Dinitz, Laura B.
2008-01-01
With costs of natural disasters skyrocketing and populations increasingly settling in areas vulnerable to natural hazards, society is challenged to better allocate its limited risk-reduction resources. In 2000, Congress passed the Disaster Mitigation Act, amending the Robert T. Stafford Disaster Relief and Emergency Assistance Act (Robert T. Stafford Disaster Relief and Emergency Assistance Act, Pub. L. 93-288, 1988; Federal Emergency Management Agency, 2002, 2008b; Disaster Mitigation Act, 2000), mandating that State, local, and tribal communities prepare natural-hazard mitigation plans to qualify for pre-disaster mitigation grants and post-disaster aid. The Federal Emergency Management Agency (FEMA) was assigned to coordinate and implement hazard-mitigation programs, and it published information about specific mitigation-plan requirements and the mechanisms (through the Hazard Mitigation Grant Program-HMGP) for distributing funds (Federal Emergency Management Agency, 2002). FEMA requires that each community develop a mitigation strategy outlining long-term goals to reduce natural-hazard vulnerability, mitigation objectives and specific actions to reduce the impacts of natural hazards, and an implementation plan for those actions. The implementation plan should explain methods for prioritizing, implementing, and administering the actions, along with a 'cost-benefit review' justifying the prioritization. FEMA, along with the National Institute of Building Sciences (NIBS), supported the development of HAZUS ('Hazards U.S.'), a geospatial natural-hazards loss-estimation tool, to help communities quantify potential losses and to aid in the selection and prioritization of mitigation actions. HAZUS was expanded to a multiple-hazard version, HAZUS-MH, that combines population, building, and natural-hazard science and economic data and models to estimate physical damages, replacement costs, and business interruption for specific natural-hazard scenarios. HAZUS-MH currently performs analyses for earthquakes, floods, and hurricane wind. HAZUS-MH loss estimates, however, do not account for some uncertainties associated with the specific natural-hazard scenarios, such as the likelihood of occurrence within a particular time horizon or the effectiveness of alternative risk-reduction options. Because of the uncertainties involved, it is challenging to make informative decisions about how to cost-effectively reduce risk from natural-hazard events. Risk analysis is one approach that decision-makers can use to evaluate alternative risk-reduction choices when outcomes are unknown. The Land Use Portfolio Model (LUPM), developed by the U.S. Geological Survey (USGS), is a geospatial scenario-based tool that incorporates hazard-event uncertainties to support risk analysis. The LUPM offers an approach to estimate and compare risks and returns from investments in risk-reduction measures. This paper describes and demonstrates a hypothetical application of the LUPM for Ventura County, California, and examines the challenges involved in developing decision tools that provide quantitative methods to estimate losses and analyze risk from natural hazards.
Applying the Land Use Portfolio Model with Hazus to analyse risk from natural hazard events
Dinitz, Laura B.; Taketa, Richard A.
2013-01-01
This paper describes and demonstrates the integration of two geospatial decision-support systems for natural-hazard risk assessment and management. Hazus is a risk-assessment tool developed by the Federal Emergency Management Agency to identify risks and estimate the severity of risk from natural hazards. The Land Use Portfolio Model (LUPM) is a risk-management tool developed by the U.S. Geological Survey to evaluate plans or actions intended to reduce risk from natural hazards. We analysed three mitigation policies for one earthquake scenario in the San Francisco Bay area to demonstrate the added value of using Hazus and the LUPM together. The demonstration showed that Hazus loss estimates can be input to the LUPM to obtain estimates of losses avoided through mitigation, rates of return on mitigation investment, and measures of uncertainty. Together, they offer a more comprehensive approach to help with decisions for reducing risk from natural hazards.
NASA Astrophysics Data System (ADS)
Day, S. J.; Fearnley, C. J.
2013-12-01
Large investments in the mitigation of natural hazards, using a variety of technology-based mitigation strategies, have proven to be surprisingly ineffective in some recent natural disasters. These failures reveal a need for a systematic classification of mitigation strategies; an understanding of the scientific uncertainties that affect the effectiveness of such strategies; and an understanding of how the different types of strategy within an overall mitigation system interact destructively to reduce the effectiveness of the overall mitigation system. We classify mitigation strategies into permanent, responsive and anticipatory. Permanent mitigation strategies such as flood and tsunami defenses or land use restrictions, are both costly and 'brittle': when they malfunction they can increase mortality. Such strategies critically depend on the accuracy of the estimates of expected hazard intensity in the hazard assessments that underpin their design. Responsive mitigation strategies such as tsunami and lahar warning systems rely on capacities to detect and quantify the hazard source events and to transmit warnings fast enough to enable at risk populations to decide and act effectively. Self-warning and voluntary evacuation is also usually a responsive mitigation strategy. Uncertainty in the nature and magnitude of the detected hazard source event is often the key scientific obstacle to responsive mitigation; public understanding of both the hazard and the warnings, to enable decision making, can also be a critical obstacle. Anticipatory mitigation strategies use interpretation of precursors to hazard source events and are used widely in mitigation of volcanic hazards. Their critical limitations are due to uncertainties in time, space and magnitude relationships between precursors and hazard events. Examples of destructive interaction between different mitigation strategies are provided by the Tohoku 2011 earthquake and tsunami; recent earthquakes that have impacted population centers with poor enforcement of building codes, unrealistic expectations of warning systems or failures to understand local seismic damage mechanisms; and the interaction of land use restriction strategies and responsive warning strategies around lahar-prone volcanoes. A more complete understanding of the interactions between these different types of mitigation strategy, especially the consequences for the expectations and behaviors of the populations at risk, requires models of decision-making under high levels of both uncertainty and danger. The Observation-Orientation-Decision-Action (OODA) loop model (Boyd, 1987) may be a particularly useful model. It emphasizes the importance of 'orientation' (the interpretation of observations and assessment of their significance for the observer and decision-maker), the feedback between decisions and subsequent observations and orientations, and the importance of developing mitigation strategies that are flexible and so able to respond to the occurrence of the unexpected. REFERENCE: Boyd, J.R. A Discourse on Winning and Losing [http://dnipogo.org/john-r-boyd/
Playing against nature: improving earthquake hazard mitigation
NASA Astrophysics Data System (ADS)
Stein, S. A.; Stein, J.
2012-12-01
The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the uncertainties and the need to candidly assess them. It can be applied to exploring policies under various hazard scenarios and mitigating other natural hazards.ariation in total cost, the sum of expected loss and mitigation cost, as a function of mitigation level. The optimal level of mitigation, n*, minimizes the total cost. The expected loss depends on the hazard model, so the better the hazard model, the better the mitigation policy (Stein and Stein, 2012).
A Bernoulli Formulation of the Land-Use Portfolio Model
Champion, Richard A.
2008-01-01
Decision making for natural-hazards mitigation can be sketched as knowledge available in advance (a priori), knowledge available later (a posteriori), and how consequences of the mitigation decision might be viewed once future outcomes are known. Two outcomes - mitigating for a hazard event that will occur, and not mitigating for a hazard event that will not occur - can be considered narrowly correct. Two alternative outcomes - mitigating for a hazard event that will not occur, and not mitigating for a hazard event that will occur - can be considered narrowly incorrect. The dilemma facing the decision maker is that mitigation choices must be made before the event, and often must be made with imperfect statistical techniques and imperfect data.
The price of safety: costs for mitigating and coping with Alpine hazards
NASA Astrophysics Data System (ADS)
Pfurtscheller, C.; Thieken, A. H.
2013-10-01
Due to limited public budgets and the need to economize, the analysis of costs of hazard mitigation and emergency management of natural hazards becomes increasingly important for public natural hazard and risk management. In recent years there has been a growing body of literature on the estimation of losses which supported to help to determine benefits of measures in terms of prevented losses. On the contrary, the costs of mitigation are hardly addressed. This paper thus aims to shed some light on expenses for mitigation and emergency services. For this, we analysed the annual costs of mitigation efforts in four regions/countries of the Alpine Arc: Bavaria (Germany), Tyrol (Austria), South Tyrol (Italy) and Switzerland. On the basis of PPP values (purchasing power parities), annual expenses on public safety ranged from EUR 44 per capita in the Free State of Bavaria to EUR 216 in the Autonomous Province of South Tyrol. To analyse the (variable) costs for emergency services in case of an event, we used detailed data from the 2005 floods in the Federal State of Tyrol (Austria) as well as aggregated data from the 2002 floods in Germany. The analysis revealed that multi-hazards, the occurrence and intermixture of different natural hazard processes, contribute to increasing emergency costs. Based on these findings, research gaps and recommendations for costing Alpine natural hazards are discussed.
Bernknopf, R.L.; Dinitz, L.B.; Rabinovici, S.J.M.; Evans, A.M.
2001-01-01
In the past, efforts to prevent catastrophic losses from natural hazards have largely been undertaken by individual property owners based on site-specific evaluations of risks to particular buildings. Public efforts to assess community vulnerability and encourage mitigation have focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. This paper develops an alternative, intermediate-scale approach to regional risk assessment and the evaluation of community mitigation policies. Properties are grouped into types with similar land uses and levels of hazard, and hypothetical community mitigation strategies for protecting these properties are modeled like investment portfolios. The portfolios consist of investments in mitigation against the risk to a community posed by a specific natural hazard, and are defined by a community's mitigation budget and the proportion of the budget invested in locations of each type. The usefulness of this approach is demonstrated through an integrated assessment of earthquake-induced lateral-spread ground failure risk in the Watsonville, California area. Data from the magnitude 6.9 Loma Prieta earthquake of 1989 are used to model lateral-spread ground failure susceptibility. Earth science and economic data are combined and analyzed in a Geographic Information System (GIS). The portfolio model is then used to evaluate the benefits of mitigating the risk in different locations. Two mitigation policies, one that prioritizes mitigation by land use type and the other by hazard zone, are compared with a status quo policy of doing no further mitigation beyond that which already exists. The portfolio representing the hazard zone rule yields a higher expected return than the land use portfolio does: However, the hazard zone portfolio experiences a higher standard deviation. Therefore, neither portfolio is clearly preferred. The two mitigation policies both reduce expected losses and increase overall expected community wealth compared to the status quo policy.
Rainfall-triggered landslides, anthropogenic hazards, and mitigation strategies
Larsen, M.C.
2008-01-01
Rainfall-triggered landslides are part of a natural process of hillslope erosion that can result in catastrophic loss of life and extensive property damage in mountainous, densely populated areas. As global population expansion on or near steep hillslopes continues, the human and economic costs associated with landslides will increase. Landslide hazard mitigation strategies generally involve hazard assessment mapping, warning systems, control structures, and regional landslide planning and policy development. To be sustainable, hazard mitigation requires that management of natural resources is closely connected to local economic and social interests. A successful strategy is dependent on a combination of multi-disciplinary scientific and engineering approaches, and the political will to take action at the local community to national scale.
Opinion: The use of natural hazard modeling for decision making under uncertainty
David E. Calkin; Mike Mentis
2015-01-01
Decision making to mitigate the effects of natural hazards is a complex undertaking fraught with uncertainty. Models to describe risks associated with natural hazards have proliferated in recent years. Concurrently, there is a growing body of work focused on developing best practices for natural hazard modeling and to create structured evaluation criteria for complex...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2011 CFR
2011-10-01
... reduce risks from natural hazards and serves as a guide for State decision makers as they commit resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... risk assessments must characterize and analyze natural hazards and risks to provide a statewide...
Horney, Jennifer A; Nguyen, Mai; Cooper, John; Simon, Matthew; Ricchetti-Masterson, Kristen; Grabich, Shannon; Salvesen, David; Berke, Philip
2013-01-01
Rural areas of the United States are uniquely vulnerable to the impacts of natural disasters. One possible way to mitigate vulnerability to disasters in rural communities is to have a high-quality hazard mitigation plan in place. To understand the resources available for hazard mitigation planning and determine how well hazard mitigation plans in rural counties meet the needs of vulnerable populations, we surveyed the lead planning or emergency management official responsible for hazard mitigation plans in 96 rural counties in eight states in the Southeastern United States. In most counties, emergency management was responsible for implementing the county's hazard mitigation plan and the majority of counties had experienced a presidentially declared disaster in the last 5 years. Our research findings demonstrated that there were differences in subjective measures of vulnerability (as reported by survey respondents) and objective measures of vulnerability (as determined by US Census data). In addition, although few counties surveyed included outreach to vulnerable groups as a part of their hazard mitigation planning process, a majority felt that their hazard mitigation plan addressed the needs of vulnerable populations "well" or "very well." These differences could result in increased vulnerabilities in rural areas, particularly for certain vulnerable groups.
Land-Use Portfolio Modeler, Version 1.0
Taketa, Richard; Hong, Makiko
2010-01-01
Natural hazards pose significant threats to the public safety and economic health of many communities throughout the world. Community leaders and decision-makers continually face the challenges of planning and allocating limited resources to invest in protecting their communities against catastrophic losses from natural-hazard events. Public efforts to assess community vulnerability and encourage loss-reduction measures through mitigation often focused on either aggregating site-specific estimates or adopting standards based upon broad assumptions about regional risks. The site-specific method usually provided the most accurate estimates, but was prohibitively expensive, whereas regional risk assessments were often too general to be of practical use. Policy makers lacked a systematic and quantitative method for conducting a regional-scale risk assessment of natural hazards. In response, Bernknopf and others developed the portfolio model, an intermediate-scale approach to assessing natural-hazard risks and mitigation policy alternatives. The basis for the portfolio-model approach was inspired by financial portfolio theory, which prescribes a method of optimizing return on investment while reducing risk by diversifying investments in different security types. In this context, a security type represents a unique combination of features and hazard-risk level, while financial return is defined as the reduction in losses resulting from an investment in mitigation of chosen securities. Features are selected for mitigation and are modeled like investment portfolios. Earth-science and economic data for the features are combined and processed in order to analyze each of the portfolios, which are then used to evaluate the benefits of mitigating the risk in selected locations. Ultimately, the decision maker seeks to choose a portfolio representing a mitigation policy that maximizes the expected return-on-investment, while minimizing the uncertainty associated with that return-on-investment. The portfolio model, now known as the Land-Use Portfolio Model (LUPM), provided the framework for the development of the Land-Use Portfolio Modeler, Version 1.0 software (LUPM v1.0). The software provides a geographic information system (GIS)-based modeling tool for evaluating alternative risk-reduction mitigation strategies for specific natural-hazard events. The modeler uses information about a specific natural-hazard event and the features exposed to that event within the targeted study region to derive a measure of a given mitigation strategy`s effectiveness. Harnessing the spatial capabilities of a GIS enables the tool to provide a rich, interactive mapping environment in which users can create, analyze, visualize, and compare different
Natural hazard modeling and uncertainty analysis [Chapter 2
Matthew Thompson; Jord J. Warmink
2017-01-01
Modeling can play a critical role in assessing and mitigating risks posed by natural hazards. These modeling efforts generally aim to characterize the occurrence, intensity, and potential consequences of natural hazards. Uncertainties surrounding the modeling process can have important implications for the development, application, evaluation, and interpretation of...
A fast-paced delivery of approaches developed in EPA partnerships to enable effective inclusion of environmental and social resilience into hazard mitigation planning. This presentation will cover a broad spectrum, from 1) EPA’s role in mitigation, 2) what a Regional Resil...
NASA Technical Reports Server (NTRS)
Dastoor, M. N.; Evans, D. L.
1996-01-01
The paper will review the application of NASA developed remote sensing technology towards the monitoring and mitigation of natural hazards. The overview will be followed by recent data on three specific natural hazard applications.
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... mitigation as well as to development in hazard-prone areas; a discussion of State funding capabilities for... identified. (iv) Identification of current and potential sources of Federal, State, local, or private funding...
44 CFR 201.4 - Standard State Mitigation Plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... mitigation as well as to development in hazard-prone areas; a discussion of State funding capabilities for... identified. (iv) Identification of current and potential sources of Federal, State, local, or private funding...
Flood- and drought-related natural hazards activities of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper
The influence of hazard models on GIS-based regional risk assessments and mitigation policies
Bernknopf, R.L.; Rabinovici, S.J.M.; Wood, N.J.; Dinitz, L.B.
2006-01-01
Geographic information systems (GIS) are important tools for understanding and communicating the spatial distribution of risks associated with natural hazards in regional economies. We present a GIS-based decision support system (DSS) for assessing community vulnerability to natural hazards and evaluating potential mitigation policy outcomes. The Land Use Portfolio Modeler (LUPM) integrates earth science and socioeconomic information to predict the economic impacts of loss-reduction strategies. However, the potential use of such systems in decision making may be limited when multiple but conflicting interpretations of the hazard are available. To explore this problem, we conduct a policy comparison using the LUPM to test the sensitivity of three available assessments of earthquake-induced lateral-spread ground failure susceptibility in a coastal California community. We find that the uncertainty regarding the interpretation of the science inputs can influence the development and implementation of natural hazard management policies. Copyright ?? 2006 Inderscience Enterprises Ltd.
Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.
2011-09-15
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).
Weary, David J.
2015-01-01
Rocks with potential for karst formation are found in all 50 states. Damage due to karst subsidence and sinkhole collapse is a natural hazard of national scope. Repair of damage to buildings, highways, and other infrastructure represents a significant national cost. Sparse and incomplete data show that the average cost of karst-related damages in the United States over the last 15 years is estimated to be at least $300,000,000 per year and the actual total is probably much higher. This estimate is lower than the estimated annual costs for other natural hazards; flooding, hurricanes and cyclonic storms, tornadoes, landslides, earthquakes, or wildfires, all of which average over $1 billion per year. Very few state organizations track karst subsidence and sinkhole damage mitigation costs; none occurs at the Federal level. Many states discuss the karst hazard in their State hazard mitigation plans, but seldom include detailed reports of subsidence incidents or their mitigation costs. Most State highway departments do not differentiate karst subsidence or sinkhole collapse from other road repair costs. Amassing of these data would raise the estimated annual cost considerably. Information from insurance organizations about sinkhole damage claims and payouts is also not readily available. Currently there is no agency with a mandate for developing such data. If a more realistic estimate could be made, it would illuminate the national scope of this hazard and make comparison with costs of other natural hazards more realistic.
Lin Receives 2010 Natural Hazards Focus Group Award for Graduate Research
NASA Astrophysics Data System (ADS)
2010-11-01
Ning Lin has been awarded the Natural Hazards Focus Group Award for Graduate Research, given annually to a recent Ph.D. recipient for outstanding contributions to natural hazards research. Lin's thesis is entitled “Multi-hazard risk analysis related to hurricanes.” She is scheduled to present an invited talk in the Extreme Natural Events: Modeling, Prediction, and Mitigation session (NH20) during the 2010 AGU Fall Meeting, held 13-17 December in San Francisco, Calif. Lin will be formally presented with the award at the Natural Hazards focus group reception on 14 December 2010.
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Lechner, H. N.; Brill, K. A.; Lerner, G.; Ramos, E.
2014-12-01
Graduate students at Michigan Technological University developed the "Landslides!" activity to engage middle & high school students participating in summer engineering programs in a hands-on exploration of geologic engineering and STEM (Science, Technology, Engineering and Math) principles. The inquiry-based lesson plan is aligned to Next Generation Science Standards and is appropriate for 6th-12th grade classrooms. During the activity students focus on the factors contributing to landslide development and engineering practices used to mitigate hazards of slope stability hazards. Students begin by comparing different soil types and by developing predictions of how sediment type may contribute to differences in slope stability. Working in groups, students then build tabletop hill-slope models from the various materials in order to engage in evidence-based reasoning and test their predictions by adding groundwater until each group's modeled slope fails. Lastly students elaborate on their understanding of landslides by designing 'engineering solutions' to mitigate the hazards observed in each model. Post-evaluations from students demonstrate that they enjoyed the hands-on nature of the activity and the application of engineering principles to mitigate a modeled natural hazard.
Decision-support systems for natural-hazards and land-management issues
Dinitz, Laura; Forney, William; Byrd, Kristin
2012-01-01
Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.
Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrads, T.J.
1997-09-12
Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well asmore » for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, is Rev. 1 of that plan.« less
NASA Astrophysics Data System (ADS)
Bernard, E. N.; Behn, R. R.; Hebenstreit, G. T.; Gonzalez, F. I.; Krumpe, P.; Lander, J. F.; Lorca, E.; McManamon, P. M.; Milburn, H. B.
Rapid onset natural hazards have claimed more than 2.8 million lives worldwide in the past 20 years. This category includes such events as earthquakes, landslides, hurricanes, tornados, floods, volcanic eruptions, wildfires, and tsunamis. Effective hazard mitigation is particularly difficult in such cases, since the time available to issue warnings can be very short or even nonexistent. This paper presents the concept of a local warning system that exploits and integrates the existing technologies of risk evaluation, environmental measurement, and telecommunications. We describe Project THRUST, a successful implementation of this general, systematic approach to tsunamis. The general approach includes pre-event emergency planning, real-time hazard assessment, and rapid warning via satellite communication links.
Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.
2010-09-24
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.
A burning problem: social dynamics of disaster risk reduction through wildfire mitigation
Susan Charnley; Melissa R. Poe; Alan A. Ager; Thomas A. Spies; Emily K. Platt; Keith A. Olsen
2015-01-01
Disasters result from hazards affecting vulnerable people. Most disasters research by anthropologists focuses on vulnerability; this article focuses on natural hazards. We use the case of wildfire mitigation on United States Forest Service lands in the northwestern United States to examine social, political, and economic variables at multiple scales that influence fire...
The hidden costs of coastal hazards: Implications for risk assessment and mitigation
Kunreuther, H.; Platt, R.; Baruch, S.; Bernknopf, R.L.; Buckley, M.; Burkett, V.; Conrad, D.; Davidson, T.; Deutsch, K.; Geis, D.; Jannereth, M.; Knap, A.; Lane, H.; Ljung, G.; McCauley, M.; Mileti, D.; Miller, T.; Morrow, B.; Meyers, J.; Pielke, R.; Pratt, A.; Tripp, J.
2000-01-01
Society has limited hazard mitigation dollars to invest. Which actions will be most cost effective, considering the true range of impacts and costs incurred? In 1997, the H. John Heinz III Center for Science, Economics and the Environment began a two-year study with a panel of experts to help develop new strategies to identify and reduce the costs of weather-related hazards associated with rapidly increasing coastal development activities.The Hidden Costs of Coastal Hazards presents the panel's findings, offering the first in-depth study that considers the costs of coastal hazards to natural resources, social institutions, business, and the built environment. Using Hurricane Hugo, which struck South Carolina in 1989, as a case study, it provides for the first time information on the full range of economic costs caused by a major coastal hazard event. The book:describes and examines unreported, undocumented, and hidden costs such as losses due to business interruption, reduction in property values, interruption of social services, psychological trauma, damage to natural systems, and othersexamines the concepts of risk and vulnerability, and discusses conventional approaches to risk assessment and the emerging area of vulnerability assessmentrecommends a comprehensive framework for developing and implementing mitigation strategiesdocuments the human impact of Hurricane Hugo and provides insight from those who lived through it.The Hidden Costs of Coastal Hazards takes a structured approach to the problem of coastal hazards, offering a new framework for community-based hazard mitigation along with specific recommendations for implementation. Decisionmakers -- both policymakers and planners -- who are interested in coastal hazard issues will find the book a unique source of new information and insight, as will private-sector decisionmakers including lenders, investors, developers, and insurers of coastal property.
Wood, Nathan J.; Good, James W.
2004-01-01
AbstractEarthquakes and tsunamis pose significant threats to Pacific Northwest coastal port and harbor communities. Developing holistic mitigation and preparedness strategies to reduce the potential for loss of life and property damage requires community-wide vulnerability assessments that transcend traditional site-specific analyses. The ability of a geographic information system (GIS) to integrate natural, socioeconomic, and hazards information makes it an ideal assessment tool to support community hazard planning efforts. This article summarizes how GIS was used to assess the vulnerability of an Oregon port and harbor community to earthquake and tsunami hazards, as part of a larger risk-reduction planning initiative. The primary purposes of the GIS were to highlight community vulnerability issues and to identify areas that both are susceptible to hazards and contain valued port and harbor community resources. Results of the GIS analyses can help decision makers with limited mitigation resources set priorities for increasing community resiliency to natural hazards.
Hazard Mitigation Assistance Programs Available to Water and Wastewater Utilities
You can prevent damage to your utility before it occurs. Utilities can implement mitigation projects to better withstand a natural disaster, minimize damage and rapidly recover from disruptions to service.
Use of Space Technology in Flood Mitigation (Western Province, Zambia)
NASA Astrophysics Data System (ADS)
Mulando, A.
2001-05-01
Disasters, by definition are events that appear suddenly and with little warning. They are usually short lived, with extreme events bringing death, injury and destruction of buildings and communications. Their aftermath can be as damaging as their physical effects through destruction of sanitation and water supplies, destruction of housing and breakdown of transport for food, temporary shelter and emergency services. Since floods are one of the natural disasters which endanger both life and property, it becomes vital to know its extents and where the hazards exists. Flood disasters manifest natural processes on a larger scale and information provided by Remote Sensing is a most appropriate input to analysis of actual events and investigations of potential risks. An analytical and qualitative image processing and interpretation of Remotely Sensed data as well as other data such as rainfall, population, settlements not to mention but a few should be used to derive good mitigation strategies. Since mitigation is the cornerstone of emergency management, it therefore becomes a sustained action that will reduce or eliminate long term risks to people and property from natural hazards such as floods and their effects. This will definitely involve keeping of homes and other sensitive structures away from flood plains. Promotion of sound land use planning based on this known hazard, "FLOODS" is one such form of mitigation that can be applied in flood affected areas within flood plain. Therefore future mitigation technologies and procedures should increasingly be based on the use of flood extent information provided by Remote Sensing Satellites like the NOAA AVHRR as well as information on the designated flood hazard and risk areas.
Making the decision to mitigate risk
Ingrid M. Martin; Holly Wise Bender; Carol Raish
2007-01-01
Why individuals choose to mitigate, downplay, or ignore risk has been a topic of much research over the past 25 years for natural- and human-created risks, such as earthquakes, flooding, smoking, contraceptive use, and alcohol consumption. Wildfire has been a relatively recent focus in the natural hazard literature, perhaps a result of several years of catastrophic...
Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk
Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ
2015-01-01
Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...
Natural and technologic hazardous material releases during and after natural disasters: a review.
Young, Stacy; Balluz, Lina; Malilay, Josephine
2004-04-25
Natural disasters may be powerful and prominent mechanisms of direct and indirect hazardous material (hazmat) releases. Hazardous materials that are released as the result of a technologic malfunction precipitated by a natural event are referred to as natural-technologic or na-tech events. Na-tech events pose unique environmental and human hazards. Disaster-associated hazardous material releases are of concern, given increases in population density and accelerating industrial development in areas subject to natural disasters. These trends increase the probability of catastrophic future disasters and the potential for mass human exposure to hazardous materials released during disasters. This systematic review summarizes direct and indirect disaster-associated releases, as well as environmental contamination and adverse human health effects that have resulted from natural disaster-related hazmat incidents. Thorough examination of historic disaster-related hazmat releases can be used to identify future threats and improve mitigation and prevention efforts.
Modelling Multi Hazard Mapping in Semarang City Using GIS-Fuzzy Method
NASA Astrophysics Data System (ADS)
Nugraha, A. L.; Awaluddin, M.; Sasmito, B.
2018-02-01
One important aspect of disaster mitigation planning is hazard mapping. Hazard mapping can provide spatial information on the distribution of locations that are threatened by disaster. Semarang City as the capital of Central Java Province is one of the cities with high natural disaster intensity. Frequent natural disasters Semarang city is tidal flood, floods, landslides, and droughts. Therefore, Semarang City needs spatial information by doing multi hazard mapping to support disaster mitigation planning in Semarang City. Multi Hazards map modelling can be derived from parameters such as slope maps, rainfall, land use, and soil types. This modelling is done by using GIS method with scoring and overlay technique. However, the accuracy of modelling would be better if the GIS method is combined with Fuzzy Logic techniques to provide a good classification in determining disaster threats. The Fuzzy-GIS method will build a multi hazards map of Semarang city can deliver results with good accuracy and with appropriate threat class spread so as to provide disaster information for disaster mitigation planning of Semarang city. from the multi-hazard modelling using GIS-Fuzzy can be known type of membership that has a good accuracy is the type of membership Gauss with RMSE of 0.404 the smallest of the other membership and VAF value of 72.909% of the largest of the other membership.
Geoethics: the responsibility of geoscientists in making society more aware of natural hazards
NASA Astrophysics Data System (ADS)
Peppoloni, S.; Matteucci, R.; Piacente, S.; Wasowski, J.
2012-04-01
The damage due to geological hazards, with frequent loss of human lives, is not entirely avoidable, but can be greatly reduced through the correct land use that respects the natural processes, through prevention and mitigation efforts, through an effective and correct information to the population. Often not responsible behaviors by politicians, as well as the need for heavy investments and the lack of information make difficult the solution of problems and slow the path to a proper management of the environment, the only way to provide a significant mitigation of damages of the geological disasters. In many countries (including Italy) the importance of the Geoscientists's role is not yet sufficiently recognized, despite it is evident the necessity of a greater attention to geological problems by policy makers and public opinion, as well as a more adequate information about natural risks to the society. The commitment to ensure prevention and mitigation of geological hazards must be considered an ethical value and duty for those who possess the appropriate knowledge and skills. Within the above context, Geoscientists have a key role to play as experts in analyzing and managing the territory's vulnerability: they must take responsibility to share and communicate their knowledge more effectively with all private and public stakeholders involved, paying attention to providing balanced information about risks and addressing inevitable uncertainties in natural hazard mapping, assessment, warning, and forecasting. But Geoscientists need to be more aware of their ethical responsibility, of their social duty to serve the society, care about and protect territory, and to facilitate the desirable shift from a culture of emergency to a culture of prevention. The search for balance between short-term economic issues and wider social impacts from natural hazards is an increasingly urgent need. Geoethics must be central to society's responses to natural hazard threats.
Success in transmitting hazard science
NASA Astrophysics Data System (ADS)
Price, J. G.; Garside, T.
2010-12-01
Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in Nevada. Local citizens appreciate the efforts of the state officials to present the information in a public forum. The Committee’s earthquake presentations to the counties are supplemented by regular updates in the two most populous counties during quarterly meetings of the Nevada Earthquake Safety Council, generally alternating between Las Vegas and Reno. We have only 17 counties in Nevada, so we are making good progress at reaching each within a few years. The Committee is also learning from the county officials about their frustrations in dealing with the state and federal bureaucracies. Success is documented by the mitigation projects that FEMA has funded.
Improving tsunami resiliency: California's Tsunami Policy Working Group
Real, Charles R.; Johnson, Laurie; Jones, Lucile M.; Ross, Stephanie L.; Kontar, Y.A.; Santiago-Fandiño, V.; Takahashi, T.
2014-01-01
California has established a Tsunami Policy Working Group to facilitate development of policy recommendations for tsunami hazard mitigation. The Tsunami Policy Working Group brings together government and industry specialists from diverse fields including tsunami, seismic, and flood hazards, local and regional planning, structural engineering, natural hazard policy, and coastal engineering. The group is acting on findings from two parallel efforts: The USGS SAFRR Tsunami Scenario project, a comprehensive impact analysis of a large credible tsunami originating from an M 9.1 earthquake in the Aleutian Islands Subduction Zone striking California’s coastline, and the State’s Tsunami Preparedness and Hazard Mitigation Program. The unique dual-track approach provides a comprehensive assessment of vulnerability and risk within which the policy group can identify gaps and issues in current tsunami hazard mitigation and risk reduction, make recommendations that will help eliminate these impediments, and provide advice that will assist development and implementation of effective tsunami hazard risk communication products to improve community resiliency.
Performance evaluation of a semi-active cladding connection for multi-hazard mitigation
NASA Astrophysics Data System (ADS)
Gong, Yongqiang; Cao, Liang; Micheli, Laura; Laflamme, Simon; Quiel, Spencer; Ricles, James
2018-03-01
A novel semi-active damping device termed Variable Friction Cladding Connection (VFCC) has been previously proposed to leverage cladding systems for the mitigation of natural and man-made hazards. The VFCC is a semi-active friction damper that connects cladding elements to the structural system. The friction force is generated by sliding plates and varied using an actuator through a system of adjustable toggles. The dynamics of the device has been previously characterized in a laboratory environment. In this paper, the performance of the VFCC at mitigating non-simultaneous multi-hazard excitations that includes wind and seismic loads is investigated on a simulated benchmark building. Simulations consider the robustness with respect to some uncertainties, including the wear of the friction surfaces and sensor failure. The performance of the VFCC is compared against other connection strategies including traditional stiffness, passive viscous, and passive friction elements. Results show that the VFCC is robust and capable of outperforming passive systems for the mitigation of multiple hazards.
NASA Astrophysics Data System (ADS)
Matsangouras, Ioannis T.; Nastos, Panagiotis T.
2014-05-01
Natural hazards pose an increasing threat to society and new innovative techniques or methodologies are necessary to be developed, in order to enhance the risk mitigation process in nowadays. It is commonly accepted that disaster risk reduction is a vital key for future successful economic and social development. The systematic improvement accuracy of extended-range prognosis products, relating with monthly and seasonal predictability, introduced them as a new essential link in risk mitigation procedure. Aiming at decreasing the risk, this paper presents the use of seasonal and monthly forecasting process that was tested over west Greece from September to December, 2013. During that season significant severe weather events occurred, causing significant impact to the local society (severe storms/rainfalls, hail, flash floods, etc). Seasonal and monthly forecasting products from European Centre for Medium-Range Weather Forecasts (ECMWF) depicted, with probabilities stratified by terciles, areas of Greece where significant weather may occur. As atmospheric natural hazard early warning systems are able to deliver warnings up to 72 hours in advance, this study illustrates that extended-range prognosis could be introduced as a new technique in risk mitigation. Seasonal and monthly forecast products could highlight extended areas where severe weather events may occur in one month lead time. In addition, a risk mitigation procedure, that extended prognosis products are adopted, is also presented providing useful time to preparedness process at regional administration level.
Flooding is a major natural hazard which every year impacts different regions across the world. Between 2000 and 2008, various types of natural hazards, mainly floods have affected the largest number of people worldwide, averaging 99 million people per year (WDR, 2010). In the U...
From tsunami hazard assessment to risk management in Guadeloupe (F.W.I.)
NASA Astrophysics Data System (ADS)
Zahibo, Narcisse; Dudon, Bernard; Krien, Yann; Arnaud, Gaël; Mercado, Aurelio; Roger, Jean
2017-04-01
The Caribbean region is prone to numerous natural hazards such as earthquakes, landslides, storm surges, tsunamis, coastal erosion or hurricanes. All these threats may cause great human and economic losses and are thus of prime interest for applied research. One of the main challenges for the scientific community is to conduct state-of-the-art research to assess hazards and share the results with coastal planners and decision makers so that they can regulate land use and develop mitigation strategies. We present here the results of a scientific collaborative project between Guadeloupe and Porto Rico which aimed at bringing a decision-making support to the authorities regarding tsunami hazards. This project led us to build a database of potential extreme events, and to study their impacts on Guadeloupe to investigate storm surge and tsunami hazards. The results were used by local authorities to develop safeguarding and mitigation measures in coastal areas. This project is thus a good example to demonstrate the benefit of inter Caribbean scientific collaboration for natural risks management.
A UAV System for Observing Volcanoes and Natural Hazards
NASA Astrophysics Data System (ADS)
Saggiani, G.; Persiani, F.; Ceruti, A.; Tortora, P.; Troiani, E.; Giuletti, F.; Amici, S.; Buongiorno, M.; Distefano, G.; Bentini, G.; Bianconi, M.; Cerutti, A.; Nubile, A.; Sugliani, S.; Chiarini, M.; Pennestri, G.; Petrini, S.; Pieri, D.
2007-12-01
Fixed or rotary wing manned aircraft are currently the most commonly used platforms for airborne reconnaissance in response to natural hazards, such as volcanic eruptions, oil spills, wild fires, earthquakes. Such flights are very often undertaken in hazardous flying conditions (e.g., turbulence, downdrafts, reduced visibility, close proximity to dangerous terrain) and can be expensive. To mitigate these two fundamental issues-- safety and cost--we are exploring the use of small (less than 100kg), relatively inexpensive, but effective, unmanned aerial vehicles (UAVs) for this purpose. As an operational test, in 2004 we flew a small autonomous UAV in the airspace above and around Stromboli Volcano. Based in part on this experience, we are adapting the RAVEN UAV system for such natural hazard surveillance missions. RAVEN has a 50km range, with a 3.5m wingspan, main fuselage length of 4.60m, and maximum weight of 56kg. It has autonomous flight capability and a ground control Station for the mission planning and control. It will carry a variety of imaging devices, including a visible camera, and an IR camera. It will also carry an experimental Fourier micro-interferometer based on MOEMS technology, (developed by IMM Institute of CNR), to detect atmospheric trace gases. Such flexible, capable, and easy-to-deploy UAV systems may significantly shorten the time necessary to characterize the nature and scale of the natural hazard threats if used from the outset of, and systematically during, natural hazard events. When appropriately utilized, such UAVs can provide a powerful new hazard mitigation and documentation tool for civil protection hazard responders. This research was carried out under the auspices of the Italian government, and, in part, under contract to NASA at the Jet Propulsion Laboratory.
NASA Astrophysics Data System (ADS)
Aswathanarayana, U.
2001-05-01
The proneness of a country or region to a given natural hazard depends upon its geographical location, physiography, geological and structural setting, landuse/landcover situation, and biophysical and socioeconomic environments (e.g. cyclones and floods in Bangladesh, earthquakes in Turkey, drought in Sub-Saharan Africa). While the natural hazards themselves cannot be prevented, it is possible to mitigate their adverse effects, by a knowledge-based, environmentally-sustainable approach, involving the stakeholder communities: (i) by being prepared: on the basis of the understanding of the land conditions which are prone to a given hazard and the processes which could culminate in damage to life and property (e.g. planting of dense-rooted vegetation belts to protect against landslides in the earthquake-prone areas), (ii) by avoiding improper anthropogenic activities that may exacerbate a hazard (e.g. deforestation accentuating the floods and droughts), and (iii) by putting a hazard to a beneficial use, where possible (groundwater recharging of flood waters), etc. Mitigation strategies need to be custom-made for each country/region by integrating the biophysical and socioeconomic components. The proposed paradigm is illustrated in respect of Extreme Weather Events (EWEs), which is based on the adoption of three approaches: (i) Typology approach, involving the interpretation of remotely sensed data, to predict (say) temporal and spatial distribution of precipitation, (ii) "black box" approach, whereby the potential environmental consequences of an EWE are projected on the basis of previously known case histories, and (iii) Information Technology approach, to translate advanced technical information in the form of "virtual" do-it-yourself steps understandable to lay public.
Department of Energy Natural Phenomena Hazards Mitigation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.C.
1993-09-01
This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.
NASA Astrophysics Data System (ADS)
Osland, Anna Christine
Hazardous liquid and natural gas transmission pipelines have received limited attention by planning scholars even though local development decisions can have broad consequences if a rupture occurs. In this dissertation, I evaluated the implications of land-use planning for reducing risk to transmission pipeline hazards in North Carolina via three investigations. First, using a survey of planning directors in jurisdictions with transmission pipeline hazards, I investigated the land use planning tools used to mitigate pipeline hazards and the factors associated with tool adoption. Planning scholars have documented the difficulty of inducing planning in hazardous areas, yet there remain gaps in knowledge about the factors associated with tool adoption. Despite the risks associated with pipeline ruptures, I found most localities use few mitigation tools, and the adoption of regulatory and informational tools appear to be influenced by divergent factors. Whereas risk perception, commitment, capacity, and community context were associated with total tool and information tool use, only risk perception and capacity factors were associated with regulatory tool use. Second, using interviews of emergency managers and planning directors, I examined the role of agency collaboration for building mitigation capacity. Scholars have highlighted the potential of technical collaboration, yet less research has investigated how inter-agency collaboration shapes mitigation capacity. I identify three categories of technical collaboration, discuss how collaborative spillovers can occur from one planning area to another, and challenge the notion that all technical collaborations result in equal mitigation outcomes. Third, I evaluated characteristics of the population near pipelines to address equity concerns. Surprisingly, I did not find broad support for differences in exposure of vulnerable populations. Nonetheless, my analyses uncovered statistically significant clusters of vulnerable groups within the hazard area. Interestingly, development closer to pipelines was newer than areas farther away, illustrating the failure of land-use planning to reduce development encroachment. Collectively, these results highlight the potential of land-use planning to keep people and development from encroaching on pipeline hazards. While this study indicates that planners in many areas address pipeline hazards, it also illustrates how changes to local practices can further reduce risks to human health, homeland security, and the environment.
NASA Astrophysics Data System (ADS)
Fleming, K. M.; Zschau, J.; Gasparini, P.; Modaressi, H.; Matrix Consortium
2011-12-01
Scientists, engineers, civil protection and disaster managers typically treat natural hazards and risks individually. This leads to the situation where the frequent causal relationships between the different hazards and risks, e.g., earthquakes and volcanos, or floods and landslides, are ignored. Such an oversight may potentially lead to inefficient mitigation planning. As part of their efforts to confront this issue, the European Union, under its FP7 program, is supporting the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project. The focus of MATRIX is on natural hazards, in particular earthquakes, landslides, volcanos, wild fires, storms and fluvial and coastal flooding. MATRIX will endeavour to develop methods and tools to tackle multi-type natural hazards and risks within a common framework, focusing on methodologies that are suited to the European context. The work will involve an assessment of current single-type hazard and risk assessment methodologies, including a comparison and quantification of uncertainties and harmonization of single-type methods, examining the consequence of cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and a series of test cases. Three test sites are being used to assess the methods developed within the project (Naples, Cologne, and the French West Indies), as well as a "virtual city" based on a comprehensive IT platform that will allow scenarios not represented by the test cases to be examined. In addition, a comprehensive dissemination program that will involve national platforms for disaster management, as well as various outreach activities, will be undertaken. The MATRIX consortium consists of ten research institutions (nine European and one Canadian), an end-user (i.e., one of the European national platforms for disaster reduction) and a partner from industry.
Modeling and mitigating natural hazards: Stationarity is immortal!
NASA Astrophysics Data System (ADS)
Montanari, Alberto; Koutsoyiannis, Demetris
2014-12-01
Environmental change is a reason of relevant concern as it is occurring at an unprecedented pace and might increase natural hazards. Moreover, it is deemed to imply a reduced representativity of past experience and data on extreme hydroclimatic events. The latter concern has been epitomized by the statement that "stationarity is dead." Setting up policies for mitigating natural hazards, including those triggered by floods and droughts, is an urgent priority in many countries, which implies practical activities of management, engineering design, and construction. These latter necessarily need to be properly informed, and therefore, the research question on the value of past data is extremely important. We herein argue that there are mechanisms in hydrological systems that are time invariant, which may need to be interpreted through data inference. In particular, hydrological predictions are based on assumptions which should include stationarity. In fact, any hydrological model, including deterministic and nonstationary approaches, is affected by uncertainty and therefore should include a random component that is stationary. Given that an unnecessary resort to nonstationarity may imply a reduction of predictive capabilities, a pragmatic approach, based on the exploitation of past experience and data is a necessary prerequisite for setting up mitigation policies for environmental risk.
AGU:Comments Requested on Natural Hazards Position Statement
NASA Astrophysics Data System (ADS)
2004-11-01
Natural hazards (earthquakes, floods, hurricanes, landslides, meteors, space weather, tornadoes, volcanoes, and other geophysical phenomena) are an integral component of our dynamic planet. These can have disastrous effects on vulnerable communities and ecosystems. By understanding how and where hazards occur, what causes them, and what circumstances increase their severity, we can develop effective strategies to reduce their impact. In practice, mitigating hazards requires addressing issues such as real-time monitoring and prediction, emergency preparedness, public education and awareness, post-disaster recovery, engineering, construction practices, land use, and building codes. Coordinated approaches involving scientists, engineers, policy makers, builders, lenders, insurers, news media, educators, relief organizations, and the public are therefore essential to reducing the adverse effects of natural hazards.
Earthquake and Volcanic Hazard Mitigation and Capacity Building in Sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Ayele, A.
2012-04-01
The East African Rift System (EARS) is a classic example of active continental rifting, and a natural laboratory setting to study initiation and early stage evolution of continental rifts. The EARS is at different stages of development that varies from relatively matured rift (16 mm/yr) in the Afar to a weakly extended Okavango Delta in the south with predicted opening velocity < 3 mm/yr. Recent studies in the region helped researchers to highlight the length and timescales of magmatism and faulting, the partitioning of strain between faulting and magmatism, and their implications for the development of along-axis segmentation. Although the human resource and instrument coverage is sparse in the continent, our understanding of rift processes and deep structure has improved in the last decade after the advent of space geodesy and broadband seismology. The recent major earthquakes, volcanic eruptions and mega dike intrusions that occurred along the EARS attracted several earth scientist teams across the globe. However, most African countries traversed by the rift do not have the full capacity to monitor and mitigate earthquake and volcanic hazards. Few monitoring facilities exist in some countries, and the data acquisition is rarely available in real-time for mitigation purpose. Many sub-Saharan Africa governments are currently focused on achieving the millennium development goals with massive infrastructure development scheme and urbanization while impending natural hazards of such nature are severely overlooked. Collaborations with overseas researchers and other joint efforts by the international community are opportunities to be used by African institutions to best utilize limited resources and to mitigate earthquake and volcano hazards.
49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.935 What additional preventive and mitigative...
NASA Astrophysics Data System (ADS)
Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.
2014-12-01
Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given uncertainties.
Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena suchmore » as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.« less
Steve Ostro and the Near-Earth Asteroid Impact Hazard
NASA Astrophysics Data System (ADS)
Chapman, Clark R.
2009-09-01
The late Steve Ostro, whose scientific interests in Near-Earth Asteroids (NEAs) primarily related to his planetary radar research in the 1980s, soon became an expert on the impact hazard. He quickly realized that radar provided perspectives on close-approaching NEAs that were both very precise as well as complementary to traditional astrometry, enabling good predictions of future orbits and collision probabilities extending for centuries into the future. He also was among the few astronomers who considered the profound issues raised by this newly recognized hazard and by early suggestions of how to mitigate the hazard. With Carl Sagan, Ostro articulated the "deflection dilemma" and other potential low-probability but real dangers of mitigation technologies that might be more serious than the low-probability impact hazard itself. Yet Ostro maintained a deep interest in developing responsible mitigation technologies, in educating the public about the nature of the impact hazard, and in learning more about the population of threatening bodies, especially using the revealing techniques of delay-doppler radar mapping of NEAs and their satellites.
2010-01-01
Planning Chapters Chapter 5 provides DSCA planning factors for response to all hazard events. Chapter 6 is a review of safety and operational/composite...risk management processes. Chapters 7 through 11 contain the Concepts of Operation (CONOPS) and details five natural hazards /disasters and the...Restoring critical public services and facilities through temporary measures • Identifying hazard mitigation opportunities 3.3.1.5 Rehabilitation
EnviroAtlas and the Eco-Health Relationship Browser: Connecting Ecosystems, People and Well-Being
Nature'e Benefit Categories in EnviroAtlas: Clean Air, Clean and Plentiful Water, Natural Hazard Mitigation, Climate Stabilization, Food, Fiber and Materials, Biodiversity Conservation, Recreation, Culture and Aesthetics,
Multi-satellite Mission in China for Monitoring Natural Hazards (Invited)
NASA Astrophysics Data System (ADS)
Guo, H.
2013-12-01
The impacts of natural hazards are continuing to increase around the world, and mitigation of the damages caused by natural hazards like floods, droughts, earthquakes, and cyclones has been a global challenge. Current evidence demonstrates there are many kinds of technologies for natural hazard management, but space technology is recognized as one of the most effective means. After 30 years of development, China has become an important member of the global remote sensing community. China has successfully developed an Earth observation system consisting of meteorological satellites, resources satellites, ocean satellites, environment and disaster monitoring satellites, micro-satellites, navigation satellites, and manned spacecraft. In this presentation, a short overview of China's Earth observation satellite missions will be presented. Specifically, the Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) will be introduced and discussed. SSCEDMF is a follow-up '4+4' satellite constellation including four optical satellites and four radar satellites, meant to improve disaster management capability in China. At the current stage, two optical satellites and an s-band synthetic aperture radar satellite have successfully launched. Disasters are a global issue that no country can address individually, requiring sharing and collaboration. China has benefited greatly from international collaboration in disaster mitigation, and has actively worked with international partners. To share our experience in dealing with the risk of disasters, some achievements and progress in space technology applications for disaster management will be introduced. In addition, collaborative activities with IRDR, the UN-SPIDER Beijing Office, and the CAS-TWAS Centre of Excellence on Space Technology for Disaster Mitigation (STDM) will be described.
On civil engineering disasters and their mitigation
NASA Astrophysics Data System (ADS)
Xie, Lili; Qu, Zhe
2018-01-01
Civil engineering works such as buildings and infrastructure are the carriers of human civilization. They are, however, also the origins of various types of disasters, which are referred to in this paper as civil engineering disasters. This paper presents the concept of civil engineering disasters, their characteristics, classification, causes, and mitigation technologies. Civil engineering disasters are caused primarily by civil engineering defects, which are usually attributed to improper selection of construction site, hazard assessment, design and construction, occupancy, and maintenance. From this viewpoint, many so-called natural disasters such as earthquakes, strong winds, floods, landslides, and debris flows are substantially due to civil engineering defects rather than the actual natural hazards. Civil engineering disasters occur frequently and globally and are the most closely related to human beings among all disasters. This paper emphasizes that such disasters can be mitigated mainly through civil engineering measures, and outlines the related objectives and scientific and technological challenges.
A New Master of Natural Hazards Program at The Australian National University
NASA Astrophysics Data System (ADS)
Pozgay, S.; Zoleta-Nantes, D.
2009-12-01
The new Master of Natural Hazards program at The Australian National University provides a multi-disciplinary approach to the study and monitoring of geophysical processes that can lead to the recognition of hazards and a consequent reduction of their impacts through emergency measures, disaster plans, and relief and rehabilitation. The program provides people with an understanding of the most up-to-date scientific understanding on the causes of natural hazards, their effects on human societies, and ways to mitigate their impacts and reduce their losses by focusing on Australia and the Asia-Pacific case studies. The Master of Natural Hazards program brings together the expertise of researchers across the university to provide an opportunity for students to do coursework and research projects that will provide them with extensive knowledge of the natural hazards that occur and pose the greatest risks on human communities in the Asia-Pacific, and an understanding of the human dimensions of the natural hazards occurrences. The program consists of two compulsory courses each in the Earth Sciences and in the Social Sciences that are designed to provide a complementary and comprehensive overview of natural hazards issues. Elective courses can be of a general grouping, or students may choose one of four Focus Streams: Environmental and Geographic Studies; Climate Change; Earth Structure and Imaging; or Socio-economic, Development and Policy Studies. A special case study project will involve writing a thesis on a topic to be approved by the Program Conveners and will comprise a body of work on an approved topic in natural hazards in the Asia-Pacific region. Students in this program will gain a broad scientific knowledge and methodological skills to understand the physical causes and frequency of the most important natural hazards in the Asia-Pacific region, as well as the latest scientific methods and best practices of monitoring them for hazard mapping and disaster reduction purposes. Furthermore, students will learn to apply critical thinking in studying the involvement of societies’ social systems in framing and influencing the severity of impacts and destructions that are brought about by different physical events. The academic training in hazards and disaster research that the program offers will enable students to get actively involved in the preparation of short- and long-term disaster mitigation programs that can help members of communities in Australia and the Asia-Pacific region who, without sufficient knowledge on hazards and skills on disaster management, would be left vulnerable against the adversities that can be brought about by natural hazards.
Assessing community vulnerabilities to natural hazards on the Island of Hawaii
NASA Astrophysics Data System (ADS)
Nishioka, Chris; Delparte, Donna
2010-05-01
The island of Hawaii is susceptible to numerous natural hazards such as tsunamis, flooding, lava flow, earthquakes, hurricanes, landslides, wildfires and storm surge. The impact of a natural disaster on the island's communities has the potential to endanger peoples' lives and threaten critical infrastructure, homes, businesses and economic drivers such as tourism. A Geographic Information System (GIS) has the ability to assess community vulnerabilities by examining the spatial relationships between hazard zones, socioeconomic infrastructure and demographic data. By drawing together existing datasets, GIS was used to examine a number of community vulnerabilities. Key areas of interest were government services, utilities, property assets, industry and transportation. GIS was also used to investigate population dynamics in hazard zones. Identification of community vulnerabilities from GIS analysis can support mitigation measures and assist planning and response measures to natural hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, J.
2017-02-10
The US energy sector is vulnerable to multiple hazards including both natural disasters and malicious attacks from an intelligent adversary. The question that utility owners, operators and regulators face is how to prioritize their investments to mitigate the risks from a hazard that can have the most impact on the asset of interest. In order to be able to understand their risk landscape and develop a prioritized mitigation strategy, they must quantify risk in a consistent way across all hazards their asset is facing. Without being able to quantitatively measure risk, it is not possible to defensibly prioritize security investmentsmore » or evaluate trade-offs between security and functionality. Development of a methodology that will consistently measure and quantify risk across different hazards is needed.« less
New Orleans After Hurricane Katrina: An Unnatural Disaster?
NASA Astrophysics Data System (ADS)
McNamara, D.; Werner, B.; Kelso, A.
2005-12-01
Motivated by destruction in New Orleans following hurricane Katrina, we use a numerical model to explore how natural processes, economic development, hazard mitigation measures and policy decisions intertwine to produce long periods of quiescence punctuated by disasters of increasing magnitude. Physical, economic and policy dynamics are modeled on a grid representing the subsiding Mississippi Delta region surrounding New Orleans. Water flow and resulting sediment erosion and deposition are simulated in response to prescribed river floods and storms. Economic development operates on a limited number of commodities and services such as agricultural products, oil and chemical industries and port services, with investment and employment responding to both local conditions and global constraints. Development permitting, artificial levee construction and pumping are implemented by policy agents who weigh predicted economic benefits (tax revenue), mitigation costs and potential hazards. Economic risk is reduced by a combination of private insurance, federal flood insurance and disaster relief. With this model, we simulate the initiation and growth of New Orleans coupled with an increasing level of protection from a series of flooding events. Hazard mitigation filters out small magnitude events, but terrain and hydrological modifications amplify the impact of large events. In our model, "natural disasters" are the inevitable outcome of the mismatch between policy based on short-time-scale economic calculations and stochastic forcing by infrequent, high-magnitude flooding events. A comparison of the hazard mitigation response to river- and hurricane-induced flooding will be discussed. Supported by NSF Geology and Paleontology and the Andrew W Mellon Foundation.
Natural Hazards and Climate Change: Making the Link for Policy Makers
NASA Astrophysics Data System (ADS)
Folger, P.
2003-04-01
Debate about global warming in the U.S. Congress often deteriorates when proposals for restricting consumption of fossil fuels, and thus curtailing carbon dioxide emissions, is mentioned. The negative economic implications of curtailing CO2 emissions often stifle Congressional thinking about strategies to deal with climate change. Some policy makers often malign climate change research as irrelevant to their citizens, e.g. why is simulating temperature trends 100 years into the future meaningful to their voters? An alternative approach is to connect climate change with ongoing natural events such as severe weather, drought and floods. These extreme events may or may not be exacerbated by anthropogenic CO2 emissions, but policy makers can debate and legislate approaches to mitigate against natural hazards now without mentioning carbon. What strategy might connect research results on understanding climate change and natural hazards mitigation in their minds? 1. Identify a specific situation where a key legislator's voters are threatened or affected by extreme natural phenomena, 2. Suggest a policy approach that provides protection or relief for those constituents, 3. Help the policy maker vet the idea within and without the scientific community, 4.Turn that idea into legislation and advocate for its passage.
Monitoring and characterizing natural hazards with satellite InSAR imagery
Lu, Zhong; Zhang, Jixian; Zhang, Yonghong; Dzurisin, Daniel
2010-01-01
Interferometric synthetic aperture radar (InSAR) provides an all-weather imaging capability for measuring ground-surface deformation and inferring changes in land surface characteristics. InSAR enables scientists to monitor and characterize hazards posed by volcanic, seismic, and hydrogeologic processes, by landslides and wildfires, and by human activities such as mining and fluid extraction or injection. Measuring how a volcano’s surface deforms before, during, and after eruptions provides essential information about magma dynamics and a basis for mitigating volcanic hazards. Measuring spatial and temporal patterns of surface deformation in seismically active regions is extraordinarily useful for understanding rupture dynamics and estimating seismic risks. Measuring how landslides develop and activate is a prerequisite to minimizing associated hazards. Mapping surface subsidence or uplift related to extraction or injection of fluids during exploitation of groundwater aquifers or petroleum reservoirs provides fundamental data on aquifer or reservoir properties and improves our ability to mitigate undesired consequences. Monitoring dynamic water-level changes in wetlands improves hydrological modeling predictions and the assessment of future flood impacts. In addition, InSAR imagery can provide near-real-time estimates of fire scar extents and fire severity for wildfire management and control. All-weather satellite radar imagery is critical for studying various natural processes and is playing an increasingly important role in understanding and forecasting natural hazards.
Page, William R.; Parcher, Jean W.; Stefanov, Jim
2013-01-01
Natural hazards such as earthquakes, landslides and debris flows, wildfires, hurricanes, and intense storm-induced flash floods threaten communities to varying degrees all along the United States–Mexican border. The U.S. Geological Survey (USGS) collaborates with Federal, State, and local agencies to minimize the effects of natural hazards by providing timely, unbiased science information to emergency response officials, resource managers, and the public to help reduce property damage, injury, and loss of life. The USGS often mobilizes response efforts during and after a natural hazard event to provide technical and scientific counsel on recovery and response, and it has a long history of deploying emergency response teams to major disasters in both domestic and international locations. This chapter describes the challenges of natural hazards in the United States–Mexican border region and the capabilities of the USGS in the fields of hazard research, monitoring, and assessment, as well as preventative mitigation and post-disaster response.
Natural Hazards, Second Edition
NASA Astrophysics Data System (ADS)
Rouhban, Badaoui
Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.
Digging Our Own Holes: Institutional Perspectives on Seismic Hazards
NASA Astrophysics Data System (ADS)
Stein, S.; Tomasello, J.
2005-12-01
It has been observed that there are no true students of the earth; instead, we each dig our own holes and sit in them. A similar situation arises in attempts to assess the hazards of earthquakes and other natural disasters and to develop strategies to mitigate them. Ideally, we would like to look at the interests of society as a whole and develop strategies that best balance hazard mitigation with alternative uses of resources. Doing so, however, is difficult for several reasons. First, estimating seismic hazards requires assumptions about the size, recurrence, and shaking from future earthquakes, none of which are well known. Second, we have to chose a definition of seismic hazard, which is even more arbitrary and at least as significant about future earthquakes. Third, mitigating the risks involves economic and policy issues as well as the scientific one of estimating the hazard itself and the engineering one of designing safe structures. As a result, different public and private organizations with different institutional perspectives naturally adopt different approaches. Most organizations have a single focus. For example, those focusing on economic development tend to discount hazards, whereas emergency management groups tend to accentuate them. Organizations with quasi-regulatory duties (BSSC, FEMA, USGS) focus on reducing losses in future earthquakes without considering the cost of mitigation measures or how this use of resources should be balanced with alternative uses of resources that could mitigate other losses. Some organizations, however, must confront these tradeoffs directly because they allocate resources internally. Hence hospitals implicitly trade off more earthquake resistant construction with treating uninsured patients, highway departments balance stronger bridges with other safety improvements, and schools balance safer buildings with after school programs. These choices are complicated by the fact that such infrastructure typically has longer life than normal commercial or residential buildings, and the direct and indirect losses resulting from their failure can be much larger. Hence the issue is balancing mitigating large losses in infrequent disasters with smaller but steady losses that may over time be greater. Finally, there has been little investigation of the benefits of mitigation regulations on the private sector relative to their consequences, which may significantly increase building costs, require seismic retrofits, and cause difficulties in securing loans and insurance. Possible outcomes include reduced economic activity (firms don't build or build elsewhere), job loss (or reduced growth), and the resulting reduction in tax revenue and thus public services. Given these complexities, organizations should be encouraged to examine broader societal issues beyond their institutional perspectives, and significant efforts should be made to develop a more integrated approach.
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2011 CFR
2011-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
24 CFR 51.204 - HUD-assisted hazardous facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... area where people may congregate or be present. The mitigating measures listed in § 51.205 may be taken.... 51.204 Section 51.204 Housing and Urban Development Office of the Secretary, Department of Housing... Hazardous Operations Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.204...
DOT National Transportation Integrated Search
2018-02-01
The incidence of icefall is one of the most underrepresented and likely underappreciated of all the natural hazards. Falling pieces of ice are subject to melting and sublimation, and evidence of such events may be gone in a matter of days or even hou...
Natural and Man-Made Hazards in the Cayman Islands
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Suarez, G.
2010-12-01
Located in the western Caribbean Sea to the northwest of Jamaica, the Cayman Islands are a British overseas territory comprised of three islands: Grand Cayman, Cayman Brac, and Little Cayman. These three islands occupy around 250 km2 of land area. In this work, historical and recent data were collected and classified to identify and rank the natural and man-made hazards that may potentially affect the Cayman Islands and determine the level of exposure of Grand Cayman to these events. With this purpose, we used the vulnerability assessment methodology developed by the North Caroline Department of Environment and Natural Resources. The different degrees of physical vulnerability for each hazard were graphically interpreted with the aid of maps using a relative scoring system. Spatial maps were generated showing the areas of different levels of exposure to multi-hazards. The more important natural hazard to which the Cayman Islands are exposed is clearly hurricanes. To a lesser degree, the islands may be occasionally exposed to earthquakes and tsunamis. Explosions or leaks of the Airport Texaco Fuel Depot and the fuel pipeline at Grand Cayman are the most significant man-made hazards. Our results indicate that there are four areas in Grand Cayman with various levels of exposure to natural and man-made hazards: The North Sound, Little Sound and Eastern West Bay (Area 1) show a very high level of exposure; The Central Mangroves, Central Bodden Town, Central George Town and the West Bay (Area 2) have high level of exposure; The Northwestern West Bay, Western Georgetown-Bodden Town, and East End-North Side (Area 3) are under moderate levels of exposure. The remainder of the island shows low exposure (Area 4). It is important to underline that this study presents a first evaluation of the main natural and man-made hazards that may affect the Cayman Islands. The maps generated will be useful tools for emergency managers and policy developers and will increase the overall awareness of decision makers for disasters prevention and mitigation plans. Our results constitute the basis of future mitigation risk projects in the islands. Areas showing the level of exposure to natural and man-made hazards at Grand Cayman.
NASA Astrophysics Data System (ADS)
Sugimoto, M.; Song, Y.
2015-12-01
Areas of scientific specialties have been segmentalized nowadays. Each natural hazard are researched by scientific researchers. A huge variety of textbooks on one or few natural hazard are published by a single researcher in the world. There are possibilities are several natural disaster in one place. People have to learn from each hazard. However such disaster textbook is not unified education publish. Education in disaster mitigation covers many fields. There is a strong need for a single unified textbook. When I teach disaster education to children in kindergartens and schools, I understand students are confused by each different direction in such textbooks. "Doctor, which is right when a earthquake happens, cover my head or go out of a building? " I would like to discuss what the most valuable disaster textbook is as my following disatser handbook with audiences. This is publisehd for developping countries. You can freely download UNESCO disaster handbook following URL:http://www.icharm.pwri.go.jp/publication/pdf/handbook_on_local_disaster_management_experiences.pdf
NASA Astrophysics Data System (ADS)
Cronin, S. J.
2017-12-01
The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy, economic and knowledge barriers to adoption often lead to hazard mitigation practice lagging far behind its potential.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence. PMID:24825660
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation.
Ferrario, Filippo; Beck, Michael W; Storlazzi, Curt D; Micheli, Fiorenza; Shepard, Christine C; Airoldi, Laura
2014-05-13
The world's coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
The effectiveness of coral reefs for coastal hazard risk reduction and adaptation
Ferrario, Filippo; Beck, Michael W.; Storlazzi, Curt D.; Micheli, Fiorenza; Shepard, Christine C.; Airoldi, Laura
2014-01-01
The world’s coastal zones are experiencing rapid development and an increase in storms and flooding. These hazards put coastal communities at heightened risk, which may increase with habitat loss. Here we analyse globally the role and cost effectiveness of coral reefs in risk reduction. Meta-analyses reveal that coral reefs provide substantial protection against natural hazards by reducing wave energy by an average of 97%. Reef crests alone dissipate most of this energy (86%). There are 100 million or more people who may receive risk reduction benefits from reefs or bear hazard mitigation and adaptation costs if reefs are degraded. We show that coral reefs can provide comparable wave attenuation benefits to artificial defences such as breakwaters, and reef defences can be enhanced cost effectively. Reefs face growing threats yet there is opportunity to guide adaptation and hazard mitigation investments towards reef restoration to strengthen this first line of coastal defence.
The Relation of Hazard Awareness to Adoption of Approved Mitigation Measures.
ERIC Educational Resources Information Center
Saarinen, Thomas F.
The relationship between an individual's or community's awareness of natural hazards and subsequent behavior change is examined in this review of research. The document is presented in seven sections. Following Section I, the introduction, Section II discusses the role of experience in behavior change. Section III examines the role of education…
Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This DOE standard gives design and evaluation criteria for natural phenomena hazards (NPH) effects as guidance for implementing the NPH mitigation requirements of DOE 5480.28. Goal of the criteria is to assure that DOE facilities can withstand the effects of earthquakes, extreme winds, tornadoes, flooding, etc. They apply to the design of new facilities and the evaluation of existing facilities; they may also be used for modification and upgrading of the latter.
Automated Purgatoid Identification: Final Report
NASA Technical Reports Server (NTRS)
Wood, Steven
2011-01-01
Driving on Mars is hazardous: technical problems and unforeseen natural hazards can end a mission quickly at the worst, or result in long delays at best. This project is focused on helping to mitigate hazards posed to rovers by purgatoids: small (less than 1 m high, less than 10 m wide), ripple-like eolian bedforms commonly found scattered across the Meridiani Planum region of Mars. Due to the poorly consolidated nature of purgatoids and multiple past episodes of rovers getting stuck in them, identification and avoidance of these eolian bedforms is an important feature of rover path planning (NASA, 2011).
Linking Ecosystem Services and Human Health: The Eco-Health Relationship Browser
Ecosystems provide multiple services associated with the provision of nature-based goods and services. Many of these ecosystem services have been linked to a range of positive health outcomes through buffering of pollutants, mitigation of natural hazards, and promotion of healthy...
Wicked Problems in Natural Hazard Assessment and Mitigation
NASA Astrophysics Data System (ADS)
Stein, S.; Steckler, M. S.; Rundle, J. B.; Dixon, T. H.
2017-12-01
Social scientists have defined "wicked" problems that are "messy, ill-defined, more complex than we fully grasp, and open to multiple interpretations based on one's point of view... No solution to a wicked problem is permanent or wholly satisfying, which leaves every solution open to easy polemical attack." These contrast with "tame" problems in which necessary information is available and solutions - even if difficult and expensive - are straightforward to identify and execute. Updating the U.S.'s aging infrastructure is a tame problem, because what is wrong and how to fix it are clear. In contrast, addressing climate change is a wicked problem because its effects are uncertain and the best strategies to address them are unclear. An analogous approach can be taken to natural hazard problems. In tame problems, we have a good model of the process, good information about past events, and data implying that the model should predict future events. In such cases, we can make a reasonable assessment of the hazard that can be used to develop mitigation strategies. Earthquake hazard mitigation for San Francisco is a relatively tame problem. We understand how the earthquakes result from known plate motions, have information about past earthquakes, and have geodetic data implying that future similar earthquakes will occur. As a result, it is straightforward to develop and implement mitigation strategies. However, in many cases, hazard assessment and mitigation is a wicked problem. How should we prepare for a great earthquake on plate boundaries where tectonics favor such events but we have no evidence that they have occurred and hence how large they may be or how often to expect them? How should we assess the hazard within plates, for example in the New Madrid seismic zone, where large earthquakes have occurred but we do not understand their causes and geodetic data show no strain accumulating? How can we assess the hazard and make sensible policy when the recurrence of earthquakes, floods, or hurricanes seems to be changing with time or is expected to do so due to human activity? A starting approach might be to assess what we know, what we don't know, what we think, and what can be done that might improve this situation. We should draw on what is known in other areas of risk assessment including social science, meteorology, engineering, and economics.
Improved satellite-based emergency alerting system
NASA Astrophysics Data System (ADS)
Bernard, E. N.; Milburn, H. B.
1991-12-01
Rapid-onset natural hazards have claimed more than 2.8 million lives worldwide in the past 20 years. This category includes such events as earthquakes, landslides, hurricanes, tornadoes, floods, volcanic eruptions, wildfires, and tsunamis. Effective hazard mitigation is particularly difficult in such cases, since the time available to issue warnings can be very short or even nonexistent. A general approach to mitigate the effects of these disasters was demonstrated in 1988 that included preevent emergency planning, real-time hazard assessment, and rapid warning via satellite communication links. This article reports on improvements in this satellite-based emergency alerting communication system that have reduced the response time from 87 to 17 sec and expanded the broadcast coverage from 40 percent to 62 percent of the earth's surface.
a model based on crowsourcing for detecting natural hazards
NASA Astrophysics Data System (ADS)
Duan, J.; Ma, C.; Zhang, J.; Liu, S.; Liu, J.
2015-12-01
Remote Sensing Technology provides a new method for the detecting,early warning,mitigation and relief of natural hazards. Given the suddenness and the unpredictability of the location of natural hazards as well as the actual demands for hazards work, this article proposes an evaluation model for remote sensing detecting of natural hazards based on crowdsourcing. Firstly, using crowdsourcing model and with the help of the Internet and the power of hundreds of millions of Internet users, this evaluation model provides visual interpretation of high-resolution remote sensing images of hazards area and collects massive valuable disaster data; secondly, this evaluation model adopts the strategy of dynamic voting consistency to evaluate the disaster data provided by the crowdsourcing workers; thirdly, this evaluation model pre-estimates the disaster severity with the disaster pre-evaluation model based on regional buffers; lastly, the evaluation model actuates the corresponding expert system work according to the forecast results. The idea of this model breaks the boundaries between geographic information professionals and the public, makes the public participation and the citizen science eventually be realized, and improves the accuracy and timeliness of hazards assessment results.
The evolution and provision of expert knowledge and its effective utilisation
NASA Astrophysics Data System (ADS)
Sammonds, Peter
2017-04-01
The specific aims of increasing Resilience to Natural Hazards in China programme are (i) to improve hazard forecasting, risk mitigation and preparedness based upon reliable knowledge of the fundamental processes involved and underpinned by basic science and, (ii) to improve the uptake of and responses to scientific advice, by developing risk-based approaches to natural hazards in collaboration with the communities at risk. One of the programme's principal goals is to integrate natural and social science research to increase the benefits for those affected by natural hazards. To that end a co-productive approach to research is expected, involving a framework for sharing knowledge and values between natural and social scientists and consultation with policy makers, civil society and other stakeholders. This paper explore knowledge relationships and reflective learning across disciplines. There is commonly a disjunction between the evolution and provision of expert knowledge and its effective utilisation. Building on experience as Strategic Advisor to the Increasing Resilience to Natural Hazards programme, this paper addresses the research needs to assess how scientific knowledge and risk reduction strategies can be most effectively developed and communicated.
Wildfire risk management on a landscape with public and private ownership: Who pays for protection?
Gwenlyn Busby; Heidi J. Albers
2010-01-01
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners' hazard mitigation decisions on a landscape with public and...
NASA Astrophysics Data System (ADS)
Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara
2010-05-01
Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.
Preparing for Euro 2012: developing a hazard risk assessment.
Wong, Evan G; Razek, Tarek; Luhovy, Artem; Mogilevkina, Irina; Prudnikov, Yuriy; Klimovitskiy, Fedor; Yutovets, Yuriy; Khwaja, Kosar A; Deckelbaum, Dan L
2015-04-01
Risk assessment is a vital step in the disaster-preparedness continuum as it is the foundation of subsequent phases, including mitigation, response, and recovery. To develop a risk assessment tool geared specifically towards the Union of European Football Associations (UEFA) Euro 2012. In partnership with the Donetsk National Medical University, Donetsk Research and Development Institute of Traumatology and Orthopedics, Donetsk Regional Public Health Administration, and the Ministry of Emergency of Ukraine, a table-based tool was created, which, based on historical evidence, identifies relevant potential threats, evaluates their impacts and likelihoods on graded scales based on previous available data, identifies potential mitigating shortcomings, and recommends further mitigation measures. This risk assessment tool has been applied in the vulnerability-assessment-phase of the UEFA Euro 2012. Twenty-three sub-types of potential hazards were identified and analyzed. Ten specific hazards were recognized as likely to very likely to occur, including natural disasters, bombing and blast events, road traffic collisions, and disorderly conduct. Preventative measures, such as increased stadium security and zero tolerance for impaired driving, were recommended. Mitigating factors were suggested, including clear, incident-specific preparedness plans and enhanced inter-agency communication. This hazard risk assessment tool is a simple aid in vulnerability assessment, essential for disaster preparedness and response, and may be applied broadly to future international events.
Wade E. Martin; Ingrid M. Martin; Brian Kent
2009-01-01
An important policy question receiving considerable attention concerns the risk perception-risk mitigation process that guides how individuals choose to address natural hazard risks. This question is considered in the context of wildfire. We analyze the factors that influence risk reduction behaviors by homeowners living in the wildland-urban interface. The factors...
NASA Astrophysics Data System (ADS)
Koay, Swee Peng; Fukuoka, Hiroshi; Tien Tay, Lea; Murakami, Satoshi; Koyama, Tomofumi; Chan, Huah Yong; Sakai, Naoki; Hazarika, Hemanta; Jamaludin, Suhaimi; Lateh, Habibah
2016-04-01
Every year, hundreds of landslides occur in Malaysia and other tropical monsoon South East Asia countries. Therefore, prevention casualties and economical losses, by rain induced slope failure, are those countries government most important agenda. In Malaysia, millions of Malaysian Ringgit are allocated for slope monitoring and mitigation in every year budget. Besides monitoring the slopes, here, we propose the IT system which provides hazard map information, landslide historical information, slope failure prediction, knowledge on natural hazard, and information on evacuation centres via internet for user to understand the risk of landslides as well as flood. Moreover, the user can obtain information on rainfall intensity in the monitoring sites to predict the occurrence of the slope failure. Furthermore, we are working with PWD, Malaysia to set the threshold value for the landslide prediction system which will alert the officer if there is a risk of the slope failure in the monitoring sites by calculating rainfall intensity. Although the IT plays a significant role in information dissemination, education is also important in disaster prevention by educating school students to be more alert in natural hazard, and there will be bottom up approach to alert parents on what is natural hazard, by conversion among family members, as most of the parents are busy and may not have time to attend natural hazard workshop. There are many races living in Malaysia as well in most of South East Asia countries. It is not easy to educate them in single education method as the level of living and education are different. We started landslides education workshops in primary schools in rural and urban area, in Malaysia. We found out that we have to use their mother tongue language while conducting natural hazard education for better understanding. We took questionnaires from the students before and after the education workshop. Learning from the questionnaire result, the students are more alert on natural disaster then before, after attending the workshop.
Communicating Volcanic Hazards in the North Pacific
NASA Astrophysics Data System (ADS)
Dehn, J.; Webley, P.; Cunningham, K. W.
2014-12-01
For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.
Hearn,, Paul P.
2009-01-01
Federal, State, and local government agencies in the United States face a broad range of issues on a daily basis. Among these are natural hazard mitigation, homeland security, emergency response, economic and community development, water supply, and health and safety services. The U.S. Geological Survey (USGS) helps decision makers address these issues by providing natural hazard assessments, information on energy, mineral, water and biological resources, maps, and other geospatial information. Increasingly, decision makers at all levels are challenged not by the lack of information, but by the absence of effective tools to synthesize the large volume of data available, and to utilize the data to frame policy options in a straightforward and understandable manner. While geographic information system (GIS) technology has been widely applied to this end, systems with the necessary analytical power have been usable only by trained operators. The USGS is addressing the need for more accessible, manageable data tools by developing a suite of Web-based geospatial applications that will incorporate USGS and cooperating partner data into the decision making process for a variety of critical issues. Examples of Web-based geospatial tools being used to address societal issues follow.
Social Uptake of Scientific Understanding of Seismic Hazard in Sumatra and Cascadia
NASA Astrophysics Data System (ADS)
Shannon, R.; McCloskey, J.; Guyer, C.; McDowell, S.; Steacy, S.
2007-12-01
The importance of science within hazard mitigation cannot be underestimated. Robust mitigation polices rely strongly on a sound understanding of the science underlying potential natural disasters and the transference of that knowledge from the scientific community to the general public via governments and policy makers. We aim to investigate how and why the public's knowledge, perceptions, response, adjustments and values towards science have changed throughout two decades of research conducted in areas along and adjacent to the Sumatran and Cascadia subduction zones. We will focus on two countries subject to the same potential hazard, but which encompass starkly contrasting political, economic, social and environmental settings. The transfer of scientific knowledge into the public/ social arena is a complex process, the success of which is reflected in a community's ability to withstand large scale devastating events. Although no one could have foreseen the magnitude of the 2004 Boxing Day tsunami, the social devastation generated underscored the stark absence of mitigation measures in the nations most heavily affected. It furthermore emphasized the need for the design and implementation of disaster preparedness measures. Survey of existing literature has already established timelines for major events and public policy changes in the case study areas. Clear evidence exists of the link between scientific knowledge and its subsequent translation into public policy, particularly in the Cascadia context. The initiation of the National Tsunami Hazard Mitigation Program following the Cape Mendocino earthquake in 1992 embodies this link. Despite a series of environmental disasters with recorded widespread fatalities dating back to the mid 1900s and a heightened impetus for scientific research into tsunami/ earthquake hazard following the 2004 Boxing Day tsunami, the translation of science into the public realm is not widely obvious in the Sumatran context. This research aims to further investigate how the enhanced understanding of earthquake and tsunami hazards is being used to direct hazard mitigation strategies and enables direct comparison with the scientific and public policy developments in Cascadia.
The risk perception paradox--implications for governance and communication of natural hazards.
Wachinger, Gisela; Renn, Ortwin; Begg, Chloe; Kuhlicke, Christian
2013-06-01
This article reviews the main insights from selected literature on risk perception, particularly in connection with natural hazards. It includes numerous case studies on perception and social behavior dealing with floods, droughts, earthquakes, volcano eruptions, wild fires, and landslides. The review reveals that personal experience of a natural hazard and trust--or lack of trust--in authorities and experts have the most substantial impact on risk perception. Cultural and individual factors such as media coverage, age, gender, education, income, social status, and others do not play such an important role but act as mediators or amplifiers of the main causal connections between experience, trust, perception, and preparedness to take protective actions. When analyzing the factors of experience and trust on risk perception and on the likeliness of individuals to take preparedness action, the review found that a risk perception paradox exists in that it is assumed that high risk perception will lead to personal preparedness and, in the next step, to risk mitigation behavior. However, this is not necessarily true. In fact, the opposite can occur if individuals with high risk perception still choose not to personally prepare themselves in the face of a natural hazard. Therefore, based on the results of the review, this article offers three explanations suggesting why this paradox might occur. These findings have implications for future risk governance and communication as well as for the willingness of individuals to invest in risk preparedness or risk mitigation actions. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil
2017-01-01
Disruptions to transportation networks by natural hazard events cause direct losses (e.g. by physical damage) and indirect socio-economic losses via travel delays and decreased transportation efficiency. The severity and spatial distribution of these losses varies according to user travel demands and which links, nodes or infrastructure assets are physically disrupted. Increasing transport network resilience, for example by targeted mitigation strategies, requires the identification of the critical network segments which if disrupted would incur undesirable or unacceptable socio-economic impacts. Here, these impacts are assessed on a national road transportation network by coupling hazard data with a transport network model. This process is illustrated using a case study of landslide hazards on the road network of Scotland. A set of possible landslide-prone road segments is generated using landslide susceptibility data. The results indicate that at least 152 road segments are susceptible to landslides, which could cause indirect economic losses exceeding £35 k for each day of closure. In addition, previous estimates for historic landslide events might be significant underestimates. For example, the estimated losses for the 2007 A83 ‘Rest and Be Thankful’ landslide are £80 k day-1, totalling £1.2 million over a 15 day closure, and are ˜60% greater than previous estimates. The spatial distribution of impact to road users is communicated in terms of ‘extended hazard impact footprints’. These footprints reveal previously unknown exposed communities and unanticipated spatial patterns of severe disruption. Beyond cost-benefit analyses for landslide mitigation efforts, the approach implemented is applicable to other natural hazards (e.g. flooding), combinations of hazards, or even other network disruption events.
NASA Astrophysics Data System (ADS)
Thomas, E. A.
2012-12-01
Worldwide, the toll of disaster damage caused by foreseeable natural hazards is growing, despite the fact that science is increasingly able to quantify the risk and foresee the likely location of natural events (NCDC 2012; NHC 2010). Those events can cause disastrous consequences if human built infrastructure is not properly designed for both the current state and future events (IBHS, 2012). Our existing approaches are not working at reducing the mounting toll of disasters which follow foreseeable natural events. Rather, even if the climate were not changing, current land use decisions coupled with development, engineering, design, and construction practices are significantly contributing to further increasing an unsustainable toll from disasters (Pielke, Gratz et al. 2007). Safe and proper construction practices developed to reduce flood losses (e.g. Design for Flooding, Watson, Adams et al., 2010) are all too often thought of as a zero sum situation where the community wins and the developer loses. In reality, the United States and the rest of the world often can find win-win solutions based on sound economics, law, ethics, and environmental sustainability that will benefit communities, developers, and natural hazard risk mitigation practitioners. While such solutions are being implemented in a fragmentary manner throughout the United States, communities implementing these solutions are increasingly working together in peer networks, such as the Natural Hazard Mitigation Association (NHMA)'s Resilient Neighbors Network. Examples include the Urban Drainage and Flood Control District that covers the metropolitan Denver area and recent work in Tulsa, Oklahoma. This presentation will set forth the scientific, ethical, and legal basis of higher development standards which, when combined with good negotiations techniques, can significantly decrease the terrible misery from wildfires, tornadoes, floods, and other natural disasters. Communities clearly have the legal right to implement safe design standards (Thomas, Riley Medlock 2008); yet all too often do not (NOAA, 2010). The required negotiations techniques must include outreach even to those who believe the topics of climate change and sustainability are some sort of plot against property rights and the free enterprise system. The presentation will also challenge the scientific community to support reasoned efforts to better prepare society for the even greater challenges posed by climate variability, uncertainty, and change: to work with practitioners who seek to build a safe and sustainable future to identify gaps in scientific knowledge and help develop workable solutions at the local level. Edward A. Thomas Esq. President Natural Hazard Mitigation Association
NASA Astrophysics Data System (ADS)
Wong-Parodi, G.; Fischhoff, B.
2012-12-01
Even though most people believe that natural hazards preparation is important for mitigating damage to their homes and basic survival in the aftermath of a disaster, few actually disaster-proof their homes, create plans, or obtain supplies recommended by agencies such as the Federal Emergency Management Agency. Several observational studies suggest that socio-demographic characteristics such as income and psychological characteristics such as self-efficacy affect whether or not an individual takes action to prepare for a natural hazard. These studies, however, only suggest that these characteristics may play a role. There has been little research that systematically investigates how these characteristics play a role in people's perceptions of recommended preparatory activities and decisions to perform them. Therefore, in Study 1, we explore people's perceptions of natural hazards preparedness measures on four dimensions: time, cost, helpfulness, and sense of preparedness. We further investigate if these responses vary by the socio-demographic and psychological characteristics of self-efficacy, knowledge, and income level. In Study 2, we experimentally test whether people's sense of self-efficacy, as it relates to natural hazards, can be manipulated through exposure to an "easy-and-effective" versus a "hard-and-effective" set of preparation measures. Our findings have implications for the design of natural hazards communication materials for the general public.
Nicole M. Vaillant; Elizabeth D. Reinhardt
2017-01-01
The National Cohesive Wildland Fire Management Strategy recognizes that wildfire is a necessary natural process in many ecosystems and strives to reduce conflicts between fire-prone landscapes and people. In an effort to mitigate potential negative wildfire impacts proactively, the Forest Service fuels program reduces wildland fuels. As part of an internal program...
Assessing the costs of hazard mitigation through landscape interventions in the urban structure
NASA Astrophysics Data System (ADS)
Bostenaru-Dan, Maria; Aldea Mendes, Diana; Panagopoulos, Thomas
2014-05-01
In this paper we look at an issue rarely approached, the economic efficiency of natural hazard risk mitigation. The urban scale at which a natural hazard can impact leads to the importance of urban planning strategy in risk management. However, usually natural, engineering, and social sciences deal with it, and the role of architecture and urban planning is neglected. Climate change can lead to risks related to increased floods, desertification, sea level rise among others. Reducing the sealed surfaces in cities through green spaces in the crowded centres can mitigate them, and can be foreseen in restructuration plans in presence or absence of disasters. For this purpose we reviewed the role of green spaces and community centres such as churches in games, which can build the core for restructuration efforts, as also field and archive studies show. We look at the way ICT can contribute to organize the information from the building survey to economic computations in direct modeling or through games. The roles of game theory, agent based modeling and networks and urban public policies in designing decision systems for risk management are discussed. Games rules are at the same time supported by our field and archive studies, as well as research by design. Also we take into consideration at a rare element, which is the role of landscape planning, through the inclusion of green elements in reconstruction after the natural and man-made disasters, or in restructuration efforts to mitigate climate change. Apart of existing old city tissue also landscape can be endangered by speculation and therefore it is vital to highlight its high economic value, also in this particular case. As ICOMOS highlights for the 2014 congress, heritage and landscape are two sides of the same coin. Landscape can become or be connected to a community centre, the first being necessary for building a settlement, the second raising its value, or can build connections between landmarks in urban routes. For this reason location plays a role not only for mitigating the effects of hazards but also for increasing the value of land through vicinities. Games are only another way to build a model of the complex system which is the urban organism in this regard, and a model is easier to be analysed than the system while displaying its basic rules. The role of landscape of building roads of memory between landmarks in the reconstruction is yet to be investigated in a future proposed COST action.
NASA Astrophysics Data System (ADS)
Agar, S. M.; Kunreuther, H.
2005-12-01
Policy formulation for the mitigation and management of risks posed by natural hazards requires that governments confront difficult decisions for resource allocation and be able to justify their spending. Governments also need to recognize when spending offers little improvement and the circumstances in which relatively small amounts of spending can make substantial differences. Because natural hazards can have detrimental impacts on local and regional economies, patterns of economic development can also be affected by spending decisions for disaster mitigation. This paper argues that by mapping interdependencies among physical, social and economic factors, governments can improve resource allocation to mitigate the risks of natural hazards while improving economic development on local and regional scales. Case studies of natural hazards in Turkey have been used to explore specific "filters" that act to modify short- and long-term outcomes. Pre-event filters can prevent an event from becoming a natural disaster or change a routine event into a disaster. Post-event filters affect both short and long-term recovery and development. Some filters cannot be easily modified by spending (e.g., rural-urban migration) but others (e.g., land-use practices) provide realistic spending targets. Net social benefits derived from spending, however, will also depend on the ways by which filters are linked, or so-called "interdependencies". A single weak link in an interdependent system, such as a power grid, can trigger a cascade of failures. Similarly, weak links in social and commercial networks can send waves of disruption through communities. Conversely, by understanding the positive impacts of interdependencies, spending can be targeted to maximize net social benefits while mitigating risks and improving economic development. Detailed information on public spending was not available for this study but case studies illustrate how networks of interdependent filters can modify social benefits and costs. For example, spending after the 1992 Erzincan earthquake targeted local businesses but limited alternative employment, labor losses and diminished local markets all contributed to economic stagnation. Spending after the 1995 Dinar earthquake provided rent subsidies, supporting a major exodus from the town. Consequently many local people were excluded from reconstruction decisions and benefits offered by reconstruction funds. After the 1999 Marmara earthquakes, a 3-year economic decline in Yalova illustrates the vulnerability of local economic stability to weak regulation enforcement by a few agents. A resource allocation framework indicates that government-community relations, lack of economic diversification, beliefs, and compensation are weak links for effective spending. Stronger positive benefits could be achieved through spending to target land-use regulation enforcement, labor losses, time-critical needs of small businesses, and infrastructure. While the impacts of the Marmara earthquakes were devastating, strong commercial networks and international interests helped to re-establish the regional economy. Interdependencies may have helped to drive a recovery. Smaller events in eastern Turkey, however, can wipe out entire communities and can have long-lasting impacts on economic development. These differences may accelerate rural to urban migration and perpetuate regional economic divergence in the country. 1: Research performed in the Wharton MBA Program, Univ. of Pennsylvania.
The NASA Applied Science Program Disasters Area: Disaster Applications Research and Response
NASA Astrophysics Data System (ADS)
Murray, J. J.; Lindsay, F. E.; Stough, T.; Jones, C. E.
2014-12-01
The goal of the Natural Disaster Application Area is to use NASA's capabilities in spaceborne, airborne, surface observations, higher-level derived data products, and modeling and data analysis to improve natural disaster forecasting, mitigation, and response. The Natural Disaster Application Area applies its remote sensing observations, modeling and analysis capabilities to provide hazard and disaster information where and when it is needed. Our application research activities specifically contribute to 1) Understanding the natural processes that produce hazards, 2)Developing hazard mitigation technologies, and 3)Recognizing vulnerability of interdependent critical infrastructure. The Natural Disasters Application area selects research projects through a rigorous, impartial peer-review process that address a broad spectrum of disasters which afflict populations within the United States, regionally and globally. Currently there are 19 active projects in the research portfolio which address the detection, characterization, forecasting and response to a broad range of natural disasters including earthquakes, tsunamis, volcanic eruptions and ash dispersion, wildfires, hurricanes, floods, tornado damage assessment, oil spills and disaster data mining. The Disasters team works with federal agencies to aid the government in meeting the challenges associated with natural disaster response and to transfer technologies to agencies as they become operational. Internationally, the Disasters Area also supports the Committee on Earth Observations Working Group on Disasters, and the International Charter on Space and Disasters to increase, strengthen, and coordinate contributions of NASA Earth-observing satellites and applications products to disaster risk management. The CEOS group will lead pilot efforts focused on identifying key systems to support flooding, earthquake, and volcanic events.
Spelling out the fear. Thoughts on science communication from a dangerous country
NASA Astrophysics Data System (ADS)
Todesco, Micol
2015-04-01
The rapid growth of population and the increasing costs of natural disaster demand for an effective hazard mitigation. A key element for mitigation is a good and widespread understanding of the adverse natural phenomena. But science communication is a complex matter especially when dealing with natural hazards, where the heaviness of responsibility is further loaded with the uncertainty of phenomena. The society needs the scientific advise and science explores the natural processes, depict scenarios and provide probabilistic frameworks for the assessment of the associated hazard. Yet, the message can be easily misunderstood, the same words can have different meaning for different stakeholders. Denial is another problem: when our lives are at stake we rarely listen: the scientific advise can be disregarded, or received with disappointment. In the worst case, scientists can be charged with offence, as occurred in Italy where seismologist were accused of manslaughter in the aftermath of the 2009 L'Aquila earthquake. Scientists need to provide all the necessary information to let the people take informed decisions. This means we need to find effective ways to discuss unpleasant scenarios, and to address scary topics that often lack definite solutions, facing the risk that our very communication strategies may be used against ourselves. The outreach video on volcanic hazard presented here will offer the opportunity to draw some general considerations on where and why the scientific knowledge gets lost. Without easy solutions at hand, this talk will highlight some of the elements into play, in an attempt to understand the rule of a game and the role of science in the society.
NASA Astrophysics Data System (ADS)
Mahar Francisco Lagmay, Alfredo
2016-04-01
The Philippines, being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Natural hazards inflict loss of lives and costly damage to property in the country. In 2011, after tropical storm Washi devastated cities in southern Philippines, the Department of Science and Technology put in place a responsive program to warn and give communities hours-in-advance lead-time to prepare for imminent hazards and use advanced science and technology to enhance geohazard maps for more effective disaster prevention and mitigation. Since its launch, there have been many success stories on the use of Project NOAH, which after Typhoon Haiyan was integrated into the Pre-Disaster Risk Assessment (PDRA) system of the National Disaster Risk Reduction and Management Council (NDRRMC), the government agency tasked to prepare for, and respond to, natural calamities. Learning from past disasters, NDRRMC now issues warnings, through scientific advise from DOST-Project NOAH and PAGASA (Philippine Weather Bureau) that are hazards-specific, area-focused and time-bound. Severe weather events in 2015 generated dangerous hazard phenomena such as widespread floods and massive debris flows, which if not for timely, accessible and understandable warnings, could have turned into disasters. We call these events as "disasters that did not happen". The innovative warning system of the Philippine government has so far proven effective in addressing the impacts of hydrometeorological hazards and can be employed elsewhere in the world.
Disseminating near-real-time hazards information and flood maps in the Philippines through Web-GIS.
A Lagmay, Alfredo Mahar Francisco; Racoma, Bernard Alan; Aracan, Ken Adrian; Alconis-Ayco, Jenalyn; Saddi, Ivan Lester
2017-09-01
The Philippines being a locus of tropical cyclones, tsunamis, earthquakes and volcanic eruptions, is a hotbed of disasters. These natural hazards inflict loss of lives and costly damage to property. Situated in a region where climate and geophysical tempest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. In 2012, the Philippines launched a responsive program for disaster prevention and mitigation called the Nationwide Operational Assessment of Hazards (Project NOAH), specifically for government warning agencies to be able to provide a 6hr lead-time warning to vulnerable communities against impending floods and to use advanced technology to enhance current geo-hazard vulnerability maps. To disseminate such critical information to as wide an audience as possible, a Web-GIS using mashups of freely available source codes and application program interface (APIs) was developed and can be found in the URLs http://noah.dost.gov.ph and http://noah.up.edu.ph/. This Web-GIS tool is now heavily used by local government units in the Philippines in their disaster prevention and mitigation efforts and can be replicated in countries that have a proactive approach to address the impacts of natural hazards but lack sufficient funds. Copyright © 2017. Published by Elsevier B.V.
Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.
Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam
2014-09-15
With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Natural Hazards Observer. Volume 32, Number 2, November 2007
2007-11-01
global warming plan that proposed an obligatory, market -based, cap-and-trade pro- gram that would reverse the worst-case effects of climate change by... market penetration for flood insurance, building Report (under Goal 4: "Lofty Targets"). and elevation requirements, hazard mitigation grants, The Report...reinsurance markets in subsequent years. With an unbiased perspective of all catastrophe model- 8th Pacific Conference on Earthquake Engineering-Sin- ing
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
Industrial Accidents Triggered by Natural Hazards: an Emerging Risk Issue
NASA Astrophysics Data System (ADS)
Renni, Elisabetta; Krausmann, Elisabeth; Basco, Anna; Salzano, Ernesto; Cozzani, Valerio
2010-05-01
Natural disasters such as earthquakes, tsunamis, flooding or hurricanes have recently and dramatically hit several countries worldwide. Both direct and indirect consequences involved the population, causing on the one hand a high number of fatalities and on the other hand so relevant economical losses that the national gross product may be affected for many years. Loss of critical industrial infrastructures (electricity generation and distribution, gas pipelines, oil refineries, etc.) also occurred, causing further indirect damage to the population. In several cases, accident scenarios with large releases of hazardous materials were triggered by these natural events, causing so-called "Natech events", in which the overall damage resulted from the simultaneous consequences of the natural event and of the release of hazardous substances. Toxic releases, large fires and explosions, as well as possible long-term environmental pollution, economical losses, and overloading of emergency systems were recognised by post-event studies as the main issues of these Natech scenarios. In recent years the increasing frequency and severity of some natural hazards due to climate change has slowly increased the awareness of Natech risk as an emerging risk among the stakeholders. Indeed, the iNTeg-Risk project, co-funded by the European Commission within the 7th Framework Program specifically addresses these scenarios among new technological issues on public safety. The present study, in part carried out within the iNTeg-Risk project, was aimed at the analysis and further development of methods and tools for the assessment and mitigation of Natech accidents. Available tools and knowledge gaps in the assessment of Natech scenarios were highlighted. The analysis mainly addressed the potential impact of flood, lightning and earthquake events on industrial installations where hazardous substances are present. Preliminary screening methodologies and more detailed methods based on quantitative risk analysis were developed. Strategies based on the use of multiple information layers aiming at the identification of mitigation and early warning systems were also explored. A case-study in the Emilia-Romagna region is presented.
NASA Astrophysics Data System (ADS)
Bethel, M.; Braud, D.; Lambeth, T.; Biber, P.; Wu, W.
2017-12-01
Coastal community leaders, government officials, and natural resource managers must be able to accurately assess and predict a given coastal landscape's sustainability and/or vulnerability as coastal habitat continues to undergo rapid and dramatic changes associated with natural and anthropogenic activities such as accelerated relative sea level rise (SLR). To help address this information need, a multi-disciplinary project team conducted Sea Grant sponsored research in Louisiana and Mississippi with traditional ecosystem users and natural resource managers to determine a method for producing localized vulnerability and sustainability maps for projected SLR and storm surge impacts, and determine how and whether the results of such an approach can provide more useful information to enhance hazard mitigation planning. The goals of the project are to develop and refine SLR visualization tools for local implementation in areas experiencing subsidence and erosion, and discover the different ways stakeholder groups evaluate risk and plan mitigation strategies associated with projected SLR and storm surge. Results from physical information derived from data and modeling of subsidence, erosion, engineered restoration and coastal protection features, historical land loss, and future land projections under SLR are integrated with complimentary traditional ecological knowledge (TEK) offered by the collaborating local ecosystem users for these assessments. The data analysis involves interviewing stakeholders, coding the interviews for themes, and then converting the themes into vulnerability and sustainability factors. Each factor is weighted according to emphasis by the TEK experts and number of experts who mention it to determine which factors are the highest priority. The priority factors are then mapped with emphasis on the perception of contributing to local community vulnerability or sustainability to SLR and storm surge. The maps are used by the collaborators to benefit local hazard mitigation and adaptation planning. The results to date in achieving the project objectives will be presented that include: analyses of scientific field data collected related to marsh vegetation biomass characteristics, analyses of TEK data collected, and mapping products developed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
...; State/Local/Tribal Hazard Mitigation Plans AGENCY: Federal Emergency Management Agency, DHS. ACTION... . SUPPLEMENTARY INFORMATION: Collection of Information Title: State/Local/Tribal Hazard Mitigation Plans. Type of... Tribal Hazard Mitigation Plan requirements is to support the administration of FEMA Mitigation grant...
Seismic Hazard Legislation in California: Challenges and Changes
NASA Astrophysics Data System (ADS)
Testa, S. M.
2015-12-01
Seismic hazards in California are legislatively controlled by three specific Acts: the Field Act of 1933; the Alquist-Priolo Earthquake Fault Zoning Act (AP) of 1975; and the Seismic Hazards Mapping Act (SHMA) of 1980. The Field Act recognized the need for earthquake resistant construction for California schools and banned unreinforced masonry buildings, and imposed structural design under seismic conditions. The AP requires the California Geological Survey (CGS) to delineate "active fault zones" for general planning and mitigation by various state and local agencies. Under the AP, surface and near-surface faults are presumed active (about 11,000 years before present) unless proven otherwise; and can only be mitigated by avoidance (setback zones). The SHMA requires that earthquake-induced landslides, liquefaction zones, high ground accelerations, tsunamis and seiches similarly be demarcated on CGS-issued maps. Experience over the past ~45 years and related technological advances now show that more than ~95 percent of seismically induced damage and loss of life stems from high ground accelerations, from related ground deformation and from catastrophic structural failure, often far beyond State-mapped AP zones. The SHMA therefore enables the engineering community to mitigate natural hazards from a holistic standpoint that considers protection of public health, safety and welfare. In conformance with the SHMA, structural design and related planning and building codes focus on acceptable risk for natural hazards with a typical recurrence of ~100 yrs to a few thousand years. This contrasts with the current AP "total avoidance" for surface-fault rupture that may have occurred within the last 11,000 years. Accordingly, avoidance may be reasonable for well expressed surface faults in high-density urban areas or where relative fault activity is uncertain. However, in the interest of overall public, health and safety, and for consistency with the SHMA and current professional standards-of-practice, we now propose changes to the AP and related regulations, including consideration for permitting construction near or across surface or near-surface faults that are geologically reasonably well characterized and amenable to structural mitigation.
Jones, Lucy; Bernknopf, Richard; Cannon, Susan; Cox, Dale A.; Gaydos, Len; Keeley, Jon; Kohler, Monica; Lee, Homa; Ponti, Daniel; Ross, Stephanie L.; Schwarzbach, Steven; Shulters, Michael; Ward, A. Wesley; Wein, Anne
2007-01-01
The U.S. Geological Survey (USGS) is initiating a new project designed to improve resiliency to natural hazards in southern California through the application of science to community decision making and emergency response. The Multi-Hazards Demonstration Project will assist the region’s communities to reduce their risk from natural hazards by directing new and existing research towards the community’s needs, improving monitoring technology, producing innovative products, and improving dissemination of the results. The natural hazards to be investigated in this project include coastal erosion, earthquakes, floods, landslides, tsunamis, and wildfires.Americans are more at risk from natural hazards now than at any other time in our Nation’s history. Southern California, in particular, has one of the Nation’s highest potentials for extreme catastrophic losses due to natural hazards, with estimates of expected losses exceeding $3 billion per year. These losses can only be reduced through the decisions of the southern California community itself. To be effective, these decisions must be guided by the best information about hazards, risk, and the cost-effectiveness of mitigation technologies. The USGS will work with collaborators to set the direction of the research and to create multi-hazard risk frameworks where communities can apply the results of scientific research to their decision-making processes. Partners include state, county, city, and public-lands government agencies, public and private utilities, companies with a significant impact and presence in southern California, academic researchers, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), and local emergency response agencies.Prior to the writing of this strategic plan document, three strategic planning workshops were held in February and March 2006 at the USGS office in Pasadena to explore potential relationships. The goal of these planning sessions was to determine the external organizations’ needs for mitigation efforts before potential natural hazard events, and response efforts during and after the event. On the basis of input from workshop participants, four priority areas were identified for future research to address. They are (1) helping decision makers design planning scenarios, (2) improving upon the mapping of multiple hazards in urban areas, (3) providing real-time information from monitoring networks, and (4) integrating information in a risk and decision-making analysis. Towards this end, short-term and out-year goals have been outlined with the priorities in mind.First-year goals are (1) to engage the user community to establish the structures and processes for communications and interactions, (2) to develop a program to create scenarios of anticipated disasters, beginning in the first year with a scenario of a southern San Andreas earthquake that triggers secondary hazards, (3) to compile existing datasets of geospatial data, and (4) to target research efforts to support more complete and robust products in future years. Both the first-year and out-year goals have been formulated around a working-group structure that builds on existing research strengths within the USGS. The project is intended to demonstrate how developments in methodology and products can lead to improvement in our management of natural hazards in an urban environment for application across the Nation.
The Critical Role of Cyberinfrastructure in Global Observations of Natural Hazards
NASA Astrophysics Data System (ADS)
Orcutt, J. A.
2005-12-01
This past year has brought grave lessons about the critical risks posed by natural hazards. The Sumatra earthquake and resultant tsunami causing as many as 300,000 deaths, and Hurricane Katrina and its destruction of the Gulf Coast in Louisiana and Mississippi with an unknown loss of life and infrastructure damage that may approach $100,000,000,000 in rebuilding costs, have been shattering experiences. The Sumatra earthquake reminds us of the tsunami threat we face in Cascadia and news about the avian flu in the orient and its potential transmission to and between humans threatens to bring a natural disaster that can dwarf either of this year's disasters. All of these phenomena have their roots in the geosciences. While the threats of terrorism have dominated political discussions globally for the past few years, the growing impact of natural hazards, including the long-term impact of a potentially changing climate, require that geoscientists develop globally distributed observing systems critically important in mitigating the societal impacts of these hazards. This is particularly important for the AGU, the largest professional geosciences organization in the world today. One of the lessons learned during the past year, however, is that accessing the data and information needed to predict and subsequently understand the impact of hazards is difficult requiring more time than can generally be afforded. For the AGU, the new Focus Group on Earth and Space Science Informatics has an important role in bringing modern methods in information technology, computer sciences, and cyberinfrastructure to the problem of providing coherent access to near-real-time data from the growing suite of Earth observations, the use of the data in model assimilation, the transformation of data to knowledge, and the visualization of the results for use by those responsible for managing the damage caused by these natural hazards. While the challenge is enormous, there is considerable promise in a number of new approaches from the Global Earth Observing System of Systems (GEOSS) to the Ocean Observatories Initiative (OOI) and a powerful suite of Earth observations from space. New grid technologies in the computer sciences, the ability to link globally distributed sites at bandwidths of 10-40 Gbps, couple sensor networks across vast spatial scales, and visualize data at 100Megapixel resolutions make the use of data and information for mitigating growing natural hazards practical.
Earthquake Hazard Mitigation Using a Systems Analysis Approach to Risk Assessment
NASA Astrophysics Data System (ADS)
Legg, M.; Eguchi, R. T.
2015-12-01
The earthquake hazard mitigation goal is to reduce losses due to severe natural events. The first step is to conduct a Seismic Risk Assessment consisting of 1) hazard estimation, 2) vulnerability analysis, 3) exposure compilation. Seismic hazards include ground deformation, shaking, and inundation. The hazard estimation may be probabilistic or deterministic. Probabilistic Seismic Hazard Assessment (PSHA) is generally applied to site-specific Risk assessments, but may involve large areas as in a National Seismic Hazard Mapping program. Deterministic hazard assessments are needed for geographically distributed exposure such as lifelines (infrastructure), but may be important for large communities. Vulnerability evaluation includes quantification of fragility for construction or components including personnel. Exposure represents the existing or planned construction, facilities, infrastructure, and population in the affected area. Risk (expected loss) is the product of the quantified hazard, vulnerability (damage algorithm), and exposure which may be used to prepare emergency response plans, retrofit existing construction, or use community planning to avoid hazards. The risk estimate provides data needed to acquire earthquake insurance to assist with effective recovery following a severe event. Earthquake Scenarios used in Deterministic Risk Assessments provide detailed information on where hazards may be most severe, what system components are most susceptible to failure, and to evaluate the combined effects of a severe earthquake to the whole system or community. Casualties (injuries and death) have been the primary factor in defining building codes for seismic-resistant construction. Economic losses may be equally significant factors that can influence proactive hazard mitigation. Large urban earthquakes may produce catastrophic losses due to a cascading of effects often missed in PSHA. Economic collapse may ensue if damaged workplaces, disruption of utilities, and resultant loss of income produces widespread default on payments. With increased computational power and more complete inventories of exposure, Monte Carlo methods may provide more accurate estimation of severe losses and the opportunity to increase resilience of vulnerable systems and communities.
NASA Astrophysics Data System (ADS)
Malinowski, M.
2012-12-01
Prior to acquisition and/or construction of prospective school sites, the California Education Code mandates that school districts complete environmental assessments and cleanups for prospective new or expanding school sites in order to qualify for state funding. If prospective school sites are determined to have environmental contamination from hazardous materials, including naturally occurring hazardous materials such as naturally occurring asbestos (NOA), where there may be unacceptable potential health risks, the school sites must be properly mitigated prior to occupancy for protection of human health and the environment. NOA is of special concern for schools, because children who are exposed to asbestos may be at increased risk of developing asbestos-related diseases over time. In order to protect human health, the Department of Toxic Substances Control's (DTSC) goals at school sites are to: 1) identify the presence of NOA in school site soils using exposure-reducing soil thresholds; 2) manage potential NOA exposures using mitigation measures to reduce generation of airborne asbestos fibers from soils on school sites; and 3) ensure long-term monitoring and protection of mitigation measures via Operations & Maintenance activities. DTSC is currently in the process of revising its Interim Guidance Naturally Occurring Asbestos (NOA) at School Sites - September 2004. The revisions include: 1) updating the guidance to consider incremental sampling for use at NOA sites in consultation with DTSC's project manager and technical staff, and 2) documenting a tiered approach to addressing high and low activity areas on a school.
NASA Astrophysics Data System (ADS)
Marrero, J. M.; Pastor Paz, J. E.; Erazo, C.; Marrero, M.; Aguilar, J.; Yepes, H. A.; Estrella, C. M.; Mothes, P. A.
2015-12-01
Disaster Risk Reduction (DRR) requires an integrated multi-hazard assessment approach towards natural hazard mitigation. In the case of volcanic risk, long term hazard maps are generally developed on a basis of the most probable scenarios (likelihood of occurrence) or worst cases. However, in the short-term, expected scenarios may vary substantially depending on the monitoring data or new knowledge. In this context, the time required to obtain and process data is critical for optimum decision making. Availability of up-to-date volcanic scenarios is as crucial as it is to have this data accompanied by efficient estimations of their impact among populations and infrastructure. To address this impact estimation during volcanic crises, or other natural hazards, a web interface has been developed to execute an ANSI C application. This application allows one to compute - in a matter of seconds - the demographic and infrastructure impact that any natural hazard may cause employing an overlay-layer approach. The web interface is tailored to users involved in the volcanic crises management of Cotopaxi volcano (Ecuador). The population data base and the cartographic basis used are of public domain, published by the National Office of Statistics of Ecuador (INEC, by its Spanish acronym). To run the application and obtain results the user is expected to upload a raster file containing information related to the volcanic hazard or any other natural hazard, and determine categories to group population or infrastructure potentially affected. The results are displayed in a user-friendly report.
NASA Astrophysics Data System (ADS)
Rose, W. I.; Bluth, G. J.; Gierke, J. S.; Gross, E.
2005-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety and, eventually, economic development, they lack the resources required to advance the development and practice of remote sensing. Both developed and developing countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development, and this common commitment creates a solid foundation upon which to build an integrated education and research project. This will prepare students for careers in science and engineering through their efforts to solve a suite of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. This project makes two important advances: (1) We intend to develop the first formal linkage among geoscience agencies from four Pacific Latin American countries (Guatemala, El Salvador, Nicaragua and Ecuador), focusing on the collaborative development of remote sensing tools for hazard mitigation and water resource development; (2) We will build a new educational system of applied research and engineering, using two existing educational programs at Michigan Tech: a new Peace Corp/Master's International (PC/MI) program in Natural Hazards which features a 2-year field assignment, and an "Enterprise" program for undergraduates, which gives teams of geoengineering students the opportunity to work for three years in a business-like setting to solve real-world problems This project will involve 1-2 post-doctoral researchers, 3 Ph.D., 9 PC/MI, and roughly 20 undergraduate students each year.
Advancements in satellite remote sensing for drought monitoring
USDA-ARS?s Scientific Manuscript database
Drought monitoring is a key component for effective drought preparedness strategies, providing critical information on current conditions that can be used to trigger mitigation actions to lessen the impact of this natural hazard. However, drought can be both complex and challenging to monitor becau...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.1 Purpose. (a... the hazard mitigation grant programs made available under the National Flood Insurance Act of 1968, as... Repetitive Loss (SRL) and Flood Mitigation Assistance (FMA) grant programs mitigate losses from floods...
How much do hazard mitigation plans cost? An analysis of federal grant data.
Jackman, Andrea M; Beruvides, Mario G
2013-01-01
Under the Disaster Mitigation Act of 2000 and Federal Emergency Management Agency's subsequent Interim Final Rule, the requirement was placed on local governments to author and gain approval for a Hazard Mitigation Plan (HMP) for the areas under their jurisdiction. Low completion percentages for HMPs--less than one-third of eligible governments--were found by an analysis conducted 3 years after the final deadline for the aforementioned legislation took place. Follow-up studies showed little improvement at 5 and 8 years after the deadline. It was hypothesized that the cost of a HMP is a significant factor in determining whether or not a plan is completed. A study was conducted using Boolean Matrix Analysis methods to determine what, if any, characteristics of a certain community will most influence the cost of a HMP. The frequency of natural hazards experienced by the planning area, the number of jurisdictions participating in the HMEP, the population, and population density were found to significantly affect cost. These variables were used in a regression analysis to determine their predictive power for cost. It was found that along with two interaction terms, the variables explain approximately half the variation in HMP cost.
Assessing natural hazard risk using images and data
NASA Astrophysics Data System (ADS)
Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.
2012-12-01
Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.
Geo-electromagnetic research aids geo-hazard mitigation
NASA Astrophysics Data System (ADS)
Chiappini, M.; Carmisciano, C.; Faggioni, O.
Some 100 Earth scientists from nine different nations recently gathered in Lerici, Italy; for the Second International Workshop on Geo-Electro-Magnetism. While this was not a thematic meeting, most of the 40 papers presented focused on applications of electromagnetic methods to natural or man-made hazards such as known faults, seismically active regions, volcanoes, landslides, and environmental or civil engineering problems. Anomaly and main field studies, both field investigations and theoretical techniques, were also well represented.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.
2013-05-01
In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth, inadequate education systems, immigration, economic crises, conflicts and other issues. Case history analyses and proposals for collaboration programs, know-how transfer and better use of geophysical tools, data, observatories and monitoring networks will be discussed.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., loss or degradation of wetlands; (3) The Agency shall restore and preserve natural and beneficial... general requirement to minimize harm to and within floodplains: (1) There shall be no new construction or substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., loss or degradation of wetlands; (3) The Agency shall restore and preserve natural and beneficial... general requirement to minimize harm to and within floodplains: (1) There shall be no new construction or substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
...; Hazard Mitigation Grant Program Application and Reporting AGENCY: Federal Emergency Management [email protected] . SUPPLEMENTARY INFORMATION: Collection of Information Title: Hazard Mitigation Grant... Titles and Numbers: No Form. Abstract: The Hazard Mitigation Grant Program is a post-disaster program...
NASA Astrophysics Data System (ADS)
Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.
2008-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange program in natural hazards (E-Haz). Advancements in research have been made, for example, in using thermal remote sensing methods for studying vent and eruptive processes, and in fusing RADARSAT with ASTER imagery to delineate lineaments in volcanic terrains for siting water wells. While these and other advancements are developed in conjunction with our foreign counterparts, the impacts of this work can be broadened through more comprehensive dissemination activities. Towards this end, we are in the planning phase of a Pan American workshop on applications of remote sensing techniques for natural hazards and water resources management. The workshop will be at least two weeks, sometime in July/August 2009, and involve 30-40 participants, with balanced participation from the U.S. and Latin America. In addition to fundamental aspects of remote sensing and digital image processing, the workshop topics will be presented in the context of new developments for studying volcanic processes and hazards and for characterizing groundwater systems.
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.3...-related hazard mitigation programs and grants, including: (1) Issue program implementation procedures, as... governments regarding the mitigation and grants management process; (5) Review and approve State, Indian...
44 CFR 79.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... oversight to all FEMA-related hazard mitigation programs and grants, including: (1) Issue program... Indian tribal governments regarding the mitigation and grants management process; (5) Review and approve...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
...; State Administrative Plan for the Hazard Mitigation Grant Program AGENCY: Federal Emergency Management...: Collection of Information Title: State Administrative Plan for the Hazard Mitigation Grant Program. Type of... guide that details how the State will administer the Hazard Mitigation Grant Program (HMGP). An approved...
NASA Astrophysics Data System (ADS)
Parham, M.; Day, S. J.; Teeuw, R. M.; Solana, C.; Sensky, T.
2014-12-01
This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education.Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.
NASA Astrophysics Data System (ADS)
Parham, Martin; Day, Simon; Teeuw, Richard; Solana, Carmen; Sensky, Tom
2015-04-01
This project aims to study the development of understanding of natural hazards (and of hazard mitigation) from the age of 11 to the age of 15 in secondary school children from 5 geographically and socially different schools on Dominica, through repeated interviews with the students and their teachers. These interviews will be coupled with a structured course of hazard education in the Geography syllabus; the students not taking Geography will form a control group. To avoid distortion of our results arising from the developing verbalization and literacy skills of the students over the 5 years of the project, we have adapted the PRISM tool used in clinical practice to assess patient perceptions of illness and treatment (Buchi & Sensky, 1999). This novel measure is essentially non-verbal, and uses spatial positions of moveable markers ("object" markers) on a board, relative to a fixed marker that represents the subject's "self", as a visual metaphor for the importance of the object to the subject. The subjects also explain their reasons for placing the markers as they have, to provide additional qualitative information. The PRISM method thus produces data on the perceptions measured on the board that can be subjected to statistical analysis, and also succinct qualitative data about each subject. Our study will gather data on participants' perceptions of different natural hazards, different sources of information about these, and organizations or individuals to whom they would go for help in a disaster, and investigate how these vary with geographical and social factors. To illustrate the method, which is generalisable, we present results from our initial interviews of the cohort of 11 year olds whom we will follow through their secondary school education. Büchi, S., & Sensky, T. (1999). PRISM: Pictorial Representation of Illness and Self Measure: a brief nonverbal measure of illness impact and therapeutic aid in psychosomatic medicine. Psychosomatics, 40(4), 314-320.
Arias, Juan Pablo; Bronfman, Nicolás C; Cisternas, Pamela C; Repetto, Paula B
2017-01-01
Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and communities at risk.
Arias, Juan Pablo; Bronfman, Nicolás C.; Cisternas, Pamela C.; Repetto, Paula B.
2017-01-01
Researchers have previously reported that hazard proximity can influence risk perception among individuals exposed to potential hazards. Understanding this relationship among coastline communities at risk of flood events caused by storms and/or tsunamis, is important because hazard proximity, should be recognized when planning and implementing preparation and mitigation actions against these events. Yet, we are not aware of studies that have examined this relationship among coastline inhabitants facing the risk of a tsunami. Consequently, the aim of this study was to examine the relationship between hazard proximity and perceived risk from tsunamis among coastline inhabitants. Participants were 487 residents of the coastal city of Iquique, Chile. They completed a survey during the spring of 2013 that assessed their perceived risk from several natural and non-natural hazards. We found that hazard proximity maintains a negative relationship with the perception of tsunami risk among coastline inhabitants. While this result confirms the general trend obtained in previous studies, this one is conclusive and significant. In contradiction with previous findings, we found that participants from the highest socioeconomic status reported the highest levels of risk perception. This finding can be explained by the fact that most participants from the highest socioeconomic status live closer to the coastline areas, so their risk perception reflects the place where they live, that is in a tsunami inundation zone. Once again, hazard proximity proved to be a determinant factor of risk perception. Our findings have important implications for the development of plans and programs for tsunami preparedness and mitigation. These indicate that individuals do use environmental cues to evaluate their own risk and can potentially make correct choices when having or not to evacuate. Also suggest that preparedness should incorporate how hazard proximity is recognized by individuals and communities at risk. PMID:29088230
NASA Astrophysics Data System (ADS)
Komjathy, A.; Yang, Y. M.; Meng, X.; Verkhoglyadova, O. P.; Mannucci, A. J.; Langley, R. B.
2015-12-01
Natural hazards, including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcanic eruptions, and tsunamis. Research at the University of New Brunswick (UNB) laid the foundations to model the three-dimensional ionosphere at NASA's Jet Propulsion Laboratory by ingesting ground- and space-based GPS measurements into the state-of-the-art Global Assimilative Ionosphere Modeling (GAIM) software. As an outcome of the UNB and NASA research, new and innovative GPS applications have been invented including the use of ionospheric measurements to detect tiny fluctuations in the GPS signals between the spacecraft and GPS receivers caused by natural hazards occurring on or near the Earth's surface.We will show examples for early detection of natural hazards generated ionospheric signatures using ground-based and space-borne GPS receivers. We will also discuss recent results from the U.S. Real-time Earthquake Analysis for Disaster Mitigation Network (READI) exercises utilizing our algorithms. By studying the propagation properties of ionospheric perturbations generated by natural hazards along with applying sophisticated first-principles physics-based modeling, we are on track to develop new technologies that can potentially save human lives and minimize property damage. It is also expected that ionospheric monitoring of TEC perturbations might become an integral part of existing natural hazards warning systems.
DOT National Transportation Integrated Search
2017-05-31
The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...
Assessing impacts of fire and post-fire mitigation on runoff and erosion from rangelands
USDA-ARS?s Scientific Manuscript database
Wildfires are a natural component of rangeland ecosystems, but fires can pose hydrologic hazards for ecological resources, infrastructure, property, and human life. There has been considerable research conducted on the effects of fire on hydrologic processes and erosion on shrublands and woodlands....
Rio Soliette (haiti): AN International Initiative for Flood-Hazard Assessment and Mitigation
NASA Astrophysics Data System (ADS)
Gandolfi, S.; Castellarin, A.; Barbarella, M.; Brath, A.; Domeneghetti, A.; Brandimarte, L.; Di Baldassarre, G.
2013-01-01
Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic), one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI) coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach), and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique). This allowed us to reconstruct both the river geometry and the DTM's of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk).
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.; Eichelberger, J. C.; Rupp, S. T.; Taylor, K.
2014-12-01
The increasing extent and vulnerability of technologically advanced society together with aspects of global climate change intensifies the frequency and severity of natural disasters. Every year, communities around the world face the devastating consequences of hazardous events, including loss of life, property and infrastructure damage, and environmental decline. In this session, we will introduce a new book, entitled New Trends in Communicating Risk and Cultivating Resilience, which is dedicated to those who have directly or indirectly suffered the effects of climate change extreme events with the hope that the advance of knowledge, implementation of sound science and appropriate policies, and use of effective communication will help in reducing their vulnerability while also improving resilience in the face of often devastating natural hazards. This book comprises manuscripts from those whose research, advocacy, work, teaching, or service in the natural or social sciences deals with risk communication and/or management surrounding natural disasters, with a particular focus on climate change-related phenomena. This book is arranged into five sections: The Role of Communication in Fostering Resilient Communities (Reframing the conversation about natural hazards and climate change with a new focus on resilience)Before the Disaster: Prediction, Preparation, and Crisis Communication (The role of communication in predicting and preparing for the unpredictable regarding natural disasters)Mitigating Circumstances: Living Through Change, Uncertainty, and Disaster (Mitigation and the role of communication in minimizing the damage during natural disasters and during an era of climate change)After the Disaster: Response and Recovery Communication (The role of communication after natural disasters)Looking Back and Learning Forward: Best and Worst Practices Exposed (Considering risk and resilience communication of natural disasters with one eye on best practices and one eye on a critical perspective. Case studies of resilience both supported and undermined by communication)During our presentation, we will introduce a case study from every section.
The natech events during the 17 August 1999 Kocaeli earthquake: aftermath and lessons learned
NASA Astrophysics Data System (ADS)
Girgin, S.
2011-04-01
Natural-hazard triggered technological accidents (natechs) at industrial facilities have been recognized as an emerging risk. Adequate preparedness, proper emergency planning, and effective response are crucial for the prevention of natechs and mitigation of the consequences. Under the conditions of a natural disaster, the limited resources, the possible unavailability of mitigation measures, and the lack of adequate communication complicate the management of natechs. The analysis of past natechs is crucial for learning lessons and for preventing or preparing for future natechs. The 17 August 1999, Kocaeli earthquake, which was a devastating disaster hitting one of the most industrialized regions of Turkey, offers opportunities in this respect. Among many natechs that occurred due to the earthquake, the massive fire at the TUPRAS Izmit refinery and the acrylonitrile spill at the AKSA acrylic fiber production plant were especially important and highlight problems in the consideration of natechs in emergency planning, response to industrial emergencies during natural hazards, and information to the public during and following the incidents. The analysis of these events shows that even the largest and seemingly well-prepared facilities can be vulnerable to natechs if risks are not considered adequately.
Başaran-Uysal, Arzu; Sezen, Funda; Ozden, Süha; Karaca, Oznur
2014-01-01
The selection of new settlement areas and the construction of safe buildings, as well as rendering built-up areas safe, are of great importance in mitigating the damage caused by natural disasters. Most cities in Turkey are unprepared for natural hazards. In this paper, Çanakkale, located in a first-degree seismic zone and sprawled around the Sartçay Delta, is examined in terms of its physical vulnerability to natural hazards. Residential areas are analysed using GIS (geographic information system) and remote-sensing technologies in relation to selected indicators. Residential areas of the city are divided into zones according to an evaluation of geological characteristics, the built-up area's features, and urban infrastructure, and four risk zones are determined. The results of the analysis show that the areas of the city suitable for housing are very limited. In addition, the historical centre and the housing areas near Sartçay stream are shown to be most problematic in terms of natural disasters and sustainability. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
NASA Astrophysics Data System (ADS)
Ahmed, Ayman A.; Diab, Maghawri S.
2018-04-01
Wadi Feiran basin is one of the most promising areas in southern Sinai (Egypt) for establishing new communities and for growth in agriculture, tourism, and industry. The present challenges against development include water runoff hazards (flash flooding), the increasing water demand, and water scarcity and contamination. These challenges could be mitigated by efficient use of runoff and rainwater through appropriate management, thereby promoting sustainable development. Strategies include the mitigation of runoff hazards and promoting the natural and artificial recharge of aquifers. This study uses a watershed modeling system, geographic information system, and classification scheme to predict the effects of various mitigation options on the basin's water resources. Rainwater-harvesting techniques could save more than 77% of the basin's runoff (by volume), which could be used for storage and aquifer recharge. A guide map is provided that shows possible locations for the proposed mitigation options in the study basin. Appropriate measures should be undertaken urgently: mitigation of groundwater contamination (including effective sewage effluent management); regular monitoring of the municipal, industrial and agricultural processes that release contaminants; rationalization and regulation of the application of agro-chemicals to farmland; and regular monitoring of contaminants in groundwater. Stringent regulations should be implemented to prevent wastewater disposal to the aquifers in the study area.
NASA Astrophysics Data System (ADS)
Komendantova, Nadejda; Patt, Anthony
2013-04-01
In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the construction of cyclone shelters was being undertaken. The availability heuristics caused a perception of low probability of tsunami following an earthquake, as the last large similar event happened over a hundred years ago. Another led to a situation when decisions were taken on the basis of experience and not statistical evidence, namely, experience showed that the so-called "Ring of Fire" generates underground earthquakes and tsunamis in the Pacific Ocean. This knowledge made decision-makers to neglect the numerical estimations about probability of underground earthquake in the Indian Ocean even though seismologists were warning about probability of a large underground earthquake in the Indian Ocean. The bounded rationality bias led to misperception of signals from the early warning center in the Pacific Ocean. The resulting limited concern resulted in risk mitigation measures that considered cyclone risks, but much less about tsunami. Under loss aversion considerations, the decision-makers perceived the losses connected with the necessary additional investment as being greater than benefits from mitigating a less probable hazard.
NASA Astrophysics Data System (ADS)
Tomas, Robert; Harrison, Matthew; Barredo, José I.; Thomas, Florian; Llorente Isidro, Miguel; Cerba, Otakar; Pfeiffer, Manuela
2014-05-01
The vast amount of information and data necessary for comprehensive hazard and risk assessment presents many challenges regarding the lack of accessibility, comparability, quality, organisation and dissemination of natural hazards spatial data. In order to mitigate these limitations an interoperable framework has been developed in the framework of the development of legally binding Implementing rules of the EU INSPIRE Directive1* aiming at the establishment of the European Spatial Data Infrastructure. The interoperability framework is described in the Data Specification on Natural risk zones - Technical Guidelines (DS) document2* that was finalized and published on 10.12. 2013. This framework provides means for facilitating access, integration, harmonisation and dissemination of natural hazard data from different domains and sources. The objective of this paper is twofold. Firstly, the paper demonstrates the applicability of the interoperable framework developed in the DS and highlights the key aspects of the interoperability to the various natural hazards communities. Secondly, the paper "translates" into common language the main features and potentiality of the interoperable framework of the DS for a wider audience of scientists and practitioners in the natural hazards domain. Further in this paper the main five aspects of the interoperable framework will be presented. First, the issue of a common terminology for the natural hazards domain will be addressed. A common data model to facilitate cross domain data integration will follow secondly. Thirdly, the common methodology developed to provide qualitative or quantitative assessments of natural hazards will be presented. Fourthly, the extensible classification schema for natural hazards developed from a literature review and key reference documents from the contributing community of practice will be shown. Finally, the applicability of the interoperable framework for the various stakeholder groups will be also presented. This paper closes discussing open issues and next steps regarding the sustainability and evolution of the interoperable framework and missing aspects such as multi-hazard and multi-risk. --------------- 1*INSPIRE - Infrastructure for spatial information in Europe, http://inspire.ec.europa.eu 2*http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_NZ_v3.0.pdf
NASA Astrophysics Data System (ADS)
Fleming, Kevin; Zschau, Jochen; Gasparini, Paolo
2014-05-01
Recent major natural disasters, such as the 2011 Tōhoku earthquake, tsunami and subsequent Fukushima nuclear accident, have raised awareness of the frequent and potentially far-reaching interconnections between natural hazards. Such interactions occur at the hazard level, where an initial hazard may trigger other events (e.g., an earthquake triggering a tsunami) or several events may occur concurrently (or nearly so), e.g., severe weather around the same time as an earthquake. Interactions also occur at the vulnerability level, where the initial event may make the affected community more susceptible to the negative consequences of another event (e.g., an earthquake weakens buildings, which are then damaged further by windstorms). There is also a temporal element involved, where changes in exposure may alter the total risk to a given area. In short, there is the likelihood that the total risk estimated when considering multiple hazard and risks and their interactions is greater than the sum of their individual parts. It is with these issues in mind that the European Commission, under their FP7 program, supported the New Multi-HAzard and MulTi-RIsK Assessment MethodS for Europe or MATRIX project (10.2010 to 12.2013). MATRIX set out to tackle multiple natural hazards (i.e., those of concern to Europe, namely earthquakes, landslides, volcanos, tsunamis, wild fires, storms and fluvial and coastal flooding) and risks within a common theoretical framework. The MATRIX work plan proceeded from an assessment of single-type risk methodologies (including how uncertainties should be treated), cascade effects within a multi-hazard environment, time-dependent vulnerability, decision making and support for multi-hazard mitigation and adaption, and an assessment of how the multi-hazard and risk viewpoint may be integrated into current decision making and risk mitigation programs, considering the existing single-hazard and risk focus. Three test sites were considered during the project: Naples, Cologne, and the French West Indies. In addition, a software platform, the MATRIX-Common IT sYstem (MATRIX-CITY), was developed to allow the evaluation of characteristic multi-hazard and risk scenarios in comparison to single-type analyses. This presentation therefore outlines the more significant outcomes of the project, in particular those dealing with the harmonization of single-type hazards, cascade event analysis, time-dependent vulnerability changes and the response of the disaster management community to the MATRIX point of view.
Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis
NASA Astrophysics Data System (ADS)
Karlsson, Caroline S. J.; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W.
2017-11-01
Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.
Natural Hazard Susceptibility Assessment for Road Planning Using Spatial Multi-Criteria Analysis.
Karlsson, Caroline S J; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve W
2017-11-01
Inadequate infrastructural networks can be detrimental to society if transport between locations becomes hindered or delayed, especially due to natural hazards which are difficult to control. Thus determining natural hazard susceptible areas and incorporating them in the initial planning process, may reduce infrastructural damages in the long run. The objective of this study was to evaluate the usefulness of expert judgments for assessing natural hazard susceptibility through a spatial multi-criteria analysis approach using hydrological, geological, and land use factors. To utilize spatial multi-criteria analysis for decision support, an analytic hierarchy process was adopted where expert judgments were evaluated individually and in an aggregated manner. The estimates of susceptible areas were then compared with the methods weighted linear combination using equal weights and factor interaction method. Results showed that inundation received the highest susceptibility. Using expert judgment showed to perform almost the same as equal weighting where the difference in susceptibility between the two for inundation was around 4%. The results also showed that downscaling could negatively affect the susceptibility assessment and be highly misleading. Susceptibility assessment through spatial multi-criteria analysis is useful for decision support in early road planning despite its limitation to the selection and use of decision rules and criteria. A natural hazard spatial multi-criteria analysis could be used to indicate areas where more investigations need to be undertaken from a natural hazard point of view, and to identify areas thought to have higher susceptibility along existing roads where mitigation measures could be targeted after in-situ investigations.
NASA Technical Reports Server (NTRS)
Estes, Sue M.
2009-01-01
The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety. The program elements of the NASA Applied Sciences Program are: Agricultural Efficiency, Air Quality, Climate, Disaster Management, Ecological Forecasting, Water Resources, Weather, and Public Health.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Geo hazard studies and their policy implications in Nicaragua
NASA Astrophysics Data System (ADS)
Strauch, W.
2007-05-01
Nicaragua, situated at the Central American Subduction zone and placed in the trajectory of tropical storms and hurricanes, is a frequent showplace of natural disasters which have multiplied the negative effects of a long term socioeconomic crisis leaving Nicaragua currently as the second poorest country of the Americas. In the last years, multiple efforts were undertaken to prevent or mitigate the affectation of the natural phenomena to the country. National and local authorities have become more involved in disaster prevention policy and international cooperation boosted funding for disaster prevention and mitigation measures in the country. The National Geosciences Institution (INETER) in cooperation with foreign partners developed a national monitoring and early warning system on geological and hydro-meteorological phenomena. Geological and risk mapping projects were conducted by INETER and international partners. Universities, NGO´s, International Technical Assistance, and foreign scientific groups cooperated to capacitate Nicaraguan geoscientists and to improve higher education on disaster prevention up to the master degree. Funded by a World Bank loan, coordinated by the National System for Disaster Prevention, Mitigation and Attention (SINAPRED) and scientifically supervised by INETER, multidisciplinary hazard and vulnerability studies were carried out between 2003 and 2005 with emphasis on seismic hazard. These GIS based works provided proposals for land use policies on a local level in 30 municipalities and seismic vulnerability and risk information for each single building in Managua, Capital of Nicaragua. Another large multidisciplinary project produced high resolution air photos, elaborated 1:50,000 vectorized topographic maps, and a digital elevation model for Western Nicaragua. These data, integrated in GIS, were used to assess: 1) Seismic Hazard for Metropolitan Managua; 2) Tsunami hazard for the Pacific coast; 3) Volcano hazard for Telica-Cerro Negro and El Hoyo volcanoes; and 4) Flood hazard map of Maravilla river. This study was realized between 2004 and 2006, through technical cooperation of Japan International Cooperation Agency with INETER, upon the request of the Government of Nicaragua. The results of the mapping and investigations are fed in a National GIS on Geohazards maintained by INETER and developed in the frame of a regional cooperation project with BGR, Germany, and other international institutions. Many maps, project reports and GIS coverage are made available on INETER´s Website to the general public. (www.ineter.gob.ni/geofisica/geofisica.html ).
Earthquake hazards: a national threat
,
2006-01-01
Earthquakes are one of the most costly natural hazards faced by the Nation, posing a significant risk to 75 million Americans in 39 States. The risks that earthquakes pose to society, including death, injury, and economic loss, can be greatly reduced by (1) better planning, construction, and mitigation practices before earthquakes happen, and (2) providing critical and timely information to improve response after they occur. As part of the multi-agency National Earthquake Hazards Reduction Program, the U.S. Geological Survey (USGS) has the lead Federal responsibility to provide notification of earthquakes in order to enhance public safety and to reduce losses through effective forecasts based on the best possible scientific information.
Role of Mass Media in the Disaster Preparedness and Sustainable Development of Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seid-Aliyeva, Dinara E.
2006-03-23
Better understanding of the causes and effects of large earthquakes can assists in mitigation of damage and loss of lives as a result of destructive natural events. Well-informed and educated population living in geological hazard-prone regions can reduce catastrophic consequences of natural disasters and guaranty the sustainable development of healthy society. A development of information service for disaster management is of importance in reduction of the disaster's consequences.
RiskScape: a new tool for comparing risk from natural hazards (Invited)
NASA Astrophysics Data System (ADS)
Stirling, M. W.; King, A.
2010-12-01
The Regional RiskScape is New Zealand’s joint venture between GNS Science & NIWA, and represents a comprehensive and easy-to-use tool for multi-hazard-based risk and impact analysis. It has basic GIS functionality, in that it has Import/Export functions to use with GIS software. Five natural hazards have been implemented in Riskscape to date: Flood (river), earthquake, volcano (ash), tsunami and wind storm. The software converts hazard exposure information into the likely impacts for a region, for example, damage and replacement costs, casualties, economic losses, disruption, and number of people affected. It therefore can be used to assist with risk management, land use planning, building codes and design, risk identification, prioritization of risk-reduction/mitigation, determination of “best use” risk-reduction investment, evacuation and contingency planning, awareness raising, public information, realistic scenarios for exercises, and hazard event response. Three geographically disparate pilot regions have been used to develop and triall Riskscape in New Zealand, and each region is exposed to a different mix of natural hazards. Future (phase II) development of Riskscape will include the following hazards: Landslides (both rainfall and earthquake triggered), storm surges, pyroclastic flows and lahars, and climate change effects. While Riskscape developments have thus far focussed on scenario-based risk, future developments will advance the software into providing probabilistic-based solutions.
Inaugural AGU Science Policy Conference
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2012-01-01
AGU will present its inaugural Science Policy Conference, 30 April to 3 May 2012, at the Ronald Reagan Building and International Trade Center, located in downtown Washington, D. C. This conference will bring together leading scientists, policy makers, industry professionals, press, and other stakeholders to discuss natural hazards, natural resources, oceans, and Arctic science and the role these sciences play in serving communities. To bridge the science and policy fields, AGU plans to host this conference every 2 years and focus on the applications of Earth and space sciences to serve local and national communities. "Our nation faces a myriad of challenges such as the sustainability of our natural resources, current and future energy needs, and the ability to mitigate and adapt to natural and manmade hazards," said Michael McPhaden, president of AGU. "It is essential that policies to address these challenges be built on a solid foundation of credible scientific knowledge."
NASA Astrophysics Data System (ADS)
Berlin, Julian; Bogaard, Thom; Van Westen, Cees; Bakker, Wim; Mostert, Eric; Dopheide, Emile
2014-05-01
Cost benefit analysis (CBA) is a well know method used widely for the assessment of investments either in the private and public sector. In the context of risk mitigation and the evaluation of risk reduction alternatives for natural hazards its use is very important to evaluate the effectiveness of such efforts in terms of avoided monetary losses. However the current method has some disadvantages related to the spatial distribution of the costs and benefits, the geographical distribution of the avoided damage and losses, the variation in areas that are benefited in terms of invested money and avoided monetary risk. Decision-makers are often interested in how the costs and benefits are distributed among different administrative units of a large area or region, so they will be able to compare and analyse the cost and benefits per administrative unit as a result of the implementation of the risk reduction projects. In this work we first examined the Cost benefit procedure for natural hazards, how the costs are assessed for several structural and non-structural risk reduction alternatives, we also examined the current problems of the method such as the inclusion of cultural and social considerations that are complex to monetize , the problem of discounting future values using a defined interest rate and the spatial distribution of cost and benefits. We also examined the additional benefits and the indirect costs associated with the implementation of the risk reduction alternatives such as the cost of having a ugly landscape (also called negative benefits). In the last part we examined the current tools and software used in natural hazards assessment with support to conduct CBA and we propose design considerations for the implementation of the CBA module for the CHANGES-SDSS Platform an initiative of the ongoing 7th Framework Programme "CHANGES of the European commission. Keywords: Risk management, Economics of risk mitigation, EU Flood Directive, resilience, prevention, cost benefit analysis, spatial distribution of costs and benefits
Value of Earth Observation for Risk Mitigation
NASA Astrophysics Data System (ADS)
Pearlman, F.; Shapiro, C. D.; Grasso, M.; Pearlman, J.; Adkins, J. E.; Pindilli, E.; Geppi, D.
2017-12-01
Societal benefits flowing from Earth observation are intuitively obvious as we use the information to assess natural hazards (such as storm tracks), water resources (such as flooding and droughts in coastal and riverine systems), ecosystem vitality and other dynamics that impact the health and economic well being of our population. The most powerful confirmation of these benefits would come from quantifying the impact and showing direct quantitative links in the value chain from data to decisions. However, our ability to identify and quantify those benefits is challenging. The impact of geospatial data on these types of decisions is not well characterized and assigning a true value to the observations on a broad scale across disciplines still remains to be done in a systematic way. This presentation provides the outcomes of a workshop held in October 2017 as a side event of the GEO Plenary that addressed research on economic methodologies for quantification of impacts. To achieve practical outputs during the meeting, the workshop focused on the use and value of Earth observations in risk mitigation including: ecosystem impacts, weather events, and other natural and manmade hazards. Case studies on approaches were discussed and will be part of this presentation. The presentation will also include the exchange of lessons learned and a discussion of gaps in the current understanding of the use and value of earth observation information for risk mitigation.
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele
2017-04-01
Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.
NASA Astrophysics Data System (ADS)
Martino, P.
1980-12-01
A general methodology is presented for conducting an analysis of the various aspects of the hazards associated with the storage and transportation of liquefied natural gas (LNG) which should be considered during the planning stages of a typical LNG ship terminal. The procedure includes the performance of a hazards and system analysis of the proposed site, a probability analysis of accident scenarios and safety impacts, an analysis of the consequences of credible accidents such as tanker accidents, spills and fires, the assessment of risks and the design and evaluation of risk mitigation measures.
Disasters, Scientists and Society: The Quest for Wisdom (Sergey Soloviev Medal Lecture)
NASA Astrophysics Data System (ADS)
Okal, Emile A.
2013-04-01
The horror which accompanied the significant natural disasters of the past decade (major earthquakes, tsunamis, hurricanes...), many of which exposing inadequate preparation and/or response, has revived our quest for improved mitigation, or in simple words, enhanced wisdom, to confront natural hazards, both in scientific and societal terms. The Sumatra and Tohoku megathrust earthquakes have led to the abandonment of the once-popular concept of a "maximum" earthquake predictable on the basis of simple tectonic parameters and the latter has dealt a serious blow to seismic scaling laws which had been the cornerstone of probabilistic hazard estimations. Similarly, large hurricanes such as Katrina and Sandy have featured a significant diversity poorly captured by the single concept of "category". On the other hand, substantial theoretical progress has been made with the development of real-time tsunami warning algorithms based on the seismic W phase. An examination of mitigation aspects and operational procedures during the recent disasters exposes very significant shortcomings in the relationship between Scientists and decision-makers. We will review fields as diverse as the proper evaluation of historical databases, the correct real-time assessment of major earthquakes, the adequate timing of an all-clear, and the role, rights and duties of hazard scientists in their interaction with Society. As the ultimate goal of mitigation, warning and evacuation from many disasters remains the saving of human lives, many recent stories having emphasized the value of education, which casts a substantial ray of hope and enlightenment in the never-ending pursuit of wisdom in the face of future disasters, a noble endeavor to which Sergei Leonidovich Solov'ev had dedicated his life.
Experimental evidence against the paradigm of mortality risk aversion.
Rheinberger, Christoph M
2010-04-01
This article deals with the question of how societal impacts of fatal accidents can be integrated into the management of natural or man-made hazards. Today, many governmental agencies give additional weight to the number of potential fatalities in their risk assessments to reflect society's aversion to large accidents. Although mortality risk aversion has been proposed in numerous risk management guidelines, there has been no evidence that lay people want public decisionmakers to overweight infrequent accidents of large societal consequences against more frequent ones of smaller societal consequences. Furthermore, it is not known whether public decisionmakers actually do such overweighting when they decide upon the mitigation of natural or technical hazards. In this article, we report on two experimental tasks that required participants to evaluate negative prospects involving 1-100 potential fatalities. Our results show that neither lay people nor hazard experts exhibit risk-averse behavior in decisions on mortality risks.
Deadly heat waves projected in the densely populated agricultural regions of South Asia.
Im, Eun-Soon; Pal, Jeremy S; Eltahir, Elfatih A B
2017-08-01
The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.
NASA Astrophysics Data System (ADS)
Vignaroli, Gianluca; Rossetti, Federico; Belardi, Girolamo; Billi, Andrea
2010-05-01
Asbestos-bearing rock sequences constitute a remarkable natural hazard that poses important threat to human health and may be at the origin of diseases such as asbestosis, mesothelioma and lung cancer). Presently, asbestos is classified as Category 1 carcinogen by world health authorities. Although regulatory agencies in many countries prohibit or restrict the use of asbestos, and discipline the environmental asbestos exposure, the impact of asbestos on human life still constitutes a major problem. Naturally occurring asbestos includes serpentine and amphibole minerals characterised by fibrous morphology and it is a constituent of mineralogical associations typical of mafic and ultramafic rocks within the ophiolitic sequences. Release of fibres can occur both through natural processes (erosion) and through human activities requiring fragmentation of ophiolite rocks (quarrying, tunnelling, railways construction, etc.). As a consequence, vulnerability is increasing in sites where workers and living people are involved by dispersion of fibres during mining and milling of ophiolitic rocks. By analysing in the field different exposures of ophiolitic sequences from the Italian peninsula and after an extensive review of the existing literature, we remark the importance of the geological context (origin, tectonic and deformation history) of ophiolites as a first-order parameter in evaluating the asbestos hazard. Integrated structural, textural, mineralogical and petrological studies significantly improve our understanding of the mechanisms governing the nucleation/growth of fibrous minerals in deformation structures (both ductile and brittle) within the ophiolitic rocks. A primary role is recognised in the structural processes favouring the fibrous mineralization, with correlation existing between the fibrous parameters (such as mineralogical composition, texture, mechanics characteristics) and the particles released in the air (such as shape, size, and amount liberated during rock fragmentation). Accordingly, we are confident that definition of an analytical protocol based on the geological attributes of the asbestos-bearing rocks may constitute a propaedeutical tool to evaluate the asbestos hazard in natural environments. This approach may have important implications for mitigation effects of the asbestos hazard from the medical field to the engineering operations.
Environmental legislation as the legal framework for mitigating natural hazards in Spain
NASA Astrophysics Data System (ADS)
Garrido, Jesús; Arana, Estanislao; Jiménez Soto, Ignacio; Delgado, José
2015-04-01
In Spain, the socioeconomic losses due to natural hazards (floods, earthquakes or landslides) are considerable, and the indirect costs associated with them are rarely considered because they are very difficult to evaluate. The prevention of losses due to natural hazards is more economic and efficient through legislation and spatial planning rather than through structural measures, such as walls, anchorages or structural reinforcements. However, there isn't a Spanish natural hazards law and national and regional sector legislation make only sparse mention of them. After 1978, when the Spanish Constitution was enacted, the Autonomous Communities (Spanish regions) were able to legislate according to the different competences (urban planning, environment or civil protection), which were established in the Constitution. In the 1990's, the Civil Protection legislation (national law and regional civil protection tools) dealt specifically with natural hazards (floods, earthquakes and volcanoes), but this was before any soil, seismic or hydrological studies were recommended in the national sector legislation. On the other hand, some Autonomous Communities referred to natural hazards in the Environmental Impact Assessment legislation (EIA) and also in the spatial and urban planning legislation and tools. The National Land Act, enacted in 1998, established, for the first time, that those lands exposed to natural hazards should be classified as non-developable. The Spanish recast text of the Land Act, enacted by Royal Legislative Decree 2/2008, requires that a natural hazards map be included in the Environmental Sustainability Report (ESR), which is compulsory for all master plans, according to the provisions set out by Act 9/2006, known as Spanish Strategic Environmental Assessment (SEA). Consequently, the environmental legislation, after the aforementioned transposition of the SEA European Directive 2001/42/EC, is the legal framework to prevent losses due to natural hazards through land use planning. However, most of the Spanish master plans approved after 2008 don't include a natural hazards map or/and don't classify the areas exposed to natural hazards as non-developable. Restrictions or prohibitions for building in natural hazard-prone areas are not usually established in the master plans. According to the jurisprudence, the environmental legislation prevails over spatial and urban planning regulations. On the other hand, the precedence of the national competence in public security would allow reclassification or the land, independently of the political or economic motivations of the municipal government. Despite of the technical building code or the seismic building code where some recommendations for avoiding "geotechnical" or seismic hazards are established, there are not compulsory guidelines to do technical studies/hazard maps for floods or landslides. The current legislation should be improved, under a technical point of view, and some mechanisms for enforcing the law should be also considered.
Glacial Lake Outburst Flood Risk in Nepal and Their Mitigation Practices in Nepal
NASA Astrophysics Data System (ADS)
Gurung, S.
2017-12-01
Glacial lakes in Nepal face a huge risk of Glacial Lake Outburst Flood (GLOF) due to the ongoing effects of climate change leading to considerable amount of snow and glacier melt thus weakening the natural barriers holding these high altitude glacial lakes. Nepal is at an ever growing risk every year and always waiting for an inevitable natural disaster. Since GLOF can cause extreme huge loss of human lives and physical properties, it has now become very important to design a proper mechanism which helps in reducing hazards from such events. There is little we can do to stop natural disasters, but we can implement pro-active control measures to minimize the loss. Early Warning System is the provision of timely and effective information, which allows individuals exposed to hazards to take action, avoid or reduce risk to life and property and prepare for effective response. The basic idea behind Early Warning System is that, the earlier and more accurately we are able to predict potential risks associated with natural hazards especially flood, the more likely we will be able to manage and mitigate the disasters' impact on society, economies and environment. We are currently focused on the development of early warning system for Imja Glacial Lake. The objective of developing early warning system for Imja GLOF is to help reduce economic losses and mitigate the number of injuries or deaths by providing information that allows individuals and communities downstream of Imja Lake to protect their lives and properties by using the latest and most advanced technology available. We have installed one Automatic Weather Station near the left lateral moraine of Imja Lake to study the effects of different meteorological parameters so as to predict occurrence of any GLOF event. The sensor includes pluviometer, pyranometer, temperature and humidity sensor, wind sensor, Snowdepth sensor. Two radar level sensors are installed at the outlet of Imja Lake and downstream of Imja river for water level measurement. Also, ten movements and volumetric water content sensors are installed to detect occurrence of any GLOF event.
GO/NO-GO - When is medical hazard mitigation acceptable for launch?
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Polk, James D.
2005-01-01
Medical support of spaceflight missions is composed of complex tasks and decisions that dedicated to maintaining the health and performance of the crew and the completion of mission objectives. Spacecraft represent one of the most complex vehicles built by humans, and are built to very rigorous design specifications. In the course of a Flight Readiness Review (FRR) or a mission itself, the flight surgeon must be able to understand the impact of hazards and risks that may not be completely mitigated by design alone. Some hazards are not mitigated because they are never actually identified. When a hazard is identified, it must be reduced or waivered. Hazards that cannot be designed out of the vehicle or mission, are usually mitigated through other means to bring the residual risk to an acceptable level. This is possible in most engineered systems because failure modes are usually predictable and analysis can include taking these systems to failure. Medical support of space missions is complicated by the inability of flight surgeons to provide "exact" hazard and risk numbers to the NASA engineering community. Taking humans to failure is not an option. Furthermore, medical dogma is mostly comprised of "medical prevention" strategies that mitigate risk by examining the behaviour of a cohort of humans similar to astronauts. Unfortunately, this approach does not lend itself well for predicting the effect of a hazard in the unique environment of space. This presentation will discuss how Medical Operations uses an evidence-based approach to decide if hazard mitigation strategies are adequate to reduce mission risk to acceptable levels. Case studies to be discussed will include: 1. Risk of electrocution risk during EVA 2. Risk of cardiac event risk during long and short duration missions 3. Degraded cabin environmental monitoring on the ISS. Learning Objectives 1.) The audience will understand the challenges of mitigating medical risk caused by nominal and off-nominal mission events. 2.) The audience will understand the process by which medical hazards are identified and mitigated before launch. 3.) The audience will understand the roles and responsibilities of all the other flight control positions in participating in the process of reducing hazards and reducing medical risk to an acceptable level.
Environmental Risk Assessment for a Developing Country like India
NASA Astrophysics Data System (ADS)
Ahmed, Shamsuzzaman; Saha, Indranil
2017-04-01
The developing world is facing an increased risk of accelerating disaster losses. A concrete risk assessment along with subsequent management program involving identification, mitigation and preparedness will assist in rehabilitation and reconstruction once the disaster has struck is critical to subvert the magnitude of the loss incurred. A developing country like India has been taken as an example to highlight the elements mentioned. Most countries like India in the developing world is facing a mounting challenge to promote economic growth and bring down poverty. In this scenario, significant climatic changes will not only impact key economic sectors but also add to the existing conundrum. Sudden onset of natural calamities pose an increasing problem to the developing countries for which risk management strategies need to be forged in order to deal with such hazards. If this is not the case, then a substantial diversion of financial resources to reconstruction in the post disaster phase severely messes up the budget planning process. This compromises economic growth in the long run. Envisaging cost effective mitigation measures to minimize environmental and socio economic toll from natural disasters is the immediate requirement. Often it has been found that an apparent lack of historical data on catastrophic events makes hazard assessment an extremely difficult process. For this it is useful to establish preliminary maps to identify high risk zones and justify the utilization of funds. Vulnerability studies assess the physical, social and economic consequences that result from the occurrence of a severe natural phenomenon. Also they take into account public awareness of risk and the consequent ability to cope with such risks. Risk analysis collates information from hazard assessment and vulnerability studies in the form of an estimation of probable future losses in the face of similar hazards. Promoting different governmental schemes to catastrophe risk absorption can be of great assistance for individuals in this context. Reconstruction and rehabilitation measures provide long term assistance for people having suffered major disaster losses. This will involve cooperation and participation of the local communities and stakeholders. In India the government is actively assisting the states in their response to catastrophes. India lacks an integrated system for disaster risk management, instead it is developing a loosely networked system. Here, the NGOs play a significant role in risk reduction programs. The National Natural Disaster Knowledge Network has been set up to promote a simultaneous interactive platform for all the stakeholders dealing with natural disasters. An Indian NGO like Disaster Mitigation Institute is closely working with the government to design means to address disaster loss. The apparent deficit in India is the dominance of the unorganized sector and there is an active focus in increasing the government's contribution by creating various national programs. Involvement of the private sector will also play a key role in addressing such losses in the future. There is an increasing emergence of various initiatives that can provide a meaningful platform to tackle the staggering losses incurred from severe natural hazard events.
Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.
2017-01-01
Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.
EnviroAtlas - Metrics for Austin, TX
This EnviroAtlas web service supports research and online mapping activities related to EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas). The layers in this web service depict ecosystem services at the census block group level for the community of Austin, Texas. These layers illustrate the ecosystems and natural resources that are associated with clean air (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanAir/MapServer); clean and plentiful water (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_CleanPlentifulWater/MapServer); natural hazard mitigation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_NaturalHazardMitigation/MapServer); climate stabilization (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_ClimateStabilization/MapServer); food, fuel, and materials (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_FoodFuelMaterials/MapServer); recreation, culture, and aesthetics (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_RecreationCultureAesthetics/MapServer); and biodiversity conservation (https://enviroatlas.epa.gov/arcgis/rest/services/Communities/ESC_ATX_BiodiversityConservation/MapServer), and factors that place stress on those resources. EnviroAtlas allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the conterminous United States as well as de
Using NASA Using Remote Sensing in Public Health Applications
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John
2011-01-01
The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety.
78 FR 15735 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... 1995, this notice seeks comments concerning the Hazard Mitigation Grant Program application and... CONTACT: Cecelia Rosenberg, Chief, Grants Policy Branch, Mitigation Division, (202) 646-3321. You may.... 5170c, established the Hazard Mitigation Grant Program. Grant requirements and grants management...
How predictable is the behaviour of torrential processes: two case studies of the summer 2012
NASA Astrophysics Data System (ADS)
Huebl, Johannes; Eisl, Julia; Janu, Stefan; Hanspeter, Pussnig
2013-04-01
Debris flow hazards play an important role in the Austrian Alps since many villages are located on alluvial fans. Most of the mitigation Measures as well as Hazard Zone Maps are designed by engineers of previous generations, who know quite a lot about the torrential behaviour from their experience. But speaking in terms of recurrence intervals of 100 years or even more, human memory is restricted. On the other hand numerical modelling is a fast growing task in dealing with natural hazards. Scenarios of torrential hazards can be defined and accordant deposition pattern, flow depths and velocities are calculated. But of course, errors in the input data must lead to fatal errors in the results, consequently threaten human life in possible affected areas. Thus the need for data collection of exceptional events can help to reproduce the reality in a quite high grade, indeed, but unexpected events are still an issue and pose a challenge to engineers. In summer 2012 two debris flow events occurred in Austria with quite different behaviours, from triggering mechanism and flow behaviour through to deposition: Thunderstorms or long lasting rainfall, slope failures with subsequent channel blockage and dike breaching or linear erosion, one or more debris flows, one huge debris flow surge or a series of debris flow surges, sediments without clay or cohesive material, near channel deposition or outspread deposits. Both debris flows have been unexpected in their dimension, although mitigation measures and hazard maps exist. Both events were documented accurately, first to try to understand the torrential process occurred, second to identify the most fitting mitigation measures, ranging from permanent structures to temporary warning systems.
The Human Dimension of Flood Risk: Towards Building Resilience in Vulnerable Communities
NASA Astrophysics Data System (ADS)
Goodrich, K.
2015-12-01
Significant advancements have been made in hydrodynamic modeling for natural disasters such as floods; however, it is vital to better understand how to effectively communicate risk to promote hazard preparedness. In many poor communities throughout the world, individuals live in areas that are hazardous because of the conditions of both the natural environment and built environment. Furthermore, environmental risks from the natural environment can be exacerbated by human development. Planning, behavioral change, and strategic actions taken by community members can mitigate risk, however, it is critical to first understand the perspective of those who are most vulnerable to (1) better communicate risk and (2) improve hazardous conditions. Thus, the Flood Resilient Infrastructure and Sustainable Environments (FloodRISE) project conducted a household level survey of over 350 participants in Los Laureles Canyon, a colonia in Tijuana, Mexico that is vulnerable to flooding. Preliminary results from the study will be discussed, specifically addressing: (1) the relationship between compounding risk factors, such as flooding and erosion, and (2) data that speaks to next steps for engaging community in the co-generation of local knowledge about flood hazards, and other strategies that contribute to more flood resilient communities.
Can hazard risk be communicated through a virtual experience?
Mitchell, J T
1997-09-01
Cyberspace, defined by William Gibson as a consensual hallucination, now refers to all computer-generated interactive environments. Virtual reality, one of a class of interactive cyberspaces, allows us to create and interact directly with objects not available in the everyday world. Despite successes in the entertainment and aviation industries, this technology has been called a 'solution in search of a problem'. The purpose of this commentary is to suggest such a problem: the inability to acquire experience with a hazard to motivate mitigation. Direct experience with a hazard has been demonstrated as a powerful incentive to adopt mitigation measures. While we lack the ability to summon hazard events at will in order to gain access to that experience, a virtual environment can provide an arena where potential victims are exposed to a hazard's effects. Immersion as an active participant within the hazard event through virtual reality may stimulate users to undertake mitigation steps that might otherwise remain undone. This paper details the possible direction in which virtual reality may be applied to hazards mitigation through a discussion of the technology, the role of hazard experience, the creation of a hazard stimulation and the issues constraining implementation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.2... special flood hazards, and is participating in the NFIP; or (2) A political subdivision of a State, or other authority that is designated by a political subdivision to develop and administer a mitigation...
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
Protection of agriculture against drought in Slovenia based on vulnerability and risk assessment
NASA Astrophysics Data System (ADS)
Dovžak, M.; Stanič, S.; Bergant, K.; Gregorič, G.
2012-04-01
Past and recent extreme events, like earthquakes, extreme droughts, heat waves, flash floods and volcanic eruptions continuously remind us that natural hazards are an integral component of the global environment. Despite rapid improvement of detection techniques many of these events evade long-term or even mid-term prediction and can thus have disastrous impacts on affected communities and environment. Effective mitigation and preparedness strategies will be possible to develop only after gaining the understanding on how and where such hazards may occur, what causes them, what circumstances increase their severity, and what their impacts may be and their study has the recent years emerged as under the common title of natural hazard management. The first step in natural risk management is risk identification, which includes hazard analysis and monitoring, vulnerability analysis and determination of the risk level. The presented research focuses on drought, which is at the present already the most widespread as well as still unpredictable natural hazard. Its primary aim was to assess the frequency and the consequences of droughts in Slovenia based on drought events in the past, to develop methodology for drought vulnerability and risk assessment that can be applied in Slovenia and wider in South-Eastern Europe, to prepare maps of drought risk and crop vulnerability and to guidelines to reduce the vulnerability of the crops. Using the amounts of plant available water in the soil, slope inclination, solar radiation, land use and irrigation infrastructure data sets as inputs, we obtained vulnerability maps for Slovenia using GIS-based multi-criteria decision analysis with a weighted linear combination of the input parameters. The weight configuration was optimized by comparing the modelled crop damage to the assessed actual damage, which was available for the extensive drought case in 2006. Drought risk was obtained quantitatively as a function of hazard and vulnerability and presented in the same way as the vulnerability, as a GIS-based map. Risk maps show geographic regions in Slovenia where droughts pose a major threat to the agriculture and together with the vulnerability maps provide the basis for drought management, in particular for the appropriate mitigation and response actions in specific regions. The developed methodology is expected to be applied to the entire region of South-Eastern Europe within the initiative of the Drought Management Centre for Southeastern Europe.
Physical modeling of long-wave run-up mitigation using submerged breakwaters
NASA Astrophysics Data System (ADS)
Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng
2016-04-01
Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.
Summary of the stakeholders workshop to develop a National Volcano Early Warning System (NVEWS)
Guffanti, Marianne; Scott, William E.; Driedger, Carolyn L.; Ewert, John W.
2006-01-01
The importance of investing in monitoring, mitigation, and preparedness before natural hazards occur has been amply demonstrated by recent disasters such as the Indian Ocean Tsunami in December 2004 and Hurricane Katrina in August 2005. Playing catch-up with hazardous natural phenomena such as these limits our ability to work with public officials and the public to lessen adverse impacts. With respect to volcanic activity, the starting point of effective pre-event mitigation is monitoring capability sufficient to detect and diagnose precursory unrest so that communities at risk have reliable information and sufficient time to respond to hazards with which they may be confronted. Recognizing that many potentially dangerous U.S. volcanoes have inadequate or no ground-based monitoring, the U.S Geological Survey (USGS) Volcano Hazards Program (VHP) and partners recently evaluated U.S. volcano-monitoring capabilities and published 'An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System (NVEWS).' Results of the NVEWS volcanic threat and monitoring assessment are being used to guide long-term improvements to the national volcano-monitoring infrastructure operated by the USGS and affiliated groups. The NVEWS report identified the need to convene a workshop of a broad group of stakeholders--such as representatives of emergency- and land-management agencies at the Federal, State, and local levels and the aviation sector--to solicit input about implementation of NVEWS and their specific information requirements. Accordingly, an NVEWS Stakeholders Workshop was held in Portland, Oregon, on 22-23 February 2006. A summary of the workshop is presented in this document.
Siegrist, Michael; Gutscher, Heinz
2008-06-01
Past research indicates that personal flood experience is an important factor in motivating mitigation behavior. It is not fully clear, however, why such experience is so important. This study tested the hypothesis that people without flooding experience underestimate the negative affect evoked by such an event. People who were affected by a severe recent flood disaster were compared with people who were not affected, but who also lived in flood-prone areas. Face-to-face interviews with open and closed questions were conducted (n= 201). Results suggest that people without flood experience envisaged the consequences of a flood differently from people who had actually experienced severe losses due to a flood. People who were not affected strongly underestimated the negative affect associated with a flood. Based on the results, it can be concluded that risk communication must not focus solely on technical aspects; in order to trigger motivation for mitigation behavior, successful communication must also help people to envisage the negative emotional consequences of natural disasters.
Preharvest Food Safety Challenges in Beef and Dairy Production.
Smith, David R
2016-08-01
Foods of animal origin, including beef and dairy products, are nutritious and important to global food security. However, there are important risks to human health from hazards that are introduced to beef and dairy products on the farm. Food safety hazards may be chemical, biological, or physical in nature. Considerations about protecting the safety of beef and dairy products must begin prior to harvest because some potential food safety hazards introduced at the farm (e.g., chemical residues) cannot be mitigated by subsequent postharvest food processing steps. Also, some people have preferences for consuming food that has not been through postharvest processing even though those foods may be unsafe because of microbiological hazards originating from the farm. Because of human fallibility and complex microbial ecologies, many of the preharvest hazards associated with beef and dairy products cannot entirely be eliminated, but the risk for most can be reduced through systematic interventions taken on the farm. Beef and dairy farms differ widely in production practices because of differences in natural, human, and capital resources. Therefore, the actions necessary to minimize on-farm food safety hazards must be farm-specific and they must address scientific, political, economic, and practical aspects. Notable successes in controlling and preventing on-farm hazards to food safety have occurred through a combination of voluntary and regulatory efforts.
The Global Emergency Observation and Warning System
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Mulqueen, John A.
1994-01-01
Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.
NASA Astrophysics Data System (ADS)
Bostenaru Dan, M.
2009-04-01
This special issue includes selected papers on the topic of earthquake impact from the sessions held in 2004 in Nice, France and in 2005 in Vienna, Austria at the first and respectivelly the second European Geosciences Union General Assembly. Since its start in 1999, in the Hague, Netherlands, the hazard of earthquakes has been the most popular of the session. The respective calls in 2004 was for: Nature's forces including earthquakes, floods, landslides, high winds and volcanic eruptions can inflict losses to urban settlements and man-made structures such as infrastructure. In Europe, recent years have seen such significant losses from earthquakes in south and south-eastern Europe, floods in central Europe, and wind storms in western Europe. Meanwhile, significant progress has been made in understanding disasters. Several scientific fields contribute to a holistic approach in the evaluation of capacities, vulnerabilities and hazards, the main factors on mitigating urban disasters due to natural hazards. An important part of the session is devoted to assessment of earthquake shaking and loss scenarios, including both physical damage and human causalities. Early warning and rapid damage evaluation are of utmost importance for addressing the safety of many essential facilities, for emergency management of events and for disaster response. In case of earthquake occurrence strong motion networks, data processing and interpretation lead to preliminary estimation (scenarios) of geographical distribution of damages. Factual information on inflicted damage, like those obtained from shaking maps or aerial imagery permit a confrontation with simulation maps of damage in order to define a more accurate picture of the overall losses. Most recent developments towards quantitative and qualitative simulation of natural hazard impacts on urban areas, which provide decision-making support for urban disaster management, and success stories of and lessons learned from disaster mitigation will be presented. The session includes contributions showing methodological and modelling approaches from scientists in geophysical/seismological, hydrological, remote sensing, civil engineering, insurance, and urbanism, amongst other fields, as well as presentations from practitioners working on specific case studies, regarding analysis of recent events and their impact on cities as well as re-evaluation of past events from the point of view of long-time recovery. In 2005 it was called for: Most strategies for both preparedness and emergency management in case of disaster mitigation are related to urban planning. While natural, engineering and social sciences contribute to the evaluation of the impact of earthquakes and their secondary events (including tsunamis, earthquake triggered landslides, or fire), floods, landslides, high winds, and volcanic eruptions on urban areas, there are the instruments of urban planning which are to be employed for both visualisation as well as development and implementation of strategy concepts for pre- and postdisaster intervention. The evolution of natural systems towards extreme conditions is taken into consideration so far at it concerns the damaging impact on urban areas and infrastructure and the impact on the natural environment of interventions to reduce such damaging impact.
Smart disaster mitigation in Thailand
NASA Astrophysics Data System (ADS)
Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.
2016-04-01
Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column cross-section when subjected to flexural moments. Finally it will be proposed as a warning and mitigation system that can be used on sea coasts vulnerable to potential tsunamis.
NASA Astrophysics Data System (ADS)
Kalika, S.
2012-12-01
In commercial development or K-12 school construction, project sites are often purchased and much of the planning process completed prior to an assessment of the soils proposed for excavation or potential offhaul. Geologic maps, while initially helpful for identifying potential hazards such as landslides and earthquake faults, are less helpful in the identification of naturally occurring hazardous minerals, such as the seven regulated minerals currently classified as asbestos. Geologic maps identify mafic and ultramafic bedrock zones; however, a skilled geologist with knowledge of asbestos hazards will further visualize the earth-shaping processes that may have resulted in the deposition of naturally occurring asbestos in locations outside mapped ultramafic zones including the base of an alluvial fan or within streambed channels. When sampled as an afterthought prior to disposal, property owners are surprised by the budget-crippling costs of waste handling and disposal of NOA, as well as mitigations required to protect the health of construction workers, the public, and future site occupants. The California Air Resources Board (CARB) continues to lead the way in evaluation and regulation of NOA, through development of the CARB 435 preparation and laboratory analytical method, local enforcement of the Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (ATCM), and implementation of dust control measures to protect public health. A thorough site evaluation and construction design includes utilization of the sampling methods developed by the California Geological Survey, laboratory analytical methods within CARB 435, and mitigation measures required by CARB, DTSC, and OSHA for the protection of worker and public health after NOA is discovered. The site evaluation should additionally include an assessment of the future site usage, as regulations differ based on potential health affects to future occupants. Construction and long-term monitoring at an elementary school differs in regulatory requirements from construction of a commercial property. This presentation will highlight two case studies: a school project with several years of advance planning versus a commercial property where NOA was discovered weeks before the start of construction. The presentation will analyze the regulatory differences, mitigation measures, and consideration of the financial impacts that the discovery of NOA can have on a school versus a commercial project.
Jeffrey Prestemon
2011-01-01
Protecting constructed facilities from damages from natural and man-made hazards in a costeffective manner is a challenging task. Several measures of economic performance are available for evaluating building-related investments. These measures include, but are not limited to, life-cycle cost, present value net savings, savings-to-investment ratio, and adjusted...
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.
2017-12-01
I will review recent work from my group on the impact of climate change on the intensity and frequency of heat waves in Asia. Our studies covered Southwest Asia, South Asia, East China, and the Maritime continent. In any of these regions, the risk associated with climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that the wet-bulb temperature is a useful variable to consider in describing the natural hazard from heat waves since it can be easily compared to the natural threshold that defines the upper limit on human survivability. Based on an ensemble of high resolution climate change simulations, we project extremes of wet-bulb temperature conditions in each of these four regions of Asia. We consider the business-as-usual scenario of future greenhouse gas emissions, as well as a moderate mitigation scenario. The results from these regions will be compared and lessons learned summarized.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
...] Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings AGENCY... for Wind Retrofit Projects for Existing Residential Buildings. DATES: Comments must be received by... property from hazards and their effects. One such activity is the implementation of wind retrofit projects...
Historical analysis of US pipeline accidents triggered by natural hazards
NASA Astrophysics Data System (ADS)
Girgin, Serkan; Krausmann, Elisabeth
2015-04-01
Natural hazards, such as earthquakes, floods, landslides, or lightning, can initiate accidents in oil and gas pipelines with potentially major consequences on the population or the environment due to toxic releases, fires and explosions. Accidents of this type are also referred to as Natech events. Many major accidents highlight the risk associated with natural-hazard impact on pipelines transporting dangerous substances. For instance, in the USA in 1994, flooding of the San Jacinto River caused the rupture of 8 and the undermining of 29 pipelines by the floodwaters. About 5.5 million litres of petroleum and related products were spilled into the river and ignited. As a results, 547 people were injured and significant environmental damage occurred. Post-incident analysis is a valuable tool for better understanding the causes, dynamics and impacts of pipeline Natech accidents in support of future accident prevention and mitigation. Therefore, data on onshore hazardous-liquid pipeline accidents collected by the US Pipeline and Hazardous Materials Safety Administration (PHMSA) was analysed. For this purpose, a database-driven incident data analysis system was developed to aid the rapid review and categorization of PHMSA incident reports. Using an automated data-mining process followed by a peer review of the incident records and supported by natural hazard databases and external information sources, the pipeline Natechs were identified. As a by-product of the data-collection process, the database now includes over 800,000 incidents from all causes in industrial and transportation activities, which are automatically classified in the same way as the PHMSA record. This presentation describes the data collection and reviewing steps conducted during the study, provides information on the developed database and data analysis tools, and reports the findings of a statistical analysis of the identified hazardous liquid pipeline incidents in terms of accident dynamics and consequences.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-10-20
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation.
Boxberger, Tobias; Fleming, Kevin; Pittore, Massimiliano; Parolai, Stefano; Pilz, Marco; Mikulla, Stefan
2017-01-01
The Multi-Parameter Wireless Sensing (MPwise) system is an innovative instrumental design that allows different sensor types to be combined with relatively high-performance computing and communications components. These units, which incorporate off-the-shelf components, can undertake complex information integration and processing tasks at the individual unit or node level (when used in a network), allowing the establishment of networks that are linked by advanced, robust and rapid communications routing and network topologies. The system (and its predecessors) was originally designed for earthquake risk mitigation, including earthquake early warning (EEW), rapid response actions, structural health monitoring, and site-effect characterization. For EEW, MPwise units are capable of on-site, decentralized, independent analysis of the recorded ground motion and based on this, may issue an appropriate warning, either by the unit itself or transmitted throughout a network by dedicated alarming procedures. The multi-sensor capabilities of the system allow it to be instrumented with standard strong- and weak-motion sensors, broadband sensors, MEMS (namely accelerometers), cameras, temperature and humidity sensors, and GNSS receivers. In this work, the MPwise hardware, software and communications schema are described, as well as an overview of its possible applications. While focusing on earthquake risk mitigation actions, the aim in the future is to expand its capabilities towards a more multi-hazard and risk mitigation role. Overall, MPwise offers considerable flexibility and has great potential in contributing to natural hazard risk mitigation. PMID:29053608
EconoMe-Develop - a calculation tool for multi-risk assessment and benefit-cost-analysis
NASA Astrophysics Data System (ADS)
Bründl, M.
2012-04-01
Public money is used to finance the protection of human life, material assets and the environment against natural hazards. This limited resource should be used in a way that it achieves the maximum possible effect by minimizing as many risks as possible. Hence, decision-makers are facing the question which mitigation measures should be prioritised. Benefit-Cost-Analysis (BCA) is a recognized method for determining the economic efficiency of investments in mitigation measures. In Switzerland, the Federal Office for the Environment (FOEN) judges the benefit-cost-ratio of mitigation projects on the base of the results of the calculation tool "EconoMe" [1]. The check of the economic efficiency of mitigation projects with an investment of more than 1 million CHF (800,000 EUR) by using "EconoMe" is mandatory since 2008 in Switzerland. Within "EconoMe", most calculation parameters cannot be changed by the user allowing for comparable results. Based on the risk guideline "RIKO" [2] an extended version of the operational version of "EconoMe", called "EconoMe-Develop" was developed. "EconoMe-Develop" is able to deal with various natural hazard processes and thus allows multi-risk assessments, since all restrictions of the operational version of "EconoMe" like e.g. the number of scenarios and expositions, vulnerability, spatial probability of processes and probability of presence of objects, are not existing. Additionally, the influences of uncertainty of calculation factors, like e.g. vulnerability, on the final results can be determined. "EconoMe-Develop" offers import and export of data, e.g. results of GIS-analysis. The possibility for adapting the tool to user specific requirements makes EconoMe-Develop an easy-to-use tool for risk assessment and assessment of economic efficiency of mitigation projects for risk experts. In the paper we will present the most important features of the tool and we will illustrate the application by a practical example.
The effect of natural disturbances on the risk from hydrogeomorphic hazards under climate change
NASA Astrophysics Data System (ADS)
Scheidl, Christian; Thaler, Thomas; Seidl, Rupert; Rammer, Werner; Kohl, Bernhard; Markart, Gerhard
2017-04-01
Recent storm events in Austria show once more how floods, sediment transport processes and debris flows constitute a major threat in alpine regions with a high density of population and an increasing spatial development. As protection forests have a major control function on runoff and erosion, they directly affect the risk from such hydrogeomorphic processes. However, research on future climate conditions, with an expected increase of the global average surface temperature of 3-5°C by 2100, compared to the first decade of the 20th century, raises a number of open questions for a sustainable and improved hazard management in mountain forests. For Europe, for instance, a climate-induced increase in forest disturbances like wildfire, wind, and insect's outbreaks is highly likely for the coming decades. Especially in protection forests, future scenarios of such climate induced natural disturbances and their impact on the protective effect remain an unresolved issue. Combining methods from forestry, hydrology and geotechnical engineering our project uses an integral approach to simulate possible effects of natural disturbances on hydrogeomorphic hazards in the perspective of future protection forest developments. With the individual-based forest landscape and disturbance model (iLand) we conduct an ensemble of forest landscape simulations, assessing the impact of future changes in natural disturbance regimes in four selected torrential catchments. These catchments are situated in two different forest growth areas. Drainage rate simulations are based on the conceptual hydrological model (ZEMOKOST), whereas simulations of the effect of forest disturbances on hillslope erosion processes are conducted by the Distributed Hydrology Soil Vegetation Model (DHSVM). Beside process based simulations, we also emphasis to identify the risk perception and adaptive capacity to mitigate a probable loss of protection functions in forests. For this reason, a postal survey among forestry actors will be performed to assess forest managers concern and willingness to engage in natural hazards management in contrast to the roles of their social network and the roles of political/administrative representatives. We will compare these perceived roles along the dimensions efficacy, attribution of responsibility and trust. This theory-driven approach highlights the motivational structure underlying the willingness to participate in natural hazards initiatives, and allows to tailor policy implications to the needs and capacities of distinct target groups. The outcomes of the investigations shall contribute to the development of adaptive management strategies for forestry administrations at all political levels to mitigate negative effects of climate change in protection forests.
The Impact Hazard in the Context of Other Natural Hazards and Predictive Science
NASA Astrophysics Data System (ADS)
Chapman, C. R.
1998-09-01
The hazard due to impact of asteroids and comets has been recognized as analogous, in some ways, to other infrequent but consequential natural hazards (e.g. floods and earthquakes). Yet, until recently, astronomers and space agencies have felt no need to do what their colleagues and analogous agencies must do in order the assess, quantify, and communicate predictions to those with a practical interest in the predictions (e.g. public officials who must assess the threats, prepare for mitigation, etc.). Recent heightened public interest in the impact hazard, combined with increasing numbers of "near misses" (certain to increase as Spaceguard is implemented) requires that astronomers accept the responsibility to place their predictions and assessments in terms that may be appropriately considered. I will report on preliminary results of a multi-year GSA/NCAR study of "Prediction in the Earth Sciences: Use and Misuse in Policy Making" in which I have represented the impact hazard, while others have treated earthquakes, floods, weather, global climate change, nuclear waste disposal, acid rain, etc. The impact hazard presents an end-member example of a natural hazard, helping those dealing with more prosaic issues to learn from an extreme. On the other hand, I bring to the astronomical community some lessons long adopted in other cases: the need to understand the policy purposes of impact predictions, the need to assess potential societal impacts, the requirements to very carefully assess prediction uncertainties, considerations of potential public uses of the predictions, awareness of ethical considerations (e.g. conflicts of interest) that affect predictions and acceptance of predictions, awareness of appropriate means for publicly communicating predictions, and considerations of the international context (especially for a hazard that knows no national boundaries).
The California Hazards Institute
NASA Astrophysics Data System (ADS)
Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.
2006-12-01
California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for leaders, managers, stakeholders, policy makers, educators and the public to effectively and comprehensively combat the problems caused by the natural hazards that threaten California. During this first year of operation, UC faculty involved in the CHI will identify the science and technology research priorities of the Institute, followed by the solicitation of participation by other important stakeholders within California. The CHI is founded upon the idea that the hazards associated with events such as earthquakes and floods need not become great disasters such as the San Francisco earthquake of 1906 and 2005 Hurricane Katrina if these hazards can be anticipated proactively, before they must be dealt with reactively.
Revision to flood hazard evaluation for the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R.; Werth, D.
Requirements for the Natural Phenomena Hazard (NPH) mitigation for new and existing Department of Energy (DOE) facilities are outlined in DOE Order 420.1. This report examines the hazards posed by potential flooding and represents an update to two previous reports. The facility-specific probabilistic flood hazard curve is defined as the water elevation for each annual probability of precipitation occurrence (or inversely, the return period in years). New design hyetographs for both 6-hr and 24-hr precipitation distributions were used in conjunction with hydrological models of various basins within the Savannah River Site (SRS). For numerous locations of interest, peak flow dischargemore » and flood water elevation were determined. In all cases, the probability of flooding of these facilities for a 100,000 year precipitation event is negligible.« less
Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)
NASA Astrophysics Data System (ADS)
Lagmay, Alfredo Mahar Francisco A.
2015-04-01
The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against disasters.
TerraSAR-X/TanDEM-X data for natural hazards research in mountainous regions of Uzbekistan
NASA Astrophysics Data System (ADS)
Semakova, Eleonora; Bühler, Yves
2017-07-01
Accurate and up-to-date digital elevation models (DEMs) are important tools for studying mountain hazards. We considered natural hazards related to glacier retreat, debris flows, and snow avalanches in two study areas of the Western Tien-Shan mountains, Uzbekistan. High-resolution DEMs were generated using single TerraSAR-X/TanDEM-X datasets. The high quality and actuality of the DEMs were proved through a comparison with Shuttle Radar Topography Mission, Advanced Spaceborne Emission and Reflection Radiometer, and Topo DEMs, using Ice, Cloud, and Land Elevation Satellite data as the reference dataset. For the first study area, which had high levels of economic activity, we applied the generated TanDEM-X DEM to an avalanche dynamics simulation using RAMMS software. Verification of the output results showed good agreement with field observations. For the second study area, with a wide spatial distribution of glaciers, we applied the TanDEM-X DEM to an assessment of glacier surface elevation changes. The results can be used to calculate the local mass balance in glacier ablation zones in other areas. Models were applied to estimate the probability of moraine-dammed lake formation and the affected area of a possible debris flow resulting from glacial lake outburst. The natural hazard research methods considered here will minimize costly ground observations in poorly accessible mountains and mitigate the impacts of hazards on the environment of Uzbekistan.
NASA Astrophysics Data System (ADS)
Todesco, Micol; Neri, Augusto; Demaria, Cristina; Marmo, Costantino; Macedonio, Giovanni
2006-07-01
Dissemination of scientific results to the general public has become increasingly important in our society. When science deals with natural hazards, public outreach is even more important: on the one hand, it contributes to hazard perception and it is a necessary step toward preparedness and risk mitigation; on the other hand, it contributes to establish a positive link of mutual confidence between scientific community and the population living at risk. The existence of such a link plays a relevant role in hazard communication, which in turn is essential to mitigate the risk. In this work, we present a tool that we have developed to illustrate our scientific results on pyroclastic flow propagation at Vesuvius. This tool, a CD-ROM that we developed joining scientific data with appropriate knowledge in communication sciences is meant to be a first prototype that will be used to test the validity of this approach to public outreach. The multimedia guide contains figures, images of real volcanoes and computer animations obtained through numerical modeling of pyroclastic density currents. Explanatory text, kept as short and simple as possible, illustrates both the process and the methodology applied to study this very dangerous natural phenomenon. In this first version, the CD-ROM will be distributed among selected categories of end-users together with a short questionnaire that we have drawn to test its readability. Future releases will include feedback from the users, further advancement of scientific results as well as a higher degree of interactivity.
Why is Probabilistic Seismic Hazard Analysis (PSHA) still used?
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Stark, Philip B.; Geller, Robert J.
2017-03-01
Even though it has never been validated by objective testing, Probabilistic Seismic Hazard Analysis (PSHA) has been widely used for almost 50 years by governments and industry in applications with lives and property hanging in the balance, such as deciding safety criteria for nuclear power plants, making official national hazard maps, developing building code requirements, and determining earthquake insurance rates. PSHA rests on assumptions now known to conflict with earthquake physics; many damaging earthquakes, including the 1988 Spitak, Armenia, event and the 2011 Tohoku, Japan, event, have occurred in regions relatively rated low-risk by PSHA hazard maps. No extant method, including PSHA, produces reliable estimates of seismic hazard. Earthquake hazard mitigation should be recognized to be inherently political, involving a tradeoff between uncertain costs and uncertain risks. Earthquake scientists, engineers, and risk managers can make important contributions to the hard problem of allocating limited resources wisely, but government officials and stakeholders must take responsibility for the risks of accidents due to natural events that exceed the adopted safety criteria.
Deadly heat waves projected in the densely populated agricultural regions of South Asia
Im, Eun-Soon; Pal, Jeremy S.; Eltahir, Elfatih A. B.
2017-01-01
The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability. PMID:28782036
NASA Astrophysics Data System (ADS)
Anthony, Edward J.; Julian, Maurice
1999-12-01
Steep coastal margins are potentially subject to mass wasting processes involving notable landslide activity and sediment evacuation downstream by steep-gradient streams. Sediment transfer from short source-to-sink segments, coupled with mountain hydrological regimes, regulate patterns of river channel aggradation and coastal sediment supply in such geomorphic settings. On the steep French Riviera margin, sediment transfers from existing landslides or from various minor mass wasting processes to stream channels may result following bursts of heavy, concentrated rainfall. High-magnitude flooding and massive sediment transport downstream are generally related to unpredictable extreme rainfalls. Both mass movements and channel sediment storage pose serious hazards to downvalley settlements and infrastructure. A consideration of channel sediment storage patterns in the Var River catchment, the most important catchment in this area, highlights two important shortcomings relative to environmental engineering and hazard mitigation practices. In the first place, the appreciation of geomorphic processes is rather poor. This is illustrated by the undersized nature of engineering works constructed to mitigate hazards in the upstream bedload-dominated channels, and by the unforeseen effects that ten rock dams, constructed in the early 1970s, have had on downstream and coastal sediment storage and on sediment dispersal patterns and, consequently, valley flooding. Secondly, planners and environmental engineers have lacked foresight in valley and coastal management issues on this steep setting, notably as regards the reclaimed areas of the lower Var channel and delta liable to flooding. Urbanization and transport and environmental engineering works have progressively affected patterns of storage and transport of fine-grained sediments in the lower Var channel and delta. Meanwhile the problems raised by these changes have not been adequately addressed in terms of scientific research. A necessary future step in bettering the engineering solutions implemented to contain natural hazards or to harness water and sediment resources is that of fine-scale analysis of source-to-sink sediment transfer processes, of sediment budgets, of time-scales of storage in stream channels, and, finally, of high-magnitude hydrometeorological forcing events in this area. The way all these aspects have been modulated by engineering practices and socioeconomic development should also be an important part of such an analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... Mitigation Grant Program Application and Reporting AGENCY: Federal Emergency Management Agency, DHS. ACTION... Hazard Mitigation Grant Program application and reporting requirements. DATES: Comments must be submitted... . [[Page 3913
The wicked problem of earthquake hazard in developing countries: the example of Bangladesh
NASA Astrophysics Data System (ADS)
Steckler, M. S.; Akhter, S. H.; Stein, S.; Seeber, L.
2017-12-01
Many developing nations in earthquake-prone areas confront a tough problem: how much of their limited resources to use mitigating earthquake hazards? This decision is difficult because it is unclear when an infrequent major earthquake may happen, how big it could be, and how much harm it may cause. This issue faces nations with profound immediate needs and ongoing rapid urbanization. Earthquake hazard mitigation in Bangladesh is a wicked problem. It is the world's most densely populated nation, with 160 million people in an area the size of Iowa. Complex geology and sparse data make assessing a possibly-large earthquake hazard difficult. Hence it is hard to decide how much of the limited resources available should be used for earthquake hazard mitigation, given other more immediate needs. Per capita GDP is $1200, so Bangladesh is committed to economic growth and resources are needed to address many critical challenges and hazards. In their subtropical environment, rural Bangladeshis traditionally relied on modest mud or bamboo homes. Their rapidly growing, crowded capital, Dhaka, is filled with multistory concrete buildings likely to be vulnerable to earthquakes. The risk is compounded by the potential collapse of services and accessibility after a major temblor. However, extensive construction as the population shifts from rural to urban provides opportunity for earthquake-risk reduction. While this situation seems daunting, it is not hopeless. Robust risk management is practical, even for developing nations. It involves recognizing uncertainties and developing policies that should give a reasonable outcome for a range of the possible hazard and loss scenarios. Over decades, Bangladesh has achieved a thousandfold reduction in risk from tropical cyclones by building shelters and setting up a warning system. Similar efforts are underway for earthquakes. Smart investments can be very effective, even if modest. Hence, we suggest strategies consistent with high uncertainty and limited resources. The most crucial steps are enforcing building codes and public education on earthquake risk reduction. Requiring moderate investments that increases building costs by 5-10% can substantially improve safety and is a cost effective strategy. Over time, natural building turnover will make communities more resilient.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Leonard, G. J.
2012-12-01
Recent deadly glacier-related disasters in the Himalayan-Karakoram region—the Attabad landslide and formation of glacier meltwater-fed Lake Gojal, the Gayari ice avalanche/landslide and burial of a Pakistani Army base, and the Seti River outburst disaster—beg the question of whether disasters may be on the rise. Science is not yet ready to offer a full answer, but it is an important one to resolve, because future land-use planning and mitigative measures may be affected. Natural disasters have been commonplace throughout the long human history of the Himalaya-Karakoram region. The broad outlines of the changing natural process, natural hazard, and risk environment may be established. The risk is rising rapidly primarily due to increased human presence in these once-forbidding mountains. Risk is shifting also because climate change is modifying the land surface process system. Rapidly changing glaciers cause a destabilization of the landscape. Glaciers are fundamentally a mestastable phenomenon put in motion by the high gravitational potential energies of the components of glacial systems: snow, ice, water, and debris. Any change in the climate-land-glacier system MUST result in a change in the land process system, with hazards and risks rising or falling or changing location or type. Most commonly, glacier-related disasters include a natural process cascade; as the factors affecting land surface processes and the frequency or magnitude of any one of the elements of the process cascade changes, the net hazard and risk to people changes. Otherwise similar glaciers and glacierized basins have differing sets of hazardous conditions and processes depending on whether the glacier is stable, advancing or retreating. The consequences for the overall risk to people will depend on the details of a specific glacier near a particular village or bridge or railroad. One size does not fit all. Generalizations about trends in natural hazards as related to climate change impacts on glaciers are possible, but any particular locality may buck the general trends. Hence, climate change is affecting the natural process, natural hazard, and human risk environment. However, changing glaciers exhibit a montage of different response behaviors, so the natural hazards and shifting hazards are also a montage. Overwhelmingly, changing land use has the largest impact on the natural hazard and risk environment. We will take recent examples of natural disasters--using both remote sensing data and field data-- and discuss how changing climate, the changing cryosphere, and changing human relationships to the land in Himalayan realms may have contributed to or altered those events.
A new Geo-Information Architecture for Risk Management in the Alps
NASA Astrophysics Data System (ADS)
Baruffini, Mi.; Thuering, M.
2009-04-01
During the last decades land-use increased significantly in the Swiss (and European) mountain regions. Due to the scarceness of areas suitable for development, anthropic activities were extended into areas prone to natural hazards such as avalanches, debris flows and rockfalls (Smith 2001). Furthermore, the transalpine transport system necessity to develop effective links in an important area collides with the need to ensure the safety of travelers and the health of the population. Consequently, an increase in losses due to hazards can be observed. To mitigate these associated losses, both traditional protective measures and land-use planning policies are to be developed and implemented to optimize future investments. Efficient protection alternatives can be obtained considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. As part of the Swiss National Science Foundation Project 54 "Evaluation of the optimal resilience for vulnerable infrastructure networks - An interdisciplinary pilot study on the transalpine transportation corridors" we study the vulnerability of infrastructures due to natural hazards. The project aims to study various natural hazards (and later, even man-made) and to obtain an evaluation of the resilience according to an interdisciplinary approach, considering the possible damage by means of risk criteria and pointing out the feasibility of conceivable measures to reduce potential damage. The project consists of a geoscientific part and an application. The fist part consists in studying the dangers (natural) and related risks in terms of infrastructure vulnerability. The application considers different types of danger (logically intersected with the transport infrastructure) and compares them with fixed values to obtain a so-called deficit. As framework we adopt The Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). In this way the project develops a methodology that makes possible a risk analysis aiming to optimize the infrastructure vulnerability and therefore allows to obtain a model designed to optimize the functionality of the network infrastructure. A simulation environment, RiskBox, is developed within the open-source GIS environment GRASS (Geographic Resources Analysis Support System) and a database (PostgreSQL) in order to manage a infrastructure data catalog. The targeted simulation environment includes the elements that identify the consecutive steps of risk analysis: hazard - vulnerability - risk. The initial results of the experimental case study show how useful a GIS-based system, which identify the risk of any single vulnerable element in the corridor and to assess the risk to the global system on the basis of priorities of the actors involved, can be for effective and efficient disaster response management, as explained in (ARMONIA Project 2007). In our work we wanted to highlight the complexity of the risk analysis methodology, difficulty that is amplified by many peculiarities in the mountain areas. In particular, the illustrative performed process can give an overview of the interests and the need to act to reduce vulnerability and the hazardous nature of the Gotthard corridor. We present the concept and current state of development of our project and our application to the testbed, the Alps-crossing corridor of St. Gotthard. REFERENCES ARMONIA Project 2007: Land use plans in Risky areas fro Unwise to Wise Practices - Materials 2nd conference. Politecnico di Milano. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004 : La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Smith, K. 2001: Environmental hazards. Assessing the risk and reducing disaster. Third edition. London
El Morjani, Zine El Abidine; Ebener, Steeve; Boos, John; Abdel Ghaffar, Eman; Musani, Altaf
2007-01-01
Background Reducing the potential for large scale loss of life, large numbers of casualties, and widespread displacement of populations that can result from natural disasters is a difficult challenge for the individuals, communities and governments that need to respond to such events. While it is extremely difficult, if not impossible, to predict the occurrence of most natural hazards; it is possible to take action before emergency events happen to plan for their occurrence when possible and to mitigate their potential effects. In this context, an Atlas of Disaster Risk is under development for the 21 Member States that constitute the World Health Organization's (WHO) Eastern Mediterranean (EM) Region and the West Bank and Gaza Strip territory. Methods and Results This paper describes the Geographic Information System (GIS) based methods that have been used in order to create the first volume of the Atlas which looks at the spatial distribution of 5 natural hazards (flood, landslide, wind speed, heat and seismic hazard). It also presents the results obtained through the application of these methods on a set of countries part of the EM Region before illustrating how this type of information can be aggregated for decision making. Discussion and Conclusion The methods presented in this paper aim at providing a new set of tools for GIS practitioners to refine their analytical capabilities when examining natural hazards, and at the same time allowing users to create more specific and meaningful local analyses. The maps resulting from the application of these methods provides decision makers with information to strengthen their disaster management capacity. It also represents the basis for the reflection that needs to take place regarding populations' vulnerability towards natural hazards from a health perspective. PMID:17343733
Risk Perception and the Psychology of Natural Hazard Preparedness
NASA Astrophysics Data System (ADS)
Thompson, K. J.; Weber, E. U.
2014-12-01
In the preparedness phase of the disaster cycle, willingness to invest resources in prevention and mitigation doesn't depend only on quantitative judgments of the probability of a disaster. People also evaluate the risks of situations in qualitative ways. Psychological studies of risk perception have shown that risk attitudes toward everyday technologies and activities (e.g., electric power, air travel, smoking) can be mapped onto two orthogonal dimensions: how unknown the risks seem, and how dread or severe they feel. Previously, this psychometric approach to risk perception has focused mostly on man-made risks (e.g., Fischhoff et al. 1978, Slovic 1987). In this paper we examine how natural hazards fit into the established unknown/dread risk space. Hazards that are high on the unknown dimension of risk tend to be perceived as having effects that are unknown to science and to the exposed, uncontrollable, and new. Hazards that rank high on the dread/severity dimension are seen as immediate, catastrophic, highly dreaded on a gut level, new, and likely to be fatal. Perceived risk tends to be highest for hazards that are both high on the dread dimension and low on the unknown dimension. We find that weather-related hazards rank lowest on both dimensions: blizzards, heat waves, hailstorms, fog, and ice storms are all feel very known and not particularly dread. The exception for this group is hurricanes and tornadoes, which are viewed as more similar to geophysical hazards and mass movements: high on dread, though not particularly unknown. Two notable outliers are climate change and sea-level rise, which are both considered very unknown (higher than any other natural hazard save sinkholes), and not at all dread (less dread even than fog and dust storms). But when compared with perceptions of technological hazards, nearly every natural hazard ranks as more dread than any technology or activity, including nuclear power. Man-made hazards fall with technologies, rather than with natural hazards—climate change and sea-level rise are both only as dread as electric power and motor vehicles, yet feel as unknown as terrorism and GMO foods. We discuss the implications of these qualitative elements of hazard risk perception for the preparedness phase of the disaster lifecycle, and offer recommendations to practitioners and educators.
Detection of Hazardous Cavities Below a Road Using Combined Geophysical Methods
NASA Astrophysics Data System (ADS)
De Giorgi, L.; Leucci, G.
2014-07-01
Assessment of the risk arising from near-surface natural hazard is a crucial step in safeguarding the security of the roads in karst areas. It helps authorities and other related parties to apply suitable procedures for ground treatment, mitigate potential natural hazards and minimize human and economic losses. Karstic terrains in the Salento Peninsula (Apulia region—South Italy) is a major challenge to engineering constructions and roads due to extensive occurrence of cavities and/or sinkholes that cause ground subsidence and both roads and building collapse. Cavities are air/sediment-filled underground voids, commonly developed in calcarenite sedimentary rocks by the infiltration of rainwater into the ground, opening up, over a long period of time, holes and tunnels. Mitigation of natural hazards can best be achieved through careful geoscientific studies. Traditionally, engineers use destructive probing techniques for the detection of cavities across regular grids or random distances. Such probing is insufficient on its own to provide confidence that cavities will not be encountered. Frequency of probing and depth of investigation may become more expensive. Besides, probing is intrusive, non-continuous, slow, expensive and cannot provide a complete lateral picture of the subsurface geology. Near-surface cavities usually can be easily detected by surface geophysical methods. Traditional and recently developed measuring techniques in seismic, geoelectrics and georadar are suitable for economical investigation of hazardous, potentially collapsing cavities. The presented research focused on an integrated geophysical survey that was carried out in a near-coast road located at Porto Cesareo, a small village a few kilometers south west of Lecce (south Italy). The roads in this area are intensively affected by dangerous surface cracks that cause structural instability. The survey aimed to image the shallow subsurface structures, including karstic features, and evaluate their extent, as they may cause rock instability and lead to cracking of the road. Seismic refraction tomography and ground-penetrating radar surveys were carried out along several parallel traverses extending about 100 m on the cracked road. The acquired data were processed and interpreted integrally to elucidate the shallow structural setting of the site. Integrated interpretation led to the delineation of hazard zones rich with karstic features in the area. Most of these karstic features are associated with vertical and subvertical linear features and cavities. These features are the main reason of the rock instability that resulted in potentially dangerous cracking of road.
Seismic risk assessment and application in the central United States
Wang, Z.
2011-01-01
Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.
Integrated Risk Research. Case of Study: Motozintla, Chiapas, Mexico
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Jaimes, M.
2015-12-01
This integrated risk research include the analysis of all components of individual constituents of risk such hazard identification, hazard exposure, and vulnerability. We determined risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37ºN, 92.25ºW. Due to its geographical and geological location, this community is continuously exposed mainly to earthquakes, landslides and floods. We developed integrated studies and analysis of seismic zonation, landslides and flood susceptibility using standard methodologies. Vulnerability was quantified from data collected from local families interviews considering five social variables: characteristics of housing construction, availability of basic public services, family economic conditions, existing community plans for disaster preparedness, and risk perception. Local families surveyed were randomly selected considering a sample statistically significant. Our results were spatially represented using a Geographical Information System (GIS). Structural vulnerability curves were generated for typical housing constructions. Our integrated risk analysis demonstrates that the community of Motozintla has a high level of structural and socio-economical risk to floods and earthquakes. More than half of the population does not know any existing Civil Protection Plan and perceive that they are in high risk to landslides and floods. Although the community is located in a high seismic risk zone, most of the local people believe that cannot be impacted by a large earthquake. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support local decision makers in developing an integrated comprehensive natural hazards mitigation and prevention program.
The Brave New World of Real-time GPS for Hazards Mitigation
NASA Astrophysics Data System (ADS)
Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C. W.
2015-12-01
Over 600 continuously-operating, real-time telemetered GPS receivers operate throughout California, Oregon, Washington and Alaska. These receivers straddle active crustal faults, volcanoes and landslides, the magnitude-9 Cascadia and northeastern Alaskan subduction zones and their attendant tsunamigenic regions along the Pacific coast. Around the circum-Pacific, there are hundreds more and the number is growing steadily as real-time networks proliferate. Despite offering the potential for sub-cm positioning accuracy in real-time useful for a broad array of hazards mitigation, these GPS stations are only now being incorporated into routine seismic, tsunami, volcanic, land-slide, space-weather, or meterologic monitoring. We will discuss NASA's READI (Real-time Earthquake Analysis for DIsasters) initiative. This effort is focussed on developing all aspects of real-time GPS for hazards mitigation, from establishing international data-sharing agreements to improving basic positioning algorithms. READI's long-term goal is to expand real-time GPS monitoring throughout the circum-Pacific as overseas data become freely available, so that it may be adopted by NOAA, USGS and other operational agencies responsible for natural hazards monitoring. Currently ~100 stations are being jointly processed by CWU and Scripps Inst. of Oceanography for algorithm comparison and downstream merging purposes. The resultant solution streams include point-position estimates in a global reference frame every second with centimeter accuracy, ionospheric total electron content and tropospheric zenith water content. These solutions are freely available to third-party agencies over several streaming protocols to enable their incorporation and use in hazards monitoring. This number will ramp up to ~400 stations over the next year. We will also discuss technical efforts underway to develop a variety of downstream applications of the real-time position streams, including the ability to broadcast solutions to thousands of users in real time, earthquake finite-fault and tsunami excitation estimations, and several user interfaces, both stand-alone client and browser-based, that allow interaction with both real-time position streams and their derived products.
NASA Astrophysics Data System (ADS)
Zulfadrim, Z.; Toyoda, Y.; Kanegae, H.
2018-01-01
The purpose of this paper is to introduce some local wisdoms in West Sumatra and propose their challenges that modern values have degraded its knowledge. In a contemporary context, traditional stories (written and oral stories) still relevant to be used and internalized in disaster risk reduction. Traditional knowledge or local wisdom is a system of knowledge derived from long experienced process in the past, adopted and handed over to next generation through evolutionary process. Indigenous or traditional knowledge can be practiced in understanding the nature of natural disaster, to propose the best action in mitigation, to respond in emergency phase, and to suggest more option for recovery process based on previous experience. The paper based on four weeks field research in west Sumatra which is known with their natural hazards due to its geographical location. In the beginning, this paper discusses the nature of local wisdom and how it can be matched in disaster management, then continues to the specific case how the traditional stories in West Sumatera can be internalized and integrated with contemporary disaster risk reduction. This paper proves that local wisdom can be useful as an effective instrument to deal with natural disaster or natural hazard.
NASA Astrophysics Data System (ADS)
Haque, C. Emdad
1995-09-01
Science and technology cannot control entirely the causes of natural hazards. However, by using multifaceted programs to modify the physical and human use systems, the potential losses from disasters can effectively be minized. Predicting, identifying, monitoring, and forecasting extreme meteorological events are the preliminary actions towards mitigating the cyclone-loss potential of coastal inhabitants, but without the successful dissemination of forecasts and relevant information, and without appropriate responses by the potential victims, the loss potential would probably remain the same. This study examines the process through which warning of the impending disastrous cyclone of April 1991 was received by the local communities and disseminated throughout the coastal regions of Bangladesh. It is found that identification of the threatening condition due to atmospheric disturbance, monitoring of the hazard event, and dissemination of the cyclone warning were each very successful. However, due to a number of socioeconomic and cognitive factors, the reactions and responses of coastal inhabitants to the warning were in general passive, resulting in a colossal loss, both at the individual and national level. The study recommends that the hazard mitigation policies should be integrated with national economic development plans and programs. Specifically, it is suggested that, in order to attain its goals, the cyclone warning system should regard the aspects of human response to warnings as a constituent part and accommodate human dimensions in its operational design.
A performance goal-based seismic design philosophy for waste repository facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Q.A.
1994-12-31
A performance goal-based seismic design philosophy, compatible with DOE`s present natural phenomena hazards mitigation and {open_quotes}graded approach{close_quotes} philosophy, has been proposed for high level nuclear waste repository facilities. The rationale, evolution, and the desirable features of this method have been described. Why and how the method should and can be applied to the design of a repository facility are also discussed.
A critical analysis of hazard resilience measures within sustainability assessment frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Elizabeth C., E-mail: echiso1@lsu.edu; Sattler, Meredith, E-mail: msattler@lsu.edu; Friedland, Carol J., E-mail: friedland@lsu.edu
Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site,more » community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.« less
NASA Astrophysics Data System (ADS)
Schoessow, F. S.; Li, Y.; Howe, P. D.
2016-12-01
Extreme heat events are the deadliest natural hazard in the United States and are expected to increase in both severity and frequency in the coming years due to the effects of climate change. The risks of climate change and weather-related events such as heat waves to a population can be more comprehensively assessed by coupling the traditional examination of natural hazards using remote sensing and geospatial analysis techniques with human vulnerability factors and individual perceptions of hazards. By analyzing remote-sensed and empirical survey data alongside national hazards advisories, this study endeavors to establish a nationally-representative baseline quantifying the spatiotemporal variation of individual heat vulnerabilities at multiple scales and between disparate population groups affected by their unique socioenvironmental factors. This is of immediate academic interest because the study of heat waves risk perceptions remains relatively unexplored - despite the intensification of extreme heat events. The use of "human sensors", georeferenced & timestamped individual response data, provides invaluable contextualized data at a high spatial resolution, which will enable policy-makers to more effectively implement targeted strategies for risk prevention, mitigation, and communication. As climate change risks are further defined, this cognizance will help identify vulnerable populations and enhance national hazard preparedness and recovery frameworks.
Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.
2012-02-01
In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.« less
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
44 CFR 78.5 - Flood Mitigation Plan development.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate a...
Physical applications of GPS geodesy: a review.
Bock, Yehuda; Melgar, Diego
2016-10-01
Geodesy, the oldest science, has become an important discipline in the geosciences, in large part by enhancing Global Positioning System (GPS) capabilities over the last 35 years well beyond the satellite constellation's original design. The ability of GPS geodesy to estimate 3D positions with millimeter-level precision with respect to a global terrestrial reference frame has contributed to significant advances in geophysics, seismology, atmospheric science, hydrology, and natural hazard science. Monitoring the changes in the positions or trajectories of GPS instruments on the Earth's land and water surfaces, in the atmosphere, or in space, is important for both theory and applications, from an improved understanding of tectonic and magmatic processes to developing systems for mitigating the impact of natural hazards on society and the environment. Besides accurate positioning, all disturbances in the propagation of the transmitted GPS radio signals from satellite to receiver are mined for information, from troposphere and ionosphere delays for weather, climate, and natural hazard applications, to disturbances in the signals due to multipath reflections from the solid ground, water, and ice for environmental applications. We review the relevant concepts of geodetic theory, data analysis, and physical modeling for a myriad of processes at multiple spatial and temporal scales, and discuss the extensive global infrastructure that has been built to support GPS geodesy consisting of thousands of continuously operating stations. We also discuss the integration of heterogeneous and complementary data sets from geodesy, seismology, and geology, focusing on crustal deformation applications and early warning systems for natural hazards.
Using Integrated Earth and Social Science Data for Disaster Risk Assessment
NASA Astrophysics Data System (ADS)
Downs, R. R.; Chen, R. S.; Yetman, G.
2016-12-01
Society faces many different risks from both natural and technological hazards. In some cases, disaster risk managers focus on only a few risks, e.g., in regions where a single hazard such as earthquakes dominate. More often, however, disaster risk managers deal with multiple hazards that pose diverse threats to life, infrastructure, and livelihoods. From the viewpoint of scientists, hazards are often studied based on traditional disciplines such as seismology, hydrology, climatology, and epidemiology. But from the viewpoint of disaster risk managers, data are needed on all hazards in a specific region and on the exposure and vulnerability of population, infrastructure, and economic resources and activity. Such managers also need to understand how hazards, exposures, and vulnerabilities may interact, and human and environmental systems respond, to hazard events, as in the case of the Fukushima nuclear disaster that followed from the Sendai earthquake and tsunami. In this regard, geospatial tools that enable visualization and analysis of both Earth and social science data can support the use case of disaster risk managers who need to quickly assess where specific hazard events occur relative to population and critical infrastructure. Such information can help them assess the potential severity of actual or predicted hazard events, identify population centers or key infrastructure at risk, and visualize hazard dynamics, e.g., earthquakes and their aftershocks or the paths of severe storms. This can then inform efforts to mitigate risks across multiple hazards, including reducing exposure and vulnerability, strengthening system resiliency, improving disaster response mechanisms, and targeting mitigation resources to the highest or most critical risks. We report here on initial efforts to develop hazard mapping tools that draw on open web services and support simple spatial queries about population exposure. The NASA Socioeconomic Data and Applications Center (SEDAC) Hazards Mapper, a web-based mapping tool, enables users to estimate population living in areas subject to flood or tornado warnings, near recent earthquakes, or around critical infrastructure. The HazPop mobile app, implemented for iOS devices, utilizes location services to support disaster risk managers working in field conditions.
NASA Astrophysics Data System (ADS)
Tian, Cong-shan; Fang, Yi-ping
2017-04-01
Multi - hazards stress is a big obsession that hampers the social and economic development in disaster - prone areas. There is a need to understand and manage drivers of vulnerability and adaptive capacity to the system of multiple geological hazards. Here we pilot three methods namely the multi - hazards resilience assessment model (new framework), the entropy weight method, and the assess social resilience to flood hazards model to measure the resilience to natural hazards of landslide and debris flow on community scale. Using one typical multi - hazards affected county in southwest China, 32 resilience indicators belonging to antecedent conditions, coping responses, adaptation (including learning), and hazard exposure are selected, and a composite index was calculated under the three methods mentioned above. Results show that the new framework reflected a more detailed fluctuation among the 16 years, despite of the overall similar trend between 2000 and 2015 under the three methods. Medical insurance coverage, unemployment insurance coverage, education degree, and hazard exposure are the main drivers of resilience. The most effective strategies for improving community resilience to multiple hazards are likely to be accelerating the development of education, improving the level of medical security, increasing unemployment insurance, and establishing multi - hazards prevention and mitigation systems.
A toolbox to visualise benefits resulting from flood hazard mitigation
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Thaler, Thomas; Heiser, Micha
2017-04-01
In order to visualize the benefits resulting from technical mitigation, a toolbox was developed within an open-source environment that allows for an assessment of gains and losses for buildings exposed to flood hazards. Starting with different scenarios showing the changes in flood magnitude with respect to the considered management options, the computation was based on the amount and value of buildings exposed as well as their vulnerability, following the general concept of risk assessment. As a result, beneficiaries of risk reduction may be identified and - more general - also different mitigation options may be strategically evaluated with respect to the height of risk reduction for different elements exposed. As such, multiple management options can be ranked according to their costs and benefits, and in order of priority. A relational database composed from different modules was created in order to mirror the requirements of an open source application and to allow for future dynamics in the data availability as well as the spatiotemporal dynamics of this data (Fuchs et al. 2013). An economic module was used to compute the monetary value of buildings exposed using (a) the building footprint, (b) the information of the building cadaster such as building type, number of storeys and utilisation, and (c) regionally averaged construction costs. An exposition module was applied to connect the spatial GIS information (X and Y coordinates) of elements at risk to the hazard information in order to achieve information on exposure. An impact module linked this information to vulnerability functions (Totschnig and Fuchs 2013; Papathoma-Köhle et al. 2015) in order to achieve the monetary level of risk for every building exposed. These values were finally computed before and after the implementation of mitigation measure in order to show gains and losses, and visualised. The results can be exported in terms of spread sheets for further computation. References Fuchs S, Keiler M, Sokratov SA, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Natural Hazards 68 (3):1217-1241 Papathoma-Köhle M, Zischg A, Fuchs S, Glade T, Keiler M (2015) Loss estimation for landslides in mountain areas - An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software 63:156-169 Totschnig R, Fuchs S (2013) Mountain torrents: quantifying vulnerability and assessing uncertainties. Engineering Geology 155:31-44
Mitigating mass movement caused by earthquakes and typhoons: a case study of central Taiwan
NASA Astrophysics Data System (ADS)
Lin, Jiun-Chuan
2013-04-01
Typhoons caused huge damages to Taiwan at the average of 3.8 times a year in the last 100 years, according to Central Weather Bureau data. After the Chi-Chi earthquake of 1999 at the magnitude of Richard Scale 7.3, typhoons with huge rainfall would cause huge debris flow and deposits at river channels. As a result of earthquakes, loose debris falls and flows became significant hazards in central Taiwan. Analysis of rainfall data and data about the sites of slope failure show that damage from natural hazards was enhanced in the last 20 years, as a result of the Chi-Chi earthquake. There are three main types of mass movement in Central Taiwan: landslides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and river channel banks. Many dams, check dams, housing structures and even river channels can be raised to as high as 60 meters as a result of stacking up floating materials of landslides. Debris flows occurred mainly through typhoon periods and activated ancient debris deposition. New gullies were thus developed from deposits loosened and shaken up by earthquakes. Extreme earthquakes and typhoon events occurred frequently in the last 20 years. This paper analyzes the geological and geomorphologic background for the precarious areas and typhoons in central Taiwan, to make a systematic understanding of mass movement harzards. The mechanism and relations of debris flows and rainfall data in central Taiwan are analyzed. Ways for mitigating mass movement threats are also proposed in this paper. Keywords: mass movement, earthquakes, typhoons, hazard mitigation, central Ta
Radiation Requirements and Requirements Flowdown: Single Event Effects (SEEs) and Requirements
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2002-01-01
This short course session provides: (1) an overview of the single particle-induced hazard for space system as they apply in the natural space environment. This shall focus on the implementation of a single event effect hardness assurance (SEEHA) program for systems including system engineering approach and mitigation of effects. (2) The final portion of this session shell provide relevant real-life examples of in-flight performance of systems.
Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies
NASA Technical Reports Server (NTRS)
2010-01-01
The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
Code of Federal Regulations, 2014 CFR
2014-10-01
... GENERAL FLOODPLAIN MANAGEMENT AND PROTECTION OF WETLANDS § 9.11 Mitigation. (a) Purpose. The purpose of... substantial improvement in a floodway, and no new construction in a coastal high hazard area, except for: (i... a coastal high hazard area unless it is elevated on adequately anchored pilings or columns, and...
NASA Astrophysics Data System (ADS)
Zhao, Chao-ying; Zhang, Qin; Yang, Chengsheng; Zou, Weibao
2011-07-01
Datong is located in the north of Shanxi Province, which is famous for its old-fashioned coal-mining preservation in China. Some serious issues such as land subsidence, ground fissures, mining collapse, and earthquake hazards have occurred over this area for a long time resulting in significant damages to buildings and roads. In order to monitor and mitigate these natural man-made hazards, Short Baseline Subsets (SBAS) InSAR technique with ten Envisat ASAR data is applied to detect the surface deformation over an area of thousands of square kilometers. Then, five MODIS data are used to check the atmospheric effects on InSAR interferograms. Finally, nine nonlinear land subsidence cumulative results during September 2004 and February 2008 are obtained. Based on the deformation data, three kinds of land subsidence are clearly detected, caused by mine extraction, underground water withdrawal and construction of new economic zones, respectively. The annual mean velocity of subsidence can reach 1 to 4 cm/year in different subsidence areas. A newly designed high-speed railway (HSR) with speeds of 350 km/h will cross through the Datong hi-tech zone. Special measures should be taken for the long run of this project. In addition, another two subsidence regions need further investigation to mitigate such hazards.
Geoethical issues in long-term assessment of geohazards and related mitigation policies
NASA Astrophysics Data System (ADS)
Tinti, Stefano; Armigliato, Alberto
2015-04-01
Long-term assessment of large-impact and relatively (or very) infrequent geohazards like earthquakes, tsunamis and volcanic eruptions is nowadays a common practice for geoscientists and many groups have been and are involved in producing global and regional hazard maps in response of an increasing demand of the society. Though the societal needs are the basic motivations for such studies, often this aspect is not pondered enough and a lack of communication between geoscientists and the society might be a serious limit to the effective exploitation of the hazard assessment products and to the development of adequate mitigation policies. This paper is an analysis of the role of geoscientists in the process of the production of long-term assessments of dangerous natural phenomena (such as mapping of seismic, tsunami and volcanic hazards), with special emphasis given to the role of communicators and disseminators (with respect to the general public, to authorities, to restricted specialized audiences…), but also of providers of active support to the planners who should be given key elements for making decision. Geoethics imposes geoscientists to take clear and full responsibilities on the products resulting from their assessments, but also to be aware that these products are valuable insofar they are scientifically sound, known, understandable, and utilizable by a wide universe of users.
NASA Astrophysics Data System (ADS)
Kontar, Y. Y.
2014-12-01
The increasing extent and vulnerability of technologically advanced society together with aspects of global climate change intensifies the frequency and severity of natural disasters. Every year, communities around the world face the devastating consequences of hazardous events, including loss of life, property and infrastructure damage, and environmental decline. Environmentally sound strategies have to be developed to minimize these consequences. However, hazard-prone areas differ geographically, climatically, and culturally. There is no a one-size-fits-all solution. Thus, it is crucial that future decision-makers not only know the conditions that make some natural Earth processes hazardous to people, but also understand how people perceive and adjust to potential natural hazards in their regions. In May 2013, an ice jam caused major flooding in Galena, a remote village in interior Alaska. Within two days, flooding destroyed nearly the entire region's infrastructure, and displaced over 400 residents. Almost a year later, a significant part of Galena's population was still evacuated in Fairbanks and other neighboring towns. The rebuilding holdup reflected the federal government's reluctance to spend millions of dollars an the area that may be destroyed again by the next flood. Massive floods inundated towns along the Yukon River before (e.g., Eagle in 2009 and Holycross in 1975), but people return to refurbish and again inhabit the same territories. Rivers have a significant importance to Alaskan rural communities. Not only do rivers provide food, drink, transportation, and in some cases arable land and irrigation, but they also carry cultural significance for the Native Alaskan people. The Galena case study provides a revealing example of challenges of communicating with and educating the public and policy makers about natural hazards.
Six University Canada/US/Mexico exchange program in Earth Hazards (EHaz)
NASA Astrophysics Data System (ADS)
Stix, J.; Rose, W. I.
2005-12-01
This program is a consortium of six research-based universities in Canada, Mexico, and the U.S (Michigan Tech, Buffalo, McGill, Waterloo, UNAM and Colima) funded by the Department of education in the US and equivalent organizations in Canada and Mexico as part of the NAFTA agreement. The focus area for the mobility program is mitigation of geological natural hazards in North America. The consortium universities will exchange students and faculty in several engineering and science disciplines (e.g. environmental engineering, civil engineering, geological engineering, social sciences and geology) involved in the study of natural geological hazards. Students in the social sciences also will be exchanged, recognizing that the solution of natural hazards problems involves critical political, social, and economic aspects. Students will be mobilized among the participating universities through one- to two-semester visits and up to 60 more students will be mobilized via short-term, intensive courses. Student activities will consist of three stages: intensive language training, natural hazards coursework, and professional or research internships with local industries, agencies or at the host university. In each of the next three years there will be a joint advanced volcanology class run via videoconferencing and a three week field trip to areas of volcanological interest in Canada, US and Mexico. The course and field trip foci for the next three years are: 2006: Megaeruptions/ LongValley and Yellowstone; 2007: Volcanic edifice failure/ Cascades and Western Canada 2008: Convergent plate Boundary Volcanism/ Mexican Volcanic Belt Although the six universities will have first access to the exchange we are constructing ways for other volcanology programs to share the teleconference courses and field trips.
NASA Astrophysics Data System (ADS)
Sparks, S. R.
2008-12-01
Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective mitigation during volcanic crises.
Translating Volcano Hazards Research in the Cascades Into Community Preparedness
NASA Astrophysics Data System (ADS)
Ewert, J. W.; Driedger, C. L.
2015-12-01
Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.
NASA Astrophysics Data System (ADS)
Baruffini, Mirko
2010-05-01
Due to the topographical conditions in Switzerland, the highways and the railway lines are frequently exposed to natural hazards as rockfalls, debris flows, landslides, avalanches and others. With the rising incidence of those natural hazards, protection measures become an important political issue. However, they are costly, and maximal protection is most probably not economically feasible. Furthermore risks are distributed in space and time. Consequently, important decision problems to the public sector decision makers are derived. This asks for a high level of surveillance and preservation along the transalpine lines. Efficient protection alternatives can be obtained consequently considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. With a Geographical Information System adapted to run with a tool developed to manage Risk analysis it is possible to survey the data in time and space, obtaining an important system for managing natural risks. As a framework, we adopt the Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). It offers a complete framework for the analysis and assessment of risks due to natural hazards, ranging from hazard assessment for gravitational natural hazards, such as landslides, collapses, rockfalls, floodings, debris flows and avalanches, to vulnerability assessment and risk analysis, and the integration into land use planning at the cantonal and municipality level. The scheme is limited to the direct consequences of natural hazards. Thus, we develop a system which integrates the procedures for a complete risk analysis in a Geographic Information System (GIS) toolbox, in order to be applied to our testbed, the Alps-crossing corridor of St. Gotthard. The simulation environment is developed within ArcObjects, the development platform for ArcGIS. The topic of ArcObjects usually emerges when users realize that programming ArcObjects can actually reduce the amount of repetitive work, streamline the workflow, and even produce functionalities that are not easily available in ArcGIS. We have adopted Visual Basic for Applications (VBA) for programming ArcObjects. Because VBA is already embedded within ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects in VBA. Our tool visualises the obtained data by an analysis of historical data (aerial photo imagery, field surveys, documentation of past events) or an environmental modeling (estimations of the area affected by a given event), and event such as route number and route position and thematic maps. As a result of this step the record appears in WebGIS. The user can select a specific area to overview previous hazards in the region. After performing the analysis, a double click on the visualised infrastructures opens the corresponding results. The constantly updated risk maps show all sites that require more protection against natural hazards. The final goal of our work is to offer a versatile tool for risk analysis which can be applied to different situations. Today our GIS application mainly centralises the documentation of natural hazards. Additionally the system offers information about natural hazard at the Gotthard line. It is very flexible and can be used as a simple program to model the expansion of natural hazards, as a program of quantitatively estimate risks or as a detailed analysis at a municipality level. The tool is extensible and can be expanded with additional modules. The initial results of the experimental case study show how useful a GIS-based system can be for effective and efficient disaster response management. In the coming years our GIS application will be a data base containing all information needed for the evaluation of risk sites along the Gotthard line. Our GIS application can help the technical management to decide about protection measures because of, in addition to the visualisation, tools for spatial data analysis will be available. REFERENCES Bründl M. (Ed.) 2009 : Risikokonzept für Naturgefahren - Leitfaden. Nationale Plattform für Naturgefahren PLANAT, Bern. 416 S. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004: La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Maggi R. et al, 2009: Evaluation of the optimal resilience for vulnerable infrastructure networks. An interdisciplinary pilot study on the transalpine transportation corridors, NRP 54 "Sustainable Development of the Built Environment", Projekt Nr. 405 440, Final Scientific Report, Lugano
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
44 CFR 78.13 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... deposit the amounts in the National Flood Mitigation Fund if the applicant has not provided the...
78 FR 64522 - Pennsylvania; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... provided under the Stafford Act for Hazard Mitigation will be limited to 75 percent of the total eligible... eligible to apply for assistance under the Hazard Mitigation Grant Program. The following Catalog of... declaration of a major disaster for the Commonwealth of Pennsylvania (FEMA-4149-DR), dated October 1, 2013...
78 FR 14806 - Louisiana; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... Stafford Act for Public Assistance and Hazard Mitigation will be limited to 75 percent of the total... eligible to apply for assistance under the Hazard Mitigation Grant Program. (The following Catalog of... declaration of a major disaster for the State of Louisiana (FEMA-4102-DR), dated February 22, 2013, and...
NASA Astrophysics Data System (ADS)
Salna, E.
2017-12-01
The Extreme Events Institute's (EEI) International Hurricane Research Center (IHRC) at Florida International University (FIU) in Miami, Florida, as a NOAA Weather-Ready Nation Ambassador, is dedicated to make South Florida, Ready, Responsive and Resilient. IHRC with funding from the Florida Division of Emergency Management (FDEM) has developed several museum exhibits and events. This includes the hands-on FIU Wall of Wind exhibit for the National Building Museum in Washington, DC, the Frost Science Museum in Miami, Florida, and the Museum of Discovery and Science (MODS) in Fort Lauderdale, Florida. The exhibit teaches the public about hurricane wind engineering research, enhanced building codes, and the importance of protecting your home's windows and doors with code-approved shutters. In addition, IHRC and MODS facilitate Eye of the Storm, a free-of-charge, community event with interactive hurricane science, and preparedness activities, including the entertaining Owlie Skywarn live theater show and live air cannon missile impact demonstrations. This annual event includes many local, state and federal partners, including NOAA and NWS. The IHRC also developed the FIU Wall of Wind Mitigation Challenge. As the next generation of engineers to address natural hazards and extreme weather, this STEM education event features a competition between high school teams to develop innovative wind mitigation concepts and real-life human safety and property protection solutions. IHRC and MODS are also developing a new exhibit of a Hazard/Risk Equation that will "come to life," through virtual reality (VR) technology in a state-of-the art 7D theater. The exhibit will provide a better public understanding of how changes in exposures and vulnerabilities will determine whether a community experiences an emergency, disaster or catastrophe. It will raise public consciousness and drive home the point that communities need not passively accept natural hazard risks. Ultimately, if we raise their understanding, we may raise their support for Disaster Risk Reduction and then voice that support to their local government officials and policy-makers. The goal and end-result is improved community resilience. This is especially relevant with Miami being part of the Rockefeller Foundation's 100 Resilient Cities Initiative.
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 79.5 - Application process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS.... (3) Participation in these flood mitigation grant programs is voluntary, and States may elect not to...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION... each State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
NASA Astrophysics Data System (ADS)
Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.
2012-04-01
Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.
Climatic control of Mississippi River flood hazard amplified by river engineering
NASA Astrophysics Data System (ADS)
Munoz, Samuel E.; Giosan, Liviu; Therrell, Matthew D.; Remo, Jonathan W. F.; Shen, Zhixiong; Sullivan, Richard M.; Wiman, Charlotte; O’Donnell, Michelle; Donnelly, Jeffrey P.
2018-04-01
Over the past century, many of the world’s major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river’s sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.
Climatic control of Mississippi River flood hazard amplified by river engineering.
Munoz, Samuel E; Giosan, Liviu; Therrell, Matthew D; Remo, Jonathan W F; Shen, Zhixiong; Sullivan, Richard M; Wiman, Charlotte; O'Donnell, Michelle; Donnelly, Jeffrey P
2018-04-04
Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.
NASA Astrophysics Data System (ADS)
Auermuller, L. M.; Gatto, J.; Huch, C.
2015-12-01
The highly developed nature of New Jersey's coastline, barrier island and lagoon communities make them particularly vulnerable to storm surge, sea level rise and flooding. The impacts of Hurricane Sandy have enlightened coastal communities to these realities. Recognizing these vulnerabilities, the Jacques Cousteau National Research Reserve (JC NERR), Rutgers Center for Remote Sensing and Spatial Analysis (CRSSA), Rutgers Bloustein School and the Barnegat Bay Partnership (BBP) have developed web-based tools to assist NJ's coastal communities in visualizing and planning for future local impacts. NJFloodMapper and NJAdapt are two complementary interactive mapping websites that visualize different current and future flood hazards. These hazard layers can be combined with additional data including critical facilities, evacuation routes, socioeconomic and environmental data. Getting to Resilience is an online self-assessment tool developed to assist communities reduce vulnerability and increase preparedness by linking planning, mitigation, and adaptation. Through this interactive process communities will learn how their preparedness can yield valuable points through voluntary programs like FEMA's Community Rating System and Sustainable Jersey. The assessment process can also increase the community's understanding of where future vulnerabilities should be addressed through hazard mitigation planning. Since Superstorm Sandy, more than thirty communities in New Jersey have been provided technical assistance in assessing their risks and vulnerabilities to coastal hazards, and have begun to understand how to better plan and prepare for short and long-term changes along their shorelines.
NASA Astrophysics Data System (ADS)
Toe, David; Mentani, Alessio; Govoni, Laura; Bourrier, Franck; Gottardi, Guido; Lambert, Stéphane
2018-04-01
The paper presents a new approach to assess the effecctiveness of rockfall protection barriers, accounting for the wide variety of impact conditions observed on natural sites. This approach makes use of meta-models, considering a widely used rockfall barrier type and was developed from on FE simulation results. Six input parameters relevant to the block impact conditions have been considered. Two meta-models were developed concerning the barrier capability either of stopping the block or in reducing its kinetic energy. The outcome of the parameters range on the meta-model accuracy has been also investigated. The results of the study reveal that the meta-models are effective in reproducing with accuracy the response of the barrier to any impact conditions, providing a formidable tool to support the design of these structures. Furthermore, allowing to accommodate the effects of the impact conditions on the prediction of the block-barrier interaction, the approach can be successfully used in combination with rockfall trajectory simulation tools to improve rockfall quantitative hazard assessment and optimise rockfall mitigation strategies.
Diverting lava flows in the lab
Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat
2015-01-01
Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.
44 CFR 78.6 - Flood Mitigation Plan approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan approval..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.6 Flood Mitigation Plan approval process. The State POC will forward all Flood...
Code of Federal Regulations, 2013 CFR
2013-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2014 CFR
2014-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
44 CFR 78.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... State through the annual Cooperative Agreements; (2) Approve Flood Mitigation Plans in accordance with... Planning and Projects Grants; (2) Prepare and submit the Flood Mitigation Plan; (3) Implement all approved...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
Code of Federal Regulations, 2011 CFR
2011-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.1 Purpose... of the Flood Mitigation Assistance (FMA) program, authorized by Sections 1366 and 1367 of the... eliminate claims under the National Flood Insurance Program (NFIP) through mitigation activities. The...
NASA Astrophysics Data System (ADS)
Yurkovich, E. S.; Howell, D. G.
2002-12-01
Exploding population and unprecedented urban development within the last century helped fuel an increase in the severity of natural disasters. Not only has the world become more populated, but people, information and commodities now travel greater distances to service larger concentrations of people. While many of the earth's natural hazards remain relatively constant, understanding the risk to increasingly interconnected and large populations requires an expanded analysis. To improve mitigation planning we propose a model that is accessible to planners and implemented with public domain data and industry standard GIS software. The model comprises 1) the potential impact of five significant natural hazards: earthquake, flood, tropical storm, tsunami and volcanic eruption assessed by a comparative index of risk, 2) population density, 3) infrastructure distribution represented by a proxy, 4) the vulnerability of the elements at risk (population density and infrastructure distribution) and 5) the connections and dependencies of our increasingly 'globalized' world, portrayed by a relative linkage index. We depict this model with the equation, Risk = f(H, E, V, I) Where H is an index normalizing the impact of five major categories of natural hazards; E is one element at risk, population or infrastructure; V is a measure of the vulnerability for of the elements at risk; and I pertains to a measure of interconnectivity of the elements at risk as a result of economic and social globalization. We propose that future risk analysis include the variable I to better define and quantify risk. Each assessment reflects different repercussions from natural disasters: losses of life or economic activity. Because population and infrastructure are distributed heterogeneously across the Pacific region, two contrasting representations of risk emerge from this study.
Knowledge base about earthquakes as a tool to minimize strong events consequences
NASA Astrophysics Data System (ADS)
Frolova, Nina; Bonnin, Jean; Larionov, Valery; Ugarov, Alexander; Kijko, Andrzej
2017-04-01
The paper describes the structure and content of the knowledge base on physical and socio-economical consequences of damaging earthquakes, which may be used for calibration of near real-time loss assessment systems based on simulation models for shaking intensity, damage to buildings and casualties estimates. Such calibration allows to compensate some factors which influence on reliability of expected damage and loss assessment in "emergency" mode. The knowledge base contains the description of past earthquakes' consequences for the area under study. It also includes the current distribution of built environment and population at the time of event occurrence. Computer simulation of the recorded in knowledge base events allow to determine the sets of regional calibration coefficients, including rating of seismological surveys, peculiarities of shaking intensity attenuation and changes in building stock and population distribution, in order to provide minimum error of damaging earthquakes loss estimations in "emergency" mode. References 1. Larionov, V., Frolova, N: Peculiarities of seismic vulnerability estimations. In: Natural Hazards in Russia, volume 6: Natural Risks Assessment and Management, Publishing House "Kruk", Moscow, 120-131, 2003. 2. Frolova, N., Larionov, V., Bonnin, J.: Data Bases Used In Worlwide Systems For Earthquake Loss Estimation In Emergency Mode: Wenchuan Earthquake. In Proc. TIEMS2010 Conference, Beijing, China, 2010. 3. Frolova N. I., Larionov V. I., Bonnin J., Sushchev S. P., Ugarov A. N., Kozlov M. A. Loss Caused by Earthquakes: Rapid Estimates. Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards, vol.84, ISSN 0921-030, Nat Hazards DOI 10.1007/s11069-016-2653
NASA Astrophysics Data System (ADS)
Bannert, D.
Worldwide resources of arable land, water, groundwater, forest and expanding human habitat are under increasing pressure almost anywhere. Especially the non- industrialised countries with their rapidly increasing population are facing severe problems from natural catastrophes such as landslides, volcanic and seismic hazards, soil degradation and shortage of water or flooding. Geo-environmental research can help to identify the causes for these events, define the rehabilitation and can lead to early warning systems. Remote sensing adds considerable knowledge by providing a wide variety of sensors applied form airborne and space platforms, the data of which, once analysed, can provide completely new observations on natural risk areas. The UNESCO/IUGS sponsored GARS Program since 1984 is conducting- joint research with institutions in industrialised and developing countries. As of today, more than 40 institutes and individuals worldwide have joined the GARS- Program. Results of their research are among others contributions toLandslide assessment qVolcanic risk qCoastal hazards qDesertification processes q Space organisations and financing institutions serving developing nations are requested to help to deploy new sensors to monitor geo-dynamic processes, providing free and direct data reception in all parts of the world in order to allow national institutes to develop their own early warning capabilities.
Aligning Natural Resource Conservation and Flood Hazard Mitigation in California
Calil, Juliano; Beck, Michael W.; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah
2015-01-01
Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. history. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as “repetitive loss.” During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds. PMID:26200353
Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.
Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah
2015-01-01
Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.
Use of Citizen Science and Social Media to Improve Wind Hazard and Damage Characterization
NASA Astrophysics Data System (ADS)
Lombardo, F.; Meidani, H.
2017-12-01
Windstorm losses are significant in the U.S. annually and cause damage worldwide. A large percentage of losses are caused by localized events (e.g., tornadoes). In order to better mitigate these losses improvement is needed in understanding the hazard characteristics and physical damage. However, due to the small-scale nature of these events the resolution of the dedicated measuring network does not capture most occurrences. As a result damage-based assessments are sometimes used to gauge intensity. These damage assessments often suffer from a lack of available manpower, inability to arrive at the scene rapidly and difficulty accessing a damaged site. The use and rapid dissemination of social media, the power of crowds engaged in scientific endeavors, and the public's awareness of their vulnerabilities point to a paradigm shift in how hazards can be sensed in a rapid manner. In this way, `human-sensor' data has the potential to radically improve fundamental understanding of hazard and disasters and resolve some of the existing challenges in wind hazard and damage characterization. Data from social media outlets such as Twitter have been used to aid in damage assessments from hazards such as flood and earthquake, however, the reliability and uncertainty of participatory sensing has been questioned and has been called the `biggest challenge' for its sustained use. This research proposes to investigate the efficacy of both citizen science applications and social media data to represent wind hazards and associated damage. Research has focused on a two-phase approach: 1) to have citizen scientists perform their own `damage survey' (i.e., questionnaire) with known damage to assess uncertainty in estimation and 2) downloading and analysis of social media text and imagery streams to ascertain the possibility of performing `unstructured damage surveys'. Early results have shown that the untrained public can estimate tornado damage levels in residential structures with some accuracy. In addition, valuable windstorm hazard and damage information in both text and imagery can be extracted and archived from Twitter in an automated fashion. Information extracted from these sources will feed into advances in hazard and disaster modeling, social-cognitive theories of human behavior and decision-making for hazard mitigation.
NASA Astrophysics Data System (ADS)
Maltzkait, Anika; Pfurtscheller, Clemens
2014-05-01
Multihazard risk analysis and disaster planning for emergency services as a basis for efficient provision in the case of natural hazards - case study municipality of Au, Austria A. Maltzkait (1) & C. Pfurtscheller (1) (1) Institute for Interdisciplinary Mountain Research (IGF), Austrian Academy of Sciences, Innsbruck, Austria The extreme flood events of 2002, 2005 and 2013 in Austria underlined the importance of local emergency services being able to withstand and reduce the adverse impacts of natural hazards. Although for legal reasons municipal emergency and crisis management plans exist in Austria, they mostly do not cover risk analyses of natural hazards - a sound, comparable assessment to identify and evaluate risks. Moreover, total losses and operational emergencies triggered by natural hazards have increased in recent decades. Given sparse public funds, objective budget decisions are needed to ensure the efficient provision of operating resources, like personnel, vehicles and equipment in the case of natural hazards. We present a case study of the municipality of Au, Austria, which was hardly affected during the 2005 floods. Our approach is primarily based on a qualitative risk analysis, combining existing hazard plans, GIS data, field mapping and data on operational efforts of the fire departments. The risk analysis includes a map of phenomena discussed in a workshop with local experts and a list of risks as well as a risk matrix prepared at that workshop. On the basis for the exact requirements for technical and non-technical mitigation measures for each natural hazard risk were analysed in close collaboration with members of the municipal operation control and members of the local emergency services (fire brigade, Red Cross). The measures includes warning, evacuation and, technical interventions with heavy equipment and personnel. These results are used, first, to improve the municipal emergency and crisis management plan by providing a risk map, and a list of risks and, second, to check if the local emergency forces can cope with the different risk scenarios using locally available resources. The emergency response plans will identify possible resource deficiencies in personnel, vehicles and equipment. As qualitative methods and data are used, uncertainties in the study emerged in finding definitions for safety targets, in the construction of the different risk scenarios, in the inherent uncertainty beyond the probability of occurrence and the intensity of natural hazards, also in the case of the expectable losses. Finally, we used available studies and expert interviews to develop objective rules for investment decisions for the fire departments and the Red Cross to present an empirically sound basis for the efficient provision of intervention in the case of natural hazards for the municipality of Au. Again, the regulations for objective provision were developed in close collaboration with the emergency services.
NASA Astrophysics Data System (ADS)
DeLorme, D.; Collini, R.; Stephens, S. H.
2017-12-01
As sea level rises, nuisance flooding along coasts is increasing. There is a need to understand how the public views flooding events in order to tailor communications to different audiences appropriately and help improve community resilience. This interdisciplinary presentation is intended to foster greater awareness about present-day nuisance flooding, ongoing conversation about best practices for accurately and effectively communicating about this "cumulative hazard" and its risks, and consideration about possible preparation and mitigation options for community resilience. The presentation will begin by defining and explaining nuisance flooding according to scientific experts and the scholarly literature. Next, we will share several specific examples of how nuisance flooding is increasingly impacting certain areas in the Northern U.S. Gulf Coast to demonstrate the importance of raising attention to and better understanding of this phenomenon across a range of audiences. We will particularly focus on the complex interrelated social, economic, and ecological issues associated with this hazard. Then, we will compare and contrast conceptualizations of nuisance flooding (characteristics, causes, consequences) and associated concerns from the viewpoints and experiences of various stakeholders in the Northern U.S. Gulf Coast (e.g., natural resource managers, community planners, extension specialists). These data are synthesized from multiple research methods and engagement mechanisms (e.g., focus groups, workshop mapping exercises) implemented during the first year of a multi-year NOAA-sponsored interdisciplinary project on Dynamic Sea Level Rise Assessments of the Ability of Natural and Nature-based Features to Mitigate Surge and Nuisance Flooding. To conclude, we will provide future research recommendations along with references and resources about nuisance flooding.
Modeling lahar behavior and hazards
Manville, Vernon; Major, Jon J.; Fagents, Sarah A.
2013-01-01
Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.
Kick, Edward L; Fraser, James C; Fulkerson, Gregory M; McKinney, Laura A; De Vries, Daniel H
2011-07-01
Of all natural disasters, flooding causes the greatest amount of economic and social damage. The United States' Federal Emergency Management Agency (FEMA) uses a number of hazard mitigation grant programmes for flood victims, including mitigation offers to relocate permanently repetitive flood loss victims. This study examines factors that help to explain the degree of difficulty repetitive flood loss victims experience when they make decisions about relocating permanently after multiple flood losses. Data are drawn from interviews with FEMA officials and a survey of flood victims from eight repetitive flooding sites. The qualitative and quantitative results show the importance of rational choices by flood victims in their mitigation decisions, as they relate to financial variables, perceptions of future risk, attachments to home and community, and the relationships between repetitive flood loss victims and the local flood management officials who help them. The results offer evidence to suggest the value of a more community-system approach to FEMA relocation practices. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.
Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong
2017-05-15
Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volcanic ash hazards and aviation risk: Chapter 4
Guffanti, Marianne C.; Tupper, Andrew C.
2015-01-01
The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.
Enhancing international earth science competence in natural hazards through 'geoNatHaz
NASA Astrophysics Data System (ADS)
Giardino, Marco; Clague, John J.
2010-05-01
"geoNatHaz" is a Transatlantic Exchange Partnership project (TEP 2009-2012) within the framework of the EU-Canada programme for co-operation in higher education, training, and youth. The project is structured to improve knowledge and skills required to assess and manage natural hazards in mountain regions. It provides student exchanges between European and Canadian universities in order to enhance international competence in natural hazard research. The university consortium is led by Simon Fraser University (Canada) and Università degli studi di Torino (Italy). Partner universities include the University of British Columbia, Queen's University, Università di Bologna, Université de Savoie, and the University of Athens. Université de Lausanne (Switzerland) supports the geoNatHaz advisory board through its bilateral agreements with Canadian partner universities. The geoNatHaz project promotes cross-cultural understanding and internationalization of university natural hazard curricula through common lectures, laboratory exercises, and field activities. Forty graduate students from the seven Canadian and European partner universities will benefit from the project between 2009 and 2012. Some students enrolled in graduate-level earth science and geologic engineering programs spend up to five months at the partner universities, taking courses and participating in research teams under the direction of project scientists. Other students engage in short-term (four-week) exchanges involving training in classic natural hazard case-studies in mountain regions of Canada and Europe. Joint courses are delivered in English, but complementary cultural activities are offered in the languages of the host countries. Supporting organizations offer internships and technical and scientific support. Students benefit from work-study programs with industry partners. Supporting organizations include government departments and agencies (Geological Survey of Canada; CNR-IRPI National Research Institute on Hydrogeological Hazards; Simon Fraser University Centre for Natural Hazard Research; Civil Protection of Regione Piemonte; Dipartimento Difesa del Suolo of Regione Valle d'Aosta; Environmental Protection, Civil Protection and Geological Survey of Regione Emilia-Romagna; Alberta Geological Survey), non-governmental and non-profit organizations (Fondazione Vaiont; Fondation Montaine Sure; Comitato Glaciologico Italiano; Tele-Rilevamento Europa; IMAGEO), and companies (MacDonald, Detwiller and Associates; TRE-Canada; BC Hydro; CVA). Support programs to ensure that students fully benefit from their exchanges are in place in each of the participating universities. Exchanges of faculty and technicians will ensure that students' educational experiences are challenging, rich, and intellectually rewarding. The exchanges also will facilitate development of up-to-date natural hazard courses shared by the seven partner universities and will catalyze collaborations among scientists participating in the project. The centrepiece of the project is field-based courses in natural hazards and risk in high mountain environments. Six field courses will be offered over the three-year period of the project - three in Europe and three in Canada. Course topics include (1) impacts of climate change on natural hazards in high mountains, (2) deep-seated rock-slope deformation, (3) mitigation of landslide hazards in mountain valleys, (4) applications of new technologies in natural hazard research, (5) frequency-magnitude relations and risk assessment, and (6) earthquake hazards and risk in mountain regions. The courses are taught by faculty from each of the partner universities, with the assistance of graduate students and technicians. The field courses support and extend existing programs in geology, geomorphology, and engineering geology offered by the partner universities.
Cost assessment of natural hazards in Europe - state-of-the-art, knowledge gaps and recommendations
NASA Astrophysics Data System (ADS)
Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J. C. J. M.; Bouwer, L. M.; Bubeck, P.; Ciavola, P.; Thieken, A. H.; Genovese, E.; Green, C.; Hallegatte, S.; Kreibich, H.; Lequeux, Q.; Viavattenne, C.; Logar, I.; Papyrakis, E.; Pfurtscheller, C.; Poussin, J.; Przyluski, V.
2012-04-01
Effective and efficient reduction of natural hazard risks requires a thorough understanding of the costs of natural hazards in order to develop sustainable risk management strategies. The current methods that assess the costs of different natural hazards employ a diversity of terminologies and approaches for different hazards and impacted sectors. This makes it difficult to arrive at robust, comprehensive and comparable cost figures. The CONHAZ (Costs of Natural Hazards) project aimed to compile and synthesise current knowledge on cost assessment methods in order to strengthen the role of cost assessments in the development of integrated natural hazard management and adaptation planning. In order to achieve this, CONHAZ has adopted a comprehensive approach, considering natural hazards ranging from droughts, floods and coastal hazards to Alpine hazards, as well as different impacted sectors and cost types. Its specific objectives have been 1) to compile the state-of-the-art methods for cost assessment; 2) to analyse and assess these methods in terms of technical aspects, as well as terminology, data quality and availability, and research gaps; and 3) to synthesise resulting knowledge into recommendations and to identify further research needs. This presentation summarises the main results of CONHAZ. CONHAZ differentiates between direct tangible damages, losses due to business interruption, indirect damages, intangible effects, and costs of risk mitigation. It is shown that the main focus of cost assessment methods and their application in practice is on direct costs, while existing methods for assessing intangible and indirect effects are rather rarely applied and methods for assessing indirect effects often cannot be used on the scale of interest (e.g. the regional scale). Furthermore, methods often focus on single sectors and/or hazards, and only very few are able to reflect several sectors or multiple hazards. Process understanding and its use in cost assessment is poor, leading to highly uncertain results. However, sensitivity and uncertainty analyses as well as validations are hardly undertaken. Important recommendations are that cost assessment can be made more comprehensive by including indirect and intangible effects. Furthermore, the importance is highlighted of identifying sources of uncertainties, of reducing them effectively and of documenting remaining ones. One source of uncertainty concerns data sources. A framework for supporting data collection on the European level ensuring minimum data quality standards would facilitate the development and consistency of European and national databases. Furthermore, an improvement of methods is needed with regard to a better understanding and modelling of the damaging processes. In particular, there is a need for a better understanding of the economic response to external shocks and to improve models for indirect cost assessment based on this. Also models to estimate direct economic damage need to be based on more knowledge about the complex processes leading to damages. Moreover, the dynamics of risk due to climate and socio-economic change have to be better considered in the models in order to unveil uncertainties about future developments in the costs of natural hazards. Finally, there is a need for appropriate and transparent tools and guidance to support decision makers in the integration of uncertain cost assessment figures into decision making.
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.
Social transformation in transdisciplinary natural hazard management
NASA Astrophysics Data System (ADS)
Attems, Marie-Sophie; Fuchs, Sven; Thaler, Thomas
2017-04-01
Due to annual increases of natural hazard losses, there is a discussion among authorities and communities in Europe on innovative solutions to increase resilience, and consequently, business-as-usual in risk management practices is often questioned. Therefore, the current situation of risk management requests a societal transformation to response adequately and effectively to the new global dynamics. An emerging concept is the implementation of multiple-use mitigation systems against hazards such as floods, avalanches and land-slides. However, one key aspect refers to the involvement of knowledge outside academic research. Therefore, transdisciplinary knowledge can be used to discuss vital factors which are needed to upscale the implementation of multiple-use mitigation measures. The method used in this contribution is an explorative scenario analysis applied in Austria and processes the knowledge gained in transdisciplinary workshops. The scenario analysis combines qualitative data and the quantitative relations in order to generate a set of plausible future outcomes. The goal is to establish a small amount of consistent scenarios, which are efficient and thereby representative as well as significantly different from each other. The results of the discussions among relevant stakeholders within the workshops and a subsequent quantitative analysis, showed that vital variables influencing the multiple use of mitigation measures are the (1) current legislation, (2) risk acceptance among authorities and the public, (3) land-use pressure, (4) the demand for innovative solutions, (5) the available technical standards and possibilities and (6) finally the policy entrepreneurship. Four different scenarios were the final result of the analysis. Concluding the results, in order to make multiple-use alleviations systems possible contemporary settings concerning risk management strategies will have to change in the future. Legislation and thereby current barriers have to be altered in order to create a possibility for innovative solutions. If the state of the art in technical perspectives allows constructions with limited additional risk, multiple-use structures are an option in risk management. The present and future land-use pressure also intensifies the economic interest in finding and accepting such measures.
NASA Astrophysics Data System (ADS)
Dadson, Simon J.; Hall, Jim W.; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P.; Lane, Stuart N.; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-03-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based `natural' flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Dadson, Simon J; Hall, Jim W; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P; Lane, Stuart N; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-03-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Island Economic Vulnerability to Natural Disasters—the case of Changdao
NASA Astrophysics Data System (ADS)
Zhang, Z.
2016-12-01
The paper take Changdao County as sample to analyze differentiated impacts of natural disasters on island counties. The result shows that under increased population densities, small islands quickly face binding size limitations and suffer diminished per-capita resources from sustained population increases. The isolated, high-risk geography of small islands exacerbate the scale of a natural disaster shock, rendering many risk-pooling local mechanisms ineffective; disaster assistance flows were also shown to be ineffective in this study. In an environment of increasing weather hazards and resources at risk, it is imperative to understand the determinants of natural disaster vulnerability towards future loss mitigation. Importantly, disaster-thwarting polices must consider perverse implications of economic development measures, such as per-capita income, and infrastructure investments interacting with increased population densities.
Hazards mapping using local and scientific knowledge. A case in rural Mexico
NASA Astrophysics Data System (ADS)
Solis, B.; Bocco, G.
2016-12-01
Natural hazards in rural areas in developing countries usually affect poor peasants and their infrastructure. This poses a problem of social vulnerability that coupled to the risk may cause severe hazards. Research oriented to prevention and adaptation is crucial. Other studies have proved that local knowledge and peasant's perception on hazards is a valuable tool to tackle prevention and mitigation. In the valley of Huahua river, at the Pacific coast of Mexico, landslides have directly affected rural roads hampering communication between villages. In addition some of their deposits have changed the morphology of river channels, resulting in flooding and avalanches threatening rural life and assets. At least 21 landslides are still active in the area. In this research the leading questions are: how do people perceive landslides hazard? What is the knowledge possessed by villagers facing such hazards? Could scientific and local knowledge be coupled in a hybrid format to formulate an adequate hazards map? The investigation used ethnographic techniques (participant observation, semi-structured and structured interviews, and participatory mapping) and multivariate statistical approaches based on empirical data. We will present the preliminary results, based principally on interview data and a first hazard zoning of the lower valley of the Huahua River. Our results suggest that the approach can be used in this and similar areas in developing countries.
Atlas of natural hazards in the Hawaiian coastal zone
Fletcher, Charles H.; Grossman, Eric E.; Richmond, Bruce M.; Gibbs, Ann E.
2002-01-01
The purpose of this report is to communicate to citizens and regulatory authorities the history and relative intensity of coastal hazards in Hawaii. This information is the key to the wise use and management of coastal resources. The information contained in this document,we hope,will improve the ability of Hawaiian citizens and visitors to safely enjoy the coast and provide a strong data set for planners and managers to guide the future of coastal resources. This work is largely based on previous investigations by scientific and engineering researchers and county, state, and federal offices and agencies. The unique aspect of this report is that, to the extent possible, it assimilates prior efforts in documenting Hawaiian coastal hazards and combines existing knowledge into a single comprehensive coastal hazard data set. This is by no means the final word on coastal hazards in Hawaii. Every hazardous phenomenon described here, and others such as slope failure and rocky shoreline collapse, need to be more carefully quantified, forecast, and mitigated. Our ultimate goal, of course, is to make the Hawaiian coast a safer place by educating the people of the state, and their leaders, about the hazardous nature of the environment. In so doing, we will also be taking steps toward improved preservation of coastal environments, because the best way to avoid coastal hazards is to avoid inappropriate development in the coastal zone. We have chosen maps as the medium for both recording and communicating the hazard history and its intensity along the Hawaiian coast.Two types of maps are used: 1) smallscale maps showing a general history of hazards on each island and summarizing coastal hazards in a readily understandable format for general use, and 2) a large-scale series of technical maps (1:50,000) depicting coastal sections approximately 5 to 7 miles in length with color bands along the coast ranking the relative intensity of each hazard at the adjacent shoreline.
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
NASA Astrophysics Data System (ADS)
Hussin, Haydar; van Westen, Cees; Reichenbach, Paola
2013-04-01
Local and regional authorities in mountainous areas that deal with hydro-meteorological hazards like landslides and floods try to set aside budgets for emergencies and risk mitigation. However, future losses are often not calculated in a probabilistic manner when allocating budgets or determining how much risk is acceptable. The absence of probabilistic risk estimates can create a lack of preparedness for reconstruction and risk reduction costs and a deficiency in promoting risk mitigation and prevention in an effective way. The probabilistic risk of natural hazards at local scale is usually ignored all together due to the difficulty in acknowledging, processing and incorporating uncertainties in the estimation of losses (e.g. physical damage, fatalities and monetary loss). This study attempts to set up a working framework for a probabilistic risk assessment (PRA) of landslides and floods at a municipal scale using the Fella river valley (Eastern Italian Alps) as a multi-hazard case study area. The emphasis is on the evaluation and determination of the uncertainty in the estimation of losses from multi-hazards. To carry out this framework some steps are needed: (1) by using physically based stochastic landslide and flood models we aim to calculate the probability of the physical impact on individual elements at risk, (2) this is then combined with a statistical analysis of the vulnerability and monetary value of the elements at risk in order to include their uncertainty in the risk assessment, (3) finally the uncertainty from each risk component is propagated into the loss estimation. The combined effect of landslides and floods on the direct risk to communities in narrow alpine valleys is also one of important aspects that needs to be studied.
NASA Astrophysics Data System (ADS)
Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.
2017-10-01
Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.
The landslide susceptibility mapping and assessment with ZY satellite data
NASA Astrophysics Data System (ADS)
Zhang, R.; Zhang, Z.; Zhao, Y.
2012-12-01
Natural hazards can result in enormous property damage and casualties in mountainous regions. In China, the direct loss of hazards is about 400 million yuan in 2011. Especially the landslide, the most common natural hazards, got the wide attention of each country. Landslide susceptibility mapping is of great importance for landslide hazard mitigation efforts throughout the world. In Southwest Hubei, there are much mineral mining activities, which may trigger the landslide. In addition the Three Gorges reservoir is located in this area, and the storage changed the geological and hydrological environment, which may increase the frequency of the ancient landslide reactivation, and the new landslide occurrence. There are more than 200 landslide hazards happened since 2003. So producing a regional-scaled landslide susceptibility map is necessary. For the above purpose, the landslide susceptibility mapping was produced by using the ZY-3 and ZY-1-02C satellite data, the DEMs and the conventional topographic data.(1) The DEM derivatives slope gradient, the slope aspect and the topographic wetness index (TWI) ; (2) in order to acquire the spatially continuous vegetation information, Normalized Difference Vegetation Index (NDVI) was computed using ZY-1-02C and ZY-3; (3) the regional lithologic information (i.e. mineral distribution) and the tectonic information obtained from remote sensing data in combination with regional geological survey; (4) the regional hydrogeological information was produced by using the remote sensing data in combination with the DEMs; (5) the existed landslides information obtained from remote sensing. To model the landslide hazard assessment using variety of statistic methods and evaluation methods, the cross application model yields reasonable results which can be applied for preliminary landslide hazard mapping and the hazard grade division.
2016-06-01
Membranes .2. Neoprene, SBR, EPDM , NBR, and Natural- Rubber Versus Normal-Alkanes. J. Appl. Polym. Sci. 1991, 42 (8), 2329–2336. 24. Harogoppad, S.B...highly absorptive (e.g., tire rubber ). Absorptive materials are often more challenging to decontaminate because of the reduced accessibility of the...then aged for 60 min. During the aging period, agent mass was absorbed by a flux-based process.7 The agent-contaminated area of the panel may affect
2007-01-01
The overarching goal of U.S. Geological Survey (USGS) Gulf Coast science in the aftermath of the 2005 hurricane season will be to provide the scientific information, knowledge, and tools required to ensure that decisions about coastal land resource use, management practices, and future development in the coastal zone and adjacent watersheds promote restoration, increase coastal resilience, and mitigate risks associated with both human-created and natural hazards.
Ethical questions in landslide management and risk reduction in Norway
NASA Astrophysics Data System (ADS)
Taurisano, A.; Lyche, E.; Thakur, V.; Wiig, T.; Øvrelid, K.; Devoli, G.
2012-04-01
The loss of lives caused by landslides in Norway is smaller than in other countries due to the low population density in exposed areas. However, annual economic losses from damage to properties and infrastructures are vast. Yet nationally coordinated efforts to manage and reduce landslide and snow avalanche risk are a recent challenge, having started only in the last decade. Since 2009, this has been a task of the Norwegian Water Resources and Energy Directorate (NVE) under the Ministry of Petroleum and Energy. Ongoing work includes collection of landslide data, production of susceptibility and hazard maps, planning of mitigation measures along with monitoring and early warning systems, assistance to areal planning, providing expertise in emergencies and disseminating information to the public. These activities are realized in collaboration with the Norwegian Geological Survey (NGU), the Meteorological Institute, the Road and Railway authorities, universities and private consultant companies. As the total need for risk mitigating initiatives is by far larger than the annual budget, priority assessment is crucial. This brings about a number of ethical questions. 1. Susceptibility maps have been produced for the whole country and provide a first indication of areas with potential landslide or snow avalanche hazard, i.e. areas where special attention and expert assessments are needed before development. Areas where no potential hazard is shown can in practice be developed without further studies, which call for relatively conservative susceptibility maps. However, conservative maps are problematic as they too often increase both cost and duration of building projects beyond the reasonable. 2. Areas where hazard maps or risk mitigation initiatives will be funded are chosen by means of cost-benefits analyses which are often uncertain. How to estimate the benefits if the real probability for damage can only be judged on a very subjective level but not really calculated? As a result, we may use large amounts of money to mitigate the risk for a few houses with a yearly probability of damage of 1/300 and not do anything for an isolated farm with a yearly probability of damage larger than 1/50. 3. Is it ethical to stop the plan to construct a pedestrian and a cycling way or a new road crossing exposed to potential landslide hazard, when the delay or disapproval of the implementation of the plan itself involves a severe consequence than the actual landslide hazard? 4. Most fatalities from natural hazards in Norway happen because of snow avalanches in recreational activities. On the one hand, this suggests that one should use a large share of the annual budget to prevent this type of accident, where there are most lives to spare. On the other hand, one could argue that the voluntary exposure to hazard shouldn't be given too much priority at the expense of buildings and public infrastructures. 5. More generally, how ethical is it to use large amounts of money to manage hazards that has a remote probability to occur or that will not cause human losses or property damage, instead of for example strengthening other social demands?
Why near-miss events can decrease an individual's protective response to hurricanes.
Dillon, Robin L; Tinsley, Catherine H; Cronin, Matthew
2011-03-01
Prior research shows that when people perceive the risk of some hazardous event to be low, they are unlikely to engage in mitigation activities for the potential hazard. We believe one factor that can lower inappropriately (from a normative perspective) people's perception of the risk of a hazard is information about prior near-miss events. A near-miss occurs when an event (such as a hurricane), which had some nontrivial probability of ending in disaster (loss of life, property damage), does not because good fortune intervenes. People appear to mistake such good fortune as an indicator of resiliency. In our first study, people with near-miss information were less likely to purchase flood insurance, and this was shown for both participants from the general population and individuals with specific interests in risk and natural disasters. In our second study, we consider a different mitigation decision, that is, to evacuate from a hurricane, and vary the level of statistical probability of hurricane damage. We still found a strong effect for near-miss information. Our research thus shows how people who have experienced a similar situation but escape damage because of chance will make decisions consistent with a perception that the situation is less risky than those without the past experience. We end by discussing the implications for risk communication. © 2010 Society for Risk Analysis.
Integrated Risk Assessment to Natural Hazards in Motozintla, Chiapas, Mexico
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.
2012-12-01
An integrated risk assessment includes the analysis of all components of individual constituents of risk such as baseline study, hazard identification and categorization, hazard exposure, and vulnerability. Vulnerability refers to the inability of people, organizations, and societies to withstand adverse impacts from multiple stressors to which they are exposed. These impacts are due to characteristics inherent in social interactions, institutions, and systems of cultural values. Thus, social vulnerability is a pre-existing condition that affects a society's ability to prepare for and recover from a disruptive event. Risk is the probability of a loss, and this loss depends on three elements: hazard, exposure, and vulnerability. Thus, risk is the estimated impact that a hazard event would have on people, services, facilities, structures and assets in a community. In this work we assess the risk to natural hazards in the community of Motozintla located in southern Mexico in the state of Chiapas (15.37N, 92.25W) with a population of about 20 000 habitants. Due to its geographical and geological location, this community is continuously exposed to many different natural hazards (earthquakes, landslides, volcanic eruptions, and floods). To determine the level of exposure of the community to natural hazards, we developed integrated studies and analysis of seismic microzonation, landslide and flood susceptibility as well as volcanic impact using standard methodologies. Social vulnerability was quantified from data obtained from local families interviews. Five variables were considered: household structure quality and design, availability of basic public services, family economic conditions, existing family plans for disaster preparedness, and risk perception.The number of families surveyed was determined considering a sample statistically significant. The families that were interviewed were selected using the simple random sampling technique with replacement. With these procedure, each household was chosen randomly and entirely by chance with the same probability of being chosen at any stage during the sampling process. To facilitate our interpretation, all results were spatially analyzed using a Geographical Information System (GIS). Our results indicate that the community of Motozintla is higly exposed to floods, landslides and earthquakes and to a lesser extent to the impact of a volcanic eruption. The locality has a high level of structural vulnerability to the main identified hazards (floods and landslides). About 70% of the families has a daily income below 11 USD. Approximately 66% of the population does not know any existing Civil Protection Plan. Another major observation is that the community organization for disaster prevention is practically nonexistent. These natural and social conditions indicate that the community of Motozintla has a very high level of risk to natural hazards. This research will support decision makers in Mexico, and particularly from the sate of Chiapas, in the development of an integrated comprenhensive natural hazards mitigation and prevention program in this region.
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Standard Flood Hazard... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND MAPPING OF SPECIAL HAZARD AREAS § 65.16 Standard Flood Hazard Determination...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.6 Eligibility... develop or update the flood portion of any mitigation plan. Planning grants are not eligible for funding... requirement. (1) States must have an approved State Mitigation Plan meeting the requirements of §§ 201.4 or...
The New Geodesy: A Powerful Tool in the Mitigation of Natural Hazards
NASA Astrophysics Data System (ADS)
LaBrecque, J. L.
2017-12-01
Geodesy has transitioned from a little understood arcane science into an indispensible tool that is used by most citizens in their everyday lives. Who does not use GNSS to navigate with little thought to the contributions of geodecists, physicists and the technological marvels that made this possible. Less understood is how geodetic science and technology is transforming our approach to disaster warning and mitigation. Space Geodesy and the Global Navigation Satellite Systems (GNSS) are directly impacting the effectiveness and efficiency of understanding, preparedness and response in such disparate areas as weather, water resources, earthquakes, climate change impacts, soil moisture, land cover, and tsunami early warning. However, the full benefits of geodesy to society cannot be achieved without international accords and investments to access the full spectrum geodetic information with minimal latency.
A methodology for modeling regional terrorism risk.
Chatterjee, Samrat; Abkowitz, Mark D
2011-07-01
Over the past decade, terrorism risk has become a prominent consideration in protecting the well-being of individuals and organizations. More recently, there has been interest in not only quantifying terrorism risk, but also placing it in the context of an all-hazards environment in which consideration is given to accidents and natural hazards, as well as intentional acts. This article discusses the development of a regional terrorism risk assessment model designed for this purpose. The approach taken is to model terrorism risk as a dependent variable, expressed in expected annual monetary terms, as a function of attributes of population concentration and critical infrastructure. This allows for an assessment of regional terrorism risk in and of itself, as well as in relation to man-made accident and natural hazard risks, so that mitigation resources can be allocated in an effective manner. The adopted methodology incorporates elements of two terrorism risk modeling approaches (event-based models and risk indicators), producing results that can be utilized at various jurisdictional levels. The validity, strengths, and limitations of the model are discussed in the context of a case study application within the United States. © 2011 Society for Risk Analysis.
Gori, Paula L.
1993-01-01
INTERACTIVE WORKSHOPS: ESSENTIAL ELEMENTS OF THE EARTHQUAKE HAZARDS RESEARCH AND REDUCTION PROGRAM IN THE WASATCH FRONT, UTAH: Interactive workshops provided the forum and stimulus necessary to foster collaboration among the participants in the multidisciplinary, 5-yr program of earthquake hazards reduction in the Wasatch Front, Utah. The workshop process validated well-documented social science theories on the importance of interpersonal interaction, including interaction between researchers and users of research to increase the probability that research will be relevant to the user's needs and, therefore, more readily used. REDUCING EARTHQUAKE HAZARDS IN UTAH: THE CRUCIAL CONNECTION BETWEEN RESEARCHERS AND PRACTITIONERS: Complex scientific and engineering studies must be translated for and transferred to nontechnical personnel for use in reducing earthquake hazards in Utah. The three elements needed for effective translation, likelihood of occurrence, location, and severity of potential hazards, and the three elements needed for effective transfer, delivery, assistance, and encouragement, are described and illustrated for Utah. The importance of evaluating and revising earthquake hazard reduction programs and their components is emphasized. More than 30 evaluations of various natural hazard reduction programs and techniques are introduced. This report was prepared for research managers, funding sources, and evaluators of the Utah earthquake hazard reduction program who are concerned about effectiveness. An overview of the Utah program is provided for those researchers, engineers, planners, and decisionmakers, both public and private, who are committed to reducing human casualties, property damage, and interruptions of socioeconomic systems. PUBLIC PERCEPTIONS OF THE IMPLEMENTATION OF EARTHQUAKE MITIGATION POLICIES ALONG THE WASATCH FRONT IN UTAH: The earthquake hazard potential along the Wasatch Front in Utah has been well defined by a number of scientific and engineering studies. Translated earthquake hazard maps have also been developed to identify areas that are particularly vulnerable to various causes of damage such as ground shaking, surface rupturing, and liquefaction. The implementation of earthquake hazard reduction plans are now under way in various communities in Utah. The results of a survey presented in this paper indicate that technical public officials (planners and building officials) have an understanding of the earthquake hazards and how to mitigate the risks. Although the survey shows that the general public has a slightly lower concern about the potential for economic losses, they recognize the potential problems and can support a number of earthquake mitigation measures. The study suggests that many community groups along the Wasatch Front, including volunteer groups, business groups, and elected and appointed officials, are ready for action-oriented educational programs. These programs could lead to a significant reduction in the risks associated with earthquake hazards. A DATA BASE DESIGNED FOR URBAN SEISMIC HAZARDS STUDIES: A computerized data base has been designed for use in urban seismic hazards studies conducted by the U.S. Geological Survey. The design includes file structures for 16 linked data sets, which contain geological, geophysical, and seismological data used in preparing relative ground response maps of large urban areas. The data base is organized along relational data base principles. A prototype urban hazards data base has been created for evaluation in two urban areas currently under investigation: the Wasatch Front region of Utah and the Puget Sound area of Washington. The initial implementation of the urban hazards data base was accomplished on a microcomputer using dBASE III Plus software and transferred to minicomputers and a work station. A MAPPING OF GROUND-SHAKING INTENSITIES FOR SALT LAKE COUNTY, UTAH: This paper documents the development of maps showing a
Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hauschild, Veronique; Watson, Annetta Paule; Bock, Robert Eldon
2012-01-01
Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed frommore » data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.« less
NASA Astrophysics Data System (ADS)
Moser, M.
2009-04-01
The catchment Gadeinerbach in the District of Lungau/Salzburg/Austria is prone to debris flows. Large debris flow events dates back from the years 1934 and 1953. In the upper catchment large mass movements represent debris sources. A field study shows the debris potential and the catchment looks like a "sleeping torrential giant". To carry out mitigation measures a detailed risk management concept, based on a risk assessment in combination of historical analysis, field study and numerical modeling on the alluvial fan was conducted. Human activities have partly altered the surface of the alluvial fan Gadeinerbach but nevertheless some important hazard indicators could be found. With the hazard indicators and photo analysis from the large debris flow event 1934 the catchment character could be pointed out. With the help of these historical data sets (hazard indicators, sediment and debris amount...) it is possible to calibrate the provided numerical models and to win useful knowledge over the pro and cons and their application. The results were used to simulate the design event and furthermore to derive mitigation measures. Therefore the most effective protection against debris with a reduction of the high energy level to a lower level under particular energy change in combination with a debris/bedload deposition place has been carried out. Expert opinion, the study of historical data and a field work is in addition to numerical simulation techniques very necessary for the work in the field of natural hazard management.
Toward to Disaster Mitigation Science
NASA Astrophysics Data System (ADS)
Kaneda, Yoshiyuki; Shiraki, Wataru; Tokozakura, Eiji
2016-04-01
Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software preparations for reduction and mitigation of natural disasters are quite important and significant. Finally, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, psychology etc. are very important research fields for restorations after natural disasters. We have to progress the natural disaster mitigation science against destructive natural disaster mitigation. in the near future. We will present the details of natural disaster mitigation science.
Hazardous material transportation and the security externality : what should be done?
DOT National Transportation Integrated Search
2013-04-01
This project examined the safety and security externalities which exists in the : transportation of hazardous materials (particularly Toxic Inhalant Hazards) and : identified alterative mitigation strategies. The combination of terrorist attack...
Vulnerability of settlements around Mt. Cameroon volcano, Cameroon
NASA Astrophysics Data System (ADS)
Zogning, Appolinaire; Spinetti, Claudia; Ngouanet, Chretien; Tchoudam, David; Kouokam, Emmanuel; Thierry, Pierre; Bignami, Christian; Fabrizia Buongiorno, Maria; Ilaria Pannaccione Apa, Maria
2010-05-01
Located at the bottom of the Gulf of Guinea, Cameroon is exposed to a large variety of natural hazards, including volcanism. Most of the hazard are concentrated around the active volcano Mt. Cameroon which combines effusive and explosive types of activity. The threatened stakes are numerous and different exposed: people, settlements, industrial plantations, petrol refinery and many other factories and infrastructures. Until 2005, no risk management plans has been available. In 2006, the French Embassy in Cameroon, within the framework of a financial convention between Cameroon and France, put in place the GRINP (Management of Natural Risks and Civil Protection) project whose objective was to reinforce the capacity of Cameroon's civil protection department and thus, contribute to the improvement of the security of the population faced with catastrophes. The objective was to realize a Risk Prevention Plan at a local council scale, and taking into consideration the specific natural risks of each zone. The general objective of the RPP was to clearly draw land use maps for risks zones, showing the overlay of stakes with risk of different intensities. In 2008 European Commission funded the Mia-Vita project (Mitigating and Assessing Volcanic Impacts on Terrain and human Activities). The aim of the project is to improve the crisis management capabilities based on monitoring and early warning systems and secure communications; reduction of people's vulnerability and development of recovering capabilities after an event occurs for both local communities and ecological systems. Keyword: natural hazards, Mt. Cameroon, vulnerability, risk prevention plan
Landslides of Palestinian Region
NASA Astrophysics Data System (ADS)
Alwahsh, H.
2013-12-01
Natural disasters are extreme sudden events caused by environmental and natural actors that take away the lives of many thousands of people each year and damage large amount of properties. They strike anywhere on earth, often without any warning. A risk maps of natural disaster are very useful to identify the places that might be adversely affected in the event of natural disaster. The earthquakes are one of natural disaster that have the greatest hazards and will cause loss of life and properties due to damaging the structures of building, dams, bridges. In addition, it will affect local geology and soil conditions. The site effects play an important role in earthquake risk because of its amplification or damping simulation. Another parameter in developing risk map is landslide, which is also one of the most important topics in site effect hazards. Palestine region has been suffering landslide hazards because of the topographical and geological conditions of this region. Most Palestine consists of mountainous area, which has great steep slopes and the type of soil is mainly grayish to yellowish silty clay (Marl Soil). Due to the above mentioned factors many landslides have been occurred from Negev south to the northern borders of Palestine. An example of huge and destruction landslide in a Palestine authority is the landslide in the White Mountain area in the city of Nablus, which occurred in 1997. The geotechnical and geophysical investigation as well as slope stability analysis should be considered in making landslide maps that are necessary to develop risk levels of the natural disaster. Landslides occurred in slopes that are created naturally or by human beings. Failure of soil mass occurs, and hence landslide of soil mass happen due to sliding of soil mass along a plane or curved surface. In general, the slopes become unstable when the shear stresses (driving force) generated in the soil mass exceed the available shearing resistance on the rupture surface. There are many factors which affect directly or indirectly the slope stability, the stability of a slope depends on the geometry and soil engineering properties which include geological, topography, climate, hydrologic conditions, weather and land use (human effects). There are many things that can be used to mitigate landslides disaster. The most important one is the control of the landslides by establishing landslide maps. Other methods such as geometrical, hydrological, mechanical and chemical methods would also be effective in mitigate landslides. Recently, due to the development of the technology in all aspects, a safe and economical design for slopes can be achieved easily.
NASA Astrophysics Data System (ADS)
Gottsmann, J.
2012-04-01
Volcanic unrest is a complex multi-hazard phenomenon of volcanism. The fact that unrest may, but not necessarily must lead to an imminent eruption contributes significant uncertainty to short-term hazard assessment of volcanic activity world-wide. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, inadequate to deal effectively with crises of volcanic unrest. This results predominantly from the uncertainties in identifying the causative processes of unrest and as a consequence in forecasting its short-term evolution. However, key for effective risk mitigation and management during unrest is the early and reliable identification of changes in the subsurface dynamics of a volcano and their assessment as precursors to an impending eruption. The VUELCO project consortium has come together for a multi-disciplinary attack on the origin, nature and significance of volcanic unrest from the scientific contributions generated by collaboration of ten partners in Europe and Latin America. Dissecting the science of monitoring data from unrest periods at six type volcanoes in Italy, Spain, the West Indies, Mexico and Ecuador the consortium will create global strategies for 1) enhanced monitoring capacity and value, 2) mechanistic data interpretation and 3) identification of reliable eruption precursors; all from the geophysical, geochemical and geodetic fingerprints of unrest episodes. Experiments will establish a mechanistic understanding of subsurface processes capable of inducing unrest and aid in identifying key volcano monitoring parameters indicative of the nature of unrest processes. Numerical models will help establish a link between the processes and volcano monitoring data to inform on the causes of unrest and its short-term evolution. Using uncertainty assessment and new short-term probabilistic hazard forecasting tools the scientific knowledge base will provide the crucial parameters for a comprehensive and best-practice approach to 1) risk mitigation, 2) communication, 3) decision-making and 4) crisis management during unrest periods. The VUELCO project consortium efforts will generate guidance in the definition and implementation of strategic options for effective risk mitigation, management and governance during unrest episodes. Such a mechanistic platform of understanding, impacting on the synergy of scientists, policy-makers, civil protection authorities, decision-makers, and the public, will place volcanic unrest management on a new basis, with European expertise at its peak. The project is financed by the European Commission under the 7th Framework Programme for Research and Technological Development, Area "Environment".
Learning lessons from Natech accidents - the eNATECH accident database
NASA Astrophysics Data System (ADS)
Krausmann, Elisabeth; Girgin, Serkan
2016-04-01
When natural hazards impact industrial facilities that house or process hazardous materials, fires, explosions and toxic releases can occur. This type of accident is commonly referred to as Natech accident. In order to prevent the recurrence of accidents or to better mitigate their consequences, lessons-learned type studies using available accident data are usually carried out. Through post-accident analysis, conclusions can be drawn on the most common damage and failure modes and hazmat release paths, particularly vulnerable storage and process equipment, and the hazardous materials most commonly involved in these types of accidents. These analyses also lend themselves to identifying technical and organisational risk-reduction measures that require improvement or are missing. Industrial accident databases are commonly used for retrieving sets of Natech accident case histories for further analysis. These databases contain accident data from the open literature, government authorities or in-company sources. The quality of reported information is not uniform and exhibits different levels of detail and accuracy. This is due to the difficulty of finding qualified information sources, especially in situations where accident reporting by the industry or by authorities is not compulsory, e.g. when spill quantities are below the reporting threshold. Data collection has then to rely on voluntary record keeping often by non-experts. The level of detail is particularly non-uniform for Natech accident data depending on whether the consequences of the Natech event were major or minor, and whether comprehensive information was available for reporting. In addition to the reporting bias towards high-consequence events, industrial accident databases frequently lack information on the severity of the triggering natural hazard, as well as on failure modes that led to the hazmat release. This makes it difficult to reconstruct the dynamics of the accident and renders the development of equipment vulnerability models linking the natural-hazard severity to the observed damage almost impossible. As a consequence, the European Commission has set up the eNATECH database for the systematic collection of Natech accident data and near misses. The database exhibits the more sophisticated accident representation required to capture the characteristics of Natech events and is publicly accessible at http://enatech.jrc.ec.europa.eu. This presentation outlines the general lessons-learning process, introduces the eNATECH database and its specific structure, and discusses natural-hazard specific lessons learned and features common to Natech accidents triggered by different natural hazards.
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL) programs... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Institutionalizing fire safety in making land use and development decisions
Marie-Annette Johnson; Marc Mullenix
1995-01-01
Because of three major wildland fires in the past 5 years along the Front Range of the Boulder County area in Colorado, current and potential residents should be told of steps that can reduce the risks of these fire hazards. The Wildfire Hazard Identification and Mitigation System (WHIMS) is used by the county and city to assist in the identification and mitigation of...
NASA Astrophysics Data System (ADS)
Hughes, B. K.
2010-12-01
The mission of the National Oceanic and Atmospheric Administration (NOAA) National Environmental Data Information Service (NESDIS) is to provide timely access to global environmental data from satellites and other sources to promote, protect, and enhance America’s economy, security, environment, and quality of life. To fulfill its responsibilities, NESDIS acquires and manages America’s operational environmental satellites, operates the NOAA National Data Centers, provides data and information services including Earth system monitoring, performs official assessments of the environment, and conducts related research. The Nation’s fleet of operational environmental satellites has proven to be very critical in the detection, analysis, and forecast of natural or man-made phenomena. These assets have provided for the protection of people and property while safeguarding the Nation’s commerce and enabling safe and effective military operations. This presentation will take the audience through the evolution of operational satellite based remote sensing in support of weather forecasting, nowcasting, warning operations, hazard detection and mitigation. From the very first experiments involving radiation budget to today’s fleet of Geostationary and Polar Orbiting satellites to tomorrow’s constellation of high resolution imagers and hyperspectral sounders, environmental satellites sustain key observations for current and future generations.
Natural Hazards of the Space Environment
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Kross, Dennis A. (Technical Monitor)
2000-01-01
Spacecraft in Low Earth Orbit (LEO) are subject to numerous environmental hazards. Here I'll briefly discuss three environment factors that pose acute threats to the survival of spacecraft systems and crew: atmospheric drag, impacts by meteoroids and orbital debris, and ionizing radiation. Atmospheric drag continuously opposes the orbital motion of a satellite, causing the orbit to decay. This decay will lead to reentry if not countered by reboost maneuvers. Orbital debris is a by-product of man's activities in space, and consists of objects ranging in size from miniscule paint chips to spent rocket stages and dead satellites. Ionizing radiation experienced in LEO has several components: geomagnetically trapped protons and electrons (Van Allen belts); energetic solar particles; galactic cosmic rays; and albedo neutrons. These particles can have several types of prompt harmful effects on equipment and crew, from single-event upsets, latchup, and burnout of electronics, to lethal doses to crew.All three types of prompt threat show some dependence on the solar activity cycle. Atmospheric drag mitigation and large debris avoidance require propulsive maneuvers. M/OD and ionizing radiation require some form of shielding for crew and sensitive equipment. Limiting exposure time is a mitigation technique for ionizing radiation and meteor streams.
Resilience: the viewpoint of modern thermodynamics and information theory
NASA Astrophysics Data System (ADS)
Mazzorana, Bruno
2015-04-01
Understanding, qualifying and quantifying resilience as the system's effective performance and reserve capacity is an essential need for implementing effective and efficient risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. Relevant progress has recently been made in explaining the phenomenon of adaptation from the standpoint of physics, thereby delineating the difference is in terms of physical properties between something that is well-adapted to its surrounding environment, and something that is not (England, 2013). In this context the specific role of the second law of thermodynamics could be clarified (Schneider and Kay, 1994) and the added value of information theory could be illustrated (Ulanowicz, 2009). According to these findings Ecosystems resilience in response to a disturbance is a balancing act between system's effective performance and its reserve capacity. By extending this string of argumentation, the universe of discourse encompassing the concept of resilience of socio-ecologic systems impacted by natural hazard processes, is enriched by relevant implications derived from fundamental notions of modern thermodynamics and information theory. Metrics, meant to gauge ecosystems robustness in terms of the tradeoff allotment between systems effective performance and its beneficial reserve capacities developed by Ulanowicz (2009), are reviewed and their transferability to the natural hazard risk research domain is thoroughly discussed. The derived knowledge can be explored to identify priorities for action towards an increased institutional resilience. References: England, J. L. 2013. Statistical Physics of self-replication." J. Chem. Phys., 139, 121923. Schneider, E.D., Kay, J.J. 1994. Life as a manifestation of the second law of thermodynamics. Mathematical and Computer Modelling, Vol 19, No.6-8. Ulanowicz, R.E. 2009. Increasing entropy, heat death or perpetual harmonies? Int. J. of Design & Nature and Ecodynamics, Vol.4, No. 2, 83-96.
Severtson, Dolores
2013-01-01
To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N=446) answered questions for a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem’s seriousness mediated attributes’ influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. PMID:23533022
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
NASA Astrophysics Data System (ADS)
Karlsson, Caroline; Kalantari, Zahra; Mörtberg, Ulla; Olofsson, Bo; Lyon, Steve
2016-04-01
Road and railway networks are one of the key factors to a country's economic growth. Inadequate infrastructural networks could be detrimental to a society if the transport between locations are hindered or delayed. Logistical hindrances can often be avoided whereas natural hindrances are more difficult to control. One natural hindrance that can have a severe adverse effect on both infrastructure and society is flooding. Intense and heavy rainfall events can trigger other natural hazards such as landslides and debris flow. Disruptions caused by landslides are similar to that of floods and increase the maintenance cost considerably. The effect on society by natural disasters is likely to increase due to a changed climate with increasing precipitation. Therefore, there is a need for risk prevention and mitigation of natural hazards. Determining susceptible areas and incorporating them in the decision process may reduce the infrastructural harm. Spatial multi-criteria analysis (SMCA) is a part of decision analysis, which provides a set of procedures for analysing complex decision problems through a Geographic Information System (GIS). The objective and aim of this study was to evaluate the usefulness of expert judgements for inundation, landslide and debris flow susceptibility assessments through a SMCA approach using hydrological, geological and land use factors. The sensitivity of the SMCA model was tested in relation to each perspective and impact on the resulting susceptibility. A least cost path function was used to compare new alternative road lines with the existing ones. This comparison was undertaken to identify the resulting differences in the susceptibility assessments using expert judgements as well as historic incidences of flooding and landslides in order to discuss the usefulness of the model in road planning.
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.2... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
44 CFR 201.3 - Responsibilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... receive the reduced cost share for the Flood Mitigation Assistance (FMA) and Severe Repetitive Loss (SRL... HOMELAND SECURITY DISASTER ASSISTANCE MITIGATION PLANNING § 201.3 Responsibilities. (a) General. This... Administrator are to: (1) Oversee all FEMA related pre- and post-disaster hazard mitigation programs and...
Code of Federal Regulations, 2010 CFR
2010-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2011 CFR
2011-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Code of Federal Regulations, 2014 CFR
2014-10-01
... SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78... organization, that has zoning and building code jurisdiction over a particular area having special flood..., that is designated to develop and administer a mitigation plan by political subdivisions, all of which...
Studies from the history of soil science and geology
Landa, Edward R.; Cohen, Benjamin R.
2010-01-01
The United Nations proclaimed the year 2008 as the official International Year of Planet Earth (IYPE), with science and outreach activities spanning 2007–2009. IYPE-sponsored outreach helped focus the attention of the general public on topics such as human health and the environment; ocean and natural resources sustainability; mitigating natural hazards and community resilience; and the effects of climate change. Within the earth science community, the IYPE was a stimulus for retrospection, and for efforts aimed at bridging divides within the community. One such effort was the first joint meeting of the Geological Society of America (GSA) and the Soil Science Society of America (SSSA), held in Houston, Texas, 5–9 October 2008.
Understanding of urban hazards, fire, and tsunamis
Hays, Walter W.; ,
1997-01-01
Understanding of the causes and solutions of an urban area's (e.g., Los Angeles, San Diego, San Francisco, Oakland, Seattle, Portland, Anchorage, Salt Lake City, Memphis, St. Louis, Charleston, Boston, San Juan) vulnerability to earthquakes, fire, and tsunamis has increased significantly during the past 50 years, and during the current International Decade for Natural Disaster Reduction (IDNDR). Vulnerability is caused by flaws in planning, siting, design, construction, and use. It is fundamentally dependent upon the hazard, built, and policy environments of the urban area. Reduction of vulnerability is directly related to the decision-making process that calls for the adoption and enforcement of risk management programs (e.g., mitigation, preparedness, emergency response, and recovery measures) that are designed to make the urban area resilient to earthquakes, fires, and, as appropriate, tsunamis.
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Wood, Nathan J.; Good, James W.; Goodwin, Robert F.
2002-01-01
Research suggests that the Pacific Northwest could experience catastrophic earthquakes and tsunamis in the near future, posing a significant threat to the numerous ports and harbors along the coast. A collaborative, multiagency initiative is underway to increase the resiliency of Pacific Northwest ports and harbors to these hazards, involving Oregon Sea Grant, Washington Sea Grant, the National Oceanic and Atmospheric Administration Coastal Services Center, and the U.S. Geological Survey Center for Science Policy. One element of this research, planning, and outreach initiative is a natural hazard mitigation and emergency preparedness planning process that combines technical expertise with local stakeholder values and perceptions. This paper summarizes and examines one component of the process, the vulnerability assessment methodology, used in the pilot port and harbor community of Yaquina River, Oregon, as a case study of assessing vulnerability at the local level. In this community, stakeholders were most concerned with potential life loss and other nonstructural vulnerability issues, such as inadequate hazard awareness, communication, and response logistics, rather than structural issues, such as damage to specific buildings or infrastructure.
Landslide Hazard Zonation and Risk Assessment of Ramganga Basin in Garhwal Himalaya
NASA Astrophysics Data System (ADS)
Wasini Pandey, Bindhy; Roy, Nikhil
2016-04-01
The Himalaya being unique in its physiographic, tectonic and climatic characteristics coupled with many natural and man-made factors is inherently prone to landslides. These landslides lead to mass loss of property and lives every year in Himalayas. Hence, Landslide Hazard Zonation is important to take quick and safe mitigation measures and make strategic planning for future development. The present study tries to explore the causes of landslides in Ramganga Basin in Garhwal Himalaya, which has an established history and inherent susceptibility to massive landslides has been chosen for landslide hazard zonation and risk assessment. The satellite imageries of LANDSAT, IRS P6, ASTER along with Survey of India (SOI) topographical sheets formed the basis for deriving baseline information on various parameters like slope, aspect, relative relief, drainage density, geology/lithology and land use/land cover. The weighted parametric method will be used to determine the degree of susceptibility to landslides. Finally, a risk map will be prepared from the landslide probability values, which will be classified into no risk, very low to moderate, high, and very high to severe landslide hazard risk zones. Keywords: Landslides, Hazard Zonation, Risk Assessment
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.
2013-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is comprised of representatives from coastal states and federal agencies who, under the guidance of NOAA, work together to develop protocols and products to help communities prepare for and mitigate tsunami hazards. Within the NTHMP are several subcommittees responsible for complimentary aspects of tsunami assessment, mitigation, education, warning, and response. The Mapping and Modeling Subcommittee (MMS) is comprised of state and federal scientists who specialize in tsunami source characterization, numerical tsunami modeling, inundation map production, and warning forecasting. Until September 2012, much of the work of the MMS was authorized through the Tsunami Warning and Education Act, an Act that has since expired but the spirit of which is being adhered to in parallel with reauthorization efforts. Over the past several years, the MMS has developed guidance and best practices for states and territories to produce accurate and consistent tsunami inundation maps for community level evacuation planning, and has conducted benchmarking of numerical inundation models. Recent tsunami events have highlighted the need for other types of tsunami hazard analyses and products for improving evacuation planning, vertical evacuation, maritime planning, land-use planning, building construction, and warning forecasts. As the program responsible for producing accurate and consistent tsunami products nationally, the NTHMP-MMS is initiating a multi-year plan to accomplish the following: 1) Create and build on existing demonstration projects that explore new tsunami hazard analysis techniques and products, such as maps identifying areas of strong currents and potential damage within harbors as well as probabilistic tsunami hazard analysis for land-use planning. 2) Develop benchmarks for validating new numerical modeling techniques related to current velocities and landslide sources. 3) Generate guidance and protocols for the production and use of new tsunami hazard analysis products. 4) Identify multistate collaborations and funding partners interested in these new products. Application of these new products will improve the overall safety and resilience of coastal communities exposed to tsunami hazards.
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.8 - Grant funding limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.8 Grant funding limitations. (a) The Administrator will allocate the available...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
44 CFR 78.7 - Grant application procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.7 Grant application procedures. States will apply for Technical Assistance and...
NASA Technical Reports Server (NTRS)
Kelly, Michael J.
2013-01-01
The Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage (horizontal and vertical tail). This report contains the Appendices to Volume I.
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 79.4 - Availability of funding.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS... is declared pursuant to the Robert T. Stafford Disaster Relief and Emergency Assistance Act for flood... Share. All mitigation activities approved under the grant will be subject to the following cost-share...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
44 CFR 78.12 - Eligible types of projects.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...
Space Radiation and the Challenges Towards Effective Shielding Solutions
NASA Technical Reports Server (NTRS)
Barghouty, Abdulnasser
2014-01-01
The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.
A public health hazard mitigation planning process.
Griffith, Jennifer M; Kay Carpender, S; Crouch, Jill Artzberger; Quiram, Barbara J
2014-01-01
The Texas A&M Health Science Center School of Rural Public Health, a member of the Training and Education Collaborative System Preparedness and Emergency Response Learning Center (TECS-PERLC), has long-standing partnerships with 2 Health Service Regions (Regions) in Texas. TECS-PERLC was contracted by these Regions to address 2 challenges identified in meeting requirements outlined by the Risk-Based Funding Project. First, within Metropolitan Statistical Areas, there is not a formal authoritative structure. Second, preexisting tools and processes did not adequately satisfy requirements to assess public health, medical, and mental health needs and link mitigation strategies to the Public Health Preparedness Capabilities, which provide guidance to prepare for, respond to, and recover from public health incidents. TECS-PERLC, with its partners, developed a framework to interpret and apply results from the Texas Public Health Risk Assessment Tool (TxPHRAT). The 3-phase community engagement-based TxPHRAT Mitigation Planning Process (Mitigation Planning Process) and associated tools facilitated the development of mitigation plans. Tools included (1) profiles interpreting TxPHRAT results and identifying, ranking, and prioritizing hazards and capability gaps; (2) a catalog of intervention strategies and activities linked to hazards and capabilities; and (3) a template to plan, evaluate, and report mitigation planning efforts. The Mitigation Planning Process provided a framework for Regions to successfully address all funding requirements. TECS-PERLC developed more than 60 profiles, cataloged and linked 195 intervention strategies, and developed a template resulting in 20 submitted mitigation plans. A public health-focused, community engagement-based mitigation planning process was developed by TECS-PERLC and successfully implemented by the Regions. The outcomes met all requirements and reinforce the effectiveness of academic practice partnerships and importance of community engagement in mitigation planning. Additional funding has been approved to expand the Mitigation Planning Process to all counties in Texas with local health departments.
NASA Astrophysics Data System (ADS)
Rose, W. I.; Carn, S. A.; Waite, G. P.; Gierke, J. S.; Wellik, J. J.
2011-12-01
We are in the seventh year of developing a unique graduate degree program in which each student serves in the U.S. Peace Corps for two years while conducting his/her field research. Our program allows candidates to work on natural hazard mitigation projects in a country where natural hazards are important parts of life. For US students, living abroad provides a vital broadening experience and the Peace Corps emphasis on social context adds cultural understanding to their hazards work. Up until now, we have mostly worked in Central America, and 33 students have enrolled in the program. The greatest focus to date has been in Volcanic Hazards, including slope stability and debris flows, and our work is fostering long-term infrastructure-building relationships with partner agencies within the 8 countries where we have worked. This year we sent a student (Jay Wellik) to a Peace Corps site in East Java, Indonesia where he will work with schools in his village and commute weekly to the Raung Observatory Post to work with CVGHM scientists on volcano seismology and public outreach projects.. We recruit 4-6 new students each year, and we hope more will soon be in Indonesia as Peace Corps expands their new program in that country. Although the Peace Corps Masters International (PCMI) students must be US citizens, we also have regular undergraduate and graduate (MS and PhD) degree students in geology, geological engineering and geophysics who come from all over the world. We are especially interested in people from partner Peace Corps countries. Annually our natural-hazards group consists of 5 faculty, 2 post-doctoral researchers, several Ph.D and traditional M.S. students, 12 PCMI students, and roughly 20 undergraduate students. Support for our program has come from NSF and we have also benefitted from a supportive cooperation with USGS VDAP. In the past two years we have built a complementary dual degree partnership with the Université Blaise-Pascal, Clermont Ferrand (France), and Universitá degli Studi di Milano - Bicocca (Italy) , which allows for a strong European connection to this international work.
Triboelectric Charging in Simulated Mars Environment
NASA Technical Reports Server (NTRS)
Lee, R.; Barile, R.
1999-01-01
Triboelectric charging of nonconducting materials followed by sudden electrostatic discharge (ESD) can damage electronic equipment and become ignition hazard to combustible materials. Mars atmosphere has near zero humidity and therefore natural charge bleeding to surroundings is anticipated to be limited. Potential mitigation of ESD problems has been conjectured based upon strong extraterrestrial radiation on Mars compared to earth. A hypothesis was formulated that ESD problem is less significant in simulated Mars condition since strong radiation and presence of argon will generate an ionized environment; this will be conducive to rapid bleeding of static charge into the surroundings.
Severtson, Dolores J
2013-08-01
To test a theoretical explanation of how attributes of mapped environmental health hazards influence health-related behavioral intentions and how beliefs and emotion mediate the influences of attributes, 24 maps were developed that varied by four attributes of a residential drinking water hazard: level, proximity, prevalence, and density. In a factorial design, student participants (N = 446) answered questions about a subset of maps. Hazard level and proximity had the largest influences on intentions to test water and mitigate exposure. Belief in the problem's seriousness mediated attributes' influence on intention to test drinking water, and perceived susceptibility mediated the influence of attributes on intention to mitigate risk. Maps with carefully illustrated attributes of hazards may promote appropriate health-related risk beliefs, intentions, and behavior. Copyright © 2013 Wiley Periodicals, Inc.
A probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-11-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
44 CFR 78.9 - Planning grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.9 Planning grant approval process. The State POC will evaluate and approve applications for Planning Grants. Funds will be provided only for the flood portion of any mitigation plan, and...
44 CFR 78.11 - Minimum project eligibility criteria.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...
An interdisciplinary perspective on social and physical determinants of seismic risk
NASA Astrophysics Data System (ADS)
Lin, K.-H.; Chang, Y.-C.; Liu, G.-Y.; Chan, C.-H.; Lin, T.-H.; Yeh, C.-H.
2015-01-01
While disaster studies researchers usually view risk as a function of hazard, exposure, and vulnerability, few studies have systematically examined the relationships among the various physical and socioeconomic determinants underlying disasters, and fewer have done so through seismic risk analysis. In the context of the 1999 Chi-Chi earthquake in Taiwan, this study constructs five hypothetical models to test different determinants that affect disaster fatality at the village level, namely seismic hazard intensity, population, building fragility, demographics and socioeconomics. The Poisson Regression Model is used to estimate the impact of natural hazards and social factors on fatality. Results indicate that although all of the determinants have an impact on the specific dimension of seismic fatality, some indicators of social inequality, such as gender ratio, dependency ratio, income and its SD, are the driving determinants deteriorating vulnerability to seismic risk. These findings have strong social implications for policy interventions to mitigate such disasters. This study presents an interdisciplinary investigation into social and physical determinants in seismic risk.
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent ofmore » this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.]« less
NASA Astrophysics Data System (ADS)
Baptiste Barré, Jean; Bourrier, Franck; Bertrand, David; Rey, Freddy
2015-04-01
Ecological engineering corresponds to the design of efficient solutions for protection against natural hazards such as shallow landslides and soil erosion. In particular, bioengineering structures can be composed of a living part, made of plants, cuttings or seeds, and an inert part, a timber logs structure. As wood is not treated by preservatives, fungal degradation can occur from the start of the construction. It results in wood strength loss, which practitioners try to evaluate with non-destructive tools (NDT). Classical NDT are mainly based on density measurements. However, the fungal activity reduces the mechanical properties (modulus of elasticity - MOE) well before well before a density change could be measured. In this context, it would be useful to provide a tool for assessing the residual mechanical strength at different decay stages due to a fungal community. Near-infrared spectroscopy (NIRS) can be used for that purpose, as it can allow evaluating wood mechanical properties as well as wood chemical changes due to brown and white rots. We monitored 160 silver fir samples (30x30x6000mm) from green state to different levels of decay. The degradation process took place in a greenhouse and samples were inoculated with silver fir decayed debris in order to accelerate the process. For each sample, we calculated the normalized bending modulus of elasticity loss (Dw moe) and defined it as decay extent. Near infrared spectra collected from both green and decayed ground samples were corrected by the subtraction of baseline offset. Spectra of green samples were averaged into one mean spectrum and decayed spectra were subtracted from the mean spectrum to calculate the absorption loss. Partial least square regression (PLSR) has been performed between the normalized MOE loss Dw moe (0 < Dw moe < 1) and the absorption loss, with a correlation coefficient R² equal to 0.85. Finally, the prediction of silver fir biodegradation rate by NIRS was significant (RMSEP = 0.13). This tool improves the evaluation accuracy of wood decay extent in the context of ecological engineering structures used for natural hazard mitigation.
NASA Astrophysics Data System (ADS)
Ko, Bokyun; Yun, Sung-Hyo
2016-04-01
Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS-NH-2015-81] through the Natural Hazard Mitigation Research Group funded by Ministry of Public Safety and Security of Korean government.
NASA Astrophysics Data System (ADS)
Amenda, Lisa; Pfurtscheller, Clemens
2013-04-01
By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out. Based on this, the worthiness of the mitigation measures can be determined in more detail and the proper level of emergency assistance can be calculated more adequately. By dint of this study, a better data basis will be created evaluating technical and non-technical mitigation measures, which is useful for government agencies, insurance companies and research.
NASA Astrophysics Data System (ADS)
Peppoloni, Silvia
2013-04-01
The development of modern science has changed the relationship between humans and natural phenomena. The great geoscientists of the past have contributed to the construction of the modern world, by revolutionizing the way in which humans perceive themselves, by changing their references of space and time inside the Universe. However, in the majority of the populations is observed the persistence of a fatalistic mentality or an attitude which believes that science can solve everything. In fact, throughout the centuries the fear of earthquakes, eruptions, floods has not changed in humans. The scientific rational approach is certainly an effective way to limit the scope of irrationality and uncertainty. The fear is not eliminable, but the proper dissemination of scientific knowledge and an adequate preparedness can help to mitigate it and transform it into an attitude of respect for the natural processes that govern the Geosphere. Therefore, geoscientists have a great responsibility towards society, which needs to face natural hazards. They have the duty to transfer knowledge and methods, to communicate information and errors, to awaken in people the interest for the phenomena and their evolution. Ultimately, geoscientists can contribute to bring science closer to society. The lack of involvement in scientific knowledge of the various components of society (citizens, politicians, mass media) can lead to two negative consequences: • the cultural and social marginalization of scientists, together with a loss of the sense of the role they can play in protecting society from natural hazards; • the tendency of people to embrace preconceived ideas in non critical way, ideas provided by a media information often incorrect, to lose good sense, until to develop fideistic attitudes based on few observed elements. In the scientific field the probabilistic method is a widespread way to analyze the natural phenomena. It allows to give an estimate of time, place and size of an event, in an attempt to manage the natural hazards that threaten human life and activities. However, geoscientists have to be aware of the risk that the uncertainty of occurrence of a natural phenomenon becomes an alibi to decline their responsibilities. The population should be informed also about the limits of the scientific methods used, so that it can better understand and share the decisions taken to deal with a natural hazard. Informing the population on natural risks should be prioritized for geoscientists, their ethical commitment to reduce as much as possible the sufferings of human beings and to manage the environment in a reasonable and responsible way.
The look of into Desalination and Natural Hazard
NASA Astrophysics Data System (ADS)
Arregoitia Sarabia, C. A.
2012-04-01
Today due to climate change and population growth, cities and especially larger cities have become more water stressed. Thus the growing demand for drinkable water due to water scarcity in different World regions and its reliable supply, have persuaded humans to construct desalination plants. Today, the implementation of different large-scale desalination methods is increasing. Desalination is a separation process that consists on the removal of salts from water (seawater or brackish water) to make it suitable for other purposes. Some important environmental aspects for a desalination plant are the location of the plant, brine disposal and energy considerations. However these issues become affected when natural adversity happens. Desalination processes used are normally classified in thermal and membrane. The energy required by these processes could be of any form of heat, electrical or mechanical depending on the separation process. These types of energy derive from fossil fuels, which conditions the desalination sustainability -environmental and economical. To improve this reality, the desalination industry is making a great research effort related to novel technologies, the use of renewable energies, and brine management. Presently desalination membrane technologies are preferred over thermal ones (based on evaporation) since they allow for continuous operations close to ambient temperatures. Moreover, the offer for a wider selection of large equipment and modules is increasing. This makes it possible to design processes according to potable needs as well as ease the use of membranes and other separation technologies together. Traditionally the location of the plant is an obvious matter where selection of site should be determined by considerations of mainly energy supply available and distance in relation to feed water intake, disposal site and end-user. This means locating these plants in coastal areas or inland locations and look for a solution to then naturally dispose their brine waste. However, a desalination plant can be affected by different natural hazards depending on where they are located and therefore they should be considered when determining the optimum site for it. A natural hazard is an unexpected or uncontrollable natural event of unusual intensity that threatens people's lives or their activities. Atmospheric hazards are weather-related events, whereas geologic hazards happen on or within the Earth's surface. However, it is important to understand that the capricious force of nature can trigger catastrophes that could impact households, communities and even threaten life across the world depending on the desalination plant location. Little work has been undertaken so far to explore the impact of desalination technology when a natural event arrives. Therefore, this paper looks at the different desalination technologies and their role and impact when a natural hazard occurs because they can either be a mitigation source for water scarcity or can be turned into a greater disaster. An example is presented Keywords: desalination, water, natural hazards and megacities
Petersen, Mark D.; Mueller, Charles; Moschetti, Morgan P.; Hoover, Susan M.; Llenos, Andrea L.; Ellsworth, William L.; Michael, Andrew J.; Rubinstein, Justin L.; McGarr, Arthur F.; Rukstales, Kenneth S.
2016-01-01
The U.S. Geological Survey (USGS) has produced a one‐year (2016) probabilistic seismic‐hazard assessment for the central and eastern United States (CEUS) that includes contributions from both induced and natural earthquakes that are constructed with probabilistic methods using alternative data and inputs. This hazard assessment builds on our 2016 final model (Petersen et al., 2016) by adding sensitivity studies, illustrating hazard in new ways, incorporating new population data, and discussing potential improvements. The model considers short‐term seismic activity rates (primarily 2014–2015) and assumes that the activity rates will remain stationary over short time intervals. The final model considers different ways of categorizing induced and natural earthquakes by incorporating two equally weighted earthquake rate submodels that are composed of alternative earthquake inputs for catalog duration, smoothing parameters, maximum magnitudes, and ground‐motion models. These alternatives represent uncertainties on how we calculate earthquake occurrence and the diversity of opinion within the science community. In this article, we also test sensitivity to the minimum moment magnitude between M 4 and M 4.7 and the choice of applying a declustered catalog with b=1.0 rather than the full catalog with b=1.3. We incorporate two earthquake rate submodels: in the informed submodel we classify earthquakes as induced or natural, and in the adaptive submodel we do not differentiate. The alternative submodel hazard maps both depict high hazard and these are combined in the final model. Results depict several ground‐shaking measures as well as intensity and include maps showing a high‐hazard level (1% probability of exceedance in 1 year or greater). Ground motions reach 0.6g horizontal peak ground acceleration (PGA) in north‐central Oklahoma and southern Kansas, and about 0.2g PGA in the Raton basin of Colorado and New Mexico, in central Arkansas, and in north‐central Texas near Dallas–Fort Worth. The chance of having levels of ground motions corresponding to modified Mercalli intensity (MMI) VI or greater earthquake shaking is 2%–12% per year in north‐central Oklahoma and southern Kansas and New Madrid similar to the chance of damage at sites in high‐hazard portions of California caused by natural earthquakes. Hazard is also significant in the Raton basin of Colorado/New Mexico; north‐central Arkansas; Dallas–Fort Worth, Texas; and in a few other areas. Hazard probabilities are much lower (by about half or more) for exceeding MMI VII or VIII. Hazard is 3‐ to 10‐fold higher near some areas of active‐induced earthquakes than in the 2014 USGS National Seismic Hazard Model (NSHM), which did not consider induced earthquakes. This study in conjunction with the LandScan TM Database (2013) indicates that about 8 million people live in areas of active injection wells that have a greater than 1% chance of experiencing damaging ground shaking (MMI≥VI) in 2016. The final model has high uncertainty, and engineers, regulators, and industry should use these assessments cautiously to make informed decisions on mitigating the potential effects of induced and natural earthquakes.
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 78.10 - Project grant approval process.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.10 Project grant approval process. The State POC will solicit applications from...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
44 CFR 79.7 - Offers and appeals under the SRL program.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.7 Offers and appeals under the SRL program. (a) Consultation. States and communities... mitigation activity. These consultations shall be initiated in the early stages of the project development...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plesko, Catherine S; Clement, R Ryan; Weaver, Robert P
2009-01-01
The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of amore » comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.« less
Hydrothermal Liquefaction Treatment Hazard Analysis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios receivedmore » increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.« less
Use of cloud computing technology in natural hazard assessment and emergency management
NASA Astrophysics Data System (ADS)
Webley, P. W.; Dehn, J.
2015-12-01
During a natural hazard event, the most up-to-date data needs to be in the hands of those on the front line. Decision support system tools can be developed to provide access to pre-made outputs to quickly assess the hazard and potential risk. However, with the ever growing availability of new satellite data as well as ground and airborne data generated in real-time there is a need to analyze the large volumes of data in an easy-to-access and effective environment. With the growth in the use of cloud computing, where the analysis and visualization system can grow with the needs of the user, then these facilities can used to provide this real-time analysis. Think of a central command center uploading the data to the cloud compute system and then those researchers in-the-field connecting to a web-based tool to view the newly acquired data. New data can be added by any user and then viewed instantly by anyone else in the organization through the cloud computing interface. This provides the ideal tool for collaborative data analysis, hazard assessment and decision making. We present the rationale for developing a cloud computing systems and illustrate how this tool can be developed for use in real-time environments. Users would have access to an interactive online image analysis tool without the need for specific remote sensing software on their local system therefore increasing their understanding of the ongoing hazard and mitigate its impact on the surrounding region.
Linear Aerospike SR-71 Experiment (LASRE): Aerospace Propulsion Hazard Mitigation Systems
NASA Technical Reports Server (NTRS)
Mizukami, Masashi; Corpening, Griffin P.; Ray, Ronald J.; Hass, Neal; Ennix, Kimberly A.; Lazaroff, Scott M.
1998-01-01
A major hazard posed by the propulsion system of hypersonic and space vehicles is the possibility of fire or explosion in the vehicle environment. The hazard is mitigated by minimizing or detecting, in the vehicle environment, the three ingredients essential to producing fire: fuel, oxidizer, and an ignition source. The Linear Aerospike SR-71 Experiment (LASRE) consisted of a linear aerospike rocket engine integrated into one-half of an X-33-like lifting body shape, carried on top of an SR-71 aircraft. Gaseous hydrogen and liquid oxygen were used as propellants. Although LASRE is a one-of-a-kind experimental system, it must be rated for piloted flight, so this test presented a unique challenge. To help meet safety requirements, the following propulsion hazard mitigation systems were incorporated into the experiment: pod inert purge, oxygen sensors, a hydrogen leak detection algorithm, hydrogen sensors, fire detection and pod temperature thermocouples, water misting, and control room displays. These systems are described, and their development discussed. Analyses, ground test, and flight test results are presented, as are findings and lessons learned.
A web-based tool for ranking landslide mitigation measures
NASA Astrophysics Data System (ADS)
Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.
2012-04-01
As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.
NASA Astrophysics Data System (ADS)
Wood, M.
2009-04-01
The increased focus on the possibility of technological accidents caused by natural events (Natech) is foreseen to continue for years to come. In this case, experts in prevention, mitigation and preparation activities associated with natural events will increasingly need to borrow data and expertise traditionally associated with the technological fields to carry out the work. An important question is how useful is the data for understanding consequences from such natech events. Data and case studies provided on major industrial accidents tend to focus on lessons learned for re-engineering the process. While consequence data are reported at least nominally in most reports, their precision, quality and completeness is often lacking. Consequences that are often or sometimes available but not provided can include severity and type of injuries, distance of victims from the source, exposure measurements, volume of the release, population in potentially affected zones, and weather conditions. Yet these are precisely the type of data that will aid natural hazard experts in land-use planning and emergency response activities when a Natech event may be foreseen. This work discusses the results of a study of consequence data from accidents involving toxic releases reported in the EU's MARS accident database. The study analysed the precision, quality and completeness of three categories of consequence data reported: the description of health effects, consequence assessment and chemical risk assessment factors, and emergency response information. This work reports on the findings from this study and discusses how natural hazards experts might interact with industrial accident experts to promote more consistent and accurate reporting of the data that will be useful in consequence-based activities.
Comprehensive Analysis of Drought Persistence, Hazard, and Recovery across the CONUS
NASA Astrophysics Data System (ADS)
Zarekarizi, M.; Ahmadi, B.; Moradkhani, H.
2017-12-01
Drought is a creeping intertwined natural hazard affecting society more than any other natural disaster and causing enormous damages on economy and ecosystems. Better understanding of potential drought hazard can help water managers and stakeholders devising mitigation plans to minimize the adverse effects of droughts. In this study, soil moisture, simulated by the Variable Infiltration Capacity (VIC) land surface model, is used to analyze the probability of agricultural drought with different severities across the CONUS. Due to the persistence of soil moisture, a drought episode at a particular time is affected by its earlier status; therefore, this study has utilized a Copula function to model the selected hydrologic variable over the time. The probability of drought intensity for each unit is presented spatially. If the unit remains in the drought condition at the same or lower intensity, drought persists and if it improves above a pre-defined threshold, the unit recovers. Results show that the west of US is more vulnerable to drought persistence in summer and spring while the Midwest and Northeast of US are experiencing drought persistence in fall and winter. In addition, the analysis reveals that as the intensity of drought in a given season decreases the following season has higher chance of recovery.
Solar Energetic Particles -- A Radiation Hazard to Humans and Hardware in Space
NASA Astrophysics Data System (ADS)
Mewaldt, R. A.
2006-10-01
During large solar energetic particle (SEP) events the intensity of >30 MeV protons in nearby interplanetary space can increase by a million times over the steady intensity of galactic cosmic rays, creating a radiation hazard to both humans and hardware in space. With NASA now committed to sending astronauts to the Moon and possibly on to Mars, outside the protective cover of the Earth's magnetosphere, interest in understanding and forecasting large SEP events has taken on a new sense of urgency. The past solar maximum included four of the top ten SEP events of the space era. Fortunately, the array of spacecraft now in interplanetary space has provided greatly improved measurements of the composition and energy spectra of accelerated ions, leading to fresh insights into the nature of these events. The largest SEP events are accelerated by coronal and interplanetary shocks driven by coronal mass ejections (CMEs) traveling at >2000 km/sec. Although shock acceleration is ubiquitous in nature, its efficiency is highly variable, making it difficult to forecast the onset and evolution of large SEP events. This talk will describe the radiation hazards associated with the largest SEP events, discuss their frequency of occurrence, consider a worst-case SEP event, and describe how the radiation risks can be mitigated.
NASA Astrophysics Data System (ADS)
Khajehei, S.; Moradkhani, H.
2017-12-01
Understanding socio-economic characteristics involving natural hazards potential, vulnerability, and resilience is necessary to address the damages to economy and loss of life from extreme natural hazards. The vulnerability to flash floods is dependent on both biophysical and socio-economic factors. Although the biophysical characteristics (e.g. climate, vegetation, and land use) are informative and useful for predicting spatial and temporal extent of flash floods, they have minimal bearing on predicting when and where flash floods are likely to influence people or damage valuable assets and resources. The socio-economic factors determine spatial and temporal scales of the regions affected by flash floods. In this study, we quantify the socio-economic vulnerability to flash floods across the Contiguous United States (CONUS). A socio-economic vulnerability index was developed, employing Bayesian principal components for each state in the CONUS. For this purpose, extensive sets of social and economic variables from US Census and the Bureau of Economic Analysis were used. We developed maps presenting the coincidence of socio-economic vulnerability and the flash floods records. This product can help inform flash flood prevention, mitigation and recovery planning, as well as reducing the flash flood hazards affecting vulnerable places and population.
Chemical Safety Alert: Fire Hazard from Carbon Adsorption Deodorizing Systems
Activated carbon systems used to adsorb vapors for odor control may pose a fire hazard when used for certain types of substances, such as crude sulfate turpentine. Facilities should take precautions and proper procedures to avoid or mitigate these hazards.
Screening guide for rapid assessment of liquefaction hazard at highway bridge sites
DOT National Transportation Integrated Search
1998-06-16
As an aid to seismic hazard assessment, this report provides a "screening guide" for systematic evaluation of liquefactin hazard at bridge sites and a guide for prioritizing sites for further investigation or mitigation. The guide presents a systemat...
Mitigation of Volcanic Risk: The COSMO-SkyMed Contribution
NASA Astrophysics Data System (ADS)
Sacco, Patrizia; Daraio, Maria Girolamo; Battagliere, Maria Libera; Coletta, Alessandro
2015-05-01
The Italian Space Agency (ASI) promotes Earth Observation (EO) applications related to themes such as the prediction, monitoring, management and mitigation of natural and anthropogenic hazards. The approach generally followed is the development and demonstration of prototype services, using currently available data from space missions, in particular the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean basin observation) mission, which represents the largest Italian investment in Space System for EO and thanks to which Italy plays a key role worldwide. Projects funded by ASI provide the convergence of various national industry expertise, research and institutional reference users. In this context a significant example is represented by the ASI Pilot Projects, recently concluded, dealing with various thematic, such as volcanoes. In this paper a special focus will be addressed to the volcanic risk management and the contribution provided in this field by COSMO-SkyMed satellite constellation during the last years. A comprehensive overview of the various national and international projects using COSMO-SkyMed data for the volcanic risk mitigation will be given, highlighting the Italian contribution provided worldwide in this operational framework.
Vaccari, Mentore; Montasser, Waleed; Tudor, Terry; Leone, Luigi
2017-05-01
In Europe, there are an increasing number of policy and legislative drivers for a more sustainable approach to the management of natural resources as well as for the mitigation of environmental health risks. However, despite significant progress in recent years, there is still some way to go to achieve circularity of process, as well as risk mitigation within organisations. Using a case study of the Gardone Val Trompia hospital in northern Italy, this manuscript offers a novel holistic examination of strategies to enhance resource efficiency and environmental health within a key sector, i.e. the healthcare sector. Through the use of environmental audits and process flow mapping, trends in waste and wastewater arisings and the associated financial and environmental costs and risks were identified. Recommendations for developing more resource efficient approaches as well as mitigating the environmental and public health risks are suggested. These include strategies for improved resource efficiency (including reduction in the hazardous waste) and reduced environmental impacts during the containment, transport and treatment of the waste.
Brody, Samuel D; Zahran, Sammy; Highfield, Wesley E; Bernhardt, Sarah P; Vedlitz, Arnold
2009-06-01
Floods continue to inflict the most damage upon human communities among all natural hazards in the United States. Because localized flooding tends to be spatially repetitive over time, local decisionmakers often have an opportunity to learn from previous events and make proactive policy adjustments to reduce the adverse effects of a subsequent storm. Despite the importance of understanding the degree to which local jurisdictions learn from flood risks and under what circumstances, little if any empirical, longitudinal research has been conducted along these lines. This article addresses the research gap by examining the change in local flood mitigation policies in Florida from 1999 to 2005. We track 18 different mitigation activities organized into four series of activities under the Federal Emergency Management Agency's (FEMA) Community Rating System (CRS) for every local jurisdiction in Florida participating in the FEMA program on a yearly time step. We then identify the major factors contributing to policy changes based on CRS scores over the seven-year study period. Using multivariate statistical models to analyze both natural and social science data, we isolate the effects of several variables categorized into the following groups: hydrologic conditions, flood disaster history, socioeconomic and human capital controls. Results indicate that local jurisdictions do in fact learn from histories of flood risk and this process is expedited under specific conditions.
NASA Astrophysics Data System (ADS)
Wei, Yanqiang; Wang, Shijin; Fang, Yiping; Nawaz, Zain
2017-10-01
Animal husbandry is a dominant and traditional source of livelihood and income in the Qinghai-Tibetan Plateau. The Qinghai-Tibetan Plateau is the third largest snow covered area in China and is one of the main snow disaster regions in the world. It is thus imperative to urgently address the issue of vulnerability of the animal husbandry sector to snow disasters for disaster mitigation and adaptation under growing risk of these disasters as a result of future climate change. However, there is very few literature reported on the vulnerability of animal husbandry in the Qinghai-Tibetan Plateau. This assessment aims at identifying vulnerability of animal husbandry at spatial scale and to identify the reasons for vulnerability for adaptive planning and disaster mitigation. First, historical snow disaster characteristics have been analyzed and used for the spatial weight for vulnerability assessment. Second, indicator-based vulnerability assessment model and indicator system have been established. We combined risk of snow hazard, sensitivity of livestock to disaster, physical exposure to disaster, and community capacity to adapt to snow disaster in an integrated vulnerability index. Lastly, vulnerability of animal husbandry to snow disaster on the Qinghai-Tibetan Plateau has been evaluated. Results indicate that high vulnerabilities are mainly concentrated in the eastern and central plateau and that vulnerability decreases gradually from the east to the west. Due to global warming, the vulnerability trend has eased to some extent during the last few decades. High livestock density exposure to blizzard-prone regions and shortages of livestock barn and forage are the main reasons of high vulnerability. The conclusion emphasizes the important role of the local government and community to help local pastoralists for reducing vulnerability to snow disaster and frozen hazard. The approaches presented in this paper can be used for snow disaster mitigation, resilience enhancement and effectively reducing vulnerability to natural hazards in other regions.
NASA Astrophysics Data System (ADS)
Marcato, G.; Bossi, G.; Rivelli, F.; Borgatti, L.
2012-06-01
For some decades, mass wasting processes such as landslides and debris floods have been threatening villages and transportation routes in the Rio Grande Valley, named Quebrada de Humauhuaca. One of the most significant examples is the urban area of Tilcara, built on a large alluvial fan. In recent years, debris flood phenomena have been triggered in the tributary valley of the Huasamayo Stream and reached the alluvial fan on a decadal basis. In view of proper development of the area, hazard and risk assessment together with risk mitigation strategies are of paramount importance. The need is urgent also because the Quebrada de Humahuaca was recently included in the UNESCO World Cultural Heritage. Therefore, the growing tourism industry may lead to uncontrolled exploitation and urbanization of the valley, with a consequent increase of the vulnerability of the elements exposed to risk. In this context, structural and non structural mitigation measures not only have to be based on the understanding of natural processes, but also have to consider environmental and sociological factors that could hinder the effectiveness of the countermeasure works. The hydrogeological processes are described with reference to present-day hazard and risk conditions. Considering the socio-economic context, some possible interventions are outlined, which encompass budget constraints and local practices. One viable solution would be to build a protecting dam upstream of the fan apex and an artificial channel, in order to divert the floodwaters in a gully that would then convey water and sediments into the Rio Grande, some kilometers downstream of Tilcara. The proposed remedial measures should employ easily available and relatively cheap technologies and local workers, incorporating low environmental and visual impacts issues, in order to ensure both the future conservation of the site and its safe exploitation for inhabitants and tourists.
NASA Astrophysics Data System (ADS)
Fuchs, S.; McAlpin, M. C.
2005-04-01
Avalanches pose a threat to settlements as well as industrial and recreational areas in the Alps. As a counter measure, technical mitigation measures have been implemented since the 19th century, resulting in a raise in value of formerly endangered areas. This increase in value can be considered as a benefit due to prevented damage. This paper compares the total costs and benefits of technical mitigation measures in the municipality of Davos, Switzerland as a basis for evaluating their net social benefit. The benefit of avalanche defence structures is determined using two different approaches. First, the replacement value of buildings protected by mitigation measures is quantified. Second, the number of protected persons is monetarily assessed by means of a human capital approach. The quantified benefit is compared with the present value of cumulative capital expenditures on avalanche mitigation measures. In addition, distributional effects of the public expenditures on technical mitigation measures are discussed based on the average future tax revenues within protected areas. Depending on whether benefits are calculated in terms of protected buildings or protected persons, the results show a large range of cost-benefit ratios. Critical issues of cost-benefit analyses in the context of alpine natural hazards are highlighted, including problems related to the human capital approach and the sensitivity of results to how benefits are calculated. The applicability of cost-benefit analyses for evaluating avalanche mitigation measures is discussed.
Coordination of Individual and Organizational Planning for Natural Hazards (Invited)
NASA Astrophysics Data System (ADS)
Krantz, D. H.
2013-12-01
Decision making consists of constructing or selecting a plan. This is true at many levels of decision making: individuals or households, small groups, larger organizations, and governments. In each case, plans are constructed or selected taking account of the decision maker's prioritized set of active goals and the decision maker's beliefs about the probability or the extent to which each goal will be attained through a given plan. Planning for mitigation of or response to natural hazards can be improved if the plans of the many decision makers at multiple levels are coordinated. Government planning should ideally be informed by knowledge about the plans of businesses and non-profit organizations as well as knowledge about individual, household, and neighborhood plans. Similarly, plans at the individual and organizational levels should be informed by knowledge of others' plans at the same and at higher and lower levels of aggregation. Coordination can be impaired by differences in goals, differences in beliefs about the instrumentality of plans toward given goals, and also by ignorance of others' goals and plans. Good coordination requires incentives that promote sharing of plans, horizontally and vertically, and that alleviate conflicts in goals and conflicts in beliefs that will inevitably surface once plans are shared. Thus, four different kinds of decision aids are needed to improve natural hazard planning: mechanisms that support horizontal dissemination of plans, mechanisms that support vertical dissemination, mechanisms for examining goal conflicts and reducing these through plans that take others' goals into account, and mechanisms for examining belief conflicts.
Patterns of Risk Using an Integrated Spatial Multi-Hazard Model (PRISM Model)
Multi-hazard risk assessment has long centered on small scale needs, whereby a single community or group of communities’ exposures are assessed to determine potential mitigation strategies. While this approach has advanced the understanding of hazard interactions, it is li...
Lidar and Electro-Optics for Atmospheric Hazard Sensing and Mitigation
NASA Technical Reports Server (NTRS)
Clark, Ivan O.
2012-01-01
This paper provides an overview of the research and development efforts of the Lidar and Electro-Optics element of NASA's Aviation Safety Program. This element is seeking to improve the understanding of the atmospheric environments encountered by aviation and to provide enhanced situation awareness for atmospheric hazards. The improved understanding of atmospheric conditions is specifically to develop sensor signatures for atmospheric hazards. The current emphasis is on kinetic air hazards such as turbulence, aircraft wake vortices, mountain rotors, and windshear. Additional efforts are underway to identify and quantify the hazards arising from multi-phase atmospheric conditions including liquid and solid hydrometeors and volcanic ash. When the multi-phase conditions act as obscurants that result in reduced visual awareness, the element seeks to mitigate the hazards associated with these diminished visual environments. The overall purpose of these efforts is to enable safety improvements for air transport class and business jet class aircraft as the transition to the Next Generation Air Transportation System occurs.
Dunbar, Paula K.; Weaver, Craig S.
2015-01-01
The first U.S. Tsunami Hazard Assessment (Dunbar and Weaver, 2008) was prepared at the request of the National Tsunami Hazard Mitigation Program (NTHMP). The NTHMP is a partnership formed between federal and state agencies to reduce the impact of tsunamis through hazard assessment, warning guidance, and mitigation. The assessment was conducted in response to a 2005 joint report by the Sub-Committee on Disaster Reduction and the U.S. Group on Earth Observations entitled Tsunami Risk Reduction for the United States: A Framework for Action. The first specific action called for in the Framework was to “develop standardized and coordinated tsunami hazard and risk assessments for all coastal regions of the United States and its territories.” Since the first assessment, there have been a number of very significant tsunamis, including the 2009 Samoa, 2010 Chile, and 2011 Japan tsunamis. As a result, the NTHMP requested an update of the U.S. tsunami hazard assessment.
Natural Hazards Observer, volume 2, number 4, June 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, A.; Waterstone, P.
1978-06-01
The National Hazards Observer is intended to strengthen communication between research workers and the individuals, organizations and agencies concerned with public action relating to natural hazards. The feature article concerns the strengthened commitment of the Federal Disaster Assistance Administration (FDAA) in hazard mitigation. Also included in this issue are discussions of: (1) preparation of 60-second public service announcements for radio and TV by the Civil Defense Preparedness Agency to call attention to the role of local civil defense organizations in peacetime as well as in nuclear disasters; (2) the request by the public for more scientific earthquake prediction and preparedness;more » (3) a computer-based simulation exercise (ATLANTIS); (4) cooperation between UNESCO and UNDRO (UN Disaster Relief Organization) in earthquake risk research, training, and public education; (5) the endorsement of a resolution by the UN General Assembly which calls for the promotion of measures to facilitate and expedite international relief assistance and to emphasize prevention; (6) a statement of concern that flash floods now rank as the major killer and destroyer among weather-related disasters in the U.S.; (7) estimating the long term effects of floods, tornados, and hurricanes; (8) governors' project on emergency preparedness; (9) emergency evacuation route maps, seismic design and public policy; and (10) geologic awareness. Also included are announcements of conferences, recent publications, Washington Update, and included are annluncements of conference, recent publications, Washington Update, and newly awarded NSF grants.« less
Looking through the postdisaster policy window
NASA Astrophysics Data System (ADS)
Solecki, William D.; Michaels, Sarah
1994-07-01
Policy windows are transitory opportunities during which the likelihood of adopting new policy or legislative proposals is greater than usual. Accepted wisdom has held that natural disasters serve as focusing events that generate policy windows in their wake. This paper highlights the need for a more circumscribed understanding of when and where policy windows occur based on the experiences of three US regional planning organizations: a hand-picked commission of community leaders, a council of governments, and a special-purpose substate organization. The first operated in the San Francisco Bay Area of California following the Loma Prieta earthquake (October 1989), and the other two in South Carolina's Atlantic coastal plain after Hurricane Hugo (September 1989). The analysis concludes that natural disasters did not transform the agenda or mission of these entities. Policy windows were neither automatic outcomes of focusing events nor did they ensure the adoption of pertinent policy within the organizations investigated. Several conditions are minimally necessary for using policy windows to bring about hazard mitigation: comprehensive institutional conceptualization of hazards management, institutional strength and flexibility, and well-placed, effective policy entrepreneurs.
NASA Astrophysics Data System (ADS)
Bird, Deanne K.; Gisladottir, Gudrun; Dominey-Howes, Dale
2010-01-01
This paper examines the relationship between volcanic risk and the tourism sector in southern Iceland and the complex challenge emergency management officials face in developing effective volcanic risk mitigation strategies. An early warning system and emergency response procedures were developed for communities surrounding Katla, the volcano underlying the Mýrdalsjökull ice cap. However, prior to and during the 2007 tourist season these mitigation efforts were not effectively communicated to stakeholders located in the tourist destination of Þórsmörk despite its location within the hazard zone of Katla. The hazard zone represents the potential extent of a catastrophic jökulhlaup (glacial outburst flood). Furthermore, volcanic risk mitigation efforts in Þórsmörk were based solely on information derived from physical investigations of volcanic hazards. They did not consider the human dimension of risk. In order to address this gap and provide support to current risk mitigation efforts, questionnaire surveys were used to investigate tourists' and tourism employees' hazard knowledge, risk perception, adoption of personal preparedness measures, predicted behaviour if faced with a Katla eruption and views on education. Results indicate that tourists lack hazard knowledge and they do not adopt preparedness measures to deal with the consequences of an eruption. Despite a high level of risk perception, tourism employees lack knowledge about the early warning system and emergency response procedures. Results show that tourists are positive about receiving information concerning Katla and its hazards and therefore, the reticence of tourism employees with respect to disseminating hazard information is unjustified. In order to improve the tourism sector's collective capacity to positively respond during a future eruption, recommendations are made to ensure adequate dissemination of hazard, risk and emergency response information. Most importantly education campaigns should focus on: (a) increasing tourists' knowledge of Katla, jökulhlaup and other volcanic hazards and (b) increasing tourist and employee awareness of the early warning and information system and appropriate behavioural response if a warning is issued. Further, tourism employees should be required to participate in emergency training and evacuation exercises annually. These efforts are timely given that Katla is expected to erupt in the near future and international tourism is an expanding industry in Þórsmörk.
A knowledge integration approach to flood vulnerability
NASA Astrophysics Data System (ADS)
Mazzorana, Bruno; Fuchs, Sven
2014-05-01
Understanding, qualifying and quantifying vulnerability is an essential need for implementing effective and efficient flood risk mitigation strategies; in particular if possible synergies between different mitigation alternatives, such as active and passive measures, should be achieved. In order to combine different risk management options it is necessary to take an interdisciplinary approach to vulnerability reduction, and as a result the affected society may be willing to accept a certain degree of self-responsibility. However, due to differing mono-disciplinary approaches and regional foci undertaken until now, different aspects of vulnerability to natural hazards in general and to floods in particular remain uncovered and as a result the developed management options remain sub-optimal. Taking an even more fundamental viewpoint, the empirical vulnerability functions used in risk assessment specifically fail to capture physical principles of the damage-generating mechanisms to the build environment. The aim of this paper is to partially close this gap by discussing a balanced knowledge integration approach which can be used to resolve the multidisciplinary disorder in flood vulnerability research. Modelling techniques such as mathematical-physical modelling of the flood hazard impact to and response from the building envelope affected, and formative scenario analyses of possible consequences in terms of damage and loss are used in synergy to provide an enhanced understanding of vulnerability and to render the derived knowledge into interdisciplinary mitigation strategies. The outlined formal procedure allows for a convincing knowledge alignment of quantified, but partial, information about vulnerability as a result of the application of physical and engineering notions and valuable, but often underspecified, qualitative argumentation strings emerging from the adopted socio-economic viewpoint.
Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth
NASA Astrophysics Data System (ADS)
Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.
2017-09-01
Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
44 CFR 201.6 - Local Mitigation Plans.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., infrastructure, and critical facilities located in the identified hazard areas; (B) An estimate of the potential... effects of each hazard, with particular emphasis on new and existing buildings and infrastructure. All...
Perceptions of earthquake and tsunami issues in U.S. Pacific Northwest port and harbor communities
Wood, Nathan J.; Good, James W.
2005-01-01
Although there is considerable energy focused on assessing natural hazards associated with earthquakes and tsunamis in the U.S. Pacific Northwest, little has been done to understand societal vulnerability to these hazards. Part of understanding societal vulnerability includes assessing the perceptions and priorities of public sector individuals with traditional emergency management responsibilities and of private citizens who could play key roles in community recovery. In response to this knowledge gap, we examine earthquake and tsunami perceptions of stakeholders and decision makers from coastal communities in the U.S. Pacific Northwest, focusing on perceptions of (1) regional hazards and societal vulnerability, (2) the current state of readiness, and (3) priorities for future hazard adjustment efforts. Results of a mailed survey suggest that survey participants believe that earthquakes and tsunamis are credible community threats. Most communities are focusing on regional mitigation and response planning, with less effort devoted to recovery plans or to making individual organizations more resilient. Significant differences in expressed perceptions and priorities were observed between Oregon and Washington respondents, mainly on tsunami issues. Significant perception differences were also observed between private and public sector respondents. Our results suggest the need for further research and for outreach and planning initiatives in the Pacific Northwest to address significant gaps in earthquake and tsunami hazard awareness and readiness.
Hydrogen Hazards Assessment Protocol (HHAP): Approach and Methodology
NASA Technical Reports Server (NTRS)
Woods, Stephen
2009-01-01
This viewgraph presentation reviews the approach and methodology to develop a assessment protocol for hydrogen hazards. Included in the presentation are the reasons to perform hazards assessment, the types of hazard assessments that exist, an analysis of hydrogen hazards, specific information about the Hydrogen Hazards Assessment Protocol (HHAP). The assessment is specifically tailored for hydrogen behavior. The end product of the assesment is a compilation of hazard, mitigations and associated factors to facilitate decision making and achieve the best practice.
NASA Astrophysics Data System (ADS)
Koc, Gamze; Thieken, Annegret H.
2016-04-01
Despite technological development, better data and considerable efforts to reduce the impacts of natural hazards over the last two decades, natural disasters inflicted losses have caused enormous human and economic damages in Turkey. In particular earthquakes and flooding have caused enormous human and economic losses that occasionally amounted to 3 to 4% of the gross national product of Turkey (Genç, 2007). While there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, this study is aimed at investigating flood patterns, intensities and impacts, also providing an overview of the temporal and spatial distribution of flood losses by analysing different databases on disaster losses throughout Turkey. As input for more detailed event analyses, an additional aim is to retrieve the most severe flood events in the period between 1960 and 2014 from the databases. In general, data on disaster impacts are scarce in comparison to other scientific fields in natural hazard research, although the lack of reliable, consistent and comparable data is seen as a major obstacle for effective and long-term loss prevention. Currently, only a few data sets, especially the emergency events database EM-DAT (www.emdat.be) hosted and maintained by the Centre for Research on the Epidemiology of Disasters (CRED) since 1988, are publicly accessible and have become widely used to describe trends in disaster losses. However, loss data are subjected to various biases (Gall et al. 2009). Since Turkey is in the favourable position of having a distinct national disaster database since 2009, i.e. the Turkey Disaster Data Base (TABB), there is the unique opportunity to investigate flood impacts in Turkey in more detail as well as to identify biases and underlying reasons for mismatches with EM-DAT. To compare these two databases, the events of the two databases were reclassified by using the IRDR peril classification system (IRDR, 2014). Furthermore, literature, news archives and the Global Active Archive of Large Flood Events - Dartmouth Flood Observatory (floodobservatory.colorado.edu) were used to complement loss data gaps of the databases. From 1960 to 2014, EM-DAT reported 35 flood events in Turkey (26.3 % of all natural hazards events), which caused 773 fatalities (the second most destructive type of natural hazard after earthquakes) and a total economic damage of US 2.2 billion. In contrast, TABB contained 1076 flood events (8.3 % of all natural hazards events), by which 795 people died. On this basis, floods are the third most destructive type of natural hazard -after earthquakes and extreme temperatures- for human losses in Turkey. A comparison of the two databases EM-DAT and TABB reveals big mismatches of the flood data, e.g. the reported number of events, number of affected people and economic loss, differ dramatically. It is concluded that the main reason for the big differences and contradicting numbers of different natural disaster databases is lack of standardization for data collection, peril classification and database thresholds (entry criteria). Since loss data collection is gaining more and more attention, e.g. in the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR), the study could offer substantial insights for flood risk mitigation and adaptation studies in Turkey. References Gall, M., Borden, K., Cutter, S.L. (2009) When do losses count? Six fallacies of loss data from natural hazards. Bulletin of the American Meteorological Society, 90(6), 799-809. Genç, F.S., (2007) Türkiye'de Kentleşme ve Doǧal Afet Riskleri ile İlişkisi, TMMOB Afet Sempozyumu. IRDR (2014) IRDR Peril Classification and Hazard Glossary. Report of the Data Group in the Integrated Research on Disaster Risk. (Available at: http://www.irdrinternational.org/2014/03/28/irdr-peril-classification-and-hazard-glossary).
Hall, Jim W.; Murgatroyd, Anna; Acreman, Mike; Bates, Paul; Beven, Keith; Heathwaite, Louise; Holden, Joseph; Holman, Ian P.; Lane, Stuart N.; O'Connell, Enda; Penning-Rowsell, Edmund; Reynard, Nick; Sear, David; Thorne, Colin; Wilby, Rob
2017-01-01
Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based ‘natural’ flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material. PMID:28413336
(abstract) Scientific Objectivity and the Impact Hazard: Responsible Reporting Versus Crying Wolf
NASA Technical Reports Server (NTRS)
Weissman, Paul R.
1993-01-01
f comets and asteroids on the Earth pose a real hazard, comparable in probability to other hazards which society deems worthy of concern. As such, it is prudent and reasonable to investigate and institute means for evaluation of the exact nature of the hazard and possible means of mitigating the effects of impacts, primarily by preventing their occurrence through orbital deflection. Decisions as to the hazard and possible detection and deflection programs must be made through a rational public discussion of the issues, provided with the best possible information. Unfortunately, some individuals have tended to overstate the problem either in terms of the probability of impact or the expected effects of impacts. The net result of such actions is often to undermine public confidence in those attempting to promote an informal discussion of the impact hazard. This is particularily true in a time of declining budgets for both science and defense, and increased competition for federal R&D dollars. It is thus important that the community find means of promoting responsible actions by the members of the community, and for dealing with public release of information, within the bounds of academic and individual freedom. The purpose of this abstract is to promote a discussion of these issues within the community and to invite additional suggestions for methods to improve the providing of accurate information to the public, the media, and most importantly, to decision makers.
Earth Girl Volcano: An Interactive Casual Game about Complex Volcanic Hazards
NASA Astrophysics Data System (ADS)
Kerlow, I.
2017-12-01
Earth Girl Volcano is an interactive casual strategy game for disaster preparedness. The project is designed for mainstream audiences, particularly for children, as an engaging and fun way to learn about volcano hazards, monitoring, and mitigation strategies. The game is deceptively simple but it provides a toolbox to address practically all volcanic hazards ranging from gas and ash fall to pyroclastic flows, lava and lahars. This presentation shows the basic dynamic to explore the area, assess the risk, choose the best-suited tools and execute a mitigation strategy within the available budget. This game is a real-time simulation of a crowd evacuation that allows players to intervene before and during the disaster.
David Butry; Geoffrey Donovan
2008-01-01
Climate change, increased wildland fuels, and residential development patterns in fire-prone areas all combine to make wildfire risk mitigation an important public policy issue. One approach to wildfire risk mitigation is to encourage homeowners to use fire-resistant building materials and to create defensible spaces around their homes. We develop a theoretical model...
NASA Astrophysics Data System (ADS)
Kaneda, Y.; Takahashi, N.; Hori, T.; Kawaguchi, K.; Isouchi, C.; Fujisawa, K.
2017-12-01
Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For instance, 2004 Sumatra Earthquake in Indonesia, 2008 Wenchuan Earthquake in China, 2010 Chile Earthquake and 2011 Tohoku Earthquake in Japan etc., these earthquakes generated very severe damages. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software developments/preparations for reduction and mitigation of natural disasters are quite important. In Japan, DONET as the real time monitoring system on the ocean floor is developed and deployed around the Nankai trough seismogenic zone southwestern Japan. So, the early detection of earthquakes and tsunamis around the Nankai trough seismogenic zone will be expected by DONET. The integration of the real time data and advanced simulation researches will lead to reduce damages, however, in the resilience society, the resilience methods will be required after disasters. Actually, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. This means the resilience society. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, geography and psychology etc. are very important research fields for restorations after natural disasters. Finally, to realize and progress disaster mitigation science, human resource cultivation is indispensable. We already carried out disaster mitigation science under `new disaster mitigation research project on Mega thrust earthquakes around Nankai/Ryukyu subduction zone', and `SATREPS project of earthquake and tsunami disaster mitigation in the Marmara region and disaster education in Turkey'. Furthermore, we have to progress the natural disaster mitigation science against destructive natural disaster in the near future.
Volcanic monitoring techniques applied to controlled fragmentation experiments
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.
2010-05-01
A rapidly growing number of people is threatened by natural hazards such as volcanic eruptions, earthquakes, floods, or storms. Volcanic eruptions not only have an impact on their direct neighbourhood but may also affect aviation, infrastructure and climate, regionally as well as globally. In respect to several other natural threats, volcanoes exhibit the advantage of a usually known location of the pending threat, allowing the deployment of sophisticated monitoring networks. Such networks deliver information about volcanic systems and the correct interpretation of monitoring data is a viable key to a successful hazard mitigation strategy. Today a large number of volcanoes is equipped with a variety of scientific instruments that help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of the processes behind recorded signals or a solid interpretation of the state of a volcano is poor. Experimental volcanology is a chief source of mechanistic understanding of volcanic systems. Here, we bring volcanic monitoring and experimental volcanology together in a campaign of well-monitored, field-based, experimental volcanology. We present results from a multi-parametric combination of well-controlled experiments and several tools commonly used for monitoring active volcanoes. We performed rapid decompression experiments with natural rock samples from Colima volcano (Mexico) to simulate explosive volcanic eruptions. We used 2 sample varieties of approx. 25 and 35 vol.% open porosity. Sample size was 60 mm height and 25 mm and 60 mm diameter, respectively. Applied pressure ranges from 4 to 18 MPa. The pressurised volume above the samples ranges from 60 - 170 cm³. The experiments have been thoroughly monitored with 1) Doppler-Radar, 2) High-speed and video camera, 3) acoustic and infrasonic sensors, 4) pressure transducers, and 5) electrically conducting wires to shed light on fragmentation, ejection, and ejection speed of volcanic pyroclasts. Although the involved volumes of pressurised sample and gas were small, we were able to record the experimental eruption. Thereby, we could validate in parallel the applicability of two independent methods (1 and 2) currently used to estimate the ejection velocity of erupted pyroclasts, an essential factor in ballistic hazard evaluation and eruption energy estimation. Additionally, infrasound measurements could be correlated with autoclave volume and applied pressure. We are positive that this link of experimental volcanology and monitoring techniques will profoundly enlarge our understanding of the behaviour of active volcanoes in general. If applied to a single volcano, a more refined knowledge of the state of the art will allow an adequate hazard assessment and risk mitigation.
Social attitudes towards floods in Poland - spatial differentiation
NASA Astrophysics Data System (ADS)
Biernacki, W.; Działek, J.; Bokwa, A.
2012-04-01
Our paper discusses results of research conducted in Southern Poland focusing on social attitudes towards floods - natural hazards frequently observed in Poland. Lately (e.g. 1997, 2001, 2010) several hundred thousand of people suffered from floods occurring in all examined communities. Presented analyses are based on questionnaire survey in which several criteria were used to select places for studies: objective degree of risk, prior experience of extreme events, size of community, strength of social bonds, social capital and quality of life. Nearly 2000 responses (from 9 communities) were gathered from the survey. Our main research questions were following: - are there differences between attitudes in those communities depending on how frequently they have experienced floods? - does settlement size have an impact on social attitudes towards floods, especially on mitigation behaviour? - are urban inhabitants less adapted to floods be upheld and do rural communities show more activity in the face of natural disasters? - what do information and education policies concerning floods look like? Three dimensions of social attitudes towards natural hazards were analyzed: cognitive (knowledge and awareness of local hazards), emotional (feelings towards hazards, like concern and anxiety); and instrumental (actions taken in response to a potential natural disaster). A combination of these three dimensions produces various types of perception and behaviour towards the perceived hazard (Raaijmakers et al., 2008): ignorance when the local population is unaware of a threat and therefore develops no concern and takes no preventive actions; safety when the local population is aware of a threat, but regards its level as either low or acceptable and is therefore not concerned with the threat and makes no preparations for a disaster; risk reduction when a high level of awareness and concern produces the mechanism of reducing the cognitive dissonance and denial of a disaster threat; the local population resigns from taking protective action or passes the responsibility on to the authorities; control when an aware population takes preventive action that help reduce their concern. Above analyses led to comparison of Polish and European social attitudes towards floods.
Witt, Emitt C.; Adams, Craig; Wang, Jianmin; Shaver, David K.; Filali-Meknassi, Youssef
2007-01-01
Nearly 4 weeks after Hurricane Katrina passed through St. Bernard Parish, the U.S. Geological Survey's (USGS) Mid-Continent Geographic Science Center and the University of Missouri-Rolla's (UMR) Natural Hazard Mitigation Institute deployed a team of scientists to the region to collect perishable environmental and engineering data. The team collected 149 samples throughout the affected area to chemically characterize the Katrina depositional sediments. Preliminary results of this effort are presented here.
Geohazards: Natural and man-made
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, G.J.H.; Laming, D.J.C.; Scott, S.C.
1992-01-01
This book of conference presentations from a meeting of the Geological Society of London in 1989 includes 20 papers grouped in 5 sections. Sections include the following: volcanos; earthquakes; landslides; quiet hazards such as sea-level changes and loss of soils or biodiversity; discussion of the question of what can be done to reduce such disasters. Interaction of man's activities to initiate disasters, to increase the scope of disasters and/or to mitigate them is included in a number of papers. In the fourth section a final paper provides a summary of the food-soil, energy-climate, waste-garbage, and water-contamination interactions.
Mycotoxin in the food supply chain-implications for public health program.
Milićević, D; Nastasijevic, I; Petrovic, Z
2016-10-01
Mycotoxins are a group of naturally occurring toxic chemical substances, produced mainly by microscopic filamentous fungal species. Regarding potential synergisms or even mitigating effects between toxic elements, mycotoxin contamination will continue to be an area of concern for producers, manufacturers, regulatory agencies, researchers, and consumers in the future. In Serbia, recent drought and then flooding confirmed that mycotoxins are one of the foodborne hazards most susceptible to climate change. In this article, we review key aspects of mycotoxin contamination of the food supply chain and implications for public health from the Serbian perspective.
NASA Astrophysics Data System (ADS)
Hales, T. C.; Cashman, K. V.
2006-12-01
Geological hazard mitigation is a complicated process that involves both detailed scientific research and negotiations between community members with competing interests in the solution. Geological hazards classes based around traditional lecture methods have difficulty conveying the decision-making processes that go into these negotiations. To address this deficiency, we have spent five years developing and testing a role- playing exercise based on mitigation of a dam outburst hazard on Ruapehu volcano, New Zealand. In our exercise, students are asked to undertake one of five different roles and decide the best way to mitigate the hazard. Over the course of their discussion students are challenged to reach a consensus decision despite the presence of strongly opposed positions. Key to the success of the exercise are (1) the presence of a facilitator and recorder for each meeting, (2) the provision of unique information for each interested party, and (3) the division of the class into multiple meeting groups, such that everyone is required to participate and individual groups can evolve to different conclusions. The exercise can be completed in a single hour and twenty minute classroom session that is divided into four parts: an introduction, a meeting between members of the same interested party to discuss strategy, a meeting between different interested parties, and a debriefing session. This framework can be readily translated to any classroom hazard problem. In our experience, students have responded positively to the use of role-playing to supplement lectures.
A~probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-05-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
Mockrin, Miranda H; Fishler, Hillary K; Stewart, Susan I
2018-05-15
Becoming a fire adapted community that can coexist with wildfire is envisioned as a continuous, iterative process of adaptation, but it is unclear how communities may pursue adaptation. Experience with wildfire and other natural hazards suggests that disasters may open a "window of opportunity" leading to local government policy changes. We examined how destructive wildfire affected progress toward becoming fire adapted in eight locations in the United States. We found that community-level adaptation following destructive fires is most common where destructive wildfire is novel and there is already government capacity and investment in wildfire regulation and land use planning. External funding, staff capacity, and the presence of issue champions combined to bring about change after wildfire. Locations with long histories of destructive wildfire, extensive previous investment in formal wildfire regulation and mitigation, or little government and community capacity to manage wildfire saw fewer changes. Across diverse settings, communities consistently used the most common tools and actions for wildfire mitigation and planning. Nearly all sites reported changes in wildfire suppression, emergency response, and hazard planning documents. Expansion in voluntary education and outreach programs to increase defensible space was also common, occurring in half of our sites, but land use planning and regulations remained largely unchanged. Adaptation at the community and local governmental level therefore may not axiomatically follow from each wildfire incident, nor easily incorporate formal approaches to minimizing land use and development in hazardous environments, but in many sites wildfire was a focusing event that inspired reflection and adaptation.
Natural hazards in Goma and the surrounding villages, East African Rift System
Balagizi, Charles M.; Kies, Antoine; Kasereka, Marcellin M.; Tedesco, Dario; Yalire, Mathieu M.; McCausland, Wendy A.
2018-01-01
The city of Goma and its surrounding villages (Democratic Republic of the Congo, DRC) are among the world’s most densely populated regions strongly affected by volcanic hazards. In 2002, Nyiragongo volcano erupted destroying 10–15% of Goma and forced a mass evacuation of the population. Hence, the ~ 1.5 million inhabitants of Goma and Gisenyi (Rwanda) continue to live with the threat of new lava flows and other eruptive hazards from this volcano. The current network of fractures extends from Nyiragongo summit to Goma and continues beneath Lake Kivu, which gives rise to the fear that an eruption could even produce an active vent within the center of Goma or within the lake. A sub-lacustrine volcanic eruption with vents in the floor of the main basin and/or Kabuno Bay of Lake Kivu could potentially release about 300 km3 of carbon dioxide (CO2) and 60 km3 of methane (CH4) dissolved in its deep waters that would be catastrophic to populations (~ 2.5 million people) along the lake shores. For the time being, ongoing hazards related to Nyiragongo and Nyamulagira volcanoes silently kill people and animals, slowly destroy the environment, and seriously harm the health of the population. They include mazuku (CO2-rich locations where people often die of asphyxiation), the highly fluoridated surface and ground waters, and other locally neglected hazards. The volcanic gas plume causes poor air quality and acid rain, which is commonly used for drinking water. Given the large number of people at risk and the continued movement of people to Goma and the surrounding villages, there is an urgent need for a thorough natural hazards assessment in the region. This paper presents a general view of natural hazards in the region around Goma based on field investigations, CO2 measurements in mazuku, and chemistry data for Lake Kivu, rivers and rainwater. The field investigations and the datasets are used in conjunction with extremely rich-historical (1897–2000) and recently published information about Nyiragongo and Nyamulagira volcanoes and Lake Kivu. We also present maps of mazuku and fractures in Goma, describe the volcanic eruption history with hazard assessment and mitigation implications, and consider social realities useful for an integrated risk management strategy.
NASA Astrophysics Data System (ADS)
Prata, F.; Stebel, K.
2013-12-01
Over the last few years there has been a recognition of the utility of satellite measurements to identify and track volcanic emissions that present a natural hazard to human populations. Mitigation of the volcanic hazard to life and the environment requires understanding of the properties of volcanic emissions, identifying the hazard in near real-time and being able to provide timely and accurate forecasts to affected areas. Amongst the many ways to measure volcanic emissions, satellite remote sensing is capable of providing global quantitative retrievals of important microphysical parameters such as ash mass loading, ash particle effective radius, infrared optical depth, SO2 partial and total column abundance, plume altitude, aerosol optical depth and aerosol absorbing index. The eruption of Eyjafjallajokull in April-May, 2010 led to increased research and measurement programs to better characterize properties of volcanic ash and the need to establish a data-base in which to store and access these data was confirmed. The European Space Agency (ESA) has recognized the importance of having a quality controlled data-base of satellite retrievals and has funded an activity (VAST) to develop novel remote sensing retrieval schemes and a data-base, initially focused on several recent hazardous volcanic eruptions. As a first step, satellite retrievals for the eruptions of Eyjafjallajokull, Grimsvotn, Puyhue-Cordon Caulle, Nabro, Merapi, Okmok, Kasatochi and Sarychev Peak are being considered. Here we describe the data, retrievals and methods being developed for the data-base. Three important applications of the data-base are illustrated related to the ash/aviation problem, to the impact of the Merapi volcanic eruption on the local population, and to estimate SO2 fluxes from active volcanoes-as a means to diagnose future unrest. Dispersion model simulations are also being included in the data-base. In time, data from conventional in situ sampling instruments, airborne and ground-based remote sensing platforms and other meta-data (bulk ash and gas properties, volcanic setting, volcanic eruption chronologies, hazards and impacts etc.) will be added. The data-base has the potential to provide the natural hazards community with the first dynamic atmospheric volcanic hazards map and will be a valuable tool particularly for global transport.
Herzer, Kurt R; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A; Mark, Lynette J
2012-08-01
Since 1999, hospitals have made substantial commitments to health care quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. At the Weinberg Surgical Suite at The Johns Hopkins Hospital (Baltimore), a 16-operating-room inpatient/outpatient cancer center, a patient safety reporting process was developed to maximize the usefulness of the reports and the long-term sustainability of quality improvements arising from them. A six-phase framework was created incorporating UHC's Patient Safety Net (PSN): Identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with "Good Catch" awards, and follow up to determine if quality improvements were sustained over time. Good Catch awards have been given in recognition of 29 patient safety hazards identified since 2008; in each of these cases, an initiative was developed to mitigate the original hazard. Twenty-five (86%) of the associated quality improvements have been sustained. Two Good Catch award-winning projects--vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control--are described in detail. A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting process entailed positive recognition with a Good Catch award, education of practitioners, and long-term follow-up.
Wright, Timothy J; Agrawal, Ravi; Samuel, Siby; Wang, Yuhua; Zilberstein, Shlomo; Fisher, Donald L
2018-07-01
During conditional automated driving, a transition from the automated driving suite to manual control requires the driver to take over control at a moment's notice. Thus, it is critical that a driver be made situationally aware as quickly as possible in those conditions where he or she may not be paying full attention. Recent research suggests that specific cues about upcoming hazards (e.g., "crosswalk ahead") can increase the drivers' situation awareness during these safety-critical take-over situations when compared with a general cue ("take over control"). The current study examines whether this increased situation awareness which occurs as a result of more specific cues translates into improved hazard mitigation performance within the same limited time window. Fifty-seven drivers were randomly assigned to one of five between-subjects conditions (one control condition and four experimental auditory cue conditions) that varied in the specificity of information provided about an upcoming hazard. The four experimental conditions included a period of conditional automated driving where the driver was engaged in a driving-irrelevant task and looked away from the forward roadway prior to a take-over request. Drivers in the fifth condition had no cue and drove manually throughout. The same six simulator scenarios were used in all five conditions to evaluate how well the driver mitigated a hazard. The average velocity, standard deviation of velocity, and average absolute acceleration were recorded along with the glance behaviors of drivers. In general, during the 4s prior to a latent hazard (following the alerting cues in the automated driving conditions), the more likely a driver was to glance towards a latent hazard, the more likely the driver was to reduce his or her speed. Moreover, analyses focusing solely on hazard mitigation behavior revealed patterns that mirrored the glance behavior results. Specifically, drivers that were presented with cues that described the environments in which hazards were likely to occur were more likely to demonstrate vehicle behaviors that were consistent with speed reductions (lower velocity, higher speed variability, and higher absolute acceleration) than were drivers who were presented general cues or cues about the identity of the upcoming hazards. Even in as little as 4s prior to a potential hazard, cues that inform the driver of the environment in which the hazard is likely to occur increase the likelihood that the driver mitigates the crash compared with drivers who are provided general information or threat identity information. Copyright © 2017 Elsevier Ltd. All rights reserved.
Building Better Volcanic Hazard Maps Through Scientific and Stakeholder Collaboration
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Lindsay, J. M.; Calder, E.
2015-12-01
All across the world information about natural hazards such as volcanic eruptions, earthquakes and tsunami is shared and communicated using maps that show which locations are potentially exposed to hazards of varying intensities. Unlike earthquakes and tsunami, which typically produce one dominant hazardous phenomenon (ground shaking and inundation, respectively) volcanic eruptions can produce a wide variety of phenomena that range from near-vent (e.g. pyroclastic flows, ground shaking) to distal (e.g. volcanic ash, inundation via tsunami), and that vary in intensity depending on the type and location of the volcano. This complexity poses challenges in depicting volcanic hazard on a map, and to date there has been no consistent approach, with a wide range of hazard maps produced and little evaluation of their relative efficacy. Moreover, in traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map that is then presented to stakeholders. This one-way, top-down approach to hazard communication does not necessarily translate into effective hazard education, or, as tragically demonstrated by Nevado del Ruiz, Columbia in 1985, its use in risk mitigation by civil authorities. Furthermore, messages taken away from a hazard map can be strongly influenced by its visual design. Thus, hazard maps are more likely to be useful, usable and used if relevant stakeholders are engaged during the hazard map process to ensure a) the map is designed in a relevant way and b) the map takes into account how users interpret and read different map features and designs. The IAVCEI Commission on Volcanic Hazards and Risk has recently launched a Hazard Mapping Working Group to collate some of these experiences in graphically depicting volcanic hazard from around the world, including Latin America and the Caribbean, with the aim of preparing some Considerations for Producing Volcanic Hazard Maps that may help map makers in the future.
NASA Astrophysics Data System (ADS)
Jung, E.; Yoon, H.
2016-12-01
Natural disasters are substantial source of social and economic damage around the globe. The amount of damage is larger when such catastrophe events happen in urbanized areas where the wealth is concentrated. Disasters cause losses in real estate assets, incurring additional cost of repair and maintenance of the properties. For this reason, natural hazard risk such as flooding and landslide is regarded as one of the important determinants of homebuyers' choice and preference. In this research, we aim to reveal whether the past records of flood affect real estate market values in Busan, Korea in 2014, under a hypothesis that homebuyers' perception of natural hazard is reflected on housing values, using the Mahalanobis-metric matching method. Unlike conventionally used hedonic pricing model to estimate capitalization of flood risk into the sales price of properties, the analytical method we adopt here enables inferring causal effects by efficiently controlling for observed/unobserved omitted variable bias. This matching approach pairs each inundated property (treatment variable) with a non-inundated property (control variable) with the closest Mahalanobis distance between them, and comparing their effects on residential property sales price (outcome variable). As a result, we expect price discounts for inundated properties larger than the one for comparable non-inundated properties. This research will be valuable in establishing the mitigation policies of future climate change to relieve the possible negative economic consequences from the disaster by estimating how people perceive and respond to natural hazard. This work was supported by the Korea Environmental Industry and Technology Institute (KEITI) under Grant (No. 2014-001-310007).
NASA Astrophysics Data System (ADS)
Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria
2010-05-01
In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic conditions). In effect, the example of Bucharest demonstrates how the results shape the ‘vulnerability to seismic hazard profile of the city, based on which decision makers could develop proper mitigation strategies. To sum up, the use of an analytical framework as the standard Spatial Multi-Criteria Analysis (SMCA) - despite all difficulties in creating justifiable weights (Yeh et al., 1999) - results in accurate estimations of the state of the urban system. Although this method was often mistrusted by decision makers (Janssen, 2001), we consider that the results can represent, based on precisely the level of generalization, a decision support framework for policy makers to critically reflect on possible risk mitigation plans. Further study will lead to the improvement of the analysis by integrating a series of daytime and nighttime scenarios and a better definition of the constructed space variables.
Testing the impact on natural risks' awareness of visual communication through an exhibition
NASA Astrophysics Data System (ADS)
Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik
2014-05-01
The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests allows to verify whether the exhibition has an impact on risk awareness or not. In order to deduce the attractiveness of each visual tool independently, the visitors' paths are tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals can be assessed. These results also help to analyze the changes in risk awareness measured by the pre-test/post-test design. Direct observation of visitors' reactions and behaviors completed the methodology. This research hence helps to assess which visual tools are more suitable to communicate such topics not only to a community as a whole, but also to its sub-categories (e.g. adults vs. children, people with experience of natural disasters vs. people without). Moreover, it provides methodological improvements concerning effectiveness research in the field of risk communication. The first results of this research will be presented and discussed.
Exposure Assessment of Livestock Carcass Management ...
Report This report describes relative exposures and hazards for different livestock carcass management options in the event of a natural disaster. A quantitative exposure assessment by which livestock carcass management options are ranked relative to one another for a hypothetical site setting, a standardized set of environmental conditions (e.g., meteorology), and following a single set of assumptions about how the carcass management options are designed and implemented. These settings, conditions, and assumptions are not necessarily representative of site-specific carcass management efforts. Therefore, the exposure assessment should not be interpreted as estimating levels of chemical and microbial exposure that can be expected to result from the management options evaluated. The intent of the relative rankings is to support scientifically-based livestock carcass management decisions that consider potential hazards to human health, livestock, and the environment. This exposure assessment also provides information to support choices about mitigation measures to minimize or eliminate specific exposure pathways.
The Unexpected Awakening of Chaitén Volcano, Chile
NASA Astrophysics Data System (ADS)
Carn, Simon A.; Pallister, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo
2009-06-01
On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.
The Unexpected Awakening of Chaitén Volcano, Chile
Carn, Simon A.; Zogorski, John S.; Lara, Luis; Ewert, John W.; Watt, Sebastian; Prata, Alfred J.; Thomas, Ronald J.; Villarosa, Gustavo
2009-01-01
On 2 May 2008, a large eruption began unexpectedly at the inconspicuous Chaitén volcano in Chile's southern volcanic zone. Ash columns abruptly jetted from the volcano into the stratosphere, followed by lava dome effusion and continuous low-altitude ash plumes [Lara, 2009]. Apocalyptic photographs of eruption plumes suffused with lightning were circulated globally. Effects of the eruption were extensive. Floods and lahars inundated the town of Chaitén, and its 4625 residents were evacuated. Widespread ashfall and drifting ash clouds closed regional airports and cancelled hundreds of domestic flights in Argentina and Chile and numerous international flights [Guffanti et al., 2008]. Ash heavily affected the aquaculture industry in the nearby Gulf of Corcovado, curtailed ecotourism, and closed regional nature preserves. To better prepare for future eruptions, the Chilean government has boosted support for monitoring and hazard mitigation at Chaitén and at 42 other highly hazardous, active volcanoes in Chile.
Herzer, Kurt R.; Mirrer, Meredith; Xie, Yanjun; Steppan, Jochen; Li, Matthew; Jung, Clinton; Cover, Renee; Doyle, Peter A.; Mark, Lynette J.
2014-01-01
Background Since 1999, hospitals have made substantial commitments to healthcare quality and patient safety through individual initiatives of executive leadership involvement in quality, investments in safety culture, education and training for medical students and residents in quality and safety, the creation of patient safety committees, and implementation of patient safety reporting systems. Cohesive quality and safety approaches have become comprehensive programs to identify and mitigate hazards that could harm patients. This article moves to the next level with an intense refocusing of attention on one of the individual components of a comprehensive program--the patient safety reporting system—with a goal of maximized usefulness of the reports and long-term sustainability of quality improvements arising from them. Methods A six-phase framework was developed to deal with patient safety hazards: identify, report, analyze, mitigate, reward, and follow up. Unique features of this process included a multidisciplinary team to review reports, mitigate hazards, educate and empower providers, recognize the identifying/reporting individuals or groups with “Good Catch” awards, and follow up to determine if quality improvements were sustained over time. Results To date, 29 patient safety hazards have gone through this process with “Good Catch” awards being granted at our institution. These awards were presented at various times over the past 4 years since the process began in 2008. Follow-up revealed that 86% of the associated quality improvements have been sustained over time since the awards were given. We present the details of two of these “Good Catch” awards: vials of heparin with an unusually high concentration of the drug that posed a potential overdose hazard and a rapid infusion device that resisted practitioner control. Conclusion A multidisciplinary team's analysis and mitigation of hazards identified in a patient safety reporting system, positive recognition with a “Good Catch” award, education of practitioners, and long-term follow-up resulted in an outcome of sustained quality improvement initiatives. PMID:22946251
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
44 CFR 65.16 - Standard Flood Hazard Determination Form and Instructions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance.... Finally, the form is available through the Internet at http://www.fema.gov/nfip/mpurfi.htm. [63 FR 27857...
Jiang, Jiang; Xiong, Youling L
2016-10-01
Fresh and processed meats offer numerous nutritional and health benefits and provide unique eating satisfaction in the lifestyle of the modern society. However, consumption of red meat including processed products is subjected to increasing scrutiny due to the health risks associated with cytotoxins that potentially could be generated during meat preparation. Evidence from recent studies suggests free radical pathways as a plausible mechanism for toxin formation, and antioxidants have shown promise to mitigate process-generated chemical hazards. The present review discusses the involvements of lipid and protein oxidation in meat quality, nutrition, safety, and organoleptic properties; animal production and meat processing strategies which incorporate natural antioxidants to enhance the nutritional and health benefits of meat; and the application of mixed or purified natural antioxidants to eliminate or minimize the formation of carcinogens for chemical safety of cooked and processed meats. Copyright © 2016. Published by Elsevier Ltd.
Probabilistic eruption forecasting at short and long time scales
NASA Astrophysics Data System (ADS)
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Risk analysis procedure for post-wildfire natural hazards in British Columbia
NASA Astrophysics Data System (ADS)
Jordan, Peter
2010-05-01
Following a severe wildfire season in 2003, and several subsequent damaging debris flow and flood events, the British Columbia Forest Service developed a procedure for analysing risks to public safety and infrastructure from such events. At the same time, the Forest Service undertook a research program to determine the extent of post-wildfire hazards, and examine the hydrologic and geomorphic processes contributing to the hazards. The risk analysis procedure follows the Canadian Standards Association decision-making framework for risk management (which in turn is based on international standards). This has several steps: identification of risk, risk analysis and estimation, evaluation of risk tolerability, developing control or mitigation strategies, and acting on these strategies. The Forest Service procedure deals only with the first two steps. The results are passed on to authorities such as the Provincial Emergency Program and local government, who are responsible for evaluating risks, warning residents, and applying mitigation strategies if appropriate. The objective of the procedure is to identify and analyse risks to public safety and infrastructure. The procedure is loosely based on the BAER (burned area emergency response) program in the USA, with some important differences. Our procedure focuses on identifying risks and warning affected parties, not on mitigation activities such as broadcast erosion control measures. Partly this is due to limited staff and financial resources. Also, our procedure is not multi-agency, but is limited to wildfires on provincial forest land; in British Columbia about 95% of forest land is in the publicly-owned provincial forest. Each fire season, wildfires are screened by size and proximity to values at risk such as populated areas. For selected fires, when the fire is largely contained, the procedure begins with an aerial reconnaissance of the fire, and photography with a hand-held camera, which can be used to make a preliminary map of vegetation burn severity if desired. The next steps include mapping catchment boundaries, field traverses to collect data on soil burn severity and water repellency, identification of unstable hillslopes and channels, and inspection of values at risk from hazards such as debris flows or flooding. BARC (burned area reflectance classification) maps based on satellite imagery are prepared for some fires, although these are typically not available for several weeks. Our objective is to make a preliminary risk analysis report available about two weeks after the fire is contained. If high risks to public safety or infrastructure are identified, the risk analysis reports may make recommendations for mitigation measures to be considered; however, acting on these recommendations is the responsibility of local land managers, local government, or landowners. Mitigation measures for some fires have included engineering treatments to reduce the hydrologic impact of logging roads, protective structures such as dykes or berms, and straw mulching to reduce runoff and erosion on severely burned areas. The Terrace Mountain Fire, with burned 9000 hectares in the Okanagan Valley in 2009, is used as an example of the application of the procedure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-28
... Property Act for airport purposes (``Subject Airports''), to conduct Wildlife Hazard Site Visits (WHSVs) or... of land under the Surplus Property Act for airport purposes to identify and mitigate wildlife hazards.... These airports are typically smaller and have less air traffic, more piston-powered aircraft, and...
Wildfire risk and hazard: procedures for the first approximation
David E. Calkin; Alan A. Ager; Julie Gilbertson-Day
2010-01-01
This report was designed to meet three broad goals: (1) evaluate wildfire hazard on Federal lands; (2) develop information useful in prioritizing where fuels treatments and mitigation measures might be proposed to address significant fire hazard and risk; and (3) develop risk-based performance measures to document the effectiveness of fire management programs. The...
Mapping Vulnerability to Disasters in Latin America and the Caribbean, 1900-2007
Maynard-Ford, Miriam C.; Phillips, Emily C.; Chirico, Peter G.
2008-01-01
The vulnerability of a population and its infrastructure to disastrous events is a factor of both the probability of a hazardous event occurring and the community's ability to cope with the resulting impacts. Therefore, the ability to accurately identify vulnerable populations and places in order to prepare for future hazards is of critical importance for disaster mitigation programs. This project created maps of higher spatial resolution of vulnerability to disaster in Latin America and the Caribbean from 1900 to 2007 by mapping disaster data by first-level administrative boundaries with the objective of identifying geographic trends in regional occurrences of disasters and vulnerable populations. The method of mapping by administrative level is an improvement on displaying and analyzing disasters at the country level and shows the relative intensity of vulnerability within and between countries in the region. Disaster mapping at the country level produces only a basic view of which countries experience various types of natural disasters. Through disaggregation, the data show which geographic areas of these countries, including populated areas, are historically most susceptible to different hazard types.
Planning for the Human Dimensions of Oil Spills and Spill Response
NASA Astrophysics Data System (ADS)
Webler, Thomas; Lord, Fabienne
2010-04-01
Oil spill contingency planners need an improved approach to understanding and planning for the human dimensions of oil spills. Drawing on existing literature in social impact assessment, natural hazards, human ecology, adaptive management, global change and sustainability, we develop an integrative approach to understanding and portraying the human dimensions impacts of stressors associated with oil spill events. Our approach is based on three fundamental conclusions that are drawn from this literature review. First, it is productive to acknowledge that, while stressors can produce human impacts directly, they mainly affect intermediary processes and changes to these processes produce human impacts. Second, causal chain modeling taken from hazard management literature provides a means to document how oil spill stressors change processes and produce human impacts. Third, concepts from the global change literature on vulnerability enrich causal models in ways that make more obvious how management interventions lessen hazards and mitigate associated harm. Using examples from recent spill events, we illustrate how these conclusions can be used to diagrammatically portray the human dimensions of oil spills.
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
44 CFR 79.9 - Grant administration.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Grant administration. 79.9 Section 79.9 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS...
44 CFR 78.14 - Alternative procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Alternative procedures. 78.14 Section 78.14 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION...
NASA Astrophysics Data System (ADS)
Steptoe, H.; Jones, S. E. O.; Fox, H.
2018-03-01
Occurrences of concurrent extreme atmospheric hazards represent a significant area of uncertainty for organizations involved in disaster mitigation and risk management. Understanding risks posed by natural disasters and their relationship with global climate drivers is crucial in preparing for extreme events. In this review we quantify the strength of the physical mechanisms linking hazards and atmosphere-ocean processes. We demonstrate how research from the science community may be used to support disaster risk reduction and global sustainable development efforts. We examine peer-reviewed literature connecting 16 regions affected by extreme atmospheric hazards and eight key global drivers of weather and climate. We summarize current understanding of multihazard disaster risk in each of these regions and identify aspects of the global climate system that require further investigation to strengthen our resilience in these areas. We show that some drivers can increase the risk of concurrent hazards across different regions. Organizations that support disaster risk reduction, or underwrite exposure, in multiple regions may have a heightened risk of facing multihazard losses. We find that 15 regional hazards share connections via the El Niño-Southern Oscillation, with the Indian Ocean Dipole, North Atlantic Oscillation, and the Southern Annular Mode being secondary sources of significant regional interconnectivity. From a hazard perspective, rainfall over China shares the most connections with global drivers and has links to both Northern and Southern Hemisphere modes of variability. We use these connections to assess the global likelihood of concurrent hazard occurrence in support of multihazard resilience and disaster risk reduction goals.
Debris flow hazards mitigation--Mechanics, prediction, and assessment
Chen, C.-L.; Major, J.J.
2007-01-01
These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... Emergency Management Agency (FEMA) may provide funding to eligible applicants for eligible, feasible, and... from hazards and their effects. One such activity is the construction and installation of safe rooms to...
Analysis and recommendations on protecting waterways from encroachment.
DOT National Transportation Integrated Search
2010-08-01
The purpose of this project was to investigate and determine hazards to navigation (encroachments) in the Texas : Portion of the Gulf Intracoastal Waterway (GIWW) that originate from shore, and to make recommendations for : mitigating these hazards i...
Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project
NASA Technical Reports Server (NTRS)
Colantonio, Ron
2011-01-01
Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena
Translational Geoscience: Converting Geoscience Innovation into Societal Impacts
NASA Astrophysics Data System (ADS)
Schiffries, C. M.
2015-12-01
Translational geoscience — which involves the conversion of geoscience discovery into societal, economic, and environmental impacts — has significant potential to generate large benefits but has received little systematic attention or resources. In contrast, translational medicine — which focuses on the conversion of scientific discovery into health improvement — has grown enormously in the past decade and provides useful models for other fields. Elias Zerhouni [1] developed a "new vision" for translational science to "ensure that extraordinary scientific advances of the past decade will be rapidly captured, translated, and disseminated for the benefit of all Americans." According to Francis Collins, "Opportunities to advance the discipline of translational science have never been better. We must move forward now. Science and society cannot afford to do otherwise." On 9 July 2015, the White House issued a memorandum directing U.S. federal agencies to focus on translating research into broader impacts, including commercial products and decision-making frameworks [3]. Natural hazards mitigation is one of many geoscience topics that would benefit from advances in translational science. This paper demonstrates that natural hazards mitigation can benefit from advances in translational science that address such topics as improving emergency preparedness, communicating life-saving information to government officials and citizens, explaining false positives and false negatives, working with multiple stakeholders and organizations across all sectors of the economy and all levels of government, and collaborating across a broad range of disciplines. [1] Zerhouni, EA (2005) New England Journal of Medicine 353(15):1621-1623. [2] Collins, FS (2011) Science Translational Medicine 3(90):1-6. [3] Donovan, S and Holdren, JP (2015) Multi-agency science and technology priorities for the FY 2017 budget. Executive Office of the President of the United States, 5 pp.
Translating Developing Science into Public Awareness and Social Organisation in W. Sumatra.
NASA Astrophysics Data System (ADS)
Shannon, R.; McDowell, S.; McCloskey, J.
2009-04-01
Social idiosyncrasies confounding cross-cultural scientific interventions on an intra-regional and international scale continue to blight the positive benefits robust science offers to vulnerable communities inhabiting areas prone to natural hazards. The sustained malice inflicted by these phenomena upon socioeconomic systems epitomises the perilous task facing mitigation bodies attempting to communicate scientific forecasts and interweave technical knowledge into social policy internationally. This quandary continues to confront disaster officials and scientists in Sumatra. Palaeoseismological studies, coupled with a developing understanding of stress transference between earthquakes, reveal that the Mentawai segment of the Sumatran forearc is the most plausible candidate for future rupture. Simulations of tsunami propagation and inundation illustrate that the coastal regions of western Sumatran, inhabited by approximately 2 million people, lie in immediate mortal threat. Many Sumatrans' live with stark memories of the 1600 km megathrust rupture in December 2004, which spawned one of the worst global natural atrocities of recent time. The earthquake accelerated collaboration between seismologists, geophysicists and geologists and has produced unrivalled advances in understanding fault locations, geometries and potential rupture characteristics of the Sumatran forearc. Nowhere else on earth are scientists more aware of the impending threat of another magnitude 8+ megathrust earthquake. However with the twenty-first century being tainted by natural disasters which have typified the blatantly ambiguous linkages which exist between science and society, assessing to what extent this notion is exemplified in the Sumatran context is imperative. Here we begin to present the results from a social survey, conducted in the Sumatran cities of Padang and Bengkulu between May and September 2008. The campaign sought to dissect the broader societal complexities and moral values harboured by these communities towards earthquake and tsunami threat. A bottom-up approach was incorporated whereby qualitative and quantitative techniques were employed to assess a holistic array of factors believed to influence risk perception and intended behavioural change. Communities representing the "last mile" of hazard mitigation were targeted. Closed ended questionnaires and semi-structured interviews were used to acquire data from approximately 200 respondents in Padang and 80 in Bengkulu. Additionally 90 closed-ended questionnaires were distributed amongst 9th grade Senior High students in 3 schools and interviews conducted with teachers and class-representatives in each city. Engagement with groups and organisations responsible for utilising and disseminating scientific information effectively also comprised an important component of the investigation. Subsequently semi-structured interviews were conducted with government representatives, scientists and community leaders in both cities. These interviews were devised to collect data pertaining to the utility of science in hazard preparedness and mitigation and furthermore establish how risk communication decisions, objectives, mediums and implementation strategies have developed. Preliminary findings indicate that scientific knowledge pertaining to earthquake and tsunami threat amongst respondents in both cities is good. However the relationship between this knowledge and desired risk perception levels and intended emergency risk reducing behaviour is not linear. Non-scientific sources often prevail and can significantly influence attitudes to risk, having a detrimental impact upon respondent's accurate interpretation of risk. Subsequently actions become misguided, with vulnerability to hazards increasing and valuable resources wasted. Predictions made regarding earthquake and tsunami threat are frequently hailed, sometimes spuriously, as deriving from the scientific arena. The failure of these predictions amplifies distrust towards the scientific community which is a direct result of the ambiguous definition harboured towards science and scientists by citizens. Hazards knowledge and more generally knowledge of nature in Sumatra has not been traditionally constituted by science. Thus cross-cultural interventions of science derived from a western context cannot be expected to be absorbed rationally without significant appreciation of the social and cultural idiosyncrasies embedded within the region.
PERSONNEL PROTECTION THROUGH RECONNAISSANCE ROBOTICS AT SUPERFUND REMEDIAL SITES
Investigation, mitigation, and clean-up of hazardous materials at Superfund sites normally require on-site workers to perform hazardous and sometimes potentially dangerous functions. uch functions include site surveys and the reconnaissance for airborne and buried toxic environme...
DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS
Hazardous and/or tedious functions are often performed by on-site workers during investigation, mitigation and clean-up of hazardous substances. These functions include site surveys, sampling and analysis, excavation, and treatment and preparation of wastes for shipment to chemic...
Real-Time Earthquake Analysis for Disaster Mitigation (READI) Network
NASA Astrophysics Data System (ADS)
Bock, Y.
2014-12-01
Real-time GNSS networks are making a significant impact on our ability to forecast, assess, and mitigate the effects of geological hazards. I describe the activities of the Real-time Earthquake Analysis for Disaster Mitigation (READI) working group. The group leverages 600+ real-time GPS stations in western North America operated by UNAVCO (PBO network), Central Washington University (PANGA), US Geological Survey & Scripps Institution of Oceanography (SCIGN project), UC Berkeley & US Geological Survey (BARD network), and the Pacific Geosciences Centre (WCDA project). Our goal is to demonstrate an earthquake and tsunami early warning system for western North America. Rapid response is particularly important for those coastal communities that are in the near-source region of large earthquakes and may have only minutes of warning time, and who today are not adequately covered by existing seismic and basin-wide ocean-buoy monitoring systems. The READI working group is performing comparisons of independent real time analyses of 1 Hz GPS data for station displacements and is participating in government-sponsored earthquake and tsunami exercises in the Western U.S. I describe a prototype seismogeodetic system using a cluster of southern California stations that includes GNSS tracking and collocation with MEMS accelerometers for real-time estimation of seismic velocity and displacement waveforms, which has advantages for improved earthquake early warning and tsunami forecasts compared to seismic-only or GPS-only methods. The READI working group's ultimate goal is to participate in an Indo-Pacific Tsunami early warning system that utilizes GNSS real-time displacements and ionospheric measurements along with seismic, near-shore buoys and ocean-bottom pressure sensors, where available, to rapidly estimate magnitude and finite fault slip models for large earthquakes, and then forecast tsunami source, energy scale, geographic extent, inundation and runup. This will require cooperation with other real-time efforts around the Pacific Rim in terms of sharing, analysis centers, and advisory bulletins to the responsible government agencies. The IAG's Global Geodetic Observing System (GGOS), in particular its natural hazards theme, provides a natural umbrella for achieving this objective.
Examination of Icing Induced Loss of Control and Its Mitigations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.
2010-01-01
Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed
Inter-model analysis of tsunami-induced coastal currents
NASA Astrophysics Data System (ADS)
Lynett, Patrick J.; Gately, Kara; Wilson, Rick; Montoya, Luis; Arcas, Diego; Aytore, Betul; Bai, Yefei; Bricker, Jeremy D.; Castro, Manuel J.; Cheung, Kwok Fai; David, C. Gabriel; Dogan, Gozde Guney; Escalante, Cipriano; González-Vida, José Manuel; Grilli, Stephan T.; Heitmann, Troy W.; Horrillo, Juan; Kânoğlu, Utku; Kian, Rozita; Kirby, James T.; Li, Wenwen; Macías, Jorge; Nicolsky, Dmitry J.; Ortega, Sergio; Pampell-Manis, Alyssa; Park, Yong Sung; Roeber, Volker; Sharghivand, Naeimeh; Shelby, Michael; Shi, Fengyan; Tehranirad, Babak; Tolkova, Elena; Thio, Hong Kie; Velioğlu, Deniz; Yalçıner, Ahmet Cevdet; Yamazaki, Yoshiki; Zaytsev, Andrey; Zhang, Y. J.
2017-06-01
To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts.
NASA Astrophysics Data System (ADS)
Youngseok, Song; Moojong, Park; JungHo, Lee; HeeSup, Lee
2013-04-01
As extreme floods occur frequently in recent years due to global climate changes, an in sudden local flooding of great volume and short duration is becoming the significant danger and loss of life and property in the Korean Peninsula as well as most parts of the world. The desire for living without hazardous damages grows these days, the city strategy to make the safer community has become an issue. Previously most of flood prevention efforts have been made for relatively large watersheds near to channel flow. However, as economical development and the expansion of city near medium and small stream, human casualty and property by flood occurs frequently. Therefore, to reduce the damage of human lives and property by flood, we develop an assessment method for flood warning trigger rainfall considering urban effect. Considering complex land use, HEC-HMS is used for rural area and SWMM is adopted for sewer networks runoff. And relationship between runoff and stream water level, HEC-RAS is accompanied with runoff results. Proposed flood warning trigger rainfall assessment method shows good agreement with gauged data and could be used for another case to mitigate damage. Acknowledgement: "This research was supported by a grant [NEMA-NH-2011-45] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea." Keyword: HEC-HMS, HEC-RAS, critical precipitation, medium and small stream
Climate resiliency: A unique multi-hazard mitigation approach.
Baja, Kristin
2016-01-01
Baltimore's unique combination of shocks and stresses cuts across social, economic and environmental factors. Like many other post-industrial cities, over the past several decades, Baltimore has experienced a decline in its population -- resulting in a lower tax base. These trends have had deleterious effects on the city's ability to attend to much needed infrastructure improvements and human and social services. In addition to considerable social and economic issues, the city has begun to experience negative impacts due to climate change. The compounding nature of these trends has put Baltimore, like other post-industrial cities, in the position of having to do more with fewer available resources. Rather than wait for disaster to strike, Baltimore took a proactive approach to planning for shocks and stresses by determining unique ways to pre-emptively plan for and adapt to effects from climate change and incorporating these into the City's All Hazard Mitigation Plan. Since adopting the plan in 2013, Baltimore has been moving forward with various projects aimed at improving systems, enhancing adaptive capacity and building a more resilient and sustainable city. This paper describes the basis for the city's approach and offers a portrait of its efforts in order to broaden foundational knowledge of the emerging ways that cities are recasting the role of planning in light of unprecedented circumstances that demand complex solutions that draw on few resources.
Wildfire risk management on a landscape with public and private ownership: who pays for protection?
Busby, Gwenlyn; Albers, Heidi J
2010-02-01
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners' hazard mitigation decisions on a landscape with public and private ownership. We find that in areas where ownership is mixed, the private landowner performs too little fuel treatment as they "free ride"-capture benefits without incurring the costs-on public protection, while areas with public land only are under-protected. Our central result is that this pattern of fuel treatment comes at a cost to society because public resources focus in areas with mixed ownership, where local residents capture the benefits, and are not available for publicly managed land areas that create benefits for society at large. We also find that policies that encourage public expenditures in areas with mixed ownership, such as the Healthy Forest Restoration Act of 2003 and public liability for private values, subsidize the residents who choose to locate in the high-risk areas at the cost of lost natural resource benefits for others.
Wildfire Risk Management on a Landscape with Public and Private Ownership: Who Pays for Protection?
NASA Astrophysics Data System (ADS)
Busby, Gwenlyn; Albers, Heidi J.
2010-02-01
Wildfire, like many natural hazards, affects large landscapes with many landowners and the risk individual owners face depends on both individual and collective protective actions. In this study, we develop a spatially explicit game theoretic model to examine the strategic interaction between landowners’ hazard mitigation decisions on a landscape with public and private ownership. We find that in areas where ownership is mixed, the private landowner performs too little fuel treatment as they “free ride”—capture benefits without incurring the costs—on public protection, while areas with public land only are under-protected. Our central result is that this pattern of fuel treatment comes at a cost to society because public resources focus in areas with mixed ownership, where local residents capture the benefits, and are not available for publicly managed land areas that create benefits for society at large. We also find that policies that encourage public expenditures in areas with mixed ownership, such as the Healthy Forest Restoration Act of 2003 and public liability for private values, subsidize the residents who choose to locate in the high-risk areas at the cost of lost natural resource benefits for others.
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
44 CFR 79.8 - Allowable costs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Allowable costs. 79.8 Section 79.8 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION GRANTS § 79.8...
Global Environmental Alert Service
NASA Astrophysics Data System (ADS)
Grasso, V. F.; Cervone, G.; Singh, A.; Kafatos, M.
2006-12-01
Every year natural disasters such as earthquakes, floods, hurricanes, tsunamis, etc. occur around the world, causing hundreds of thousands of deaths and injuries, billions of dollars in economic losses, and destroying natural landmarks and adveresely affecting ecosystems. Due to increasing urbanization, and increasingly higher percentage of the world's population living in megacities, the existence of nuclear power plants and other facilities whose potential destruction poses unacceptable high risks, natural hazards represent an increasing threat for economic losses, as well as risk to people and property. Warning systems represent an innovative and effective approach to mitigate the risks associated with natural hazards. Several state-of-the-art analyses show that early warning technologies are now available for most natural hazards and systems are already in operation in some parts of the world. Nevertheless, recent disasters such as the 2004 Indian Ocean tsunami, the 2005 Kashmir earthquake and the 2005 Katrina hurricane, highlighted inadequacies in early warning system technologies. Furthermore, not all available technologies are deployed in every part of the world, due to the lack of awareness and resources in the poorer countries, leaving very large and densely populated areas at risk. Efforts towards the development of a global warning system are necessary for filling the gaps of existing technologies. A globally comprehensive early warning system based on existing technologies will be a means to consolidate scientific knowledge, package it in a form usable to international and national decision makers and actively disseminate this information to protect people and properties. There is not a single information broker who searches and packages the policy relevant material and delivers it in an understandable format to the public and decision makers. A critical review of existing systems reveals the need for the innovative service. We propose here a Global Environmental Alert Service (GEAS) that could provide information from monitoring, Earth observing and early warning systems to users in a near real time mode and bridge the gap between the scientific community and policy makers. Characteristics and operational aspects of GEAS are discussed.
Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA
Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.
2004-01-01
In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.
New Science Applications Within the U.S. National Tsunami Hazard Mitigation Program
NASA Astrophysics Data System (ADS)
Wilson, R. I.; Eble, M. C.; Forson, C. K.; Horrillo, J. J.; Nicolsky, D.
2017-12-01
The U.S. National Tsunami Hazard Mitigation Program (NTHMP) is a collaborative State and Federal program which supports consistent and cost effective tsunami preparedness and mitigation activities at a community level. The NTHMP is developing a new five-year Strategic Plan based on the 2017 Tsunami Warning, Education, and Research Act as well as recommendations the 2017 NTHMP External Review Panel. Many NTHMP activities are based on the best available scientific methods through the NTHMP Mapping and Modeling Subcommittee (MMS). The primary activities for the MMS member States are to characterize significant tsunami sources, numerically model those sources, and create tsunami inundation maps for evacuation planning. This work remains a focus for many unmapped coastlines. With the lessons learned from the 2004 Indian Ocean and 2011 Tohoku Japan tsunamis, where both immediate risks and long-term recovery issues where recognized, the NTHMP MMS is expanding efforts into other areas that address community resilience. Tsunami evacuation modeling based on both pedestrian and vehicular modes of transportation are being developed by NTHMP States. Products include tools for the public to create personal evacuation maps. New tsunami response planning tools are being developed for both maritime and coastal communities. Maritime planning includes tsunami current-hazard maps for in-harbor and offshore response activities. Multi-tiered tsunami evacuation plans are being developed in some states to address local- versus distant-source tsunamis, as well as real-time evacuation plans, or "playbooks," for distant-source tsunamis forecasted to be less than the worst-case flood event. Products to assist community mitigation and recovery are being developed at a State level. Harbor Improvement Reports, which evaluate the impacts of currents, sediment, and debris on harbor infrastructure, include direct mitigation activities for Local Hazard Mitigation Plans. Building code updates in the five Pacific states will include new sections on tsunami load analysis of structures, and require Tsunami Design Zones based on probabilistic analyses. Guidance for community recovery planning has also been initiated. These new projects are being piloted by some States and will help create guidance for other States in the future.