gas emissions, and expand these analyses to other study regions explored in the ACT-America aircraft campaign.
Rahm, Brian G; Bates, Josephine T; Bertoia, Lara R; Galford, Amy E; Yoxtheimer, David A; Riha, Susan J
2013-05-15
Extraction of natural gas from tight shale formations has been made possible by recent technological advances, including hydraulic fracturing with horizontal drilling. Global shale gas development is seen as a potential energy and geopolitical "game-changer." However, widespread concern exists with respect to possible environmental consequences of this development, particularly impacts on water resources. In the United States, where the most shale gas extraction has occurred, the Marcellus Shale is now the largest natural gas producing play. To date, over 6,000,000 m(3) of wastewater has been generated in the process of extracting natural gas from this shale in the state of Pennsylvania (PA) alone. Here we examine wastewater management practices and trends for this shale play through analysis of industry-reported, publicly available data collected from the Pennsylvania Department of Environmental Protection Oil and Gas Reporting Website. We also analyze the tracking and transport of shale gas liquid waste streams originating in PA using a combination of web-based and GIS approaches. From 2008 to 2011 wastewater reuse increased, POTW use decreased, and data tracking became more complete, while the average distance traveled by wastewater decreased by over 30%. Likely factors influencing these trends include state regulations and policies, along with low natural gas prices. Regional differences in wastewater management are influenced by industrial treatment capacity, as well as proximity to injection disposal capacity. Using lessons from the Marcellus Shale, we suggest that nations, states, and regulatory agencies facing new unconventional shale development recognize that pace and scale of well drilling leads to commensurate wastewater management challenges. We also suggest they implement wastewater reporting and tracking systems, articulate a policy for adapting management to evolving data and development patterns, assess local and regional wastewater treatment infrastructure in terms of capacity and capability, promote well-regulated on-site treatment technologies, and review and update wastewater management regulations and policies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Young, John A.; Maloney, Kelly O.; Slonecker, Terry; Milheim, Lesley E.; Siripoonsup, David
2018-01-01
Oil and gas development is changing the landscape in many regions of the United States and globally. However, the nature, extent, and magnitude of landscape change and development, and precisely how this development compares to other ongoing land conversion (e.g. urban/sub-urban development, timber harvest) is not well understood. In this study, we examine land conversion from oil and gas infrastructure development in the upper Susquehanna River basin in Pennsylvania and New York, an area that has experienced much oil and gas development over the past 10 years. We quantified land conversion in terms of forest canopy geometric volume loss in contrast to previous studies that considered only areal impacts. For the first time in a study of this type, we use fine-scale lidar forest canopy geometric models to assess the volumetric change due to forest clearing from oil and gas development and contrast this land change to clear cut forest harvesting, and urban and suburban development. Results show that oil and gas infrastructure development removed a large volume of forest canopy from 2006 to 2013, and this removal spread over a large portion of the study area. Timber operations (clear cutting) on Pennsylvania State Forest lands removed a larger total volume of forest canopy during the same time period, but this canopy removal was concentrated in a smaller area. Results of our study point to the need to consider volumetric impacts of oil and gas development on ecosystems, and to place potential impacts in context with other ongoing land conversions.
Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat
2017-04-01
Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network Istanbul Natural Gas Distribution Corporation (IGDAS) is one of the end users of the Istanbul Earthquake Early Warning (EEW) signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867km of gas lines with 750 district regulators and 474,000 service boxes. The natural gas comes to Istanbul city borders with 70bar in 30inch diameter steel pipeline. The gas pressure is reduced to 20bar in RMS stations and distributed to district regulators inside the city. 110 of 750 district regulators are instrumented with strong motion accelerometers in order to cut gas flow during an earthquake event in the case of ground motion parameters exceeds the certain threshold levels. Also, state of-the-art protection systems automatically cut natural gas flow when breaks in the gas pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 750 district regulator sites. IGDAS Real-time Earthquake Risk Reduction algorithm follows 4 stages as below: 1) Real-time ground motion data transmitted from 110 IGDAS and 110 KOERI (Kandilli Observatory and Earthquake Research Institute) acceleration stations to the IGDAS Scada Center and KOERI data center. 2) During an earthquake event EEW information is sent from IGDAS Scada Center to the IGDAS stations. 3) Automatic Shut-Off is applied at IGDAS district regulators, and calculated parameters are sent from stations to the IGDAS Scada Center and KOERI. 4) Integrated building and gas pipeline damage maps are prepared immediately after the earthquake event. The today's technology allows to rapidly estimate the expected level of shaking when an earthquake starts to occur. However, in Istanbul case for a potential Marmara Sea Earthquake, the time is very limited even to estimate the level of shaking. The robust threshold based EEW system is only algorithm for such a near source event to activate automatic shut-off mechanism in the critical infrastructures before the damaging waves arrive. This safety measure even with a few seconds of early warning time will help to mitigate potential damages and secondary hazards.
NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-06-01
Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas andmore » renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.« less
2015-09-01
brown, and light gray loam 19-inches thick. The subsoil is mottled, light yellowish brown, yellowish brown, and pale brown clay 41-inches thick...areas of Solano loam and Pescadero clay loam. The Antioch soil has slightly concave slopes, and the San Ysidro soil has slightly convex slopes (Web...Infrastructure and utilities include transportation, water supply, sanitary sewage/wastewater natural gas, electrical, communications, and liquid fuels
Baker, Michael S.; Buteyn, Spencer D.; Freeman, Philip A.; Trippi, Michael H.; Trimmer III, Loyd M.
2017-07-31
This report describes the U.S. Geological Survey’s (USGS) ongoing commitment to its mission of understanding the nature and distribution of global mineral commodity supply chains by updating and publishing the georeferenced locations of mineral commodity production and processing facilities, mineral exploration and development sites, and mineral commodity exporting ports in Latin America and the Caribbean. The report includes an overview of data sources and an explanation of the geospatial PDF map format.The geodatabase and geospatial data layers described in this report create a new geographic information product in the form of a geospatial portable document format (PDF) map. The geodatabase contains additional data layers from USGS, foreign governmental, and open-source sources as follows: (1) coal occurrence areas, (2) electric power generating facilities, (3) electric power transmission lines, (4) hydrocarbon resource cumulative production data, (5) liquefied natural gas terminals, (6) oil and gas concession leasing areas, (7) oil and gas field center points, (8) oil and gas pipelines, (9) USGS petroleum provinces, (10) railroads, (11) recoverable proven plus probable hydrocarbon resources, (12) major cities, (13) major rivers, and (14) undiscovered porphyry copper tracts.
NASA Astrophysics Data System (ADS)
Zhang, Xianjun
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
Catalytic partial oxidation reforming of hydrocarbon fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, S.
1998-09-21
The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as inmore » buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.« less
Frontiers, Opportunities and Challenges for a Hydrogen Economy
NASA Astrophysics Data System (ADS)
Turner, John
2015-03-01
Energy carriers are the staple for powering the society we live in. Coal, oil, natural gas, gasoline and diesel all carry energy in chemical bonds, used in almost all areas of our civilization. But these carriers have a limited-use lifetime on this planet. They are finite, contribute to climate change and carry significant geopolitical issues. If mankind is to maintain and grow our societies, new energy carriers must be developed and deployed into our energy infrastructure. Hydrogen is the simplest of all the energy carriers and when refined from water using renewable energies like solar and wind, represents a sustainable energy carrier, viable for millennia to come. This talk with discuss the challenges for sustainable production of hydrogen, along with the promise and possible pathways for implementing hydrogen into our energy infrastructure.
NASA Astrophysics Data System (ADS)
Sarmiento, D. P.; Belmecheri, S.; Lauvaux, T.; Sowers, T. A.; Bryant, S.; Miles, N. L.; Richardson, S.; Aikins, J.; Sweeney, C.; Petron, G.; Davis, K. J.
2012-12-01
Natural gas extraction from shale formations via hydraulic-fracturing (fracking) is expanding rapidly in several regions of North America. In Pennsylvania, the number of wells drilled to extract natural gas from the Marcellus shale has grown from 195 in 2008 to 1,386 in 2010. The gas extraction process using the fracking technology results in the escape of methane (CH4), a potent greenhouse gas and the principal component of natural gas, into the atmosphere. Emissions of methane from fracking operations remain poorly quantified, leading to a large range of scenarios for the contribution of fracking to climate change. A mobile measurement campaign provided insights on methane leakage rates and an improved understanding of the spatio-temporal variability in active drilling areas in the South West of Pennsylvania. Two towers were then instrumented to monitor fugitive emissions of methane from well pads, pipelines, and other infrastructures in the area. The towers, one within a drilling region and one upwind of active drilling, measured atmospheric CH4 mixing ratios continuously. Isotopic measurements from air flasks were also collected. Data from the initial mobile campaign were used to estimate emission rates from single sites such as wells and compressor stations. Tower data will be used to construct a simple atmospheric inversion for regional methane emissions. Our results show the daily variability in emissions and allow us to estimate leakage rates over a one month period in South West Pennsylvania. We discuss potential deployment strategies in drilling zones to monitor emissions of methane over longer periods of time.
Langlois, Lillie A; Drohan, Patrick J; Brittingham, Margaret C
2017-07-15
Large, continuous forest provides critical habitat for some species of forest dependent wildlife. The rapid expansion of shale gas development within the northern Appalachians results in direct loss of such habitat at well sites, pipelines, and access roads; however the resulting habitat fragmentation surrounding such areas may be of greater importance. Previous research has suggested that infrastructure supporting gas development is the driver for habitat loss, but knowledge of what specific infrastructure affects habitat is limited by a lack of spatial tracking of infrastructure development in different land uses. We used high-resolution aerial imagery, land cover data, and well point data to quantify shale gas development across four time periods (2010, 2012, 2014, 2016), including: the number of wells permitted, drilled, and producing gas (a measure of pipeline development); land use change; and forest fragmentation on both private and public land. As of April 2016, the majority of shale gas development was located on private land (74% of constructed well pads); however, the number of wells drilled per pad was lower on private compared to public land (3.5 and 5.4, respectively). Loss of core forest was more than double on private than public land (4.3 and 2.0%, respectively), which likely results from better management practices implemented on public land. Pipelines were by far the largest contributor to the fragmentation of core forest due to shale gas development. Forecasting future land use change resulting from gas development suggests that the greatest loss of core forest will occur with pads constructed farthest from pre-existing pipelines (new pipelines must be built to connect pads) and in areas with greater amounts of core forest. To reduce future fragmentation, our results suggest new pads should be placed near pre-existing pipelines and methods to consolidate pipelines with other infrastructure should be used. Without these mitigation practices, we will continue to lose core forest as a result of new pipelines and infrastructure particularly on private land. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fostering incidental experiences of nature through green infrastructure planning.
Beery, Thomas H; Raymond, Christopher M; Kyttä, Marketta; Olafsson, Anton Stahl; Plieninger, Tobias; Sandberg, Mattias; Stenseke, Marie; Tengö, Maria; Jönsson, K Ingemar
2017-11-01
Concern for a diminished human experience of nature and subsequent decreased human well-being is addressed via a consideration of green infrastructure's potential to facilitate unplanned or incidental nature experience. Incidental nature experience is conceptualized and illustrated in order to consider this seldom addressed aspect of human interaction with nature in green infrastructure planning. Special attention has been paid to the ability of incidental nature experience to redirect attention from a primary activity toward an unplanned focus (in this case, nature phenomena). The value of such experience for human well-being is considered. The role of green infrastructure to provide the opportunity for incidental nature experience may serve as a nudge or guide toward meaningful interaction. These ideas are explored using examples of green infrastructure design in two Nordic municipalities: Kristianstad, Sweden, and Copenhagen, Denmark. The outcome of the case study analysis coupled with the review of literature is a set of sample recommendations for how green infrastructure can be designed to support a range of incidental nature experiences with the potential to support human well-being.
2004-12-01
Explosive Materials/Subsystems Don Ragland, Technical Writer/Editor Energy Infrastructure and DER Department Sandia National Laboratories P.O. Box 5800...and the culvert measured 2.4 meters in diameter. From these detonations, the shock wave was felt at a town 22 km from the test site. Vander Molen ...and Nicholls – 1979 [Vander Molen and Nicholls 1979] Experiments were performed to measure the effect of ethane addition to methane air clouds on
Jobs and Economic Development from New Transmission and Generation in Wyoming Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-05-10
Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Lantz, Nicholas; Guindon, Bert; Jiao, Xianfen
2017-01-01
Accurate and frequent monitoring of land surface changes arising from oil and gas exploration and extraction is a key requirement for the responsible and sustainable development of these resources. Petroleum deposits typically extend over large geographic regions but much of the infrastructure required for oil and gas recovery takes the form of numerous small-scale features (e.g., well sites, access roads, etc.) scattered over the landscape. Increasing exploitation of oil and gas deposits will increase the presence of these disturbances in heavily populated regions. An object-based approach is proposed to utilize RapidEye satellite imagery to delineate well sites and related access roads in diverse complex landscapes, where land surface changes also arise from other human activities, such as forest logging and agriculture. A simplified object-based change vector approach, adaptable to operational use, is introduced to identify the disturbances on land based on red-green spectral response and spatial attributes of candidate object size and proximity to roads. Testing of the techniques has been undertaken with RapidEye multitemporal imagery in two test sites located at Alberta, Canada: one was a predominant natural forest landscape and the other landscape dominated by intensive agricultural activities. Accuracies of 84% and 73%, respectively, have been achieved for the identification of well site and access road infrastructure of the two sites based on fully automated processing. Limited manual relabeling of selected image segments can improve these accuracies to 95%.
European Energy Policy and Its Effects on Gas Security
NASA Astrophysics Data System (ADS)
Radu, Victorita Stefana Anda
The goal of this study is to examine the effects of the energy policies of the European Union (EU) on its gas security in the period 2006 to 2016. While energy security is often given a broad meaning, this paper focuses on its external dimension: the EU?s relations with external gas suppliers. It is grounded on four pillars drawing from the compounded institutionalist and liberal theoretical frameworks: regulatory state, rational-choice, external governance, and regime effectiveness. The research question was investigated through a qualitative methodology with two main components: a legislative analysis and four case studies representing the main gas supply options--Russia, North African exporting countries, Norway, and liquefied natural gas (LNG). They highlighted that the EU framed the need for gas security mainly in the context of political risks associated with Russian gas supply, but it almost never took into account other equally important risks. Moreover, the research revealed two main issues. First, that the deeper and the more numerous EU?s energy policies were, the bigger was the magnitude of the effect. Specifically, competitiveness and infrastructure policies had the largest magnitude, while the sustainability and security of supply policies had the smallest effect. Second, EU energy policies only partially diminished the economic and political risks in relation to foreign gas suppliers. To conclude, to a certain extent the EU?s efforts made a positive contribution to the external dimension of the EU?s gas security, but the distinguishing trait remains that there is no consistency in terms of the magnitude of the effect and its nature.
Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North
NASA Astrophysics Data System (ADS)
Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.
2015-12-01
The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.
Hydrogen energy systems studies. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, J.M.; Kreutz, T.; Kartha, S.
1996-08-13
The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions:more » (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.« less
The impact of natural hazard on critical infrastructure systems: definition of an ontology
NASA Astrophysics Data System (ADS)
Dimauro, Carmelo; Bouchon, Sara; Frattini, Paolo; Giusto, Claudia
2013-04-01
According to the Council of the European Union Directive (2008), 'critical infrastructure' means an asset, system or part thereof which is essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. Critical infrastructure networks are exposed to natural events, such as floods, storms, landslides, earthquakes, etc. Recent natural disasters show that socio-economic consequences can be very much aggravated by the impact on these infrastructures. Though, there is still a lack of a recognized approach or methodology to assess the vulnerability of critical infrastructure assets against natural threats. The difficulty to define such an approach is increased by the need to consider a very high number of natural events, which differ in nature, magnitude and probability, as well as the need to assess the vulnerability of a high variety of infrastructure assets (e.g. bridges, roads, tunnels, pipelines, etc.) To meet this challenge, the objective of the THREVI2 EU-CIPS project is to create a database linking the relationships between natural hazards and critical infrastructure assets. The query of the database will allow the end-users (critical infrastructure protection authorities and operators) to identify the relevant scenarios according to the own priorities and criteria. The database builds on an ontology optimized for the assessment of the impact of threats on critical infrastructures. The ontology aims at capturing the existing knowledge on natural hazards, critical infrastructures assets and their related vulnerabilities. Natural phenomena that can threaten critical infrastructures are classified as "events", and organized in a genetic-oriented hierarchy. The main attributes associated to each event are the probability, the magnitude and the "modus". The modus refers to the physical-chemical process by means the event (e.g., a pyroclastic flow) can interact and damage a critical infrastructure asset (e.g., a pipe). Each event can be characterized by several modi (e.g., impact load, heating, burying) that can cause damages to the asset. Hence, the damage is linked to the modus and not directly to the event. The advantage of using the "modus" approach is to allow reducing the number of interactions (natural hazard/Critical infrastructure assets) to be addressed. All different events exert their impact on infrastructures by means of a limited number of different modus. This allows adapting existing vulnerability or fragility laws to events that have not been studied yet, and for which these laws are not available.
Li, Man; Zhong, Renyao; Zhu, Shanwen; Ramsay, Lauren C; Li, Fen; Coyte, Peter C
2018-06-06
Community-based day care centres play an important role in service delivery for Chinese seniors. Little research has examined how community living infrastructure has influenced the establishment of these day care centres in rural communities. The purposes of this study were: (1) explore regional differences in community living infrastructure; and (2) to examine the impact of such infrastructure on the establishment of day care centres for Chinese seniors in rural communities. The data were derived from “The Fourth Sample Survey on the Living Conditions of Elderly People in Urban and Rural China (2015)”. The establishment of at least one day care centre was the outcome of interest, which was dichotomized at the community level into the establishment of at least one day care centre or the absence of any day care centres. Logistic regression analysis was employed to examine the impact of various community living infrastructural characteristics on the establishment of day care centres. The results showed that of the 4522 rural communities surveyed in 2015, only 10.1% had established at least one day care centre. Community living infrastructural characteristics that were significantly associated with the establishment of day care centres were the availability of cement/asphalt roads, natural gas, tap drinking water, sewage systems, and centralized garbage disposal. Our findings suggest that the significant association between community-level characteristics, especially community living infrastructure, and the establishment of rural day care centre for seniors may inform policy decision making.
NASA Astrophysics Data System (ADS)
Weger, L.; Cremonese, L.; Bartels, M. P.; Butler, T. M.
2016-12-01
Several European countries with domestic shale gas reserves are considering extracting this natural gas resource to complement their energy transition agenda. Natural gas, which produces lower CO2 emissions upon combustion compared to coal or oil, has the potential to serve as a bridge in the transition from fossil fuels to renewables. However, the generation of shale gas leads to emissions of CH4 and pollutants such as PM, NOx and VOCs, which in turn impact climate as well as local and regional air quality. In this study, we explore the impact of a potential shale gas development in Europe, specifically in Germany and the United Kingdom, on emissions of greenhouse gases and pollutants. In order to investigate the effect on emissions, we first estimate a range of wells drilled per year and production volume for the two countries under examination based on available geological information and on regional infrastructural and economic limitations. Subsequently we assign activity data and emissions factors to the well development, gas production and processing stages of shale gas generation to enable emissions quantification. We then define emissions scenarios to explore different storylines of potential shale gas development, including low emissions (high level of regulation), high emissions (low level of regulation) and middle emissions scenarios, which influence fleet make-up, emission factor and activity data choices for emissions quantification. The aim of this work is to highlight important variables and their ranges, to promote discussion and communication of potential impacts, and to construct possible visions for a future shale gas development in the two study countries. In a follow-up study, the impact of pollutant emissions from these scenarios on air quality will be explored using the Weather Research and Forecasting model with chemistry (WRF-Chem) model.
Germaine, Stephen; Carter, Sarah; Ignizio, Drew A.; Freeman, Aaron T.
2017-01-01
More than 5957 km2 in southwestern Wyoming is currently covered by operational gas fields, and further development is projected through 2030. Gas fields fragment landscapes through conversion of native vegetation to roads, well pads, pipeline corridors, and other infrastructure elements. The sagebrush steppe landscape where most of this development is occurring harbors 24 sagebrush-associated species of greatest conservation need, but the effects of gas energy development on most of these species are unknown. Pygmy rabbits (Brachylagus idahoensis) are one such species. In 2011, we began collecting three years of survey data to examine the relationship between gas field development density and pygmy rabbit site occupancy patterns on four major Wyoming gas fields (Continental Divide–Creston–Blue Gap, Jonah, Moxa Arch, Pinedale Anticline Project Area). We surveyed 120 plots across four gas fields, with plots distributed across the density gradient of gas well pads on each field. In a 1 km radius around the center of each plot, we measured the area covered by each of 10 gas field infrastructure elements and by shrub cover using 2012 National Agriculture Imagery Program imagery. We then modeled the relationship between gas field elements, pygmy rabbit presence, and two indices of pygmy rabbit abundance. Gas field infrastructure elements—specifically buried utility corridors and a complex of gas well pads, adjacent disturbed areas, and well pad access roads—were negatively correlated with pygmy rabbit presence and abundance indices, with sharp declines apparent after approximately 2% of the area consisted of gas field infrastructure. We conclude that pygmy rabbits in southwestern Wyoming may be sensitive to gas field development at levels similar to those observed for greater sage-grouse, and may suffer local population declines at lower levels of development than are allowed in existing plans and policies designed to conserve greater sage-grouse by limiting the surface footprint of energy development. Buried utilities, gas well pads, areas adjacent to well pads, and well pad access roads had the strongest negative correlation with pygmy rabbit presence and abundance. Minimizing the surface footprint of these elements may reduce negative impacts of gas energy development on pygmy rabbits.
Scanning, standoff TDLAS leak imaging and quantification
NASA Astrophysics Data System (ADS)
Wainner, Richard T.; Aubut, Nicholas F.; Laderer, Matthew C.; Frish, Michael B.
2017-05-01
This paper reports a novel quantitative gas plume imaging tool, based on active near-infrared Backscatter Tunable Diode Laser Absorption Spectroscopy (b-TDLAS) technology, designed for upstream natural gas leak applications. The new tool integrates low-cost laser sensors with video cameras to create a highly sensitive gas plume imager that also quantifies emission rate, all in a lightweight handheld ergonomic package. It is intended to serve as a lower-cost, higherperformance, enhanced functionality replacement for traditional passive non-quantitative mid-infrared Optical Gas Imagers (OGI) which are utilized by industry to comply with natural gas infrastructure Leak Detection and Repair (LDAR) requirements. It addresses the need for reliable, robust, low-cost sensors to detect and image methane leaks, and to quantify leak emission rates, focusing on inspections of upstream oil and gas operations, such as well pads, compressors, and gas plants. It provides: 1) Colorized quantified images of path-integrated methane concentration. The images depict methane plumes (otherwise invisible to the eye) actively interrogated by the laser beam overlaid on a visible camera image of the background. The detection sensitivity exceeds passive OGI, thus simplifying the manual task of leak detection and location; and 2) Data and algorithms for using the quantitative information gathered by the active detection technique to deduce plume flux (i.e. methane emission rate). This key capability will enable operators to prioritize leak repairs and thereby minimize the value of lost product, as well as to quantify and minimize greenhouse gas emissions, using a tool that meets EPA LDAR imaging equipment requirements.
Krümpel, Johannes Hagen; Illi, Lukas; Lemmer, Andreas
2018-03-01
As a consequence of a growing share of solar and wind power, recent research on biogas production highlighted a need for demand-orientated, flexible gas production to provide grid services and enable a decentralized stabilization of the electricity infrastructure. Two-staged anaerobic digestion is particularly suitable for shifting the methane production into times of higher demand due to the spatio-temporal separation of hydrolysis and methanogenesis. To provide a basis for predicting gas production in an anaerobic filter, kinetic parameters of gas production have been determined experimentally in this study. A new methodology is used, enabling their determination during continuous operation. An order in methane production rate could be established by comparing the half lives of methane production. The order was beginning with the fastest: acetic acid>ethanol>butyric acid>iso-butyric acid>valeric acid>propionic acid>1,2propanediol>lactic acid. However, the mixture of a natural hydrolysate from the acidification tank appeared to produce methane faster than all single components tested.
Hydrogen Generation Via Fuel Reforming
NASA Astrophysics Data System (ADS)
Krebs, John F.
2003-07-01
Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.
Unbundled infrastructure firms: Competition and continuing regulation
NASA Astrophysics Data System (ADS)
Hogendorn, Christiaan Paul
Unbundled infrastructure firms provide conduits for electricity transmission, residential communications, etc. but are vertically disintegrated from "content" functions such as electricity generation or world-wide-web pages. These conduits are being deregulated, and this dissertation examines whether the deregulated conduits will behave in an efficient and competitive manner. The dissertation presents three essays, each of which develops a theoretical model of the behavior of conduit firms in a market environment. The first essay considers the prospects for competition between multiple conduits in the emerging market for broadband (high-speed) residential Internet access. It finds that such competition is likely to emerge as demand for these services increase. The second essay shows how a monopoly electricity or natural gas transmission conduit can facilitate collusion between suppliers of the good. It shows that this is an inefficient effect of standard price-cap regulation. The third essay considers the supply chain of residential Internet access and evaluates proposed "open access" regulation that would allow more than one firm to serve customers over the same physical infrastructure. It shows that the amount of content available to consumers does not necessarily increase under open access.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, Jacquelyn; Arent, Douglas J.; Logan, Jeffrey
2015-04-30
Ensuring the resilience, reliability, flexibility, and affordability of the U.S. electric grid is increasingly important as the country addresses climate change and an aging infrastructure. State and federal policy and actions by industry, non-profits, and others create a dynamic framework for achieving these goals. Three principle low-carbon generation technologies have formed the basis for multiple scenarios leading toward a low-carbon, resilient, and affordable power system. While there is no “silver bullet,” one avenue identified by key stakeholders is the opportunity to invest in natural gas (NG) and renewable resources, both of which offer abundant domestic resource bases and contribute tomore » energy independence, carbon mitigation, and economic growth. NG and renewable electricity (RE) have traditionally competed for market share in the power sector, but there is a growing experience base and awareness for their synergistic use (Cochran et al. 2014). Building upon these observations and previous work, the Joint Institute for Strategic Energy Analysis (JISEA), in collaboration with the Center for the New Energy Economy and the Gas Technology Institute, convened a series of workshops in 2014 to explore NG and RE synergies in the U.S. power sector. This report captures key insights from the workshop series, Synergies of Natural Gas and Renewable Energy: 360 Degrees of Opportunity, as well as supporting economic valuation analyses conducted by JISEA researchers that quantify the value proposition of investing in NG and RE together as complements.« less
Fuels Containing Methane of Natural Gas in Solution
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
2004-01-01
While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
Baselining Fugitive and Vented Emissions Across Canadian Energy Developments
NASA Astrophysics Data System (ADS)
O'Connell, L.; Risk, D. A.; Fougère, C. R.; Atherton, E.; Baillie, J.; Marshall, A. D.
2017-12-01
Nearly half of Alberta's oil and gas related methane emissions are due to fugitives and leaks, which pose significant potential for mitigation. Accurate and spatially-extensive emissions data can help operators and regulators meet reduction targets, and highlight which infrastructure requires immediate attention. This study used a vehicle-based gas monitoring system to detect and quantify methane emissions across large geographic areas in real-time. Our objectives were to quantify methane mixing ratios, determine the drivers of emission variation across several developments, and to evaluate emissions frequency and severity from several thousand wells and facilities. We measured fugitive, un-combusted flaring, and vented emissions within Lloydminster (heavy oil), Peace River (heavy oil), and Medicine Hat (conventional gas), Alberta during fall 2016. During this time, CO2, CH4, H2S, C2H6, and δ13CH4 (Picarro 2210 and Teledyne T101) were recorded from public roads at 1 Hz intervals, collecting over 6.7 million unique measurements in total. Methane anomalies were generally mild (0.2-0.5 ppm) in Peace River and Medicine Hat, but in Lloydminster, CH4 mixing ratios were elevated, and at their worst exceeded 6 ppm over 60 km of driving. We classified oil and gas related plumes based on geochemical emission signatures, and attributed the plumes based on wind direction and proximity to one of the >3200 infrastructural sources we surveyed during the triplicated campaign routes. The relative gas ratios (C1:C2, CO2:CH4) and isotopic signatures of plumes were within expected ranges for each development. Emission frequencies differed amongst developments, but were highest in Lloydminster, where 56% of wells were emitting methane-rich gas above our minimum detection limits. In Medicine Hat and Peace River, 28% and 29% of active wells were tagged as potential emission sources, respectively. Although active wells were the predominant source of emissions, other classes of infrastructure were also tagged as sources. We observed both episodic and persistent emissions in each development, owing to the sporadic and unpredictable nature of oilfield emissions. This study demonstrates the practicality of mobile surveying as both a regional-scale and wellpad-scale screening tool to help manage methane emissions in Alberta.
Rapid fuel switching from coal to natural gas through effective carbon pricing
NASA Astrophysics Data System (ADS)
Wilson, I. A. Grant; Staffell, Iain
2018-05-01
Great Britain's overall carbon emissions fell by 6% in 2016, due to cleaner electricity production. This was not due to a surge in low-carbon nuclear or renewable sources; instead it was the much-overlooked impact of fuel switching from coal to natural gas generation. This Perspective considers the enabling conditions in Great Britain and the potential for rapid fuel switching in other coal-reliant countries. We find that spare generation and fuel supply-chain capacity must already exist for fuel switching to deliver rapid carbon savings, and to avoid further high-carbon infrastructure lock-in. More important is the political will to alter the marketplace and incentivize this switch, for example, through a stable and strong carbon price. With the right incentives, fuel switching in the power sector could rapidly achieve on the order of 1 GtCO2 saving per year worldwide (3% of global emissions), buying precious time to slow the growth in cumulative carbon emissions.
The state of the environment in Iran.
Zekavat, S M
1997-06-01
This article describes environmental conditions in Iran including air pollution, pesticide pollution, soil depletion and erosion, water pollution, natural resource loss, lack of appropriate waste management, lead poisoning, and desertification. Environmental policy and implementation is described under the Shah and the Islamic Republic. Iran is beset with interrelated problems of environmental degradation, unemployment, poverty, and population growth. Sustainability is being undermined at the cost of future generations. In 1995, Iran had a population of 67 million and a growth rate of 3.6%. Population is expected to exceed 100 million by the year 2000. The country is having difficulty in maintaining its current infrastructure, housing, food, and educational facilities. Competition for admission in higher education discourages women. Women with lower levels of education results in continued supremacy of men over women, more polygamy, and a lower quality of life for women. Iran was food self-sufficient in 1970, and exported its surplus. Today, Iran may be permanently dependent on food imports. Iran has abundant oil reserves, natural gas, copper, lead, and marketable items. Exchanging natural resources for food and technology has time and resource limits. Iran needs monetary assistance from wealthy nations. Population growth leads to increased demand for infrastructure and resources. Iran has signed many international environmental agreements and has enacted detailed environmental policies and regulations, but actual enforcement is lacking.
Duthu, Ray C.
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields. PMID:28686682
Duthu, Ray C; Bradley, Thomas H
2017-01-01
The process of hydraulic fracturing for recovery of oil and natural gas uses large amounts of fresh water and produces a comparable amount of wastewater, much of which is typically transported by truck. Truck transport of water is an expensive and energy-intensive process with significant external costs including roads damages, and pollution. The integrated development plan (IDP) is the industry nomenclature for an integrated oil and gas infrastructure system incorporating pipeline-based transport of water and wastewater, centralized water treatment, and high rates of wastewater recycling. These IDP have been proposed as an alternative to truck transport systems so as to mitigate many of the economic and environmental problems associated with natural gas production, but the economic and environmental performance of these systems have not been analyzed to date. This study presents a quantification of lifecycle greenhouse gas (GHG) emissions and road damages of a generic oil and gas field, and of an oil and gas development sited in the Denver-Julesburg basin in the northern Colorado region of the US. Results demonstrate that a reduction in economic and environmental externalities can be derived from the development of these IDP-based pipeline water transportation systems. IDPs have marginal utility in reducing GHG emissions and road damage when they are used to replace in-field water transport, but can reduce GHG emissions and road damage by factors of as much as 6 and 7 respectively, when used to replace fresh water transport and waste-disposal routes for exemplar Northern Colorado oil and gas fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.
Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research & Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorists actions based on assumptions regardingmore » their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.« less
Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-05-01
Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freifeld, Barry M.; Oldenburg, Curtis M.; Jordan, Preston
Introduction Motivation The 2015-2016 Aliso Canyon/Porter Ranch natural gas well blowout emitted approximately 100,000 tonnes of natural gas (mostly methane, CH 4) over four months. The blowout impacted thousands of nearby residents, who were displaced from their homes. The high visibility of the event has led to increased scrutiny of the safety of natural gas storage at the Aliso Canyon facility, as well as broader concern for natural gas storage integrity throughout the country. Federal Review of Well Integrity In April of 2016, the U.S. Department of Energy (DOE), in conjunction with the U.S. Department of Transportation (DOT) through themore » Pipeline and Hazardous Materials Safety Administration (PHMSA), announced the formation of a new Interagency Task Force on Natural Gas Storage Safety. The Task Force enlisted a group of scientists and engineers at the DOE National Laboratories to review the state of well integrity in natural gas storage in the U.S. The overarching objective of the review is to gather, analyze, catalogue, and disseminate information and findings that can lead to improved natural gas storage safety and security and thus reduce the risk of future events. The “Protecting our Infrastructure of Pipelines and Enhancing Safety Act of 2016’’ or the ‘‘PIPES Act of 2016,’’which was signed into law on June 22, 2016, created an Aliso Canyon Natural Gas Leak Task Force led by the Secretary of Energy and consisting of representatives from the DOT, Environmental Protection Agency (EPA), Department of Health and Human Services, Federal Energy Regulatory Commission (FERC), Department of Commerce and the Department of Interior. The Task Force was asked to perform an analysis of the Aliso Canyon event and make recommendations on preventing similar incidents in the future. The PIPES Act also required that DOT/PHMSA promulgate minimum safety standards for underground storage that would take effect within two years. Background on the DOE National Laboratories Well Integrity Work Group One of the primary areas that the Task Force is studying is integrity of natural gas wells at storage facilities. The DOE Office of Fossil Energy (FE) took the lead in this area and asked scientists and engineers from the National Energy Technology Laboratory (NETL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and Lawrence Berkeley National Laboratory (LBNL)) to form a Work Group to address this area. This Work Group is an expansion of the original “Lab Team” comprising scientists and engineers from SNL, LLNL, and LBNL which was formed to support the State of California’s response to the Aliso Canyon incident and operated under the Governor of California’s Aliso Canyon Emergency Order (1/6/2016). The Lab Team played a key role in advising the State of California’s Department of Conservation (DOC) in its oversight of SoCalGas during and after the incident.« less
Three essays on access pricing
NASA Astrophysics Data System (ADS)
Sydee, Ahmed Nasim
In the first essay, a theoretical model is developed to determine the time path of optimal access price in the telecommunications industry. Determining the optimal access price is an important issue in the economics of telecommunications. Setting a high access price discourages potential entrants; a low access price, on the other hand, amounts to confiscation of private property because the infrastructure already built by the incumbent is sunk. Furthermore, a low access price does not give the incumbent incentives to maintain the current network and to invest in new infrastructures. Much of the existing literature on access pricing suffers either from the limitations of a static framework or from the assumption that all costs are avoidable. The telecommunications industry is subject to high stranded costs and, therefore, to address this issue a dynamic model is imperative. This essay presents a dynamic model of one-way access pricing in which the compensation involved in deregulatory taking is formalized and then analyzed. The short run adjustment after deregulatory taking has occurred is carried out and discussed. The long run equilibrium is also analyzed. A time path for the Ramsey price is shown as the correct dynamic price of access. In the second essay, a theoretical model is developed to determine the time path of optimal access price for an infrastructure that is characterized by congestion and lumpy investment. Much of the theoretical literature on access pricing of infrastructure prescribes that the access price be set at the marginal cost of the infrastructure. In proposing this rule of access pricing, the conventional analysis assumes that infrastructure investments are infinitely divisible so that it makes sense to talk about the marginal cost of investment. Often it is the case that investments in infrastructure are lumpy and can only be made in large chunks, and this renders the marginal cost concept meaningless. In this essay, we formalize a model of access pricing with congestion and in which investments in infrastructure are lumpy. To fix ideas, the model is formulated in the context of airport infrastructure investments, which captures both the element of congestion and the lumpiness involved in infrastructure investments. The optimal investment program suggests how many units of capacity should be installed and at which times. Because time is continuous in the model, the discounted cost -- despite the lumpiness of capacity additions -- can be made to vary continuously by varying the time a capacity addition is made. The main results that emerge from the analysis can be described as follows: First, the global demand for air travel rises with time and experiences an upward jump whenever a capacity addition is made. Second, the access price is constant and stays at the basic level when the system is not congested. When the system is congested, a congestion surcharge is imposed on top of the basic level, and the congestion surcharge rises with the level of congestion until the next capacity addition is made at which time the access price takes a downward jump. Third, the individual demand for air travel is constant before congestion sets in and after the last capacity addition takes place. During a time interval in which congestion rises, the individual demand for travel is below the level that prevails when there is no congestion and declines as congestion worsens. The third essay contains a model of access pricing for natural gas transmission pipelines, both when pipeline operators are regulated and when they behave strategically. The high sunk costs involved in building a pipeline network constitute a serious barrier of entry, and competitive behaviour in the transmission pipeline sector cannot be expected. Most of the economic analyses of access pricing for natural gas transmission pipelines are carried out from the regulatory perspective, and the access price paid by shippers are cost-based. The model formalized is intended to capture some essential characteristics of networks in which components interact with one another when combined into an integrated system. The model shows how the topology of the network determines the access prices in different components of the network. The general results that emerge from the analysis can be summarized as follows. First, the monopoly power of a pipeline operator is reduced by the entry of a new pipeline supply connected in parallel to the same demand node. When the pipelines are connected in series, the one upstream enjoys a first-move advantage over the one downstream, and the toll set by the upstream pipeline operator after entry by the downstream pipeline operator will rise above the original monopoly level. The equilibrium prices of natural gas at the various nodes of the network are also discussed. (Abstract shortened by UMI.)
Damage to offshore infrastructure in the Gulf of Mexico by hurricanes Katrina and Rita
NASA Astrophysics Data System (ADS)
Cruz, A. M.; Krausmann, E.
2009-04-01
The damage inflicted by hurricanes Katrina and Rita to the Gulf-of-Mexico's (GoM) oil and gas production, both onshore and offshore, has shown the proneness of industry to Natech accidents (natural hazard-triggered hazardous-materials releases). In order to contribute towards a better understanding of Natech events, we assessed the damage to and hazardous-materials releases from offshore oil and natural-gas platforms and pipelines induced by hurricanes Katrina and Rita. Data was obtained through a review of published literature and interviews with government officials and industry representatives from the affected region. We also reviewed over 60,000 records of reported hazardous-materials releases from the National Response Center's (NRC) database to identify and analyze the hazardous-materials releases directly attributed to offshore oil and gas platforms and pipelines affected by the two hurricanes. Our results show that hurricanes Katrina and Rita destroyed at least 113 platforms, and severely damaged at least 53 others. Sixty percent of the facilities destroyed were built 30 years ago or more prior to the adoption of the more stringent design standards that went into effect after 1977. The storms also destroyed 5 drilling rigs and severely damaged 19 mobile offshore drilling units (MODUs). Some 19 MODUs lost their moorings and became adrift during the storms which not only posed a danger to existing facilities but the dragging anchors also damaged pipelines and other infrastructure. Structural damage to platforms included toppling of sections, and tilting or leaning of platforms. Possible causes for failure of structural and non-structural components of platforms included loading caused by wave inundation of the deck. Failure of rigs attached to platforms was also observed resulting in significant damage to the platform or adjacent infrastructure, as well as damage to equipment, living quarters and helipads. The failures are attributable to tie-down components and occurred on both fixed and floating platforms. The total number of pipelines damaged by Hurricanes Katrina and Rita as of May 1, 2006, was 457. Pipeline damage was mostly caused by damage or failure of the host platform or its development and production piping, the impact of dragging and displaced objects, and pipeline interaction at a crossing. Damage to pipelines was a major contributing factor in delaying start up of offshore oil and gas production. During our analysis of the NRC database we identified 611 reported hazardous-materials releases directly attributed to offshore platforms and pipelines affected by the two hurricanes. There were twice as many releases during Hurricane Katrina than during Rita; 80% or more of the releases reported in the NRC database occurred from platforms. Our analysis suggests that the majority of releases were petroleum products, such as crude oil and condensate, followed by natural gas. In both Katrina and Rita, releases were more likely in the front, right quadrant of the storm. Storm-surge values were highest closer to the coastline. This may help explain the higher number of releases in shallow waters. The higher number of hazardous-materials releases from platforms during Katrina may partly be attributed to the higher wind speeds for this storm as it approached land.
DOT National Transportation Integrated Search
2015-05-01
infrastructure networks are essential to sustain our economy, society and quality of life. Natural disasters cost lives, infrastructure destruction, and economic losses. In 2013 over 28 million people were displaced worldwide by natural disasters wit...
Short-Term Outlook for Hydrocarbon Gas Liquids
2016-01-01
U.S. liquid fuels production increased from 7.43 million barrels per day (b/d) in 2008 to 13.75 million b/d in 2015. However, the Short-Term Energy Outlook (STEO) expects liquid fuels production to decline to 12.99 million b/d in 2017, mainly as a result of prolonged low oil prices. The liquid fuels production forecast reflects a 1.24 million b/d decline in crude oil production by 2017 that is partially offset by a 450,000 b/d increase in the production of hydrocarbon gas liquids (HGL)—a group of products including ethane, propane, butane (normal and isobutane), natural gasoline, and refinery olefins. This analysis will discuss the outlook for each of these four HGL streams and related infrastructure projects through 2017.
Evaluation of long-term gas hydrate production testing locations on the Alaska north slope
Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.
2011-01-01
The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation. Copyright 2011, Offshore Technology Conference.
Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope
Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.
2011-01-01
The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.
Geothermal Power/Oil & Gas Coproduction Opportunity
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE
2012-02-01
Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.
Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaman, John
2013-01-14
The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel;more » however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.« less
Water Availability for Shale Gas Development in Sichuan Basin, China.
Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner
2016-03-15
Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.
3-D image of urban areas and mountains of the northern Front Range, Colorado
Fishman, N.S.; Evans, J.M.; Olmstead, R.J.; Langer, W.H.
2000-01-01
Over the past 30 years, communities in the Northern Front Range of Colorado have experienced tremendous growth rivaling or surpassing that in other parts of the United States. This growth has challenged businesses as well as city, county, State, and Federal planners to meet the increasing demands for natural resources necessary for growth. Such resources include construction aggregate (stone, sand, and gravel), water, oil, and natural gas. The Front Range Infrastructure Resources Project (FRIRP) of the U.S. Geological Survey (USGS) is in the process of studying these resources, and this publication is the first in a series (USGS Geologic Investigations Series I-2750) that deals with resources in the northern Front Range urban corridor.
Geohydrology of the shallow aquifers in the Boulder-Longmont area, Colorado
Robson, Stanley G.; Heiny, Janet S.; Arnold, L.R.
2000-01-01
Urban areas commonly rely on ground water for at least part of the municipal water supply, and as population increases, urban areas expand and require larger volumes of water. However, the expansion of an urban area can reduce ground-water availability. This may occur through processes of depletion (withdrawal of most of the available ground water), degradation (chemicals used in the urban area keep into the ground and contaminate the ground water), and preemption (cost or restrictions on pumping ground water from under extensively urbanized areas may he prohibitive). Thus, a vital natural resource needed to support the growth of an urban area and its infrastructure can become less available because of growth itself.The diminished availability of natural resources caused by expansion of urban areas is not unique to water resources. For example, large volumes of aggregate (sand and gravel) are used in concrete and asphalt to build and maintain the infrastructure (buildings, roads, airports, and so forth) of an urban area. Yet, mining of aggregate commonly is preempted by urban expansion; for example, it cannot he mined from under a subdivision. Energy resources such as coal, oil, and natural gas likewise are critical to the growth and existence of an urban area but may become less available as an urban area expands and preempts mining and drilling.In 1996, the U.S. Geological Survey began work on a national initiative designed to provide information on the availability of those natural resources (water, minerals, energy, and biota) that are critical to maintaining the Nation's infrastructure or that may become less available because of urban expansion. The initiative began with a 3-year demonstration project to develop procedures for assessing resources and methods for interpreting and publishing information in digital and traditional paper formats. The Front Range urban corridor of Colorado was chosen as the demonstration area (fig. 1), and the project was titled the Front Range Infrastructure Resources Project (FRIRP). This report and those of Robson (1996), Robson and others (1998), and Robson and others (2000a, 2000b, 2000c) (fig. 1) are the results of FRIRP water resources investigations; reports pertaining to geology, minerals, energy, biota, and cartography of the FRIRP are published separately. The water-resources studies of the FRIRP were undertaken in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.
Geohydrology of the shallow aquifers in the Greeley-Nunn area, Colorado
Robson, Stanley G.; Arnold, L.R.; Heiny, Janet S.
2000-01-01
Urban areas commonly rely on ground water for at least part of the municipal water supply, and as population increases, urban areas expand and require larger volumes of water. However, the expansion of an urban area can reduce ground-water availability. This may occur through processes of depletion (withdrawal of most of the available ground water), degradation (chemicals used in the urban area seep into the ground and contaminate the ground water), and preemption (cost or restrictions on pumping ground water from under extensively urbanized areas may be prohibitive). Thus, a vital natural resource needed to support the growth of an urban area and its infrastructure can become less available because of growth itself.The diminished availability of natural resources caused by expansion of urban areas is not unique to water resources. For example, large volumes of aggregate (sand and gravel) are used in concrete and asphalt to build and maintain the infrastructure (buildings, roads, airports, and so forth) of an urban area. Yet, mining of aggregate commonly is preempted by urban expansion; for example, it cannot be mined from under a subdivision. Energy resources such as coal, oil, and natural gas likewise are critical to the growth and vitality of an urban area but may become less available as an urban area expands and preempts mining and drilling.In 1996, the U.S. Geological Survey began work on a national initiative designed to provide information on the availability of those natural resources (water, minerals, energy, and biota) that are critical to maintaining the Nation's infrastructure or that may become less available because of urban expansion. The initiative began with a 3-year demonstration project to develop procedures for assessing resources and methods for interpreting and publishing information in digital and traditional paper formats. The Front Range urban corridor of Colorado was chosen as the demonstration area (fig. 1), and the project was titled the Front Range Infrastructure Resources Project (FRIRP). This report and those of Robson (1996), Robson and others (1998), and Robson and others (2000a, 2000b, 2000c) are the results of FRIRP water-resources investigations; reports pertaining to geology, minerals, energy, biota, and cartography of the FRIRP are published separately. The water resources studies of the FRIRP were undertaken in cooperation with the Colorado Department of Natural Resources, Division of Water Resources. and the Colorado Water Conservation Board.
Geohydrology of the shallow aquifers in the Fort Lupton-Gilchrest area, Colorado
Robson, Stanley G.; Heiny, Janet S.; Arnold, L.R.
2000-01-01
Urban areas commonly rely on ground water for at least part of the municipal water supply, and as population increases, urban areas expand and require larger volumes of water. However, the expansion of an urban area can reduce ground-water availability. This may occur through processes of depletion (withdrawal of most of the available ground water), degradation (chemicals used in the urban area seep into the ground and contaminate the ground water), and preemption (cost or restrictions on pumping ground water from under extensively urbanized areas may be prohibitive). Thus, a vital natural resource needed to support the growth of an urban area and its infrastructure can become less available because of growth itself.The diminished availability of natural resources caused by expansion of urban areas is not unique to water resources. For example, large volumes of aggregate (sand and gravel) are used in concrete and asphalt to build and maintain the infrastructure (buildings, roads, airports, and so forth) of an urban area. Yet, mining of aggregate commonly is preempted by urban expansion; for example, it cannot be mined from under a subdivision. Energy resources such as coal, oil, and natural gas likewise are critical to the growth and existence of an urban area but may become less available as an urban area expands and preempts mining and drilling.In 1996, the U.S. Geological Survey began work on a national initiative designed to provide information on the availability of those natural resources (water, minerals, energy, and biota) that are critical to maintaining the Nation's infrastructure or that may become less available because of urban expansion. The initiative began with a 3-year demonstration project to develop procedures for assessing resources and methods for interpreting and publishing information in digital and traditional paper formats. The Front Range urban corridor of Colorado was chosen as the demonstration area (fig. 1), and the project was titled the Front Range Infrastructure Resources Project (FRIRP). This report and those of Robson (1996), Robson and others (1998), and Robson and others (2000a, 2000b, 2000c) are the results of FRIRP water-resources investigations; reports pertaining to geology, minerals, energy, biota, and cartography of the FRIRP are published separately. The water resources studies of the FRIRP were undertaken in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.
Urban underground infrastructure mapping and assessment
NASA Astrophysics Data System (ADS)
Huston, Dryver; Xia, Tian; Zhang, Yu; Fan, Taian; Orfeo, Dan; Razinger, Jonathan
2017-04-01
This paper outlines and discusses a few associated details of a smart cities approach to the mapping and condition assessment of urban underground infrastructure. Underground utilities are critical infrastructure for all modern cities. They carry drinking water, storm water, sewage, natural gas, electric power, telecommunications, steam, etc. In most cities, the underground infrastructure reflects the growth and history of the city. Many components are aging, in unknown locations with congested configurations, and in unknown condition. The technique uses sensing and information technology to determine the state of infrastructure and provide it in an appropriate, timely and secure format for managers, planners and users. The sensors include ground penetrating radar and buried sensors for persistent sensing of localized conditions. Signal processing and pattern recognition techniques convert the data in information-laden databases for use in analytics, graphical presentations, metering and planning. The presented data are from construction of the St. Paul St. CCTA Bus Station Project in Burlington, VT; utility replacement sites in Winooski, VT; and laboratory tests of smart phone position registration and magnetic signaling. The soil conditions encountered are favorable for GPR sensing and make it possible to locate buried pipes and soil layers. The present state of the art is that the data collection and processing procedures are manual and somewhat tedious, but that solutions for automating these procedures appear to be viable. Magnetic signaling with moving permanent magnets has the potential for sending lowfrequency telemetry signals through soils that are largely impenetrable by other electromagnetic waves.
ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Robert Paterek; Gemma Husmillo
The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Capsicum sp. extracts and pure compounds were screened for their antimicrobial activity against MIC causing bacteria. Studies on the ability of these compounds to dissociate biofilm from the substratum were conducted using microtiter plate assays. Tests usingmore » laboratory scale pipeline simulators continued. Preliminary results showed that the natural extracts possess strong antimicrobial activity being comparable to or even better than the pure compounds tested against strains of sulfate reducers. Their minimum inhibitory concentrations had been determined. It was also found that they possess bactericidal properties at minimal concentrations. Biofilm dissociation activity as assessed by microtiter plate assays demonstrated varying degrees of differences between the treated and untreated group with the superior performance of the extracts over pure compounds. Such is an indication of the possible benefits that could be obtained from these natural products. Confirmatory experiments are underway.« less
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Robert Paterek; Gemma Husmillo
The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Capsicum sp. extracts and pure compounds were screened for their antimicrobial activity against MIC causing bacteria. Studies on the ability of these compounds to dissociate biofilm from the substratum were conducted using microtiter plate assays. Tests usingmore » laboratory scale pipeline simulators continued. Preliminary results showed that the natural extracts possess strong antimicrobial activity being comparable to or even better than the pure compounds tested against strains of sulfate reducers. Their minimum inhibitory concentrations had been determined. It was also found that they possess bactericidal properties at minimal concentrations. Biofilm dissociation activity as assessed by microtiter plate assays demonstrated varying degrees of differences between the treated and untreated group with the superior performance of the extracts over pure compounds. Such is an indication of the possible benefits that could be obtained from these natural products. Confirmatory experiments are underway.« less
Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope
Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.
2012-01-01
The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical simulation.
NASA Astrophysics Data System (ADS)
Yu, Q.; Shiklomanov, N. I.; Streletskiy, D. A.; Engstrom, R.; Epstein, H. E.
2015-12-01
Arctic ecosystems are changing dramatically due to changes in climate, vegetation and human activities. Northwestern Siberia is one of the regions which has been undergoing various land cover and land use changes associated primarily with animal husbandry and oil/gas development. These changes have been exacerbated by warming climatic conditions over the last fifty years. In this study, we investigated land cover and land use changes associated with oil and gas development southeast of the city of Nadym within the context of climate change based on multi-source and multi-temporal remote sensing imagery. The impacts of land use on surface vegetation, radiation, and hydrological properties were evaluated using the Normalized Difference Vegetation Index (NDVI), albedo and the Normalized Difference Water Index (NDWI). The results from a comparison between high spatial resolution imagery acquired in1968 and 2006 indicate that the vegetation cover was reduced in areas disturbed by oil and gas development. Vegetation cover increased in natural landscapes over the same period,. Water logging was found along the linear structures near the oil/gas development, while in natural landscapes the drying of thermokarst lakes is evident due to permafrost degradation. Derived indices suggest that the direct impacts associated with infrastructure development are mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance.
Assessing the risk posed by natural hazards to infrastructures
NASA Astrophysics Data System (ADS)
Eidsvig, Unni; Kristensen, Krister; Vidar Vangelsten, Bjørn
2015-04-01
The modern society is increasingly dependent on infrastructures to maintain its function, and disruption in one of the infrastructure systems may have severe consequences. The Norwegian municipalities have, according to legislation, a duty to carry out a risk and vulnerability analysis and plan and prepare for emergencies in a short- and long term perspective. Vulnerability analysis of the infrastructures and their interdependencies is an important part of this analysis. This paper proposes a model for assessing the risk posed by natural hazards to infrastructures. The model prescribes a three level analysis with increasing level of detail, moving from qualitative to quantitative analysis. This paper focuses on the second level, which consists of a semi-quantitative analysis. The purpose of this analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures identified in the level 1 analysis and investigate the need for further analyses, i.e. level 3 quantitative analyses. The proposed level 2 analysis considers the frequency of the natural hazard, different aspects of vulnerability including the physical vulnerability of the infrastructure itself and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale. The proposed indicators characterize the robustness of the infrastructure, the importance of the infrastructure as well as interdependencies between society and infrastructure affecting the potential for cascading effects. Each indicator is ranked on a 1-5 scale based on pre-defined ranking criteria. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented, where risk to primary road, water supply and power network threatened by storm and landslide is assessed. The application examples show that the proposed model provides a useful tool for screening of undesirable events, with the ultimate goal to reduce the societal vulnerability.
Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure
Regional and National Use of Semi‐Natural and Natural Depressional Wetlands in Green Infrastructure Charles Lane, US Environmental Protection Agency, Ellen D’Amico, Pegasus Technical ServicesDepressional wetlands are frequently amongst the first aquatic systems to be ...
Towards European organisation for integrated greenhouse gas observation system
NASA Astrophysics Data System (ADS)
Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel
2013-04-01
Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will be set up. International negotiations have been going on for two years during which the constitutional documents have been processed and adopted. The instrument for the ICOS legal entity is the ERIC (European Research Infrastructure Consortium) steered by the General Assembly of its Members. ICOS is a highly distributed research infrastructure where three operative levels (ICOS National Networks, ICOS Central Facilities and ICOS ERIC) interact on several fields of research and governance. The governance structure of ICOS RI needs to reflect this complexity while maintaining the common vision, strategy and principles.
Assessment of infrastructure functional damages caused by natural-technological disasters
NASA Astrophysics Data System (ADS)
Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina
2013-04-01
The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline through Shkoder downtown. Goods entering in Albania from north pass through Shkoder, indeed a high traffic road that connects Albania with Montenegro and Kosovo crosses Shkoder downtown. We consider a truck overturned in downtown Shkoder during the flooding of January 2010; the gasoline transported by the truck is completely released and a pool fire develops damaging roads. We use the model CHESRM (Chemical Spill Risk Mapper) for identify the threat zones of the accident and as a basis for assessing the potential leads to functional damages to other elements of the considered system. The application of the methodology shows the potential use not only on real time emergency management or prevention but also during post-event management for the evaluation of the functional damage to the affected infrastructure (villages isolated from the rest of the network, villages unable to reach schools, hospitals or other services...) and to set a hierarchy in restoration activities, giving priority to the reconstruction of links between primary nodes.
Low Permeability Oil and Gas Plays
The map shows boundaries, structure (elevation of the top contours), and isopachs (thickness contours) for major low permeability oil and gas plays in the lower 48 States. Additionally, related oil and gas infrastructure layers are included
NASA Astrophysics Data System (ADS)
Burba, George; Anderson, Tyler; Ediger, Kevin; von Fischer, Joseph; Gioli, Beniamino; Ham, Jay; Hupp, Jason; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Price, Eric; Sachs, Torsten; Serafimovich, Andrei; Zondlo, Mark; Zulueta, Rommel
2016-04-01
Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major sources of methane include agricultural and natural production, landfill emissions, oil and gas development sites, and natural gas distribution networks in rural and urban environments. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.) Past approaches for direct measurements of methane fluxes relied on fast closed-path analyzers, which typically require powerful pumps and grid power. Power and labor demands may be among the key reasons why such methane fluxes were often measured at locations with good infrastructure and grid power, and not necessarily with high methane production. Landfill methane emissions were traditionally assessed via point-in-time measurements taken at monthly or longer time intervals using techniques such as the trace plume method, the mass balance method, etc. These are subject to large uncertainties because of the snapshot nature of the measurements, while the changes in emission rates are continuous due to ongoing landfill development, changes in management practices, and the barometric pumping phenomenon. Installing a continuously operating flux station in the middle of an active landfill requires a low-power approach with no cables stretching across the landfill. The majority of oil and gas and urban methane emission happens via variable-rate point sources or diffused spots in topographically challenging terrains, such as street tunnels, elevated locations at water treatment plants, vents, etc. Locating and measuring methane emissions from such sources is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. In 2010, a new lightweight high-speed high-resolution open-path technology was developed with the goal of allowing eddy covariance measurements of methane flux with power consumption 30-150 times below other available technologies. The instrumentation was designed to run on solar panels or a small generator, and could be placed in the middle of the methane-producing ecosystem without a need for grid power. This significantly expanded the methane flux measurement coverage in permafrost regions, wetlands, rice fields and landfills. In the past few years, this instrumentation has been utilized increasingly more frequently outside of the traditional use at stationary flux towers. The novel approaches included measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas cars, soil methane flux surveys, etc. This presentation will describe key developmental steps in the lightweight low-power high-resolution open-path technology, the instrument principles and key elements of the design, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban and natural environments.
NASA Astrophysics Data System (ADS)
Atherton, E. E.; Risk, D. A.; Lavoie, M.; Marshall, A. D.; Baillie, J.; Williams, J. P.
2015-12-01
Presently, fugitive emissions released into the atmosphere during the completion and production of oil and gas wells are poorly regulated within Canada. Some possible upstream sources of these emissions include flowback during well completions, liquid unloading, chemical injection pumps, and equipment leaks. The environmental benefits of combusting natural gas compared to oil or coal are negated if methane leakages surpass 3.2% of total production, so it is important to have a thorough understanding of these fugitive emissions. This study compares atmospheric leakage pathways of methane and other fugitive gases in both conventional and unconventional oil and gas developments in Western Canada to help fill this knowledge gap. Over 5000 kilometers of mobile survey campaigns were completed in carefully selected developments in the Montney shale play in British Columbia, and in conventional oil fields in Alberta. These sites are developed by more than 25 different operators. High precision laser and UV fluorescence gas analyzers were used to gather geolocated trace gas concentrations at a frequency of 1 Hz while driving. These data were processed with an adaptive technique to compensate for fluctuations in background concentrations for each gas. The residual excess concentrations were compositionally fingerprinted on the basis of the expected gas ratios for potential emission sites in order to definitively attribute anomalies to infrastructural leak sources. Preliminary results from the mobile surveys of both conventional and unconventional oil and gas sites are presented here. Pathways of methane and other fugitive gases are mapped to their respective sources, identifying common causes of emissions leaks across the oil and gas industry. This is the first bottom-up study of fugitive emissions from Canadian energy developments to produce publicly available data. These findings are significant to operators interested in lowering emissions for economic benefit, as well as public and governmental groups looking to become more informed on the impacts of oil and gas developments in Canada.
Thermal properties of methane gas hydrates
Waite, William F.
2007-01-01
Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to raise the temperature of the material.
Assessing the risk posed by natural hazards to infrastructures
NASA Astrophysics Data System (ADS)
Eidsvig, Unni Marie K.; Kristensen, Krister; Vidar Vangelsten, Bjørn
2017-03-01
This paper proposes a model for assessing the risk posed by natural hazards to infrastructures, with a focus on the indirect losses and loss of stability for the population relying on the infrastructure. The model prescribes a three-level analysis with increasing level of detail, moving from qualitative to quantitative analysis. The focus is on a methodology for semi-quantitative analyses to be performed at the second level. The purpose of this type of analysis is to perform a screening of the scenarios of natural hazards threatening the infrastructures, identifying the most critical scenarios and investigating the need for further analyses (third level). The proposed semi-quantitative methodology considers the frequency of the natural hazard, different aspects of vulnerability, including the physical vulnerability of the infrastructure itself, and the societal dependency on the infrastructure. An indicator-based approach is applied, ranking the indicators on a relative scale according to pre-defined ranking criteria. The proposed indicators, which characterise conditions that influence the probability of an infrastructure malfunctioning caused by a natural event, are defined as (1) robustness and buffer capacity, (2) level of protection, (3) quality/level of maintenance and renewal, (4) adaptability and quality of operational procedures and (5) transparency/complexity/degree of coupling. Further indicators describe conditions influencing the socio-economic consequences of the infrastructure malfunctioning, such as (1) redundancy and/or substitution, (2) cascading effects and dependencies, (3) preparedness and (4) early warning, emergency response and measures. The aggregated risk estimate is a combination of the semi-quantitative vulnerability indicators, as well as quantitative estimates of the frequency of the natural hazard, the potential duration of the infrastructure malfunctioning (e.g. depending on the required restoration effort) and the number of users of the infrastructure. Case studies for two Norwegian municipalities are presented for demonstration purposes, where risk posed by adverse weather and natural hazards to primary road, water supply and power networks is assessed. The application examples show that the proposed model provides a useful tool for screening of potential undesirable events, contributing to a targeted reduction of the risk.
Environmental and natural resource implications of sustainable urban infrastructure systems
NASA Astrophysics Data System (ADS)
Bergesen, Joseph D.; Suh, Sangwon; Baynes, Timothy M.; Kaviti Musango, Josephine
2017-12-01
As cities grow, their environmental and natural resource footprints also tend to grow to keep up with the increasing demand on essential urban services such as passenger transportation, commercial space, and thermal comfort. The urban infrastructure systems, or socio-technical systems providing these services are the major conduits through which natural resources are consumed and environmental impacts are generated. This paper aims to gauge the potential reductions in environmental and resources footprints through urban transformation, including the deployment of resource-efficient socio-technical systems and strategic densification. Using hybrid life cycle assessment approach combined with scenarios, we analyzed the greenhouse gas (GHG) emissions, water use, metal consumption and land use of selected socio-technical systems in 84 cities from the present to 2050. The socio-technical systems analyzed are: (1) bus rapid transit with electric buses, (2) green commercial buildings, and (3) district energy. We developed a baseline model for each city considering gross domestic product, population density, and climate conditions. Then, we overlaid three scenarios on top of the baseline model: (1) decarbonization of electricity, (2) aggressive deployment of resource-efficient socio-technical systems, and (3) strategic urban densification scenarios to each city and quantified their potentials in reducing the environmental and resource impacts of cities by 2050. The results show that, under the baseline scenario, the environmental and natural resource footprints of all 84 cities combined would increase 58%-116% by 2050. The resource-efficient scenario along with strategic densification, however, has the potential to curve down GHG emissions to 17% below the 2010 level in 2050. Such transformation can also limit the increase in all resource footprints to less than 23% relative to 2010. This analysis suggests that resource-efficient urban infrastructure and decarbonization of electricity coupled with strategic densification have a potential to mitigate resources and environmental footprints of growing cities.
Koper, Nicola
2018-01-01
Many birds rely on anti-predator communication to protect their nests; however, anthropogenic noise from industrial activities such as oil and gas development may disrupt acoustic communication. Here, we conducted acoustic playback experiments to determine whether Savannah sparrows (Passerculus sandwichensis) responded to conspecific alarm calls by delaying feeding visits, and whether this response was impaired by noise-producing natural gas compressor stations, generator- or grid-powered screw pump oil wells, and noise amplitude. We played alarm calls, and, as a control, western meadowlark songs, to Savannah sparrows as they approached their nests to feed their nestlings, and measured feeding latency. The greatest impacts on behaviour were detected at the noisiest treatment, compressor stations; feeding latency was shortened here compared with control sites, which may expose nests to greater predation risk. As noise amplitudes increased, Savannah sparrows took longer to feed following meadowlark playbacks, perhaps because noise interfered with interpretation of acoustic cues. The effects of compressor stations on anti-predator behaviour may be best explained by the distracting effects of anthropogenic noise, while increases in feeding latency following meadowlark playbacks may be explained by a heightened response threshold caused by acoustic masking. Industrial infrastructure can influence the reproductive success of wildlife through its impact on perception and interpretation of conspecific signals, but these effects are complex. PMID:29892404
Brookian stratigraphic plays in the National Petroleum Reserve - Alaska (NPRA)
Houseknecht, David W.
2003-01-01
The Brookian megasequence in the National Petroleum Reserve in Alaska (NPRA) includes bottomset and clinoform seismic facies of the Torok Formation (mostly Albian age) and generally coeval, topset seismic facies of the uppermost Torok Formation and the Nanushuk Group. These strata are part of a composite total petroleum system involving hydrocarbons expelled from three stratigraphic intervals of source rocks, the Lower Cretaceous gamma-ray zone (GRZ), the Lower Jurassic Kingak Shale, and the Triassic Shublik Formation. The potential for undiscovered oil and gas resources in the Brookian megasequence in NPRA was assessed by defining five plays (assessment units), one in the topset seismic facies and four in the bottomset-clinoform seismic facies. The Brookian Topset Play is estimated to contain between 60 (95-percent probability) and 465 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 239 million barrels. The Brookian Topset Play is estimated to contain between 0 (95-percent probability) and 679 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 192 billion cubic feet. The Brookian Clinoform North Play, which extends across northern NPRA, is estimated to contain between 538 (95-percent probability) and 2,257 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 1,306 million barrels. The Brookian Clinoform North Play is estimated to contain between 0 (95-percent probability) and 1,969 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 674 billion cubic feet. The Brookian Clinoform Central Play, which extends across central NPRA, is estimated to contain between 299 (95-percent probability) and 1,849 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 973 million barrels. The Brookian Clinoform Central Play is estimated to contain between 1,806 (95-percent probability) and 10,076 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 5,405 billion cubic feet. The Brookian Clinoform South-Shallow Play is estimated to contain between 0 (95-percent probability) and 1,254 (5-percent probability) million barrels of technically recoverable oil, with a mean (expected value) of 508 million barrels. The Brookian Clinoform South-Shallow Play is estimated to contain between 0 (95-percent probability) and 5,809 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 2,405 billion cubic feet. The Brookian Clinoform South-Deep Play is estimated to contain between 0 (95-percent probability) and 8,796 (5-percent probability) billion cubic feet of technically recoverable, nonassociated natural gas, with a mean (expected value) of 3,788 billion cubic feet. No technically recoverable oil is assessed in the Brookian Clinoform South-Deep Play, as it lies at depths that are entirely in the gas window. Among the Brookian stratigraphic plays in NPRA, the Brookian Clinoform North Play and the Brookian Clinoform Central Play are most likely to be objectives of exploration activity in the near-term future because they are estimated to contain multiple oil accumulations larger than 128 million barrels technically recoverable oil, and because some of those accumulations may occur near existing infrastructure in the eastern parts of the plays. The other Brookian stratigraphic plays are not likely to be the focus of exploration activity because they are estimated to contain maximum accumulation sizes that are smaller, but they may be an objective of satellite exploration if infrastructure is extended into the play areas. The total volumes of natural gas estimated to occur in B
Petroleum scene heating in fledgling crude exporter Papua New Guinea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-18
Operators, paced by a feisty independent based in Port Moresby, have drilled a string of discoveries near the infrastructure of the Kutubu development project that supports Papua New Guinea crude exports. All signs point to the increasing likelihood of good sized -- maybe world class -- oil discoveries that promise to sustain exploration and development interest beyond 2000. Also in the offing are world class gas strikes that eventually could support a liquefied natural gas export project. And integration is the newest concept in Papua New Guinea petroleum. Efforts are under way to build the country's first refineries. Most operatorsmore » in Papua New Guinea believe thy have merely scratched the surface of the country's oil and gas potential. Thy agree there still will be frustrations and setbacks -- political as well as technical -- but the prevailing opinion is that these problems are no greater than they are in a number of other countries with similar exploration/development potential. The paper discusses the development of Papua New Guinea's oil and gas industry, and exploratory drilling in areas other than Kutubu.« less
NASA Astrophysics Data System (ADS)
Burba, George; Anderson, Tyler; Biraud, Sebastien; Caulton, Dana; von Fischer, Joe; Gioli, Beniamino; Hanson, Chad; Ham, Jay; Kohnert, Katrin; Larmanou, Eric; Levy, Peter; Polidori, Andrea; Pikelnaya, Olga; Sachs, Torsten; Serafimovich, Andrei; Zaldei, Alessandro; Zondlo, Mark; Zulueta, Rommel
2017-04-01
Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of methane include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban methane emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such methane emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill methane emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural methane production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of methane flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil methane flux surveys, etc. This presentation will describe the latest state of the key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.
Mobile Measurements of Methane Using High-Speed Open-Path Technology
NASA Astrophysics Data System (ADS)
Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.
2016-12-01
Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight several novel approaches where such instrumentation was used in mobile deployments in urban, agricultural and natural environments by academic institutions, regulatory agencies and industry.
NASA Astrophysics Data System (ADS)
Nafishoh, Qoriatun; Riqqi, Akhmad; Meilano, Irwan
2017-07-01
The Bandung Basin area has highly susceptible to the natural disasters. Therefore, resilience measurement is useful to find out the capacity of an area in the facing of a natural disaster. Natural disaster resilience can be measured using BRIC (Baseline Resilience Indicators for Communities) model. This model comprises several indicators; includes social, economic, community, institution, infrastructure, and the environment. This research tries to measure resilience to the natural disasters with still focusing on infrastructure resilience measurement by spatial modeling and analyzed the dominant driving factor that contributes to this resilience trend. We generated a spatial modeling by applying a spatial analysis to the infrastructure objects. The infrastructure objects consist of the road, school, and health facilities. Those objects will be given some radius levels that indicate the resilience level by using buffer processing. An area closest to those objects will have high resilience and contrarily. Our result showed that almost all city areas (Bandung and Cimahi City) have high resilience because they have many infrastructure objects. But contrarily with the district areas which are still contained many patterns of low and moderate resilience level. The dominant driving factor of infrastructure resilience in this research area is a road. The areas which are closest to the road have high resilience and farther away from the road will have low resilience.
NASA Astrophysics Data System (ADS)
Walker, D. A.; Raynolds, M. K.; Kumpula, T.; Shur, Y.; Kanevskiy, M. Z.; Kofinas, G.; Leibman, M. O.; Matyshak, G. V.; Epstein, H. E.; Buchhorn, M.; Wirth, L.; Forbes, B. C.
2014-12-01
Many areas of the Arctic are undergoing rapid permafrost and ecosystem transitions resulting from a combination of industrial development and climate change as summer sea ice retreats and abundant Arctic natural resources become more accessible for extraction. The Bovanenkovo Gas Field (BGF) in Russia and the Prudhoe Bay Oilfield (PBO) in Alaska are among the oldest and most extensive industrial complexes in the Arctic, situated in areas with extensive ice-rich permafrost. Ongoing studies of cumulative effects in both regions are part of the Northern Eurasia Earth-Science Partnership Initiative (NEESPI) and NASA's Land-Cover Land-Use Change (LCLUC) research. Comparative analysis is focused on changes occurring due to different climate, permafrost, land-use, and disturbance regimes in the BGF and PBO and along bioclimate transects that contain both fields. Documentation of the changes in relationship to the different geoecological and social-economic conditions will help inform management approaches to minimize the effects of future activities. We compare the area of disturbance in the two fields and some of the key differences in the permafrost conditions. Detailed remote sensing and geoecological mapping in both areas reveal major differences in permafrost conditions that have implications for total ecological function. At BGF, highly erodible sands and the presence of massive tabular ground ice near the surface contributes to landslides and thermo-denudation of slopes. At PBO, ice-wedge degradation is the most noticeable change, where thermokarst is expanding rapidly along ice-wedges adjacent to roads and in areas away from roads. Between 1990 and 2001, coincident with strong atmospheric warming during the 1990s, natural thermokarst resulted in conversion of low-centered ice-wedge polygons to high-centered polygons, more active lakeshore erosion and increased landscape and habitat heterogeneity. These geoecololgical changes have local and regional consequences to wildlife habitat, land-use, and infrastructure. A conceptual model describes how infrastructure-related factors, including road dust and roadside flooding, are contributing to more extensive thermokarst in areas adjacent to roads and gravel pads in the PBO.
NASA Astrophysics Data System (ADS)
Nyangon, Joseph
Expansion of distributed energy resources (DERs) including solar photovoltaics, small- and medium-sized wind farms, gas-fired distributed generation, demand-side management, and energy storage poses significant complications to the design, operation, business model, and regulation of electricity systems. Using statistical regression analysis, this dissertation assesses if increased use of natural gas results in reduced renewable energy capacity, and if natural gas growth is correlated with increased or decreased non-fossil renewable fuels demand. System Generalized Method of Moments (System GMM) estimation of the dynamic relationship was performed on the indicators in the econometric model for the ten states with the fastest growth in solar generation capacity in the U.S. (e.g., California, North Carolina, Arizona, Nevada, New Jersey, Utah, Massachusetts, Georgia, Texas, and New York) to analyze the effect of natural gas on renewable energy diffusion and the ratio of fossil fuels increase for the period 2001-2016 to policy driven solar demand. The study identified ten major drivers of change in electricity systems, including growth in distributed energy generation systems such as intermittent renewable electricity and gas-fired distributed generation; flat to declining electricity demand growth; aging electricity infrastructure and investment gaps; proliferation of affordable information and communications technologies (e.g., advanced meters or interval meters), increasing innovations in data and system optimization; and greater customer engagement. In this ongoing electric power sector transformation, natural gas and fast-flexing renewable resources (mostly solar and wind energy) complement each other in several sectors of the economy. The dissertation concludes that natural gas has a positive impact on solar and wind energy development: a 1% rise in natural gas capacity produces 0.0304% increase in the share of renewable energy in the short-run (monthly) compared to the long-term effect estimated at 0.9696% (15-year period). Evidence from the main policy, environmental, and economic indicators for solar and wind-power development such as feed-in tariffs, state renewable portfolio standards, public benefits fund, net metering, interconnection standards, environmental quality, electricity import ratio, per-capita energy-related carbon dioxide emissions, average electricity price, per-capita real gross domestic product, and energy intensity are discussed and evaluated in detail in order to elucidate their effectiveness in supporting the utility industry transformation. The discussion is followed by a consideration of a plausible distributed utility framework that is tailored for major DERs development that has emerged in New York called Reforming the Energy Vision. This framework provides a conceptual base with which to imagine the utility of the future as well as a practical solution to study the potential of DERs in other states. The dissertation finds this grid and market modernization initiative has considerable influence and importance beyond New York in the development of a new market economy in which customer choice and distributed utilities are prominent.
ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant; Dale, Larry; Larsen, Peter
2011-06-22
This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end ofmore » the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.« less
Strategic behaviors and governance challenges in social-ecological systems
NASA Astrophysics Data System (ADS)
Muneepeerakul, Rachata; Anderies, John M.
2017-08-01
The resource management and environmental policy literature focuses on devising regulations and incentive structures to achieve desirable goals. It often presumes the existence of public infrastructure that actualizes these incentives and regulations through a process loosely referred to as `governance.' In many cases, it is not clear if and how such governance infrastructure can be created and supported. Here, we take a complex systems view in which `governance' is an emergent phenomenon generated by interactions between social, economic, and environmental (both built and natural) factors. We present a framework and formal stylized model to explore under what circumstances stable governance structures may emerge endogenously in coupled infrastructure systems comprising shared natural, social, and built infrastructures of which social-ecological systems are specific examples. The model allows us to derive general conditions for a sustainable coupled infrastructure system in which critical infrastructure (e.g., canals) is provided by a governing entity that enables resource users (e.g., farmers) to produce outputs from natural infrastructure (e.g., water) to meet their needs while supporting the governing entity.
Environmental impacts of high penetration renewable energy scenarios for Europe
NASA Astrophysics Data System (ADS)
Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.
2016-01-01
The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.
ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Paterek; G. Husmillo; V. Trbovic
The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verifymore » the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onyeji, Ijeoma; Bazilian, Morgan; Bronk, Chris
Both the number and security implications of sophisticated cyber attacks on companies providing critical energy infrastructures are increasing. As power networks and, to a certain extent, oil and gas infrastructure both upstream and downstream, are becoming increasingly integrated with information communication technology systems, they are growing more susceptible to cyber attacks.
A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Wiser, Ryan; Barbose, Galen
This report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts,more » renewable energy workforce and economic development, and natural gas price suppression. This analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less
The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2
Middleton, Richard Stephen; Yaw, Sean Patrick
2018-01-11
Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less
The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Richard Stephen; Yaw, Sean Patrick
Carbon capture, and storage (CCS) infrastructure will require industry—such as fossil-fuel power, ethanol production, and oil and gas extraction—to make massive investment in infrastructure. The cost of getting these investments wrong will be substantial and will impact the success of CCS technology. Multiple factors can and will impact the success of commercial-scale CCS, including significant uncertainties regarding capture, transport, and injection-storage decisions. Uncertainties throughout the CCS supply chain include policy, technology, engineering performance, economics, and market forces. In particular, large uncertainties exist for the injection and storage of CO 2. Even taking into account upfront investment in site characterization, themore » final performance of the storage phase is largely unknown until commercial-scale injection has started. We explore and quantify the impact of getting CCS infrastructure decisions wrong based on uncertain injection rates and uncertain CO 2 storage capacities using a case study managing CO 2 emissions from the Canadian oil sands industry in Alberta. We use SimCCS, a widely used CCS infrastructure design framework, to develop multiple CCS infrastructure scenarios. Each scenario consists of a CCS infrastructure network that connects CO 2 sources (oil sands extraction and processing) with CO 2 storage reservoirs (acid gas storage reservoirs) using a dedicated CO 2 pipeline network. Each scenario is analyzed under a range of uncertain storage estimates and infrastructure performance is assessed and quantified in terms of cost to build additional infrastructure to store all CO 2. We also include the role of stranded CO 2, CO 2 that a source was expecting to but cannot capture due substandard performance in the transport and storage infrastructure. Results show that the cost of getting the original infrastructure design wrong are significant and that comprehensive planning will be required to ensure that CCS becomes a successful climate mitigation technology. Here, we show that the concept of stranded CO 2 can transform a seemingly high-performing infrastructure design into the worst case scenario.« less
Low-carbon infrastructure strategies for cities
NASA Astrophysics Data System (ADS)
Kennedy, C. A.; Ibrahim, N.; Hoornweg, D.
2014-05-01
Reducing greenhouse gas emissions to avert potentially disastrous global climate change requires substantial redevelopment of infrastructure systems. Cities are recognized as key actors for leading such climate change mitigation efforts. We have studied the greenhouse gas inventories and underlying characteristics of 22 global cities. These cities differ in terms of their climates, income, levels of industrial activity, urban form and existing carbon intensity of electricity supply. Here we show how these differences in city characteristics lead to wide variations in the type of strategies that can be used for reducing emissions. Cities experiencing greater than ~1,500 heating degree days (below an 18 °C base), for example, will review building construction and retrofitting for cold climates. Electrification of infrastructure technologies is effective for cities where the carbon intensity of the grid is lower than ~600 tCO2e GWh-1 whereas transportation strategies will differ between low urban density (<~6,000 persons km-2) and high urban density (>~6,000 persons km-2) cities. As nation states negotiate targets and develop policies for reducing greenhouse gas emissions, attention to the specific characteristics of their cities will broaden and improve their suite of options. Beyond carbon pricing, markets and taxation, governments may develop policies and target spending towards low-carbon urban infrastructure.
On the traceability of gaseous reference materials
NASA Astrophysics Data System (ADS)
Brown, Richard J. C.; Brewer, Paul J.; Harris, Peter M.; Davidson, Stuart; van der Veen, Adriaan M. H.; Ent, Hugo
2017-06-01
The complex and multi-parameter nature of chemical composition measurement means that establishing traceability is a challenging task. As a result incorrect interpretations about the origin of the metrological traceability of chemical measurement results can occur. This discussion paper examines why this is the case by scrutinising the peculiarities of the gas metrology area. It considers in particular: primary methods, dissemination of metrological traceability and the role of documentary standards and accreditation bodies in promulgating best practice. There is also a discussion of documentary standards relevant to the NMI and reference material producer community which need clarification, and the impact which key stakeholders in the quality infrastructure can bring to these issues.
Security Economics and Critical National Infrastructure
NASA Astrophysics Data System (ADS)
Anderson, Ross; Fuloria, Shailendra
There has been considerable effort and expenditure since 9/11 on the protection of ‘Critical National Infrastructure' against online attack. This is commonly interpreted to mean preventing online sabotage against utilities such as electricity,oil and gas, water, and sewage - including pipelines, refineries, generators, storage depots and transport facilities such as tankers and terminals. A consensus is emerging that the protection of such assets is more a matter of business models and regulation - in short, of security economics - than of technology. We describe the problems, and the state of play, in this paper. Industrial control systems operate in a different world from systems previously studied by security economists; we find the same issues (lock-in, externalities, asymmetric information and so on) but in different forms. Lock-in is physical, rather than based on network effects, while the most serious externalities result from correlated failure, whether from cascade failures, common-mode failures or simultaneous attacks. There is also an interesting natural experiment happening, in that the USA is regulating cyber security in the electric power industry, but not in oil and gas, while the UK is not regulating at all but rather encouraging industry's own efforts. Some European governments are intervening, while others are leaving cybersecurity entirely to plant owners to worry about. We already note some perverse effects of the U.S. regulation regime as companies game the system, to the detriment of overall dependability.
NASA Astrophysics Data System (ADS)
Johnson, Timothy Lawrence
2002-09-01
Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model-driven assessment by considering issues of risk, geological storage capacity, and regulation. Extensive experience with offshore oil and gas operations suggests that the technical uncertainties associated with OCS sequestration are not large. The legality of seabed CO 2 disposal under US law and international environmental agreements, however, is ambiguous, and the OCS may be the first region where these regulatory regimes clash over CO2 sequestration.
NASA Astrophysics Data System (ADS)
Alpi, Danielle Marie
The 16 sectors of critical infrastructure in the US are susceptible to cyber-attacks. Potential attacks come from internal and external threats. These attacks target the industrial control systems (ICS) of companies within critical infrastructure. Weakness in the energy sector's ICS, specifically the oil and gas industry, can result in economic and ecological disaster. The purpose of this study was to establish means for oil companies to identify and stop cyber-attacks specifically APT threats. This research reviewed current cyber vulnerabilities and ways in which a cyber-attack may be deterred. This research found that there are insecure devices within ICS that are not regularly updated. Therefore, security issues have amassed. Safety procedures and training thereof are often neglected. Jurisdiction is unclear in regard to critical infrastructure. The recommendations this research offers are further examination of information sharing methods, development of analytic platforms, and better methods for the implementation of defense-in-depth security measures.
Evaluation of Ultra Clean Fuels from Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Abbott; Edward Casey; Etop Esen
2006-02-28
ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-cleanmore » burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable to coal-derived FT liquid fuels. After different gas clean up processes steps, the coal-derived syngas will produce FT liquid fuels that have similar properties to natural gas derived FT liquids.« less
The impact of internet-connected control systems on the oil and gas industry
NASA Astrophysics Data System (ADS)
Martel, Ruth T.
In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.
Global Oil & Gas Features Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly Rose; Jennifer Bauer; Vic Baker
This submission contains a zip file with the developed Global Oil & Gas Features Database (as an ArcGIS geodatabase). Access the technical report describing how this database was produced using the following link: https://edx.netl.doe.gov/dataset/development-of-an-open-global-oil-and-gas-infrastructure-inventory-and-geodatabase
Askin, Amanda Christine; Barter, Garrett; West, Todd H.; ...
2015-02-14
Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less
Spatially-Scanned Dual Comb Spectroscopy for Atmospheric Measurements
NASA Astrophysics Data System (ADS)
Cossel, K.; Waxman, E.; Giorgetta, F.; Cermak, M.; Coddington, I.; Hesselius, D.; Ruben, S.; Swann, W.; Rieker, G. B.; Newbury, N.
2017-12-01
Measuring trace gas emissions from sources that are spatially complex and temporally variable, such as leaking natural gas infrastructure, is challenging with current measurement systems. Here, we present a new technique that provides the path-integrated concentrations of multiple gas species between a ground station and a retroreflector mounted on a small quadcopter. Such a system could provide the ability to quantify small area emissions sources as well measure vertical mixing within the boundary layer. The system is based on a near-infrared dual frequency-comb spectroscopy system (DCS) covering 1.58-1.7 microns, which enables rapid, accurate measurements of CO2, CH4, H2O, and HDO. The eye-safe laser light is launched from a telescope on a fast azimuth, elevation gimbal to a small quadcopter carrying a lightweight retroreflector as well as a high-precision real-time kinematic GPS receiver (for real-time cm-level path length measurements) and pressure, temperature and humidity sensors. Here, we show the results of test measurements from controlled releases of CH4 as well as from test vertical profiles.
Human behavior research and the design of sustainable transport systems
NASA Astrophysics Data System (ADS)
Schauer, James J.
2011-09-01
Transport currently represents approximately 19% of the global energy demand and accounts for about 23% of the global carbon dioxide emissions (IEA 2009). As the demand for mobility is expected to continue to increase in the coming decades, the stabilization of atmospheric carbon dioxide levels will require the evolution of transport, along with power generation, building design and manufacturing. The continued development of these sectors will need to include changes in energy sources, energy delivery, materials, infrastructure and human behavior. Pathways to reducing carbon from the transport sector have unique challenges and opportunities that are inherent to the human choices and behavioral patterns that mold the transportation systems and the associated energy needs. Technology, government investment, and regulatory policies have a significant impact on the formulation of transportation infrastructure; however, the role of human behavior and public acceptance on the efficiency and effectiveness of transport systems should not be underestimated. Although developed, rapidly developing, and underdeveloped nations face different challenges in the establishment of transport infrastructure that can meet transport needs while achieving sustainable carbon dioxide emissions, the constraints that establish the domain of possibilities are closely related for all nations. These constraints include capital investment, fuel supplies, power systems, and human behavior. Throughout the world, there are considerable efforts directed at advancing and optimizing the financing of sustainable infrastructures, the production of low carbon fuels, and the production of advanced power systems, but the foundational work on methods to understand human preferences and behavior within the context of transport and the valuation of reductions in carbon dioxide emissions is greatly lagging behind. These methods and the associated understanding of human behavior and the willingness to pay for reduced carbon emissions are central to the design and optimization of future low carbon transport systems. Gaker et al (2011) suggest a framework, and provide insight into the willingness of transport consumers to pay for emission reductions of carbon dioxide from their personal transport choices within the context of other attributes of transport variables. The results of this study, although limited to a small demographic segment of the US population, demonstrate that people can integrate information on greenhouse gas emissions with other transport attributes including cost and time. Likewise, the research shows that the study group was willing to pay for reduction in greenhouse gas emissions associated with their transport choices. The study examined auto purchase choice, transport mode choice and transport route choice, which represent key decisions associated with transport that impact greenhouse gas emissions. Interestingly, they found that the study group was willing to pay for reductions in greenhouse gas emissions at a relatively consistent price across these transport choices. Clearly, the study results may not broadly apply to all demographics of users of transport, even in the study domain, due to the small demographic segment that was examined and the fact that the study was conducted in the laboratory. However, the methods used by Gaker et al (2011) are cause for optimism that future studies can obtain much needed mapping of transport preferences and willingness to pay for greenhouse gas emission reductions associated with personal transport choices. Although the Gaker et al (2011) study is directed at understanding the promotion of low carbon transport in the context of existing infrastructures, the ability of these studies to elucidate human behavior and preferences within the trade-offs of transport are critical to the design of future transport systems that seek to meet transport demand with constrained greenhouse gas emissions. Additional studies of this nature that examine broader demographic groups in real world conditions are greatly needed in different regions of the US and around the world. As interventions are sought to stabilize atmospheric carbon dioxide levels at levels that are expected to have limited climate impact, there is recognition that the mitigation strategies that will be implemented in the next 5-10 years will have a profound impact on the ability to constrain climate change. The evolution of the transport infrastructure over the next decade, which will provide intermodal opportunities and modal trade-offs, will be an important constraint in the ability of transport systems to reduce greenhouse gas emissions. Likewise, the evolution of the transport infrastructure over the next decade will have an equally profound impact on the ability of transport systems to meet society's expectations for transport in a cost effective and efficient manner. The ability to design and build transport infrastructures that can achieve maximum reductions in greenhouse gas emissions while satisfying the demand for transport by the society relies on the ability to understand the human behavior and human preferences for transport in the context of costs, time, time variability, safety and emission reductions. The study by Gaker et al (2011) is central to answering these questions and will hopefully serve as a conduit to motivate additional studies that examine broader segments of society in developed, rapidly developing, and underdeveloped nations to provide the human input needed to assure future transport systems that can meet greenhouse gas emission reduction targets and the transport needs of society. References Gaker D, Vautin D, Vij A and Walker J L 2011 The power and value of green in promoting sustainable transport behavior Environ. Res. Lett. 6 034010 IEA 2009 Transport, Energy and CO2: Moving Toward Sustainability (Paris: International Energy Agency) (available at www.iea.org/publications/free_new_Desc.asp?PUBS_ID=2133)
USDA-ARS?s Scientific Manuscript database
Linear disturbances associated with on and off-road vehicle use on rangelands has increased dramatically throughout the world in recent decades. This increase is due to a variety of factors including increased availability of all-terrain vehicles, infrastructure development (oil, gas, renewable ene...
EPA NRMRL green Infrastructure research
Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...
Natural Assurance Scheme: A level playing field framework for Green-Grey infrastructure development.
Denjean, Benjamin; Altamirano, Mónica A; Graveline, Nina; Giordano, Raffaele; van der Keur, Peter; Moncoulon, David; Weinberg, Josh; Máñez Costa, María; Kozinc, Zdravko; Mulligan, Mark; Pengal, Polona; Matthews, John; van Cauwenbergh, Nora; López Gunn, Elena; Bresch, David N
2017-11-01
This paper proposes a conceptual framework to systematize the use of Nature-based solutions (NBS) by integrating their resilience potential into Natural Assurance Scheme (NAS), focusing on insurance value as corner stone for both awareness-raising and valuation. As such one of its core goal is to align research and pilot projects with infrastructure development constraints and priorities. Under NAS, the integrated contribution of natural infrastructure to Disaster Risk Reduction is valued in the context of an identified growing need for climate robust infrastructure. The potential of NAS benefits and trade-off are explored by through the alternative lens of Disaster Resilience Enhancement (DRE). Such a system requires a joint effort of specific knowledge transfer from research groups and stakeholders to potential future NAS developers and investors. We therefore match the knowledge gaps with operational stages of the development of NAS from a project designer perspective. We start by highlighting the key role of the insurance industry in incentivizing and assessing disaster and slow onset resilience enhancement strategies. In parallel we place the public sector as potential kick-starters in DRE initiatives through the existing initiatives and constraints of infrastructure procurement. Under this perspective the paper explores the required alignment of Integrated Water resources planning and Public investment systems. Ultimately this will provide the possibility for both planners and investors to design no regret NBS and mixed Grey-Green infrastructures systems. As resources and constraints are widely different between infrastructure development contexts, the framework does not provide explicit methodological choices but presents current limits of knowledge and know-how. In conclusion the paper underlines the potential of NAS to ease the infrastructure gap in water globally by stressing the advantages of investment in the protection, enhancement and restoration of natural capital as an effective climate change adaptation investment. Copyright © 2017. Published by Elsevier Inc.
Nowcasting Induced Seismicity at the Groningen Gas Field in the Netherlands
NASA Astrophysics Data System (ADS)
Luginbuhl, M.; Rundle, J. B.; Turcotte, D. L.
2017-12-01
The Groningen natural gas field in the Netherlands has recently been a topic of controversy for many residents in the surrounding area. The gas field provides energy for the majority of the country; however, for a minority of Dutch citizens who live nearby, the seismicity induced by the gas field is a cause for major concern. Since the early 2000's, the region has seen an increase in both number and magnitude of events, the largest of which was a magnitude 3.6 in 2012. Earthquakes of this size and smaller easily cause infrastructural damage to older houses and farms built with single brick walls. Nowcasting is a new method of statistically classifying seismicity and seismic risk. In this paper, the method is applied to the induced seismicity at the natural gas fields in Groningen, Netherlands. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say , and one small say . The method utilizes the number of small earthquakes that occur between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that have occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time, which it does in this case. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of earthquakes in Groningen to nowcast the number of earthquakes in Groningen. The applicability of the scaling is illustrated during the rapid build up of seismicity between 2004 and 2016. It can now be used to forecast the expected reduction in seismicity associated with reduction in gas production.
Green Infrastructure, Ecosystem Services, and Human Health.
Coutts, Christopher; Hahn, Micah
2015-08-18
Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture-in the form of a primer-of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being.
NASA Astrophysics Data System (ADS)
Warneke, C.; Geiger, F.; Zahn, A.; Graus, M.; De Gouw, J. A.; Gilman, J. B.; Lerner, B. M.; Roberts, J. M.; Edwards, P. M.; Dube, W. P.; Brown, S. S.; Peischl, J.; Ryerson, T. B.; Williams, E. J.; Petron, G.; Kofler, J.; Sweeney, C.; Karion, A.; Dlugokencky, E. J.
2012-12-01
Technological advances such as hydraulic fracturing have led to a rapid increase in the production of natural gas from several basins in the Rocky Mountain West, including the Denver-Julesburg basin in Colorado, the Uintah basin in Utah and the Upper Green River basin in Wyoming. There are significant concerns about the impact of natural gas production on the atmosphere, including (1) emissions of methane, which determine the net climate impact of this energy source, (2) emissions of reactive hydrocarbons and nitrogen oxides, and their contribution to photochemical ozone formation, and (3) emissions of air toxics with direct health effects. The Energy & Environment - Uintah Basin Wintertime Ozone Study (UBWOS) in 2012 was focused on addressing these issues. During UBWOS, measurements of volatile organic compounds (VOCs) were made using proton-transfer-reaction mass spectrometry (PTR-MS) instruments from a ground site and a mobile laboratory. Measurements at the ground site showed mixing ratios of VOCs related to oil and gas extraction were greatly enhanced in the Uintah basin, including several days long periods of elevated mixing ratios and concentrated short term plumes. Diurnal variations were observed with large mixing ratios during the night caused by low nighttime mixing heights and a shift in wind direction during the day. The mobile laboratory sampled a wide variety of individual parts of the gas production infrastructure including active gas wells and various processing plants. Included in those point sources was a new well that was sampled by the mobile laboratory 11 times within two weeks. This new well was previously hydraulically fractured and had an active flow-back pond. Very high mixing ratios of aromatics were observed close to the flow-back pond. The measurements of the mobile laboratory are used to determine the source composition of the individual point sources and those are compared to the VOC enhancement ratios observed at the ground site. The source composition of most point sources was similar to the typical enhancement ratios observed at the ground site, whereas the new well with the flow-back pond showed a somewhat different composition.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
... oil and gas pipelines. While subsequent efforts by industry to develop infrastructure such as oil and gas pipelines and their associated components are reasonably foreseeable, these elements are not... Highway to Umiat, to increase access to potential oil and gas resources for exploration and development...
EPA's Ongoing Green Infrastructure Research
Green Infrastructure is a concept originating in the United States in the mid-1990's that highlights the importance of the natural environment in decisions about land use planning. In particular there is an emphasis on the “life support” functions provided by the natural environm...
Hollow-core fiber sensing technique for pipeline leak detection
NASA Astrophysics Data System (ADS)
Challener, W. A.; Kasten, Matthias A.; Karp, Jason; Choudhury, Niloy
2018-02-01
Recently there has been increased interest on the part of federal and state regulators to detect and quantify emissions of methane, an important greenhouse gas, from various parts of the oil and gas infrastructure including well pads and pipelines. Pressure and/or flow anomalies are typically used to detect leaks along natural gas pipelines, but are generally very insensitive and subject to false alarms. We have developed a system to detect and localize methane leaks along gas pipelines that is an order of magnitude more sensitive by combining tunable diode laser spectroscopy (TDLAS) with conventional sensor tube technology. This technique can potentially localize leaks along pipelines up to 100 km lengths with an accuracy of +/-50 m or less. A sensor tube buried along the pipeline with a gas-permeable membrane collects leaking gas during a soak period. The leak plume within the tube is then carried to the nearest sensor node along the tube in a purge cycle. The time-to-detection is used to determine leak location. Multiple sensor nodes are situated along the pipeline to minimize the time to detection, and each node is composed of a short segment of hollow core fiber (HCF) into which leaking gas is transported quickly through a small pressure differential. The HCF sensing node is spliced to standard telecom solid core fiber which transports the laser light for spectroscopy to a remote interrogator. The interrogator is multiplexed across the sensor nodes to minimize equipment cost and complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Curran, Scott
2015-05-01
Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However,more » using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.« less
Life-cycle Economic and Environmental Effects of Green, Gray and Hybrid Stormwater Infrastructure
NASA Astrophysics Data System (ADS)
Stokes-Draut, J. R.; Taptich, M. N.; Horvath, A.
2016-12-01
Cities throughout the U.S. are seeking efficient ways to manage stormwater for many reasons, including flood control, pollution management, water supply augmentation and to prepare for a changing climate. Traditionally, cities have relied primarily on gray infrastructure, namely sewers, storage and treatment facilities. In these systems, urban runoff, its volume increasing as impervious surfaces expand, is channeled to a wastewater plant where it is mixed with raw sewage prior to treatment or it is discharged, generally untreated, to local water bodies. These facilities are inflexible and expensive to build and maintain. Many systems are deteriorating and/or approaching, if not exceeding, their design capacity. Increasingly, more innovative approaches that integrate stormwater management into the natural environment and that make sense at both local and regional scales are sought. Identifying the best stormwater solution will require evaluating the life-cycle economic costs associated with these alternatives, including costs associated with construction, operation, and maintenance including regulatory and permitting costs, financing, as well as other indirect costs (e.g., avoided wastewater processing or system capacity expansion, increased property value) and non-economic co-benefits (i.e, aesthetics, habitat provision). Beyond conventional life-cycle costing, applying life-cycle assessment (LCA) will contribute to more holistic and sustainable decision-making. LCA can be used to quantitatively track energy use, greenhouse gas emissions, and other environmental effects associated with constructing, operating, and maintaining green and gray infrastructure, including supply chain contributions. We will present the current state of knowledge for implementing life-cycle costing and LCA into stormwater management decisions for green, gray and hybrid infrastructure.
NASA Astrophysics Data System (ADS)
Goetz, J. Douglas
Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations of methane, CO and other pollutants were continuously monitored while driving throughout the region. A smoothing technique was developed to remove contributions of direct unmixed emissions to produce a dataset that can be used in comparison with other monitoring techniques (e.g. stationary, aircraft). Finally, a portable mobile lab equipped with fast-response aerosol instrumentation including an Aerosol Mass Spectrometer (AMS) was used to characterize non-refractory aerosol and black carbon emissions from common, but under characterized emission sources in South Asia (i.e. brick kilns, cookstoves, open garbage burning, irrigation pumps). Speciated submicron aerosol emission factors, size distributions, and mass spectral profiles were retrieved for each emission source. This work demonstrates that ground-based mobile laboratory measurements are useful for characterizing emissions and ambient concentrations in authentic conditions outside of the conventional laboratory environment, and in ways not possible with other atmospheric monitoring platforms.
Lick Run: Green Infrastructure in Cincinnati and Beyond
By capturing and redistributing rain water or runoff in plant-soil systems such as green roofs, rain gardens or swales, green infrastructure restores natural hydrologic cycles and reduces runoff from overburdened gray infrastructure. Targeted ecosystem restoration, contaminant fi...
Middleton, Richard S; Brandt, Adam R
2013-02-05
The Alberta oil sands are a significant source of oil production and greenhouse gas emissions, and their importance will grow as the region is poised for decades of growth. We present an integrated framework that simultaneously considers economic and engineering decisions for the capture, transport, and storage of oil sands CO(2) emissions. The model optimizes CO(2) management infrastructure at a variety of carbon prices for the oil sands industry. Our study reveals several key findings. We find that the oil sands industry lends itself well to development of CO(2) trunk lines due to geographic coincidence of sources and sinks. This reduces the relative importance of transport costs compared to nonintegrated transport systems. Also, the amount of managed oil sands CO(2) emissions, and therefore the CCS infrastructure, is very sensitive to the carbon price; significant capture and storage occurs only above 110$/tonne CO(2) in our simulations. Deployment of infrastructure is also sensitive to CO(2) capture decisions and technology, particularly the fraction of capturable CO(2) from oil sands upgrading and steam generation facilities. The framework will help stakeholders and policy makers understand how CCS infrastructure, including an extensive pipeline system, can be safely and cost-effectively deployed.
DOT National Transportation Integrated Search
2012-01-01
Road construction, upgrades, and maintenance have largely been financed by a gas tax since the first tax on fuel was instituted by the federal government in 1932. Monies from the gas tax and other sources are deposited in the Highway Trust Fund to ha...
Critical Infrastructure Protection- Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bofman, Ryan K.
Los Alamos National Laboratory (LANL) has been a key facet of Critical National Infrastructure since the nuclear bombing of Hiroshima exposed the nature of the Laboratory’s work in 1945. Common knowledge of the nature of sensitive information contained here presents a necessity to protect this critical infrastructure as a matter of national security. This protection occurs in multiple forms beginning with physical security, followed by cybersecurity, safeguarding of classified information, and concluded by the missions of the National Nuclear Security Administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Russell; Nagarajan, Harsha; Yamangil, Emre
2016-06-24
MICOT is a tool for optimizing and controlling infrastructure systems. In includes modules for optimizing the operations of an infrastructure structure (for example optimal dispatch), designing infrastructure systems, restoring infrastructures systems, resiliency, preparing for natural disasters, interdicting networks, state estimation, sensor placement, and simulation of infrastructure systems. It implements algorithms developed at LANL that have been published in the academic community. This is a release of the of resilient design module of the MICOT.
The Value of Water in Extraction of Natural Gas from the Marcellus Shale
NASA Astrophysics Data System (ADS)
Rimsaite, R.; Abdalla, C.; Collins, A.
2013-12-01
Hydraulic fracturing of shale has increased the demand for the essential input of water in natural gas production. Increased utilization of water by the shale gas industry, and the development of water transport and storage related infrastructure suggest that the value of water is increasing where hydraulic fracturing is occurring. Few studies on the value of water in industrial uses exist and, to our knowledge, no studies of water's value in extracting natural gas from shale have been published. Our research aims to fill this knowledge gap by exploring several key dimensions of the value of water used in shale gas development. Our primary focus was to document the costs associated with water acquisition for shale gas extraction in West Virginia and Pennsylvania, two states located in the gas-rich Marcellus shale formation with active drilling and extraction underway. This research involved a) gathering data on the sources of and costs associated with water acquisition for shale gas extraction b) comparing unit costs with prices and costs paid by the gas industry users of water; c) determining factors that potentially impact total and per unit costs of water acquisition for the shale gas industry; and d) identifying lessons learned for water managers and policy-makers. The population of interest was all private and public entities selling water to the shale gas industry in Pennsylvania and West Virginia. Primary data were collected from phone interviews with water sellers and secondary data were gathered from state regulatory agencies. Contact information was obtained for 40 water sellers in the two states. Considering both states, the average response rate was 49%. Relatively small amounts of water, approximately 11% in West Virginia and 29% in Pennsylvania, were purchased from public water suppliers by the shale gas industry. The price of water reveals information about the value of water. The average price charged to gas companies was 6.00/1000 gallons and 7.60/1000 gallons in West Virginia and Pennsylvania, respectively. The additional water sales uniformly increased revenues and the financial status of water suppliers in some cases by substantial amounts. However, due to the temporary and uncertain demand for water from gas companies, many suppliers were cautious about reliance on these revenues. It must be stressed that the price charged reflects only a minimum value, or willingness to pay, by the shale gas companies for water. The full value of water for Marcellus shale gas production would include the costs of transportation, storage, and other activities to bring the water to the well drilling sites. Transportation costs are estimated in this research. The results are interpreted in light of other components of water value for shale gas production and compared to the estimated values of water in other industrial uses and in selected water consuming sectors.
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Pinar, Ali; Tunc, Suleyman; Erdik, Mustafa
2014-05-01
The Istanbul EEW network consisting of 10 inland and 5 OBS strong motion stations located close to the Main Marmara Fault zone is operated by KOERI. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The data transmission time from the remote stations to the KOERI data center is a few milliseconds through fiber optic lines and less than a second via satellites. The early warning signal (consisting three alarm levels) is communicated to the appropriate servo shut-down systems of the receipent facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. Since 2005, buildings in Istanbul using natural gas are required to install seismometers that automatically cut natural gas flow when certain thresholds are exceeded. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAŞ receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal of KOERI is also transmitted to the serve shut down system of the Marmaray Rail Tube Tunnel and Commuter Rail Mass Transit System in Istanbul. The Marmaray system includes an undersea railway tunnel under the Bosphorus Strait. Several strong motion instruments are installed within the tunnel for taking measurements against strong ground shaking and early warning purposes. This system is integrated with the KOERI EEW System. KOERI sends the EEW signal to the command center of Marmaray. Having received the signal, the command center put into action the previously defined measurements. For example, the trains within the tunnel will be stopped at the nearest station, no access to the tunnel will be allowed to the trains approaching the tunnel, water protective caps will be closed to protect flood closing the connection between the onshore and offshore tunnels.
Investing in soils as an infrastructure to maintain and enhance food water and carbon services
NASA Astrophysics Data System (ADS)
Davies, Jessica
2017-04-01
Soils are a life support system for global society and our planet. In addition to providing the vast majority of our food; soils regulate water quality and quantity reducing the risk of floods, droughts and pollution; and as the largest store of carbon in the earth system they are critical to climate change. By providing these multiple essential services, soils act a natural form of infrastructure that is critical to supporting both rural and urban communities and economies. Can natural infrastructure and natural capital concepts be used to motivate and enable investment and regulation of soils for purposes such as soil carbon sequestration? What scientific knowledge and tools would we need to support soil infrastructure decision making - in policy arenas and elsewhere? This poster will present progress from a new research project supported by the UK research council (EP/N030532/1) that addresses these questions.
Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.
2011-01-01
The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate scientific research programs can be safely, effectively, and efficiently conducted within ANS infrastructure. The program success resulted in a technical team recommendation to project management to drill and complete a long-term production test within the area of existing ANS infrastructure. If approved by stakeholders, this long-term test would build on prior arctic research efforts to better constrain the potential gas rates and volumes that could be produced from gas hydrate-bearing sand reservoirs. ?? 2010 Elsevier Ltd.
Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources
NASA Astrophysics Data System (ADS)
Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.
2015-12-01
Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogden, J.M.; Steinbugler, M.; Dennis, E.
For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure andmore » environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.« less
Using aerial infrared thermography to detect utility theft of service
NASA Astrophysics Data System (ADS)
Stockton, Gregory R.; Lucas, R. Gillem
2012-06-01
Natural gas and electric utility companies, public utility commissions, consumer advocacy groups, city governments, state governments and the federal government United States continue to turn a blind eye towards utility energy theft of service which we conservatively estimate is in excess of 10 billion a year. Why? Many in the United States have exhausted their unemployment benefits. The amounts for federal funding for low income heating assistance programs (LIHEAP) funds were cut by nearly 40% for 2012 to 3.02 billion. "At peak funding ($5.1 billion in 2009), the program was national in scale but still only had enough resources to support roughly 1/4 of the eligible households.i" Contributions to charities are down and the number of families below the poverty line who are unable to pay to heat their houses continues to rise. Many of the less fortunate in our society now consider theft and fraud to be an attractive option for their supply of natural gas and/or electricity. A record high mild winter in 2011-2012 coupled with 10-year low natural gas prices temporarily obscured the need for low income heating assistance programs (LIHEAPs) from the news and federal budgets, but cold winters will return. The proliferation of smart meters and automated meter infrastructures across our nation can do little to detect energy theft because the thieves can simply by-pass the meters, jumper around the meters and/or steal meters from abandoned houses and use them. Many utility systems were never set-up to stop these types of theft. Even with low-cost per identified thief method using aerial infrared thermography, utilities continue to ignore theft detection.
Security Assessment Of A Turbo-Gas Power Plant
NASA Astrophysics Data System (ADS)
Masera, Marcelo; Fovino, Igor Nai; Leszczyna, Rafal
Critical infrastructures are exposed to new threats due to the large number of vulnerabilities and architectural weaknesses introduced by the extensive use of information and communication technologies. This paper presents the results of an exhaustive security assessment for a turbo-gas power plant.
A new case for promoting wastewater reuse in Saudi Arabia: bringing energy into the water equation.
Kajenthira, Arani; Siddiqi, Afreen; Anadon, Laura Diaz
2012-07-15
Saudi Arabia is the third-largest per capita water user worldwide and has addressed the disparity between its renewable water resources and domestic demand primarily through desalination and the abstraction of non-renewable groundwater. This study evaluates the potential costs of this approach in the industrial and municipal sectors, exploring economic, energy, and environmental costs (including CO2 emissions and possible coastal impacts). Although the energy intensity of desalination is a global concern, it is particularly urgent to rethink water supply options in Saudi Arabia because the entirety of its natural gas production is consumed domestically, primarily in petrochemical and desalination plants. This burgeoning demand is necessitating the development of more expensive high-sulfur gas resources that could make desalination even pricier. The evolving necessity to conserve non-renewable water and energy resources and mitigate GHG emissions in the region also requires policy makers to weigh in much more considerably the energy and environmental costs of desalination. This paper suggests that in Saudi Arabia, the implementation of increased water conservation and reuse across the oil and natural gas sectors could conserve up to 29% of total industrial water withdrawals at costs recovered over 0-30 years, depending on the specific improvement. This work also indicates that increasing wastewater treatment and reuse in six high-altitude inland cities could save a further $225 million (2009 dollars) and conserve 2% of Saudi Arabia's annual electricity consumption. By these estimates, some anticipated investments in desalination projects could be deferred by improving water efficiency in industry and prioritizing investment in sewage and water distribution networks that would ensure more effective water reclamation and reuse. Simultaneously, such initiatives would conserve non-renewable natural gas resources and could help prevent the lock-in of potentially unnecessary desalination infrastructure that is likely to become more energy and cost efficient in future. Copyright © 2012 Elsevier Ltd. All rights reserved.
Green Infrastructure, Ecosystem Services, and Human Health
Coutts, Christopher; Hahn, Micah
2015-01-01
Contemporary ecological models of health prominently feature the natural environment as fundamental to the ecosystem services that support human life, health, and well-being. The natural environment encompasses and permeates all other spheres of influence on health. Reviews of the natural environment and health literature have tended, at times intentionally, to focus on a limited subset of ecosystem services as well as health benefits stemming from the presence, and access and exposure to, green infrastructure. The sweeping influence of green infrastructure on the myriad ecosystem services essential to health has therefore often been underrepresented. This survey of the literature aims to provide a more comprehensive picture—in the form of a primer—of the many simultaneously acting health co-benefits of green infrastructure. It is hoped that a more accurately exhaustive list of benefits will not only instigate further research into the health co-benefits of green infrastructure but also promote consilience in the many fields, including public health, that must be involved in the landscape conservation necessary to protect and improve health and well-being. PMID:26295249
Prospective Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heeter, Jenny S; Mai, Trieu T; Bird, Lori A
These slides were presented at a webinar on January 9, 2017. The slides overview a report that evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specificmore » benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less
In-Use Fleet Evaluation of Fast-Charge Battery Electric Transit Buses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prohaska, Robert; Kelly, Kenneth; Eudy
2016-06-27
With support from the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2015, NREL launched an in-service evaluation of 12 battery electric buses (BEBs) compared to conventional compressed natural gas (CNG) buses operated by Foothill Transit in West Covina, California. The study aims to improve understanding of the overall usage and effectiveness of fast-charge BEBs and associated chargingmore » infrastructure in transit operation. To date, NREL researchers have analyzed more than 148,000 km of in-use operational data, including driving and charging events. Foothill Transit purchased the BEBs with grant funding from the Federal Transit Administration's Transit Investments for Greenhouse Gas and Energy Reduction Program.« less
Background/Question/MethodsStreams and rivers are significant sources of greenhouse gas emissions globally. Water quality and watershed management, are likely to influence GHG emissions regionally. In urban-impacted watersheds, increased nitrogen loading, organic matter, and war...
Cumulative effects: Managing natural resources for resilience in the urban context
Sarah C. Low
2014-01-01
Cities throughout the United States have started developing policies and plans that prioritize the installation of green infrastructure for the reduction of stormwater runoff. The installation of green infrastructure as a managed asset involves relying on natural resources to provide a predictable ecosystem service, stormwater retention. The placement of green...
DOT National Transportation Integrated Search
2008-12-31
Integrity, robustness, reliability, and resiliency of infrastructure networks are vital to the economy, : security and well-being of any country. Faced with threats caused by natural and man-made hazards, : transportation infrastructure network manag...
Assessing fugitive emissions of CH4 from high-pressure gas pipelines in the UK
NASA Astrophysics Data System (ADS)
Clancy, S.; Worrall, F.; Davies, R. J.; Almond, S.; Boothroyd, I.
2016-12-01
Concern over the greenhouse gas impact of the exploitation of unconventional natural gas from shale deposits has caused a spotlight to be shone on to the entire hydrocarbon industry. Numerous studies have developed life-cycle emissions inventories to assess the impact that hydraulic fracturing has upon greenhouse gas emissions. Incorporated within life-cycle assessments are transmission and distribution losses, including infrastructure such as pipelines and compressor stations that pressurise natural gas for transport along pipelines. Estimates of fugitive emissions from transmission, storage and distribution have been criticized for reliance on old data from inappropriate sources (1970s Russian gas pipelines). In this study, we investigate fugitive emissions of CH4 from the UK high pressure national transmission system. The study took two approaches. Firstly, CH4 concentration is detected by driving along roads bisecting high pressure gas pipelines and also along an equivalent distance along a route where no high pressure gas pipeline was nearby. Five pipelines and five equivalent control routes were driven and the test was that CH4 measurements, when adjusted for distance and wind speed, should be greater on any route with a pipe than any route without a pipe. Secondly, 5 km of a high pressure gas pipeline and 5 km of equivalent farmland, were walked and soil gas (above the pipeline where present) was analysed every 7 m using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 62.6 kt CH4/yr with a CO2 equivalent of 1570 kt CO2eq/yr - this fugitive emission from high pressure pipelines is 0.14% of the annual gas supply.
Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirish Patil; Rich Haut; Tom Williams
2008-12-31
The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the areamore » prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.« less
Energy Infrastructure and Extreme Events (Invited)
NASA Astrophysics Data System (ADS)
Wakimoto, R. M.
2013-12-01
The country's energy infrastructure is sensitive to the environment, especially extreme events. Increasing global temperatures, intense storms, and space weather have the potential to disrupt energy production and transport. It can also provide new opportunities as illustrated by the opening of the Northwest Passage. The following provides an overview of some of the high impacts of major geophysical events on energy production and transport. Future predictions of hurricanes suggest that we can expect fewer storms but they will be associated with stronger winds and more precipitation. The winds and storm surge accompanying hurricane landfall along the Gulf States has had a major impact on the coastal energy infrastructure and the oil/natural gas platforms. The impact of these surges will increase with predicted sea level rise. Hurricane Katrina caused damage to crude oil pipelines and refineries that reduced oil production by 19% for the year. The disruption that can occur is not necessarily linked with the maximum winds of the tropical storm as recently shown by Hurricane Sandy which was classified as a ';post-tropical cyclone' during landfall. Another intense circulation, the tornado, can also cause power outages and network breaks from high winds that can topple power poles or damage power lines from fallen trees. Fortunately, the Moore tornado, rated EF5, did not have a major impact on the oil and gas infrastructure in Oklahoma. The impact of earthquakes and tsunamis on energy was illustrated in Japan in 2011 with the shutdown of the Fukushima Daiichi plant. Other studies have suggested that there are areas in the United States where the energy services are highly vulnerable to major earthquakes that would disrupt electrical and gas networks for extended periods of time. Seismic upgrades to the energy infrastructure would help mitigate the impact. In 1859, a coronal mass ejection triggered a geomagnetic storm that disrupted communication wires around the world. It has been suggested that this event would be associated with massive power outages if it occurred today. A similar storm would create strong electrical currents that would travel through power lines, oil pipelines and telecom cables. Transformers would fail and large sections of the electric grid would go down. The melting of the Artic ice has opened the Northwest Passage for increasing periods of time making it an attractive alternative route for tankers and commercial ships. In addition, there is a high potential for tapping into new oil and gas reserves. However, these new opportunities need to be balanced with an analysis of the environmental risks posed by exploration, drilling and increased traffic in a region that until recently was difficult to access. Increasing temperatures coupled with longer periods of drought has increased the wildfire risk to transmission lines. Studies are currently underway that quantify the probability that transmission lines would be impacted by fire. Not discussed in this overview are other impacts that have been well documented. Higher temperatures in the summer will increase the electricity demand for cooling but will also reduce energy demand for heating in the winter. Severe droughts limits the access to water that are needed to cool power plants. Precipitation variability and reduced snowpack limits the ability to generate power from hydroelectric plants.
NASA Astrophysics Data System (ADS)
Vas, D. A.; Toniolo, H. A.; Kemnitz, R.; Lamb, E.
2012-12-01
National Petroleum Reserve-Alaska (NPR-A) is an extensive 22.8 million acre oil, gas, and coal rich area that extends from the north foothills of the Brooks range all the way to the Arctic Ocean. Due to increasing demand for oil and natural gas the United States Department of Interior, Bureau of Land Management (BLM) is holding annual oil and gas lease sales in the NPR-A region. BLM is also supporting research to aid responsible oil exploration in the NPR-A region. We conducted a set of hydraulic measurements, which includes discharge measurements using Acoustic Doppler Current Profiler (ADCP), water slope, and suspended sediment sampling during breakup, the most important hydrologic event of the year, from 2010 to 2012 on Otuk Creek, Seabee Creek, Prince Creek, Ikpikpuk River, Judy Creek, Fish Creek, and Ublutuoch River in the NPR - A region. The hydraulic data we collected helped us understand how rivers change yearly which is useful for the development of new infrastructure such as pipe lines, bridges, and roads in the NPR-A region. The goal of this work is to present the results of our 2010 to 2012 spring breakup measurements.
EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz
2004-04-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of threemore » pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.« less
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II
2004-10-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine ifmore » chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.« less
Northrup, Joseph M; Anderson, Charles R; Wittemyer, George
2015-11-01
Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
What metrology can do to improve the quality of your atmospheric ammonia measurements
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Ferracci, Valerio; Cassidy, Nathan; Hook, Josh; Battersby, Ross M.; Tang, Yuk S.; Stevens, Amy C. M.; Jones, Matthew R.; Braban, Christine F.; Gates, Linda; Hangartner, Markus; Sacco, Paolo; Pagani, Diego; Hoffnagle, John A.; Niederhauser, Bernhard
2017-04-01
Measuring ammonia in ambient air is a sensitive and priority issue due to its harmful effects on human health and ecosystems. The European Directive 2001/81/EC on "National Emission Ceilings for Certain Atmospheric Pollutants (NEC)" regulates ammonia emissions in the member states. However, there is a lack of regulation to ensure reliable ammonia measurements, namely in applicable analytical technology, maximum allowed uncertainty, quality assurance and quality control (QC/QA) procedures, as well as in the infrastructure to attain metrological traceability, i.e. that the results of measurements are traceable to SI-units through an unbroken chain of calibrations. In the framework of the European Metrology Research Programme (EMRP) project on the topic "Metrology for Ammonia in Ambient Air" (MetNH3), European national metrology institutes (NMI's) have joined to tackle the issue of generating SI-traceable reference material, i.e. generate reference gas mixtures containing known amount fractions of NH3.This requires special infrastructure and analytical techniques: Measurements of ambient ammonia are commonly carried out with diffusive samplers or by active sampling with denuders, but such techniques have not yet been extensively validated. Improvements in the metrological traceability may be achieved through the determination of NH3 diffusive sampling rates using ammonia Primary Standard Gas Mixtures (PSMs), developed by gravimetry at the National Physical Laboratory NPL and a controlled atmosphere test facility in combination with on-line monitoring with a cavity ring-down spectrometer. The Federal Institute of Metrology METAS has developed an infrastructure to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol (atmospheric concentrations) and with uncertainties UNH3 <3%. The infrastructure consists of a stationary as well as a mobile device for full flexibility for calibrations in the laboratory and in the field. Both devices apply the method of temperature and pressure dependant permeation of a pure substance through a membrane into a stream of pre-purified matrix gas and subsequent dilution to required amount fractions. All relevant parameters are fully traceable to SI-units. Extractive optical analysers can be connected directly to both, stationary and mobile systems for calibration. Moreover, the resulting gas mixture can also be pressurised into coated cylinders by cryo-filling. The mobile system as well as these cylinders can be applied for calibrations of optical instruments in other laboratories and in the field. In addition, an SI-traceable dilution system based on a cascade of critical orifices has been established to dilute NH3 mixtures in the order of μmol/mol stored in cylinders. It is planned to apply this system to calibrate and re-sample gas mixtures in cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
J.D Wickham; Kurt H. Riitters; T.G. Wade; P. Vogt
2010-01-01
Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of ânaturalâ vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United States, green infrastructure projects can be characterized as: (...
Data Modeling & the Infrastructural Nature of Conceptual Tools
ERIC Educational Resources Information Center
Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta
2007-01-01
The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…
Caño Martin Peña, San Juan, Puerto Rico – this Smart Growth Implementation Assistance initiative will highlight how green infrastructure can mitigate flooding by working in tandem with proposed improvements to conventional drainage infrastructure, address wate...
Green infrastructure is a widely used framework for conservation planning in the United States and elsewhere. The main components of green infrastructure are hubs and corridors. Hubs are large areas of natural vegetation, and corridors are linear features that connect hubs. W...
A National Assessment of Change in Green Infrastructure Using Mathematical Morphology
Green infrastructure is a popular framework for conservation planning. The main elements of green infrastructure are hubs and links. Hubs tend to be large areas of natural vegetation and links tend to be linear features (e.g., streams) that connect hubs. Within the United States...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...
2017-04-24
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
NASA Astrophysics Data System (ADS)
Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.
2015-12-01
Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.
NASA Astrophysics Data System (ADS)
Ravikumar, A. P.; Wang, J.; Brandt, A. R.
2016-12-01
Mitigating fugitive methane emissions from the oil and gas industry has become an important concern for both businesses and regulators. While recent studies have improved our understanding of emissions from all sectors of the natural gas supply chain, cost-effectively identifying leaks over expansive natural gas infrastructure remains a significant challenge. Recently, the Environmental Protection Agency (EPA) has recommended the use of optical gas imaging (OGI) technologies to be used in industry-wide leak detection and repair (LDAR) programs. However, there has been little to no systematic study of the effectiveness of infrared-camera-based OGI technology for leak detection applications. Here, we develop a physics-based model that simulates a passive infrared camera imaging a methane leak against varying background and ambient conditions. We verify the simulation tool through a series of large-volume controlled release field experiments wherein known quantities of methane were released and imaged from a range of distances. After simulator verification, we analyze the effects of environmental conditions like temperature, wind, and imaging background on the amount of methane detected from a statistically representative survey program. We also examine the effects of LDAR design parameters like imaging distance, leak size distribution, and gas composition. We show that imaging distance strongly affects leak detection - EPA's expectation of a 60% reduction in fugitive emissions based on a semi-annual LDAR survey will be realized only if leaks are imaged at a distance less than 10 m from the source under ideal environmental conditions. Local wind speed is also shown to be important. We show that minimum detection limits are 3 to 4 times higher for wet-gas compositions that contain a significant fraction of ethane and propane, resulting a significantly large leakage rate. We also explore the importance of `super-emitters' on the performance of an OGI-based leak detection program, and show that OGI technology can be used as an approximate leak-quantification method to selectively target the biggest leaks. Finally, we also provide recommendations and best-practices guidelines for achieving expected methane mitigation.
NASA Astrophysics Data System (ADS)
Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.
2014-12-01
The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes from the Barnett and Bakken regions were observed (1% to 10% of estimated national ethane emissions), and emissions of these magnitudes may significantly impact regional atmospheric chemistry and air quality by influencing production of tropospheric ozone.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...
Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams
NASA Astrophysics Data System (ADS)
Smith, Rose M.; Kaushal, Sujay S.; Beaulieu, Jake J.; Pennino, Michael J.; Welty, Claire
2017-06-01
Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3- ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3- and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78), and methane (CH4, r2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.
Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure pract...
Pathways to Deep Decarbonization in the United States
NASA Astrophysics Data System (ADS)
Torn, M. S.; Williams, J.
2015-12-01
Limiting anthropogenic warming to less than 2°C will require a reduction in global net greenhouse gas (GHG) emissions on the order of 80% below 1990 levels by 2050. Thus, there is a growing need to understand what would be required to achieve deep decarbonization (DD) in different economies. We examined the technical and economic feasibility of such a transition in the United States, evaluating the infrastructure and technology changes required to reduce U.S. GHG emissions in 2050 by 80% below 1990 levels. Using the PATHWAYS and GCAM models, we found that this level of decarbonization in the U.S. can be accomplished with existing commercial or near-commercial technologies, while providing the same level of energy services and economic growth as a reference case based on the U.S. DOE Annual Energy Outlook. Reductions are achieved through high levels of energy efficiency, decarbonization of electric generation, electrification of most end uses, and switching the remaining end uses to lower carbon fuels. Incremental energy system cost would be equivalent to roughly 1% of gross domestic product, not including potential non-energy benefits such as avoided human and infrastructure costs of climate change. Starting now on the deep decarbonization path would allow infrastructure stock turnover to follow natural replacement rates, which reduces costs, eases demand on manufacturing, and allows gradual consumer adoption. Energy system changes must be accompanied by reductions in non-energy and non-CO2 GHG emissions.
Cost estimate for a proposed GDF Suez LNG testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.
2014-02-01
At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire,more » and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.« less
Hierarchical Coloured Petrinet Based Healthcare Infrastructure Interdependency Model
NASA Astrophysics Data System (ADS)
Nivedita, N.; Durbha, S.
2014-11-01
To ensure a resilient Healthcare Critical Infrastructure, understanding the vulnerabilities and analysing the interdependency on other critical infrastructures is important. To model this critical infrastructure and its dependencies, Hierarchal Coloured petri net modelling approach for simulating the vulnerability of Healthcare Critical infrastructure in a disaster situation is studied.. The model enables to analyse and understand various state changes, which occur when there is a disruption or damage to any of the Critical Infrastructure, and its cascading nature. It also enables to explore optimal paths for evacuation during the disaster. The simulation environment can be used to understand and highlight various vulnerabilities of Healthcare Critical Infrastructure during a flood disaster scenario; minimize consequences; and enable timely, efficient response.
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2010 CFR
2010-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2012 CFR
2012-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2011 CFR
2011-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2014 CFR
2014-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Barber, Larry B.; Hladik, Michelle; Vajda, Alan M.; Fitzgerald, Kevin C.; Douville, Chris
2015-01-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m3 d−1 design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration = 2.7 μg L−1; n=5) and 10 HDBPs (mean total concentration = 4.5 μg L−1), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration = 1.4 μg L−1) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%.
Barber, Larry B; Hladik, Michelle L; Vajda, Alan M; Fitzgerald, Kevin C; Douville, Chris
2015-10-01
The municipal wastewater treatment facility (WWTF) infrastructure of the United States is being upgraded to expand capacity and improve treatment, which provides opportunities to assess the impact of full-scale operational changes on water quality. Many WWTFs disinfect their effluent prior to discharge using chlorine gas, which reacts with natural and synthetic organic matter to form halogenated disinfection byproducts (HDBPs). Because HDBPs are ubiquitous in chlorine-disinfected drinking water and have adverse human health implications, their concentrations are regulated in potable water supplies. Less is known about the formation and occurrence of HDBPs in disinfected WWTF effluents that are discharged to surface waters and become part of the de facto wastewater reuse cycle. This study investigated HDBPs in the urban water cycle from the stream source of the chlorinated municipal tap water that comprises the WWTF inflow, to the final WWTF effluent disinfection process before discharge back to the stream. The impact of conversion from chlorine-gas to low-pressure ultraviolet light (UV) disinfection at a full-scale (68,000 m(3) d(-1) design flow) WWTF on HDBP concentrations in the final effluent was assessed, as was transport and attenuation in the receiving stream. Nutrients and trace elements (boron, copper, and uranium) were used to characterize the different urban source waters, and indicated that the pre-upgrade and post-upgrade water chemistry was similar and insensitive to the disinfection process. Chlorinated tap water during the pre-upgrade and post-upgrade samplings contained 11 (mean total concentration=2.7 μg L(-1); n=5) and 10 HDBPs (mean total concentration=4.5 μg L(-1)), respectively. Under chlorine-gas disinfection conditions 13 HDBPs (mean total concentration=1.4 μg L(-1)) were detected in the WWTF effluent, whereas under UV disinfection conditions, only one HDBP was detected. The chlorinated WWTF effluent had greater relative proportions of nitrogenous, brominated, and iodinated HDBPs than the chlorinated tap water. Conversion of the WWTF to UV disinfection reduced the loading of HDBPs to the receiving stream by >90%. Copyright © 2015. Published by Elsevier B.V.
Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
Bara, Jason E; Camper, Dean E; Gin, Douglas L; Noble, Richard D
2010-01-19
Clean energy production has become one of the most prominent global issues of the early 21st century, prompting social, economic, and scientific debates regarding energy usage, energy sources, and sustainable energy strategies. The reduction of greenhouse gas emissions, specifically carbon dioxide (CO(2)), figures prominently in the discussions on the future of global energy policy. Billions of tons of annual CO(2) emissions are the direct result of fossil fuel combustion to generate electricity. Producing clean energy from abundant sources such as coal will require a massive infrastructure and highly efficient capture technologies to curb CO(2) emissions. Current technologies for CO(2) removal from other gases, such as those used in natural gas sweetening, are also capable of capturing CO(2) from power plant emissions. Aqueous amine processes are found in the vast majority of natural gas sweetening operations in the United States. However, conventional aqueous amine processes are highly energy intensive; their implementation for postcombustion CO(2) capture from power plant emissions would drastically cut plant output and efficiency. Membranes, another technology used in natural gas sweetening, have been proposed as an alternative mechanism for CO(2) capture from flue gas. Although membranes offer a potentially less energy-intensive approach, their development and industrial implementation lags far behind that of amine processes. Thus, to minimize the impact of postcombustion CO(2) capture on the economics of energy production, advances are needed in both of these areas. In this Account, we review our recent research devoted to absorptive processes and membranes. Specifically, we have explored the use of room-temperature ionic liquids (RTILs) in absorptive and membrane technologies for CO(2) capture. RTILs present a highly versatile and tunable platform for the development of new processes and materials aimed at the capture of CO(2) from power plant flue gas and in natural gas sweetening. The desirable properties of RTIL solvents, such as negligible vapor pressures, thermal stability, and a large liquid range, make them interesting candidates as new materials in well-known CO(2) capture processes. Here, we focus on the use of RTILs (1) as absorbents, including in combination with amines, and (2) in the design of polymer membranes. RTIL amine solvents have many potential advantages over aqueous amines, and the versatile chemistry of imidazolium-based RTILs also allows for the generation of new types of CO(2)-selective polymer membranes. RTIL and RTIL-based composites can compete with, or improve upon, current technologies. Moreover, owing to our experience in this area, we are developing new imidazolium-based polymer architectures and thermotropic and lyotropic liquid crystals as highly tailorable materials based on and capable of interacting with RTILs.
ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Robert Paterek; Gemma Husmillo; Amrutha Daram
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter includes the application of new methods of Capsicum sp. (pepper) extraction by soxhlet method and analysis of a new set of extracts by thin layer chromatography (TLC) and highmore » performance liquid chromatography (HPLC); isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples; and evaluation of antimicrobial activities of the old set of pepper extracts in comparison with major components of known biocides and corrosion inhibitors. Twelve new extracts from three varieties of Capsicum sp. (Serrano, Habanero, and Chile de Arbol) were obtained by soxhlet extraction using 4 different solvents. Results of TLC done on these extracts showed the presence of capsaicin and some phenolic compounds, while that of HPLC detected capsaicin and dihydrocapsaicin peaks. More tests will be done to determine specific components. Additional isolates from the group of heterotrophic, acid-producing, denitrifying and sulfate-reducing bacteria were obtained from the pipeline samples submitted by gas companies. Isolates of interest will be used in subsequent antimicrobial testing and test-loop simulation system experiments. Results of antimicrobial screening of Capsicum sp. extracts and components of known commercial biocides showed comparable activities when tested against two strains of sulfate-reducing bacteria.« less
ENVIRONMENTALLY BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John J. Kilbane II; William Bogan
2004-01-31
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter included the fractionation of extracts prepared from several varieties of pepper plants, and using several solvents, by high performance liquid chromatography (HPLC). A preliminary determination of antimicrobial activities ofmore » the new extracts and fractions using a growth inhibition assay, and evaluation of the extracts ability to inhibit biofilm formation was also performed. The analysis of multiple extracts of pepper plants and fractions of extracts of pepper plants obtained by HPLC illustrated that these extracts and fractions are extremely complex mixtures of chemicals. Gas chromatography-mass spectrometry was used to identify the chemical constituents of these extracts and fractions to the greatest degree possible. Analysis of the chemical composition of various extracts of pepper plants has illustrated the complexity of the chemical mixtures present, and while additional work will be performed to further characterize the extracts to identify bioactive compounds the focus of efforts should now shift to an evaluation of the ability of extracts to inhibit corrosion in mixed culture biofilms, and in pure cultures of bacterial types which are known or believed to be important in corrosion.« less
DOT National Transportation Integrated Search
2016-10-01
Due to shale oil/gas recovery : operations, a large number : of truck trips on Louisiana : roadways are required for : transporting equipment and : materials to and from the : recovery sites. As a result, : roads and bridges that were : designed for ...
Uzbek licensing round brings geology, potential into focus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heafford, A.P.; Lichtman, G.S.
1993-08-09
Uzbekistan is a Central Asian Republic that declared independence from the former Soviet Union in 1991. Uzbekistan produces about 18 million bbl/year of oil and 40 bcf/year of gas. It is the third largest gas producer in the Commonwealth of Independent States and imports oil. The Uzbek government and oil and gas industry are offering exploration acreage for foreign participation via competitive bid. Acreage on offer includes fields for development and unproven-underexplored areas. Terms awaiting approval by the Cabinet of Ministers provide financial incentives for rapid development of existing reserves, creation of required infrastructure, and long term investment growth. Licensemore » areas concentrate on acreage where western equipment and technology can bring new reserves economically on line in the near future. National oil company Uzbekneftegaz was created in 1992 to oversee the extraction, transport, and refining of hydrocarbons in Uzbekistan. The paper describes some of the fields and infrastructure in place, the structural geology, stratigraphy, petroleum distribution, source rocks, reservoir rocks, cap rocks, traps, and hydrocarbon composition, which includes oil, gases, and gas condensates.« less
NASA Astrophysics Data System (ADS)
Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas
2014-05-01
The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014
U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, John H.; Grape, Steven G.; Green, Rhonda S.
1998-12-01
This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...
The Potential Socio-economic Impacts of Gas Hydrate Exploitation
NASA Astrophysics Data System (ADS)
Riley, David; Schaafsma, Marije; Marin-Moreno, Héctor; Minshull, Tim A.
2017-04-01
Gas hydrate has garnered significant interest as a possible clean fossil fuel resource, especially in countries with limited energy supplies. Whilst the sector is still in its infancy, there has been escalating development towards commercial production. To the best of our knowledge it appears that, despite its potential, existing analyses of the social and economic impacts of hydrate exploitation have been very limited. Before any viable commercial production commences, the potential impacts across society must be considered. It is likely that such impact assessments will become a legislative requirement for hydrate exploitation, similar to their requirement in conventional oil and gas projects. Social impact analysis should guide hydrate development to have the highest possible net benefits to the human and natural environment. Without active commercial hydrate operations, potential socio-economic impacts can only be inferred from other fossil fuel resource focused communities, including those directly or indirectly affected by the oil and gas industry either in the vicinity of the well or further afield. This review attempts to highlight potential impacts by synthesising current literature, focusing on social impacts at the extraction stage of operation, over time. Using a DPSIR (Driving forces; Pressures; States; Impacts; Responses) framework, we focus on impacts upon: health and wellbeing, land use and access, services and infrastructure, population, employment opportunities, income and lifestyles. Human populations directly or indirectly related with fossil fuel extraction activities often show boom and bust dynamics, and so any impacts may be finite or change temporally. Therefore potential impacts have to be reassessed throughout the lifetime of the exploitation. Our review shows there are a wide range of possible positive and negative socio-economic impacts from hydrate development. Exploitation can bring jobs and infrastructure to remote areas, although the labour supply may not fit with the labour demand. In regions with an existing strong fossil fuel energy sector, hydrate development would prolong the timeframe for which this sector could significantly contribute to the local and wider economy. In unexploited areas the industry can provide considerable income to an otherwise undeveloped region. Industrialisation tends to increase regional population, pressuring existing public services, such as healthcare and transport infrastructure. Immigrant fossil fuel sector workers are predominantly young, male and single. Their presence may be linked to elevated levels of certain social issues seen as undesirable problems by the community at large, such as drug usage or alcoholism. Hydrate development provides limited benefit to indigenous communities who are still following a traditional cultural lifestyle in the proposed development area, as many opportunities are not compatible with their way of life. Additionally, industry associated infrastructure can reduce the ability of the indigenous population to utilise the land directly, or as an access route elsewhere. The range of possible impacts show that any hydrate development must be carefully managed to maximise its potential, whether this takes the form of using the revenue from hydrate exploitation to try and counter the associated issues, or whether there needs to be specific limits placed on locations where extraction can occur.
NASA Astrophysics Data System (ADS)
Wakeley, Heather L.
Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and a significant increase in natural gas demand will likely raise both prices and import quantities. There is an added challenge of developing hydrogen fuel cell vehicles at costs comparable to conventional vehicles. Two models developed in this thesis have proven useful for evaluating alternative fuels. The linear programming models provide representative estimates of distribution distances for regional fuel use, and thus can be used to estimate costs and environmental impacts. The EIO-LCA Hybrid method is useful for estimating emissions from hydrogen production. This model includes upstream impacts in the LCA, and has the benefit of a lower time and data requirements than a process-based LCA.
Gas play opportunities in deeper Jurassic sequences of the Neuquen basin embayment, Argentina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Seveso, F.; Figueroa, D.E.; Rodriguez, H.
1996-08-01
We have defined new gas plays at around 4000 m depth near the giant Loma La Lata gas field. The plays, in lower Jurassic sandstones, were developed using a different approach in stratigraphic signatures as well as deformation styles. Two initial rifting stages led to the Triassic-Early Liassic volcanoclastic deposition (Precuyo s.l.) into a suite of discrete half-grabens. The late rifting stage amalgamated the Precuyo depocenters into notably extended subsiding half-grabens where the Pliensbachian-Toarcian deposits were accommodated. This lower Cuyo sequence-set (LC) consists of basinal marine shales (Molles Formation) and a progradational stacking of slope and shelf sandstones (Lajas Formation),more » bearing a kerogen type III-II within the gas window with TOC values range 2-6%. The LC top matches with a conspicuous regional unconformity related to the thermo-mechanic subsidence. The overlying Bajocian-early Callovian upper Cuyo sequence set exhibits outer shelf argillaceous sediments at the base. The identified plays are related to two deformation mechanisms: mud diapirism and tectonic inversion. The thick, rapidly deposited LC sandstones triggered the ductile flow of the underlying, overpressured shales. Soon after, the tectonic inversion of the Precuyo half-grabens produced a series of aligned anticlines parallel to Huincul Arch. Scattered incipient diapirism toward the embayment resulted in dome-like structures. Sandstones with gas shows could act as {open_quotes}tight gas reservoirs.{close_quotes} However, increased permeability through natural fracturing in the structures would increase their viability. The estimated resources of several TCF in untested closures and the industry infrastructure make these plays particularly attractive for gas exploration.« less
A Spatial Risk Analysis of Oil Refineries within the United States
2012-03-01
regulator and consumer. This is especially true within the energy sector which is composed of electrical power, oil , and gas infrastructure [10...Naphtali, "Analysis of Electrical Power and Oil and Gas Pipeline Failures," in International Federation for Information Processing, E. Goetz and S...61-67, September 1999. [5] J. Simonoff, C. Restrepo, R. Zimmerman, and Z. Naphtali, "Analysis of Electrical Power and Oil and Gas Pipeline Failures
Managing Critical Infrastructures C.I.M. Suite
Dudenhoeffer, Donald
2018-05-23
See how a new software package developed by INL researchers could help protect infrastructure during natural disasters, terrorist attacks and electrical outages. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.
77 FR 37092 - Proposed Agency Information Collection Activities; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... Class III railroad infrastructure damaged by hurricanes, floods, and natural disasters that are located... President ( http://www.fema.gov/news/disasters.fema#sev1 ). Class II and Class III railroad infrastructure...
Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... interconnect pipelines to four existing offshore pipelines (Dauphin Natural Gas Pipeline, Williams Natural Gas Pipeline, Destin Natural Gas Pipeline, and Viosca Knoll Gathering System [VKGS] Gas Pipeline) that connect to the onshore natural gas transmission pipeline system. Natural gas would be delivered to customers...
NASA Astrophysics Data System (ADS)
Yurkovich, E. S.; Howell, D. G.
2002-12-01
Exploding population and unprecedented urban development within the last century helped fuel an increase in the severity of natural disasters. Not only has the world become more populated, but people, information and commodities now travel greater distances to service larger concentrations of people. While many of the earth's natural hazards remain relatively constant, understanding the risk to increasingly interconnected and large populations requires an expanded analysis. To improve mitigation planning we propose a model that is accessible to planners and implemented with public domain data and industry standard GIS software. The model comprises 1) the potential impact of five significant natural hazards: earthquake, flood, tropical storm, tsunami and volcanic eruption assessed by a comparative index of risk, 2) population density, 3) infrastructure distribution represented by a proxy, 4) the vulnerability of the elements at risk (population density and infrastructure distribution) and 5) the connections and dependencies of our increasingly 'globalized' world, portrayed by a relative linkage index. We depict this model with the equation, Risk = f(H, E, V, I) Where H is an index normalizing the impact of five major categories of natural hazards; E is one element at risk, population or infrastructure; V is a measure of the vulnerability for of the elements at risk; and I pertains to a measure of interconnectivity of the elements at risk as a result of economic and social globalization. We propose that future risk analysis include the variable I to better define and quantify risk. Each assessment reflects different repercussions from natural disasters: losses of life or economic activity. Because population and infrastructure are distributed heterogeneously across the Pacific region, two contrasting representations of risk emerge from this study.
Microstructural characteristics of natural gas hydrates hosted in various sand sediments.
Zhao, Jiafei; Yang, Lei; Liu, Yu; Song, Yongchen
2015-09-21
Natural gas hydrates have aroused worldwide interest due to their energy potential and possible impact on climate. The occurrence of natural gas hydrates hosted in the pores of sediments governs the seismic exploration, resource assessment, stability of deposits, and gas production from natural gas hydrate reserves. In order to investigate the microstructure of natural gas hydrates occurring in pores, natural gas hydrate-bearing sediments were visualized using microfocus X-ray computed tomography (CT). Various types of sands with different grain sizes and wettability were used to study the effect of porous materials on the occurrence of natural gas hydrates. Spatial distributions of methane gas, natural gas hydrates, water, and sands were directly identified. This work indicates that natural gas hydrates tend to reside mainly within pore spaces and do not come in contact with adjacent sands. Such an occurring model of natural gas hydrates is termed the floating model. Furthermore, natural gas hydrates were observed to nucleate at gas-water interfaces as lens-shaped clusters. Smaller sand grain sizes contribute to higher hydrate saturation. The wetting behavior of various sands had little effect on the occurrence of natural gas hydrates within pores. Additionally, geometric properties of the sediments were collected through CT image reconstructions. These findings will be instructive for understanding the microstructure of natural gas hydrates within major global reserves and for future resource utilization of natural gas hydrates.
US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-18
This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less
NASA Astrophysics Data System (ADS)
Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.
2014-12-01
The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. In 2009, we began a large-scale investigation into the characteristics of weather-driven renewables. The project utilized the best available weather data assimilation model to compute high spatial and temporal resolution power datasets for the renewable resources of wind and solar PV. The weather model used is the Rapid Update Cycle for the years of 2006-2008. The team also collated a detailed electrical load dataset for the contiguous USA from the Federal Energy Regulatory Commission for the same three-year period. The coincident time series of electrical load and weather data allows the possibility of temporally correlated computations for optimal design over large geographic areas. The past two years have seen the development of a cost optimization mathematic model that designs electric power systems. The model plans the system and dispatches it on an hourly timescale. The system is designed to be reliable, reduce carbon, reduce variability of renewable resources and move the electricity about the whole domain. The system built would create the infrastructure needed to reduce carbon emissions to 0 by 2050. The advantages of the system is reduced water demain, dual incomes for farmers, jobs for construction of the infrastructure, and price stability for energy. One important simplified test that was run included existing US carbon free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an increase in electric costs. The key requirement would be a 48 state network of HVDC transmission, creating a national market for electricity not possible in the current AC grid. The study also showed how the price of natural gas fuel influenced the optimal system designed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural gas...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural gas...
NASA Astrophysics Data System (ADS)
Doko, T.; Chen, W.; Sasaki, K.; Furutani, T.
2016-06-01
"Ecological Infrastructure (EI)" are defined as naturally functioning ecosystems that deliver valuable services to people, such as healthy mountain catchments, rivers, wetlands, coastal dunes, and nodes and corridors of natural habitat, which together form a network of interconnected structural elements in the landscape. On the other hand, natural disaster occur at the locations where habitat was reduced due to the changes of land use, in which the land was converted to the settlements and agricultural cropland. Hence, habitat loss and natural disaster are linked closely. Ecological infrastructure is the nature-based equivalent of built or hard infrastructure, and is as important for providing services and underpinning socio-economic development. Hence, ecological infrastructure is expected to contribute to functioning as ecological disaster reduction, which is termed Ecosystem-based Solutions for Disaster Risk Reduction (Eco-DRR). Although ecological infrastructure already exists in the landscape, it might be degraded, needs to be maintained and managed, and in some cases restored. Maintenance and restoration of ecological infrastructure is important for security of human lives. Therefore, analytical tool and effective visualization tool in spatially explicit way for the past natural disaster and future prediction of natural disaster in relation to ecological infrastructure is considered helpful. Hence, Web-GIS based Ecological Infrastructure Environmental Information System (EI-EIS) has been developed. This paper aims to describe the procedure of development and future application of EI-EIS. The purpose of the EI-EIS is to evaluate functions of Eco-DRR. In order to analyse disaster data, collection of past disaster information, and disaster-prone area is effective. First, a number of digital maps and analogue maps in Japan and Europe were collected. In total, 18,572 maps over 100 years were collected. The Japanese data includes Future-Pop Data Series (1,736 maps), JMC dataset 50m grid (elevation) (13,071 maps), Old Edition Maps: Topographic Map (325 maps), Digital Base Map at a scale of 2500 for reconstruction planning (808 maps), Detailed Digital Land Use Information for Metropolitan Area (10 m land use) (2,436 maps), and Digital Information by GSI (national large scale map) (71 maps). Old Edition Maps: Topographic Map were analogue maps, and were scanned and georeferenced. These geographical area covered 1) Tohoku area, 2) Five Lakes of Mikata area (Fukui), 3) Ooshima Island (Tokyo), 4) Hiroshima area (Hiroshima), 5) Okushiri Island (Hokkaido), and 6) Toyooka City area (Hyogo). The European data includes topographic map in Germany (8 maps), old topographic map in Germany (31 maps), ancient map in Germany (23 maps), topographic map in Austria (9 maps), old topographic map in Austria (17 maps), and ancient map in Austria (37 maps). Second, focusing on Five Lakes of Mikata area as an example, these maps were integrated into the ArcGIS Online® (ESRI). These data can be overlaid, and time-series data can be visualized by a time slider function of ArcGIS Online.
Shasby, Mark; Smith, Durelle
2015-07-17
The United States is one of eight Arctic nations responsible for the stewardship of a polar region undergoing dramatic environmental, social, and economic changes. Although warming and cooling cycles have occurred over millennia in the Arctic region, the current warming trend is unlike anything recorded previously and is affecting the region faster than any other place on Earth, bringing dramatic reductions in sea ice extent, altered weather, and thawing permafrost. Implications of these changes include rapid coastal erosion threatening villages and critical infrastructure, potentially significant effects on subsistence activities and cultural resources, changes to wildlife habitat, increased greenhouse-gas emissions from thawing permafrost, threat of invasive species, and opening of the Arctic Ocean to oil and gas exploration and increased shipping. The Arctic science portfolio of the U.S. Geological Survey (USGS) and its response to climate-related changes focuses on landscapescale ecosystem and natural resource issues and provides scientific underpinning for understanding the physical processes that shape the Arctic. The science conducted by the USGS informs the Nation's resource management policies and improves the stewardship of the Arctic Region.
Identification of elements at risk for a credible tsunami event for Istanbul
NASA Astrophysics Data System (ADS)
Hancilar, U.
2012-01-01
Physical and social elements at risk are identified for a credible tsunami event for Istanbul. For this purpose, inundation maps resulting from probabilistic tsunami hazard analysis for a 10% probability of exceedance in 50 yr are utilised in combination with the geo-coded inventories of building stock, lifeline systems and demographic data. The built environment on Istanbul's shorelines that is exposed to tsunami inundation comprises residential, commercial, industrial, public (governmental/municipal, schools, hospitals, sports and religious), infrastructure (car parks, garages, fuel stations, electricity transformer buildings) and military buildings, as well as piers and ports, gas tanks and stations and other urban elements (e.g., recreational facilities). Along the Marmara Sea shore, Tuzla shipyards and important port and petrochemical facilities at Ambarlı are expected to be exposed to tsunami hazard. Significant lifeline systems of the city of Istanbul such as natural gas, electricity, telecommunication and sanitary and waste-water transmission, are also under the threat of tsunamis. In terms of social risk, it is estimated that there are about 32 000 inhabitants exposed to tsunami hazard.
Nuclear Energy and Synthetic Liquid Transportation Fuels
NASA Astrophysics Data System (ADS)
McDonald, Richard
2012-10-01
This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.
Future Costs, Benefits, and Impacts of Renewables Used to Meet U.S. Renewable Portfolio Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
This brochure provides a brief overview of the report titled 'A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards.' The report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plantmore » operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less
2011-03-01
utilizing aqueous ammonia used to control nitrogen oxide and dry flue gas desulfurization used to control sulfur dioxide) will be included as part of...blowers; boiler combustion air and forced draft fans; boiler flue gas ; induced draft fans and stacks; as well as extensions of the plant control
2011-03-01
aqueous ammonia used to control nitrogen oxide and dry flue gas desulfurization used to control sulfur dioxide) will be included as part of the...boiler combustion air and forced draft fans; boiler flue gas ; induced draft fans and stacks; as well as extensions of the plant control; electrical
U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply
2001-01-01
This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.
US crude oil, natural gas, and natural gas liquids reserves 1996 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less
Self-consolidating concrete (SCC) for infrastructure elements.
DOT National Transportation Integrated Search
2012-09-01
Because of its unique nature, self-consolidating concrete (SCC) has the potential to significantly reduce costs associated with : transportation-related infrastructure, benefiting both MoDOT and the residents of Missouri. SCC is a highly flowable, no...
Self-consolidating concrete (SCC) for infrastructure elements.
DOT National Transportation Integrated Search
2012-07-01
Because of its unique nature, self-consolidating concrete (SCC) has the potential to significantly reduce costs associated with : transportation-related infrastructure, benefiting both MoDOT and the residents of Missouri. SCC is a highly flowable, : ...
Optimizing Ocean Space: Co-siting Open Ocean Aquaculture
NASA Astrophysics Data System (ADS)
Cobb, B. L.; Wickliffe, L. C.; Morris, J. A., Jr.
2016-12-01
In January of 2016, NOAA's National Marine Fisheries Service released the Gulf Aquaculture Plan (GAP) to manage the development of environmentally sound and economically sustainable open ocean finfish aquaculture in the Gulf of Mexico (inside the U.S. Exclusive Economic Zone [EEZ]). The GAP provides the first regulatory framework for aquaculture in federal waters with estimated production of 64 million pounds of finfish, and an estimated economic impact of $264 million annually. The Gulf of Mexico is one of the most industrialized ocean basins in the world, with many existing ocean uses including oil and natural gas production, shipping and commerce, commercial fishing operations, and many protected areas to ensure conservation of valuable ecosystem resources and services. NOAA utilized spatial planning procedures and tools identifying suitable sites for establishing aquaculture through exclusion analyses using authoritative federal and state data housed in a centralized geodatabase. Through a highly collaborative, multi-agency effort a mock permitting exercise was conducted to illustrate the regulatory decision-making process for the Gulf. Further decision-making occurred through exploring co-siting opportunities with oil and natural gas platforms. Logistical co-siting was conducted to reduce overall operational costs by looking at distance to major port and commodity tonnage at each port. Importantly, the process of co-siting allows aquaculture to be coupled with other benefits, including the availability of previously established infrastructure and the reduction of environmental impacts.
Shale Gas and Tight Oil: A Panacea for the Energy Woes of America?
NASA Astrophysics Data System (ADS)
Hughes, J. D.
2012-12-01
Shale gas has been heralded as a "game changer" in the struggle to meet America's demand for energy. The "Pickens Plan" of Texas oil and gas pioneer T.Boone Pickens suggests that gas can replace coal for much of U.S. electricity generation, and oil for, at least, truck transportation1. Industry lobby groups such as ANGA declare "that the dream of clean, abundant, home grown energy is now reality"2. In Canada, politicians in British Columbia are racing to export the virtual bounty of shale gas via LNG to Asia (despite the fact that Canadian gas production is down 16 percent from its 2001 peak). And the EIA has forecast that the U.S. will become a net exporter of gas by 20213. Similarly, recent reports from Citigroup and Harvard suggest that an oil glut is on the horizon thanks in part to the application of fracking technology to formerly inaccessible low permeability tight oil plays. The fundamentals of well costs and declines belie this optimism. Shale gas is expensive gas. In the early days it was declared that "continuous plays" like shale gas were "manufacturing operations", and that geology didn't matter. One could drill a well anywhere, it was suggested, and expect consistent production. Unfortunately, Mother Nature always has the last word, and inevitably the vast expanses of purported potential shale gas resources contracted to "core" areas, where geological conditions were optimal. The cost to produce shale gas ranges from 4.00 per thousand cubic feet (mcf) to 10.00, depending on the play. Natural gas production is a story about declines which now amount to 32% per year in the U.S. So 22 billion cubic feet per day of production now has to be replaced each year to keep overall production flat. At current prices of 2.50/mcf, industry is short about 50 billion per year in cash flow to make this happen4. As a result I expect falling production and rising prices in the near to medium term. Similarly, tight oil plays in North Dakota and Texas have been heralded as a new "Saudi Arabia" of oil. Growth in production has been spectacular, but currently amounts to just one million barrels per day which is less than 15 percent of US oil and other liquids production. Tight oil is offsetting declines in conventional crude oil production as well as contributing to a modest production increase from the 40-year US crude oil production low of 2008. The mantra that natural gas is a "transition fuel" to a low carbon future is false. The environmental costs of shale gas extraction have been documented in legions of anecdotal and scientific reports. Methane and fracture fluid contamination of groundwater, induced seismicity from fracture water injection, industrialized landscapes and air emissions, and the fact that near term emissions from shale gas generation of electricity are worse than coal. Tight oil also comes with environmental costs but has been a saviour in that it at least temporarily arrested a terminal decline in US oil production. A sane energy security strategy for America must focus on radically reducing energy consumption through investments in infrastructure that provides alternatives to our current high energy throughput. Shale gas and tight oil will be an important contributors to future energy requirements, given that other gas and oil sources are declining, but there is no free lunch.
2017-04-06
center’s wind tunnels, gas turbine sea level and altitude test cells, space chambers, altitude rocket cells, ballistic ranges, arc heaters and other...number of programs, and the difficulty getting new programs approved, the services are reluctant to delay or cancel programs. Performance problems in...manpower as an indirect cost would alleviate problems with maintaining expertise. The indirect costs provide for security, base infrastructure
2016-01-01
2013 Annual Energy Management Report 20 Figure 7: 1.4 Megawatt Generators at Landfill Gas Plant at Joint Base Elmendorf-Richardson, Alaska 24...has significant redundancy through its onsite landfill gas electrical generation plant which, in combination with back-up generators, can provide...DOD Energy Management Figure 7: 1.4 Megawatt Generators at Landfill Gas Plant at Joint Base Elmendorf- Richardson, Alaska We also found that the
40 CFR 60.5430 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas liquids from field gas, the fractionation of the liquids into natural gas products, or other... gas unit means a unit used to cool natural gas to the point at which it is condensed into a liquid... pressurized natural gas. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
Water Infrastructure Adaptation in New Urban Design: Possibilities and Constraints
Natural constraints, including climate change and dynamic socioeconomic development, can significantly impact the way we plan, design, and operate water infrastructure, thus its sustainability to deliver reliable quality water supplies and comply with environmental regulations. ...
NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community
NASA Astrophysics Data System (ADS)
Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.
2017-12-01
The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.
Austin, Bradley J; Hardgrave, Natalia; Inlander, Ethan; Gallipeau, Cory; Entrekin, Sally; Evans-White, Michelle A
2015-10-01
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Current Activities of the Ministry of Mines, Islamic Republic of Afghanistan
NASA Astrophysics Data System (ADS)
Adel, M.
2008-12-01
Beginning in late 2001, the Afghanistan government started developing plans for the revitalization of the Natural Resources sector. This revitalization included the rebuilding and reorganization of the capabilities of the Ministry of Mines and Industries (now the Ministry of Mines) and the Afghan Geological Survey and several other Afghan ministries. The initial focus was on the development of new mining and hydrocarbon laws, which were supported by the World Bank. Concurrent with these activities was the recognized need to identify, organize and compile existing data and information on the natural resources of the country. This has been followed by the use of these data and information to provide preliminary assessments of the oil and gas resources, mineral resources, water resources, coal resources, and earthquake hazards, all based on existing data. A large part of these assessment efforts required the development of a geospatial infrastructure through the use of satellite imagery and other remote sensing technologies. Institutional and capacity building were integral parts of all efforts. With the assessment and law activities ongoing, the Ministry of Mine has now turned to the development of a leasing framework, which address the critical need of transparency of leasing, lease management, and royalty collection. This new leasing system was implemented in spring 2008 with the leasing of the Aynak Copper Deposit, which is located about 25 miles south of Kabul. At the moment, a second world class mineral deposit is being considered for leasing within the next year. Oil and gas lease tracts are also under development in the northern oil and gas basins of Afghanistan. With the support of the Afghan government, the U.S. Geological Survey (USGS) has recently completed the gathering of new data and information in support of the Natural Resources Sector. These data gathering missions include gravity, magnetics, radar, and hyperspectral data, which were gathered through the use of airborne platforms. These data will be used to produce final resource assessments for all of Afghanistan.
18 CFR 284.263 - Exemption from section 7 of Natural Gas Act and certain regulatory conditions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 7 of Natural Gas Act and certain regulatory conditions. 284.263 Section 284.263 Conservation of... UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale...
Alternative Fuels Data Center: Natural Gas
Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on
18 CFR 284.263 - Exemption from section 7 of Natural Gas Act and certain regulatory conditions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 7 of Natural Gas Act and certain regulatory conditions. 284.263 Section 284.263 Conservation of... UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale...
2012-01-01
This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.
Benefits and Challenges of Linking Green Infrastructure and Highway Planning in the United States
NASA Astrophysics Data System (ADS)
Marcucci, Daniel J.; Jordan, Lauren M.
2013-01-01
Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation community's interests to actively facilitate green infrastructure planning because it creates a more predictable environmental review context. On the other hand, for landscape-level green infrastructure, transportation planning and development is much more established and better funded and can provide a means of supporting green infrastructure planning and implementation, thereby enhancing conservation of ecological function.
Benefits and challenges of linking green infrastructure and highway planning in the United States.
Marcucci, Daniel J; Jordan, Lauren M
2013-01-01
Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation community's interests to actively facilitate green infrastructure planning because it creates a more predictable environmental review context. On the other hand, for landscape-level green infrastructure, transportation planning and development is much more established and better funded and can provide a means of supporting green infrastructure planning and implementation, thereby enhancing conservation of ecological function.
75 FR 35632 - Transparency Provisions of Section 23 of the Natural Gas Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... pipeline- quality natural gas. For instance, some Respondents questioned whether pipeline-quality natural gas that is sold directly into an interstate or intrastate natural gas pipeline without processing... reported transactions of pipeline-quality gas under the assumption that ``unprocessed natural gas'' was...
78 FR 69413 - Meeting of the Environmental Financial Advisory Board; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... topics: tribal environmental programs; transit- oriented development in sustainable communities, energy efficiency/ green house gas emissions reduction; drinking water pricing and infrastructure investment; and...
COIN in Peace building: Case Study of the 2009 Malakand Operation
2011-09-01
rule of law ❖❖ agriculture and natural resources ❖❖ nonfarm economic development ❖❖ education ❖❖ infrastructure ❖❖ health ❖❖ social protection...rule of law ❖❖ agriculture and natural resources ❖❖ nonfarm economic development ❖❖ education ❖❖ infrastructure ❖❖ health ❖❖ social protection...private sector , upgrading productive assets, supporting entrepreneurial initiatives, and engendering sensitive business develop - ment services. Along
Provision of Ecosystem Services Through Market-Based Approaches: Department of Defense Applications
2008-03-17
lands. When undeveloped or rural land is converted to urban uses, valuable ecosystem services are lost. Accounting methods are needed to track the...used for training and testing missions has been ‘held back’ from transformations to commercial forestry, cropland, or urban uses and be- cause it...meet built infrastructure needs. Converting land from natural, to rural, to urban causes the loss of important ‘natural infrastructure.’ As the
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production 32511 Ethylene.... Suppliers of Natural Gas and NGLs 221210 Natural gas distribution facilities. 211112 Natural gas liquid... Gas Reporting Rule, which are provided in the Special Rules Governing Certain Information Obtained...
NASA Astrophysics Data System (ADS)
Marrero, J. M.; Pastor Paz, J. E.; Erazo, C.; Marrero, M.; Aguilar, J.; Yepes, H. A.; Estrella, C. M.; Mothes, P. A.
2015-12-01
Disaster Risk Reduction (DRR) requires an integrated multi-hazard assessment approach towards natural hazard mitigation. In the case of volcanic risk, long term hazard maps are generally developed on a basis of the most probable scenarios (likelihood of occurrence) or worst cases. However, in the short-term, expected scenarios may vary substantially depending on the monitoring data or new knowledge. In this context, the time required to obtain and process data is critical for optimum decision making. Availability of up-to-date volcanic scenarios is as crucial as it is to have this data accompanied by efficient estimations of their impact among populations and infrastructure. To address this impact estimation during volcanic crises, or other natural hazards, a web interface has been developed to execute an ANSI C application. This application allows one to compute - in a matter of seconds - the demographic and infrastructure impact that any natural hazard may cause employing an overlay-layer approach. The web interface is tailored to users involved in the volcanic crises management of Cotopaxi volcano (Ecuador). The population data base and the cartographic basis used are of public domain, published by the National Office of Statistics of Ecuador (INEC, by its Spanish acronym). To run the application and obtain results the user is expected to upload a raster file containing information related to the volcanic hazard or any other natural hazard, and determine categories to group population or infrastructure potentially affected. The results are displayed in a user-friendly report.
Integrating grey and green infrastructure to improve the health and well-being of urban populations
Erika S. Svendsen; Mary E. Northridge; Sara S. Metcalf
2012-01-01
One of the enduring lessons of cities is the essential relationship between grey infrastructure (e.g., streets and buildings) and green infrastructure (e.g., parks and open spaces). The design and management of natural resources to enhance human health and well-being may be traced back thousands of years to the earliest urban civilizations. From the irrigation projects...
Role of natural gas in meeting an electric sector emissions ...
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:
Carbon emissions of infrastructure development.
Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge
2013-10-15
Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.
NASA Astrophysics Data System (ADS)
D'aversa, N.; Becker, A.; Bove, G.
2017-12-01
Caribbean Small Island Developing States (SIDS) face significant natural hazard risks, as demonstrated by recent Hurricanes Jose, Irma, and Maria. Scientists project storms to become more intense and sea level rise to increase over the next century. As a result, the Inter-American Development Bank projections suggest that Caribbean nations could face climate-related losses in excess of $22 billion annually by 2050. Critical infrastructure that supports island economies, such as airports, seaports, cruise ports, and energy facilities, are typically located in the coastal zone with high exposure to natural hazards. Despite the increasing danger from climate driven natural hazards in coastal zones in the region, there is very little data available to identify how much land and associated infrastructure is at risk. This work focuses on the criteria and data standards developed for this new region-wide GIS database, which will then be used to formulate a risk assessment. Results will be integrated into a single, comprehensive source for data of lands identified as critical coastal infrastructure and used to address such questions as: How much of the Caribbean SIDS infrastructure lands are at risk from sea level rise? How might demand for such lands change in the future, based on historical trends? Answers to these questions will help decision makers understand how to prioritize resilience investment decisions in the coming decades.
Data and Geocomputation: Time Critical Mission Support for the 2017 Hurricane Season
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Tuttle, M.; Rose, A.; Sanyal, J.; Thakur, G.; White, D.; Yang, H. H.; Laverdiere, M.; Whitehead, M.; Taylor, H.; Jacob, M.
2017-12-01
A strong spatial data infrastructure and geospatial analysis capabilities are nucleus to the decision-making process during emergency preparedness, response, and recovery operations. For over a decade, the U.S. Department of Energy's Oak Ridge National Laboratory has been developing critical data and analytical capabilities that provide the Federal Emergency Management Agency (FEMA) and the rest of the federal response community assess and evaluate impacts of natural hazards on population and critical infrastructures including the status of the national electricity and oil and natural gas networks. These capabilities range from identifying structures or buildings from very high-resolution satellite imagery, utilizing machine learning and high-performance computing, to daily assessment of electricity restoration highlighting changes in nighttime lights for the impacted region based on the analysis of NOAA JPSS VIIRS Day/Night Band (DNB) imagery. This presentation will highlight our time critical mission support efforts for the 2017 hurricane season that witnessed unprecedented devastation from hurricanes Harvey, Irma, and Maria. ORNL provided 90m resolution LandScan USA population distribution data for identifying vulnerable population as well as structure (buildings) data extracted from 1m imagery for damage assessment. Spatially accurate data for solid waste facilities were developed and delivered to the response community. Human activity signatures were assessed from large scale collection of open source social media data around points of interests (POI) to ascertain level of destruction. The electricity transmission system was monitored in real time from data integration from hundreds of utilities and electricity outage information were provided back to the response community via standardized web-services.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... the sales natural gas pipeline or to an emissions control unit when a natural gas sales pipeline is... vapor recovery unit (VRU) to be injected into a natural gas sales pipeline for conveyance to a natural gas plant. In the event that pipeline injection of recoverable natural gas is temporarily infeasible...
NASA Astrophysics Data System (ADS)
Yu, Qin; Epstein, Howard E.; Engstrom, Ryan; Shiklomanov, Nikolay; Strelestskiy, Dmitry
2015-12-01
Northwestern Siberia has been undergoing a range of land cover and land use changes associated with climate change, animal husbandry and development of mineral resources, particularly oil and gas. The changes caused by climate and oil/gas development Southeast of the city of Nadym were investigated using multi-temporal and multi-spatial remotely sensed images. Comparison between high spatial resolution imagery acquired in 1968 and 2006 indicates that 8.9% of the study area experienced an increase in vegetation cover (e.g. establishment of new saplings, extent of vegetated cover) in response to climate warming while 10.8% of the area showed a decrease in vegetation cover due to oil and gas development and logging activities. Waterlogging along linear structures and vehicle tracks was found near the oil and gas development site, while in natural landscapes the drying of thermokarst lakes is evident due to warming caused permafrost degradation. A Landsat time series dataset was used to document the spatial and temporal dynamics of these ecosystems in response to climate change and disturbances. The impacts of land use on surface vegetation, radiative, and hydrological properties were evaluated using Landsat image-derived biophysical indices. The spatial and temporal analyses suggest that the direct impacts associated with infrastructure development were mostly within 100 m distance from the disturbance source. While these impacts are rather localized they persist for decades despite partial recovery of vegetation after the initial disturbance and can have significant implications for changes in permafrost dynamics and surface energy budgets at landscape and regional scales.
Tailoring Green Infrastructure Implementation Scenarios based on Stormwater Management Objectives
Green infrastructure (GI) refers to stormwater management practices that mimic nature by soaking up, storing, and controlling onsite. GI practices can contribute reckonable benefits towards meeting stormwater management objectives, such as runoff peak shaving, volume reduction, f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, W.; Heath, Garvin; Sandor, Debra
2013-04-01
The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less
18 CFR 152.1 - Exemption applications and blanket certificates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... implementing the Natural Gas Act, “vehicular natural gas” or “VNG” means natural gas that will be used, in... Commission's regulations implementing the Natural Gas Act, vehicular natural gas, or VNG, is deemed to be... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATION FOR EXEMPTION FROM...
Shale gas development effects on the songbird community in a central Appalachian forest
Farwell, Laura S.; Wood, Petra; Sheehan, James; George, Gregory A.
2016-01-01
In the last decade, unconventional drilling for natural gas from the Marcellus-Utica shale has increased exponentially in the central Appalachians. This heavily forested region contains important breeding habitat for many neotropical migratory songbirds, including several species of conservation concern. Our goal was to examine effects of unconventional gas development on forest habitat and breeding songbirds at a predominantly forested site from 2008 to 2015. Construction of gas well pads and infrastructure (e.g., roads, pipelines) contributed to an overall 4.5% loss in forest cover at the site, a 12.4% loss in core forest, and a 51.7% increase in forest edge density. We evaluated the relationship between land-cover metrics and species richness within three avian guilds: forest-interior, early-successional, and synanthropic, in addition to abundances of 21 focal species. Land-cover impacts were evaluated at two spatial extents: a point-level within 100-m and 500-m buffers of each avian survey station, and a landscape-level across the study area (4326 ha). Although we observed variability in species-specific responses, we found distinct trends in long-term response among the three avian guilds. Forest-interior guild richness declined at all points across the site and at points impacted within 100 m by shale gas but did not change at unimpacted points. Early-successional and synanthropic guild richness increased at all points and at impacted points. Our results suggest that shale gas development has the potential to fragment regional forests and alter avian communities, and that efforts to minimize new development in core forests will reduce negative impacts to forest dependent species.
Brandt, Adam R
2015-11-03
Environmental impacts embodied in oilfield capital equipment have not been thoroughly studied. In this paper, we present the first open-source model which computes the embodied energy and greenhouse gas (GHG) emissions associated with materials consumed in constructing oil and gas wells and associated infrastructure. The model includes well casing, wellbore cement, drilling mud, processing equipment, gas compression, and transport infrastructure. Default case results show that consumption of materials in constructing oilfield equipment consumes ∼0.014 MJ of primary energy per MJ of oil produced, and results in ∼1.3 gCO2-eq GHG emissions per MJ (lower heating value) of crude oil produced, an increase of 15% relative to upstream emissions assessed in earlier OPGEE model versions, and an increase of 1-1.5% of full life cycle emissions. A case study of a hydraulically fractured well in the Bakken formation of North Dakota suggests lower energy intensity (0.011 MJ/MJ) and emissions intensity (1.03 gCO2-eq/MJ) due to the high productivity of hydraulically fractured wells. Results are sensitive to per-well productivity, the complexity of wellbore casing design, and the energy and emissions intensity per kg of material consumed.
Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure.
Svensson, Johan; Andersson, Jon; Sandström, Per; Mikusiński, Grzegorz; Jonsson, Bengt-Gunnar
2018-06-08
Loss of natural forests has been identified as a critical conservation challenge worldwide. This loss impede the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status and ecosystem services. In many regions this loss is caused by forest clearcutting. Through retrospective satellite images analysis we assessed a 50-60 year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. Our analysis broadly covers the whole forest clearcutting period and thus our study approach and results can be applied for comprehensive impact assessment of industrial forest management. Our results demonstrate profound disturbance on natural forest landscape configuration. The whole forest landscape is in a late phase in a transition from a natural or near-natural to a land-use modified state. Our results provide evidence of natural forest loss and spatial polarization at the regional scale, with a pre-dominant share of valuable habitats left in the mountain area, whereas the inland area has been more severely impacted. We highlight the importance of interior forest areas as most valuable biodiversity hotspots and the central axis of green infrastructure. Superimposing the effects of edge disturbance on forest fragmentation, the loss of interior forest entities further aggravate the conservation premises. Our results also show a loss of large contiguous forest patches and indicate patch size homogenization. The current forest protection share is low in the region and with geographical imbalance as the absolute majority is located in remote and low productive sites in the mountain area. Our approach provides possibilities to identify forest areas for directed conservation actions in the form of new protection, restoration and nature conservation oriented forest management, for implementing a functional green infrastructure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Karlsson, Caroline; Miliutenko, Sofiia; Björklund, Anna; Mörtberg, Ulla; Olofsson, Bo; Toller, Susanna
2017-04-01
Environmental impacts during the life cycle stages of transport infrastructure are substantial, including among other greenhouse gas (GHG) emissions, as well as resource and energy use. For transport infrastructure to be sustainable, such issues need to be integrated in the planning process. Environmental Impact Assessment (EIA) is required by the European Union (EU) in order to ensure that all environmental aspects are considered during planning of road infrastructure projects. As a part of this process, the European Commission has suggested the use of the tool life cycle assessment (LCA) for assessing life cycle energy use and GHG emissions. When analyzing life cycle impacts of the road infrastructure itself, it was shown that earthworks and materials used for the road construction have a big share in the total energy use and GHG emissions. Those aspects are largely determined by the geological conditions at the site of construction: parameters such as soil thickness, slope, bedrock quality and soil type. The geological parameters determine the amounts of earthworks (i.e. volumes of soil and rock that will be excavated and blasted), transportation need for excavated materials as well as the availability of building materials. The study presents a new geographic information system (GIS)-based approach for utilizing spatial geological data in three dimensions (i.e. length, width and depth) in order to improve estimates on earthworks during the early stages of road infrastructure planning. Three main methodological steps were undertaken: mass balance calculation, life cycle inventory analysis and spatial mapping of greenhouse gas (GHG) emissions and energy use. The proposed GIS-based approach was later evaluated by comparing with the actual values of extracted material of a real road construction project. The results showed that the estimate of filling material was the most accurate, while the estimate for excavated soil and blasted rock had a wide variation from the actual values. It was also found that the total volume of excavated and ripped soils did not change when accounting for geological stratigraphy. The proposed GIS-based approach shows promising results for usage in LCA at an early stage of road infrastructure planning, and by providing better data quality, GIS in combination with LCA can enable planning for a more sustainable transport infrastructure.
Positioning infrastructure and technologies for low-carbon urbanization
NASA Astrophysics Data System (ADS)
Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.
2014-10-01
The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... natural gas. 211112 Natural gas liquid extraction facilities. Table 1 of this preamble is not intended to... Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best Available... regulations for Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. Specifically, EPA is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
.... Suppliers of Natural Gas and 221210 Natural gas Natural Gas Liquids. distribution facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas Greenhouse Gases..., 75 FR Natural Gas Liquids. 66434, 75 FR 79092. Suppliers of Industrial OO 74 FR 56260, 75 FR...
Code of Federal Regulations, 2014 CFR
2014-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2010 CFR
2010-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... the Following Under NYSE Arca Equities Rule 8.200: ProShares Short DJ-UBS Natural Gas, ProShares Ultra DJ-UBS Natural Gas and ProShares UltraShort DJ-UBS Natural Gas August 15, 2011. I. Introduction On... DJ-UBS Natural Gas, ProShares Ultra DJ-UBS Natural Gas, and ProShares UltraShort DJ-UBS Natural Gas...
Impact of public electric vehicle charging infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca S.; West, Todd H.
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Impact of public electric vehicle charging infrastructure
Levinson, Rebecca S.; West, Todd H.
2017-10-16
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
Monitoring Volatile Organic Compounds (VOCs) in real-time on oil and natural gas production sites
NASA Astrophysics Data System (ADS)
Lupardus, R.; Franklin, S. B.
2017-12-01
Oil and Natural Gas (O&NG) development, production, infrastructure, and associated processing activities can be a substantial source of air pollution, yet relevant data and real-time quantification methods are lacking. In the current study, O&NG fugitive emissions of Volatile Organic Compounds (VOCs) were quantified in real-time and used to determine the spatial and temporal windows of exposure for proximate flora and fauna. Eleven O&NG sites on the Pawnee National Grassland in Northeastern Colorado were randomly selected and grouped according to production along with 13 control sites from three geographical locations. At each site, samples were collected 25 m from the wellhead in NE, SE, and W directions. In each direction, two samples were collected with a Gasmet DX4040 gas analyzer every hour from 8:00 am to 2:00 pm (6 hours total), July to October, 2016 (N=864). VOC concentrations generally increased during the 6 hr. day with the exception of N2O and were predominately the result of O&NG production and not vehicle exhaust. Thirteen of 24 VOCs had significantly different levels between production groups, frequently above reference standards and at biologically relevant levels for flora and fauna. The most biologically relevant VOCs, found at concentrations exceeding time weighted average permissible exposure limits (TWA PELs), were benzene and acrolein. Generalized Estimating Equations (GEEs) measured the relative quality of statistical models predicting benzene concentrations on sites. The data not only confirms that O&NG emissions are impacting the region, but also that this influence is present at all sites, including controls. Increased real-time VOC monitoring on O&NG sites is required to identify and contain fugitive emissions and to protect human and environmental health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen Schempf; Daphne D'Zurko
Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype wasmore » functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2014 CFR
2014-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Communicating and Visualizing Erosion-associated Risks to Infrastructure
NASA Astrophysics Data System (ADS)
Hewett, Caspar; Simpson, Carolyn; Wainwright, John
2016-04-01
Soil erosion is a major problem worldwide, affecting agriculture, the natural environment and urban areas through its impact on flood risk, water quality, loss of nutrient-rich upper soil layers, eutrophication of water bodies, sedimentation of waterways and sediment-related damage to roads, buildings and infrastructure such as water, gas and electricity supply networks. This study focuses on risks to infrastructure associated with erosion and the interventions needed to reduce those risks. Deciding on what interventions to make means understanding better which parts of the landscape are most susceptible to erosion and which measures are most effective in reducing it. Effective ways of communicating mitigation strategies to stakeholders such as farmers, land managers and policy-makers are then essential if interventions are to be implemented. Drawing on the Decision-Support Matrix (DSM) approach which combines a set of hydrological principles with Participatory Action Research (PAR), a decision-support tool for Communicating and Visualizing Erosion-Associated Risks to Infrastructure (CAVERTI) was developed. The participatory component was developed with the Wear Rivers Trust, focusing on a case-study area in the North East of England. The CAVERTI tool brings together process understanding gained from modelling with knowledge and experience of a variety of stakeholders to address directly the problem of sediment transport. Development of the tool was a collaborative venture, ensuring that the problems and solutions presented are easily recognised by practitioners and decision-makers. This recognition, and ease of access via a web-based interface, in turn help to ensure that the tools get used. The web-based tool developed helps to assess, manage and improve understanding of risk from a multi-stakeholder perspective and proposes solutions to problems. We argue that visualization and communication tools co-developed by researchers and stakeholders are the best means of ensuring that mitigation measures are undertaken across the landscape to reduce soil erosion. The CAVERTI tool has proven to be an effective means of encouraging farmers and land owners to act to reduce erosion, providing multiple benefits from protecting local infrastructure to reducing pollution of waterways.
NASA Astrophysics Data System (ADS)
Kuscahyadi, Febriana; Meilano, Irwan; Riqqi, Akhmad
2017-07-01
Special Region of Yogyakarta Province (DIY) is one of Indonesian regions that often harmed by varied natural disasters which caused huge negative impacts. The most catastrophic one is earthquake in May, 27th 2006 with 6.3 magnitude moment [1], evoked 5716 people died, and economic losses for Rp. 29.1 Trillion, [2]. Their impacts could be minimized by committing disaster risk reduction program. Therefore, it is necessary to measure the natural disaster resilience within a region. Since infrastructure are might be able as facilities that means for evacuations, distribute supplies, and post disaster recovery [3], this research concerns to establish spatial modelling of natural disaster resilience using infrastructure components based on BRIC in DIY Province. There are three infrastructure used in this model; they are school, health facilities, and roads. Distance analysis is used to determine the level of resilient zone. The result gives the spatial understanding as a map that urban areas have better disaster resilience than the rural areas. The coastal areas and mountains areas which are vulnerable towards disaster have less resilience since there are no enough facilities that will increase the disaster resilience
NASA Astrophysics Data System (ADS)
Morgui, Josep Anton; Agueda, Alba; Batet, Oscar; Curcoll, Roger; Ealo, Marina; Grossi, Claudia; Occhipinti, Paola; Sánchez-García, Laura; Arias, Rosa; Rodó, Xavi
2013-04-01
ClimaDat (www.climadat.es) is a pioneer project of the Institut Català de Ciències del Clima (IC3) in collaboration with and funded by "la Caixa" Foundation. This project aims at studying the interactions between climate and ecosystems at different spatial and temporal scales. The ClimaDat project consists of a network of eight long-term observatory stations distributed over Spain, installed at natural and remote areas, and covering different climatic domains (e.g. Mediterranean, Atlantic, subtropics) and natural systems (e.g. delta, karsts, high mountain areas). Data obtained in the ClimaDat network will help us to understand how ecosystems are influenced by and eventually might feedback different processes in the climate system. The point of focus of these studies will be taken into account regional-and-local conditions to understand climatic global scale eventsThe data gathered will be used to study the behavior of the global element cycles and associated greenhouse gas emissions. The network is expected to offer near real-time (NRT) data free for the scientific community. Instrumentation installed at these stations mainly consists of: CO2, CH4, H2O, CO, N2O, SF6 and 222Rn analyzers, isotopic CO2, CH4 and H2O analyzers, meteorological sensors, eddy covariance equipment, four-component radiometers, soil moisture and temperature sensors, and sap flow meters. Each station may have a more focused subset of all this equipment, depending on the specific characteristics of the site. Instrumentation selected for this network has been chosen to comply with standards established in international research infrastructure projects, such as ICOS (http://www.icos-infrastructure.eu/home) or InGOS (http://www.ingos-infrastructure.eu/). Preliminary data time-series of greenhouse gases concentrations and meteorological variables are presented in this study for three currently operational ClimaDat stations: the Natural Park of the Ebre Delta (lat 40.75° N - long 0.79° E), the Regional Park of the Sierra de Gredos (lat 40.22° N - long -5.14° E) and the Natural Park of Baixa Limia - Serra do Xurès (lat 41.99° N - long -8.01° E). The wind source influencing regions of the three stations are also presented in this work, according to the results obtained using the HYSPLIT trajectory model (http://ready.arl.noaa.gov/HYSPLIT.php).
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
Alternative Fuels Data Center: Emerging Fuels
quantities. More research is needed to characterize the impacts of these fuels, such as necessary vehicle modifications, required fueling infrastructure, human health impacts, greenhouse gas emissions, and tailpipe
Alternative Fuels Data Center: Natural Gas Related Links
, AGA provides services to member natural gas pipelines, marketers, gatherers, international gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Related Links to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Related
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Cook, Troy A.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.
2012-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Assam, Bombay, Cauvery, and Krishna–Godavari Provinces, South Asia. The estimated mean volumes are as follows: (1) Assam Province, 273 million barrels of crude oil, 1,559 billion cubic feet of natural gas, and 43 million barrels of natural gas liquids; (2) Bombay Province, 1,854 million barrels of crude oil, 15,417 billion cubic feet of natural gas, and 498 million barrels of natural gas liquids; (3) Cauvery Province, 941 million barrels of crude oil, 25,208 billion cubic feet of natural gas, and 654 million barrels of natural gas liquids; and (4) Krishna–Godavari Province, 466 million barrels of crude oil, 37,168 billion cubic feet of natural gas, and 484 million barrels of natural gas liquids. The totals for the four provinces are 3,534 million barrels of crude oil, 79,352 billion cubic feet of natural gas, and 1,679 million barrels of natural gas liquids.
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard
2017-04-01
Ammonia (NH3) in the atmosphere is the major precursor for neutralising atmospheric acids and is thus affecting not only the long-range transport of sulphur dioxide and nitrogen oxides but also stabilises secondary particulate matter. These aerosols have negative impacts on air quality and human health. Moreover, they negatively affect terrestrial ecosystems after deposition. NH3 has been included in the air quality monitoring networks and emission reduction directives of European nations. Atmospheric concentrations are in the order of 0.5-500 nmol/mol. However, the lowest substance amount fraction of available certified reference material (CRM) is 10 μmol/mol. This due to the fact that adsorption on the walls of aluminium cylinders and desorption as pressure in the cylinder decreases cause substantial instabilities in the amount fractions of the gas mixtures. Moreover, analytical techniques to be calibrated are very diverse and cause challenges for the production and application of CRM. The Federal Institute of Metrology METAS has developed, partially in the framework of EMRP JRP ENV55 MetNH3, an infrastructure to meet with the different requirements in order to generate SI-traceable NH3 reference gas mixtures dynamically in the amount fraction range 0.5-500 nmol/mol and with uncertainties UNH3 <3%. The infrastructure consists of a stationary as well as a mobile device for full flexibility in the application: In the stationary system, a magnetic suspension balance monitors the specific temperature and pressure dependent mass loss over time of the pure substance in a permeation tube (here NH3) by permeation through a membrane into a constant flow of carrier gas. Subsequently, this mixture is diluted with a system of thermal mass flow controllers in one or two consecutive steps to desired amount fractions. The permeation tube with calibrated permeation rate (mass loss over time previously determined in the magnetic suspension balance) can be transferred into the temperature-regulated permeation chamber of a newly developed mobile reference gas generator (ReGaS1). In addition to the permeation chamber it consists of the same dilution system as afore mentioned, stationary system. All components are fully traceable to SI standards. Considerable effort has been made to minimise adsorption on the gas-wetted stainless steel surfaces and thus to reduce stabilisation times by applying the SilcoNert2000® coating substance. Analysers can be connected directly to both, stationary and mobile systems for calibration. Moreover, the resulting gas mixture can also be pressurised into coated cylinders by cryo-filling. The mobile system as well as these cylinders can be applied for calibrations in other laboratories and in the field. In addition, an SI traceable system based on a cascade of critical orifices has been established to dilute NH3 mixtures in the order of μmol/mol stored in cylinders for the participation in the international key-comparison CCQM K117. It is planned to establish this system to calibrate and re-sample gas cylinders due to its very economical gas use. Here we present insights into the development of said infrastructure and results of the first performance tests. Moreover, we include results of the study on adsorption/desorption effects in dry as well as humidified matrix gas into the discussion on the generation of reference gas mixtures. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...
40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...
Global Thermal Power Plants Database: Unit-Based CO2, SO2, NOX and PM2.5 Emissions in 2010
NASA Astrophysics Data System (ADS)
Tong, D.; Qiang, Z.; Davis, S. J.
2016-12-01
There are more than 30,000 thermal power plants now operating worldwide, reflecting a tremendously diverse infrastructure that includes units burning oil, natural gas, coal and biomass and ranging in capacity from <1MW to >1GW. Although the electricity generated by this infrastructure is vital to economic activities across the world, it also produces more CO2 and air pollution emissions than any other industry sector. Here we present a new database of global thermal power-generating units and their emissions as of 2010, GPED (Global Power Emissions Database), including the detailed unit information of installed capacity, operation year, geographic location, fuel type and control measures for more than 70000 units. In this study, we have compiled, combined, and harmonized the available underlying data related to thermal power-generating units (e.g. eGRID of USA, CPED of China and published Indian power plants database), and then analyzed the generating capacity, capacity factor, fuel type, age, location, and installed pollution-control technology in order to determine those units with disproportionately high levels of emissions. In total, this work is of great importance for improving spatial distribution of global thermal power plants emissions and exploring their environmental impacts at global scale.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... States natural gas pipeline system. CE FLNG states that the source of natural gas supply will come from... purchase gas for export from any point in the U.S. interstate pipeline system. CE FLNG states that this... Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade...
Engineering novel habitats on urban infrastructure to increase intertidal biodiversity.
Chapman, M G; Blockley, D J
2009-09-01
Urbanization replaces natural shorelines with built infrastructure, seriously impacting species living on these "new" shores. Understanding the ecology of developed shorelines and reducing the consequences of urban development to fauna and flora cannot advance by simply documenting changes to diversity. It needs a robust experimental programme to develop ways in which biodiversity can be sustained in urbanized environments. There have, however, been few such experiments despite wholesale changes to shorelines in urbanized areas. Seawalls--the most extensive artificial infrastructure--are generally featureless, vertical habitats that support reduced levels of local biodiversity. Here, a mimic of an important habitat on natural rocky shores (rock-pools) was experimentally added to a seawall and its impact on diversity assessed. The mimics created shaded vertical substratum and pools that retained water during low tide. These novel habitats increased diversity of foliose algae and sessile and mobile animals, especially higher on the shore. Many species that are generally confined to lowshore levels, expanded their distribution over a greater tidal range. In fact, there were more species in the constructed pools than in natural pools of similar size on nearby shores. There was less effect on the abundances of mobile animals, which may be due to the limited time available for recruitment, or because these structures did not provide appropriate habitat. With increasing anthropogenic intrusion into natural areas and concomitant loss of species, it is essential to learn how to build urban infrastructure that can maintain or enhance biodiversity while meeting societal and engineering criteria. Success requires melding engineering skills and ecological understanding. This paper demonstrates one cost-effective way of addressing this important issue for urban infrastructure affecting nearshore habitats.
A framework for linking cybersecurity metrics to the modeling of macroeconomic interdependencies.
Santos, Joost R; Haimes, Yacov Y; Lian, Chenyang
2007-10-01
Hierarchical decision making is a multidimensional process involving management of multiple objectives (with associated metrics and tradeoffs in terms of costs, benefits, and risks), which span various levels of a large-scale system. The nation is a hierarchical system as it consists multiple classes of decisionmakers and stakeholders ranging from national policymakers to operators of specific critical infrastructure subsystems. Critical infrastructures (e.g., transportation, telecommunications, power, banking, etc.) are highly complex and interconnected. These interconnections take the form of flows of information, shared security, and physical flows of commodities, among others. In recent years, economic and infrastructure sectors have become increasingly dependent on networked information systems for efficient operations and timely delivery of products and services. In order to ensure the stability, sustainability, and operability of our critical economic and infrastructure sectors, it is imperative to understand their inherent physical and economic linkages, in addition to their cyber interdependencies. An interdependency model based on a transformation of the Leontief input-output (I-O) model can be used for modeling: (1) the steady-state economic effects triggered by a consumption shift in a given sector (or set of sectors); and (2) the resulting ripple effects to other sectors. The inoperability metric is calculated for each sector; this is achieved by converting the economic impact (typically in monetary units) into a percentage value relative to the size of the sector. Disruptive events such as terrorist attacks, natural disasters, and large-scale accidents have historically shown cascading effects on both consumption and production. Hence, a dynamic model extension is necessary to demonstrate the interplay between combined demand and supply effects. The result is a foundational framework for modeling cybersecurity scenarios for the oil and gas sector. A hypothetical case study examines a cyber attack that causes a 5-week shortfall in the crude oil supply in the Gulf Coast area.
NASA Astrophysics Data System (ADS)
Lavric, J. V.; Juurola, E.; Vermeulen, A. T.; Kutsch, W. L.
2016-12-01
In a world that is undergoing climate change and is increasingly impacted by human influence, the need for globally integrated observations of greenhouse gases (GHG) and independent evaluation of their fluxes is becoming increasingly pressing. Since the 2015 COP21 meeting in Paris, such observation systems are also demanded by global stakeholders and policy makers. For successful monitoring and implementation of mitigation measures, the behavior of natural carbon pools must be well understood, the human carbon emission inventories better constrained, and the interaction between the two better studied. The Integrated Carbon Observation System (ICOS), currently comprising 12 member countries, is a European domain-overarching distributed research infrastructure dedicated to providing freely accessible long-term, high-quality data and data products on greenhouse gas (GHG) budgets and their evolution in terrestrial ecosystems, oceans and atmosphere. ICOS was built on the foundations of nationally-operated in-situ measurement facilities and modelling efforts. Today, it consists of National Networks, Central Facilities, and the European Research Infrastructure Consortium (ICOS ERIC), founded in November 2015. The long-term objective of ICOS is to remain independent, sustainable, on the forefront of scientific and technological development, and to find a good balance between scientific interests on one side and expectations of policy makers and society on the other. On the global scale, ICOS seeks to interlink with complementary research infrastructures (e.g. ACTRIS, IAGOS, etc.) to form partnerships that maximize the output and the effect of invested resources to the benefit of all stakeholders. A lot of attention will also be given to network design and attracting new partners from regions where such observations are still lacking in order to fill the gaps in the global observation network. In this presentation we present the latest developments concerning ICOS and its roadmap for the near future.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...
75 FR 39934 - Oil and Natural Gas Sector-Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2010-0505; FRL-9174-8] Oil and Natural Gas Sector... EPA's review of air regulations affecting the oil and natural gas industry. The review in progress covers oil and natural gas exploration and production, as well as natural gas processing, transmission...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...
7 CFR 2900.4 - Natural gas requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...
77 FR 32624 - Eastern Shore Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Natural Gas Company; Notice of Application Take notice that on May 14, 2012, Eastern Shore Natural Gas... Natural Gas Act (NGA) and Part 157 of the Commission's regulations, requesting authorization to construct..., Eastern Shore Natural Gas Company, 1110 Forrest Avenue, Suite 201, Dover, Delaware, 19904, or by calling...
Alternative Fuels Data Center: Natural Gas Benefits
Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas
Alternative Fuels Data Center: Natural Gas Production
Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas
Alternative Fuels Data Center: Conventional Natural Gas Production
Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production
7 CFR 2900.4 - Natural gas requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...
77 FR 33453 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... Report of the Origin of Natural Gas Liquids. Comments are invited on: (a) Whether the proposed extended... accurate annual estimates of U.S. proved crude oil, natural gas, and natural gas liquids reserves, and EIA..., natural gas, and natural gas liquids to facilitate national energy policy decisions. These estimates are...
Energy and remote sensing applications
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1978-01-01
The nature of the U.S. energy problem is examined. Based upon the best available estimates, it appears that demand for OPEC oil will exceed OPEC productive capacity in the early to mid-eighties. The upward pressure on world oil prices resulting from this supply/demand gap could have serious international consequences, both financial and in terms of foreign policy implementation. National Energy Plan objectives in response to this situation are discussed. Major strategies for achieving these objectives include a conversion of industry and utilities from oil and gas to coal and other abundant fuels. Remote sensing from aircraft and spacecraft could make significant contributions to the solution of energy problems in a number of ways, related to exploration of energy-related resources, the efficiency and safety of exploitation procedures, power plant siting, environmental monitoring and assessment, and the transportation infrastructure.
Developing an infrastructure-informed index for pedestrians and bicyclists.
DOT National Transportation Integrated Search
2016-01-01
In this report, an infrastructure-informed index is developed for pedestrians and bicyclists to relate the natural and built environment with its impact on perceived travel distance and time. The objective is to develop an easy-to-use metric for use ...
40 CFR 98.403 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.403...). Fuel = Total annual volume of product “h” supplied (volume per year, in Mscf for natural gas and bbl... procedures below. (1) For natural gas that is received for redelivery to downstream gas transmission...
GHGRP Natural Gas and Natural Gas Liquids Suppliers Sector Industrial Profile
EPA's Greenhouse Gas Reporting Program periodically produces detailed profiles of the various industries that report under the program. The profiles available for download below contain detailed analyses for the Natural Gas and Natural Gas Suppliers indust
Prospects of and Problems in Using Natural Gas for Motor Transport in RUSSIA
NASA Astrophysics Data System (ADS)
Chikishev, E.; Ivanov, A.; Anisimov, I.; Chainikov, D.
2016-08-01
This article is devoted to increasing the use of natural gas in Russia as a measure to decrease the negative influence of motor transport on the environment. A brief analysis of the global fleet of natural gas vehicles is provided above. The documents accepted in Russia to promote public awareness of compressed natural gas in transport are submitted. The basic reasons keeping the growth of natural gas vehicle fleets in Russia consist of weak branching of refuelling stations; difficulty in determining the actual amount of compressed natural gas required; and control methods of the consumption of gas fuel. The offers promoting the growth of the fleet of natural gas vehicles are given.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, WA, and... Environmental Impact Statement for the Acquisition of a Natural Gas Pipeline and Natural Gas Utility Service at the Hanford Site, Richland, Washington (Natural Gas Pipeline or NGP EIS), and initiate a 30-day public...
Hydrocarbon gas liquids production and related industrial development
2016-01-01
Hydrocarbon gas liquids (HGL) are produced at refineries from crude oil and at natural gas processing plants from unprocessed natural gas. From 2010 to 2015, total HGL production increased by 42%. Natural gas processing plants accounted for all the increase, with recovered natural gas plant liquids (NGPL)—light hydrocarbon gases such as propane—rising by 58%, from 2.07 million barrels per day (b/d) in 2010 to 3.27 million b/d in 2015, while refinery output of HGL declined by 7%. The rapid increase in NGPL output was the result of rapid growth in natural gas production, as production shifted to tight gas and shale gas resources, and as producers targeted formations likely to yield natural gas with high liquids content. Annual Energy Outlook 2016 results suggest varying rates of future NGPL production growth, depending on relative crude oil and natural gas prices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The paper discusses the outlook for the gas and oil industries of the Far East. Large crude producing countries are upgrading their mature oil properties. Offshore gas fields are being found and developed as new pipeline infrastructures open several remote areas. Separate evaluations are given for China, Indonesia, India, Malaysia, Thailand, Viet Nam, Pakistan, Myanmar, Brunei, Philippines, and briefly for Cambodia, Bangladesh, Japan, Mongolia, Taiwan, Afghanistan, and the Malaysia-Thailand Joint Development Area.
Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)
2010-01-01
Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40% of natural gas production and about 35% of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)
NASA Astrophysics Data System (ADS)
Cohan, D. S.
2015-12-01
Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.
Greenhouse gas emissions modeling : a tool for federal facility decommissioning
DOT National Transportation Integrated Search
2010-10-21
The Federal Aviation Administration (FAA) facility inventory is constantly changing as newer systems supplant older infrastructure in response to technological advances. Transformational change embodied by the FAAs Next Generation Air Transportati...
Identifying urban infrastructure multi-hazard risk in developing country contexts
NASA Astrophysics Data System (ADS)
Taylor, Faith; Malamud, Bruce; Millington, James
2017-04-01
This work presents a method to coarsely zone urban areas into different infrastructure typologies, from which physical vulnerability to a range of natural hazards and multi-hazard interactions can be estimated, particularly for developing country contexts where access to data can be a challenge. This work builds upon techniques developed for urban micrometeorology for classifying 12 urban typologies (Stewart and Oke, 2011) using Landsat 8 30 m × 30 m remote sensing imagery (Betchel et al., 2015). For each of these 12 urban typologies, we develop general rules about the presence, type and level of service of 10 broad categories of infrastructure (including buildings, roads, electricity and water), which we refer to as 'urban textures'. We have developed and applied this technique to five urban areas varying in size and structure across Africa: Nairobi (Kenya); Karonga (Malawi); Mzuzu (Malawi); Ibadan (Nigeria) and Cape Town (South Africa). For each urban area, a training dataset of 10 samples of each of the 12 urban texture classes is digitised using Google Earth imagery. A random forest classification is performed using SAGA GIS, resulting in a map of different urban typologies for each city. Based on >1200 georeferenced field photographs and expert interviews for Karonga (Malawi) and Nairobi (Kenya), generally applicable rules about the presence, type and level of service of 12 infrastructure types (the 'urban texture') are developed for each urban typology. For each urban texture, we are broadly reviewing how each infrastructure might be physically impacted by 21 different natural hazards and hazard interactions. This can aid local stakeholders such as emergency responders and urban planners to systematically identify how the infrastructure in different parts of an urban area might be affected differently during a natural disaster event.
Abundance and Utility: For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas
2014-08-01
and combat support vehicles, ships, and aircraft, the adoption of natural gas —whether as compressed natural gas (CNG) or liquefied natural gas (LNG...dangers to U.S. forces and vehicles. Natural gas has different flammability properties than traditional liquid fuels, and as CNG tanks are under high...tacticaldefensemedia.com16 | DoD Power & Energy Fall 2014 For Military Operations, Liquid Fuels Remain a Solid Choice over Natural Gas By Bret
76 FR 35202 - Piedmont Natural Gas Company, Inc.; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... Natural Gas Company, Inc.; Notice of Application On June 3, 2011, Piedmont Natural Gas Company, Inc... section 7(f) of the Natural Gas Act (NGA), as amended, and section 157 of the Commission's Regulations.... Questions regarding this application should be directed to Michelle R. Mendoza, Piedmont Natural Gas Company...
76 FR 12721 - Northern Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
... Natural Gas Company; Notice of Application Take notice that on February 18, 2011, Northern Natural Gas... application pursuant to section 7(b) of the Natural Gas Act (NGA) and Part 157 of the Commission's regulations..., Northern Natural Gas Company, P.O. Box 3330, Omaha, Nebraska 68103-0330, or by calling (402) 398-7103...
18 CFR 284.3 - Jurisdiction under the Natural Gas Act.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Natural Gas Act. 284.3 Section 284.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND...
Alternative Fuels Data Center: Natural Gas Fueling Stations
Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark
JEDI Natural Gas Model | Jobs and Economic Development Impact Models | NREL
Natural Gas Model JEDI Natural Gas Model The Jobs and Economic Development Impacts (JEDI) Natural Gas model allows users to estimate economic development impacts from natural gas power generation -specific data should be used to obtain the best estimate of economic development impacts. This model has
18 CFR 284.3 - Jurisdiction under the Natural Gas Act.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Natural Gas Act. 284.3 Section 284.3 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY OTHER REGULATIONS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND...
A framework to support human factors of automation in railway intelligent infrastructure.
Dadashi, Nastaran; Wilson, John R; Golightly, David; Sharples, Sarah
2014-01-01
Technological and organisational advances have increased the potential for remote access and proactive monitoring of the infrastructure in various domains and sectors - water and sewage, oil and gas and transport. Intelligent Infrastructure (II) is an architecture that potentially enables the generation of timely and relevant information about the state of any type of infrastructure asset, providing a basis for reliable decision-making. This paper reports an exploratory study to understand the concepts and human factors associated with II in the railway, largely drawing from structured interviews with key industry decision-makers and attachment to pilot projects. Outputs from the study include a data-processing framework defining the key human factors at different levels of the data structure within a railway II system and a system-level representation. The framework and other study findings will form a basis for human factors contributions to systems design elements such as information interfaces and role specifications.
2016-02-01
forecasting the risk of munitions constituents (MC), such as high explosives and metals , that leave firing and training ranges and contaminate the...quality terrestrial natural infrastructure exist down- range of small arms training ranges on Department of Defense (DoD) in- stallations. Live- fire ...CERL TN-16-1 iv Illustrations Figures A-1 Initial horizontal trajectory of a tracer bullet fired at a 600 m target at the Malone 5 range on Fort
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
18 CFR 2.78 - Utilization and conservation of natural resources-natural gas.
Code of Federal Regulations, 2011 CFR
2011-04-01
... conservation of natural resources-natural gas. 2.78 Section 2.78 Conservation of Power and Water Resources... INTERPRETATIONS Statements of General Policy and Interpretations Under the Natural Gas Act § 2.78 Utilization and conservation of natural resources—natural gas. (a)(1) The national interests in the development and utilization...
Racicot, Alexandre; Babin-Roussel, Véronique; Dauphinais, Jean-François; Joly, Jean-Sébastien; Noël, Pascal; Lavoie, Claude
2014-05-01
We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13-21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.
The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve
NASA Astrophysics Data System (ADS)
Jiang, Cong; Chen, Yanhao
2018-04-01
Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.
A comparative study on the Environmental Impact Assessment of industrial projects in Malaysia
NASA Astrophysics Data System (ADS)
Marmaya, E. A.; Mahbub, R.
2018-02-01
In the past decade, mankind has been manipulating the natural environment to better suit its needs for providing buildings and infrastructure for residential, commercial, business and industrial purposes. The rapid industrialization that has taken place has generated several issues regarding the environment. Therefore, managing environmental risks in construction projects has been recognized as an important process to achieve the project objectives in terms of time, cost, quality, safety and environmental sustainability. The aim of this research is to assess the environmental impact of industrial projects to the surrounding areas. The impact to the environment can be categorized into several aspects such as ecosystem impact, natural resources impact and public impact. This research employs the quantitative approach, that is, a questionnaire survey targeted at the occupants living in the surrounding areas of the case study location, namely the industrial sites in Sabah Ammonia Urea (SAMUR), Sipitang, Sabah and Lynas Advanced Materials Plant (LAMP), Gebeng Pahang. The findings of the research show that the two projects are perceived to have negative environmental impact especially for land pollution and green-house gas emissions.
Eric Kuehler; Jon Hathaway; Andrew Tirpak
2017-01-01
The use of green infrastructure for reducing stormwater runoff is increasingly common. One underâstudied component of the green infrastructure network is the urban forest system. Trees can play an important role as the âfirst line of defenseâ for restoring more natural hydrologic regimes in urban watersheds by intercepting rainfall, delaying runoff, infiltrating, and...
78 FR 54801 - Gulf Coast Restoration Trust Fund
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
..., including port infrastructure. (g) Coastal flood protection and related infrastructure. (h) Promotion of... protection of natural resources, mitigation of damage to fish and wildlife, and workforce development and job..., marine and wildlife habitats, beaches, coastal wetlands, and economy of the Gulf Coast. The Council will...
Internal hydrological mechanism of permeable pavement and interaction with subsurface water
Many communities are implementing green infrastructure stormwater control measures (SCMs) in urban environments across the U.S. to mimic pre-urban, natural hydrology more closely. Permeable pavement is one SCM infrastructure that has been commonly selected for both new and retro...
DOT National Transportation Integrated Search
2016-06-01
Myers, John J.: http://orcid.org/0000-0001-5269-8218 : Because of its unique nature, self-consolidating concrete (SCC) has the potential to significantly reduce costs associated with transportation-related infrastructure, benefiting both MoDOT and th...
Natural gas monthly, April 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are present3ed each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article is entitled ``Natural gas pipeline and system expansions.`` 6 figs., 27 tabs.
Natural gas monthly, June 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-24
The natural gas monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The feature article for this month is Natural Gas Industry Restructuring and EIA Data Collection.
Networking of Icelandic Earth Infrastructures - Natural laboratories and Volcano Supersites
NASA Astrophysics Data System (ADS)
Vogfjörd, K. S.; Sigmundsson, F.; Hjaltadóttir, S.; Björnsson, H.; Arason, Ø.; Hreinsdóttir, S.; Kjartansson, E.; Sigbjörnsson, R.; Halldórsson, B.; Valsson, G.
2012-04-01
The back-bone of Icelandic geoscientific research infrastructure is the country's permanent monitoring networks, which have been built up to monitor seismic and volcanic hazard and deformation of the Earth's surface. The networks are mainly focussed around the plate boundary in Iceland, particularly the two seismic zones, where earthquakes of up to M7.3 have occurred in centuries past, and the rift zones with over 30 active volcanic systems where a large number of powerful eruptions have occurred, including highly explosive ones. The main observational systems are seismic, strong motion, GPS and bore-hole strain networks, with the addition of more recent systems like hydrological stations, permanent and portable radars, ash-particle counters and gas monitoring systems. Most of the networks are owned by a handful of Icelandic institutions, but some are operated in collaboration with international institutions and universities. The networks have been in operation for years to decades and have recorded large volumes of research quality data. The main Icelandic infrastructures will be networked in the European Plate Observing System (EPOS). The plate boundary in the South Iceland seismic zone (SISZ) with its book-shelf tectonics and repeating major earthquakes sequences of up to M7 events, has the potential to be defined a natural laboratory within EPOS. Work towards integrating multidisciplinary data and technologies from the monitoring infrastructures in the SISZ with other fault regions has started in the FP7 project NERA, under the heading of Networking of Near-Fault Observatories. The purpose is to make research-quality data from near-fault observatories available to the research community, as well as to promote transfer of knowledge and techical know-how between the different observatories of Europe, in order to create a network of fault-monitoring networks. The seismic and strong-motion systems in the SISZ are also, to some degree, being networked nationally to strengthen their early warning capabilities. In response to the far-reaching dispersion of ash from the 2010 Eyjafjallajökull eruption and subsequent disturbance to European air-space, the instrumentation of the Icelandic volcano observatory was greatly improved in number and capability to better monitor sub-surface volcanic processes as well as the air-borne products of eruptions. This infrastructure will also be networked with other European volcano observatories in EPOS. Finally the Icelandic EPOS team, together with other European collaborators, has responded to an FP7 call for the establishment of an Icelandic volcano supersite, where land- and space-based data will be made available to researchers and hazard managers, in line with the implementation plan of the GEO. The focus of the Icelandic volcano supersite are the active volcanoes in Iceland's Eastern volcanic zone.
Harrop, Wayne; Matteson, Ashley
This paper presents cyber resilience as key strand of national security. It establishes the importance of critical national infrastructure protection and the growing vicarious nature of remote, well-planned, and well executed cyber attacks on critical infrastructures. Examples of well-known historical cyber attacks are presented, and the emergence of 'internet of things' as a cyber vulnerability issue yet to be tackled is explored. The paper identifies key steps being undertaken by those responsible for detecting, deterring, and disrupting cyber attacks on critical national infrastructure in the United Kingdom and the USA.
Atmospheric emissions and air quality impacts from natural gas production and use.
Allen, David T
2014-01-01
The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.
Alternative Fuels Data Center: How Do Natural Gas Vehicles Work?
Natural Gas Vehicles Work? to someone by E-mail Share Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Facebook Tweet about Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Twitter Bookmark Alternative Fuels Data Center: How Do Natural Gas Vehicles Work? on Google
30 CFR 203.73 - How do suspension volumes apply to natural gas?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do suspension volumes apply to natural gas... suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in accordance with 30 CFR part 250...
76 FR 28016 - El Paso Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Natural Gas Company; Notice of Application On April 26, 2011, El Paso Natural Gas Company (El Paso), P.O...) an application under section 7(b) of the Natural Gas Act (NGA) and Part 157.5 of the Commission's... Unit 2B since it has become functionally obsolete and is no longer needed to provide natural gas...
41 CFR 101-26.602-5 - Procurement of natural gas from the wellhead and other supply sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-26.602-5 Procurement of natural gas from the wellhead and other supply sources. (a) Natural gas... natural gas procurements at a facility exceed 20,000 mcf annually and the facility can accept... natural gas shall be forwarded to the Public Utilities Division (PPU), Office of Procurement, General...
Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident
Natural Gas Safety after a Traffic Accident to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Facebook Tweet about Alternative Fuels Data Center : Natural Gas Safety after a Traffic Accident on Twitter Bookmark Alternative Fuels Data Center: Natural Gas
41 CFR 101-26.602-5 - Procurement of natural gas from the wellhead and other supply sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-26.602-5 Procurement of natural gas from the wellhead and other supply sources. (a) Natural gas... natural gas procurements at a facility exceed 20,000 mcf annually and the facility can accept... natural gas shall be forwarded to the Public Utilities Division (PPU), Office of Procurement, General...
18 CFR 284.269 - Intrastate pipeline and local distribution company emergency sales rates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale... emergency natural gas under this subpart in accordance with § 284.142. [Order 449, 51 FR 9187, Mar. 18, 1986...
30 CFR 203.73 - How do suspension volumes apply to natural gas?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do suspension volumes apply to natural gas... § 203.73 How do suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in...
Alternative Fuels Data Center: Natural Gas Laws and Incentives
Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Laws and Incentives
Technical Path Evaluation for High Efficiency, Low Emission Natural Gas Engine
2002-05-01
Modeling and Mitigation for Large Bore Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine ...Natural Gas Engines C. Evaluation of Technologies for Achieving High BMEP Levels in Natural Gas Engines D. Microfine Water Spray Injection for Knock...91 vi D. MICROFINE WATER SPRAY INJECTION FOR
Shale Gas Exploration and Development Progress in China and the Way Forward
NASA Astrophysics Data System (ADS)
Chen, Jianghua
2018-02-01
Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.
Code of Federal Regulations, 2010 CFR
2010-07-01
... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...
Code of Federal Regulations, 2011 CFR
2011-07-01
... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...
Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi
2012-01-17
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.
Study of alternatives to the Natural Gas Policy Act of 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
This report presents the results of the Department of Energy's review of natural gas policies. Its purpose is to define and evaluate alternatives to current policy which deregulate the US natural gas market. The review was initiated in March of 1981 for three reasons. First, natural gas plays a critical role in US energy markets, accounting for 25 percent of US energy use. Second, oil and gas market conditions have changed considerably since current natural gas policies were established in 1978. Indeed, in recognition of these changes, Congress modified national policy on gas use during the budget reconciliation process. Third,more » the Administration is committed to evaluating whether the costs of massive Federal intervention into the operation of markets outweigh the benefits. This study focuses on the wellhead and incremental pricing provisions of the Natural Gas Policy Act of 1978 (NGPA). It seeks to quantify the costs and benefits of alternative natural gas strategies. Specifically, the study evaluates the impacts of proposals to modify the NGPA on: efficiency of natural gas markets; oil import levels and energy security; supply, demand, and price of natural gas; performance of the US economy; and consumer wellbeing. The consequences of current and alternative gas policies under mid-range assumptions about future conditions are presented in Chapters II-V. Substantial uncertainty, however, surrounds the future course of the US natural gas market.« less
Natural gas monthly, August 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-25
The Natural Gas Monthly (NGM) is prepared in the Data Operations Branch of the Reserves and Natural Gas Division, Office of Oil and Gas, Energy Information Administration (EIA), US Department of Energy (DOE). The NGM highhghts activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roser, R.
1998-08-01
NRG Technologies, Inc. is attempting to develop hardware and infrastructure that will allow mixtures of hydrogen and conventional fuels to become viable alternatives to conventional fuels alone. This commercialization can be successful if the authors are able to achieve exhaust emission levels of less than 0.03 g/kw-hr NOx and CO; and 0.15 g/kw-hr NMHC at full engine power without the use of exhaust catalysts. The major barriers to achieving these goals are that the lean burn regimes required to meet exhaust emissions goals reduce engine output substantially and tend to exhibit higher-than-normal total hydrocarbon emissions. Also, hydrogen addition to conventionalmore » fuels increases fuel cost, and reduces both vehicle range and engine output power. Maintaining low emissions during transient driving cycles has not been demonstrated. A three year test plan has been developed to perform the investigations into the issues described above. During this initial year of funding research has progressed in the following areas: (a) a cost effective single-cylinder research platform was constructed; (b) exhaust gas speciation was performed to characterize the nature of hydrocarbon emissions from hydrogen-enriched natural gas fuels; (c) three H{sub 2}/CH{sub 4} fuel compositions were analyzed using spark timing and equivalence ratio sweeping procedures and finally; (d) a full size pick-up truck platform was converted to run on HCNG fuels. The testing performed in year one of the three year plan represents a baseline from which to assess options for overcoming the stated barriers to success.« less
Hydrogen fuel dispensing station for transportation vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S.P.N.; Richmond, A.A.
1995-07-01
A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on amore » hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.« less