Science.gov

Sample records for natural lithospheric radioxenon

  1. Categorization of Radioxenon

    SciTech Connect

    Keller, Paul E.

    2012-04-26

    This report summarizes a study into some false positive issues in the use of radioxenon as a method to verify a clandestine nuclear weapons explosion. False positives arise due to similarities between the radioxenon signature generated in medical isotope production and that generated in a nuclear weapon explosion. This report also discusses how to categorize the radioxenon by levels of urgency for manual analysis and interpretation and recommends applying machine learning and time series analysis techniques in the automation of radioxenon characterization. The literature indicates that medical isotope production is a major contributor to atmospheric radioxenon and is the main source of confusion in determining the source of radioxenon. While radioxenon emissions from nuclear power plants can be distinguished from that from nuclear weapon explosions, emissions from medical isotope production generate signatures similar to certain nuclide ratios found in nuclear weapons explosions. Different techniques for analyzing nuclide concentrations and ratios as well as including other sensing modalities via sensor fusion are discussed.

  2. SPECTRAL ANALYSIS OF RADIOXENON

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.

    2008-09-23

    Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).

  3. Using natural laboratories and modeling to decipher lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  4. Variations in timing of lithospheric failure on terrestrial planets due to chaotic nature of mantle convection

    NASA Astrophysics Data System (ADS)

    Wong, Teresa; Solomatov, Viatcheslav S.

    2016-05-01

    We perform numerical simulations of lithospheric failure in the stagnant lid regime of temperature-dependent viscosity convection, using the yield stress approach. We find that the time of failure can vary significantly for the same values of the controlling parameters due to the chaotic nature of the convective system. The general trend of the dependence of the time of lithospheric failure on the yield stress can be explained by treating lithospheric failure as a type of Rayleigh-Taylor instability. This study suggests that it is important to address not only the question of whether plate tectonics can occur on a planet but also when it would occur if conditions are favorable.

  5. Radioxenon Atmospheric Measurements in North Las Vegas

    SciTech Connect

    Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Karr, L.; Shafer, David S.; Tappen, J.

    2007-09-25

    Pacific Northwest National Laboratory (PNNL) deployed the Automated Radioxenon Sampler/Analyzer (ARSA) in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the Nevada Test Site (NTS). The measurements establish what might be expected if future measurements are taken at NTS itself and investigate improved methods of environmental monitoring of NTS for test site readiness. Also, such radioxenon measurements have not previously been performed in a United States location considered to be as remote from nuclear reactors. A second detector, the Portable Environmental Monitoring Station (PEMS), built and operated by the Desert Research Institute (DRI), was deployed in conjunction with the ARSA and contained a pressure ion chamber, aerosol collection filters, and meteorological sensors. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.

  6. Environmental Applications of Stable Xenon and Radioxenon Monitoring

    SciTech Connect

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre, Justin I.; Waichler, Scott R.; Kennedy, B. M.

    2008-06-01

    Improved detection capabilities are needed at several Department of Energy sites to make remedial decisions about facilities and landfill cleanup. For facility monitoring air samples can be collected from within a facility and analyzed for short lived radioxenons to estimate inventories of residual plutonium holdup within the facility. For landfill cleanup activities soil gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic wastes. Short-lived radioxenon isotopes are continuously produced by spontaneous fission of plutonium-240 in transuranic wastes. Large volume soil-gas samples provide extremely sensitive measurement of radioxenon in the subsurface; a characteristic of transuranic waste. The analysis employs a modified Automated Radioxenon Sampling and Analysis (ARSA) system. Proof of principle measurements at a Hanford Site liquid waste disposal site showed xenon-133 at levels in soil gas are approximately 16,000 times the detection limit and lower levels of xenon-135 from the spontaneous fission of plutonium-240 were also measured. Stable xenon isotopes are also produced by spontaneous fission but are subject to background concentrations in ambient air samples (facilities) but less so in soil gas where free exchange with ambient air is restricted. Rare gas mass spectrometry is used for highly precise stable xenon isotopic measurements. Stable xenon isotopic ratios from fission are distinct from natural xenon background ratios. Neutron capture on xenon-135 produces an excess of xenon-136 above fission ratios and thus provides a means of distinguishing reactor sources (e.g. spent fuel) from separated transuranic materials (plutonium).

  7. Progress in Advanced Spectral Analysis of Radioxenon

    SciTech Connect

    Haas, Derek A.; Schrom, Brian T.; Cooper, Matthew W.; Ely, James H.; Flory, Adam E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Saunders, Danielle L.; Suckow, Thomas J.

    2010-09-21

    Improvements to a Java based software package developed at Pacific Northwest National Laboratory (PNNL) for display and analysis of radioxenon spectra acquired by the International Monitoring System (IMS) are described here. The current version of the Radioxenon JavaViewer implements the region of interest (ROI) method for analysis of beta-gamma coincidence data. Upgrades to the Radioxenon JavaViewer will include routines to analyze high-purity germanium detector (HPGe) data, Standard Spectrum Method to analyze beta-gamma coincidence data and calibration routines to characterize beta-gamma coincidence detectors. These upgrades are currently under development; the status and initial results will be presented. Implementation of these routines into the JavaViewer and subsequent release is planned for FY 2011-2012.

  8. The lithosphere

    SciTech Connect

    Not Available

    1983-01-01

    This document is the report of a week-long workshop on problems relating to the interpretations of the composition and dynamics of the lithosphere. A wide range of topics was discussed, dealing not only with the lithosphere itself, but also with possible interactions between the lithosphere and underlying mantle, down to and including the core-mantle boundary zone. Emphasis, very broadly, was on the physical and chemical properties of the lower crust and the subcrustal lithosphere: the physical and chemical characteristics of the prominent seismic discontinuities down to the core-mantle boundary; the nature and patterns of possible convection within the mantle and its relation to the generation, subduction, and intermixing of lithospheric and mantle material; the location and nature and evolution of reservoirs supplying magmas to the crust; and the various models that have been proposed to account for the location, nature, and geological history of these magma reservoirs. The general applicability of the plate tectonics model was assumed, but virtually every widely accepted explanation for the dynamics of that model and of possible unrelated phenomena such as deep-mantle plumes and hot spots was brought into question. 83 refs., 19 figs.

  9. RADIOXENON MEASUREMENTS WITH THE PHOSWATCH DETECTOR SYSTEM

    SciTech Connect

    Hennig, Wolfgang; Warburton, William K.; Fallu-Labruyere, A.; Sabourov, K.; Cooper, Matthew W.; McIntyre, Justin I.; Gleyzer, A.; Bean, Marc; Korpach, E.; Ungar, R. Kurt; Zhang, W.; Mekarski, P.; Ward, Rebecca; Biegalski, S.; Haas, Derek A.

    2009-09-22

    Many of the radioxenon detector systems used in the International Monitoring System and in other applications employ beta/gamma coincidence detection to achieve high sensitivity. In these systems, the coincidence detection is implemented by requiring simultaneous signals from separate beta and gamma detectors. While very sensitive to small amounts of radioxenon, this approach requires careful calibration and gain matching of several detectors and photomultiplier tubes. An alternative approach is the use of a phoswich detector in which beta-gamma coincidences are detected by pulse shape analysis. The phoswich requires only a single photomultiplier tube and thus is easier to set up and calibrate, and can be assembled into a more compact and robust system. In the past, we have developed a COTS detector system, named PhosWatch, which consists of a CsI(Tl)/BC-404 phoswich detector, digital readout electronics, and on-board software to perform the pulse shape analysis. Several units of this system have been manufactured and are now evaluated at several radioxenon research laboratories. In this paper, we will report results from production tests and some of the evaluations, including a side-by-side comparison of a SAUNA detector and a PhosWatch system using atmospheric radioxenon samples. In addition, we will show initial results obtained with a higher speed version of the readout electronics, digitizing at 500 MHz and thus able to better resolve the fast pulses from the BC-404.

  10. Global radioxenon emission inventory based on nuclear power reactor reports.

    PubMed

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  11. Radioxenon retention in the skeleton on a routine ventilation study

    SciTech Connect

    Kramer, E.L.; Tiu, S.; Sanger, J.J.; Benjamin, D.D.

    1983-07-01

    Marked retention of radioxenon by the skeletal structures during a routine ventilation scan is described. Xenon uptake by bones occurs largely in the intraosseous fat. Augmented uptake in this case may be related to the patient's prolonged steroid therapy.

  12. Atmospheric Radioxenon Measurements in North Las Vegas, NV

    SciTech Connect

    Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Karr, L.; Shafer, D.; Tappen, J.

    2006-07-31

    PNNL deployed the ARSA radioxenon measurement system in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the NTS. The measurements establish what might be expected if future measurements are taken at NTS itself. The measurements are also relevant to test site readiness. A second detector, the PEMS, built and operated by DRI, was deployed in conjunction with the ARSA and contained a PIC, aerosol collection filters, and meteorological sensors. Originally, measurements were also to be performed at Mercury, NV on the NTS, but these were canceled due to initial equipment problems with the ARSA detector. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.

  13. Measurements of Worldwide Radioxenon Backgrounds - The "EU" Project

    SciTech Connect

    Bowyer, Ted W.; Cooper, Matthew W.; Hayes, James C.; Forrester, Joel B.; Haas, Derek A.; Hansen, Randy R.; Keller, Paul E.; Kirkham, Randy R.; Lidey, Lance S.; McIntyre, Justin I.; Miley, Harry S.; Payne, Rosara F.; Saey, Paul R.; Thompson, Robert C.; Woods, Vincent T.; Williams, Richard M.

    2009-09-24

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), radioactive xenon (radioxenon) measurements are one of the principle techniques used to detect nuclear underground nuclear explosions, and specifically, the presence of one or more radioxenon isotopes allows one to determine whether a suspected event was a nuclear explosion or originated from an innocent source. During the design of the International Monitoring System (IMS), which was designed as the verification mechanism for the Treaty, it was determined that radioxenon measurements should be performed at 40 or more stations worldwide. At the time of the design of the IMS, however, very few details about the background of the xenon isotopes was known and it is now recognized that the backgrounds were probably evolving anyhow. This paper lays out the beginning of a study of the worldwide concentrations of xenon isotopes that can be used to detect nuclear explosions and several sources that also release radioxenons, and will have to be accounted for during analysis of atmospheric levels. Although the global concentrations of the xenon isotopes are the scope of a much larger activity that could span over several years, this study measures radioxenon concentrations in locations where there was either very little information or there was a unique opportunity to learn more about emissions from known sources. The locations where radioxenon levels were measured and reported are included.

  14. The nature of cratonic lithosphere: Combining constraints from seismology, mineral physics, and petrology

    NASA Astrophysics Data System (ADS)

    Dalton, Colleen; Faul, Ulrich; Hirsch, Aaron

    2014-05-01

    In recent years, the prevailing notion of Precambrian continental lithosphere as a thick boundary layer (~200-300 km) with a very depleted composition and temperature structure controlled by steady-state conductive cooling has been challenged by several lines of seismological evidence. One, profiles of shear velocity with depth beneath cratons exhibit lower wave speed at shallow depths and higher wave speed at greater depths than can be explained by temperature alone. These profiles are also characterized by positive or flat velocity gradients with depth in the uppermost mantle and anomalously high attenuation, both of which are difficult to reconcile with the low temperatures and large thermal gradient expected in the thermal boundary layer. Two, body-wave receiver-function studies have detected a mid-lithospheric discontinuity that requires a large and abrupt velocity decrease with depth in cratonic regions that cannot be achieved by thermal gradients alone. We have used a forward-modeling approach to identify the suite of shear-velocity profiles that are consistent with phase-velocity observations made for Rayleigh waves traversing cratons in North America, Africa, and Australia. We have also calculated the range of lithospheric temperatures and compositions that are consistent with the elastic and anelastic seismological models, using laboratory measurements on the sensitivity of velocity and attenuation to temperature, major-element composition, and mineralogy. Finally, we consider the implications of the models for the long-term stability of cratons.

  15. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.

    2012-12-01

    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  16. Radioxenons: Their role in monitoring a Comprehensive Test Ban Treaty

    SciTech Connect

    Perkins, R. W.; Casey, L. A.

    1996-06-01

    Monitoring for xenon radionuclides which are produced in a nuclear detonation can provide a strong deterrent to the violation of a Comprehensive nuclear Test Ban Treaty (CTBT). There are 18 known radioactive xenon isotopes produced in nuclear fission with half-lives ranging from less than one second to 11.9 days. However, only four of these remain in significant amounts more than a day after a detonation. In order for radioxenon monitoring to be practical, it was necessary to develop an automated measurement system which could operate unattended for periods of months, measure the entire spectrum of radioxenons, and provide hundreds of times better sensitivities than current laboratory procedures. This capability was developed at the US Department of Energy`s Pacific Northwest National Laboratory based on rapid separation of atmospheric xenon coupled with a unique high sensitivity measurement device for the radioxenons. A fieldable prototype analyzer is scheduled for testing in August 1996 with commercial availability planned by 1998.

  17. Polar Regions: Natural Laboratories for Understanding the Dynamic Lithosphere-Cryosphere-Climate System

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Antec Group,.

    2003-12-01

    The polar regions have unique geodynamic environments where the solid earth, the cryosphere, the oceans, the atmosphere and the global climate system are intimately linked. It is increasingly clear that deciphering the feedbacks and interactions between these spheres is required to comprehend the earth system as a whole. The ANTEC group has developed a vision for a major interdisciplinary program to investigate neotectonic processes in Antarctica, focused on understanding 1) how changing ice mass loads influence lithospheric stress/strain regimes; 2) how glacial isostatic adjustment and the tectono-thermal structure of the lithosphere control modern ice sheet dynamics; 3) the history of inception and growth of Antarctic ice sheets and how it's fluctuations are linked with tectonic motions and magmatism; and 4) how evolving continental-scale paleogeography, volcanism, erosion/sedimentation act to force climate change. We are poised at a critical threshold where developing technologies will enable experiments at unprecedented scales across the continent. Autonomous vehicles will allow exploration over unmapped ice sheets and under the ice shelves and sea ice that shroud immense portions of polar terrain. Unattended remote geodetic and geophysical observatories are beginning to operate through the polar night due to advances in power sources and data storage capacity. Drilling technologies are being adapted to the harsh polar environment and will allow us to sample the vast swaths of virtually unknown subglacial terrain. Spaceborne instruments now have an unprecedented capability to capture change in the polar environment. These emerging technologies will allow us to make the next `great leap forward' in exploring the polar frontier of the earth system with immensely more ease than during the IGY 50 years ago. If we can meet the logistical and funding challenges of instrumenting the polar regions on a grand scale, we will reap a wealth data that will serve as the

  18. A phoswich well detector for radioxenon monitoring

    NASA Astrophysics Data System (ADS)

    Hennig, Wolfgang; Tan, Hui; Fallu-Labruyere, Anthony; Warburton, William K.; McIntyre, Justin I.; Gleyzer, Anshel

    2007-08-01

    One of several methods used to detect nuclear weapons testing is the monitoring of radioactive xenon in the atmosphere. For high sensitivity, monitoring stations use a complex system of separate beta and gamma detectors to detect beta-gamma coincidences from characteristic radioxenon isotopes in small amounts of xenon extracted from large volumes of air. We report a simpler approach that uses a single phoswich detector, comprising optically coupled plastic and CsI scintillators to absorb beta particles and gamma rays, respectively, and then detect coincidences by pulse shape analysis of the detector signal. Previous studies with a planar prototype detector have shown that the technique can clearly separate beta only, gamma only and coincidence events, does not degrade the energy resolution, and has an error rate for detecting coincidences of less than 0.1%. In this paper, we will present a new phoswich well detector design, consisting of a 1'' diameter plastic cell enclosed in a 3'' CsI crystal. Based on Monte Carlo modeling and experimental results, the design will be characterized in terms of energy resolution and its ability to separate beta and gamma only, and coincidence events.

  19. Nature of the lithosphere across the Variscan orogen of SW Iberia: Dense wide-angle seismic reflection data

    NASA Astrophysics Data System (ADS)

    Palomeras, I.; Carbonell, R.; Flecha, I.; Simancas, F.; Ayarza, P.; Matas, J.; MartíNez Poyatos, D.; Azor, A.; GonzáLez Lodeiro, F.; PéRez-Estaún, A.

    2009-02-01

    Two wide-angle seismic transects have been acquired across the SW Iberian Massif. They crossed three major geological zones (South Portuguese Zone, Ossa-Morena Zone, and Central Iberian Zone), with their tectonic contacts and the Pyrite Belt being of greatest interest. A total of 690 digital seismic recording instruments (650 Texans and 40 Reftek 3 component units) from the IRIS-PASSCAL Instrument Pool were used. The transects (A and B) are each approximately 300 km long and consist of 3 and 6 shot points, respectively, with an approximately 60-km shot point interval. The charge sizes range from 1000 kg at the edges to 500 kg at the center. These recently acquired experiments were designed to provide velocity constraints on the lithosphere and to complement the previously acquired normal incidence seismic profile IBERSEIS. Both data sets are part of the SW Iberia project, which was developed within the EUROPROBE program and designed to address fundamental questions about the nature and dynamics of the Variscan lithosphere. The acquisition parameters provide closely spaced wide-angle seismic images of the lithosphere beneath SW Iberia. In transect A, the station spacing was on average 400 m, while along transect B, the receiver spacing was approximately 150 m. Because of this close trace spacing, the lateral continuity of the seismic arrivals is greatly improved. Frequency analysis revealed that the recorded events feature relatively low frequencies (6-25 Hz). After processing, the shot records show high-amplitude and well-defined arrivals. The interpreted PmP arrival, located at approximately 11 s (normal incidence traveltime), is characterized by high amplitude and relatively low frequency (6-12 Hz). A well-defined Pn arrival appears at offsets beyond 120 km. At far offsets greater than 180 km, an upper mantle reflection is observed. Furthermore, within the upper crust, the shots records feature a relatively high-velocity arrival, located at 4-5-s normal incidence

  20. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  1. Lithospheric processes

    SciTech Connect

    Baldridge, W.S.; Wohletz, K.; Fehler, M.C.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective was to improve understanding of the origin and evolution of the Earth`s lithosphere by studying selected processes, such as deformation and magmatic intrusion during crustal extension, formation and extraction of mantle melts, fluid transport of heat and mass, and surface processes that respond to deep-seated events. Additional objectives were to promote and develop innovative techniques and to support relevant educational endeavors. Seismic studies suggest that underplating of crust by mantle melts is an important crustal-growth mechanism, that low-angle faults can be seismogenic, and that shear deformation creates mantle anisotropy near plate boundaries. Results of geochemical work determined that magmas from oceanic intraplate islands are derived from a uniform depth in the upper mantle, whereas melts erupted at mid-ocean ridges are mixed from a range of depths. The authors have determined the extent and style of fluid infiltration and trace-element distribution in natural magmatic systems, and, finally, investigated {sup 21}Ne as a tool for dating of surficial materials.

  2. Lithospheric Accretion and the Nature of Anomalously Thick Oceanic Moho Transition Zone

    NASA Astrophysics Data System (ADS)

    Nedimovic, M.; Carbotte, S.; Tischer, M.; Diebold, J.; Babcock, J.; Harding, A.; Kent, G.; Canales, P.; Detrick, R.

    2004-12-01

    The oceanic Moho transition zone (MTZ) separates layered gabbros of the crust derived by magma crystallization from the uppermost residual peridotites, generally harzburgites, representing mantle rocks. Mapping of the Oman and the Bay of Islands ophiolite complexes, both of which are inferred to be composed of obducted oceanic lithosphere formed at fast spreading ridges, has shown that the MTZ is mostly composed of sills and lenses of gabbro intruded into dunite. Thickness of the MTZ can vary from a few meters to over two kilometres. Within the thick MTZ, individual gabbro sills and lenses can reach thickness of a few hundred meters. Thermal modelling, tomography, compliance and PmS converted wave studies support the geologic evidence and suggest presence of gabbroic melt accumulations within the MTZ, in the vicinity of fast and intermediate spreading centres. However, seismic reflection imaging, which has been instrumental for determining the structure of the oceanic crust and for defining the geometry of axial magma chambers, has not yet been successful at imaging the gabbro sills and gabbro-melt lenses imbedded into dunite, casting some doubt on their existence within the present day oceanic lithosphere. Here we show images of a series of groups of subcrustal reflection events that resulted from our analysis of some 1500 km of multichannel seismic data collected in 2002 across the Juan de Fuca ridge flanks as part of the EW0207 cruise. Because the Moho discontinuity is well imaged along most of the survey track and the inferred crustal thickness is remarkably uniform, the location of these events as being within the MTZ is well constrained. We provide evidence that the imaged events are true subcrustal reflections and discuss why imaging the structure of thick MTZs is challenging when both dunite - gabbro and dunite - gabbro-melt interfaces are strong reflectors of acoustic energy. We also discuss mechanisms for the emplacement of gabbro sills within the dunites

  3. Nature and melting processes of the lithosphere beneath the North-East Qiangqtang terrane, Central Tibet, during Eocene times.

    NASA Astrophysics Data System (ADS)

    Goussin, Fanny; Guillot, Stéphane; Schulmann, Karel; Cordier, Carole; Oliot, Emilien; Replumaz, Anne; Roperch, Pierrick; Dupont-Nivet, Guillaume

    2016-04-01

    pyroxene xenocrysts, suggest that enrichment occurred at the source by metasomatism of the lithospheric mantle. Further work will precise which mechanisms could have accounted for such a metasomatism of the mantle beneath the Northern Qiangtang terrane during Eocene, and whether the lower crust had an autochtonous or allochtonous nature.

  4. Observational Strategy of ACROSS towards the Time-evolving Natures in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Kumazawa, M.; Fujii, N.; Kasahara, J.

    2005-12-01

    ACROSS (Accurately Controlled, Routinely Operated Signal System) is aiming at the detection of very small changes in physical states in the lithosphere, particularly for the focal region of the anticipated huge earthquakes as demanded socially. Our technical challenge is to device an ideal methodology to enable us to acquire the ideal observation data towards the real understanding of the EarthOs interiors even under the inherent noise and physical limitations. We need light to illuminate the dark EarthOs interiors, eyes to observe them and a brain to interpret the result: The light should be designed well to be really coherent, the eyes with high fidelity should be accurately synchronized to the light transmission and the brain should be smart enough to evolve by itself. In order for the whole system to be robust against noise, we have to devise all that can be done. In addition, a significant demand is imposed onto us; non-destructiveness against our environment. The recent progress of technology makes it possible what was impossible several years, so that we try to find out the ideal way to go. We have spent about 10 years for developmental works, which started a moment before the disastrous Kobe earthquake of 1995. Now we believe that the background theory has been known in addition to some of the basic technology elements, whereas the user-friendly hardware and other auxiliary tools including practical theory and software have not been acquired yet. The examples of the field observation have started to accumulate for demonstration as reported by companion papers. The data acquired by ACROSS in seismology is not seismogram but tensor transfer function (Green function) in frequency domain. The data carry substantially new information with high quality and rigorous estimate of reliability. The availability of ACROSS would change the strategy for underground study in the coming years. We would like to call for your attention and discussion to the next way to go

  5. Automated radioxenon monitoring for the comprehensive nuclear-test-ban treaty in two distinctive locations: Ottawa and Tahiti.

    PubMed

    Stocki, T J; Blanchard, X; D'Amours, R; Ungar, R K; Fontaine, J P; Sohier, M; Bean, M; Taffary, T; Racine, J; Tracy, B L; Brachet, G; Jean, M; Meyerhof, D

    2005-01-01

    In preparation for verification of the Comprehensive Nuclear-Test-Ban-Treaty, automated radioxenon monitoring is performed in two distinctive environments: Ottawa and Tahiti. These sites are monitored with SPALAX (Systeme de Prelevement d'air Automatique en Ligne avec l'Analyse des radioXenons) technology, which automatically extracts radioxenon from the atmosphere and measures the activity concentrations of (131m,133m,133,135)Xe. The resulting isotopic concentrations can be useful to discern nuclear explosions from nuclear industry xenon emissions. Ambient radon background, which may adversely impact analyser sensitivity, is discussed. Upper concentration limits are reported for the apparently radioxenon free Tahiti environment. Ottawa has a complex radioxenon background due to proximity to nuclear reactors and medical isotope facilities. Meteorological models suggest that, depending on the wind direction, the radioxenon detected in Ottawa can be characteristic of the normal radioxenon background in the Eastern United States, Europe, and Japan or distinctive due to medical isotope production.

  6. Lithospheric processes

    SciTech Connect

    Baldridge, W.

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  7. The international lithosphere program

    NASA Astrophysics Data System (ADS)

    Flinn, Edward A.

    The International Lithosphere Program is a new international interdisciplinary research program in the solid earth sciences that has been established by the International Council of Scientific Unions (ICSU) at the joint request of the International Union of Geodesy and Geophysics (IUGG) and the International Union of Geological Sciences (IUGS). Its goal is a better understanding of the development of the earth, particularly those aspects upon which human society depends for its well-being.The International Lithosphere Program (ILP) is a natural sequel to a series of international cooperative projects in the geosciences that began with the International Geophysical Year in 1957-58 and continued with the Upper Mantle Project in the 1960's and the International Geodynamics Project (IGP) in the 1970's. In 1977, IUGG and IUGS established an inter-union task group to consider the possibility of a successor to the IGP for the 1980's. The task group, under cochairmen Carl Kisslinger (Cooperative Institute for Research in Environmental Sciences, University of Colorado), foreign secretary of the American Geophysical Union, and J. Henning Illies (Geophysical Institute, University of Karlsruhe, Federal Republic of Germany), invited suggestions and comments from the two unions and the national committees in the member countries. Their report, which was completed late in 1978, proposed a new project on the dynamics, origin, and evolution of the lithosphere. This proposal was approved by the IUGS Executive Committee in December 1979 and by the IUGS Council in June 1980. An inter-union steering committee, established in 1979 under the joint chairmanship of Kisslinger and Illies, developed the organizational framework and constitution of the new program. These were approved by resolution of the ICSU Governing Board in September 1980, and the Inter-Union Commission on the Lithosphere (ICL) was established to implement the program. National members of ICSU were urged to establish

  8. Improved β-γ Coincidence Detector For Radioxenon Detection

    SciTech Connect

    Cooper, Matthew W; Carman, April J; Hayes, James C; Heimbigner, Tom R; Hubbard, Charles W; Litke, Kevin E; McIntyre, Justin I; Morris, Scott J; Ripplinger, Michael D; Suarez, Reynold

    2005-08-31

    The Automated Radio-xenon Analyzer/Sampler (ARSA), built by Pacific Northwest National Laboratory (PNNL), can collect and detect several radioxenon isotopes. ARSA is very sensitive to 133Xe, 131mXe, 133mXe and 135Xe due to the compact high efficiency coincidence detector it uses. For this reason it is an excellent treaty monitoring and environmental sampling device. Although the system is shown to be both robust and reliable, based on several field tests, it is also complex due to a detailed photomultiplier tube gain matching regime. This complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint. To reduce these issues a simplified coincident detector has been developed. A comparison of three different well detectors has been completed. In addition, a new plastic scintillator gas cell was constructed. The new simplified detector system has been demonstrated to equal or better performance compared with the original ARSA design in spectral resolution and efficiency and significantly easier to setup and calibrate.

  9. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    SciTech Connect

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  10. Environmental characterisation of a major radioxenon source in Europe

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Becker, A.; Camps, J.; Paquet, N.; Sonck, M.; Taffary, T.; van der Meer, K.; Verboomen, B.; Zähringer, M.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon has been studied. It was recently shown that radiopharmaceutical facilities (RPF) have a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily International Monitoring System (IMS) noble gas measurements around the globe are influenced from such anthropogenic sources that could hide relevant radioxenon signals. To distinguish a nuclear explosion from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no high-sensitive measurements in and close to radiopharmaceutical facilities have ever been performed. During the summer of 2008, a three week field campaign was carried out in the region around the Belgian radiopharmaceutical facility IRE in Fleurus, the world third largest one. The scope was to obtain the activity concentration of the releases and the isotopic composition. Two 6-hour noble gas measurements, using mobile SAUNA sampling equipment were collected each day at different distances from the facility (1 - 100 km). The sampling locations were guided by atmospheric dispersion model results. Three samples from the stack itself were also collected. All 38 samples were shipped after collection to and measured with a SAUNA at the laboratory in Stockholm, Sweden. The environmental concentrations of 133Xe were measured and found to be in the range between 0.7 - 4 105 mBq/m3. Nine samples contained all four CTBT relevant radioxenon isotopes. The concentrations of the stack spike samples were in the range 2 109 - 4 1010 mBq/m3. This corresponds to a daily release of around 1 TBq. This is

  11. Evaluating the effects of stress-driven segregation, strain and reaction history, and intrinsic rock properties on melt transport and rock rheology in the naturally deformed lithosphere

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Tikoff, B.

    2012-12-01

    The segregation, migration, and extraction of melt - and the emplacement and assembly of the melts as plutonic systems - are major controls on mass and heat transfer in the lithosphere. The distribution of partial melts at the grain scale, and partially molten rocks at larger spatial scales, exerts a profound influence on rock rheology, and is of significance for melt segregation, dynamic weakening, and strain localization at a variety of lithospheric levels. Evaluating the rheological effects of melt in the lithosphere requires insight into the relative effects of stress-driven segregation, strain and reaction history, and intrinsic rock properties of naturally deformed lithospheric sections. Melt segregation and distribution are dynamically linked at a variety of spatial scales to relative motion between the melt and solid phase in deforming partially molten rocks, which gives rise to an evolving melt topology and porosity-permeability structure. The extraction of melt from grain boundaries requires connectivity into a channelized migration network or through structural fabrics that allow for the horizontal and vertical transfer of melt in the crust, compelling examples of which have been demonstrated in migmatite-granite complexes in the crust, dike and vein networks in the crust and mantle, and for reactive melt migration pathways in the upper mantle. Numerical models and experimental rock deformation studies have provided important insights into the mechanisms of melt segregation, geometric characteristics of channelized melt migration networks, and the rheological consequences of melt mobilization. However, field-based and microstructural investigations of exhumed lithospheric sections remain critical for evaluating relationships between deformation and melt flow processes at geologically relevant scales, and under natural deformation conditions. For example, field-based studies in the Twin Sisters ultramafic complex (Washington State) document melt migration

  12. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  13. Nature of the seismic lithosphere-asthenosphere boundary within normal oceanic mantle from high-resolution receiver functions

    NASA Astrophysics Data System (ADS)

    Olugboji, Tolulope Morayo; Park, Jeffrey; Karato, Shun-ichiro; Shinohara, Masanao

    2016-04-01

    Receiver function observations in the oceanic upper mantle can test causal mechanisms for the depth, sharpness, and age dependence of the seismic wave speed decrease thought to mark the lithosphere-asthenosphere boundary (LAB). We use a combination of frequency-dependent harmonic decomposition of receiver functions and synthetic forward modeling to provide new seismological constraints on this "seismic LAB" from 17 ocean-bottom stations and 2 borehole stations in the Philippine Sea and northwest Pacific Ocean. Underneath young oceanic crust, the seismic LAB depth follows the ˜1300 K isotherm but a lower isotherm (˜1000 K) is suggested in the Daito ridge, the Izu-Bonin-Mariana trench, and the northern Shikoku basin. Underneath old oceanic crust, the seismic LAB lies at a constant depth ˜70 km. The age dependence of the seismic LAB depth is consistent with either a transition to partial-melt conditions or a subsolidus rheological change as the causative factor. The age dependence of interface sharpness provides critical information to distinguish these two models. Underneath young oceanic crust, the velocity gradient is gradational, while for old oceanic crust, a sharper velocity gradient is suggested by the receiver functions. This behavior is consistent with the prediction of the subsolidus model invoking anelastic relaxation mediated by temperature and water content, but is not readily explained by a partial-melt model. The Ps conversions display negligible two-lobed or four-lobed back azimuth dependence in harmonic stacks, suggesting that a sharp change in azimuthal anisotropy with depth is not responsible for them. We conclude that these ocean-bottom observations indicate a subsolidus elastically accommodated grain-boundary sliding (EAGBS) model for the seismic LAB. Because EAGBS does not facilitate long-term ductile deformation, the seismic LAB may not coincide with the conventional transition from lithosphere to asthenosphere corresponding to a change in

  14. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  15. Field test of the PNNL Automated Radioxenon Sampler/Analyzer (ARSA)

    SciTech Connect

    Lagomarsino, R.J.; Ku, E.; Latner, N.; Sanderson, C.G.

    1998-07-01

    As part of the requirements of the Comprehensive Test Ban Treaty (CTBT), the Automated Radioxenon/Sampler Analyzer (ARSA) was designed and engineered by the Pacific Northwest National Laboratory (PNNL). The instrument is to provide near real-time detection and measurement of the radioxenons released into the atmosphere after a nuclear test. Forty-six field tests, designed to determine the performance of the ARSA prototype under simulated field conditions, were conducted at EML from March to December 1997. This final report contains detailed results of the tests with recommendations for improvements in instrument performance.

  16. Application of thermodynamic modelling to natural mantle xenoliths: examples of density variations and pressure-temperature evolution of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Ziberna, L.; Klemme, S.

    2016-02-01

    In this paper, we show how the results of phase equilibria calculations in different mantle compositions can be reconciled with the evidence from natural mantle samples. We present data on the response of bulk rock density to pressure (P), temperature (T) and compositional changes in the lithospheric mantle and obtain constraints on the P-T evolution recorded by mantle xenoliths. To do this, we examine the mantle xenolith suite from the Quaternary alkali basalts of Pali-Aike, Patagonia, using phase equilibria calculation in six representative compositions. The calculations were done subsolidus and in volatile-free conditions. Our results show that the density change related to the spinel peridotite to garnet peridotite transition is not sharp and strongly depends on the bulk composition. In a depleted mantle composition, this transition is not reflected in the density profile, while in a fertile mantle it leads to a relative increase in density with respect to more depleted compositions. In mantle sections characterized by hot geothermal gradients (~70 mW/m2), the spinel-garnet transition may overlap with the lithosphere-asthenosphere boundary. Phase equilibria calculations in peridotitic compositions representative of the Pali-Aike mantle were also used to constrain the origin and evolution of the mantle xenoliths. Our results indicate that the mineral modes and compositions, and the mineral zonation reported for the low-temperature peridotites (spinel and spinel + garnet harzburgites and lherzolites), are linked to a cooling event in the mantle which occurred long before the eruption of the host basalts. In addition, our phase equilibria calculations show that kelyphitic rims around garnets, as those observed in the high-temperature garnet peridotites from Pali-Aike, can be explained simply by decompression and do not require additional metasomatic fluid or melt.

  17. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  18. Rifting of the Tyrrhenian Basin: A Natural Laboratory to Study Extension of Continental Lithosphere and Conjugate Rifted Margin Formation

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Sallares, V.; Grevemeyer, I.; Zitellini, N.; Vendrell, M. G.; Prada, M.; Moeller, S.; Party, M. C.; Medoc Cruise Party

    2011-12-01

    The Tyrrhenian basin has been created by extension of continental lithosphere above a retreating slab during the Neogene. The basin is not currently extending, but its structure preserves information of the time evolution of the rifting process. The basin opened from north to south with different amounts of extension. The northern region stopped opening after relatively low extension. The amount of extension increases southwards to a region where full crustal separation produced mantle exhumation. The final structure displays two conjugate margins with an asymmetric structure. We present results from a two-vessel seismic experiment that took place in spring 2010. The cruise was carried out with the Spanish R/V Sarmiento de Gamboa (SdG) and the Italian R/V Urania in a first leg. The ships collected 5 E-W trending wide-angle seismic (WAS) profiles across the entire basin using 17 Ocean Bottom Seismometers and 25 Ocean Bottom Hydrophones and a 4800 c.i. G-II gun array. During the second leg the R/V SdG collected 16 Multichannel Seismic Reflection (MCS) profiles using a 3.75 km-long streamer and a 3000 c.i. G-II gun array. MCS profiles were acquired coincident with the WAS profiles, and a number of additional lines concentrated in the central region of the basin where mantle exhumation took place. The seismic data covers the region of the basin that experienced different amount of extension from north to south. In this presentation we compare observations from different transects to study the evolution of the processes of continental margin formation by trading space (different areas with different extension factors) for time (evolution of extension). Each transect provides the tectonic structure, the geometry of sedimentary deposits, and seismic velocity distribution. This information allows to interpret the mechanisms of deformation and to study the symmetry-asymmetry structure of the conjugated margins, and thus of the processes involved in their formation. The

  19. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  20. Gain Calibration of a Beta/Gamma Coincidence Spectrometer for Automated Radioxenon Analysis

    SciTech Connect

    Reeder, Paul L.; Bowyer, Ted W.; McIntyre, Justin I.; Pitts, W. K.; Ringbom, Anders; Johansson, Cecilia

    2004-04-01

    Abstract Detection and measurement of atmospheric radioxenon is an important component of international monitoring systems for nuclear weapons testing. Monitoring stations separate xenon from air and perform isotopic analysis of the radioxenon. In one such radioxenon measurement scheme, the isotopes of interest are identified by coincident spectroscopy of electrons and photons in a bg coincidence spectrometer (BGCS). The b spectrometer is a plastic scintillator, produced as a cylindrical cell containing the separated xenon sample. This cell is surrounded by the NaI(Tl) g spectrometer. We report here the development of a calibration process for the BGCS suitable for use in remote sampling systems. This procedure is based upon g-ray Compton scattering, resulting in a true coincident signal in both detectors, generation of electrons over a wide energy range that matches the energy distribution of electrons from radioxenon decay, and a relative insensitivity to source location. Besides gain calibration, this procedure determines the resolution of the b detector as a function of energy.

  1. Metastable Radioxenon Verification Laboratory (MRVL) Year-End Report

    SciTech Connect

    Cooper, Matthew W.; Hayes, James C.; Lidey, Lance S.

    2014-11-07

    This is the year end report that is due to the client. The MRVL system is designed to measure multiple radioxenon isotopes (135Xe, 133Xe, 133mXe and 133mXe) simultaneously. The system has 12 channels to load samples and make nuclear measurements. Although the MRVL system has demonstrated excellent stability in measurements of Xe-133 and Xe-135 over the year of evaluation prior to delivery, there has been concern about system stability over measurements performed on samples with orders of magnitude different radioactivity, and samples containing multiple isotopes. To address these concerns, a series of evaluation test have been performed at the end-user laboratory. The evaluation was performed in two separate phases. Phase 1 made measurements on isotopically pure Xe-133 from high radioactivity down to the system background levels of activity, addressing the potential count rate dependencies when activities change from extreme high to very low. The second phase performed measurements on samples containing multiple isotopes (Xe-135, Xe-133 and Xe-133m), and addressed concerns about the dependence of isotopic concentrations on the presence of additional isotopes. The MRVL showed a concentration dependence on the Xe-133 due to the amount of Xe-133m that was in the sample. The dependency is due to the decay of Xe-133m into Xe-133. This document focuses on the second phase and will address the analysis used to account for ingrowth of Xe-133 from Xe-133m.

  2. Lithospheric dynamics near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1992-01-01

    The progress report on research conducted between 15 Mar. - 14 Sep. 1992 is presented. The focus of the research during the first grant year has been on several problems broadly related to the nature and dynamics of time-dependent deformation and stress along major seismic zones, with an emphasis on western North America but with additional work on seismic zones in oceanic lithosphere as well. The principal findings of our research to date are described in the accompanying papers and abstract. Topics covered include: (1) Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting; (2) Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986-1989; (3) present-day crustal deformation in the Salton Trough, southern California; (4) oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the lithosphere; and (5) crustal strain and the 1992 Mojave Desert earthquakes.

  3. Arctic lithosphere - A review

    NASA Astrophysics Data System (ADS)

    Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X.

    2014-07-01

    This article reviews the characteristics of Arctic lithosphere and the principal tectonic events which have shaped it. The current state-of-knowledge associated with the crust, crustal-scale discontinuities, and their ages, as well as knowledge of the lithosphere as a whole from geophysical data, permits the division of Arctic lithosphere into discrete domains. Arctic continental lithosphere is diverse in age, composition, and structure. It has been affected by at least two periods of thermal overprinting associated with large volumes of magmatism, once in the Permo-Triassic and again in the Aptian. In addition, it was attenuated as the result of at least five phases of rifting (in the late Devonian-early Carboniferous, Permo-Triassic, Jurassic, Early Cretaceous, and Late Cretaceous-Cenozoic). Older phases of consolidation are associated with continental lithosphere and occurred through a series of continent-continent collisions in the Paleozoic. Jurassic and Cretaceous extensional phases are related to the dismembering of Pangea and Eurasia, and were concentrated in the Norway-Greenland and Canadian-Alaskan Arctic regions. Large areas of submarine, hyperextended continental (?) lithosphere developed in parts of the Amerasia Basin. After continental breakup and the accretion of new oceanic lithosphere, the Eurasia and Canada basins were formed.

  4. Comparison of Phoswich and ARSA-type detectors for Radioxenon Measurements

    SciTech Connect

    Ward, Rebecca; Biegalski, Steven R.; Haas, Derek A.; Hennig, Wolfgang

    2009-12-01

    The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect beta-gamma coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type beta-gamma coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for beta-gamma coincidence of radioxenon was evaluated.

  5. Categorisation of nuclear explosions from legitimate radioxenon sources with atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Schoeppner, M.; Postelt, F.; Kalinowski, M.; Plastino, W.

    2012-04-01

    Radioxenon is produced during nuclear explosions and due to its high fission ratio during the reaction and its noble gas character the isotopes can be detected remote from the location of the explosion. Therefore it is used by the Comprehensive Nuclear-Test-Ban Organization (CTBTO) as an indicator for the nuclear character of an explosion and is monitored with the International Monitoring System (IMS). The concentration of radioxenon in the air is continuously measured by multiple stations worldwide and is in need of an automatic categorization scheme in order to highlight signals of interest and to sort out signals that can be explained by legitimate sources. The dispersion and transport of radioxenon emissions through the atmosphere can be simulated with atmospheric transport modelling. Many legitimate sources of radioxenon exist: Nuclear power plants and isotope production facilities are mainly responsible for the worldwide background. The characterisation of this background is an important prerequisite to discriminate nuclear explosion signals against the background. It has been discovered that the few existing isotope production facilities are the major contributors to the background, each with emission strengths in the order of magnitude or more than all nuclear power plants together. Therefore, especially the characterization of these few, but strong, emitters can improve the quality of the signal prediction. Since the location of such an emitter is usually known the source-receptor sensitivity matrices can be utilized together with measured radioxenon concentrations from IMS stations in order to deduct information about the time dependent emissions from the strong emitter. An automatic method to determine an approximated, time dependent source term of an emitter with known location has been developed and is presented. This is a potentially valid tool for the categorization of radioxenon samples, because it can be used to assess whether the measured

  6. Verifying the Comprehensive Nuclear-Test-Ban Treaty by Radioxenon Monitoring

    SciTech Connect

    Ringbom, Anders

    2005-05-24

    The current status of the ongoing establishment of a verification system for the Comprehensive Nuclear-Test-Ban Treaty using radioxenon detection is discussed. As an example of equipment used in this application the newly developed fully automatic noble gas sampling and detection system SAUNA is described, and data collected with this system are discussed. It is concluded that the most important remaining scientific challenges in the field concern event categorization and meteorological backtracking.

  7. Verifying the Comprehensive Nuclear-Test-Ban Treaty by Radioxenon Monitoring

    NASA Astrophysics Data System (ADS)

    Ringbom, Anders

    2005-05-01

    The current status of the ongoing establishment of a verification system for the Comprehensive Nuclear-Test-Ban Treaty using radioxenon detection is discussed. As an example of equipment used in this application the newly developed fully automatic noble gas sampling and detection system SAUNA is described, and data collected with this system are discussed. It is concluded that the most important remaining scientific challenges in the field concern event categorization and meteorological backtracking.

  8. Seismic wave propagation in the MELT Experiment area: Probing the nature of intraplate earthquakes, lithospheric anisotropy and mantle upwelling in the vicinity of the southern East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Hung, Shu-Huei

    This thesis conducts comprehensive investigations of on-going tectonic processes from observations and modeling of seismic waves propagating through the MELT Experiment area across the southern East Pacific Rise (EPR). In Chapter One, a moment-tensor inversion procedure is developed to derive the source mechanism of a sequence of teleseismic earthquakes about 300 km west of the 18sp°S EPR. All the determined events are nearly pure normal faults striking in a variety of directions with significant non-double-couple components, which are likely due to simultaneously slip on randomly-oriented fault planes. The summed moment tensor indicates no preferred orientation of horizontal extension with maximum vertical compression, consistent with the release of thermal stresses in the cooling oceanic seafloor. In Chapter Two, a parallel multi-domain pseudospectral method is developed for simulation of seismic wave propagation in generalized inhomogeneous and anisotropic media. We illustrate the variabilities in wavefront geometry and waveform complexity for different anisotropic symmetries present in the Earth. In Chapter Three, we measure shear wave splitting parameters to constrain lithospheric anisotropy in the vicinity of the earthquake swarm. Most of the resolving fast polarization directions are subparallel to the plate motion vector, attributable to crystal fabrics formed by shearing mantle flow. Some of them are scattered nearly orthogonal to the spreading direction, associated with crack-induced crustal anisotropy. Waveform modeling is employed to test the hypothesis of double-layered anisotropy. The models reconstruct the observed splitting pattern and demonstrate that shear waves split in nonuniform anisotropic layers display frequency-dependent behavior. In Chapter Four, we combine observed and synthetic waveforms and travel-time delays recorded in the MELT seismometer array to characterize the nature of mantle upwelling beneath the EPR. The similar waveforms and

  9. Nature of the lithospheric mantle beneath the Arabian Shield and genesis of Al-spinel micropods: Evidence from the mantle xenoliths of Harrat Kishb, Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed H.; Moghazi, Abdel Kader M.; Moufti, Mohamed R.; Dawood, Yehia H.; Ali, Kamal A.

    2016-01-01

    The Harrat Kishb area of western Saudi Arabia is part of the Cenozoic volcanic fields in the western margin of the Arabian Shield. Numerous fresh ultramafic xenoliths are entrained in the basanite lava of Harrat Kishb, providing an opportunity to study the nature and petrogenetic processes involved in the evolution of the lithospheric mantle beneath the Arabian Shield. Based on the petrological characteristics and mineralogical compositions, the majority of the mantle xenoliths (~ 92%) are peridotites (lherzolites and pyroxene-bearing harzburgites); the remaining xenoliths (~ 8%) are unusual spinel-rich wehrlites containing black Al-spinel micropods. The two types of mantle xenoliths display magmatic protogranular texture. The peridotite xenoliths have high bulk-rock Mg#, high forsterite (Fo90-Fo92) and NiO (0.24-0.46 wt.%) contents of olivine, high clinopyroxene Mg# (0.91-0.93), variable spinel Cr# (0.10-0.49, atomic ratio), and approximately flat chondrite-normalized REE patterns. These features indicate that the peridotite xenoliths represent residues after variable degrees of melt extraction from fertile mantle. The estimated P (9-16 kbar) and T (877-1227 °C) as well as the oxidation state (∆logfO2 = - 3.38 to - 0.22) under which these peridotite xenoliths originated are consistent with formation conditions similar to most sub-arc abyssal-type peridotites worldwide. The spinel-rich wehrlite xenoliths have an unusual amount (~ 30 vol.%) of Al-spinel as peculiar micropods with very minor Cr2O3 content (< 1 wt.%). Olivines of the spinel-rich wehrlites have low-average Fo (Fo81) and NiO (0.18 wt.%) contents, low-average cpx Mg# (0.79), high average cpx Al2O3 content (8.46 wt.%), and very low-average spinel Cr# (0.01). These features characterize early mantle cumulates from a picritic melt fraction produced by low degrees of partial melting of a garnet-bearing mantle source. The relatively high Na2O and Al2O3 contents of cpx suggest that the spinel-rich wehrlites

  10. Evaluation of environmental radioxenon isotopical signals from a singular large source emitter

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Bowyer, T. W.; Aldener, M.; Becker, A.; Cooper, M. W.; Elmgren, K.; Faanhof, A.; Hayes, J. C.; Hosticka, B.; Lidey, L. S.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon is been studied near areas that could be affected by man-made sources. It was recently shown that radiopharmaceutical facilities (RPF) make a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily IMS noble gas measurements around the globe are influenced from such anthropogenic sources that could mask radioxenon signals from a nuclear explosion. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no measurements close to radiopharmaceutical facilities have ever been performed. The world's fourth largest radiopharmaceutical facility, NTP Radioisotopes Ltd, is located in Pelindaba, South Africa. Other than a small nuclear power plant, located 1300 km southwest, near Cape Town and a small research reactor in the DR of Congo, located 2700 km northwest, this is the only facility that is known to emit any radioxenon on the African continent south of the Equator. This source is likely very dominant with respect to xenon emission. This makes it a point source, which is a unique situation, as all other worldwide large radiopharmaceutical facilities are situated in regions surrounded by many other nuclear facilities. Between 10 November and 22 December 2008, radioxenon was measured continuously with a radioactive xenon measurement system, at the North-West University, Mafikeng, South Africa, which is situated 250 km northwest of Pelindaba. Fifty-six 12-hour samples were measured with a beta-gamma coincidence detector, of which 55 contained 133Xe with

  11. Radioxenon Production and Transport from an Underground Nuclear Detonation to Ground Surface

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.; Hao, Yue

    2015-02-01

    Radioxenon isotopes are considered as possible indicators for detecting and discriminating underground nuclear explosions. To monitor and sample the release of radioxenon isotopes, both independent and chain-reaction yields need to be considered together with multiphase transport in geological systems from the detonation point to the ground surface. For the sake of simplicity, modeling of radioxenon isotopic radioactivities has typically been focused either on chain reactions in a batch reactor without considering multiphase transport or on radionuclide transport with simplified reactions. Although numerical methods are available for integrating coupled differential equations of complex decay networks, the stiffness of ordinary differential equations due to greatly differing decay rates may require substantial additional effort to obtain solutions for the fully coupled system. For this reason, closed-form solutions for sequential reactions and numerical solutions for multiparent converging and multidaughter branching reactions were previously developed and used to simulate xenon isotopic radioactivities in the batch reactor mode. In this paper, we develop a fully coupled numerical model, which involves tracking 24 components (i.e., 22 radionuclide components plus air and water) in two phases to enhance model predictability of simultaneously simulating xenon isotopic transport and fully coupled chain reactions. To validate the numerical model and verify the corresponding computer code, we derived closed-form solutions for first-order xenon reactions in a batch reactor mode and for single-gas phase transport coupled with the xenon reactions in a one-dimensional column. Finally, cylindrical 3-D simulations of two-phase flow within a dual permeability fracture-matrix medium, simulating the geohydrologic regime of an underground nuclear explosion, indicate the existence of both a strong temporal and spatial dependence of xenon isotopic ratios sampled at the surface. In

  12. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  13. Nature and evolution of the lithospheric mantle beneath the eastern Central Asian Orogenic Belt: Constraints from peridotite xenoliths in the central part of the Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Pan, Shaokui; Zheng, Jianping; Griffin, W. L.; Xu, Yixian; Li, Xiyao

    2015-12-01

    Our knowledge of the lithospheric mantle beneath the Central Asian Orogenic Belt is still sparse. Petrologic, major- and trace-element studies on the peridotite xenoliths from the Cenozoic volcanic fields in the Aershan area, the central part of the Great Xing'an Range, NE China, provide insights into the nature and evolution of the lithospheric mantle beneath the eastern part of the belt. According to the REE patterns of clinopyroxene, these peridotites can be divided into three groups which show clear differences in microstructure, geochemistry and equilibration temperature. Group 1 xenoliths (LREE-depleted patterns of Cpx) are lherzolites, with protogranular microstructure and high modal Cpx (8-13 wt.%), low Cr# in spinel (< 21.1), high whole-rock CaO and Al2O3 contents and estimated temperatures of 834-849 °C. Group 2 xenoliths (flattened REE patterns of Cpx) are harzburgites, with microstructures transitional between mosaic and tabular and low Cpx content (2-3 wt.%); they have high Cr# in spinel (41.1-49.6), low whole-rock CaO and Al2O3 levels and equilibration temperatures of 1183-1244 °C. Group 1 peridotites represent the newly accreted fertile mantle which was not significantly affected by post-melting enrichment; while Group 2 xenoliths may be older relics of moderately refractory mantle that underwent H2O bearing silicate-melt metasomatism (Ti/Eu > 3300, (La/Yb)N < 1 and occurrence of amphibole). Group 3 peridotites (convex-up REE patterns of Cpx) comprise both lherzolite and harzburgite; they have porphyroclastic microstructures, and show a broad range of Cpx modes (0-7 wt.%), spinel-Cr# (26.5-71.1), bulk rock CaO and Al2O3 contents and temperatures (941-1239 °C). The high TiO2 contents (up to 1.42 wt.%) in spinels of Group 3 imply the involvement of melt/rock reactions. We suggest that the upwelling of asthenospheric material played a key role in modifying the lithospheric mantle underneath the eastern Central Asian Orogenic Belt, and resulted in

  14. Machine learning for radioxenon event classification for the Comprehensive Nuclear-Test-Ban Treaty.

    PubMed

    Stocki, Trevor J; Li, Guichong; Japkowicz, Nathalie; Ungar, R Kurt

    2010-01-01

    A method of weapon detection for the Comprehensive nuclear-Test-Ban-Treaty (CTBT) consists of monitoring the amount of radioxenon in the atmosphere by measuring and sampling the activity concentration of (131m)Xe, (133)Xe, (133m)Xe, and (135)Xe by radionuclide monitoring. Several explosion samples were simulated based on real data since the measured data of this type is quite rare. These data sets consisted of different circumstances of a nuclear explosion, and are used as training data sets to establish an effective classification model employing state-of-the-art technologies in machine learning. A study was conducted involving classic induction algorithms in machine learning including Naïve Bayes, Neural Networks, Decision Trees, k-Nearest Neighbors, and Support Vector Machines, that revealed that they can successfully be used in this practical application. In particular, our studies show that many induction algorithms in machine learning outperform a simple linear discriminator when a signal is found in a high radioxenon background environment. PMID:19811861

  15. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    SciTech Connect

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-13

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA’s complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  16. Low-energy degassing mechanisms for a fluid-based radioxenon detection system

    SciTech Connect

    Russ, W.R.; Stuenkel, D.O.; Valentine, J.D.; Gross, K.C.

    1998-09-01

    A method to concentrate heavy noble gases from the atmosphere using certain organic fluids is being developed. To use this technique in a system to monitor the atmosphere for important noble gas fission products (Xe-131, Xe-131m, Xe-133, Xe-133m, and Xe-135) generated by nuclear testing, the radionuclides captured in the fluid must either be detected in the fluid or degassed. This study presents experimental results for a number of possible degassing methods, including heating bubbling with a purge gas, ultrasonic agitation, vacuum, and combinations thereof. Methods were evaluated for energy and time requirements and dilution of the degas product. Initial experiments indicate that in addition to overcoming the standard desorption process dictated by partial pressures per Henry`s Law, a capture mechanism must also be overcome to degas. Some type of agitation, thermal or mechanical, can be used to release weakly trapped gas atoms from the fluid, while diffusional mass transfer can be enhanced through entrainment with a purge gas or use of a vacuum. Ultrasonic agitation of a thin film in a strong vacuum has been shown to be the most effective method of those tested. Implementation of an efficient degas system, along with an absorption system and radioxenon detector could result in an ultrasensitive fluid-based radioxenon measurement system that is more portable, less expensive, and simpler than charcoal-based systems which use cryogenic techniques.

  17. SEASAT observations of lithospheric flexure

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.

    1984-01-01

    Models of lithospheric flexure were tested on SEASAT altimetric observations of the geoid over Outer Rises. These altimeter data were found to provide significant new information about the strength of the oceanic lithosphere. Among the significant results derived from altimeter data is confirmation of the proposition that the effective elastic thickness, T sub e, of the lithosphere increases with age in approximate accord with the relation T sub E approximately equals C times one half the age. SEASAT altimeter data over Outer Rises provide an important constraint on mechanical models of the oceanic lithosphere. These data are quite consistent with an experimentally predicted mechanical model of the lithosphere which indicates that this model may be useful in other geodynamic investigations.

  18. NSF Continental Lithosphere Program

    NASA Astrophysics Data System (ADS)

    Mayhew, Michael; MacGregor, Ian

    For several months the Continental Lithosphere Program (CL) of the National Science Foundation has been subject to a major review. The process was stimulated by a series of budget setbacks over the past few years. Although Presidential budget requests have been very favorable for the Division of Earth Sciences (EAR), and there has been strong support within the National Science Foundation and Congress, actual appropriations by Congress have been disappointing.In each year the final allocation to EAR has been affected by external factors beyond the control of the Foundation. In the four fiscal years from 1986 through 1989 the factors include reductions tied to the Gramm-Rudman deficit reduction measures, congressional reaction to the October 1987 stock market crash, and two years of protection for the Ocean Sciences part of the NSF budget that was paid for from the budgets of the Atmospheric and Earth Sciences divisions.

  19. Lithospheric controls on Earth evolution

    NASA Astrophysics Data System (ADS)

    Mole, D. R.; Fiorentini, M.; Thebaud, N.; McCuaig, C.; Cassidy, K.; Kirkland, C.; Belousova, E.

    2011-12-01

    The Archean eon represents an important time in the evolution of our planet, during which tectonic activity was vigorous and the rate of crustal recycling extremely energetic [Hawkesworth and Kemp, 2006]. Although apparently inhospitable to complex forms of life, the Archean Earth was shaped by geological processes, which prepared the ground for the establishment of a complex biosphere-hydrosphere-atmosphere at ~2.0 Ga [Kump and Barley, 2007]. Therefore, a more comprehensive understanding of Archean cratonic architecture may provide crucial insights into the geodynamic and ecological evolution of our planet. Spatially distributed felsic crustal rocks (granitoids/volcanics) from the Yilgarn Craton of Western Australia were analysed for U-Pb zircon geochronology, Lu-Hf zircon and Sm-Nd whole-rock isotopes. Using this data, a number of 'time-slices' (isotopic contour maps constrained by U-Pb zircon age) were plotted. The isotope maps show a network of lithospheric blocks of varying age and genesis which represent the intra-cratonic architecture of the Yilgarn Craton. Within this architecture, there are multiple Earth systems which vary in space and time. The major systems under first-order control appear to be heat flux, magmatism, sedimentary environment and isostacy. Whether an area is juvenile (eHf>0) or evolved (eHf<0) indicates the level of mantle input and by proxy heat input into the crust. In turn, isotopic nature can be used as a proxy for lithospheric thickness, with evolved blocks having more extensive vertical accretion and addition of plume head restites than juvenile regions. These thickness contrasts are believed to control the localisation of plume melts and subsequent volcanism into shallower, juvenile, craton-margins [Begg et al., 2010]. Thickness variations also control the level of isostatic equilibrium of a 'block' relative to the geoid, with implications for emergence, topography and subsequent depositional and ecological environments. Spatial

  20. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  1. Lithospheric Architecture Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2015-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 􏰂350 km thick but is thinner (􏰂200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  2. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  3. Mid-Lithospheric boundary below oceans from seismic surface waves

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Burgos, Gael; Beucler, Eric; Capdeville, Yann; Mocquet, Antoine

    2014-05-01

    The nature of LithosphereAsthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15300s), we have developed a 3D tomographic model (1st order perturbation theory) of the upper mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, from the changes in orientation of the fast axis of azimuthal anisotropy and from the maximum of the gradient of the radial anisotropy positive anomaly. The LAB depth determinations of the different proxies are consistent for the different oceanic regions. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120-130 km) old ocean lithosphere. LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130-135 km). The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub horizontal profile (70-80 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub horizontal interface (mid-lithospheric boundary) with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the

  4. LAB and other lithospheric discontinuities below Cratons

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough

    2013-04-01

    Cratons are extremely stable continental areas of the Earth's crust, which have been formed and remained largely unchanged since Precambrian. However, their formation and how they survived destruction over billions of years remains a subject of debate. Seismic properties of the cratonic lithosphere reflect its composition and physical state and obtain basic constraints on processes of the formation and evolution of continents. Insight on these issues may be gained by determining the depth and the nature of the Lithosphere-Asthenosphere Boundary (LAB), which is a necessary element of the plate tectonic theory. However, It has proved quite "elusive" beneath the oldest continental areas. What is missing to date is a consensus on the feature that would correspond to the LAB and whether such a feature exists everywhere beneath cratons. The relatively recently developed S receiver function technique employing S-to-P conversions appears promising for detecting the LAB with a sufficiently high resolution and density. A growing number of regional observations obtained from S receiver function studies has detected discontinuities characterized by a significant negative velocity contrast in the upper mantle. However, challenges still remain in detecting the S-to-P conversions from the LAB beneath the Precambrian cratons. Some recent SRF studies observed a deep (> 160 km) negative velocity contrast beneath cratons and interpreted it as the LAB. For example, a deep LAB at about 250 km was reported beneath the Kalahari craton by different authors. Similar results were also obtained beneath some parts of the Canadian shield, East European Craton, Australia, the Arabian Shield and Tanzania craton. In contrast, other SRF studies found no evidence for negative discontinuities at these depths in the North American craton, in Kalahari craton or in Australia. Instead they revealed a very sharp negative velocity gradient at much shallower depth (60-150 km), leading some authors to infer

  5. Lithospheric architecture beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; Darbyshire, Fiona A.

    2015-07-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches ˜350 km thick but is thinner (˜200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the LAB conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  6. Failure strength of icy lithospheres

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1987-01-01

    Lithospheric strengths derived from friction on pre-existing fractures and ductile flow laws show that the tensile strength of intact ice under applicable conditions is actually an order of magnitude stronger than widely assumed. It is demonstrated that this strength is everywhere greater than that required to initiate frictional sliding on pre-existing fractures and faults. Because the tensile strength of intact ice increases markedly with confining pressure, it actually exceeds the frictional strength at all depths. Thus, icy lithospheres will fail by frictional slip along pre-existing fractures at yeild stresses greater than previously assumed rather than opening tensile cracks in intact ice.

  7. Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2011-12-01

    experimental results at lithospheric temperatures. Seamounts and oceanic islands are therefore a 'natural laboratory', we believe, to study lithospheric rheology on both short and long time scales.

  8. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    PubMed

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers. PMID:22995862

  9. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    PubMed

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

  10. Global Seismic Imaging of the Lithosphere Asthenosphere Boundary

    NASA Astrophysics Data System (ADS)

    Tharimena, S.; Rychert, C.; Harmon, N.

    2015-12-01

    The lithosphere asthenosphere boundary (LAB) beneath oceans separates rigid, conductively cooling plates from the underlying warm ductile convecting mantle, characterized by low seismic wave velocities and high attenuation. The depth and nature of the lithosphere asthenosphere boundary is fundamental to our understanding of plate tectonics and mantle convection. Although conductive cooling models establish that oceanic lithosphere cools, thickens and subsides as it ages, this simple realization of the tectonic plates is not well understood. The depth, sharpness, composition and defining mechanism of the LAB remains elusive. Although oceanic lithosphere constitutes the bulk of the tectonic plates, precisely imaging the LAB has proved challenging. Here we use SS precursors from 25 years of seismic data to image and globally map the depth of the LAB across the Pacific, Atlantic and Indian Oceans. The result represents a vast improvement in lateral coverage of discontinuities in comparison to previous results. The depth of the discontinuity varies from 25 to 130 km within an error of ±5 km. We observe a general trend of increasing discontinuity depth with plate age, although some old oceanic lithosphere has shallower discontinuities. Overall, the results are suggestive of two distinct mantle layers.

  11. Circum-Arctic lithospheric transects from onshore to offshore

    NASA Astrophysics Data System (ADS)

    Pease, V.; Coakley, B.; Faleide, J. I.; Jokat, W.; Miller, E. L.; Stephenson, R.; Meisling, K. E.

    2015-12-01

    Understanding the evolution of the lithosphere over time involves the integration and interpretation of geological and geophysical data, combined with good knowledge of the physical processes at work in the lithosphere giving rise to past and present structures. Tectonic activity related to the rifting process created the present-day structure of today's Arctic basins and bathymetric highs, and in the process modified older structures and architecture of the crust and lithosphere. The correlation of circum-Arctic terranes and orogens help to not only reconstruct paleogeography but to also define the role and determine the nature of the lithospheric processes that were active in the complex tectonic evolution of the Arctic. CALE (Circum Arctic Lithosphere Evolution), an international and multidisciplinary effort involving c. 35 geologists and geophysicists from ten different countries working to link the onshore and offshore regions across the circum-Arctic region, is a scientific network in it's last year of a 5-year program. Sedimentary cover and crust to mantle cross-sections from onshore to offshore have been created integrating the latest scientific knowledge and data sets available for the Arctic. The project's principal Arctic transects include: Ellesmere-Canada Basin, Pacific Ocean-Lomonosov Ridge through the Bering Strait, across the Laptev Sea rift to the DeLong Islands, Barents and Kara regions across Timan-Pechora and Taimyr. These sections, the culmination of the CALE project, and their principle findings will be presented for the first time with discussion of outstanding issues yet to be resolved.

  12. Constraints on Composition, Structure and Evolution of the Lithosphere

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek

    2015-05-01

    The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.

  13. Oceanic Lithosphere/Asthenosphere Boundary from surface wave dispersion data

    NASA Astrophysics Data System (ADS)

    Burgos, G.; Montagner, J.; Beucler, E.; Capdeville, Y.; Mocquet, A.

    2013-12-01

    The nature of Lithosphere-Asthenosphere boundary (LAB) is controversial according to different types of observations. Using a massive dataset of surface wave dispersions in a broad frequency range (15-300s), we have developed a 3-D tomographic model (1st order perturbation theory) of the upper-mantle at the global scale. It is used to derive maps of LAB from the resolved elastic parameters. The key effects of shallow layers and anisotropy are taken into account in the inversion process. We investigate LAB distributions primarily below oceans according to three different proxies which corresponds to the base of the lithosphere from the vertically polarized shear velocity variation at depth, the top of the radial anisotropy positive anomaly and from the changes in orientation of the fast axis of azimuthal anisotropy. The LAB depth determinations of the different proxies are basically consistent for each oceanic region. The estimations of the LAB depth based on the shear velocity proxy increase from thin (20 km) lithosphere in the ridges to thick (120--130 km) old ocean lithosphere. The radial anisotropy proxy presents a very fast increase of the LAB depth from the ridges, from 50 km to older ocean where it reaches a remarkable monotonic sub-horizontal profile (70--80 km). LAB depths inferred from azimuthal anisotropy proxy show deeper values for the increasing oceanic lithosphere (130--135 km). The results present two types of pattern of the age of oceanic lithosphere evolution with the LAB depth. The shear velocity and azimuthal anisotropy proxies show age-dependent profiles in agreement with thermal plate models while the LAB based on radial anisotropy is characterized by a shallower depth, defining a sub-horizontal interface with a very small age dependence for all three main oceans (Pacific, Atlantic and Indian). These different patterns raise questions about the nature of the LAB in the oceanic regions, and of the formation of oceanic plates.

  14. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006

    SciTech Connect

    Ringbom, Anders; Elmgren, K.; Lindh, Karin; Peterson, Jenny; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Panisko, Mark E.; Williams, Richard M.

    2009-12-03

    Abstract Following the claimed nuclear test in the Democratic People’s Republic of Korea (DPRK) on October 9, 2006, and a reported seismic event, a mobile system for sampling of atmospheric xenon was transported to the Republic of South Korea (ROK) in an attempt to detect possible emissions of radioxenon in the region from a presumed test. Five samples were collected in the ROK during October 11–14, 2006 near the ROK–DPRK border, and thereafter transported to the Swedish Defense Research Agency (FOI) in Stockholm, Sweden, for analysis. Following the initial measurements, an automatic radioxenon sampling and analysis system was installed at the same location in the ROK, and measurements on the ambient atmospheric radioxenon background in the region were performed during November 2006 to February 2007. The measured radioxenon concentrations strongly indicate that the explosion in October 9, 2006 was a nuclear test. The conclusion is further strengthened by atmospheric transport models. Radioactive xenon measurement was the only independent confirmation that the supposed test was in fact a nuclear explosion and not a conventional (chemical) explosive.

  15. Fossilized Dipping Fabrics in Continental Mantle Lithosphere as Possible Remnants of Stacked Oceanic Paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, V.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2015-12-01

    We have examined seismic anisotropy within the mantle lithosphere of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-wave anisotropy delimit domains of the mantle lithosphere, each of them having a consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics in the mantle lithosphere. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  16. Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup.

    PubMed

    Cagniant, A; Le Petit, G; Gross, P; Douysset, G; Richard-Bressand, H; Fontaine, J-P

    2014-05-01

    The ability to quantify isotopic ratios of 135, 133 m, 133 and 131 m radioxenon is essential for the verification of the Comprehensive Nuclear-Test Ban Treaty (CTBT). In order to improve detection limits, CEA has developed a new on-site setup using photon/electron coincidence (Le Petit et al., 2013. J. Radioanal. Nucl. Chem., DOI : 10.1007/s 10697-013-2525-8.). Alternatively, the electron detection cell equipped with large silicon chips (PIPS) can be used with HPGe detector for laboratory analysis purpose. This setup allows the measurement of β/γ coincidences for the detection of (133)Xe and (135)Xe; and K-shell Conversion Electrons (K-CE)/X-ray coincidences for the detection of (131m)Xe, (133m)Xe and (133)Xe as well. Good energy resolution of 11 keV at 130 keV and low energy threshold of 29 keV for the electron detection were obtained. This provides direct discrimination between K-CE from (133)Xe, (133m)Xe and (131m)Xe. Estimation of Minimum Detectable Activity (MDA) for (131m)Xe is in the order of 1mBq over a 4 day measurement. An analysis of an environmental radioxenon sample using this method is shown. PMID:24332879

  17. Understanding lithospheric stresses in Arctic: constraints and models

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Minakov, Alexander; Lebedeva-Ivanova, Nina; Gaina, Carmen

    2016-04-01

    This pilot project aims to model stress patterns and analyze factors controlling lithospheric stresses in Arctic. The project aims to understand the modern stresses in Arctic as well as to define the ways to test recent hypotheses about Cenozoic evolution of the region. The regions around Lomonosov Ridge and Barents Sea are of particular interest driven by recent acquisition of high-resolution potential field and seismic data. Naturally, the major contributor to the lithospheric stress distribution is the gravitational potential energy (GPE). The study tries to incorporate available geological and geophysical data to build reliable GPE. In particular, we use the recently developed integrated gravity inversion for crustal thickness which incorporates up-to-date compilations of gravity anomalies, bathymetry, and sedimentary thickness. The modelled lithosphere thermal structure assumes a pure shear extension and the ocean age model constrained by global plate kinematics for the last ca. 120 Ma. The results of this approach are juxtaposed with estimates of the density variation inferred from the upper mantle S-wave velocity models based on previous surface wave tomography studies. Although new data and interpretations of the Arctic lithosphere structure become available now, there are areas of low accuracy or even lack of data. To compensate for this, we compare two approaches to constrain GPE: (1) one that directly integrates density of modelled lithosphere and (2) one that uses geoid anomalies which are filtered to account for density variations down to the base of the lithosphere only. The two versions of GPE compared to each other and the stresses calculated numerically are compared with observations. That allows us to optimize GPE and understand density structure, stress pattern, and factors controlling the stresses in Arctic.

  18. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  19. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  20. The strength of Miranda's lithosphere

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert; Greeley, Ronald

    1991-01-01

    In attempting to understand the endogenic processes which have shaped the surface of an icy satellite, it is desirable to quantify the failure strength of the satellite's lithosphere. In a crust that is fractured on a large scale, frictional sliding along pre-existing fractures occurs in response to lower differential stresses than required to initiate fracture of pristine rock, thus governing failure of a brittle lithosphere. Failure is predicted along favorably oriented fracture planes; if fractures of all orientations are assumed to be present in the crust (as is expected of a heavily cratered lithosphere), frictional failure relations are directly applicable. The Coulomb criterion predicts that the shear stress (sigma sub t) and normal stress (sigma sub n) components on a fracture plane at failure are related as sigma sub t = mu-sigma sub n + S sub o, where S sub o is the cohesion and mu is the coefficient of friction. At moderate to high pressures, the frictional sliding strength of most materials is found to be sigma sub t = 0.85 sigma sub n.

  1. Revisiting the Ridge-Push Force Using the Lithospheric Geoid

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2014-12-01

    energy required through filtering of the geoid. We evaluate the role of revised ridge push forces with plate-scale stress models. Our revised estimate of the ridge push force based on the lithospheric geoid, and corresponding stress models, further emphasizes the "active" rather than "passive" nature of the plates themselves in plate tectonics.

  2. The Role of the Mantle Lithosphere in Continent Stability

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Ancuta, L. D.; Fouch, M. J.; Idleman, B. D.; Ionov, D. A.; James, D. E.; Meltzer, A.; Pearson, G.; Shirey, S. B.; Zeitler, P. K.

    2012-12-01

    compositions (Barry et al., Lithos, 2007) not obviously consistent with a plume contribution to this activity. We suggest instead that the basaltic activity relates to the fertile nature of the Mongolian lithospheric mantle and that this area will remain geologically unsettled until and unless the mantle lithosphere can be replaced with infertile mantle similar to that underlying cratons.

  3. Some Problems of the Lithosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory A.

    2015-04-01

    relationship between faulting and earthquake activity and the continuous deformation field below the seismogenic layer continues to be poorly understood. Prominent surface faults may be a natural consequence of the localization of strain caused by processes within the ductile layer such as shear heating, grain-size reduction, or simply the interaction of non-Newtonian constitutive law and irregular geometry. Where intra-plate convergence occurs the lithosphere must thicken, and the question naturally arises as to whether the thickened lithosphere will remain stable or somehow be removed by convective overturn with underlying asthenophere. Such overturn is expected of a viscous lithospheric layer that is denser than the asthenosphere; it will be denser because it is colder, unless there is some compositional contrast which makes it intrinsically buoyant. A relatively low viscosity is required, however, in order that the instability can grow at a sufficiently fast rate to overcome diffusive stabilisation of the temperature field. The high stresses created by plate convergence may provide the mechanism that activates the viscosity (and explains why the lithosphere elsewhere is generally stable). High-resolution tomographic investigations find convincing evidence of small-scale mantle drips occurring beneath recently active orogenic zones such as the western USA and the SE Carpathians. However, seismic observations of thickened lithosphere remaining beneath Tibet apparently contradict the interpretation of mantle overturn suggested by recent volcanism and uplift. Although the Tibetan mantle lithosphere may be relatively buoyant, the possibility that this layer has overturned internally may allow these conflicting interpretations to be reconciled.

  4. Limiting depth of magnetization in cratonic lithosphere

    NASA Technical Reports Server (NTRS)

    Toft, Paul B.; Haggerty, Stephen E.

    1988-01-01

    Values of magnetic susceptibility and natural remanent magnetization (NRM) of clino-pyroxene-garnet-plagioclase granulite facies lower crustal xenoliths from a kimberlite in west Africa are correlated to bulk geochemistry and specific gravity. Thermomagnetic and alternating-field demagnetization analyses identify magnetite (Mt) and native iron as the dominant magnetic phases (totaling not more than 0.1 vol pct of the rocks) along with subsidiary sulfides. Oxidation states of the granulites are not greater than MW, observed Mt occurs as rims on coarse (about 1 micron) Fe particles, and inferred single domain-pseudosingle domain Mt may be a result of oxidation of fine-grained Fe. The deepest limit of lithospheric ferromagnetism is 95 km, but a limit of 70 km is most reasonable for the West African Craton and for modeling Magsat anomalies over exposed Precambrian shields.

  5. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  6. Linking lithosphere deformation and sedimentary basin formation over multiple scales

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2016-04-01

    Here we focus on the relationships between tectonic deformation and sedimentary basin formation. Resolving the interaction and feedback between tectonic crust-lithosphere scale deformation and surface processes through erosion of elevated areas and formation of sedimentary basins over multiple scales has been a long-standing challenge. While forward process based models have been successful at showing that a feedback is expected between tectonic deformation and redistribution of mass at the earth's surface by erosion, transport, and deposition, demonstrating this coupling for natural systems has been an even greater challenge and is strongly debated. Observational constraints on crust-lithosphere deformation and surface processes are typically collected at highly varying spatial and temporal scales, while forward process based models are typically run at either very large lithosphere-mantle scale, or at the scale of the sedimentary basin making it difficult to investigate and explore the detailed interaction and feedback between these systems. Here I will report on recent advances in forward modelling linking crust-lithosphere deformation with surface processes over a large range of scales resolving tectonic plate scale deformation and sedimentary basin formation at stratigraphic scales. The forward numerical models indicate a linkage and interaction between the structural style of thick-skinned large-scale mountain belt and rift-passive margin formation, erosion-transport-deposition processes operating at the surface, and the thin-skinned deformation occurring in the associated sedimentary basins.

  7. Lithosphere delamination and topography evolution in collisional orogens

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Liu, M.; Gerya, T.

    2015-12-01

    Systematic high-resolution thermo-mechanical numerical models are conducted in order to better understand the behavior of deep mantle lithosphere and surface topography response during continental collision. In the models with similar rheological properties for the pro- (subducting) and retro- (overriding) continental plates, subduction mode is preferred, with localized topography uplift and mountain building. However, if the effective viscosities of the retro-plate are decreased, then delamination of the lithospheric mantle may occur there, which results in large-scale topography buildup and plateau formation. Several other factors that may also influence the delamination dynamics are further investigated, e.g., plastic weakening of the lithospheric mantle, density contrast between the lithospheric and asthenospheric mantle, convergence velocity, as well as the possible lower crust eclogitization effects. Based on the series of numerical simulations, the delamination processes in collisional orogens are summarized into three modes: (1) pro-plate delamination, (2) retro-plate delamination, and (3) a transitional double-plates (both the pro- and retro-plate) delamination. The controlling factors, as well as the geological applications in nature, of the variable delamination modes are also discussed.

  8. Linking lithosphere deformation and sedimentary basin formation over multiple scales

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2014-05-01

    In the spirit of Peter Ziegler we are interested in and explore the relationships between tectonic deformation and sedimentary basin formation. Resolving the interaction and feedback between tectonic crust-lithosphere scale deformation and surface processes through erosion of elevated areas and formation of sedimentary basins over multiple scales has been a long-standing challenge. While forward process based models have been successful at showing that a feedback is expected between tectonic deformation and redistribution of mass at the earth's surface by erosion, transport, and deposition, demonstrating this coupling for natural systems has been an even greater challenge and is strongly debated. Observational constraints on crust-lithosphere deformation and surface processes are typically collected at highly varying spatial and temporal scales, while forward process based models are typically run at either very large lithosphere-mantle scale, or at the scale of the sedimentary basin making it difficult to investigate and explore the detailed interaction and feedback between these systems. Here I will report on recent advances in forward modelling linking crust-lithosphere deformation with surface processes over a large range of scales resolving tectonic plate scale deformation and sedimentary basin formation at stratigraphic scales. The forward numerical models indicate a linkage and interaction between the structural style of thick-skinned large-scale mountain belt and rift-passive margin formation, erosion-transport-deposition processes operating at the surface, and the thin-skinned deformation occurring in the associated sedimentary basins.

  9. Venus Chasmata: A Lithospheric Stretching Model

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.

  10. The subduction of young lithosphere

    NASA Astrophysics Data System (ADS)

    Sacks, I. S.

    1983-04-01

    Studies, using a variety of techniques, of the subduction beneath western South America and the southwest Honshu-Kyushu region of Japan indicate that volcano-free segments occur where the subducted and continental lithospheres remain in contact without intervening asthenosphere. The subduction is initiated at normal dip angles, but the plate deforms at some depth (100 km under central Peru) to travel horizontally immediately beneath continental lithosphere. The most plausible reason for this geometry is that the subducted plate is buoyant. A model is developed constrained by age of the plate, bathymetry, and heat flow. Estimates of the density of oceanic plates as a function of age show that younger ocean floor may be less dense than the asthenosphere into which it subducts. If the high-density tranformation of crustal basalt to eclogite is retarded by low temperatures, the plate can remain buoyant to considerable depth for long periods of time. Heat flow data from western South America are consistent with this model.

  11. Lithospheric-scale centrifuge models of pull-apart basins

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  12. Anatomy of lithosphere necking during orthogonal rifting

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio

    2013-04-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.

  13. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708

  14. The origin of thin lithosphere in continental backarcs: Effect of hydration on mantle lithosphere stability

    NASA Astrophysics Data System (ADS)

    Currie, C. A.; Huismans, R. S.; Beaumont, C.

    2006-12-01

    Nearly all continental backarcs have thin (~ 60 km) lithosphere for 100's of km behind the volcanic arc, even where there has been no extension. One mechanism to produce thin lithosphere is the erosion of normal thickness lithosphere by subduction-related mantle flow. The susceptibility of lithosphere to thinning largely depends on its rheology, which may be related to its state of hydration. Thin backarc lithosphere may reflect (1) a pre-existing weak rheology of lithosphere that has not been extensively dehydrated or (2) a response to rheological weakening by infiltration of slab-derived fluids. To study these processes, we use thermal- mechanical models of subduction of an old (90 Ma) oceanic plate beneath 120 km thick continental lithosphere. For (1), the backarc mantle lithosphere in the reference model has a wet olivine rheology. Subduction-induced mantle flow produces perturbations to the lowermost lithosphere, which are removed through gravitational instability and flow entrainment. The lithosphere then heats conductively, leading to subsequent thinning. Lithosphere that is stronger than wet olivine (less hydrated) does not thin, while weaker lithosphere undergoes more rapid thinning. Mantle lithosphere density influences stability, such that depleted (more buoyant) lithosphere is more stable. Thin backarc lithosphere may be limited to continental mantle that is both hydrated and fertile. This may explain why thin lithosphere of western North and South America backarcs coincides with Phanerozoic terranes that were accreted to older cratons, which may be drier, more refractory and resistant to thinning. For (2), the backarc mantle lithosphere is initially dehydrated with a scaled viscosity of wet olivine x 10 and the source of hydrating fluids is determined by tracking slab dehydration reactions (e.g., basalt-eclogite, serpentine breakdown). As most slab dehydration occurs at shallow depth, thinning of water-weakened lithosphere is restricted to the volcanic

  15. Deformation in the continental lithosphere

    NASA Astrophysics Data System (ADS)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  16. The lithosphere-asthenosphere transition and radial anisotropy beneath the Australian continent

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Kennett, B. L. N.

    2015-05-01

    A new 3-D S wave speed model for the Australian region derived from multimode surface waves allows us to examine the nature of the lithosphere-asthenosphere transition (LAT) and its relation to radial anisotropy. In eastern Phanerozoic Australia the estimated depths of the LAT tie well with those from receiver functions. However, in the Archean and Proterozoic lithosphere in western and central Australia, the LAT derived from the surface wave model is generally much deeper than the discontinuities recognized from receiver functions and shows a smooth transition. There is significant radial anisotropy (SH > SV) in the upper lithosphere as well as in the LAT and the underlying asthenosphere. Strong anisotropy in the asthenosphere reflects the effects of present shear flow in the mantle beneath the continent. The lateral variation of lithospheric anisotropy correlates well with the suture zones between cratonic blocks, representing frozen anisotropy associated with the ancient tectonics of Australia.

  17. Metasomatized lithosphere and the origin of alkaline lavas.

    PubMed

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  18. Episodic Instabilities of Thick Continental Lithosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Jaupart, C. P.; Fourel, L.; Farnetani, C. G.

    2009-12-01

    Although continental interiors are commonly described as stable, many have been subjected to major perturbations. The North American continent, for example, saw the formation or reactivation of four intracratonic basins (Williston, Hudson Bay, Illinois and Michigan) in the Paleozoic about 500 million years ago. These events occurred far from ocean basins and are not related to other tectonic events, and hence have usually been explained as late consequences of earlier orogenies or of mantle plumes impinging the base of the lithosphere. Why and how subsidence affected four neighbouring basins simultaneously in the Paleozoic has not been explained, however. Other important observations are that intracratonic basins and subsidence events tend to recur at the same locations, and that subsidence is rarely preceded by domal uplift. These observations can be explained by the behaviour of thick compositionally buoyant lithosphere that becomes unstable because it is being cooled from above. Laboratory analog experiments, stability theory and numerical simulations in 2-D and 3-D have been conducted to specify the necessary conditions for instability and to illustrate how flow develops and deforms the lithosphere. Numerical solutions accounting for temperature-dependent viscosity show that the compositional viscosity contrast between the lithospheric mantle and the underlying asthenosphere has only a weak effect on flow and deformation. Lithosphere behaviour depends on the Rayleigh number and the buoyancy ratio, which is equal to the ratio of compositional density contrast over the thermal density contrast through the unstable part of the lithosphere. Episodic instabilities are generated at small buoyancy numbers appropriate for geological conditions. Scaling laws for temperature-dependent viscosity fluids will be presented. Little uplift is generated by the instability because the hot upwelling asthenospheric mantle displaces compositionally buoyant colder lithospheric

  19. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  20. Yellowstone hotspot-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Jean, Marlon M.; Hanan, Barry B.; Shervais, John W.

    2014-03-01

    The Snake River Plain represents 17 m.y. of volcanic activity that took place as the North American continent migrated over a relatively fixed magma source, or hotspot. We present new Pb, Sr, and Nd data for a suite of 25 basalts collected from Western and Central Snake River Plain (SRP). The new isotope data, combined with previously published data from the SRP, provide a traverse of the Wyoming craton margin, from the 87Sr/86Sr = 0.706 line boundary of western SRP with Phanerozoic accreted terranes, east through the central and eastern SRP, to the Yellowstone Plateau. Low-K basalts from the western SRP, overlain by high-K basalts, provide a temporal record of regional source variation from ∼16.8 to 0.2 Ma. Principal Component Analysis (PCA) of the new and previously published SRP basalt Pb isotopes reveals that >97% of the total variability is accounted for by mixing between three end-members and is consistent with a sublithospheric Yellowstone hotspot mantle source with a radiogenic isotope composition similar to the mantle source of the early Columbia River Basalt Group (CRBG) and two continental lithosphere end-members, heterogeneous in age and composition. We use the SRP Pb, Sr, and Nd isotope data to model the Yellowstone Hotspot-continental lithosphere interaction by three component mixing between two continental lithospheric components, Archean lithosphere (CL1) that represents older lithosphere underlying the Yellowstone Plateau in the east, and Paleoproterozoic lithosphere (CL2) representing the younger lithosphere underlying the SRP in the west near the craton margin, and a sublithospheric end-member, representing the Yellowstone hotspot (PL). The results suggest a continuous flow of PL material westward as the NA continental lithosphere migrated over the upwelling hotspot along a shoaling gradient in the sub-continental mantle lithosphere. The model shows a decrease in Total Lithosphere end-members (CL1 + CL2) and the Lithosphere Ratio (CL1/CL2

  1. Rifting on Venus: Implications for lithospheric structure

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1985-01-01

    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation.

  2. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America.

    PubMed

    Rychert, Catherine A; Fischer, Karen M; Rondenay, Stéphane

    2005-07-28

    Plate tectonic theory hinges on the concept of a relatively rigid lithosphere moving over a weaker asthenosphere, yet the nature of the lithosphere-asthenosphere boundary remains poorly understood. The gradient in seismic velocity that occurs at this boundary is central to constraining the physical and chemical properties that create differences in mechanical strength between the two layers. For example, if the lithosphere is simply a thermal boundary layer that is more rigid owing to colder temperatures, mantle flow models indicate that the velocity gradient at its base would occur over tens of kilometres. In contrast, if the asthenosphere is weak owing to volatile enrichment or the presence of partial melt, the lithosphere-asthenosphere boundary could occur over a much smaller depth range. Here we use converted seismic phases in eastern North America to image a very sharp seismic velocity gradient at the base of the lithosphere-a 3-11 per cent drop in shear-wave velocity over a depth range of 11 km or less at 90-110 km depth. Such a strong, sharp boundary cannot be reconciled with a purely thermal gradient, but could be explained by an asthenosphere that contains a few per cent partial melt or that is enriched in volatiles relative to the lithosphere.

  3. Seismic Migration Imaging of the Lithosphere beneath the Afar Rift System, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.; Rychert, C.; Harmon, N.

    2015-12-01

    The Afar Rift system in east Africa is an ideal natural laboratory for investigating the incipient continental rifting, an essential component of plate tectonics. The Afar Rift is situated at the triple junction of three rifts, namely the southern Red Sea Rift, Gulf of Aden Rift and Main Ethiopian Rift (MER). The ongoing continental rifting at Afar transitions to seafloor spreading toward the southern Red Sea. The tectonic evolution of Afar is thought to be influenced by a mantle plume, but how the plume affects and interacts with the Afar lithosphere remains elusive. In this study, we use array seismic data to produce high-resolution migration images of the Afar lithosphere from scattered teleseismic wavefields to shed light on the lithospheric structure and associated tectonic processes. Our preliminary results indicate the presence of lithospheric seismic discontinuities with depth variation across the Afar region. Beneath the MER axis, we detect a pronounced discontinuity at 55 km depth, characterized by downward fast-to-slow velocity contrast, which appears to abruptly deepen to 75 km depth to the northern flank of MER. This discontinuity may be interpreted as the lithosphere-asthenosphere boundary. Beneath the Ethiopian Plateau, on the other hand, a dipping structure with velocity increase is identified at 70-90 km depth. Further synthesis of observations from seismic tomography, receiver functions, and seismic anisotropy in the Afar region will offer better understanding of tectonic significance of the lithospheric discontinuities.

  4. Intraplate Seismicity and Lithospheric Strength as Inferred from 3D Seismic Models

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Pollitz, F. F.; Ritsema, J.

    2014-12-01

    Focal mechanism studies and other stress indicators indicate that intraplate earthquakes in central and eastern North America are consistent with an ENE-WSW compressive stress field that acts on existing faults. Here we argue that either locally thinned lithosphere (as beneath the Reelfoot Rift, central US) or regional lithospheric thinning (as beneath the edge of the North American craton or the rifted continental margin) constitutes zones of relatively low lithospheric strength where crustal strain accumulates. We use seismic surface waves to determine the 3D shear-wave seismic velocity structure of the lithosphere, and find that the Reelfoot Rift is underlain by a zone with low mantle seismic velocities that extends to at least 200 km depth. Thus, the Reelfoot Rift, which hosts the New Madrid Seismic Zone, is unique among North American paleo-rifts in term of the properties in the mantle. We hypothesize that this low-velocity mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively lower elastic plate thickness that would tend to concentrate tectonic stress within this zone. On a continental scale, the 3D velocity model clearly identifies an approximately 220-km-thick, high seismic velocity lithospheric root beneath the North America craton which has a low rate of crustal seismicity and very few events with Mw≥6. We attribute the relatively aseismic nature of the craton to dry, cold conditions within the cratonic lower crust and mantle lithosphere. Conversely, we find that a high proportion of intraplate events are concentrated around the pronounced lateral gradient in lithospheric thickness that surrounds the craton. We attribute this observation to a lateral decrease in lithospheric strength at the edge of the North American craton. This relationship between intraplate seismicity and lithospheric properties is apparent in maps that compare regional and continental lithospheric thickness with crustal seismicity. We

  5. Seismic evidence for the layered mantle lithosphere: a comparsion between Zagros and South Africa

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough; Kind, Rainer

    2014-05-01

    Recent S receiver function studies present evidence for the existence of the layered mantle lithosphere beneath ancient cratons. However, the nature of these layers is still unclear. They can be attributed to the presence of accumulated melts, remnants of subduction interfaces, changes in anisotropic properties or fluids. Further characterization of these layers is needed to provide more insights into the assembly and evolution of cratons. Here we compare the mantle lithosphere of the ancient Kalahari craton with the relatively young mantle lithosphere of Zagros, which is assumed as the location of the future craton. We applied the S receiver function method to map the internal layering of the lithosphere and to image its lower limit. For this aim, we used teleseismic events recorded at 97 seismic stations within the Kalahari craton and those recorded at 61 permanent seismic stations in Iran. Our results reveal a thick and stratified mantle lithosphere beneath the Kalahari craton containing three significant negative velocity contrasts at 85, 150-200, and 260-280 km depth. Moreover, they imply that frozen-in anisotropy as well as notable compositional variations can lead to sharp Mid-Lithospheric Discontinuities (MLD) that can be clearly observed in the SRF data. We show that a 50 km thick anisotropic layer just below the Moho boundary with 3% S wave anisotropy may be responsible for producing a MLD at 85 km depth. The horizontal anisotropy in the upper lithosphere may be attributed to processes during the formation of the Kalahari Craton. Furthermore, significant correlation between the depths of an apparent boundary separating the depleted and metasomatised lithosphere, as inferred from chemical tomography, and those of our second layer led us to characterize it as a compositional boundary, most likely due to the modification of the cratonic mantle lithosphere by magma infiltration. The largest velocity contrast (3.6-4.7%) is observed at a boundary located at

  6. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  7. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  8. Geophysical Signatures of Adjoining Lithospheric Domains

    NASA Astrophysics Data System (ADS)

    Gradmann, S.; Kaiser, J.

    2014-12-01

    Lithospheres of different age have distinctly different characteristics regarding their composition, thermal and density structure. Major differences exist between cratons and the Phanerozoic domains and mobile belts. We here investigate how the lateral transition from one lithospheric domain to another is reflected in the geophysical signatures, the seismic velocities, gravity, topography and geoid. We combine geophysical-petrological forward modeling with a comparison to worldwide occurrences of adjoining lithospheric domains. Three distinctly different mantle types (Archean, Proterozoic, Phanerozoic) are used to calculate the geophysical signatures of a range of possible lateral transition zones. The mantle types are characterized by their different elemental composition, from which stable mineral phases and bulk physical properties are derived. Usually, older SCLM (sub-lithospheric mantle) is more depleted in heavier minerals and thereby lighter, but this effect is mainly counterbalanced by the increased density caused by long-term thermal cooling. At the edges of cratons, changes in the thermal structure affect this balance. A range of models is tested for the effects of lateral variations in the crustal and SCLM structure (thickness, smoothness of thickness changes) and mantle compositions. Abrupt changes in composition and lithosphere thickness generally cause distinct topographic lows or ridges. In the real world, these may be offset by respective adjustments in Moho depth, crustal structure or sediment infill. Gradual variations in lithosphere thickness, however, only show minor geophysical signatures. A possible expression of adjoining lithospheric domains is the Scandinavian Mountain Belt in Norway at the edge of Proterozoic Baltica. Although many of the present-day topographic features are unlikely to have existed since the Precambrian, the evolution of the cratons (rejuvenation of the craton edges) may have assisted in shaping the present

  9. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    PubMed

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq. PMID:24811887

  10. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  11. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes

  12. Lithospheric buoyancy and continental intraplate stresses

    USGS Publications Warehouse

    Zoback, M.L.; Mooney, W.D.

    2003-01-01

    Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed

  13. Martian lithospheric thickness from elastic flexure theory

    NASA Technical Reports Server (NTRS)

    Thurber, C. H.; Toksoz, M. N.

    1978-01-01

    The thickness of the elastic lithosphere in the Tharsis region of Mars is estimated from effects due to the surface load of Olympus Mons. Deformation (vertical displacement) and stress are calculated using elastic flexure theory for a range of possible lithospheric thicknesses (T), modeling the lithosphere as a thin elastic shell and the interior as a Newtonian fluid. For T below 150 km, displacement and stress rise rapidly with decreasing thickness. For T near 100 km, deformation of the region surrounding the volcano would be clearly visible in the topography, and resulting tensional stresses exceeding 5 kbar should produce observable fracturing at the surface. In contrast, for T near 200 km deformation is minimal and the tensional stress, being less than a kilobar, would not result in extensive fracturing. Since significant deformation and fracturing are not observed, it is concluded that the Martian elastic lithosphere is at least 150 km in thickness. Seismic, tectonic, and gravity observations all suggest a thick Martian lithosphere as well.

  14. Lithospheric stress patterns: A global view

    NASA Astrophysics Data System (ADS)

    Zoback, Mary Lou; Burke, Kevin

    The present-day lithospheric stress state is the result of a variety of forces that act on and within the tectonic plates forming the Iithosphere. Knowledge of this stress state provides important constraints on forces acting at a variety of scales and, hence, helps to solve scientific problems of interest to a wide spectrum of scientists and engineers.Six years of effort by scientists from all over the world (listed at end of article) brought together under the International Lithosphere Program (ILP) of the joint International Union of Geodesy and Geophysics/International Union of Geological Sciences (IUGG/IUGS) Interunion Commission on the Lithosphere culminated in the July 1992 publication of the World Stress Map and nineteen accompanying research papers in a special issue of the Journal of Geophysical Research-Solid Earth (volume 87, number B8). Figure 1 shows a reduced version of the published 1:40,000,000 color map.

  15. Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation

    USGS Publications Warehouse

    Mueller, S.; Choy, G.L.; Spence, W.

    1996-01-01

    Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.

  16. Can compaction, caused by melt extraction and intrusion, generate tectonically effective stresses in the lithosphere?

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2016-04-01

    Aim of our study is to deepen understanding the role of melt processes while the lithospheric evolution by means of numerical modeling. In the sense of plate tectonics, on the one hand, stresses are transferred by stiff lithospheric plates, on the other, lithosphere is deformed, broken, or modified in various ways. Melting often plays an important role but is not easy to model numerically due to all the interactions of physics, phase changes, non-linearities, time scales, petrology, heterogeneities and chemical reactions. Here we restrict on a thermo-mechanical model of visco-plastic two phase flow with partial melting. Viscosity is temperature-, stress- and depth-dependent. Freezing and melting are determined by a simplified linear binary solid solution model. The fast melt transport through and into the lithosphere, acting on a short time scale, is replaced by melt extraction and intrusion in a given emplacement level. Numerical approximation is done in 2D with Finite Differences with markers in an Eulerian formulation. A scenario of continental rifting serves for a model of lithosphere above asthenosphere under extensional conditions. An anomaly of increased temperature at the bottom produces a low fraction of melt initially in the asthenosphere. Above a porosity limit melt is extracted and leads to compaction at its origin which induces under-pressure attracting ambient melt and contracting the depleted matrix. In a higher, colder lithospheric level the emplaced melt extends the matrix, immediately freezes; an increase of enrichment and heating takes place. The dilatation of the rock matrix generates relative high compaction pressures if it's viscosity is high as in the uppermost mantle lithosphere. Local and temporary varying stresses provide deviatoric components which sometimes may be the origin of tectonic activity in nature. Divergence terms of the full compaction formulation, responsible for viscous stress, are tested and reviewed. Quality and stability

  17. Uppermantle anisotropy and the oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Regan, J.

    1983-01-01

    Published Rayleigh and Love wave phase and group velocity data have been inverted taking into account sphericity, anelastic dispersion, and transverse isotropy. For a PREM-type modular parameterization, the thickness of the high velocity mantle seismic lithosphere (LID) varies in thickness from about 30 km for young ocean to about 50 km for old ocean, much less than previous estimates based on isotropic inversion of similar data. This LID thickness is comparable to the elastic or flexural thickness found from studies of seamount loading and flexure at trenches, suggesting that the thickness of the lithosphere may be controlled by mineralogy, composition, or crystal orientation rather than by temperature alone.

  18. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  19. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  20. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere. PMID:21979933

  1. Multidisciplinary approach to assess thermo-mechanical properties of the Asian lithosphere

    NASA Astrophysics Data System (ADS)

    Stolk, Ward; Kaban, Mikhail; Tesauro, Magdala; Beekman, Fred; Cloetingh, Sierd

    2013-04-01

    Assessing the thermo-mechanical properties of the lithospheric mantle is a complex business and still poses many problems. Seismic studies indicate large heterogeneities within the mantle lithosphere, but cannot discern between e.g. thermal and compositional effects. Similarly, gravity field analysis can constrain density heterogeneities, but is by its nature unable to distinguish between e.g. stacked density anomalies or lateral density anomalies. A joint analysis of both data types potentially leads to an improved insight in the mantle lithosphere, though the solution to the problem at hand remains non-unique and additional constraints are required. We have combined a high resolution tomography model with a recent global gravity field model to improve our knowledge of both the compositional and thermal aspects of the mantle lithosphere in the Asian continent. The preliminary results presented here will focus on the four major cratonic areas in Asia: the East European Platform, Siberia, Northeast China and India. These regions represent two distinct types of cratonic lithosphere (deep root and shallow root). Xenolith studies help us to further constrain the trade off between temperature and compositional effects.

  2. Quantitative petrological constraints on the depth of the Lithosphere-Asthenosphere boundary and the implications for changes in cratonic lithosphere thickness through time

    NASA Astrophysics Data System (ADS)

    Mather, K. A.; Pearson, G.; Kjarsgaard, B. A.

    2010-12-01

    between the eruption of the kimberlite and today. Explanation of these differences is crucial to an improved understanding of craton evolution through time, and the nature of the LAB itself. McKenzie, D., Jackson, J., and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere: Earth and Planetary Science Letters, v. 233, p. 337-349. Yuan, H. and Romanowicz, B., 2010, Lithospheric layering in the North American craton: Nature, v. 466 doi:10.1038/nature09332

  3. Global lithospheric imaging using teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Spieker, K.; Halpaap, F.; Farestveit, M.; Sawade, L.; Zijerveld, L.

    2015-12-01

    Project GLImER (Global Lithospheric Imagining using Earthquake Recordings) aims to conduct a global survey of lithospheric interfaces using converted teleseismic body waves. Data from permanent and temporary seismic networks worldwide will be processed automatically to produce global maps of key interfaces (Moho, intra-lithospheric interfaces, lithosphere-asthenosphere boundary). In this presentation, we discuss the challenges associated with automating the analysis of converted waves and the potential of the resulting data products to be used in novel imaging approaches. With regards to automation, we address in particular the search for an optimal deconvolution method in receiver function analysis. To do so, we carry out a systematic comparison of various commonly used deconvolution methods and find that all methods produce equally robust receiver functions provided that a suitable regularization parameter is found. We further note that a suitable regularization can be found objectively for most approaches, thus challenging the belief that only time-domain deconvolution is a viable option for receiver function automation. With regards to imaging applications, we investigate how the resulting global database of receiver functions will be amenable to existing processing approaches as well as new approaches adapted from seismic exploration, including industry-based interpretation tools.

  4. Variations in lithospheric thickness on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, C. L.; Sandwell, David T.

    1992-01-01

    Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.

  5. Imaging Lithospheric Structure beneath the Indian continent

    NASA Astrophysics Data System (ADS)

    Maurya, S.; Montagner, J. P.; Mangalampally, R. K.; Stutzmann, E.; Burgos, G.; Kumar, P.; Davuluri, S.

    2015-12-01

    The lithospheric structure and thickness to the LAB are the most debated issues, especially beneath continents. In this context, the structure and thickness of the Indian lithosphere has been controversial. Paleomagnetic data reveals that the Indian continent moved northwards at exceptionally high speeds (18-20 cm/year) and subsequently slowed down to 4-5 cm/year after its collision with Asia ≈40 Myr ago. This super mobility has been explained by an unusually thin Indian lithosphere (≈100 km; Kumar et al., 2007) in contradiction with the thick lithosphere that commonly underlies old cratonic nuclei. It is pertinent to note that the thermobarometric estimates on the ultramafic xenoliths from 65 Myr kimberlites of the Central India (Babu et al. 2009) suggest an approximately 175 km thick lithosphere. Also, recent results of P and S wave travel time tomography of India suggest that the lithospheric roots are not uniformly thick on a regional scale. Although high velocity roots typical of Precambrian shields are preserved beneath a few cratons of the Indian shield, they seem to have suffered attrition, in the plume ravaged regions like the NDVP and the Southern SGT (Singh et al., 2014). We assembled a new massive surface wave database towards obtaining 3D isotropic and anisotropic models for the Indian sub-continent, using surface waves. This necessitated processing of data from more than 500 seismic broadband stations across India and surrounding regions. Surface waves group and phase dispersion measurements are performed in a broad frequency range (16-250s). Our phase velocity anomaly maps recover most of the known geological structures. The cratons are associated with high velocity (4-6%) anomalies till 200 sec, with the WDC being faster than the EDC. Slow velocities in NW India and very high velocity anomalies (6-8%) beneath the central part of the Indo-Gangetic plains are possibly associated with the subducting Indian lithosphere. The LAB depths inferred from

  6. Magnetic mineralogy of the Mercurian lithosphere

    NASA Astrophysics Data System (ADS)

    Strauss, Becky; Feinberg, Joshua; Johnson, Catherine

    2016-04-01

    Mercury and Earth are the only inner solar system planets with present-day core-dynamo magnetic fields, in contrast to the past fields of Mars and the Moon and the absence of evidence for a past or present field at Venus. Recently, the MESSENGER mission also measured magnetic fields from lithospheric magnetization on Mercury for the first time. These fields are consistent with remanent magnetization held by rocks exposed to an ancient, internally generated planetary magnetic field. However, the conditions for magnetization in the lithosphere of Mercury are unique among terrestrial planets, and the mechanisms for the acquisition (induced versus remanent) and alteration of magnetization are still unknown. We investigate the physical and chemical environment of Mercury's crust, past and present, to establish the conditions in which magnetization may have been acquired and subsequently modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: the temperature profile of the lithosphere and its evolution over time, redox conditions in the planet's crust and mantle, and the iron content of the lithosphere. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is distinct from that of other inner solar system planets in that it is both very hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework isused to constrain plausible candidate magnetic mineralogies, which can then be analyzed in terms of their capacity to acquire and retain magnetic remanence that is detectable from satellite orbit. We propose a suite of minerals and materials that could be carriers of remanence in the lithosphere of Mercury, including iron alloys, silicides, and sulfides.

  7. Estimating lithospheric properties at Atla Regio, Venus

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1994-01-01

    Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.

  8. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  9. Three-dimensional density distributions in the Asian lithosphere

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Li, C.; Wang, X.; Wang, Z.; Fang, J.; Sino-probe-cugb

    2011-12-01

    We have inversed the residual Bouguer gravity anomalies to study the three-dimensional density distributions of the Asian lithosphere (60°~150°E and 15°~60°N). Firstly, we have collected the free-air gravity anomalies (30'×30') and topography data of GTOP030 with 5'×5' grid spacing, and then calculated the Bougouer gravity anomalies by terrain correction and Bougouer correction. We have also collected the depth data of the Moho discontinuity (30'×30') and the discontinuity of sedimentary layer. By using the Oldenburg-Parker formula (Parker, 1972) and the forward modeling method, we calculated the theoretical gravity anomalies which mainly are caused by the Moho discontinuity and the sedimentary layer discontinuity. In our study, the average depths of Moho discontinuity and sedimentary layer discontinuity are 33 km and 4 km, and the density differences are 0.42 g/cm3 and 0.2 g/cm3, respectively. In addition, we have simulated the gravity anomalies of the spherical harmonics with the 2-6 order for the lower mantle by using the formula of Bowin (1983) which represented the relation between the depth of field source and the order of the geopotential spherical harmonics. Using all data mentioned above, we have calculated the residual Bougouer gravity anomalies, which may be caused by anomalous density bodies in the lithosphere. Secondly, we used the calculated residual Bougouer gravity anomalies to inverse the three-dimensional density differences in the Asian lithosphere by using the Algebra Reconstruction Techniques (ART). During the inversion, the densities converted from the P-wave velocity data (with grid spacing of 2°×2°) according to the Birch Law are considered as the initial density model. The grid spacing is set as 2°×2° in the horizontal direction, and it is 25 km, 55 km and 100 km in the vertical direction, respectively. Comparing the density anomalies at the three depths, we can conclude that (1) the density in the lithosphere beneath Asian

  10. Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Piana Agostinetti, Nicola

    2011-12-01

    Mediterranean tectonics has been characterized by an irregular, complex temporal evolution with episodic rollback and retreat of the subducted plate followed by period of slow trench-migration. To provide insight into the geodynamics of the Calabrian arc, we image the characteristics and lithospheric structure of the convergent, Apulian and Hyblean forelands at the cusps of the arc. Specifically we investigate the crustal and lithospheric thicknesses using teleseismic S-to-p converted phases, applied to the Adria-Africa plate margin for the first time. We find that the Moho in the Apulian foreland is nearly flat at ˜30 km depth, consistent with previous P receiver functions results, and that the Hyblean crustal thickness is more complex, which can be understood in terms of the nature of the individual pieces of carbonate platform and pelagic sediments that make up the Hyblean platform. The lithospheric thicknesses range between 70-120 km beneath Apulia and 70-90 km beneath Sicily. The lithosphere of the forelands at each end of the Calabrian arc are continental in nature, buoyant compared to the subducting oceanic lithosphere and have previously been interpreted as mostly undeformed carbonate platforms. Our receiver function images also show evidence of lithospheric erosion and thinning close to Mt. Etna and Mt. Vulture, two volcanoes which have been associated with asthenospheric upwelling and mantle flow around of the sides the slab. We suggest that as the continental lithosphere resists being subducted it is being thermo-mechanically modified by toroidal flow around the edges of the subducting oceanic lithosphere of the Calabrian arc.

  11. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs

    2016-04-01

    studies of the composition of the Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. The formation of these sulfide minerals are linked to multiple refertilization/metasomatic events, which affected the base of the subcontinental lithospheric mantle from the Archean to the Proterozoic. We suggest that the transitions from an initial cool period to greenhouse conditions recorded by T-J and Pl-To sedimentary sections result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or thermal internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission and metamorphic reactions in sedimentary basins. We suggest that the nature of the underlying lithosphere during large LIP eruption potentially exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  12. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  13. Reflection Character of the Continental Lithosphere and Crustal Evolution

    NASA Astrophysics Data System (ADS)

    Brown, L. D.

    2015-12-01

    Reflection images represent the high-frequency end member of the suite of seismological tools commonly used to probe the lithosphere. The global inventory of deep reflection profiles has documented reflection characters as varied as the surface geology that provides the primary boundary condition for the interpretation of reflection images. Past reviews of reflection results have stressed similarities in reflection patterns between various geographic regions and attempted to associate these patterns with specific tectonic processes. Examples include: laminated sequences (shear fabrics formed during extension or collision), reflective Mohos (mafic underplating), bright spots (contemporary and fossil magma bodies), dipping mantle reflections rooted in the lower crust (fossil subduction zones) and subhorizontal mantle reflections (phase changes in the lower lithosphere). Here I focus on relating reflection character to the inversion and/or interpretation of results from broadband techniques such as receiver functions, body wave and surface wave tomography. Among the underappreciated aspects of reflectivity are its dependence upon density as well as velocity, and the limitations of 2D images in a 3D world. A core consideration is the need to meaningfully relate integrated physical properties (e.g. velocity inferred from refraction and surface wave measurements) with the differential physical properties (e.g. reflection coefficients) to which reflection images are primarily sensitive. Examples from Tibet and Eurasia are used to illustrate examples of successful integration of controlled (active) and natural (passive) source observations to constrain models of crustal evolution.

  14. Chapman Conference on Generation of the Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Hales, A. L.; Frey, F. A.

    On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.

  15. International lithosphere program - Exploiting the geodynamics revolution

    NASA Technical Reports Server (NTRS)

    Flinn, E. A.

    1984-01-01

    After presenting a development history of the application of spacecraft technology in the field of earth dynamics, which encompasses the measurement of the motion and the large scale deformation of the tectonic plates as well as the monitoring of earth's gravity and magnetic fields, attention is given to the International Lithosphere Program (ILP). ILP studies the dynamics and evolution of the lithosphere, with a view to earth resources identification and geological hazard reduction. Among the major problems being addressed is the mechanism by which magmas are generated, extruded, and intruded, at convergent and divergent plate boundaries and within plates. By contrast to current understanding of rifting, almost nothing is known about how the process of subduction begins. The methods used to measure tectonic plate phenomena are: laser ranging to both the moon and man-made satellites, and VLBI.

  16. Flexural deformation of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior work focused primarily on the Adriatic and northern Ionian regions. The results of these studies have been summarized previously, and so are only briefly discussed. More recent work focuses on two different topics: (1) analysis of foredeep basin geometry, sedimentary style, and thrust belt structure in light of the kinematics at the associated plate boundary and subduction zone dynamics; and (2) the evolution and plate strength of early Proterozoic lithosphere.

  17. Flexure and rheology of Pacific oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  18. Adakites from collision-modified lithosphere

    NASA Astrophysics Data System (ADS)

    Haschke, M.; Ben-Avraham, Z.

    2005-08-01

    Adakitic melts from Papua New Guinea (PNG) show adakitic geochemical characteristics, yet their geodynamic context is unclear. Modern adakites are associated with hot-slab melting and/or remelting of orogenic mafic underplate at convergent margins. Rift-propagation over collision-modified lithosphere may explain the PNG adakite enigma, as PNG was influenced by rapid creation and subduction of oceanic microplates since Mesozoic times. In a new (rift) tectonic regime, decompressional rift melts encountered and melted remnant mafic eclogite and/or garnet-amphibolite slab fragments in arc collisional-modified mantle, and partially equilibrated with metasomatized mantle. Alternatively, hot-slab melting in a proposed newborn subduction zone along the Trobriand Trough could generate adakitic melts, but recent seismic P-wave tomographic models lack evidence for subducting oceanic lithosphere in the adakite melt region; however they do show deep subduction zone remnants as a number of high P-wave anomalies at lithospheric depths, which supports our proposed scenario.

  19. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  20. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure

  1. Paleoproterozoic Collisional Structures in the Hudson Bay Lithosphere Constrained by Multi-Observable Probabilistic Inversion

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.

    2015-12-01

    The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay

  2. Integrative Analysis of Mantle Lithosphere Rheology

    NASA Astrophysics Data System (ADS)

    Hirth, G.; Collins, J. A.; Molnar, P. H.; Kelemen, P. B.

    2014-12-01

    We will present an analysis of the rheology of mantle lithosphere based on extrapolation of lab-based flow laws, microstructural characterization of mantle shear zones and xenoliths, and the spatial distribution of mantle earthquakes and seismic anisotropy. As a starting point, we illustrate the similarity in the evolution of olivine lattice preferred orientation (LPO) for cm-scale lab samples (e.g., Zhang et al., 2000) and 100 meter-scale shear zones (e.g., Warren et al., 2008; Skemer et al., 2010). This correlation provides strong support for the extrapolation of lab data in both time and scale. The extrapolation of these results to plate-scale processes is supported by the analysis of shear wave splitting across the Alpine Fault on the South Island of New Zealand and its surrounding ocean basins (Zietlow et al., 2014). For the same region, the similarity in the fast Pn azimuth with the fast shear wave polarization directions indicates high strain deformation of relatively cold (~500-700oC) mantle lithosphere across a region 100-200 km wide (Collins and Molnar, 2014). This latter observation suggests that the lithosphere is significantly weaker than predicted by the extrapolation of dislocation creep or Peierls creep flow laws. Weakening via promotion of grain size sensitive creep mechanisms (diffusion creep and DisGBS) is likely at these conditions; however, studies of exhumed mantle shear zones generally indicate that the activation of these processes leads to strain localization at scales <<200 km. These observations motivate us to consider rheological constraints derived from geodetic studies and earthquake depths in regions where deformation of the lithosphere occurs at similar conditions. At face value, these data provide additional support for the extrapolation of lab data; the depth extent of earthquakes is consistent with estimates for the conditions where a transition from stable to unstable frictional sliding occurs (e.g., Boettcher et al., 2007) - and

  3. Rheology, tectonics, and the structure of the Venus lithosphere

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.

    1994-01-01

    Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.

  4. Radioxenon detections in the CTBT International Monitoring System likely related to the announced nuclear test in North Korea conducted on February 12, 2013

    SciTech Connect

    Ringbom, Anders; Axelssson, A.; Aldener, M.; Auer, M.; Bowyer, Ted W.; Fritioff, T.; Hoffman, Ian; Khrustalev, Kirill; Nikkinen, Mika; Popov, Vladimir Y.; Popov, Y.; Ungar, R. Kurt; Wotawa, G.

    2014-02-01

    Abstract: Observations of the radioxenon isotopes 133Xe and 131mXe collected at the IMS stations RN38 and RN58 on April 7-8, and April 12-13 2013, respectively, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7 weeks later. More than one release is required to explain all observations. The 131mXe source terms for each release were calculated to 7x1011 Bq, corresponding to about 1-10% of the total xenon inventory for a 10-kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test.

  5. Preface to "Insights into the Earth's Deep Lithosphere"

    SciTech Connect

    Pasyanos, M E

    2009-11-19

    Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods include seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.

  6. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process. PMID:15286370

  7. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  8. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization.

    PubMed

    Farla, Robert J M; Karato, Shun-Ichiro; Cai, Zhengyu

    2013-10-01

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤ 200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine-orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere.

  9. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization.

    PubMed

    Farla, Robert J M; Karato, Shun-Ichiro; Cai, Zhengyu

    2013-10-01

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤ 200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine-orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere. PMID:24067645

  10. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization

    PubMed Central

    Farla, Robert J. M.; Karato, Shun-ichiro; Cai, Zhengyu

    2013-01-01

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine–orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere. PMID:24067645

  11. Bounds on Lithospheric Thickness on Venus from Magellan Gravity and Topography Data

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine L.; Sandwell, David

    1997-01-01

    The primary objective of the work executed under NAGW-4784 is to provide constraints on the thermal and tectonic evolution of Venus. Establishing thermal and tectonic evolution models requires not only geological, but geophysical constraints, in particular the nature of temporal and spatial variations in crustal and lithospheric thickness. The major topics of study completed under NAGW-4784 (described more fully below) are: (1) detailed analyses of the resolution of Magellan Line-Of-Site (LOS) Doppler data to establish the minimum resolvable wavelength in the gravity data; (2) calculations of the global strain field in the venusian lithosphere and comparisons with global strain patterns from geological mapping; (3) study of the geological history of coronae at E. Eistla Regio; (4) estimation of crustal and lithospheric thickness by modeling of topography at asymmetric and symmetric rift-like chasmata; (5) preliminary investigations of spatial versus temporal variations in lithospheric thickness. Both the PI and Co-I have presented papers based on these topics at national and international meetings (American Geophysical Union Meetings, Lunar and Planetary Science Conferences, Chapman Conference on the Geodynamics of Venus).

  12. Study of the time evolution of the lithosphere

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1983-01-01

    The behavior and mechanical properties of the lithosphere were studied. This is a prerequisite to an understanding of the mechanisms and processes that occur in the Earth's mantle, which are masked by the lithospere. Geoid heights derived from the GEOS-3 and SEASAT radar altimeters were used. The correlation between bathymetry and geoid heights gives information on the mechanical properties of the lithosphere, such as its thickness, which is related to the age of the lithospheric plate. By probing in several locations spanning various temporal situations, the time evolution of the lithospheric plates were retraced.

  13. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  14. Lithospheric models of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd

    2015-04-01

    We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the

  15. Global equivalent magnetization of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  16. Isostasy and Flexure of the Lithosphere

    NASA Astrophysics Data System (ADS)

    McNutt, Marcia

    When I first began graduate work in geophysics nearly 30 years ago, there was, thankfully only a small body of written material I needed to read and comprehend prior to diving into my own research. Much has happened since then, and I often wonder how new graduate students today come up to speed in their areas of specialization. The answer is now obvious for any students undertaking research in broadly-defined areas involving lithospheric flexure and isostasy: they simply read Tony Watts' new book.

  17. Deformation of Indian Ocean Lithosphere Implies Highly Non-linear Rheological Law for Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Gordon, Richard; Houseman, Gregory

    2015-04-01

    The width of diffuse oceanic plate boundaries is determined by the rheology of oceanic lithosphere. Here we apply thin viscous sheet models, which have been successfully applied to deformation in several continental deforming zones, to investigate the deformation of oceanic lithosphere in the diffuse oceanic plate boundaries between the India, Capricorn, and Australia plates. We apply kinematic boundary conditions based on the current motion between these plates. We neglect buoyancy forces due to plate thinning or thickening and assume that the thin viscous sheet has the same depth-integrated non-linear viscosity coefficient everywhere. Our initial models have only one adjustable parameter, n, the power-law exponent, with n=1, 3, 10, 30, 100. The predicted width of the deforming zone decreases with increasing n, with n ≥ 30 explaining the observations. This n-value is higher than has been estimated for continental lithosphere, and suggests that more of the strength of oceanic lithosphere lies in layers deforming by faulting or by dislocation glide than for continental lithosphere. To obtain a stress field that better fits the distribution and type of earthquake focal mechanisms in the diffuse oceanic plate boundary, we add a second adjustable parameter, representing the effect of slab-pull stretching the oceanic plate near the Sumatra trench. We show that an average velocity increment on this boundary segment of 5 mm/a (relative to the average velocity of the India and Australia plates) fits the observed distribution of fault types better than velocities of 3.3 mm/a or 10 mm/a.

  18. Experimental study of lithosphere-troposphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Fedorov, Oleh; Lizunov, Georgy

    The ionosphere is the closest to the Earth area of near-Earth space and because of this the powerful natural and man-made processes, such as hurricanes, earthquakes, tsunami, big explosions and starts of heavy rockets to name a few, have to create corresponding disturbances there. Numerous experimental observations evidence the existence of such "terragenic" variations of ionospheric parameters, created by the sources below the ionosphere, in the troposphere and even in the lithosphere. Probably the most important question here is whether it is possible to detect enough reliably the ionospheric disturbances, related to the earthquake preparation state, at the background of the much stronger influences "from above" - of solar and galactic sources. So, the seismo-ionospheric coupling is one of the hottest topics of modern scientific research. The importance to shed more light to this process is connected with the study of possible earthquakes precursors in the ionosphere, monitoring of which could be a further step to the scientifically substantiated solution of the problem of earthquakes warning. The processing results of the data collected at Ukrainian Antarctic Station "Academician Vernadsky" are discussed. Basing on these data the theoretical study was performed and the energy transmission mechanism in the lithosphere-atmosphere-ionosphere system is analyzed. The atmospheric gravity waves are proposed as the most probable energy carriers for troposphere-ionosphere coupling. Basing on this study, as well as on the experience of preparation of several dedicated satellite mission (e. g., WARNING, INTERBALL-PROGNOZ) a new idea of spatial experiment IONOSAT is proposed to study in details the mechanism of seismo-ionospheric coupling and its realization peculiarities are discussed. This study was supported by NSAU contract No 1-02/03.

  19. Imaging the Subduction of Continental Lithosphere in the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; De Wit, M.; van Bergen, M.

    2014-12-01

    We present a 3D tomographic model of Australasia obtained by full seismic waveform inversion. Our model features a sharp lateral velocity contrast extending to >200 km depth, coincident with the abrupt transition from low to high Helium ratios in arc volcanics near 123°E (see figure). The joint analysis of the tomographic model and isotope data (for He, Pb, Nd, Sr) suggests that the North Australian craton subducted beneath the Banda Sea to around 100 km depth. The continuous increase of computing power combined with advances in numerical seismology allow us to develop full waveform inversion techniques that translate complete seismograms into 3D Earth models. The natural incorporation of any type of body and surface waves in full waveform inversion improves tomographic resolution in terms of both resolution length and amplitude recovery. We applied full waveform inversion to Australasia, including the Sunda and Banda arcs. The correlation of the tomographic model with isotope signatures of arc volcanics supports the shallow-angle subduction of North Australian lithosphere. The integrated data suggest that the late Jurassic ocean lithosphere north of the North Australian craton was capable of entraining large volumes of continental lithosphere. A plausible explanation involves delamination within the continental crust, separating upper from lower crustal units. This interpretation is consistent with the existence of a massive accretionary complex on Timor island, with evidence from Pb isotope analysis for lower-crust involvement in arc volcanism; and with the approximate gravitational stability of the subducted lithosphere as inferred from the tomographic images. The Banda arc example demonstrates that continental lithosphere in arc-continent collisions may not generally be preserved, thus increasing the complexity of tectonic reconstructions and models of recycling continental crust.

  20. Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Eaton, David W.; Bastow, Ian D.

    2013-07-01

    The Hudson Bay basin in northern Canada conceals one of the major collisional zones of the Canadian Shield, the Trans-Hudson Orogen (THO), which marks the Paleoproterozoic collision between the Archean Superior and Western Churchill cratons at ˜1.9-1.8Ga. Improved knowledge of upper mantle structure beneath the region is essential to establish the nature of the THO, specifically whether Himalayan-style plate tectonics operated in Paleoproterozoic times. Detailed seismological constraints on lithospheric architecture are also required to advance our understanding of the mechanism and timing of keel formation. We use surface wave tomography to illuminate new details of the lithospheric architecture of the Hudson Bay region, resolving both seismic wavespeed and azimuthal anisotropy. Phase velocity maps are calculated from fundamental-mode Rayleigh wave dispersion curves, then used to construct a 3D model exploring upper mantle structure to depths of ˜300km. Fast shear wavespeeds suggest a lithospheric thickness varying from ˜180km to almost 280 km beneath the Hudson Bay region. The new study confirms previous inferences that there is no correlation between crustal ages and lithospheric thickness. Patterns of shear wavespeed and azimuthal anisotropy indicate a layered lithosphere. In the uppermost mantle, both the highest velocities and the anisotropic fast directions wrap around the Bay. This structure is likely related to the formation processes of the Paleozoic intracratonic basin. At greater depth (˜70-150km) we resolve two high-wavespeed cores separated by a relatively narrow near-vertical lower-velocity curtain. This internal architecture is suggested to result from the terminal phase of a modern-style plate-tectonic collision between the Archean Superior and Churchill cratons during the Trans-Hudson orogeny, entrapping juvenile Proterozoic material. The lower lithosphere (≥160km depth) has a relatively homogeneous wavespeed structure across the region

  1. Interference of lithospheric folding in Central Asia by simultaneous Indian and Arabian plate indentation

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Cloetingh, S. A. P. L.; Burov, E.; Sokoutis, D.; Kaban, M.; Tesauro, M.; Burg, J.-P.

    2012-04-01

    Although large-scale folding of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented, the impact of continental collision between Arabia and Eurasia has been largely overlooked. The resulting Neogene shortening and uplift of the Zagros, Albors, Kopet Dagh and Kaukasus mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5 Ma. At the same time, the adjacent Caspian, Turan and Amu Darya basins underwent an acceleration in subsidence. It is common knowledge that waves with different orientations will interfere with each other. Folding, by its nature similar to a standing wave, is not likely to be an exception. We demonstrate that collision of the Eurasian plate with the Arabian and Indian plates generates folding of the Eurasian lithosphere in two different directions and that interaction between both generates characteristic interference patterns that can be recognised from the regional gravity signal. We present evidence for interference of lithospheric folding patterns induced by Arabian and Indian collision with Eurasia. Wavelengths (from 50 to 250 km) and spatial patterns are inferred from satellite-derived topography and gravity models and attest for rheologically stratified lithosphere with relatively strong mantle rheology (thickness of strong mechanical core on the order of 40-50 km) and less competent crust (thickness of the mechanical core on the order of 10-15 km). The observations are compared with inferences from numerical and analogue tectonic experiments for a quantitative assessment of factors such as lithosphere rheology and stratification, lateral variations in lithosphere strength, thermo-mechanical age and distance to the plate boundary on the activity of folding as a mechanism of intra-plate deformation in this area. The observed interference of the patterns of folding appears to be primarily the result of spatial

  2. Three-dimensional density structure of the lunar upper lithosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Du, J.; Chen, C.; Li, Y.

    2011-12-01

    The lithosphere of the Moon has a thickness over 1200 km according to the seismology studies. It records the giant impact events during the processes of solidification. The upper lithosphere including the crust and the upper mantle was thought to be a nonuniform layer in thickness and seismic velocity, yet the lateral density structure remains poorly understood. The global gravity data thus provides a significant constraint on the three-dimensional (3-D) density structure of the Moon. Previous studies assumed that the crust and the mantle have constant density the gravity anomalies are only produced by the variations of interface between the crust and the mantle. Therefore, the constant density may give overestimation or underestimation of the Moho depth. In contrast, we apply a 3-D inverse method in spherical coordinate to the lunar gravity anomaly. It is a direct way in recovering the density structures beneath mascon basins or the lateral density heterogeneities in the upper lithosphere. The gravity anomaly we use in this study is the Bouguer gravity anomaly calculated at 1750 km radius relative to the reference radius, 1737.153 km[1], from the newly gravity field model SGM100i[2] and the topography model LRO_LTM02[1]. In order to understand the global feature of density variation, we truncate the long wavelength anomaly up to the order of 30 to reconstruct the density distribution above the depth of 100 km in the Moon. With the inverse technique, we obtain a global 3-D density structure of the lunar lithosphere down to 100 km depth. The major features are dominated by the mascons with dense materials and the broad region of the farside highland with relative low density mass. From this structure, the huge mass concentrations are found beneath the South Pole-Aitken (SPA) basin, meaning that the oblique impact not only excavated the SPA basin into deep but also made the mantle uplifted close to a depth of 30 km (relative to a 1738 km radius). We suggest here that

  3. Upper mantle flow and lithospheric dynamics beneath the Eurasian region

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Jiang, G.; Jia, Z.; Gao, R.; Fu, R.

    2010-12-01

    plateau, Tarim Basin, Tian Shan Mountains, Zungarian Basin and Altai Mountains correspond successively to the downward flow, the upward flow, the downward flow and the upward flow in the mantle. It shows that the basic tectonic pattern of the interphase basin-and-range structure corresponds to the convective pattern of the interphase downward-and-upward flows. In China-Mongolian Continent, the convective pattern in the eastern area of 105°E structural zone is entirely different from the western area, weak in the East and intensive in the West. West Pacific island arc-underthrust belt is located in the intensive convective areas and along this northeastern belt, there exist a series of interphase downward-and-upward flows. In summary, our results suggest that small-scale mantle convection in the upper mantle is one of the main driving forces of lithospheric dynamics of the Eurasian region. This work was supported by the Sinoprobe-02 project, the National Natural Science Foundation of China (40874067) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070491520)

  4. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-06-01

    gives us confidence that our methodology appropriately models the stress pattern of Africa, and that it may be further applied to other plates on Earth. Our modelling approach allows us to quantify several important features controlling the lithospheric stress pattern. Even though the initial oversimplified model does not fit the observations satisfactorily, it shows how ridge push may create significant compressive stresses in the lithosphere. More complex models show the importance of the density structure of the lithosphere, specifically in the subcrustal lithosphere. The stress regime within the TAP mainly results from a global balance of masses and mass moments between continental and oceanic parts of the plate. The orientation of stresses, in turn, is influenced more by local features expressed by topographic and crustal density variations, whereas existent subcrustal density variations appear to be smoothed by the crust above. The models show that accounting separately for either basal tractions or rheological heterogeneities brings moderate improvement, but the combination of these two mechanisms results in a substantially better match between model and observations. The bending stresses caused by isostatical re-adjustment improve the model match, but they have to be analyzed with caution because of their depth- dependent nature.

  5. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-10-01

    gives us confidence that our methodology appropriately models the stress pattern of Africa, and that it may be further applied to other plates on Earth. Our modelling approach allows us to quantify several important features controlling the lithospheric stress pattern. Even though the initial oversimplified model does not fit the observations satisfactorily, it shows how ridge push may create significant compressive stresses in the lithosphere. More complex models show the importance of the density structure of the lithosphere, specifically in the subcrustal lithosphere. The stress regime within the TAP mainly results from a global balance of masses and mass moments between continental and oceanic parts of the plate. The orientation of stresses, in turn, is influenced more by local features expressed by topographic and crustal density variations, whereas existent subcrustal density variations appear to be smoothed by the crust above. The models show that accounting separately for either basal tractions or rheological heterogeneities brings moderate improvement, but the combination of these two mechanisms results in a substantially better match between model and observations. The bending stresses caused by isostatical re-adjustment improve the model match, but they have to be analysed with caution because of their depth-dependent nature.

  6. Lithosphere structure beneath the Phanerozoic intracratonic basins of North America

    NASA Astrophysics Data System (ADS)

    Kaminski, Edouard; Jaupart, Claude

    2000-05-01

    Four intracratonic basins of North America, the Hudson Bay, Michigan, Illinois and Williston basins, have similar ages and are close to one another. Yet, they exhibit different subsidence histories characterised by different time-scales and sediment thicknesses. They can be explained by local lithosphere thinning and by the cooling of the induced thermal anomaly. Within the framework of 1D thermal models for vertical heat transport, each basin requires a different lithosphere thickness or a different boundary condition at the base of the lithosphere. Heat flow and seismic studies show that, beneath the North American craton, the lithosphere is too thick for the assumption of purely vertical heat transfer to be valid. Thermal models are developed to account for finite thermal anomaly width and for two types of basal boundary conditions, fixed temperature or fixed heat flux. Different subsidence histories are explained by deep lithospheric anomalies of different sizes. The stability of thick continental roots requires the mantle part of the lithosphere to be compositionally buoyant with respect to 'normal' convecting mantle. Localised lithospheric thinning, due for example to plume penetration, results in the emplacement of compositionally denser mantle into the lithosphere. This represents a load which drives permanent flexure. The cooling time and the characteristics of flexure allow constraints on the dimensions of these deep lithospheric anomalies. There are no solutions for lithosphere thicknesses less than 170 km. The Williston and Illinois basins are associated with wide (˜200 km) and thin anomalies (˜100 km), whereas the Michigan and Hudson Bay are located on top of narrow (˜100 km) and tall (˜200 km) anomalies.

  7. Sedimentary loading, lithospheric flexure and subduction initiation at passive margins

    SciTech Connect

    Erickson, S.G. . Dept. of Earth Sciences)

    1992-01-01

    Recent theoretical models have demonstrated the difficulty of subduction initiation at passive margins, whether subduction is assumed to initiate by overcoming the shear resistance on a thrust fault through the lithosphere or by failure of the entire lithosphere in bending due to sedimentary loading. A mechanism for subduction initiation at passive margins that overcomes these difficulties incorporates the increased subsidence of a marginal basin during decoupling of a previously locked margin. A passive margin may decouple by reactivation of rift-related faults in a local extensional or strike-slip setting. Flexure of marginal basins by sedimentary loading is modeled here by the bending of infinite and semi-infinite elastic plates under a triangular load. The geometry of a mature marginal basin fits the deflection produced by loading of an infinite plate in which the flexural rigidity of continental lithosphere is larger than that of oceanic lithosphere. Decoupling of such a locked passive margin by fault reactivation may cause the lithospheric bending behavior of the margin to change from that of an infinite plate to that of a semi-infinite plate, with a resultant increase in deflection of the marginal basin. The increase in deflection depends on the flexural rigidities of continental and oceanic lithosphere. For flexural rigidities of 10[sup 30]-10[sup 31] dyn-cm (elastic lithosphere thicknesses 24--51 km), the difference in deflections between infinite and semi-infinite plates is 15--17 km, so that decoupling sinks the top of the oceanic lithosphere to depths of ca 35 km. Additional sedimentation within the basin and phase changes within the oceanic crust may further increase this deflection. Subduction may initiate if the top of the oceanic lithosphere sinks to the base of the adjacent elastic lithosphere.

  8. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones

  9. Lithospheric cooling as a basin forming mechanism within accretionary crust.

    NASA Astrophysics Data System (ADS)

    Holt, P. J.; Allen, M.; van Hunen, J.; Björnseth, H. M.

    2009-04-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, lithospheric stretching, lithospheric cooling following rifting and, possibly, dynamic topography. In this work forward models have been used to investigate lithospheric growth due to cooling beneath accretionary crust, as a new basin forming mechanism. Accretionary crust is formed from collision of island arcs, accretionary complexes and fragments of reworked older crust at subduction zones, and therefore has thin lithosphere due to melting and increased convection. This is modeled using a 1D infinite half space cooling model similar to lithospheric cooling models for the oceans. The crustal composition and structure used in the models has been varied around average values of accretionary crust to represent the heterogeneity of accretionary crust. The initial mantle lithosphere thickness used in the model was 20 km. The model then allows the lithosphere to thicken as it cools and calculates the subsidence isostatically. The model produces sediment loaded basins of 2-7 km for the various crustal structures over 250 Myrs. Water-loaded tectonic subsidence curves from the forward models were compared to tectonic subsidence curves produced from backstripping wells from the Kufrah and Ghadames basins, located on the accretionary crust of North Africa. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. This shows that lithospheric cooling provides a good method for producing large basins with prolonged subsidence in accretionary crust without the need for initial extension.

  10. Temperature-dependent transient creep and dynamics of cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2013-11-01

    Large-scale mantle convection forms the upper boundary layer (lithosphere) where the vertical temperature drop is about 1300 K. Theoretical rheology and laboratory experiments with rock samples show that transient creep occurs while creep strains are sufficiently small. The transient creep is described by the temperature-dependent Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. The solution of stability problem shows that the lithosphere is stable but small-scale convective oscillations are attenuated very weakly in regions of thickened lithosphere beneath continental cratons (subcratonic roots) where the thickness of the lithosphere is about 200 km. These oscillations create small-scale convective cells (the horizontal dimensions of the cells are of the order of the subcratonic lithosphere thickness). Direction of motion within the cells periodically changes (the period of convective oscillations is of the order of 3 × 108 yr). In this study, the oscillations of cratonic lithosphere caused by initial relief perturbation are considered. This relief perturbation is assumed to be created by overthrusting in orogenic belts surrounding cratons. The perturbation of the Earth's surface relief leads to a fast isothermal process of isostatic recovery. In the presence of vertical temperature gradient, vertical displacements, associated with the recovery process in the lithosphere interior, instantly produce the initial temperature perturbations exciting thermoconvective oscillations in the cratonic lithosphere. These small-amplitude convective oscillations cause oscillatory crustal movements which form sedimentary basins on cratons.

  11. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  12. Cratonic lithosphere: an electrifying view (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, A. G.

    2013-12-01

    Deep-probing electromagnetic studies reveal the vertical and lateral electrical conductivity structure of cratonic lithosphere. At lithospheric temperatures and for silicate mantle minerals, semi-conduction is from small polaron hopping and, in the presence of water, proton conduction, both of which is thermally-driven and can be described by an Arrhenius equation. There is little compositional sensitivity, save for the far higher water contents prevalent in pyroxenes (typically 200-400 wt ppm) compared to olivine (typically 10-100 wt ppm), with the latter exhibiting a depth dependence and the former none. Seismological methods are sensitive to temperature and composition, and virtually insensitive to low amounts of water. Taken together, the two are highly complementary. Seismological and magnetotelluric studies across Southern Africa can be employed together to constraint temperature and water content, where there is a significant difference at 100 km depth between the Kaapvaal Craton compared to the Angola (Congo) Craton compared to the Zimbabwe Craton. The Congo Craton is driest but hottest, the Kaapvaal Craton exhibits laterally-varying water content and is coldest, and the Zimbabwe Craton is the wettest and intermediate in temperature. Such thermal and water content variation results in lateral rheological variation, with the wettest and warmest being more deformable. For the Canadian Shield, there is again significant lateral variation at 100 km, with the Superior Province being mostly dry, and the Slave Craton and Rae/Hearne Provinces being far wetter. By 200 km however, all of the Canadian Shield is dry, consistent with the xenolith-based observations from the Kaapvaal Craton of far higher water contents in olivine at 100 km (50-100 wt ppm) decreasing with depth to around 10 wt ppm at 200 km. The lithosphere beneath the Kimberley area of the Kaapvaal Craton has been forward modeled in a manner that is self-consistent not only with the seismological and

  13. Lithospheric Instabilities within the Northern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Porter, R. C.; Fouch, M. J.

    2012-12-01

    Flat slab subduction and the subsequent removal of the subducting Farallon slab beneath the western United States has had a profound impact on the state of the North American lithosphere. In order to provide new constraints on the structure and evolution of the region's crust and upper mantle, we use surface wave tomography and receiver functions to image the earth beneath the Northern Basin and Range (NBR) and surrounding regions. We combine these results with published geophysical and geochemical data to further characterize lithospheric and asthenospheric processes and relate these to geological observations at the surface. Our initial results show high-velocity upper mantle, interpreted as lithosphere, beneath the center of the NBR and thinner lithosphere along its western, southern, and eastern margins. The zone of thickest lithosphere corresponds to areas with relatively thick crust, high elevations, and an absence of historic seismicity greater than magnitude 5.0. This region of thicker lithosphere also underlies a zone of reduced volcanic rock exposure relative to surrounding regions. Further, within the region there are no volcanic rocks in the NAVDAT database younger than 10 Ma, with the exception of Lunar Craters located in the south-central NBR. The shallow lithosphere-asthenosphere boundary observed along the margins of the NBR suggests that significant lithospheric thinning has occurred in these areas. This thinning is likely related to either extensional shear stresses or to the removal of lithospheric material, perhaps leading to accentuated strain along the margins of the Basin and Range. We interpret these data in the context of gravitational instabilities resulting in the removal of lithospheric material. A lithospheric downwelling has previously been identified within the center of the NBR based on high-velocity upper-mantle material observed in body wave tomography, a zone of weak or absent horizontal anisotropic fabric observed in shear

  14. Deep thermal structure and thickness of the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Jaupart, C.; Mareschal, J.; Kaminski, E.

    2002-12-01

    There is no doubt that cratonic lithosphere is much thicker than oceanic lithosphere, but large uncertainties remain on its thickness, deep thermal structure, physical properties (density, rheology) and composition. Heat flow and crustal heat production data in North America demonstrate that, in steady-state conditions, heat flow variations are essentially due to changes of crustal heat production. Crustal models in several different geological provinces and considerations on the thermal stability of the crust through geological time constrain the mantle heat flow to be in the range 11-16 mWm-2. For such low values, heat flow data are not sensitive to small, but significant, lateral variations of the mantle heat flow (≈ 20%). Downward extrapolation of temperature profiles requires knowledge of thermal conductivity and heat production in the lithospheric mantle. For a thick lithosphere, surface heat flow is not in equilibrium with the instantaneous heat production and basal heat flow, and surface measurements record a time-average. With current estimates of heat production in the lithospheric mantle (≈ 0.02 mWm-3), thermal models rule out that lithospheric thickness is greater than 330 km. Using heat flow data and other constraints on lithospheric temperatures, such as xenolith (P,T) equilibration conditions, one can only construct geotherms in a stable conductive layer. Thus, comparison with seismic constraints cannot be made without considering the dynamical interactions with the convective mantle. A small-scale convection model shows that temperatures at the base of the continental lithosphere may not be equal to those of the well-mixed (isentropic) oceanic convecting mantle. Constraints on deep lithospheric structure can also be obtained using thermal transients, as recorded for example by sedimentary accumulations in intracratonic basins. The stability of thick roots requires the lithospheric mantle to be compositionally buoyant. Localized thinning results

  15. Microcrystalline diamonds in the oceanic lithosphere and their nature

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Sevastyanov, V. S.; Karpov, G. A.; Shilobreeva, S. N.; Maksimov, A. P.

    2016-07-01

    The carbon isotope composition of microdiamonds found in products of the Tolbachik Volcano eruption, Kamchatka (porous lavas and ash), was studied. The isotope composition of microdiamonds (with an average value of δ13C =-25.05‰) is close to that of microsized carbon particles in lavas (from-28.9 to-25.3‰). The general peculiarities of the diamond-forming environment include (1) no evidence for high pressure in the medium; (2) a reduced environment; and (3) mineralogical evidence for the presence of a fluid. The geochemical data characterizing the type of diamonds studied allow us to suggest that they were formed in accordance with the mechanism of diamond synthesis during cavitation in a rapidly migrating fluid, which was suggested by E.M. Galimov.

  16. Evolution of the lithosphere in Pakistan

    NASA Astrophysics Data System (ADS)

    Farah, Abul; Abbas, Ghazanfar; De Jong, Kees A.; Lawrence, Robert D.

    1984-06-01

    The geological setting of Pakistan in the framework of the modern concept of plate tectonics is unique in the sense that, within an area of about 800,000 km 2, critical tectonic junctions of different interacting plates and microplates are present in an environment where field exposures are excellent. Here we discuss the dynamics of these various plate boundaries. Two types of active plate boundaries are conspicuous: (1) convergent boundaries characterized by continent-continent collision, obduction, and thrusting in the northern region of the Himalaya and by oceanic crust subduction with a volcanic arc and a wide accretionary wedge in the southern region of Chagai and Makran; (2) a transform boundary, the Chaman transform zone, characterized by very large strike-slip and lesser thrusting. The Chaman transform zone connects the Makran convergence zone, where oceanic lithosphere is being subducted beneath the Lut and Afghan microplates, with the Himalayan convergence zone, where the Indo-Pakistan lithosphere is underthrusting Eurasia. The Chaman zone is at present an intracontinental plate boundary with oblique motion, characterized by north-south strike-slip faults and eastward thrusting and folding in the Kirthar-Sulaiman mountain belt. This mountain belt, the northwestern margin of the Indo-Pak subcontinent, was an Atlantic-type margin from the late Paleozoic until the Cretaceous. In the Cretaceous, the continental margin became a plate boundary; a thrust belt was formed in the Paleocene, and fragments of the oceanic crust were obducted, either as thrust sheets (Muslimbagh) or as an ophiolitic melange (Bela and Waziristan).

  17. Lithospheric Architecture of the Hudson Bay Region

    NASA Astrophysics Data System (ADS)

    Eaton, D.; Darbyshire, F.

    2009-05-01

    Hudson Bay is a vast inland sea that penetrates deeply into north-central Canada, forming a conspicuous element of the coastline and concealing several fundamental tectonic elements of North America, including most of the Paleoproterozoic Trans Hudson orogen (THO) and the Paleozoic Hudson Bay basin. The THO formed due to a collision between two Archean domains, the Superior and Churchill Provinces of the Canadian Shield, and is similar in scale and tectonic style to the modern Himalayan-Karakorum orogen. Tectonic reconstructions suggest that the lobate shape of the indentor (Superior Province) formed an orogenic template that exerted a persistent influence on the tectonic evolution of the region, resulting in anomalous preservation of juvenile crustal material. Based on analysis of gravity and magnetic data, we propose a model in which juvenile crust in the southeastern part of Hudson Bay formed within an island-arc setting proximal to the Superior Province, in contrast to the Reindeer Zone of Saskatchewan and Manitoba which accreted first to the Churchill Province. Thick, cold and refractory lithosphere that underlies the Bay is well imaged by surface-wave studies and comprises a large component of the cratonic mantle keel that forms the nucleus of the North American continent. The existence of an unusually thick mantle root beneath Hudson Bay indicates that subduction and collision are root-forming (or at least root-preserving) processes. Although the Hudson Bay basin is the largest by surface area of four major intracratonic basins in North America, it is also the shallowest. Available evidence suggests that basin subsidence may have been triggered by eclogitization of crust that was previously thickened during the Trans-Hudson orogeny. Relatively stiff Early Paleozoic lithosphere may have inhibited subsidence of the Hudson Bay basin relative to other basins of similar age in North America.

  18. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji.

    PubMed

    Chen, W P; Brudzinski, M R

    2001-06-29

    We combine spatial variations of P- and S-wave speeds, 1000 fault plane solutions, and 6600 well-determined hypocenters to investigate the nature of subducted lithosphere and deep earthquakes beneath the Tonga back-arc. We show that perplexing patterns in seismicity and fault plane solutions can be accounted for by the juxtaposition of a steep-dipping Wadati-Benioff zone and a subhorizontal remnant of slab that is no longer attached to the actively subducting lithosphere. The detached slab may be from a previous episode of subduction along the fossil Vitiaz trench about 5 to 8 million years ago. The juxtaposition of slabs retains a large amount of subducted material in the transition zone of the mantle. Such a configuration, if common in the past, would allow the preservation of a primordial component in the lower mantle.

  19. The Lithospheric Structure of Southern Africa from Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Jones, A. G.; Atekwana, E. A.

    2014-12-01

    Measurements of mantle electrical conductivity, made through the magnetotelluric method, offer considerable insight into the structure of cratonic lithosphere. A particularly expansive data set has been collected in Southern Africa, started through the Southern Africa Magnetotelluric Experiment (SAMTEX) experiment, now continuing north through Zambia as part of the Project for Rift Initiation Development and Evolution (PRIDE) experiment. The combined data set highlights large variability in lithospheric structure that broadly correlates with surface geology: cratonic lithosphere is generally thick and electrically resistive, while much thinner lithosphere is seen beneath mobile belts. In areas of relatively uniform resistivity structure, we have constructed resistivity-depth profiles and use new laboratory data to place constraints on the water content of lithospheric mantle. Uncertainty in our estimates arises from differences between different laboratory results, but our data are generally consistent with a slightly damp upper lithospheric mantle above a dry and strong cratonic root. Other areas show complexity of structure that is difficult to understand using current knowledge of conductivity -the Bushveld complex, where the mantle is highly conductive, is one such example. In southwestern Zambia, the lithosphere is seen to be very thin (around 50km) beneath mobile belt terrain, as was inferred nearly 40 years ago on the basis of high heatflow. The mantle is highly conductive, most likely due to a combination of elevated temperatures, water content and perhaps a trace amount of melting. This anomalous structure may be linked to the southwest propagation of the East African Rift system.

  20. SEASAT observations of lithospheric flexure seaward of trenches

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Martin, C. F.

    1983-01-01

    Lithospheric flexure seaward of deep ocean trenches in SEASAT altimeter observations of the marine geoid. In fact, mechanical models of lithospheric flexure can be tested directly on the SEASAT altimeter data. A simple elastic model was used for the oceanic lithosphere and, after least squares adjustments, estimates of model parameters were recovered including Outer Rise (OR) amplitude, OR wavelength, and effective lithospheric thickness. Effective lithospheric thickness was recovered for five regions: the Mariana, the Kuril, the Philippine, the Aleutian and the Middle America OR. These results support the suggestion of Bodine et al. (1981) that effective thickness, T, increased with age of lithosphere in approximate accord with the relation T approximately equals x age to the 1/2 power where C approximately equals 4 km x my to the -1/2 power. Altimetric results agree more closely with this relation than do published results based on bathymetric data. The close agreement with the thickness-age relation suggests that there is no longer any need to assume that significant horizontal compression acts across the Kuril, Marianas and Izo-Bonin trenches. This thickness-age relation implies that flexural strength of the oceanic lithosphere is temperature controlled.

  1. Rejuvenation of the lithosphere by the Hawaiian plume.

    PubMed

    Li, Xueqing; Kind, Rainer; Yuan, Xiaohui; Wölbern, Ingo; Hanka, Winfried

    2004-02-26

    The volcanism responsible for creating the chain of the Hawaiian islands and seamounts is believed to mark the passage of the oceanic lithosphere over a mantle plume. In this picture hot material rises from great depth within a fixed narrow conduit to the surface, penetrating the moving lithosphere. Although a number of models describe possible plume-lithosphere interactions, seismic imaging techniques have not had sufficient resolution to distinguish between them. Here we apply the S-wave 'receiver function' technique to data of three permanent seismic broadband stations on the Hawaiian islands, to map the thickness of the underlying lithosphere. We find that under Big Island the lithosphere is 100-110 km thick, as expected for an oceanic plate 90-100 million years old that is not modified by a plume. But the lithosphere thins gradually along the island chain to about 50-60 km below Kauai. The width of the thinning is about 300 km. In this zone, well within the larger-scale topographic swell, we infer that the rejuvenation model (where the plume thins the lithosphere) is operative; however, the larger-scale topographic swell is probably supported dynamically.

  2. Lithospheric structure of Venus from gravity and topography

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Alberto; Ruiz, Javier; Kirby, Jon F.; Romeo, Ignacio; Tejero, Rosa; Capote, Ramón

    2015-11-01

    There are many fundamental and unanswered questions on the structure and evolution of the venusian lithosphere, which are key issues for understanding Venus in the context of the origin and evolution of the terrestrial planets. Here we investigate the lithospheric structure of Venus by calculating its crustal and effective elastic thicknesses (Tc and Te, respectively) from an analysis of gravity and topography, in order to improve our knowledge of the large scale and long-term mechanical behaviour of its lithosphere. We find that the venusian crust is usually 20-25 km thick with thicker crust under the highlands. Our effective elastic thickness values range between 14 km (corresponding to the minimum resolvable Te value) and 94 km, but are dominated by low to moderate values. Te variations deduced from our model could represent regional variations in the cooling history of the lithosphere and/or mantle processes with limited surface manifestation. The crustal plateaus are near-isostatically compensated, consistent with a thin elastic lithosphere, showing a thickened crust beneath them, whereas the lowlands exhibit higher Te values, maybe indicating a cooler lithosphere than that when the venusian highlands were emplaced. The large volcanic rises show a complex signature, with a broad range of Te and internal load fraction (F) values. Finally, our results also reveal a significant contribution of the upper mantle to the strength of the lithosphere in many regions.

  3. Tectonic determinations of lithospheric thickness on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The concept of the Maxwell time of a viscoelastic material (4.5) is used in conjunction with calculated thermal profiles to evaluate the significance of tectonic estimates of lithospheric thickness. Thermal lithospheric thicknesses provide fundamental constraints on planetary thermal histories that complement the constraints provided by dateable surface deposits of endogenic origin. Lithospheric constraints are of particular value on the icy satellites where our understanding of both rheology and surface ages is considerably poorer than it is for the terrestrial planets. Certain extensional tectonic features can and have been used to estimate lithospheric thicknesses on Ganymede and Callisto. These estimates, however, refer to the depth of the elastic lithosphere defined by the zone of brittle failure. The relation between the elastic lithosphere and the thermal lithosphere (generally defined by the zone of conductive heat transport) is not straightforward, because the depth of brittle failure depends not only on the thermal profile, but also on rheology and strain rate (or the characteristic time over which stresses build towards failure). Characteristic time considerations are not trivial in this context because stresses generating brittle failure on the icy satellites may be produced by impacts, with characteristic times of seconds to days, or by geologic processes with time scales of hundreds of millions of years.

  4. Hudson Bay Lithospheric Experiment: Constraints on Lithospheric Thickness From Surface Waves

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.

    2008-12-01

    HuBLE (Hudson Bay Lithospheric Experiment) is an international initiative to study the structure, dynamics and evolution of the Hudson Bay region. In particular, we seek to understand the interaction between the Archean cratons surrounding the region and the underlying Paleoproterozoic Trans-Hudson Orogen, which formed during the collision of the Superior and Churchill Provinces at 1.9-1.8 Ga. Global and continental- scale tomographic models indicate a thick, cold and refractory lithosphere beneath Hudson Bay. Most tomographic models suggest that this region is associated with the highest velocities and thickest seismological lithosphere of the Canadian Shield. The HuBLE project commenced in 2006, with the deployment of a number of telemetered broadband seismograph stations on the east and west coasts of Hudson Bay. Along with existing stations from the POLARIS/FedNor initiative in northern Ontario, and permanent Canadian stations, the deployment ringed Hudson Bay on three sides. A second phase of deployment in 2007, using non-telemetered broadband stations, completed the coverage of the region. A considerable number of large teleseismic earthquakes have been recorded by the array since its installation, and the data are generally of high quality. We measure Rayleigh wave phase velocities for paths crossing Hudson Bay, using the two-station cross-correlation method of Meier et al. (2004). Average phase velocity dispersion curves are constructed using data from multiple earthquakes along each path, resulting in a set of reliable dispersion measurements in the period range ~15--250~seconds. The data set therefore permits constraint of lithospheric shear wave velocity structure from mid-crustal to asthenospheric depths beneath the continent. Preliminary 1D shear wave velocity models of path-averaged structure are estimated using a smooth linearised inversion technique (Maupin & Cara, 1992). The models show a typically 'shield- type' signature, with a high

  5. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

    SciTech Connect

    David M. Hamby

    2008-01-29

    Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and

  6. Lithospheric cooling and thickening as a basin forming mechanism

    NASA Astrophysics Data System (ADS)

    Holt, Peter J.; Allen, Mark B.; van Hunen, Jeroen; Bjørnseth, Hans Morten

    2010-12-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, and lithospheric stretching followed by cooling and thermal subsidence. Neither of these mechanisms works for a group of large basins, sometimes known as "intracontinental sags". In this paper we investigate cooling and thickening of initially thin lithosphere as a basin forming mechanism, by a combination of forward modelling and a backstripping study of two Palaeozoic North African basins: Ghadames and Al Kufrah. These are two of a family of basins, once unified, which lie over the largely accretionary crust of North Africa and Arabia. Such accretionary crust tends to be juvenile, consisting of amalgamated island arcs, accretionary prisms and melanges, and typically has near-normal crustal thicknesses but initially thin mantle lithosphere. Post-accretion subsidence is modelled using a plate cooling model similar to cooling models for oceanic lithosphere. The crustal composition and thickness used in the models are varied around average values of accretionary crust to represent likely heterogeneity. The model allows the lithosphere to thicken as it cools and calculates the resulting isostatic subsidence. Water-loaded tectonic subsidence curves from these forward models are compared to tectonic subsidence curves produced from backstripped wells from Al Kufrah and Ghadames Basins. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. The model produces sediment loaded basins of 2-7 km thickness for the various crustal assemblies over ~ 250 Myr. This shows that lithospheric cooling provides a viable method for producing large basins with prolonged subsidence, without the need for initial extension, provided the condition of initially thin mantle lithosphere is met.

  7. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  8. Radioxenon spiked air

    SciTech Connect

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  9. Radioxenon spiked air.

    PubMed

    Watrous, Matthew G; Delmore, James E; Hague, Robert K; Houghton, Tracy P; Jenson, Douglas D; Mann, Nick R

    2015-12-01

    Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities. PMID:26318775

  10. Radioxenon spiked air.

    PubMed

    Watrous, Matthew G; Delmore, James E; Hague, Robert K; Houghton, Tracy P; Jenson, Douglas D; Mann, Nick R

    2015-12-01

    Four of the radioactive xenon isotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This paper focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  11. Lithospheric structure on Venus from tectonic modelling of compressional features

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1987-01-01

    In previous studies, extensional models were used that incorporated realistic rheologies in order to constrain lithospheric structure. Lithospheric modelling is considered herein from the standpoint of compressional deformation. Features of presumed compressional tectonic origin are reviewed and a model for compressional folding based on lithospheric strength envelopes are presented that include the effects of both brittle and ductile yielding as well as finite elastic strength. Model predictions are then compared with the widths and spacings of observed tectonic features and it is concluded that the results are consistent with a thin crust overlying a relatively stronger mantle, with thermal gradients probably in the range of 10 to 15 deg/km.

  12. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Bezada, Maximiliano; Niu, Fenglin; Palomeras, Imma; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep; Schmitz, Michael; Miller, Meghan

    2016-04-01

    Subduction recycling of oceanic lithosphere, a central theme of plate tectonics, is relatively well understood. Recycling continental lithosphere is more difficult to recognize, can take a number of different forms, and appears to require an external trigger for initiation. Delamination and localized convective downwelling are two processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. We describe a related process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Body wave tomograms from dense broadband seismograph arrays in northeastern South America (SA) and the western Mediterranean show larger than expected volumes of positive velocity anomalies which we identify as the subducted Atlantic slab under northeastern SA, and the Alboran slab beneath the Gibraltar arc (GA). The positive anomalies lie under and are aligned with the continental margins at sublithospheric depths. The continental margins along which the subduction zones have traversed, i.e. the northeastern SA plate boundary and east of GA, have significantly thinner lithosphere than expected. The thinner than expected lithosphere extends inland as far as the edges of nearby cratons as determined from receiver function images and surface wave tomography. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle and include the lower crust, as around GA, inferred by results from active and passive seismic experiments. Viscous removal of continental margin lithosphere creates LAB topography leading

  13. Olympus Mons shaped by lithospheric flexure

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; van Wyk de Vries, B.; Holohan, E. P.; Murray, J. B.; Troll, V.

    2009-12-01

    Olympus Mons is the biggest volcano on Mars, towering 22 km above the NW flank of the Tharsis-Syria upland. Olympus has a characteristic morphology featuring a flat summit, convex upper flanks, concave lower flanks, and a basal escarpment. The summit hosts a six-caldera collapse complex. The upper flanks are terraced in a circumferential, imbricate pattern, whilst the lower flanks are covered in leveed lava channels and lava fans. The basal scarp surrounds much of the shield and reaches heights of 6 km in places. Beyond the escarpment lie aureole deposits, particularly prominent to the NW, downslope from the Tharsis Rise. Although the caldera complex probably developed due to multi-cyclic recharge and evacuation of magma chambers within the edifice, the origin of the remaining features is contentious. Flank terraces have been ascribed to lithospheric flexure, magma chamber tumescence, or volcano spreading. The basal scarp has been linked to tectonic, eruptive, and mass movement processes. The aureole deposits are generally regarded as causally related to the escarpment, but they too have been attributed to a range of formation mechanisms. Previous attempts to explain the genesis of this suite of structures have primarily invoked lithospheric flexure or volcano spreading, but no holistic model yet exists. Here we show that lithospheric flexure, with coeval slip along a basal décollement, is the leading candidate mechanism for the formation of the terraces, scarp, and aureole deposits of Olympus Mons. In a set of scaled analogue experiments, we loaded a ductile silicone putty “lithosphere” with a brittle sand cone “edifice”; a thin layer of putty below the cone served as a detachment surface. Flexure of the underlying silicone produced imbricate, outward-verging convexities on the cone’s upper- and mid flanks, a concave-upward annular trough on its lower flanks, and a prominent scarp at its base. The convexities closely resembled the geometry of terraces

  14. Investigating the Lithospheric Structure of Southern Madagascar

    NASA Astrophysics Data System (ADS)

    Tilmann, F. J.; Yuan, X.; Rumpker, G.; Heit, B.; Rambolamana, G.; Rindraharisaona, E.; Priestley, K. F.

    2013-12-01

    The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material, with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (> 1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (<120 km) throughout Madagascar, but are based on sparse data and cannot resolve the difference between eastern and western Madagascar. We are operating a ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the

  15. Determination of the Earth's lithospheric magnetic field with satellite data

    NASA Astrophysics Data System (ADS)

    Kotsiaros, Stavros; Olsen, Nils; Finlay, Christopher

    2016-07-01

    Satellites such as Magsat, Ørsted, CHAMP and Swarm provide the most effective means of determining on a global scale the Earth's lithospheric magnetic field. In particular, the Swarm three-satellite constellation mission aims at capturing the smallest-scale features of the lithospheric field that have ever been captured from space. To achieve that, explicit advantage of the constellation aspect of Swarm has to be taken by using gradient estimates. We derive lithospheric field models using more than one year of magnetic gradient data, which are approximated by first differences of field vector data between the two lower Swarm satellites and along each satellite orbit, respectively. We find that gradient data are less sensitive to large-scale external field fluctuations. Moreover, gradient data appear to be a very efficient way of increasing the resolution of lithospheric field models and thus providing an initial validation of the gradient concept underlying the Swarm mission.

  16. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013.

    PubMed

    Ringbom, A; Axelsson, A; Aldener, M; Auer, M; Bowyer, T W; Fritioff, T; Hoffman, I; Khrustalev, K; Nikkinen, M; Popov, V; Popov, Y; Ungar, K; Wotawa, G

    2014-02-01

    Observations made in April 2013 of the radioxenon isotopes (133)Xe and (131m)Xe at measurement stations in Japan and Russia, belonging to the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7-8 weeks later. More than one release is required to explain all observations. The (131m)Xe source terms for each release were calculated to 0.7 TBq, corresponding to about 1-10% of the total xenon inventory for a 10 kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test.

  17. Introduction of sub-lithospheric component into melted lithospheric base by propagating crack: Case study of migrated Quaternary volcanoes in Wudalianchi, China

    NASA Astrophysics Data System (ADS)

    Chuvashova, Irina; Sun, Yi-min

    2016-04-01

    mantle beneath the northern Songliao basin and that admixture of the common sub-lithospheric component was locally introduced into the melted region by mechanism of propagating crack. This study is based on analytical data obtained for volcanic rocks in the Chinese-Russian Wudalianchi-Baikal Research Center on recent volcanism and environment. Major oxides were determined by "wet chemistry" at the Institute of the Earth's Crust SB RAS, Irkutsk. Trace-elements were measured by ICP-MS technique using mass-spectrometer Agilent 7500ce of the Center for collective use "Microanalysis" (Limnological Institute of SB RAS, Irkutsk) and Nd, Pb, and Sr isotopes by TIMS technique using mass-spectrometer Finnigan MAT 262 of the Center for collective use "Geodynamics and geochronology" (Institute of the Earth's Crust SB RAS). The work was supported by the RFBR grant № 16-05-00774. References Chuvashova, I.S., Rasskazov, S.V., Liu, J., Meng, F., Yasnygina, T.A., Fefelov, N.N., Saranina, E.V., 2009. Isotopically-enriched components in evolution of Late Cenozoic potassic magmatism in Heilongjiang province, northeast China, Proceedings of the Irkutsk State University. Series of Earth Sciences, 2 (2), pp. 181-198. Guide book for field mission to Wudalianchi National Park, China, 2010. Prepared by Wudalianchi National Park and Nature Management Committee Heilongjiang province, 50 p. Foulger, G.R., 2010. Plates vs. plumes: a geological controversy. Wiley-Blackwell, 328 p. Rasskazov, S.V., Yasnygina, T.A., Chuvashova, I.S. Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sub-lithospheric convection, and the lithosphere. Russian Journal of Pacific Geology. 2014. V. 8 (5), 355-371. Wang, Y., Chen, H., 2005. Tectonic controls on the Pleistocene-Holocene Wudalianchi volcanic field (northeastern China), Journal of Asian Earth Sciences, 24, pp. 419-431.

  18. Lithospheric Stress and Deformation (Paper 7R0323)

    NASA Astrophysics Data System (ADS)

    McNutt, Marcia

    1987-07-01

    The study of the mechanisms, magnitudes, and modes of lithospheric stress and deformation occupies a central position in the discipline of Tectonophysics. It is therefore difficult in assembling a comprehensive review to place limits on what should be included. For example, one cannot discuss stress and deformation apart from considerations of the rheological models of the lithosphere which link the two and ultimately control the behavior of plates at their margins and in their interiors. Once admitting to the importance of rheological considerations in discussing stress and deformation, one is then compelled to include information relating to the thermal state of the lithosphere, since temperature is one of the foremost environmental variables controlling rheology. Furthermore, lithospheric processes cannot be considered in isolation from those affecting the asthenosphere, since surely there exists some coupling between the motion of the lithosphere and convection in the Earth's interior. In fact, an understanding of lithospheric stress and deformation can be considered a prerequisite to solving problems in geodynamics because it is through the lithospheric filter that one detects the consequences of thermal and compositional anomalies at greater depth. The topic of this report cannot even be cleanly separated from reviews in other disciplines such as Seismology and Geodesy. The magnitude and orientation of lithospheric stress is often indicated by earthquakes, while lithospheric strain can be observed geodetically. The philosophy I have adopted here is that some overlap with other review papers in this series is unavoidable, and probably desirable from the standpoint of emphasizing how recent work n other areas of geophysics has contributed to the advancement in our understanding of the lithosphere's state-of-stress and mechanisms of deformation. I have, however, resisted the temptation to include extraterrestrial studies, presumably covered in the Planetary

  19. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

    PubMed

    Schaefer, Bruce F; Turner, Simon; Parkinson, Ian; Rogers, Nick; Hawkesworth, Chris

    2002-11-21

    The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

  20. The Changing Lithosphere: formation of minerals and dissapearance of rocks

    NASA Astrophysics Data System (ADS)

    Vignola, Teresa; Floriano, Michele A.

    2014-05-01

    dissolve under acid conditions;as such substances can be present in rain, for example. A clear example in nature of calcium carbonate dissolution by acid rain is the karst.The phenomenon was discussed with the aid ofimages depicting karst landscapes wherethe erosion phenomena produced by acid precipitations were evident. Therefore, acidity is one of the causes of erosion triggered by atmospheric precipitation and increasing acidity produced by volcanic eruptions or anthropic activities will enhance lithosphere erosionphenomena.

  1. The effects of strain heating in lithospheric stretching models

    NASA Technical Reports Server (NTRS)

    Stanton, M.; Hodge, D.; Cozzarelli, F.

    1985-01-01

    The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.

  2. Lithospheric imaging via teleseismic scattering tomography

    NASA Astrophysics Data System (ADS)

    Frederiksen, A. W.; Revenaugh, J.

    2004-12-01

    The coda of the teleseismic P phase consists largely of energy scattered by small inhomogeneities in the receiver-side lithosphere. Given large collections of teleseismic data from dense permanent networks, previous workers have successfully back-propagated coda energy back to scattering source points using various kinematic migration schemes, as well as by inverting using an inverse scattering/radon transform approach. Under the Born approximation, seismic scattering is a linear process; therefore it is possible to approach coda scattering as a linear waveform inversion problem, mathematically similar to transmission-based tomography. Assuming ray-theoretical propagation and Rayleigh scattering, we pose the inverse scattering problem in tomographic form, and recover perturbations in density and P and S velocities from Pp and Ps scattered data. The method is applied to data from the Southern California Seismic Network (SCSN) covering the San Jacinto-Anza region. The results show a considerable correlation between seismicity and velocity perturbation structure, particularly in the region between the Mission Creek and Banning fault branches. Features connecting the Coyote Creek and Elsinore faults at right angles are correlated with seismicity lineations and may represent conjugate faulting with no surface expression.

  3. Swarm magnetic gradients for lithospheric modelling (SLIM)

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros; Brönner, Marco; Haagmans, Roger; Fuchs, Martin; Holzrichter, Nils; Olsen, Nils; Baykiev, Eldar

    2016-04-01

    We present first results of a feasibility study to use magnetic gradient information derived from Swarm data for crustal field modelling. The study is part of ESA's Support To Science Element (STSE) Swarm+ Innovations. In a first step, magnetic gradients have been derived from the observations taken by the three Swarm satellites, with emphasis on the two side-by-side flying spacecraft. Next, these gradients are used to compute magnetic gradient grids at 450 km altitude (the present mean altitude of the lower Swarm satellites) for one example region, North-West Europe. The suggested area comprise both exposed basement geology in southern Sweden and Norway with crustal scale magnetic anomalies and the Sorgenfrei-Tornquist Zone, a well-studied large scale tectonic fault system. With sensitivity analysis we studied the added benefit of the information from the gradient grids for lithospheric magnetic field modelling. A wealth of aeromagnetic data and additional constraining information for the example area allows us to validate our modelling results in great detail.

  4. Thermal thickness and evolution of Precambrian lithosphere: A global study

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  5. Interaction of Sublithospheric Mantle with a Complex Continental Lithosphere: Radiogenic Isotope Constraints

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Jean, M. M.; Shervais, J. W.; Graham, D. W.; Vetter, S.

    2012-12-01

    The Yellowstone-Snake River Plain (YSRP) consists of an 800 km swath of bimodal volcanic centers in southern Idaho and western Wyoming formed as the North American continent overrode the Yellowstone hotspot since ˜17 Ma. The rhyolitic centers show a time transgressive relationship with plate motion, but basalt volcanism persisted long after the locus of rhyolitic volcanism moved to the NE. The hotspot track is underlain by a 10-km-thick mafic sill complex that contains much of the basaltic melt produced. Seismic tomography, the age progressive nature, its relationship the Columbia River Basalts, and the isotopic signature of 3He/4He in the basalts suggest presence of a mantle hotspot originating in the sublithospheric mantle. Basalt major and trace element, and He isotope systematics are consistent with a deep mantle source, similar to ocean island basalt (OIB). In contrast, the Pb, Sr, and Nd isotopes are indistinguishable from xenoliths and melts from sub-continental lithospheric mantle (SCLM) underlying the YSRP. The SCLM stabilized in the Late Archean to Early Proterozoic, and was subsequently rejuvenated/enriched during subduction related metasomatism. Initial Pb and Sr isotope ratios are higher, and Nd lower than expected for a depleted upper mantle source of Late Archean age. Incompatible element concentrations in OIB-plume sources are more than 10X lower than found in the SCLM. Assimilation of small percentage partial melts of continental lithosphere into larger degree partial melts derived from the sublithospheric mantle source produces hybrid magmas whose Pb (Nd,Sr,Hf) isotopic compositions are controlled by the isotopic composition of the continental component, while the deeper mantle source dominates the 3He/4He signature. We tested this prediction with analyses of 75 basalts from the YSRP. The Pb isotope results are consistent with mixing between an OIB-like plume component with 1% to 4% melt derived from an enriched SCLM source and show that the

  6. Lithosphere - asthenosphere boundary (LAB) around the Trans-European Suture Zone (TESZ)

    NASA Astrophysics Data System (ADS)

    Plomerova, J.; Babuska, V.; Vecsey, L.; Passeq Working Group

    2012-04-01

    platform in the west and the East European Craton in the east. Lateral variations of anisotropic parameters across the zone indicate differences in mantle lithosphere fabrics on both sides. Distinct deepening of the LAB towards the east across the TESZ is detected by different approaches of the LAB modelling, but on the other hand, it is the region where European LAB models differ substantially (Jones et al., Lithos 2010). This finding re-opens a question to which extent different methods identify the same discontinuity, though discrepancies may also reflect differences in resolution and accuracy of individual methods. On the other hand, if there are differences in a nature of the LAB, we should try to understand which physical parameters are relevant to the most important interface in the upper mantle from the plate-tectonic point of view.

  7. Removal of Brown Colour From Diamonds During Storage in the Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Smith, E. M.; Helmstaedt, H. H.

    2009-05-01

    Brown colour in natural diamonds is produced by plastic deformation during residence in the mantle. Dislocation movement generates vacancies, which aggregate into clusters of about 30-60 vacancies. The resulting electronic configuration at each cluster leads to the broad, featureless absorption pattern associated with common brown colour. Less commonly, other brownish colours can be attributed to hydrogen or isolated nitrogen atoms, H4 centres, or possibly oxygen. The common brown colour can be removed by high-pressure-high-temperature (HPHT) treatment. This process involves pressures and temperatures of 5-9 GPa and 1800-2700 ° C, respectively. Treatment may take several minutes or hours. It has been suggested that brown diamonds stored in the lithospheric mantle should lose their colour by analogy to HPHT treatment. If so, brown colour must be the product of late deformation (close to kimberlite eruption) or the brown diamonds must be stored above the diamond stability field (in a cooler part of the lithosphere). Is it reasonable to expect brown colour to be destroyed in the lithospheric mantle? An objective analysis of this question must consider temperature. Higher temperatures result in faster colour removal. HPHT treatment occurs at 1800-2700 ° C, whereas inclusion thermometry places most lithospheric diamonds in the range of 900-1400 ° C. Destruction of the brown colour centre involves breaking up vacancy clusters. The activation energy required to do this can be estimated as the energy of an isolated monovacancy, minus the energy per vacancy of the cluster, plus the vacancy migration energy. Data from recent literature produces a value of 7.7 eV. The Arrhenius equation can be modified to show how reaction time varies with temperature. The activation energy can be used in conjunction with experimental HPHT data to extrapolate reaction times from HPHT temperatures to lithospheric mantle temperatures. For a certain reduction in brown colour produced by HPHT

  8. Lithospheric Structure and Earthquakes beneath Kashmir Himalaya

    NASA Astrophysics Data System (ADS)

    Wanchoo, S. K.; Powali, D.; Sharma, S.; Mitra, S.; Priestley, K. F.; Gaur, V. K.

    2014-12-01

    Over the last two centuries, convergence between India and Tibet has outpaced the cumulative slip released through Himalayan earthquakes and have resulted in seismic gap across Kashmir Himalaya. Recent GPS geodetic data from Kashmir show that the ongoing convergence is accumulated as elastic strain within a ~200 km wide locked decollement and is sufficiently stressed to drive a magnitude 8 or greater event. Recently published focal mechanism of the mb 5.7 (2013) Kishtwar earthquake and hypocentral distribution of small-to-moderate seismicity for the past 60 years, showed that the down dip end of the locked decollement is currently active and could possibly be the site of initiation of a future great earthquake. In order to assess the seismic hazard in this Kashmir gap, we require a detailed knowledge of the lithospheric structure and use it to reliably locate active faults. A pilot seismological experiment, of nine broadband seismographs, have been deployed across the Kashmir Himalaya to achieve this goal. These stations are sited on the Siwalik Himalaya (AKNR, NGRT, SMVD, SUND and TAPN), the Lesser Himalaya (RAMN and UDHM) and the Higher Himalaya (BADR and PHAG), and straddle major Himalayan thrust zones. Most of these stations have recorded high quality broadband data for a year, which has been used to compute receiver functions and relocate local earthquakes. The Moho Ps is the strongest arrival on all the receiver functions, and highlights the base of the underthrusting Indian crust as a large impedance contrast boundary. Forward modeling of receiver functions show that the crustal thickness increases from ~40 km beneath the Siwalik Himalaya to ~48 km beneath the Lesser Himalaya and to ~52 km beneath the Higher Himalaya. The average crustal Vp/Vs points to a felsic Indian crust underthrusting the Kashmir Himalaya. Relocated local earthquakes cluster around the hypocenter of the Kishtwar earthquake and attests to the active downdip end of the locked decollement.

  9. Global model for the lithospheric strength and effective elastic thickness

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  10. Evolution of the lithosphere beneath the Michigan Basin

    NASA Astrophysics Data System (ADS)

    Ahern, Judson L.; Dikeou, Panayes J.

    1989-10-01

    Using depths to formation tops from 480 wells, changes in shape of the Michigan Basin during the Phanerozoic are determined. Flexural rigidity of the lithosphere is then estimated for several time intervals by assuming that changes in shape were caused by deflection of an elastic plate subjected to an axisymmetric load. It is found that the flexural rigidity generally increased over time, from less than 10 22 N m early in the basin's history to more than 10 23 N m late in the basin's development. This increase in rigidity is attributed to cooling and thickening of the elastic portion of the lithosphere as the basin was subsiding. Low flexural rigidity early in the basin's history indicates that the lithosphere was probably rejuvenated (heated, thinned, and possibly uplifted) prior to basin subsidence. The location of the load remained approximately fixed over time. The rejuvenation process is investigated using a one-dimensional finite-difference thermal model in which a 142-km plate is temporarily heated from below. Taking the depth to the 450°C isotherm to be the effective elastic thickness of the lithosphere, rigidity predicted by the thermal model is consistent with the observed increase in rigidity over time. Furthermore, phase changes produced by heating during thermal rejuvenation, combined with the predicted thermal contraction following rejuvenation, explain the two episodes of subsidence observed in the Michigan Basin. We conclude that the lithosphere in this area was rejuvenated approximately 500 m.y. ago. As the lithosphere cooled, it thickened; it also contracted and subsided. Temperatures near the surface of the crust apparently were not raised sufficiently by lithospheric rejuvenation to alter the Keweenawan and older radiometric and paleomagnetic dates of basement rocks.

  11. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  12. Mantle accommodation of lithospheric shortening as seen by combined surface wave and teleseismic imaging in the South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Fry, Bill; Eberhart-Phillips, Donna; Davey, Fred

    2014-10-01

    The Pacific and Australian plates in the South Island, New Zealand (NZ) converge at a rate of about 4 cm yr-1. Accommodation of the continental part of this convergence in the lithospheric mantle is both poorly understood and currently controversial yet it is a problem of fundamental importance for understanding lithospheric thickening. End-member possibilities range from the classical model of asymmetric subduction to symmetric viscous thickening. Seismic tomography has the potential to image this process. However, tomographic images to date are poorly constrained due to the lack of appropriate earthquakes. Improved teleseismic tomography of the region has been achieved by increasing data coverage and applying a novel scheme of correcting for crustal structure by ray tracing through a newly created model of shallow shear wave velocity derived from the inversion of noise-based dispersion measurements. Our resulting models suggest the lithospheric mantle high velocities at the continental plate boundary extend no deeper than approximately 125 km, evidence against both previous models of viscous drip and typical asymmetric subduction zones. This high velocity core extends from north to south along the axis of South Island suggesting that mantle convergence is accommodated along the older, mid-Cenozoic, plate boundary. West of South Island, a high velocity west dipping zone may define the remnant Cretaceous subduction zone that has been distorted by Cenozoic transcurrent deformation. We present our new 3-D seismic velocity models together with a compatible tectonic model and discuss their implications for the nature of lithospheric evolution at this convergent boundary.

  13. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing

    2016-04-01

    magnetic measurements and obtained global lithospheric apparent susceptibility distribution models. Finally, we compared these deduced models with previous results in the literature and some other geophysical, geodetic and geologic datum. Both tests and applications suggest, indeed, that the improved AS85 method can be adopted as a fast and effective interpretation tool of global induced large-scale magnetic anomaly field models in form of spherical harmonics. Arkani-Hamed, J. & Srangway, D.W., 1985. Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data, J. Geophys. Res., 90(B3), 2655-2664. Gubbins, D., Ivers, D., Masterton, S.M. & Winch, D.E., 2011. Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187(1), 99-117. Hemant, K. & Maus, S., 2005. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 110, B12103, doi: 10.1029/2005JB003837. Masterton, S.M., Gubbins, D., Müller, R.D. & Singh, K.H., 2013. Forward modeling of oceanic lithospheric magnetization, Geophys. J. Int., 192(3), 951-962. Nolte, H.J. & Siebert, M., 1987. An analytical approach to the magnetic field of the Earth's crust, J. Geophys., 61, 69-76. This study is supported by State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy and Geophysics, Chinese Academy of Sciences) (SKLGED2015-5-5-EZ), Natural Science Fund of Hubei Province (2015CFB361), International Cooperation Project in Science and Technology of China (2010DFA24580), China Postdoctoral Science Foundation (2015M572217 and 2014T70753), Hubei Subsurface Multi-scale Imaging Key Laboratory (Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan) (SMIL-2015-06) and National Natural Science Foundation of China (41574070, 41104048 and 41504065).

  14. Survival of Brown Colour in Diamond During Storage in the Subcontinental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Helmstaedt, Herwart; Flemming, Roberta

    2010-05-01

    Brown is the most common colour of natural diamond. This colour is generally associated with plastic deformation of the crystal structure, which is imparted during residence in the mantle. Dislocation movement generates vacancies, which aggregate into clusters of perhaps 30-60 vacancies. The resulting electronic configuration leads to the broad, featureless absorption pattern associated with common brown colour. It is well-established that the common brown colour can be removed by high-pressure-high-temperature (HPHT) treatment. The process involves pressures and temperatures in the range of 5-9 GPa and 1800-2700 ° C, respectively. The treatment may take several minutes or hours. It has been suggested that the same colour removal process operates continuously in the subcontinental lithospheric mantle, causing any brown diamonds in the diamond window to quickly lose their colour. The present study examined the validity of this suggestion. Temperature is the important difference between HPHT conditions and diamond window conditions. Higher temperatures result in faster colour removal. HPHT treatment occurs at 1800-2700 ° C, whereas inclusion thermometry places most lithospheric diamonds in the range of 900-1400 ° C. Destruction of the brown colour centre involves breaking up vacancy clusters. How quickly this can be done depends on the concentration of clusters as well as the rate constant. The rate constant is changes with temperature, according to the Arrhenius equation. The key to this relationship is the activation energy required for the breakup of a vacancy cluster. This activation energy can be estimated as the energy of an isolated monovacancy, minus the energy per vacancy of the cluster, plus the vacancy migration energy. A value of 7.7±0.3 eV is obtained using data from recent literature. For any given brown diamond, the rate constant determines the time needed to remove a certain amount of colour. The Arrhenius equation can be rearranged to show how

  15. Lithospheric structure and compensation mechanisms of the Galapagos Archipelago

    NASA Astrophysics Data System (ADS)

    Feighner, Mark A.; Richards, Mark A.

    1994-04-01

    Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also

  16. The evolution of lithosphere deformation due to infiltration of asthenosphere melt into a lithosphere with inherited weakness: insight from 2D numerical models of continental rifts

    NASA Astrophysics Data System (ADS)

    Havlin, C.; Parmentier, E.; Hirth, G.

    2013-12-01

    Melt formed in the asthenosphere affects lithosphere evolution through its accumulation and subsequent infiltration and heating of the lithosphere. Magmatic weakening of the lithosphere has received particular attention in the context of continental rifting because homogeneous continental lithosphere is too strong to rift under available tectonic forces without a weakening mechanism. But the observation that rifting generally initiates in heterogeneous continental mobile belts suggests that rift zones develop in lithosphere with some inherited compositional weakness, obscuring the importance of magmatic weakening. To test the relative roles of magmatic and compositional weakening, we construct a 2D numerical model that includes both effects. We treat the lithosphere and asthenosphere as separate, but coupled, domains. The lithosphere deforms via a composite brittle-ductile rheology with a strain rate that varies horizontally but is independent of depth. We apply an extensional force that is constant throughout the lithosphere, causing thinned or weakened regions of the lithosphere to extend at higher strain rate. We treat the asthenosphere as a viscous and partially molten and solve the 2D conservation equations for mass, momentum and energy for both the solid and melt phases. Melting and freezing are treated using a hydrated peridotite solidus. Solid velocities in the asthenosphere are calculated using the solid velocities from the lithosphere base as boundary conditions. The asthenosphere and lithosphere are coupled through magma infiltration and subsequent lithosphere heating. Melt fractions accumulating above an imposed critical melt fraction are extracted and emplaced within a few kms of the lithosphere-asthenosphere boundary, where it freezes, releasing latent heat. We test scenarios with a fixed critical melt fraction as well as a variable critical melt fraction determined by our previously published parametrization of dike propagation [Havlin et al., EPSL

  17. Cenozoic basaltic volcanism in W Turkey: Implications for lithospheric thinning and extension

    NASA Astrophysics Data System (ADS)

    Altunkaynak, S.

    2013-05-01

    Western Anatolia (Turkey) is regarded as an eastern extension of the Alpine collision belt and was affected dominantly by convergent tectonics preceding current extensional tectonics. Three major episodes of magmatic flare-up were identified in western Anatolia: the Early to late Eocene, late Oligocene to middle Miocene and late Miocene to Quaternary. Ranging from basalt, basaltic andesite to basaltic trachyandesite, Early to late Eocene volcanic rocks include both calc-alkaline and transitional (calc-alkaline to tholeiitic) affinity. They are slightly-moderately enriched in large ion lithophile elements and light rare earth elements with respect to high field strength elements and show negative Nb, Ta, and Ti anomalies. Basaltic lavas and dikes are characterized by 87Sr/86Sr(i) compositions ranging from 0.70530 to 0.70415, positive ɛNd (2.7-6.6) and restricted Pb-isotope compositions. Late Oligocene to Middle Miocene volcanic activity produced High-K calc-alkaline basic to acid lava flows/dikes and associated pyroclastic rocks that exhibit features similar to those of Early Cenozoic Western U.S Cordillera, Great Basin, where magmatism and crustal extension overlapped in space and time. The geochemical and Sr-Nd-Pb isotopic features of the Late Oligocene-Middle Miocene volcanic units suggest that both lithospheric and asthenospheric mantle melts were involved in the evolution of volcanism during this episode, with a decreasing lithospheric geochemical fingerprint by the middle Miocene, when the asthenospheric mantle source became more dominant. Late Miocene to Quaternary volcanism produced alkaline basalts that show OIB-type trace-element patterns and 87Sr/86Sr (i) (0.7033 to 0.7030) and ɛNd (i) (+6.5 to +2.5) values. These features suggest enriched asthenospheric mantle-derived melts as their main magma source. Geochemical and temporal evolution of basaltic volcanism in western Turkey indicate that the geochemical changes in the nature of volcanism from calc

  18. Strain localisation and weakening of the lithosphere during extension

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, Klaus; Rosenbaum, Gideon; Weinberg, Roberto F.

    2008-10-01

    We explore the sensitivity of extensional systems to the thermal structure of the lithosphere using numerical simulations that fully couple the energy, momentum and continuity equations. The rheology of the lithosphere is controlled by weakening processes, such as shear heating, that localises strain into shear zones and faults. Numerical models show that during extension of an initially unpatterned lithosphere, structures develop spontaneously out of basic thermodynamic energy fluxes, and without the imposition of ad hoc rules on strain localisation. This contrasts with the classical Mohr-Coulomb theory for brittle localisation, which prescribes the angles of faults by a mathematical rule. Our results show that the mode of extension is sensitive to subtle changes in rheology, heat flux and geometry of the system. This sensitivity lies at the core of the variety and complexity observed in extensional systems. Localisation processes make the lithosphere weaker than previously estimated from the Brace-Goetze quasi-static approach. Consequently, typical estimates for plate tectonic forces are capable of splitting the lithosphere under extension, even without the role of active magmatism.

  19. Properties of the lithosphere and asthenosphere deduced from geoid observations

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1985-01-01

    Data from the GEOS-3 and SEASAT Satellites provided a very accurate geoid map over the oceans. Broad bathymetric features in the oceans such as oceanic swells and plateaus are fully compensated. It is shown that the geoid anomalies due to the density structures of the lithosphere are proportional to the first moment of the density distribution. The deepening of the ocean basins is attributed to thermal isostasy. The thickness of the oceanic lithosphere increases with age due to the loss of heat to the sea floor. Bathymetry and the geoid provide constraints on the extent of this heat loss. Offsets in the geoid across major fracture zones can also be used to constrain this problem. Geoid bathymetry correlations show that the Hawaiian and Bermuda swells and the Cape Verde Rise are probably due to lithospheric thinning.

  20. A global view of the lithosphere-asthenosphere boundary.

    PubMed

    Rychert, Catherine A; Shearer, Peter M

    2009-04-24

    The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and platforms to 81 +/- 2 kilometers beneath tectonically altered regions and 70 +/- 4 kilometers at oceanic island stations. High-frequency Ps observations require a sharp discontinuity; therefore, this interface likely represents a boundary in composition, melting, or anisotropy, not temperature alone. It likely represents the lithosphere-asthenosphere boundary under oceans and tectonically altered regions, but it may constitute another boundary in cratonic regions where the lithosphere-asthenosphere boundary is thought to be much deeper.

  1. Lithospheric records of orogeny within the continental U.S.

    NASA Astrophysics Data System (ADS)

    Porter, Ryan; Liu, Yuanyuan; Holt, William E.

    2016-01-01

    In order to better understand the tectonic evolution of the North American continent, we utilize data from the EarthScope Transportable Array network to calculate a three-dimensional shear velocity model for the continental United States. This model was produced through the inversion of Rayleigh wave phase velocities calculated using ambient noise tomography and wave gradiometry, which allows for sensitivity to a broad depth range. Shear velocities within this model highlight the influence of orogenic and postorogenic events on the evolution of the lithosphere. Most notable is the contrast in crustal and upper mantle structure between the relatively slow western and relatively fast eastern North America. These differences are unlikely to stem solely from thermal variations within the lithosphere and highlight both the complexities in lithospheric structure across the continental U.S. and the varying impacts that orogeny can have on the crust and upper mantle.

  2. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  3. A global view of the lithosphere-asthenosphere boundary.

    PubMed

    Rychert, Catherine A; Shearer, Peter M

    2009-04-24

    The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and platforms to 81 +/- 2 kilometers beneath tectonically altered regions and 70 +/- 4 kilometers at oceanic island stations. High-frequency Ps observations require a sharp discontinuity; therefore, this interface likely represents a boundary in composition, melting, or anisotropy, not temperature alone. It likely represents the lithosphere-asthenosphere boundary under oceans and tectonically altered regions, but it may constitute another boundary in cratonic regions where the lithosphere-asthenosphere boundary is thought to be much deeper. PMID:19390041

  4. Modes of continental extension in a lithospheric wedge

    NASA Astrophysics Data System (ADS)

    Wu, G.; Lavier, L. L.; Choi, E.

    2014-12-01

    We studied extension of a lithospheric wedge as an approximation to an orogenic belt or a continental margin. We ran a series of numerical models to quantify the effects of the strength of the lower crust and a mid-crustal shear zone (MCSZ) on the extension processes. When the MCSZ is present, we found that the regional lower crustal flow plays a critical role in controlling the modes of extension. The compensation is long-wavelength when the lower crust flows from the highest to the lowest elevation in order to compensate upper crustal thinning. In response to this motion, the mantle flows towards the highest elevation in order to balance for the lower crust leaving the area under the highest topography. For weak (wet quartz regime with partial melting) or intermediate (wet quartz regime), or strong (dry quartz regime) lower crust, we recognized three predominantly decoupled modes of extension characterized by 1) significant lower crustal exhumation exemplified as a large massif, 2) formation of core complexes and detachment faults, and 3) distributive domino faulting, respectively. Without the MCSZ, however, the lower crustal flow is essentially subdued with predominantly coupled extension. For weak or intermediate, or strong lower crust, we recognized three coupled modes characterized by 1) localized generally symmetric crustal exhumation, 2) distributed grabens and narrow rifts, and 3) wide continental margins, respectively. The MCSZ controls the degree of decoupling of the lower crustal flow such that a frictionally stronger MCSZ does not change the behaviors of the models but results in a more distributed extension. Due to the long-wavelength compensation, subhorizontal Moho is achieved where intensive extension occurred for all the decoupled models with a MCSZ. Natural counterparts for each mode may be easily identified, for instance, in the Basin and Range or the Aegean.

  5. Helium isotopes of the Siberian sub-continental lithospheric mantle: Insights from eclogite xenoliths

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Day, J. M.; Pernet-Fisher, J.; Howarth, G. H.; Taylor, L. A.

    2014-12-01

    Helium isotopes (3He/4He) have been extensively used to define distinct segments of Earth's mantle and characterize its chemical structure. Specifically, they have been used to illustrate the long-term isolation and preservation of high-3He/4He (≥50 RA; [1]) plume-derived materials from the well-mixed and more-extensively degassed depleted MORB mantle (DMM) (8 RA; [2]). However, the He-isotope signature of the sub-continental lithospheric mantle (SCLM) remains relatively poorly characterized (6.1 RA; [3]). The Siberian craton hosts >1000 kimberlite intrusions, which carry mantle-derived xenoliths - of varying compositions (i.e., peridotites, dunites, and eclogites) - to the Earth's surface, making it an ideal setting for investigating the chemical evolution of the SCLM. Here, we report new He-isotope and concentration data for a suite of eclogitic xenoliths (n=10) from the Udachnaya pipe, Siberia. He-isotopes and [He] contents were determined by crushing garnet and pyroxene mineral separates from 2.7-3.1 Ga Siberian eclogites. 3He/4He values ranged from 0.11 to 1.0 RA, displaying predominantly radiogenic (i.e., low 3He/4He) He-isotope values. In contrast, Siberian flood basalt values extend up to ~13 RA [4]. Helium concentrations span ~4 orders of magnitude from 60 to 569,000 [4He]C ncm3STP/g. The radiogenic nature of Udachnaya eclogites indicate that they have been largely isolated from basaltic metasomatic fluxes over geological time due to position within the lithosphere and/or lithospheric age. Further, low 3He/4He values may reflect the addition of high U-Th material into the lithosphere by accretion of ancient island-arc terrains. These new data add to the growing He-isotope database [5,6] for the Siberian SCLM, and reveal the heterogeneous nature of this region with respect to He-isotopes, as well as the potential importance of crustal recycling and metasomatic processes. [1] Stuart et al., 2003. Nature. [2] Graham, 2002. Reviews in Mineralogy and

  6. A Sharp Edge of the Cratonic Lithosphere of North America

    NASA Astrophysics Data System (ADS)

    Harper, T. B.; Skryzalin, P. A.; Menke, W. H.; Levin, V. L.; Darbyshire, F. A.

    2015-12-01

    Using teleseismic travel time delays, we develop a tomographic model of the lithosphere beneath northeastern North America, from the shore of James Bay in Quebec to the Atlantic coast of New England and to a depth of 300 km. Three major terranes lie within this cratonic margin: the 2.7 Ga Superior province, the 1 Ga Grenville orogenic belt and the 0.3-0.4 Ga Appalachian terranes, which are bounded by the Grenville Front (GF) and Appalachian Front (AF), respectively. Additionally, the 0.8 Ga Avalon terrain was accreted to coastal New England by strike-skip faulting during the Appalachian orogeny. Our tomographic model uses earthquake seismograms recorded by permanent US and Canadian stations, the Transportable Array and the temporary QMIII deployment. All data were corrected for instrument response and record sections were examined visually to identify gross errors in response and timing. Differential arrival times of P and PKP waves were determined by cross-correlation and have a maximum amplitude of about ±1 second. In our model, lithospheric boundaries do not correlate well with geological boundaries, nor do they strike parallel to them. The seismically-fast (by 5% relative to AK135) cratonic lithosphere of North America is much thicker than that of the younger terranes, extending to 200 km or more depth but with a sharp east-dipping eastern edge located (at Moho depths) 100-250 km northwest of the GF. The lithosphere beneath the Grenville and Appalachian terranes, which were affected by subduction during the Grenville and Appalachian orogenies, is slower (by 4%). A sliver of seismically-fast lithosphere, extending to ~150 km depth, occurs along the Atlantic coast and is interpreted as the Avalonian lithosphere.

  7. Extensional and compressional instabilities in icy satellite lithospheres

    NASA Astrophysics Data System (ADS)

    Herrick, D. L.; Stevenson, D. J.

    1990-05-01

    The plausibility of invoking a lithospheric instability mechanism to account for the grooved terrains on Ganymede, Encedalus, and Miranda is presently evaluated in light of the combination of a simple mechanical model of planetary lithospheres and asthenospheres with recent experimental data for the brittle and ductile deformation of ice. For Ganymede, high surface gravity and warm temperatures render the achievement of an instability sufficiently great for the observed topographic relief virtually impossible; an instability of sufficient strength, however, may be able to develop on such smaller, colder bodies as Encedalus and Miranda.

  8. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    PubMed

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  9. Project Skippy explores lithosphere and mantle beneath Australia

    NASA Astrophysics Data System (ADS)

    van der Hilst, Rob; Kennett, Brian; Christie, Doug; Grant, John

    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband seismic data from over 60 sites across the continent (Figure 1).The main goal of the Skippy Project, which is run by Australian National University's Research School of Earth Sciences (RSES), is to delineate the three-dimensional seismic structure of the lithosphere and mantle beneath the continent.

  10. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

  11. Seismic Tomography of the Arctic Lithosphere and Asthenosphere

    NASA Astrophysics Data System (ADS)

    Schaeffer, Andrew; Lebedev, Sergei

    2015-04-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, primarily reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere, in addition to delineating the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new, 3D tomographic model of the upper mantle and the crust of the Arctic region is constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provides improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. Sharp velocity gradients in western Canada indicate that the craton boundary at depth closely follows the Rocky Mountain Front. High velocities between the Great Bear Arc and Beaufort Sea provide convincing evidence for the recently proposed 'MacKenzie Craton', unexposed at the surface. In Eurasia, cratonic continental lithosphere extends northwards beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons and intervening Proterozoic belts mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures and deformation fronts. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster

  12. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere. PMID:10947983

  13. Parameters driving strain localization in the lithosphere are highly scale-dependent

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent

    2016-04-01

    Modelling lithospheric deformation requires specifying mechanisms that promote strain localization. This can be done in different ways, such as the inclusion of weaker zones in the model setup (to initiate subduction or slab tearing, for instance) or using various sorts of weakening processes depending upon temperature, grain-size, fluid content or metamorphic reactions, among others. In most cases, this choice is ad hoc because the relevant parameters are largely unknown, especially at the scale of geodynamic models. Two lines of research have been developed, a traditional one which seeks to determine the rheological parameters of natural or synthetic rocks experimentally, and a more recent one, promoted by the development of fast computing, which aims at reproducing a natural tectonic or rheological evolution through time, not only geometries. The latter requires that the parameters allowing this reproduction are significant at the scale of the model, and which may be different from those obtained in the experimental lab, thus questioning the extrapolation through a wide range of scales of experimental parameters. This apparent discrepancy is due to the intrinsic complexity of the lithosphere, and even more so for the continental lithosphere with its highly heterogeneous crust and its long tectonic history, which implies the co-existence of many different parameters active in nature. In this presentation, we review the main localizing factors and look to the range of scales in which they are significant. Small-scale processes such as grain-size reduction, coexistence of several mineralogical phases with different strength and rheological behaviour, fluid-rock interactions and/or metamorphic reactions, often cannot initiate strain localization in nature but are all efficient to locally reduce the strength of rock material once localization has started. Some exceptions to this rule, however, exist, such as the mixing of ductile and brittle behaviour in the same

  14. Lithospheric structure at the leading edge of the North American craton: Imaging the Shield-Cordillera transition in western Canada by teleseismic Rayleigh-wave analysis

    NASA Astrophysics Data System (ADS)

    Bao, X.; Eaton, D. W.

    2013-12-01

    The tectonics of southwestern Canada is characterized by a transition from the Mesozoic-Cenozoic Cordilleran orogen to the Archean-Proterozoic craton, making this region an excellent natural laboratory to study episodic growth of continents. Here, we explore regional lithospheric structure using fundamental Rayleigh waves recorded by broadband seismometers from CNSN and various temporary networks (ATSN, CRANE, USArray) from 2006 to the present. Using a two-station cross-correlation technique, we extract phase velocities at periods ranging from 20 s to more than 200 s. Phase velocities for the region west of the deformation front are significantly lower than those of the region to the east, especially at periods of 30-200 s, reflecting strong lateral variations in lithosphere structure due to thermal and compositional differences. Our analysis is particularly focused on characterizing the lithosphere-asthenosphere boundary (LAB) across the transition, and identifying small-scale convection associated with the edge of the craton. Detailed 3-D lithospheric structural models developed in the near feature will shed more new lights on the transition from backarc to craton lithosphere and their geodynamical interactions.

  15. The crust and lithosphere thicknesses in South America: trying to find the lithosphere- asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Heit, B.; Sodoudi, F.; Yuan, X.; Bianchi, M.; Kind, R.

    2007-05-01

    During the past years, a series of seismological investigations have been carried out to study the crustal and mantle structures all over the world. In South America, this investigation has not been an easy task as there are different regions where the geodynamics involves the subduction of an oceanic plate, the building of a mountain range as the Andes, the interaction with older lithosphere as the Brazilian Shield and the presence of active deformation fronts between the last two regions. In order to investigate the thickness of the lithosphere in such a complex context we have performed S-wave receiver function analysis (Vinnik and Farra, 2000; Li et al., 2004). The S receiver function technique looks for the S-to-P converted waves at seismic discontinuities beneath a station in the same way as the conventional P receiver function method that deals with P-to-S conversions. The S receiver function technique have proved to be useful to map the Moho and the LAB in many regions where other methods (i.e. surface waves) failed to provide reliable information (e.g. Li et al., 2004; Kumar et al., 2004a, 2004b; Sodoudi et al., 2006). We present here the results of S receiver function technique that has been applied to all the available temporary seismic experiments (e.g. BANJO, SEDA, REFUCA, BLSP) and the permanent stations from the IRIS network. We have been able to investigate the upper mantle discontinuities at all the depths beneath the stations and obtained coherent Moho depths along the entire Andes and in other South American continental regions. The LAB has been clearly detected below some stations, particularly those that are located far away from the subduction zone. By comparing our results with those from the P receiver functions, we have been able to further constrain the thicknesses of the crust and LAB in different regions including shields, mobile belts, basins and mountain ranges. At many stations we have also been able to map the upper mantle

  16. Horizontal stress in planetary lithospheres from vertical processes

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    1991-01-01

    Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.

  17. Seismicity in Romania--evidence for the sinking lithosphere.

    PubMed

    Roman, C

    1970-12-19

    The revision of Romanian earthquakes shows a distribution suggesting a sinking lithosphere under the Carpathian arc. Thermal and gravitational anomalies, as well as petrological and tectonic features, provide further evidence on the cause and character of intermediate earthquakes of Romania. This is consistent with the theory of plate tectonics in south-east Europe.

  18. Lithospheric and atmospheric interaction on the planet Venus

    NASA Technical Reports Server (NTRS)

    Volkov, Vladislav P.

    1991-01-01

    Lithospheric and atmospheric interaction in the planet Venus are discussed. The following subject areas are covered: (1) manifestation of exogenic processes using photogeological data; (2) the chemical composition and a chemical model of the troposphere of Venus; (3) the mineral composition of surface rock on Venus; and (4) the cycles of volatile components.

  19. Lithosphere-asthenosphere P-wave reflectivity across Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.

    2015-12-01

    A direct image of P-wave reflectivity in the lithosphere and asthenosphere beneath seismic stations is extracted from stacked autocorrelograms of continuous component records. The autocorrelograms emphasise near vertically travelling waves, so that multiples are more muted than in receiver function studies and it is possible to work at higher frequencies than for receiver functions. Across a wide range of geological environments in Australia, in the 0.5-4.0 Hz frequency band, distinct reflections are seen in the crust underlain by weaker reflectivity in the lithosphere and asthenosphere. The base of crustal reflectivity fits well with Moho estimates from other classes of information. Few mantle reflectors have been seen in conventional reflection profiling at frequencies above 10 Hz; the presence of reflections in the 0.5-4.0 Hz band suggests variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. There are slight indications of a change of reflection character in the lower part of the lithosphere in the transition to the asthenosphere. At a few stations there is a very clear lamination at asthenospheric depth, as well as reflections from the base of the S wave low velocity zone. Reflection bands often occur at depths where discontinuities have been inferred from S wave receiver function work at the same station, but would not by themselves be distinctive of a mid-lithosphere discontinuity.

  20. The lithosphere in central Europe—seismological and petrological aspects

    NASA Astrophysics Data System (ADS)

    Babuška, V.; Plomerová, J.

    1992-06-01

    The lithosphere thickness in the Variscan belt of central Europe varies between about 60 and 150 km with typical values of 100-120 km. Our estimates, derived from directionally independent representative P-wave residuals, are in good agreement with magnetotelluric determinations of a layer with increased conductivity in the upper mantle. The large-scale anisotropies of the subcrustal lithosphere beneath four seismological stations determined from spatial variations of relative P residuals vary between 6.5 and 15.2% for P velocities; the S-wave anisotropies determined from SKS polarizations vary between 2.2 and 6.7%. These values are in reasonable agreement with the anisotropies of peridotites determined in laboratory. Systematic spatial variations of the directional terms of relative residuals in dependence on azimuths and incidence angles suggest the existence of large dipping anisotropic structures in the subcrustal lithosphere. The residual patterns at most stations in the Saxothuringicum, Rhenohercynicum and in the Massif Central imply northwesterly orientated dips of the anisotropic structures while stations in the Moldanubicum, the Alpine Foredeep and most of the Alps north of the Insubric line, suggest southeasterly orientated dips. In our interpretation the dipping anisotropic structures may represent paleosubductions which retain olivine preferred orientations originating from an ancient oceanic lithosphere. The Variscides of central Europe may thus represent a collision zone characterized by two systems of paleosubductions divergent relative to the suture between the Moldanubicum and the Saxothuringicum.

  1. Microstructural and geochemical constraints on the evolution of deep arc lithosphere

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Soustelle, Vincent; Hirth, Greg; Saal, Alberto E.; Kruckenberg, Seth C.; Eiler, John M.

    2016-07-01

    Mantle xenoliths from the Sierra Nevada, California, USA, sampled a vertical column (60-120 km) of lithosphere that formed during Mesozoic continental arc magmatism. This lithosphere experienced an anticlockwise P-T-t path resulting in rapid cooling that effectively "quenched in" features inherited from earlier high-temperature conditions. Here we combine new mineral chemistry data (water, trace element, and major element concentrations) with mineral crystallographic preferred orientations (CPOs) to investigate the relationship between melt infiltration and deformation. The peridotites record a refertilization trend with increasing depth, starting from shallow, coarse-protogranular, less-melt-infiltrated spinel peridotite with strong, orthorhombic olivine CPO to deep, fine-porphyroclastic, highly melt-infiltrated garnet peridotite with weak, axial-[010] olivine CPO. In contrast to the observed axial-[010] CPOs, subgrain boundary orientations and misorientation axes suggest the dominant activation of the (001)[100] slip system, suggesting deformation under moderately hydrous conditions. After accounting for effects of subsolidus cooling, we see coherent trends between mineral trace element abundance and water content, indicating that melt infiltration led to an increase in water content of the peridotites. However, measured olivine and pyroxene water contents in all peridotites (5-10 and 30-500 wt ppm, respectively) are lower than that required to promote dominant (001)[100] slip system observed in both natural and experimental samples. These results suggest that deformation occurred earlier along the P-T path, probably during or shortly after hydrous melt infiltration. Subsequent rapid cooling at 90 Ma led to water loss from olivine (owing to decreased solubility at low temperature), leaving behind a deep arc lithosphere that remained viscously coupled to the Farallon slab until the opening of the slab window in the late Cenozoic.

  2. Chromatographic metasomatism of the Arabian—Nubian lithosphere

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Navon, Oded; Kessel, Ronit

    1997-11-01

    Trace elements and isotopic ratios of calc-alkaline and tholeiitic dikes from the very last stage of the late Proterozoic, Pan-African orogeny in the northern Arabian-Nubian Shield (ANS), and alkali basalts from the overlying Phanerozoic section are used to constrain the composition and model the evolution of the lithospheric mantle in this region. The dikes and basalts are interpreted as lithospheric melts formed during the post-orogenic (and post-subduction) history of the shield. While the mafic member of all suites share a primitive La/Th ratio, the Nb/Th and Ce/Pb are distinct for each suite. The (Nb/Th) PM (primitive mantle normalized) is ˜0.2 in the calc-alkaline dikes and 1.4 in the tholeiitic dikes and the Phanerozoic alkali basalts. The (Ce/Pb) PM ratios are low in the dikes (0.4 in the calc-alkaline and 0.3 in the tholeiitic) and high in the Phanerozoic basalts (2.8). We suggest that the variations in the trace element ratios reflect sampling of different zones in the lithospheric mantle, which were formed by subduction related metasomatism of the mantle wedge. We constructed a chromatographic model to explain this zonation. In this model a plume-derived oceanic lithosphere is subducted and dehydrates at depth. Fluids released from the dehydrating slab metasomatize the overlying wedge and form amphibole-rich channels. Nb is preferentially taken by the amphibole and is enriched only in the lower zones of the column. The other elements (U, Th, REE and especially Pb and Rb) behave incompatibly. They are enriched in the fluid and transported efficiently to the melting zone in the centre of the wedge. Dehydration of the base of the wedge as it descends below the amphibole stability field depletes this region in Pb and Rb. After the end of subduction, the wedge is fossilized and forms the lithospheric mantle. The zone above the Nb concentration front is sampled by the calc-alkaline magmas. The tholeiitic magmas sample the zone below the Nb front. The

  3. Chromatographic metasomatism of the Arabian-Nubian lithosphere

    NASA Astrophysics Data System (ADS)

    Kessel, R.; Navon, O.; Stein, M.

    1997-11-01

    Trace elements and isotopic ratios of calc-alkaline and tholeiitic dikes from the very last stage of the late Proterozoic, Pan-African orogeny in the northern Arabian-Nubian Shield (ANS), and alkali basalts from the overlying Phanerozoic section are used to constrain the composition and model the evolution of the lithospheric mantle in this region. The dikes and basalts are interpreted as lithospheric melts formed during the post-orogenic (and post-subduction) history of the shield. While the mafic member of all suites share a primitive La/Th ratio, the Nb/Th and Ce/Pb are distinct for each suite. The (Nb/Th)PM (primitive mantle normalized) is ~0.2 in the calc-alkaline dikes and 1.4 in the tholeiitic dikes and the Phanerozoic alkali basalts. The (Ce/Pb)PM ratios are low in the dikes (0.4 in the calc-alkaline and 0.3 in the tholeiitic) and high in the Phanerozoic basalts (2.8). We suggest that the variations in the trace element ratios reflect sampling of different zones in the lithospheric mantle, which were formed by subduction related metasomatism of the mantle wedge. We constructed a chromatographic model to explain this zonation. In this model a plume-derived oceanic lithosphere is subducted and dehydrates at depth. Fluids released from the dehydrating slab metasomatize the overlying wedge and form amphibole-rich channels. Nb is preferentially taken by the amphibole and is enriched only in the lower zones of the column. The other elements (U, Th, REE and especially Pb and Rb) behave incompatibly. They are enriched in the fluid and transported efficiently to the melting zone in the centre of the wedge. Dehydration of the base of the wedge as it descends below the amphibole stability field depletes this region in Pb and Rb. After the end of subduction, the wedge is fossilized and forms the lithospheric mantle. The zone above the Nb concentration front is sampled by the calc-alkaline magmas. The tholeiitic magmas sample the zone below the Nb front. The Phanerozoic

  4. Lithospheric Convergence Preceded Extension in the Pannonian-Carpathian System

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory; Stuart, Graham; Dando, Ben; Hetenyi, Gyorgy; Lorinczi, Piroska; Hegedus, Endre; Brueckl, Ewald

    2010-05-01

    The continuing collision of the Adriatic block with European continental lithosphere has its clearest expression now in the Alpine collision zone. Recent tomographic images of the upper mantle beneath the eastern Alps and western Pannonian Basin support the interpretation that in the Early Miocene the collision zone extended further east: a steeply dipping seismically fast structure stretches downward beneath the Eastern Alps reaching to the base of the transition zone, consistent with the long history of convergence in this region. This high velocity structure also extends eastward beneath the extensional Pannonian Basin. The high velocity anomaly beneath the Basin is strongly developed in transition zone depths (410 to 660 km) but the anomaly weakens upward. High velocities beneath the center of the extensional basin are unexpected because there is substantive evidence that the onset of extension in the Pannonian domain at around 17 Ma produced rapid extension of the lithosphere and replacement of the lower part of the lithosphere by hot asthenosphere. These deeper structures, however, must be explained by the long history of convergence that preceded the extension of the basin. Further evidence of a history of sustained convergence in the present Pannonian region is found in the depression of the 660 km seismic discontinuity beneath the Alps (Lombardi et al., EPSL, 2009) and also beneath the Pannonian Basin (Hetenyi et al., GRL, 2009). The 660 km discontinuity in both places is depressed by as much as 40 km, whereas the 410 km discontinuity is at approximately nominal depths. Evidently in both regions relatively dense material derived from the mid-Miocene collision sits stagnant on top of the 660 km discontinuity, where further descent is obstructed by the negative Clapeyron slope of the spinel-to-perovskite phase transition and/or the high viscosity of the lower mantle. The rapid extension of the Intra-Carpathian Basins in the Mid-Miocene (between about 17 and

  5. Anorogenic plateau formation induced by a heated lithosphere

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Wichura, Henry; Bousquet, Romain

    2013-04-01

    Plateau formation processes in geodynamic settings outside of orogens have not been unambiguously established. Those anorogenic plateaus are topographic barriers that reach medium elevations of approximately 1500 m, e.g. South African-, East African- or Mongolian Plateau. They are inferred to be closely link to mantle plumes away from plate boundaries. Such a heat source at the lithosphere-asthenosphere boundary (LAB) have an influence to the density structure of the crust and lithosphere, due to thermal expansion and mineralogical changes. Consequently, these density variations affect topography and thus we hypothesize topographic variations by lithospheric thermal expansion, due to heating processes at the LAB. Based on this hypothesis, we calculated the density distribution along a one-dimensional depth-profile using two different approaches - with and without mineral reactions. Therefore, we present a new petrologic aspect for plateau uplift, because models on plateau uplift generally do not take into account the effects of metamorphic phase transitions and ignore the fact that chemical reactions influence both, the stability of mineral assemblages and rock density. Our model underscores how metamorphic density of the lithosphere varies with depth and reveals how combination of chemical composition of rocks, mineralogy, and geothermal gradient all have significant effects on the density distribution within the lithosphere and ultimately the evolution of anorogenic plateaus. Furthermore, in order to better understand the temporal characteristics of mantle plume related topography we calculated the timing to generate significant topographic uplift. Our results suggest uplift rates of >20 m/Myr within the first 20 Myr after the onset of heating and considerable primary thermal uplift of approximately 700 m after 20 Myr as a viable mechanism for anorogenic plateau formation. In this way, our model may help to explain pre-rift topography of the East-African Plateau

  6. Numerical modeling of continental lithospheric weak zone over plume

    NASA Astrophysics Data System (ADS)

    Perepechko, Y. V.; Sorokin, K. E.

    2011-12-01

    The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of

  7. Rheological implications of the seismological lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Fischer, K. M.; Ford, H. A.; Lekic, V.; Hirth, G.

    2012-12-01

    Evidence from scattered and reflected seismic waves indicates that the transition between the seismologically-defined lithosphere and asthenosphere is relatively rapid in depth in many tectonic settings with the exception of cratons. For example, in non-cratonic regions of Australia and North America Sp receiver functions typically image a downward deccrease in shear-wave velocity whose depth ranges from ~50 to 130 km. Modeling of these Sp phases with synthetic receiver functions indicates significant (4-10%) shear velocity drops over depth ranges of ~30 km or less. Because these Sp phases originate at depths within the transition from high velocity mantle lid to low velocity zone in surface wave tomography models, and because the Sp phases account for most or all of the lid to low velocity zone contrast, they are interpretable as the seismological lithosphere-asthenosphere boundary. Thermal gradients in a wide range of geodynamical models for comparable tectonic environments are typically distributed over much larger depth ranges. The Sp phases are thus difficult to reconcile with an LAB that is governed solely by temperature. Rather, they suggest the presence of other factors that weaken the top of the asthenosphere, for example small amounts of partial melt (0.5-1.5%) or greater volatile content. Beneath cratons, a drop in shear velocity and rotation of azimuthal anisotropy at the base of the lithosphere in surface wave tomography argue for widespread sub-cratonic asthenosphere. However, Sp imaging that we conducted in cratonic regions of Australia and North America did not find coherent converted phases at potential LAB depths, arguing for LAB velocity gradients that are distributed over more than ~60 km in depth. Such gradual velocity gradients are consistent with a purely thermal origin, although slow vertical increases in melt or volatile content cannot be ruled out. To more directly assess the rheological implications of the seismological LAB, we estimated

  8. Seismic constraints on the lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.

    2014-05-01

    The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions

  9. Preseismic Lithosphere-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    hardly verified so far, a statistical approach has been unique way to promote the research. After the 2000s, several papers showing robust statistical results have arisen. In this paper, we focus on publications satisfying the following identification criteria: 1) A candidate of precursor, namely anomaly, is quantitatively defied. 2) Two time-series of anomalies and earthquake are constructed within the fixed thresholds such as a minimum magnitude, a region, and a lead-time. 3) To obtain a statistical correlation, a statistical process which includes four relations considering all combination among earthquake - no earthquake versus anomaly and no anomalies is applied, e. g., phi correlation. 4) For correlations under various thresholds the results keep consistency. 5) Large anomalies appear before large earthquakes. One of papers based on the identification criteria, which concerns preseismic geoelectrically anomalies, is introduced as an educative example. VAN method in Greece, i. e., Geo-electric potential difference measurement for precursor study in Greece, has been often discussed in the point of view of success and failure performance for practical prediction [Varotsos et al, Springer, 2011] to show a correlation and then less number of papers shows the statistical correlation with satisfying the identification criteria [Geller (ed.), GRL, 1996], so that the phenomena had been controversial. However, recent related study in Kozu-Island, Japan which satisfied the criteria showed the robust correlation [Orihara and Kamogawa et al., PNAS, 2012]. Therefore, the preseismic geoelectric anomalies are expected to be a precursor. Preseismic lithosphere-atmosphere-ionosphere coupling has been intensively discussed [Kamogawa, Eos, 2006]. According to review based on the identification criteria with considering recent publications, plausible precursors have been found, which are tropospheric anomaly [Fujiwara and Kamogawa, GRL, 2004], daytime electron depletion in F region

  10. The continental lithosphere: Reconciling thermal, seismic, and petrologic data

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina M.

    2009-04-01

    The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London. Series A, 360, 2475-2491.; Shapiro N.M., Ritzwoller M.H. 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophysical Journal International 151, 1-18.] and lithospheric temperatures [Artemieva I.M., Mooney W.D., 2001. Thermal structure and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106, 16387-16414.] show strong correlation with tectono-thermal ages and with regional variations in lithospheric thickness constrained by surface heat flow data and seismic velocities. In agreement with xenolith data, strong positive velocity anomalies of non-thermal origin (attributed to mantle depletion) are clearly seen for all of the cratons; their amplitude, however, varies laterally and decreases with depth, reflecting either a peripheral growth of the cratons in Proterozoic or their peripheral reworking. These cratonic regions where kimberlite magmas erupted show only weakly positive compositional velocity anomalies, atypical for the "intact" cratonic mantle. A reduction in the amplitude of compositional velocity anomalies in kimberlite provinces is interpreted to result from metasomatic enrichment (prior or during kimberlite emplacement) of the cratonic mantle, implying that xenolith data maybe non-representative of the "intact" cratonic mantle.

  11. Support Of The Lunar Fossil Figure By The Elastic Lithosphere

    NASA Astrophysics Data System (ADS)

    Matsuyama, Isamu

    2010-10-01

    The figure of the Moon is triaxial, with three different principal moments of inertia, as expected. However, the moment differences are significantly larger than those predicted assuming hydrostatic equilibrium. This has been explained as due to a fossil bulge that retains a figure for prior rotational and tidal deformation, at a time when the Moon was closer to Earth (Jeffeys, 1915; Lambeck & Pullan, 1980; Garrick-Bethell et al.,2006). Garrick-Bethell et al. (2006) illustrated that a fossil figure can entirely account for the moment differences if it is established at a time when the orbital eccentricity was high. They approximate the Moon as a strengthless homogeneous body; however, a strengthless Moon cannot support a fossil figure over billions of years. We extend the analysis of Garrick-Bethell et al. (2006) by taking into the presence of an elastic lithosphere capable of supporting a fossil figure. The fossil figure is established when the elastic lithosphere forms. For a 50 km thick elastic lithosphere, the moment differences can be explained by a lunar orbit with an initial semimajor axis a=17.1 Earth radii and eccentricity e=0.49 if the Moon remains locked in synchronous rotation. If the fossil figure is established during a 3:2 spin-orbit resonance, a=18.1 Earth radii and e=0.16, or a=20.0 Earth radii and e=0.60. The initial semimajor axis decreases with decreasing elastic lithospheric thickness, as expected. The initial orbital eccentricity is not sensitive to the elastic lithospheric thickness. As Lambeck & Pullan (1980) noted, it is unlikely that the moment differences are due to a fossil figure alone. Therefore, we also consider the effect of including other contributions to the moment differences. This work is supported by the Miller Institute for Basic Research.

  12. Support of the lunar fossil figure by the elastic lithosphere

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.

    2010-12-01

    The figure of the Moon is triaxial, with three different principal moments of inertia, as expected. However, the moment differences are significantly larger than those predicted assuming hydrostatic equilibrium. This has been explained as due to a fossil bulge that retains a figure for prior rotational and tidal deformation, at a time when the Moon was closer to Earth (Jeffeys, 1915; Lambeck & Pullan, 1980; Garrick-Bethell et al.,2006). Garrick-Bethell et al. (2006) illustrated that a fossil figure can entirely account for the moment differences if it is established at a time when the orbital eccentricity was high. They approximate the Moon as a strengthless homogeneous body; however, a strengthless Moon cannot support a fossil figure over billions of years. We extend the analysis of Garrick-Bethell et al. (2006) by taking into the presence of an elastic lithosphere capable of supporting a fossil figure. The fossil figure is established when the elastic lithosphere forms. For a 50 km thick elastic lithosphere, the moment differences can be explained by a lunar orbit with an initial semimajor axis a=17.1 Earth radii and eccentricity e=0.49 if the Moon remains locked in synchronous rotation. If the fossil figure is established during a 3:2 spin-orbit resonance, a=18.1 Earth radii and e=0.16, or a=20.0 Earth radii and e=0.60. The initial semimajor axis decreases with decreasing elastic lithospheric thickness, as expected. The initial orbital eccentricity is not sensitive to the elastic lithospheric thickness. As Lambeck & Pullan (1980) noted, it is unlikely that the moment differences are due to a fossil figure alone. Therefore, we also consider the effect of including other contributions to the moment differences. This work is supported by the Miller Institute for Basic Research.

  13. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Gao, Min; Fan, Majie; Moucha, Robert

    2016-08-01

    The mechanism of Laramide deformation in the central Rocky Mountains remains enigmatic. It is generally agreed that the deformation resulted from low-angle subduction of the Farallon plate beneath the North American plate during the latest Cretaceous-early Eocene; however, recent studies have suggested the importance of slab removal or slab rollback in causing this deformation. Here we infer Wyoming lithosphere structure and surface deformation pattern by conducting 2-D flexural subsidence modeling in order to provide constraints on the mechanism of Laramide deformation. We assume that Wyoming lithosphere behaved as an infinite elastic plate subject to tectonic loading of mountain ranges and conduct 2-D flexural subsidence modeling to major Laramide basins to document lithospheric stiffness and mountain load height. Our results show that the stiffness of Wyoming lithosphere varied slightly in each basin during the ~30 Myr duration of the Laramide deformation and decreased from northeastern Wyoming (Te = 32-46 km) to southwestern Wyoming (Te = 6-9 km). Our results also imply that the increase of equivalent load height of major Laramide ranges accelerated during the early Eocene. We propose that the bending stresses induced by the topographic load of the Sevier fold-and-thrust belt combined with crust-mantle decoupling initiated by the overthickened Sevier hinterland and the end loads due to the low-angle subduction at the western edge of the thick Wyoming craton have caused the southwestward decrease of lithospheric stiffness in Wyoming. Moreover, we attribute the accelerated load height gain during the early Eocene to both dynamic and isostatic effects associated with slab rollback.

  14. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, G.L.; McGarr, A.

    2002-01-01

    The radiated energies, Es, and seismic moments, Mo, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (??a = ?? Es/Mo, where ?? is the modulus of rigidity). The globally averaged ??a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (??a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7-29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-??a events. The depth distribution of ??a, which shows peak values somewhat greater than 25 MPa in the depth range 20-25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5-30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10-30 km, our set of high-??a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ??a for

  15. Impact of lithosphere rheology on the dynamic topography

    NASA Astrophysics Data System (ADS)

    Burov, Evgueni; Gerya, Taras; Koptev, Alexander

    2014-05-01

    Dynamic topography is a key observable signature of the Earth's and planetary (e.g. Venus) mantle dynamics. In general view, it reflects complex mantle flow patterns, and hence is supposed to correlate at different extent with seismic tomography, SKS fast orientations, geodetic velocity fields and geoid anomalies. However, identification of dynamic topography had no systematic success, specifically in the Earth's continents. Here we argue that lithosphere rheology, in particular, rheological stratification of continents, results in modulation of dynamic topography, converting commonly expected long-wavelength/small amplitude undulations into short-wavelength surface undulations with wide amplitude spectrum, superimposed onto "tectonic" topography. These ideas are explored in 3D using unprecedentedly high resolution numerical experiments (grid step size 2-3 km for 1500x1500x600 km computational area) incorporating realistic rheologically stratified lithosphere. Such high resolution is actually needed to resolve small-scale crustal faulting and inter-layer coupling/uncoupling that shape surface topography. The results reveal strikingly discordant, counterintuitive features of 3D dynamic topography, going far beyond the inferences from previous models. In particular, even weak anisotropic tectonic stress field results both in large-scale small-amplitude dynamic topography and in strongly anisotropic short-wavelength (at least in one direction) dynamic topography with wide amplitude range (from 100 to 2000-3000 m), including basins and ranges and large-scale linear normal and strike-slip faults. Even very slightly pre-stressed strong lithosphere yields and localizes deformation much easier , than un-prestressed one, in response to plume impact and mantle flow. The results shed new light on the importance of lithosphere rheology and active role of lithosphere in mantle-lithosphere interactions as well as on the role of mantle flow and far-field stresses in tectonic

  16. Applying modern measurements of Pleistocene loads to model lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Beard, E. P.; Hoggan, J. R.; Lowry, A. R.

    2011-12-01

    The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper

  17. Evidence for deeply subducting Asian lithosphere beneath the Pamir-Hindu Kush region from lithospheric imaging

    NASA Astrophysics Data System (ADS)

    Kufner, Sofia-Katerina; Schurr, Bernd; Sippl, Christian; Schneider, Felix; Yuan, Xiaohui; Ischuk, Anatoly; Arib, Arib; Murodkulov, Shohruhk; Haberland, Christian; Mechie, James; Bianchi, Marcelo; Tilmann, Frederik

    2014-05-01

    The Pamir-Hindu Kush region, located north of the western Himalayan syntaxis, remains one of the most puzzling regions in the Indian-Eurasian collision system. In contrast to the Himalaya and Tibet, the Pamir and Hindu Kush feature a narrow, curved zone of intense intermediate depth seismicity, reaching depths greater than 250 km. The Pamir seismicity has been linked to subduction of Eurasian lithosphere. The origin of the material hosting the Hindu Kush earthquakes as well as their relation to the Pamir seismic zone is still a topic of debate. Here we present results from a teleseismic tomography that puts new constraints on the deep structure of this region. We use teleseismic P-wave travel times of approx. 800 earthquakes recorded by 180 seismic stations of several temporary networks (mainly TIPAGE, FERGHANA, and TIPTIMON) that were deployed between 2008 to 2013 and cover significant parts of the western Tien Shan, Pamir and Hindu Kush. In total about 35.000 P-wave travel time residuals are inverted for P-wave velocity perturbation. Beneath the Pamir, our velocity model images an arcuate, slab-like high velocity structure, coinciding with the seismogenic plane at the upper level. In the eastern Pamir the high velocity structure does not extend much deeper than the local seismicity but in the south-western Pamir, the structure can be traced to the bottom of the transition zone at about 600 km, indicating the presence of dense, cold Eurasian lithosphere at much greater depths than the depth extent of the seismicity would suggest. The stress regime derived from source mechanisms of intermediate depth earthquakes suggests that the current driving force, pulling the Pamir slab down seems to be this seismically fast body deep in the mantle. In contrast to the Pamir, the Hindu Kush seismicity does not occur clearly connected to a high velocity structure, but to near average or even low velocities. However a fast anomaly is imaged just below the deepest Hindu Kush

  18. Serpentinization of the Martian early lithosphere to produce magnetite, CO2 and H2

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.; Sotin, C.; Langlais, B.; Mandea, M.

    2007-08-01

    The magnetic measurements made on board the Mars Global Surveyor (MGS) probe revealed the intense nature of the lithospheric magnetic field at Mars. Since most of the strong anomalies at satellite altitudes (between 100 and 400 km) were measured over Noachian surfaces, crustal magnetization and / or demagnetization in the presence of an early axial, global and dipolar magnetic field is the most likely scenario to explain the anomaly distribution. Martian lithospheric magnetization contrasts derived by numerous studies range from 10 to more than 60 A/m, much larger than classical terrestrial values. In this study, we show that the chemical remanent magnetization (CRM) through the serpentinization can produce such large values. This produces magnetite as well as CO2 and H2. The Noachian period gathers all the necessary ingredients for this process to be emplaced: a strong magnetic field, a basaltic crust, large amounts of water causing hydrothermalism, and local heating due to the internal mantle convection. Predicted magnetization values are computed according to different hypotheses on the intensity of the main paleofield and the serpentinization process. This latter aspect is investigated with respect to the initial iron content of the mafic mineral, the water abundance and the reacting rock volume. The amounts of released H2 and CO2, possibly combining in CH4, are also studied.

  19. Matching Lithosphere velocity changes to the GOCE gravity signal

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla

    2016-07-01

    Authors: Carla Braitenberg, Patrizia Mariani, Alberto Pastorutti Department of Mathematics and Geosciences, University of Trieste Via Weiss 1, 34100 Trieste Seismic tomography models result in 3D velocity models of lithosphere and sublithospheric mantle, which are due to mineralogic compositional changes and variations in the thermal gradient. The assignment of density is non-univocal and can lead to inverted density changes with respect to velocity changes, depending on composition and temperature. Velocity changes due to temperature result in a proportional density change, whereas changes due to compositional changes and age of the lithosphere can lead to density changes of inverted sign. The relation between velocity and density implies changes in the lithosphere rigidity. We analyze the GOCE gradient fields and the velocity models jointly, making simulations on thermal and compositional density changes, using the velocity models as constraint on lithosphere geometry. The correlations are enhanced by applying geodynamic plate reconstructions to the GOCE gravity field and the tomography models which places today's observed fields at the Gondwana pre-breakup position. We find that the lithosphere geometry is a controlling factor on the overlying geologic elements, defining the regions where rifting and collision alternate and repeat through time. The study is carried out globally, with focus on the conjugate margins of the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105---- Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th

  20. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  1. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite

  2. Lithosphere-asthenosphere Structure and Active Tectonics In Central Italy

    NASA Astrophysics Data System (ADS)

    Chimera, G.; Aoudia, A.; Saraò, A.; Panza, G. F.

    We investigate the lithosphere-asthenosphere structure and the active tectonics along a stripe from the Tyrrhenian to the Adriatic with emphasis on the Umbria-Marche area by means of surface-wave tomography, and inversion studies for structure and seismic moment tensor retrieval. The data include seismic waveforms, a large compilation of local group velocities (0.8-4s) and regional phase and group velocity (10-100s) measurements. The local group velocity maps cover the area reactivated by the 1997 Umbria-Marche earthquake sequence. These maps suggest a relation between the lat- eral heterogeneity and distribution of the active faults and related basins. Such relation is confirmed by the non-linear inversion of the local dispersion curves. To image the deeper structure from the Tyrrhenian to the Adriatic coast, we fix the uppermost part of the crust using the Umbria-Marche models along with the CROP03 profile and related shear wave velocity, and invert the additional long period dispersion measure- ments. The results of the inversion show the geometry and lateral heterogeneity of the lithosphere-asthenosphere system. The retrieved models for the Umbria-Marche up- per crust reveal the importance of the inherited compression on the ongoing extension and related seismic activity. The reactivated 1997 normal fault zone displays a thrust fault geometry as evidenced by the lateral extent of the faulted Late Triassic evap- orites that did not yet balance the cumulative normal faulting deformation attesting therefore recent extensional tectonics within the thrust belt. Our data are in favor of a listric geometry of faulting at depth. Source inversion studies of the two main crustal events of September 26 and October 14, 1997 show the dominance of normal faulting mechanisms, whereas selected aftershocks between the reactivated fault segments re- veal that the prevailing deformation at the step-over is of strike-slip faulting type. The rupture of the three distinct and

  3. Mesozoic thermal evolution of the southern African mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Bell, David R.; Schmitz, Mark D.; Janney, Philip E.

    2003-12-01

    The thermal structure of Archean and Proterozoic lithospheric terranes in southern Africa during the Mesozoic was evaluated by thermobarometry of mantle peridotite xenoliths erupted in alkaline magmas between 180 and 60 Ma. For cratonic xenoliths, the presence of a 150-200 °C isobaric temperature range at 5-6 GPa confirms original interpretations of a conductive geotherm, which is perturbed at depth, and therefore does not record steady state lithospheric mantle structure. Xenoliths from both Archean and Proterozoic terranes record conductive limb temperatures characteristic of a "cratonic" geotherm (˜40 mW m -2), indicating cooling of Proterozoic mantle following the last major tectonothermal event in the region at ˜1 Ga and the probability of thick off-craton lithosphere capable of hosting diamond. This inference is supported by U-Pb thermochronology of lower crustal xenoliths [Schmitz and Bowring, 2003. Contrib. Mineral. Petrol. 144, 592-618]. The entire region then suffered a protracted regional heating event in the Mesozoic, affecting both mantle and lower crust. In the mantle, the event is recorded at ˜150 Ma to the southeast of the craton, propagating to the west by 108-74 Ma, the craton interior by 85-90 Ma and the far southwest and northwest by 65-70 Ma. The heating penetrated to shallower levels in the off-craton areas than on the craton, and is more apparent on the southern margin of the craton than in its western interior. The focus and spatial progression mimic inferred patterns of plume activity and supercontinent breakup 30-100 Ma earlier and are probably connected. Contrasting thermal profiles from Archean and Proterozoic mantle result from penetration to shallower levels of the Proterozoic lithosphere by heat transporting magmas. Extent of penetration is related not to original lithospheric thickness, but to its more fertile character and the presence of structurally weak zones of old tectonism. The present day distribution of surface heat flow

  4. Lithospheric deformation and mantle/crust coupling related to slab roll-back and tearing processes: the role of magma-related rheological weakening highlighted by 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Guillou-Frottier, Laurent; Sternai, Pietro; Gerya, Taras

    2016-04-01

    Active convergent margins are the locus of various large-scale lithospheric processes including subduction, back-arc opening, lithospheric delamination, slab tearing and break-off. Coexistence of such processes results in a complex lithospheric deformation pattern through the rheological stratification of the overriding lithosphere. In this context, another major feature is the development of an intense arc- and back-arc-related magmatism whose effects on lithospheric deformation by rheological weakening are largely unknown. Quantifying this magma-related weakening effect and integrating the three-dimensional (3D) natural complexity of subduction system is however challenging because of the large number of physico-chemical processes involved (e.g. heat advection, dehydration of subducted material, partial melting of the mantle wedge). We present here a set of 3D high-resolution petrological and thermo-mechanical numerical experiments to assess the role of low-viscosity magmatic phases on lithospheric deformation associated with coeval oceanic and continental subduction, followed by slab retreat and tearing processes. Results in terms of crustal kinematics, patterns of lithospheric deformation and distribution and composition of magmatic phases are then compared to a natural example displaying a similar geodynamical evolution: the eastern Mediterranean subduction zone. Our modeling results suggest that the asthenospheric flow controls the ascending trajectories of mantle-derived magmatic sources developed in the mantle wedge in response to dehydration of oceanic slab. Once stored at the base of the overriding continental crust, low-viscosity mantle- and crustal-derived magmatic phases allow to decrease the lithospheric strength. This weakening then enhances the propagation of localized extensional and strike-slip deformation in response to slab roll-back and extrusion tectonics respectively. In addition, we show that storage of large amounts of low-viscosity magmas

  5. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  6. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary.

    PubMed

    Schmerr, Nicholas

    2012-03-23

    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  7. Coronae formation on Venus via extension and lithospheric instability

    NASA Astrophysics Data System (ADS)

    Piskorz, Danielle; Elkins-Tanton, Linda T.; Smrekar, Suzanne E.

    2014-12-01

    Over 500 quasi-circular volcano-tectonic features called coronae occur on Venus. They are believed to form via small-scale mantle upwellings, lithospheric instability, or a combination thereof. Coronae and rifts commonly occur together, including many coronae that lie outside of the fracture zone. However, the genetic link between the two has remained unclear. This paper proposes a mechanism for the formation of off-rift coronae due to the rifting process. We model the interaction of a rising mantle plume associated with a rift with a hypothetical preexisting layer of dense material in the lithosphere. We show that a rift and its associated off-rift coronae could be genetically linked by the process of development of secondary ringlike dripping instabilities initiating at the plume margins. We calculate the resulting surface topographies, melt volumes, and Bouguer gravity anomalies and compare them to observations.

  8. Thick plate flexure. [for lithospheric models of Mars and earth

    NASA Technical Reports Server (NTRS)

    Comer, R. P.

    1983-01-01

    Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.

  9. On geoid heights and flexure of the lithosphere at seamounts

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Ribe, N. M.

    1984-12-01

    The sea surface height has now been mapped to an accuracy of better than ±1 m by using radar altimeters on board orbiting satellites. The major influence on the mean sea surface height is the marine geoid which is an equipotential surface. We have carried out preliminary studies of how oceanic volcanoes, which rise above the ocean floor as isolated seamounts and oceanic islands or linear ridges, contribute to the marine geoid. Simple one- and two-dimensional models have been constructed in which it is assumed that the oceanic lithosphere responds to volcanic loads as a thin elastic plate overlying a weak fluid substratum. Previous studies based on gravity and bathymetry data and uplift/subsidence patterns show that the effective flexural rigidity of oceanic lithosphere and the equivalent elastic thickness Te increase with the age of the lithosphere at the time of loading. The models predict that isolated seamounts emplaced on relatively young lithosphere on or near a mid-ocean ridge crest will be associated with relatively low amplitude geoid anomalies (about 0.4-0.5 m/km of height), while seamounts formed on relatively old lithosphere, on ridge flanks, will be associated with much higher amplitude anomalies (1.4-1.5 m/km). Studies of the Seasat altimetric geoid prepared by NASA's Jet Propulsion Laboratory support these model predictions; geoid amplitudes are relatively low over the Mid-Pacific Mountains and Line Islands, which formed on or near a mid-ocean ridge crest, and relatively high over the Magellan Seamounts and Wake Guyots, which formed off ridge. Direct modeling of the altimetric geoid over these features is complicated, however, by the wide spacing of the satellite tracks (which can exceed 100 km) and poor bathymetric control beneath individual satellite tracks. In regions where multibeam bathymetric surveys are available, models can be constructed that fit the altimetric geoid to better than ±1 m. Studies of geoid anomalies over the Emperor seamount

  10. The elastic thickness of the lithosphere in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    1987-09-01

    The effective elastic thickness T(e) of the oceanic lithosphere along the Hawaiian-Emperor, the Marquesas, the Pitcairn-Mururoa-Gloucester (PMG) chains, the Tuamotu archipelago, and the Samoa islands was determined by computing the deflection of a continuous elastic plate under the load of volcanoes and was constrained by the geoid heights over the oceans provided by Seasat. The prediction by Watts (1978) according to which the value of the T(e) should increase with the square root of crustal age of the lithosphere at the time of volcano emplacement was not confirmed; while the T(e) estimate of the Hawaiian-Emperor chain and an isolated estimate in the Samoan group agree with the empirical trend found by Watts, the Marquesas and the PMG chains, as well as the previously analyzed Cook-Austral and Society chains, present anomalously low values which increase only slightly with age.

  11. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    USGS Publications Warehouse

    Denlinger, R.P.; Savage, W.Z.

    1989-01-01

    Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors

  12. Physico-chemical constraints on cratonic lithosphere discontinuities

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Rondenay, Stéphane; Huismans, Ritske

    2014-05-01

    The origins of the mid-lithospheric discontinuity (MLD) and lithosphere-asthenosphere boundary (LAB) have received much attention over the recent years. Peculiarities of cratonic lithosphere construction - compositional and rheological stratification due to thickening in collisional settings or by plume subcretion, multiple metasomatic overprints due to longevity - offer a variety of possibilities for the generation of discontinuities. Interconnected small degrees of conductive partial melt (carbonate-rich melts, such as carbonatites and kimberlites, or highly alkaline melts) at the cratonic LAB, which produce seismic discontinuities, may be generated in the presence of volatiles. These depress the peridotite solidus sufficiently to intersect the mantle adiabat at depths near the cratonic LAB at ~160-220 km, i.e. above the depth of metal saturation where carbonatite becomes unstable. The absence of agreement between the different seismic and magnetotelluric estimates for the depth of the LAB beneath Kaapvaal may be due to impingement of a plume, leading to a pervasively, but heterogeneously metasomatised ('asthenospherised') hot and deep root. Such a root and hot sublithosphere may yield conflicting seismic-thermal-geochemical depths for the LAB. The question arises whether the chemical boundary layer should be defined as above or below the asthenospherised part of the SCLM, which has preserved isotopic, compositional (non-primitive olivine forsterite content) and physical evidence (e.g. from teleseismic tomography and receiver functions) for a cratonic heritage and which therefore is still distinguishable from the asthenospheric mantle. If cratonic lithosphere overlies anomalously hot mantle for extended periods of time, the LAB may be significantly thinned, aided by penetration of relatively high-degree Fe-rich partial melts, as has occurred beneath the Tanzanian craton. Xenoliths from the deep Slave craton show little evidence for 'asthenospherisation'. Its root

  13. Swarm magnetic and GOCE gravity gradient grids for lithospheric modelling

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Haagmans, Roger; Olsen, Nils; Ebbing, Jörg; Baykiev, Eldar; Novak, Pavel; Kotsiaros, Stavros; Sebera, Josef; Brönner, Marco; Fuchs, Martin; Holzrichter, Nils

    2016-07-01

    We explore how Swarm magnetic gradient and GOCE gravity gradient data can improve modelling of the Earth's lithosphere and thereby contribute to a better understanding of Earth's dynamic processes. We study the use of gradient grids to provide improved information about the lithosphere and upper mantle in the well-surveyed North-East Atlantic Margin. In particular, we present the computation of magnetic and gravity gradient grids at satellite altitude (roughly 450 km and 250 km above the Earth for Swarm and GOCE respectively). It is shown that regional solutions based on a tesseroid approach may contain more signal content than global models do. The patchwork of regional grids is presented as well as the subsequent error reduction through iterative downward and upward continuation using the Poisson integral equation. The promises and pitfalls are discussed of using grids at mean satellite altitude.

  14. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    PubMed Central

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045

  15. Linking petrology and seismology of the southwest Greenland lithosphere

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Vestergaard, C.; Brown, E.; Schutt, D.

    2015-12-01

    Mantle xenoliths from late-Proterozoic diamond-bearing kimberlitic dikes in the Kangerlussuaq, Sarfartoq and Maniitsoq areas of southwestern Greenland provide constraints on the composition and thermal state of lithospheric mantle beneath Greenland to depths of ~200 km [1]. Similarly, surface wave tomography studies carried out as part of the GLATIS project use a range of Rayleigh wave periods sensitive to structures at a similar depth interval within southwestern Greenland lithospheric mantle [2]. Here we link petrologic and seismologic constraints on the mantle lithosphere beneath Greenland utilizing methods of [3] that show that inferred chemical and mineralogical stratification inferred from petrology, showing mantle peridotite transitioning from garnet-free harzburgite to garnet lherzolite between ~70 and 180 km, cannot readily be resolved with fundamental mode Rayleigh waves. On the other hand, comparing phase velocities predicted from xenolith compositions, mineralogy and last equilibration temperatures and pressures, defining the continental geotherm during late-Proterozoic time, with those for the present-day mantle lithosphere suggest significant cooling of the cratonic mantle to a modern geotherm characterized by a heat flux of 30 mW/m2 and average crustal heat production of 0.3 mW/m3 [4]. These preliminary findings point to the weak dependence of shear wave velocities on mantle peridotite composition and mineralogy, and further illustrate its strong temperature dependence. Comparison of ancient and modern continental geotherms made possible by combining petrologic and seismological data, as shown here for southwest Greenland, provide additional constraints on secular cooling of cratonic regions linked to large-scale tectonic processes. [1] Bizzarro et al., 2003, CMP, 146; Sand et al., Lithos, 112. [2] Darbyshire et al., 2004, GJI, 158. [3] Schutt and Lesher, 2006, JGR, 111. [4] Meirerbachtol et al., 2015, JGR/ES, 120.

  16. HuBLE-UK: the Hudson Bay Lithospheric Experiment: Insights into the Formation of the Canadian Shield From Broadband Seismology

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Thompson, D. A.; Kendall, J.-M.; Helffrich, G.; Wookey, J.; Snyder, D.; Eaton, D.; Darbyshire, F.

    2012-04-01

    The Canadian Shield is one of the largest exposures of Precambrian rocks on Earth. It is a mosaic of several Archean terranes that were brought together during a series of Paleoproterozoic orogens culminating in the so-called Trans-Hudson orogen, which is thought to have been similar to the Himalayan orogen in scale and nature. The tectonic evolution and lithospheric subdivisions of this region are poorly understood, but new seismic networks in northern Hudson Bay provide fresh opportunity to place constraints on the Preachbrian processes that formed and shaped it. Using a combination of seismic tomography, anisotropy and receiver function analysis we show that the lithosphere of the northern Hudson Bay region retains a strong signature of Archean-Paleoproterozoic tectonics. We map the boundary between the upper (Churchill) and lower (Superior) plates that collided ca. 1.8 Ga and identify backazimuth dependent shear-wave splitting parameters (phi, dt) on Baffin Island that indicate complex anisotropy (e.g., dipping fabric) beneath the region. Our results support the view that significant lithospheric deformation occurred during the Paleoproterozoic and that modern-day plate tectonic processes were thus in operation by at least ca. 1.8 Ga.

  17. Geoid data and thermal structure of the oceanic lithosphere

    SciTech Connect

    Richardson, W.P.; Stein, S.; Stein, C.A.

    1995-07-15

    A long-standing question is whether old oceanic lithosphere continues cooling as the boundary layer of a halfspace or approaches thermal equilibrium as modeled by a finite thickness plate. Although the latter is the most direct inference from seafloor depths and heat flow, other explanations have been proposed. We investigate this issue using published results for the derivative of the oceanic geoid with age estimated from geoid offsets across fracture zones. Such data have not been used extensively in analyses of the thermal evolution of the lithosphere, primarily because they are inconsistent with two commonly used thermal models; a halfspace or a 125-km-thick plate. Recent studies, however, find that depth and heat flow data are better fit by a thinner (95 km) plate model. We thus compile published geoid slope results, and find that these data, though scattered, can discriminate between the models. Geoid slope changes with age, rather than being constant as predicted for a cooling halfspace. This variation is greater than predicted for a thick plate and is better fit by a thin plate. Geoid data should thus be useful for improving thermal models of the lithosphere. 30 refs., 4 figs., 1 tab.

  18. Volcanism and Volatile Recycling on Venus from Lithospheric Delamination

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, L. T.; Hess, P. C.; Smrekar, S. E.; Parmentier, E. M.

    2005-01-01

    Venus has an unmoving lithosphere, a young surface indicative of volcanic resurfacing, and a wide variety of volcanic and tectonic features. The planet s ubiquitous magmatic features include 100,000 small shield volcanoes as well as the descriptively named pancakes, ticks, and arachnoids [1]. Coronae, volcanic and tectonic features up to 2,600 km in diameter, have been attributed to lithospheric interactions with upwelling plumes [e.g., 2], but more recently to delamination of the lower lithosphere with [3] or without [4] a central upwelling. Lavas issuing from different volcanic features appear to have a range of compositions, as evidenced by their apparent viscosities and by data from Soviet landers. Steep-sided or "pancake" domes [e.g., 5] appear to consist of more viscous magma [6], perhaps silicic compositions created by remelting basaltic crust [7]. These steep-sided domes are associated with coronae and with shield volcanoes effusing basaltic magmas [7,8] with apparently low viscosities (low enough to allow fluid flow for hundreds of km, creating channels reminiscent of water rivers on Earth). Pancake domes, in contrast, can be up to 3 km in height and have volumes from 30 to approx.3,000 km3 [calculated from data in 8], and hundreds dot the planet [6-8].

  19. A Top to Bottom Lithospheric Study of Africa and Arabia

    SciTech Connect

    Pasyanos, M

    2006-10-31

    We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons, and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.

  20. Observations of flexure and the rheology of the oceanic lithosphere

    SciTech Connect

    Bodine, J.H.; Steckler, M.S.; Bodine, J.H.; Watts, A.B.

    1981-05-10

    Observations of flexure indicate that the effective flexural rigidity of oceanic lithosphere is a function of the age of the lithosphere at the time of loading, and hence temperature. We have used a yield stress envelope model constrained by data from experimental rock mechanics to determine how the flexure parameters and rheologic properties of oceanic lithosphere are related. The results of our model for seamounts and oceanic island loads in the interior of plates suggest that following loading, rapid stress relaxation occurs as the plate 'thins' from its short-term to its long-term (>10/sup 6/ years) mechanical thickness. The mechanical thickness, which determines the effective flexural rigidity of the plate, is strongly dependent on temperature and weakly dependent on load size and duration (>1-10 m.y.). The results of our model for convergent plate boundaries suggest that changes in the shape of the Outer Rise along an individual trench system may be due to variations in the horizontal load acting across the boundary (<1 kbar). The model predicts a narrow zone of high strain accumulation seaward of a trench which is in agreement with variations in crustal velocities and seismicity patterns observed along some trench systems.

  1. Improved determination of vector lithospheric magnetic anomalies from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1993-01-01

    Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).

  2. Structure of the deep oceanic lithosphere in the Northwestern Pacific ocean basin derived from active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S.

    2015-12-01

    Many seismological studies have detected the sharp seismic discontinuities in the upper mantle, some of which are interpreted the lithosphere-asthenosphere boundary (LAB). However there are few data at the old Pacific plate, in particular at ocean basin, which is critical information for understanding nature of the oceanic LAB. In 2014 we conducted an active-source refraction/reflection survey along a 1130-km-long line in southeast of the Shatsky Rise. Five ocean bottom seismometers (OBSs) were deployed and recovered by R/V Kairei of JAMSTEC. We used an airgun array with a total volume of 7,800 cubic inches with firing at intervals of 200 m. Multi-channel seismic reflection (MCS) data were also collected with a 444-channel, 6,000-m-long streamer cable. In OBS records the apparent velocity of the refraction waves from the uppermost mantle was high (< 8.6 km/sec), and considered to be caused by preferred orientation of olivine (e.g., Kodaira et al., 2014). Another remarkable feature is wide-angle reflection waves from the deep lithosphere at large (150-500 km) offsets. We applied the traveltime mapping method (Fujie et al., 2006), forward analysis (Zelt and Smith, 1992) and the amplitude modeling (Larsen and Grieger, 1998) to the OBS data. The results show that deep mantle reflectors exist at the depths from 35 to 60 km, and one possible explanation is that these reflectors correspond to patched low velocity zones around the base of the lithosphere. On MCS sections the clear and sharp Moho was imaged only at the southwestern end of the profile, but Moho was ambiguous or even not imaged in the most part of the profile. Since our seismic line covers the oceanic lithosphere with different ages that correspond to different stages of the Shatsky activity, the Moho appearance may reflect the variation of the Shatsky activity.

  3. Lithospheric Structure of the Northeastern North China Craton Imaged by S Receiver Functions

    NASA Astrophysics Data System (ADS)

    Wang, Xingchen; Ding, Zhifeng; Zhu, Lupei

    2016-08-01

    Lithosphere thickness variation is important for understanding the significant tectonic reactivation of the North China Craton (NCC) in the Mesozoic and Cenozoic time. Here, we determined the lithospheric structure in the northeastern NCC using S receiver functions from 305 teleseismic events recorded by 223 seismic stations. The Moho and lithosphere-asthenosphere boundary (LAB) are imaged clearly beneath the region. The Moho depth decreases from ~45 km beneath the western NCC to ~25 km beneath the eastern NCC. We found that the lithospheric thickness varies from 60 to 80 km beneath the Trans-North China Orogen (TNCO) and eastern NCC with no significant change of the LAB depth. The lithosphere thickness beneath the northwestern Ordos plateau is 100-130 km. In addition, there is a mid-lithosphere discontinuity at a depth of 80 km beneath the plateau that is connected to the base of thinned lithosphere in TNCO and eastern NCC. We suggest that the mid-lithosphere discontinuity represents a mechanically weak zone in the original cratonic lithosphere of the NCC. The material in the lower lithosphere of the craton, when warmed and hydrated by water released from the subducting slab of Western Pacific, became weak due to decrease in viscosity and/or partial melting and was subsequently removed through small-scale mantle convections.

  4. New insights on lithospheric foundering from thermo-mechanically coupled numerical modelling

    NASA Astrophysics Data System (ADS)

    Pastor-Galán, Daniel; Thieulot, Cedric

    2015-04-01

    Earth's lithosphere is recycled into the mantle as required by global mass considerations. At least during the latest 1 G.y. the main mechanism of lithospheric foundering into the mantle has been subduction. Yet other mechanisms of mantle removal such as Rayleigh-Taylor-type instability or delamination have significant influence at present as revealed by mantle anomalies, and are considered to be likely candidates for the main recycling mechanisms of lithospheric during the Archean. Although lithospheric mantle removal has been geophysically imaged, e.g. Carpathians, Colorado Plateau, at many other locations geophysical and geological observations also seem to indicate that mantle lithosphere is anomalously thin or absent. Potential places where lithospheric mantle foundering processes took place are The Urals, the Variscides, underneath the Ibero Armorican Orocline in western Europe, and the Tibetan, Puna and Anatolian Plateaus. Lithospheric foundering has been blamed for, among others, cratonization processes, rapid surface uplift, generation of voluminous magmatism, changes in crustal stress from compression to extension and a long etc. However, its triggering mechanisms are not well studied, and a variety of possible explanations have been given for lithospheric foundering processes, including convective instability following orogenic thickening or some other perturbation of thermal boundary layers, development of eclogitic roots, erosion of the lithosphere by a flat-subducting slab or partial melting of the asthenosphere, and partial intruding pyroxenites into the base of lithosphere. To understand the mechanisms, causes and consequences of lithospheric foundering, we explored lithospheric foundering in an assortment of scenarios using the numerical code, ELEFANT, an user-friendly multipurpose geodynamics code. Preliminary results indicate that changes in geometry, thermal state and composition of the lithosphere, associated with mantle flow, can have a first

  5. Deep Continental Crustal Earthquakes and Lithospheric Structure: A Global Synthesis

    NASA Astrophysics Data System (ADS)

    Devlin, S.; Isacks, B. L.

    2007-12-01

    The distribution of earthquake depths within the continental crust defines the seismogenic thickness (TS), over which at least some part of crustal deformation is accommodated by rapid release of stored elastic strains. Intraplate continental seismicity is often thought to be restricted to the upper crust where TS is within the range of 15 to 20 km. This appears consistent with a lithospheric strength profile involving a weak, ductile lower crust located beneath a stronger, brittle upper crust. With the assumption of a strong uppermost mantle lid, this is often referred to the Jelly Sandwich model of lithosphere rheology. Studies in many places, however, document lower crustal earthquakes beneath continents in apparent disagreement with the model. We explore this and related issues through a survey of where and in what tectonic settings deep intraplate earthquakes are well documented in the continental crust. TS reaches Moho depth in many intraplate regions \\--- Sierra Nevada, Colorado Plateau, East African and Baikal Rift Systems, North Island New Zealand, Tien Shan, and the Andean and Alpine forelands. A review of possible deformation mechanisms which could control continental earthquake depth and facilitate seismicity beneath the brittle-ductile transition suggests that the influence of fluids is the only mechanism capable of encouraging earthquake occurrence throughout the continental crust at any tectonic setting. Surface derived fluids can induce pore fluid pressure changes to depths of 25 km and melt-reactions can induce earthquakes at depths throughout continental crust. On a global scale, fluid-enhanced embrittlement is not limited by depth or tectonic environment. We find that deep crustal earthquakes occur where the lithosphere is in a transitional state between primarily stable (e.g., shields) and highly deformed (e.g., U.S. Basin and Range or Southern California). Observations of relative intensity of tectonic deformation and regional percent strain

  6. Lithosphere and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.

    2014-12-01

    The depth of the lithosphere-asthenosphere boundary (LAB) and the change in properties across the lithosphere, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across lithosphere and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the lithosphere. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-lithospheric discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO

  7. Lithosphere extension and magmatism at volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent; Gernigon, Laurent; Werner, Philippe

    2014-05-01

    We present onshore and offshore evidences suggesting that volcanic passive margins are distinct in origin and evolution from non-volcanic hyper-extended margins. Consecutively, they should not be integrated in a single evolutionary process and do not necessarily represent the ultimate stage of an hyper-extension with or without mantle exhumation. Volcanic passive margins usually form in mobile areas between cratonic areas which may have been submitted to long-term periods of divergence and convergence or strike-slip tectonics. In the NE-Atlantic, for example, a complete illustration of a Wilson cycle is illustrated between Greenland and Baltica cratonic areas. From the Devonian to the end of the Jurassic, the Caledonian orogenic crust has suffered from a number of wrench and extensional tectonic stretching episodes. The late-Jurassic/Early Cretaceous extension was severe, leading to extreme crustal thinning (e.g. Rockall Through, Vøring Basin, Lofoten Basin) and was followed by a long-term regional thermal subsidence of the NE-Atlantic lithosphere. Meanwhile, pre-thinning lithospheric thickness was restored progressively during ~80 Myr, in spite of some tectonic reactivation occurring in Late Cretaceous (e.g. Outer Vøring Basin) resulting in little coeval stretching and thinning. During the Paleocene (or even earlier, especially in the Rockall area) a regional mantle melting event occurred. The mantle melted in specific locations but led ultimately to a large igneous province formation during the onset of breakup. The NE-Atlantic continental crust was at this time extremely heterogeneous due to its tectonic inheritance but we think that generally the lithosphere was much thicker than during the Jurassic-Cretaceous event, and thus much stronger. Although we must consider the existence of some extension during the latest Cretaceous and Paleocene, the main stretching and thinning event leading to volcanic passive margins formations and successful break-up occurred

  8. Constraints From Deep-Imaging Magnetotellurics on the Lithospheric Structure and Evolution of the Enigmatic Okwa Terrane, Botswana

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Jones, A. G.; Evans, R. L.

    2009-12-01

    The Okwa Terrane, located in central Botswana, is perhaps one of the least understood terranes within the southern African Archean to Palaeoproterozoic tectonic framework. Thick Quaternary Kalahari sand-cover provides minimal crustal exposure with which to define the nature and evolution of the terrane: its potential affiliations and tectonic relationships with adjacent terranes remain speculative and largely unconstrained. The Okwa Terrane, as defined primarily in potential field images, is bounded to the west and north by the Early Proterozoic Rehoboth Terrane, to the south by the Archean Kaapvaal Craton, and to the east, across a poorly defined boundary, by the Palaeoproterozoic Magondi orogenic belt and the Archean Zimbabwe Craton. While the Okwa Terrane is inferred in some interpretations to constitute the northern-most portion of the Kaapvaal Craton, there is no direct evidence to support an Archean lithospheric stabilisation age for the terrane. The oldest recorded crustal ages, for intrusive granites located in the Okwa Inlier, are between 2.1 and 2.0 Ga. Gneissic deformation of the granites is recognised at ~1.8 Ga and, in alternative interpretations, is regarded as the accretion age of the Okwa Terrane with the Kaapvaal Craton along the major east-west trending Palala Shear Zone. A reported diamondiferous kimberlite pipe in the Gope cluster of the Okwa Terrane suggests a lithospheric thickness in excess of the depth of the diamond stability field (~160 km), at least at the time of kimberlite eruption at ~80 Ma. The multinational Southern African Magnetotelluric Experiment (SAMTEX) has acquired, during the period between 2003 and 2008, more than 730 magnetotelluric (MT) sites along 14,000 kilometers of profile length across southern Africa. In acquiring MT data on two orthogonal ~600 km-long profiles across the Okwa Terrane, SAMTEX provides the first deep crustal and lithospheric mantle images of the terrane. MT stations were installed at roughly 20 km

  9. Events related to lithosphere-atmosphere-ionosphere-magnetosphere coupling observed by DEMETER

    NASA Astrophysics Data System (ADS)

    Parrot, Michel; Hattori, Katsumi; Liu, Tiger; Namgaladze, Alexander; Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio

    2015-04-01

    There are several models of Lithosphere-Atmosphere-Ionosphere-Magnetosphere (LAIM) coupling to explain ionospheric perturbations which are observed prior to earthquakes. In 2013 an ISSI Team led by S. Pulinets (RU) and D. Ouzounov (US) started to work with the following aim: "Multi-instrument Space-Borne Observations and Validation of the Physical Model of the LAIM Coupling" (see http://www.issibern.ch/teams/spaceborneobserve/). In the frame of this model validation several events have been studied with the DEMETER satellite data. It concerns the effects of (i) the ancient natural nuclear reactor located at Oklo (Gabon), (ii) the sand storms in Sahara, (iii) the volcanic activity, (iv) the lightning activity, and (v) the hurricanes. The main signature of these events in the ionosphere will be shown in this presentation.

  10. The buffering capacity of lithospheric mantle: implications for diamond formation

    NASA Astrophysics Data System (ADS)

    Luth, Robert W.; Stachel, Thomas

    2014-11-01

    Current models for the formation of natural diamond involve either oxidation of a methane-bearing fluid by reaction with oxidized mantle, or reduction of a carbonate-bearing fluid (or melt) by reaction with reduced mantle. Implicit in both models is the ability of the mantle with which the fluid equilibrates to act as an oxidizing or reducing agent, or more simply, to act as a source or sink of O2. If only redox reactions involving iron are operating, the ability of mantle peridotite to fulfill this role in diamond formation may not be sufficient for either model to be viable. Using the recent experimental recalibration of olivine-orthopyroxene-garnet oxybarometers of Stagno et al. (2013), we re-evaluated the global database of ~200 garnet peridotite samples for which the requisite Fe3+/Fe2+ data for garnet exist. Relative to the previous calibration of Gudmundsson and Wood (1995), the new calibration yields somewhat more oxidized values of Δlog fO2 (FMQ), with the divergence increasing from <0.5 units of log fO2 at ~3 GPa to as much as 1.5 units at 5-6.5 GPa. Globally, there is a range of ~4 log units fO2 for samples from the diamond stability field at any given pressure. Most samples are sufficiently reduced such that diamond, rather than carbonate, would be stable, and CHO fluids at these conditions would be H2O-rich (>60 mol%), with CH4 being the next most abundant species. To ascertain the capacity for mantle peridotite to act as a source or sink of O2, we developed a new model to calculate the fO2 for a peridotite at a given P, T, and Fe3+/Fe2+. The results from this model predict 50 ppm or less O2 is required to shift a depleted mantle peridotite the observed four log units of fO2. Coupled with the observed distribution of samples at values of fO2 intermediate between the most reduced (metal-saturated) and most oxidized (carbonate-saturated) possible values for diamond stability, these results demonstrate that peridotites are very poor sinks or sources of O

  11. Shape evolution and finite deformation pattern in analog experiments of lithosphere necking

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Storti, Fabrizio; Bedogni, Enrico; Cavozzi, Cristian

    2013-10-01

    necking evolution determines the 3-D architecture of crustal and upper mantle thinning and related basins, and the heat flow distribution in rifted regions. Despite a large number of studies, lithosphere necking evolution is still a matter of debate. We present the result from lithospheric-scale analog models designed for investigating the necking shape during extension and the vertical distribution of finite deformation in the mechanical lithosphere. In our experiments, lithosphere necking is asymmetric and, in particular, the 3-D distribution of thinning is cylindrical in the crust and very heterogeneous in the mantle. Overall, the evolution of rifting and necking progresses from delocalized to localized deformation.

  12. Lithospheric evolution of the Northern Arabian Shield: Chemical and isotopic evidence from basalts, xenoliths and granites

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1988-01-01

    The evolution of the upper-mantle and the lower-crust (the conteinental lithosphere), is the area of Israel and Sinai was studied, using the chemical composition and the Nd-Sr isotopic systematics from mantle and crustal nodules, their host basalts, and granites. The magmatism and the metasomatism making the lithosphere are related to uprise of mantle diapirs in the uppermost mantle of the area. These diapirs heated the base of the lithosphere, eroded, and replaced it with new hot material. It caused a domal uplift of the lithosphere (and the crust). The doming resulted in tensional stresses that in turn might develop transport channels for the basalt.

  13. Using subsidence and P-T-t history on the Alpine Tethys margin to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy; Beltrando, Marco

    2014-05-01

    Mantle exhumation and hyper-extended crust, as observed on the Iberia-Newfoundland conjugate margins, are key components of both present-day and fossil analogue magma-poor rifted margins. Conceptual models of the Alpine Tethys paleogeography evolution show a complex subsidence history, determined by the nature and composition of sedimentary, crustal and mantle rocks in the Alpine domains (Mohn et al., 2010). The relative timing of crustal rupture and decompressional melt initiation and inherited mantle composition control whether mantle exhumation may occur; the presence or absence of exhumed mantle therefore provides useful information on the timing of these events and constraints on lithosphere deformation modes and composition. A single mode of lithosphere deformation leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation modes for the fossil Alpine Tethys margin using a numerical model of the temporal and spatial evolution of lithosphere deformation; the model has been calibrated against observations of subsidence and P-T-t history for the Alpine Tethys margin. A 2D finite element viscous flow model (FeMargin) is used to generate flow fields for a sequence of lithosphere deformation modes, which are used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the topmost 15-20 km of the lithosphere inducing passive upwelling beneath that layer; the upper lithosphere is assumed to deform by extensional faulting and magmatic intrusions, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). We also include buoyancy enhanced upwelling in the kinematic model as proposed by Braun et al. (2000). We generate melt by decompressional melting using the parameterization and methodology of Katz et al. (2003). In the modelling of the Alpine Tethys margin

  14. Variation of olivine composition in the volcanic rocks in the Songliao basin, NE China: lithosphere control on the origin of the K-rich intraplate mafic lavas

    NASA Astrophysics Data System (ADS)

    Zhang, L.-Y.; Prelević, D.; Li, N.; Mertz-Kraus, R.; Buhre, S.

    2016-10-01

    Lithospheric thickness and the heterogeneity of the mantle lithosphere are two major parameters that play a role in determining the final composition of the mafic melts and their minerals. The Songliao basin in northeast China represents an ideal natural laboratory to study the effect of these two parameters on early Pliocene to Holocene K-rich mafic lavas (K2O > 4 wt.%; K2O/Na2O > 1). A series of Cenozoic volcanic edifices (Erkeshan, Wudalianchi, Keluo and Xiaogulihe) are tentatively divided into three groups (Group 1 - thin, Group 2 - middle, and Group 3 - thick) according to the lithosphere thickness. They are located in the northern region of the Songliao basin extending in a near north-south direction along a broad zone where the lithosphere thickness increases gradually. We present a detailed petrographical and geochemical study on olivine macrocrysts in combination with new geochemical data on their host lavas, including major and trace element abundances as well as Sr, Nd, and Pb isotopic signatures. Our ultimate aim is to quantitatively and qualitatively determine the role of lithospheric mantle thickness (named as "lid effect") and composition in the variation of mafic lavas and olivine composition. When corrected to Mg# = 0.72, a number of major elements in the lavas correlate with increasing lithospheric thickness (L): Si72 and Al72 decrease, whereas Mg72, Fe72, Ti72 and P72 increase. Sm/Yb ratios in the lavas increase, implying that lithospheric thickness exerts an important control. Group 3 mafic lavas are ultrapotassic (showing lamproite affinity) with K2O/Na2O > 4: their La/Sm and Pb isotope ratios deviate from the above correlations, indicating that the lavas from the thickest part of the basin exhibit the highest extent of metasomatic enrichment of the mantle source. Several parameters (e.g. [Ni], Ni/Mg, Ni/(Mg/Fe), Mn/Fe and Ca/Fe) in melt-related olivine from Group 1 and Group 2 lavas are controlled by variable lithosphere thickness. Olivine

  15. Modeling Plume-Triggered, Melt-Enabled Lithospheric Delamination

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Humphreys, G.

    2015-12-01

    It has been suggested that arrival of the Yellowstone plume below North America triggered a lithospheric foundering event which aided the eruption of the Columbia River flood basalts. This hypothesis potentially accounts for some of the biggest mysteries related to the CRB's including their location as "off-track" plume volcanism; and the anomalous chemical signatures of the most voluminous units. The foundered lithosphere appears to be a remnant chunk of Farallon slab, which had been stranded beneath the Blue Mountains terrain since the accretion of Siletzia. If this is the case then the mechanisms by which this slab stayed metastable between Siletzia accretion and CRB time, and then so suddenly broke loose, is unclear. The addition of heat and mantle buoyancy supplied by the Yellowstone plume provides a clue, but the geodynamic process by which the slab was able to detach remains unclear.Efforts to model numerically the underlying processes behind delamination events have been gaining popularity. Typically, such models have relied on drastically weakened regions within the crust, or highly non-linear rheologies to enable initiation and propagation of lithosphere removal. Rather than impose such a weak region a priori, we investigated the role of mantle and crustal melt, generated by the addition of plume heat, as the source of such a rheologic boundary.We track melt generation and migration though geodynamic models using the Eulerian finite element code, ASPECT. Melt moves relative to the permeable, compacting, and viscously-deforming mantle using the approach of (Keller, et al. 2013) with the notable exception that ASPECT currently cannot model elasticity. Dike and sill emplacement is therefore still a work in progress. This work is still in the preliminary stages and results are yet inconclusive.

  16. Melt-Enabled Lithospheric Delamination in the Western US

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Humphreys, E.

    2014-12-01

    Signs of convective downwelling in non-subduction environments have been increasingly prevalent in recent studies. From seismic images of the "Isabella Anomaly" beneath the southern Sierra Nevada, to studies on the origin of the Columbia River flood basalts, to long standing speculation on the state of the lithosphere beneath the Colorado Plateau, the lithospheric delamination hypothesis potentially accounts for a substantial amount of otherwise anomalous topographic uplift and magmatism in western North America and elsewhere. Efforts to model numerically the underlying processes behind such events have also been gaining popularity. Typically, such models have relied on drastically weakened lithosphere or highly non-linear rheologies at the boundaries of dense regions to allow the propagation of delamination in reasonable timescales. However, these low viscosities are rarely justified by a systematic investigation of mantle rheology.Based on suspected cases of delamination, the process seems to be commonly associated with localized magmatism. For instance, the Columbia River flood basalts, the renewed magmatism in the southern Sierras, and the radially converging magmatism propagating though the Colorado Plateau, all match well temporally with suspected delamination cases. Geochemical signatures are consistent with delamination in all of these cases.Because of the spatial and temporal correlations between delamination and magmatism, we are interested in investigating the rheological role that melt might play in the initiation and propagation of delamination. Moderate melt fraction in the asthenosphere is a potential source for the low viscosity necessary to appropriately predict timescales of these events. To that end, we are working on tracking melt generation and migration though geodynamic models using the Eulerian finite element code, ASPECT. Preliminary results predict melt being generated during delamination events but the magnitudes and rheological

  17. Lithospheric scale model of Merida Andes, Venezuela (GIAME Project)

    NASA Astrophysics Data System (ADS)

    Schmitz, M.; Orihuela, N. D.; Klarica, S.; Gil, E.; Levander, A.; Audemard, F. A.; Mazuera, F.; Avila, J.

    2013-05-01

    Merida Andes (MA) is one of the most important orogenic belt in Venezuela and represents the northern culmination of South America Andes. During the last 60 years, several models have been proposed to explain the shallow and deep structure, using different geological, geophysical, seismological, geochemical and petrologic concepts; nevertheless, most of them have applied local observation windows, and do not represent the major structure of MA. Therefore, a multidisciplinary research group, coordinated by FUNVISIS, in close cooperation with UCV, ULA and PDVSA, is proposed in order to get the outlined goals in the project entitled GIAME ("Geociencia Integral de los Andes de MErida") was established, which aims to generate a lithospheric scale model and the development of a temporal dynamic model for the MA. As a base for lithospheric investigations of the Merida Andes, we are proposing three wide angle seismic profiles across the orogen on three representative sites, in order to determine the inner structure and its relation with the orogen's gravimetric root. To the date, there are no seismic studies at lithospheric scale which cross MA. The wide angle seismic will be complemented with the re-processing and re-interpretation of existing reflection seismic data, which will allow to establish a relationship between MA and its associated flexural basins (Maracaibo and Barinas-Apure basins). Depending on the results of the VENCORP Project (VENezuelan COntinental Reflection Profiling), which might show some reliable results about crustal features and Moho reflectors along three long seismic profiles at Caribbean Moutain system, a reflection seismic profile across the central portion of MA is proposed. Additional tasks, consisting in MA quaternary deformation studies, using research methods like neotectonics and paleoseismology, georadar, numerical modeling, cinematic GPS, SAR interferometry, thermocronology, detailed studies on regional geology, flexural modeling

  18. Lithospheric strength variations in Mainland China: tectonic implications

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Tesauro, M.

    2015-12-01

    We present new thermal and strength models of Mainland China. We integrate thermal model for the crust, using a 3D steady-state heat conduction equation, with estimates for the upper mantle thermal structure obtained by inverting an S-wave tomography model. Using the new thermal model and attributing to the lithospheric layers a 'soft' and 'hard' rheology, respectively, we estimate the integrated strength of the lithosphere. In the Ordos and the Sichuan basins, characterized by intermediate temperatures, strength is primarily concentrated in the crust, when the rheology is 'soft', and in both the crust and upper mantle, when the rheology is 'hard'. In turn, the Tibetan Plateau and the Tarim basin have a weak/strong lithosphere mainly on account of their high/low temperatures. Deep earthquakes releasing high seismic energy, occurring beneath Tien Shan orogen, may be related to the brittle failure of anhydrous granulite-faciesrocks composing its lower crust. In contrast, the fluids released by the Indian slab favor the triggering of earthquakes located in the deep crust of south Tibet. Comparison of temperatures, strength and effective viscosity variations with the earthquakes distribution and their seismic energy released indicates that both the deep part of the crust and the upper mantle of the Tibetan Plateau are weak and prone to flow towards the adjacent areas. On account of the high strength of some of the tectonic domains surrounding Tibet, the flow is directed northward beneath the Qaidam basin and turns south of the Sichuan basin, moving toward the weak South China block.

  19. Anomalous variations of lithosphere magnetic field before several earthquakes

    NASA Astrophysics Data System (ADS)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  20. Assimilating lithosphere and slab history in 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Gurnis, Michael; Flament, Nicolas

    2015-01-01

    We develop methods to incorporate paleogeographical constraints into numerical models of mantle convection. Through the solution of the convection equations, the models honor geophysical and geological data near the surface while predicting mantle flow and structure at depth and associated surface deformation. The methods consist of four constraints determined a priori from a plate history model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent conditions that are blended with the solution of the convection equations at each time step. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to test the robustness of the methods by computing the temperature, velocity, and buoyancy flux of the lithosphere and slab. Full sphere convection models demonstrate how the methods can determine the flow associated with specific tectonic environments (e.g., back-arc basins, intraoceanic subduction zones) to address geological questions and compare with independent data, both at present-day and in the geological past (e.g., seismology, residual topography, stratigraphy). Using global models with paleogeographical constraints we demonstrate (1) subduction initiation at the Izu-Bonin-Mariana convergent margin and flat slab subduction beneath North America, (2) enhanced correlation of model slabs and fast anomalies in seismic tomography beneath North and South America, and (3) comparable amplitude of dynamic and residual topography in addition to improved spatial correlation of dynamic and residual topography lows.

  1. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  2. Lithospheric Mantle Contribution to High Topography in Central Mongolia

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Ionov, D. A.

    2014-12-01

    Over 110 spinel peridotite xenoliths collected from four localities in the Tariat region, central Mongolia, show a predominance (over 90%) of fertile lherzolites with subordinant harzburgite and peridotites veined with pyroxenite. Equilibration temperatures are high (~900°C at 1.5 GPa [1]). Major element compositions of the fertile samples are consistent with them being the residues of 0-6% partial melt removal at shallow depths [2]. The clinopyroxenes in the lherzolites are moderately LREE depleted (average chondrite normalized La/Sm = 0.45) and most whole rocks show small, if any, depletions in Re and Pd compared to the other HSE. These data point to minimal metasomatic overprinting of these fertile lherzolites. 187Os/188Os for samples with more than 3.2% Al2O3 range only from 0.126 to 0.131, within the range of modern fertile asthenospheric mantle. In contrast to the indicators of fertility in most samples, Sr, Nd and Hf isotopic composition of acid-leached clinopyroxene separates from the lherzolites plot within the range of modern MORB with 87Sr/86Sr from 0.7021 to 0.7026, eNd from +7.7 to +9.8 and eHf from +13.3 to +18.5. The lherzolites thus appear to sample a section of mantle that has compositional and isotope characteristics consistent with modern fertile asthenosphere. The isotopic composition of the Tariat lherzolites are distinct from that of Cenozoic Mongolian basaltic volcanism pointing to limited involvement of the lithospheric mantle in magma generation in this area. The implied asthenospheric provenance of the mantle lithosphere suggests that it either could be the replacement for recently delaminated lithosphere or, more likely, a section of fertile mantle accreted to the base of the crust earlier, e.g. during construction of the Central Asian Orogenic Belt in the Mesozoic/Paleozoic. Although fertile, and hence compositionally dense, the high temperatures of the shallow lithospheric mantle under this section of Mongolia likely contribute to the

  3. On searching applicants for mechanism of solar-lithosphere relations

    NASA Astrophysics Data System (ADS)

    Kairatkyzy, Dina; Andreyev, Alexey; Zhumabayeva, Saltanat; Seraliyev, Alibek

    2016-04-01

    It is actively discussed at present a question on possible influence of solar activity (high-speed solar wind streams bearing the "frozen" magnetic field lines of the Sun) on the stress status of the lithosphere and, consequently, on the Earth's seismic activity (e.g. Zhang, 1998, Acta Seismologica Sinica; Khachikyan et al., EGU2016-2754-1; IUGG2015-3132). There are at least two ideas on possible applicants for physical mechanism of solar-lithosphere relations: (i) - the muons of cosmic rays, which can penetrate the Earth's crust to a depth of at least the first ten kilometers and in tense seismic environment generate nuclear-electromagnetic cascade which energy can be a trigger of earthquake (Tsarev and Chechin, 1988, Preprint № 179, Physical Institute after Lebedev, Moscow); (ii) - the geomagnetic storms (Sobolev et al., 1998, Physics of the Earth #7) when the high-frequency oscillations of the geomagnetic field during the main phase of the storm generate significant induction currents which electric energy entering into the crust can be converted into mechanical energy increasing the stress status of the lithosphere (Sobolev and Demin, Mechano-electric phenomena into the Earth. M . Nauka. 1980). Besides this, among the possible cosmogenic factors changing the stress state of the lithosphere, could be the variation of the angular velocity of rotation of the Earth (e.g. Bostrom, 2000. Tectonic consequence of the Earth's Rotation), if it depends on solar activity variations. More of 50 years ago, Munk and Donald (The Rotation of the Earth, Cambrige University Press, 1960) suggested that the interaction between solar wind and geomagnetic field would probably influence the short period variation of angular velocity of the Earth. In this work, we check up this suggestion on the base of very precise data on the length of day (LOD) from 1986 to the present, which are presented by the International Earth Rotation and Reference Systems Service (IERS). Using the methods

  4. Lithosphere structure in Northern Canada from receiver function (RF)

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Vinnik, Lev; Artemieva, Irina

    2016-04-01

    We present preliminary results of seismic data analysis for Northern Canada (around the Slave craton and NE of the Hudson Bay) in order to infer the lithosphere and asthenosphere structure beneath various Precambrian terrains of the North American craton. Seismic analysis includes data processing for the several stations of the Canadian National Seismic Network, for which P and S-velocity profiles are calculated through the simultaneous inversion of receiver functions. We report variations in the Moho depth and sharpness, as well as the depth to the LAB. The results are compared with regional petrological data for xenoliths.

  5. Receiver Function Analysis of the Lithospheric Structure Beneath the Western Great Plains

    NASA Astrophysics Data System (ADS)

    Thurner, S.; Zhai, Y.; Levander, A.

    2010-12-01

    The lithosphere in the western Great Plain region of the Southwestern U.S. has been subject to tectonic deformation from the Proterozoic to present day. Proterozoic island arc terranes accreted onto the North American continent between 1.8 and 1.1 Ga, forming the original continent, and there is evidence for Proterozoic continental extension which formed basement penetrating faults between 1.5 and .6 Ga . This was followed by the uplift of the Ancestral Rockies and, most recently, the subduction of the Farallon plate beneath North America. Extension has occurred throughout the Basin and Range and formed the Rio Grand Rift (RGR). However, the relative impact that large scale tectonic forces, regional asthenospheric upwelling, and preexisting structural weaknesses have on the extension of the RGR is still undetermined. This study seeks to better understand the current tectonic system east of the Colorado Plateau beneath the RGR and western Great Plains. We use teleseismic receiver functions to investigate the nature of extension in the RGR as well as its connection to the small-scale convection thought to be occurring beneath the Colorado Plateau-RGR-Great Plains region. Our receiver function images were generated from 85 earthquake events recorded at 187 USArray Transportable Array seismic stations located throughout the western Great Plains (Latitude: 28-48, Longitude: -105-100). Previous studies have indicated crustal thickness between 39 km and 50 km beneath the Great Plains and as thin as 35 km beneath the RGR (Wilson et.al, 2005). Tomography results have shown high velocity anomalies on both sides of the RGR, extending to 600 km depth beneath the western Great Plains, and a low velocity anomaly directly beneath the RGR (Gok et. al, 2003, Wilson et. al, 2005, Gao et. al, Song and Helmberger, 2007). The western Great Plains high velocity anomaly has been interpreted to be part of the downwelling portion of an edge driven convection system induced by a lateral

  6. Inelastic models of lithospheric stress - II. Implications for outer-rise seismicity and dynamics

    USGS Publications Warehouse

    Mueller, S.; Spence, W.; Choy, G.L.

    1996-01-01

    Outer-rise seismicity and dynamics are examined using inelastic models of lithospheric deformation, which allow a more realistic characterization of stress distributions and failure behaviour. We conclude that thrust- and normal-faulting outer-rise earthquakes represent substantially different states of stress within the oceanic lithosphere. Specifically, the normal-faulting events occur in response to downward plate bending, which establishes the 'standard', bending-dominated state of outer-rise stress, and the thrust-faulting events occur in response to an elevated level of in-plane compression, which develops only in response to exceptional circumstances. This interpretation accounts for the observation that normal-faulting outer-rise earthquakes occur more frequently and are more widely distributed than their thrust-faulting counterparts, an observation for which the simple bending model offers no explanation. In addition, attributing both thrust- and normal-faulting outer-rise earthquakes to plate bending implies that both classes of events should occur within relatively close lateral proximity to one another because both are allegedly a manifestation of the same bending-dominated stress distribution, whereas, in reality, this is not observed. We propose that the tendency for thrust-faulting outer-rise earthquakes to exhibit greater source depths than their normal-faulting counterparts (an observation that is frequently cited in support of the bending interpretation of the former) is merely a consequence of the fact that bending-induced tension is confined to the upper lithosphere. Our model predicts that outer-rise in-plane-force variations may promote thrust-faulting outer-rise activity prior to an underthrusting interplate subduction earthquake and normal-faulting outer-rise activity following such an earthquake, but that both forms of outer-rise activity are unlikely to be associated with the same subduction earthquake. A corollary implication of our model

  7. Pseudotachylites and Earthquakes: New Evidence for the "Jelly Sandwich" Rheology of Continental Lithosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, W.; Yang, Z.

    2009-12-01

    The occurrence of pseudotachylite, an often-used proxy for brittle, seismogenic deformation, in mafic granulite facies has been cited as key evidence for the lower continental crust being stronger than the underlying uppermost mantle (“crème brûlée” model). Such reasoning seems unsound in that spectacular examples of pseudotachylite, exceeding 100 meters in length, occur in outcrops of the upper mantle. So if pseudotachylites indicate high mechanical strength, then the mantle lithosphere must be strong, supporting the “jelly sandwich” model of rheology. Moreover, pseudotachylites do occur in rocks of amphibolite facies where hydrous minerals are abundant, ruling out the notion that pseudotachylite implies dry conditions in the crust. Recent results from laboratory experiments also indicate that in general, mafic granulite is weaker than peridotite (Wang et al. [2008] and H. Green, personal communication). Perhaps the only stone left unturned is the pathological case where absolute-dry, mafic granulite were to juxtapose with hydrous peridotite - a hypothetical situation not observed in nature and yet to be linked with any specific, known geological processes. Meanwhile, cases of well-established, large- to moderate-sized earthquakes in the sub-continental mantle lithosphere (SCML) have been steadily accumulating, including events that generated clear underside reflections off the Moho above the hypocenters. Furthermore, a continent-wide analysis of precisely determined focal depths along and near the East African rift system (EARS) shows that different segments of the EARS exhibit three distinct patterns in focal depths, with a clear bimodal distribution beneath well-known but amagmatic rift valleys. The peaks of seismic moment release occur in the upper to mid-crust and near and below the Moho - a pattern established in several regions more than 25 years ago that implies a similar vertical distribution in limiting stress of the continental lithosphere

  8. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  9. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  10. Lithosphere-Asthenosphere Transition, Mid-Lithosphere Discontinuity and Radial Anisotropy from Multi-mode Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Kennett, B. L. N.

    2015-12-01

    Seismic surface waves are the major source of information to delineate the lateral heterogeneity and anisotropy in the upper mantle. S-wave radial anisotropy representing the difference between SV and SH velocities is often discussed with the seismic properties of the lithosphere-asthenosphere transition (LAT) and the mid-lithosphere discontinuity (MLD). Such boundaries have been studied well by body-wave receiver functions, which have a good sensitivity to the sharpness of boundaries. Surface waves are rather insensitive to the boundary sharpness, but can delineate the spatial distributions of shear wave speeds and radial anisotropy in the upper mantle, which can be alternative constraints on LAT and MLD. We have recently constructed a radially anisotropic 3-D S wave speed model of the Australian continent from multi-mode Love and Rayleigh waves with enhanced ray coverage. In the inversions for S-wave radial anisotropy, we can use either parameterizations for SH and SV velocities, or for dimensionless radially anisotropic parameter ξ=(Vsh/Vsv)2. Both are theoretically the same, but this difference causes non-negligible effects on the estimated radial anisotropy, mainly due to the different sensitivities of Love-wave phase speeds to the structural parameters. Synthetic experiments and data variance reductions suggest the former is the better choice. The LAT throughout the continent can be estimated by the vertical velocity gradient of the isotropic S-wave model. The radial anisotropy with the suitable model parameterization shows strong anisotropy with faster SH velocity in the asthenosphere, suggesting the influence of strong shear beneath the fast drifting Australian continent. We can also identify the clear vertical changes in the radial anisotropy profiles at the MLD depth estimated from earlier receiver function studies in cratonic regions, which can be a key to elucidate the enigmatic MLD in the continental lithosphere.

  11. Low water contents in diamond mineral inclusions: Proto-genetic origin in a dry cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence A.; Logvinova, Alla M.; Howarth, Geoffrey H.; Liu, Yang; Peslier, Anne H.; Rossman, George R.; Guan, Yunbin; Chen, Yang; Sobolev, Nikolay V.

    2016-01-01

    The mantle is the major reservoir of Earth's water, hosted within Nominally Anhydrous Minerals (NAMs) (e.g., Bell and Rossman, 1992; Peslier et al., 2010; Peslier, 2010; Nestola and Smyth, 2015), in the form of hydrogen bonded to the silicate's structural oxygen. From whence cometh this water? Is the water in these minerals representative of the Earth's primitive upper mantle or did it come from melting events linked to crustal formation or to more recent metasomatic/re-fertilization events? During diamond formation, NAMs are encapsulated at hundreds of kilometers depth within the mantle, thereby possibly shielding and preserving their pristine water contents from re-equilibrating with fluids and melts percolating through the lithospheric mantle. Here we show that the NAMs included in diamonds from six locales on the Siberian Craton contain measurable and variable H2O concentrations from 2 to 34 parts per million by weight (ppmw) in olivine, 7 to 276 ppmw in clinopyroxene, and 11-17 ppmw in garnets. Our results suggest that if the inclusions were in equilibrium with the diamond-forming fluid, the water fugacity would have been unrealistically low. Instead, we consider the H2O contents of the inclusions, shielded by diamonds, as pristine representatives of the residual mantle prior to encapsulation, and indicative of a protogenetic origin for the inclusions. Hydrogen diffusion in the diamond does not appear to have modified these values significantly. The H2O contents of NAMs in mantle xenoliths may represent some later metasomatic event(s), and are not always representative of most of the continental lithospheric mantle. Results from the present study also support the conclusions of Peslier et al. (2010) and Novella et al. (2015) that the dry nature of the SCLM of a craton may provide stabilization of its thickened continental roots.

  12. Impact of far-field stress distributions and thermo-rheological structure of continental lithosphere on mantle-lithosphere interactions.

    NASA Astrophysics Data System (ADS)

    Burov, E. B.; Koptev, A.; Gerya, T.; Calais, E.; Leroy, S. D.

    2015-12-01

    We implement fully-coupled high resolution 3D thermo-mechanical numerical models to investigate the impact of the laterally heterogeneous structure and rheological stratification of the continental lithosphere on the plume-activated rifting and continental break-up processes in presence of preexisting far-field tectonic stresses. In our experiments, "mantle plumes" represent short-lived diapiric upwellings that have no continuous feeding at depth. Such upwellings may be associated with "true" plumes but also with various instabilities in the convective mantle. Numerical models demonstrate strong dependence of crustal strain distributions and surface topography on the rheological composition of the lower crust and the initial thermal structure of the lithosphere. In contrast to the usual inferences from passive rifting models, distributed wide rifting takes place in case of cold (500 °C at Moho depth) initial isotherm and mafic composition of the lower crust, whereas hotter geotherms and weaker (wet quartzite) lower crustal rheology lead to strong localization of rifting. Moreover, it appears that the prerequisite of strongly anisotropic strain localization during plume-lithosphere interaction (linear rift structures instead of axisymmetric radial faulting) refers to simultaneous presence of a mantle upwelling and of (even extremely weak) directional stress field produced by far-field tectonic forces (i.e. ultra-slow far field extension at < 3 mm/y). Higher (than 1.5-3 mm/y) velocities of far-field extension lead to enlargement of the active fault zone for the same lapse of time. Yet, simultaneous rise of the lithospheric geotherm associated with active rifting has an opposite effect leading to the narrowing of the rift zone. Presence of heterogeneities (cratonic blocks) leads to splitting of the plume head onto initially nearly symmetrical parts, each of which flows towards beneath the craton borders. This craton-controlled distribution of plume material causes

  13. Gravity anomaly, lithospheric structure and seismicity of Western Himalayan Syntaxis

    NASA Astrophysics Data System (ADS)

    Tiwari, V. M.; Rajasekhar, R. P.; Mishra, D. C.

    2009-07-01

    A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus-Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate-deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (˜55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram-Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.

  14. Local Study of Flexural Rigidity in Old Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Ramirez, C.; Weeraratne, D. S.; Forsyth, D. W.

    2010-12-01

    The half-space cooling model predicts lithosphere thickness and that the depth of the sea floor should increase in proportion to the square root of age due to conductive cooling. For seafloor greater than 70 Ma the seafloor is shallower than the square-root-of-age trend, but global seismic tomography studies are in rough agreement with the half-space cooling model. We conducted a marine bathymetry and seismic study in the western Pacific south of the Shatsky Rise on seafloor ~150 Ma to study this discrepancy. The field area is located at a fossil triple junction straddling a magnetic bight. Several small seamounts located in the study area with excellent bathymetric coverage are surrounded by clear flexural moats. The characteristic wavelength of the flexure indicates that the effective elastic thickness, Te is less than 2 km, suggesting that these seamounts were formed on very young seafloor close to the spreading center 150 My ago. Larger seamounts in the study area appear to have formed later off-axis. We will present admittance results to determine the rigidity and Te of the plate at the time of loading of this later episode of volcanism. These measurements will provide us with a better understanding of how oceanic lithosphere and asthenosphere grow and interact in both time and space.

  15. A lithospheric instability origin for the Cameroon Volcanic Line

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C.

    2012-06-01

    The Cameroon Volcanic Line (CVL) is an enigmatic structure that defies common dynamic models of melt generation and volcanic activity on Earth. There, magma generation and intrusion has been sustained for more than 70 Myr over a 1600 km long chain straddling the ocean-continent boundary, with no detectable spatial age progression. The chain is nearly perpendicular to the coastline and terminates in a Y-shaped structure that has not been affected by absolute plate motions, implying that the mantle upwelling that feeds magmatic activity is attached to the continent. We propose that this form of volcanism is due to a new type of instability that may develop within the subcontinental lithospheric mantle at the edge of a continent. Laboratory experiments document how lithosphere beneath a continental block of finite size can become unstable due to cooling from above. The instability pattern is made of linear upwellings and downwellings that converge radially towards the center of the continent in an outer region and an array of polygonal cells in a central region. The pattern is characterized by branching structures that are reminiscent of the strike and Y-shaped outline of the CVL. The instability develops over long timescales with small rates of upwelling and melting, and is attached to the continent by construction. Downwellings adjacent to upwellings induce compression in the crust, which may account for deformation in the Benue trough just before the onset of CVL magmatism.

  16. Colorado Plateau magmatism and uplift by warming of heterogeneous lithosphere.

    PubMed

    Roy, Mousumi; Jordan, Thomas H; Pederson, Joel

    2009-06-18

    The forces that drove rock uplift of the low-relief, high-elevation, tectonically stable Colorado Plateau are the subject of long-standing debate. While the adjacent Basin and Range province and Rio Grande rift province underwent Cenozoic shortening followed by extension, the plateau experienced approximately 2 km of rock uplift without significant internal deformation. Here we propose that warming of the thicker, more iron-depleted Colorado Plateau lithosphere over 35-40 Myr following mid-Cenozoic removal of the Farallon plate from beneath North America is the primary mechanism driving rock uplift. In our model, conductive re-equilibration not only explains the rock uplift of the plateau, but also provides a robust geodynamic interpretation of observed contrasts between the Colorado Plateau margins and the plateau interior. In particular, the model matches the encroachment of Cenozoic magmatism from the margins towards the plateau interior at rates of 3-6 km Myr(-1) and is consistent with lower seismic velocities and more negative Bouguer gravity at the margins than in the plateau interior. We suggest that warming of heterogeneous lithosphere is a powerful mechanism for driving epeirogenic rock uplift of the Colorado Plateau and may be of general importance in plate-interior settings.

  17. Thermal structure of the lithosphere: a petrologic model.

    PubMed

    Macgregor, I D; Basu, A R

    1974-09-20

    A preliminary evaluation of the thermal history of the upper mantle as determined by petrologic techniques indicates a general correspondence with theoretically derived models. The petrologic data supply direct information which may be used as an independent calibration of calculated models, serve as a base for evaluating the assumptions of the theoretical approach, and allow more careful selection of the variables describing mantle thermal properties and processes. Like the theoretical counterpart, the petrological approach indicates that the lithosphere is dominated by two thermal regimes: first, there is a continental regime which cools at rates of the order of 10(9) years and represents the longterm cooling of the earth. Secondly, superimposed on the continental evolution is the thermal event associated with the formation of an oceanic basin, and which may be thought of as a 10(8) year convective perturbation on the continental cycle. Of special interest is petrologic evidence for a sudden steepening of the thermal gradients across the lithosphere-asthenosphere boundary not seen in the theoretical models. The unexpected change of slope points to the need for a critical reevaluation of the thermal processes and properties extant in the asthenosphere. The potential of the petrologic contribution has yet to be fully realized. For a start, this article points to an important body of independent evidence critical to our understanding of the earth's thermal history.

  18. The Cascadia Subduction Zone: two contrasting models of lithospheric structure

    USGS Publications Warehouse

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.

    1998-01-01

    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  19. Corona Formation on Venus Via Extension and Lithospheric Instability

    NASA Astrophysics Data System (ADS)

    Piskorz, D.; Elkins-Tanton, L. T.; Smrekar, S. E.

    2014-12-01

    Given the absence of plate tectonics on Venus, the origin of major rift systems like Parga Chasma is unclear. As Venus and Earth have similar radii and radiogenic abundances, we assume they have a similar internal structure and composition. Venus does not appear to have plate tectonics, and its surface displays a range of volcanic and tectonic features, including those that are both similar and dissimilar to those on Earth. In order to understand how Venus loses its heat, we study coronae at Parga Chasma. There are over 500 quasi-circular volcano-tectonic features called coronae on Venus, 131 of which are associated with Parga Chasma. Are these coronae important in the formation of the rift, or vice versa? How do they contribute to planetary heat loss? Coronae are believed to form via small-scale mantle upwellings, lithospheric instability, or a combination thereof. However, the genetic link between the coronae and rifts has remained unclear. By drawing an analogy to the East African Rift, we propose a mechanism for the formation of off-rift coronae due to the rifting process. We model the interaction of a rising mantle plume associated with a rift with a preexisting layer of dense material at the lithosphere-mantle boundary and show that a rift and its associated off-rift coronae may be genetically linked. We calculate the resulting surface topographies, melt volumes, and Bouguer gravity anomalies and find a correlation to observations.

  20. Groundwater flow as a cooling agent of the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Kooi, Henk

    2016-03-01

    Groundwater that flows through the outer shell of the Earth as part of the hydrologic cycle influences the distribution of heat and, thereby, the temperature field in the Earth’s crust. Downward groundwater flow in recharge areas lowers crustal temperatures, whereas upward flow in discharge areas tends to raise temperatures relative to a purely conductive geothermal regime. Here I present numerical simulations of generalized topography-driven groundwater flow. The simulations suggest that groundwater-driven convective cooling exceeds groundwater-driven warming of the Earth’s crust, and hence that groundwater flow systems cause net temperature reductions of groundwater basins. Moreover, the simulations demonstrate that this cooling extends into the underlying crust and lithosphere. I find that horizontal components of groundwater flow play a central role in this net subsurface cooling by conveying relatively cold water to zones of upward groundwater flow. The model calculations suggest that the crust and lithosphere beneath groundwater basins can cool by several tens of degrees Celsius where groundwater flows over large distances in basins that consist of crustal rock. In contrast, groundwater-induced cooling is small in unconsolidated sedimentary settings, such as deltas.

  1. Renewal: Continential lithosphere evolution as a function of tectonic environment

    SciTech Connect

    McMillan, N.J.; Baldridge, W.S.

    1995-06-01

    The Cenozoic tectonic environment and stress regime of the southwestern United States have changed dramatically from compression during shallow-angle subduction during the Laramide orogeny in the early Cenozoic to the current mode of Basin and Range extension. Questions remain unresolved concerning the causes of this transition, including the timing of the initiation of extension (estimates range from 36 to 25 Ma), and is the Basin and Range simply an mega-example of back-arc extension, or is extension related to the subduction of an oceanic spreading center about 30 Ma? We have examined the patterns of magmagenesis and geochemical composition through Cenozoic time in southern New Mexico. We have defined four magma sources that have contributed to Cenozoic magmas. Immediately following the Laramide, magmas contain substantial contributions from the lower crust. Mid-Tertiary extension is related to the eruption of rhyolitic ash-flow tuffs and basalts. The basalts were generated by melting of the lithospheric mantle; intercalated rhyolites have a strong upper crustal signature. Eruption of basalts and andesites with sources in the lithospheric mantle and lower crust continued for several million years after rhyolitic volcanism ceased. The region was nearly void of volcanic activity for 16 million years despite continued extension, but at 10 Ma, basalts derived from the asthenosphere began to erupt.

  2. Compositional vs. thermal buoyancy and the evolution of subducted lithosphere

    NASA Technical Reports Server (NTRS)

    Gaherty, James B.; Hager, Bradford H.

    1994-01-01

    We formulate 2-D Cartesian finite element models that explore the fate of compositionally defined lithosphere as it encounters a viscosity increase at the boundary between the upper and lower mantle. Subducted lithosphere is represented as a cold, stiff, layered composite of denser eclogite underlain by more buoyant harzburgite. Slabs impinging on a lower mantle 30 and 100 times more viscous than the upper mantle thicken and fold strongly as they penetrate the lower mantle. Approximately a factor of two thickening occurs via pure shear just above the discontinuity, with additional enhancement due to folding by over a factor of two. No separation of the individual slab components occurs at the discontinuity, and direct comparison with models in which compositional buoyancy is explicitly ignored indicates that slab evolution is largely controlled by the thermal buoyancy. These results are at odds with hypotheses about slab evolution in which the compositional buoyancy contributions lead to component separation and the formation of slab megaliths or a compositionally layered upper mantle.

  3. Subduction of the Indian Lithospheric Slab Beneath Tibet

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Murphy, M. A.

    2001-12-01

    In order to characterize the dynamics of continent-continent collisions, it is essential to define its present geometry and physical state. We report the results of a seismic tomography study of the Tibet-Himalayan collision zone, using a global data set, which indicates that the Indian lithospheric slab has been subducted subhorizontally beneath nearly the entire Tibetan plateau to depths of 165-260 km. Tibetan velocity structure is low in the crust and high in mantle lithosphere at depths between 75-120 km. An asthenospheric layer overlies the subducted Indian slab at depths between 120-165 km beneath the Tibetan plateau. There is a large low-velocity anomaly north of the Indus-Yalu suture zone between 85ºE and 93ºE that extends from the crust down to at least 310 km depth beneath the plateau. This low-velocity anomaly is indicative of mantle upwelling through a weakened zone of the subducted slab. The extent to which India has subducted beneath Tibet, as revealed by these seismic images, is comparable to estimates of crustal shortening across the Himalaya. Moreover, we hypothesize that the buoyancy due to heating of the subducted Indian slab and the existence of the asthenospheric layer contribute to the elevation and flatness of the Tibetan plateau.

  4. Lithosphere-Asthenosphere interactions near the San Andreas fault.

    NASA Astrophysics Data System (ADS)

    Houlie, N.

    2015-12-01

    We decipher the strain history of the upper mantle in California through the comparison of the long-term finite strain field in the mantle and the surface strain-rate field, respectively inferred from fast polarization directions of seismic phases (SKS and SKKS), and Global Positioning System (GPS) surface velocity fields. We show that mantle strain and surface strain-rate fields are consistent in the vicinity of San Andreas Fault (SAF) in California. Such an agreement suggests that the lithosphere and strong asthenosphere have been deformed coherently and steadily since >1 Ma. We find that the crustal stress field rotates (up to 40 degrees of rotation across a 50 km distance from 50 degrees relative to the strike of the SAF, in the near-field of SAF) from San Francisco to the Central Valley. Both observations suggest that the SAF extends to depth, likely through the entire lithosphere. From Central Valley towards the Basin and Range, the orientations of GPS strain-rates, shear wave splitting measurements and seismic stress fields diverge indicating reduced coupling or/and shallow crustal extension and/or presence of frozen anisotropy.

  5. Continents as lithological icebergs: The importance of buoyant lithospheric roots

    USGS Publications Warehouse

    Abbott, D.H.; Drury, R.; Mooney, W.D.

    1997-01-01

    An understanding of the formation of new continental crust provides an important guide to locating the oldest terrestrial rocks and minerals. We evaluated the crustal thicknesses of the thinnest stable continental crust and of an unsubductable oceanic plateau and used the resulting data to estimate the amount of mantle melting which produces permanent continental crust. The lithospheric mantle is sufficiently depleted to produce permanent buoyancy (i.e., the crust is unsubductable) at crustal thicknesses greater than 25-27 km. These unsubductable oceanic plateaus and hotspot island chains are important sources of new continental crust. The newest continental crust (e.g., the Ontong Java plateau) has a basaltic composition, not a granitic one. The observed structure and geochemistry of continents are the result of convergent margin magmatism and metamorphism which modify the nascent basaltic crust into a lowermost basaltic layer overlain by a more silicic upper crust. The definition of a continent should imply only that the lithosphere is unsubductable over ??? 0.25 Ga time periods. Therefore, the search for the oldest crustal rocks should include rocks from lower to mid-crustal levels.

  6. Application of MAGSAT to Lithospheric Modeling in South America. Part 2: Synthesis of Geologic and Seismic Data for Development of Integrated Crustal Models

    NASA Technical Reports Server (NTRS)

    Keller, G. R.; Lidiak, E. G.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B. (Principal Investigator)

    1984-01-01

    Research activities performed on MAGSAT scalar data over South America, Central America, and the adjacent marine areas are summarized. The geologic utility of magnetic anomalies detected by satellite is demonstrated by focusing on the spherical-Earth interpretation of scalar MAGSAT data in combination with ancillary geological and geophysical data to obtain lithospheric models for these regions related to their contemporary crustal dynamics processes, geologic history, current volcanism seismicity and natural resources.

  7. Why intracontinental basins subside longer: 3-D feedback effects of lithospheric cooling and sedimentation on the flexural strength of the lithosphere

    NASA Astrophysics Data System (ADS)

    Cacace, M.; Scheck-Wenderoth, M.

    2016-05-01

    The aim of this study is to reevaluate the character and evolution of the large-scale subsidence of intracontinental basins using 3-D thermomechanical numerical simulations accounting for the coupling between sedimentation, rheology-dependent lithospheric flexure, and thermal contraction by lithospheric cooling. The flexural rigidity of the lithospheric plate is controlled by elastic-brittle-plastic rheology, enabling the computation of thermal and mechanical feedback processes occurring during basin subsidence. Numerical results show that depending on the sediment loading history, a rheological stratified lithosphere can subside over geological time scales without imposition of ad hoc geometric and kinematic initial conditions. Three-dimensional feedback effects of sedimentation on the thermomechanical structure of the plate result in a weakened lower crust mechanically decoupled from the underlying mantle and therefore easily reactivated even under low background stresses. Our results explain the first-order characteristics of the subsidence in intracontinental basins and reconcile basic observations of their deformation history.

  8. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction

    USGS Publications Warehouse

    Spencer, J.E.

    1996-01-01

    The Colorado Plateau is blanketed by Phanerozoic marine and nonmarine strata as young as Cretaceous that are now exposed at elevations of about 2 km. Crustal thickening due to magmatism and horizontal crustal shortening was far less than necessary to cause this uplift, which is commonly attributed to the consequences of mantle lithosphere thinning and heating. The Colorado Plateau and the midcontinent region around Iowa consist of Precambrian bedrock overlain by a similar amount of Paleozoic platformal strata, and thus both regions once had similar lithospheric buoyancy. Mesozoic sedimentation increased the crustal thickness and lithospheric buoyancy of the Colorado Plateau relative to the midcontinent region. Backstripping calculations yield elevation without these sediments and lead to a calculated elevation difference between the two areas of about 1200 m, which represents unexplained plateau uplift. Review of constraints on uplift timing finds little support for a late Cenozoic uplift age and allows early to middle Cenozoic uplift, which is consistent with uplift mechanisms related to low-angle subduction that ended in the middle Cenozoic. Finite element heat flow calculations of low-angle subduction and lithosphere attenuation, using a range of initial lithosphere thicknesses and degree of attenuation, indicate that required uplift can result from tectonic removal of about 120 km of mantle lithosphere from an initially 200-km-thick lithosphere. This allows for partial preservation of North American mantle lithosphere with its distinctive isotopic signature in some late Cenozoic volcanic rocks and is consistent with normal Pn velocities in the uppermost mantle beneath the plateau.

  9. The role of gravitational potential energy in the Martian lithospheric stress field

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Lithgow-Bertelloni, C.

    2006-12-01

    Understanding the lithospheric stress field on Mars is essential in interpreting patterns of surface faulting and geomorphologic features, as well as assessing the accuracy of different lithospheric models. We compute the portion of the lithospheric stress field on Mars produced by variations in crustal density and thickness using data described in Neumann et al. (2004). Our computation consists of two parts: calculation of the gravitational potential energy (GPE) at 1 degree intervals followed by calculation of the stress field derived from variations in the GPE using the commercial finite element program ABAQUS. When calculating the GPE, we consider both Airy and Pratt isostatic compensation models, as well as scenarios where no compensation model is invoked or the Martian crust acts as the Martian lithosphere. The lithosphere is treated as an elastic body and the full 3-D equations for conservation of mass and momentum are solved. In future models variations in lithologic properties and a viscoselastic rheology for the lithosphere will be incorporated. Preliminary results show gradations in the GPE between the southern highland and northern lowland regions of Mars relating to variations in crustal thickness between the two regions. For example, when the crust is assumed to behave as the elastic lithosphere, the southern highlands of Mars exhibit a much higher GPE as a result of their higher on average crustal thickness. If the lithosphere is assumed to contain both crust and mantle sections and a uniform compensation depth is assigned, however, the variation in GPE between the two regions is significantly altered.

  10. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Schmid, Florian

    2016-07-01

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  11. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation. PMID:27362231

  12. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-06-29

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  13. Melt-induced weakening of the lithosphere: theory and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Gerya, T.

    2015-12-01

    Melt-induced weakening can play critical role for enabling lithospheric deformation in the areas of intense mantle-derived magmatism, such as mid-ocean ridges, rift zones and hot spots. It implies significant reduction in the long-term brittle strength of the deforming lithosphere subjected to frequent melt percolation episodes. Such weakening corresponds to conditions when shear stress reaches the tensile yield strength of rocks at nearly equal melt and lithostatic pressures. The dominant features of melt transport in this regime are planar, sharply localized zones (dykes) in which melt is transported though the lithosphere from the source region. Mechanical energy dissipation balance shows that the long-term effective strength of the melt-weakened lithosphere is a strain-averaged rather than a time-averaged quantity. Its magnitude is mainly defined by the ratio between melt pressure and lithostatic pressure along dykes during short dyke emplacement episodes, which control most of the lithospheric deformation and mechanical energy dissipation. We quantified the range of expected values of the lithospheric strength by performing 2D numerical hydro-mechanical experiments on melt-bearing rock deformation as well as seismo-mechanical experiments on long-term lithospheric deformation assisted by frequent short-term dyke propagation episodes. These numerical experiments showed that the long-term lithospheric strength in the areas of intense magmatism can be as low as few MPa and is critically dependent on the availability of melt for enabling frequent episodes of dyke propagation through the lithosphere. Short-lived viscous-plastic deformation is localized along propagating weak dykes whereas bulk of the lithosphere only deforms elastically and is subjected to large deviatoric stresses. The experiments suggest that it is not the high strength of the elastically deforming strong lithospheric blocks but the low strength of visco-plastically deforming dykes that define the

  14. Growth, stabilization, and reactivation of Proterozoic lithosphere in the southwestern United States

    SciTech Connect

    Bowring, S.A. ); Karlstrom, K.E. )

    1990-12-01

    Growth of Proterozoic continental lithosphere in the southwestern United States involved assembly of tectonostratigraphic terranes during several pulses of convergent tectonism ca. 1.74, 1.70, and 1.65-1.60 Ga. Prograde metamorphism accompanied orogenic assembly, and peak metamorphic conditions outlasted deformation. Regions now characterized by the highest metamorphic grades underwent slow isobaric cooling and were not uplifted until more than 200 m.y. after assembly. Regions of low metamorphic grade were not uplifted substantially after assembly. The authors suggest that (1) relatively thin lithospheric fragments were assembled into isostatically stable, normal thickness continental lithosphere; (2) assembly did not erase lithospheric-scale heterogeneities; (3) the present juxtaposition of different crustal levels reflects differential uplift related to 1.4-1.1 Ga tectonomagmatic activity; and (4) the boundaries between different lithospheric blocks were repeatedly reactivated from Precambrian through Tertiary time.

  15. Layered structure of the lithospheric mantle changes dynamics of craton extension

    NASA Astrophysics Data System (ADS)

    Liao, J.; Gerya, T.; Wang, Q.

    2013-11-01

    Although presence of weak layers due to hydration and/or metasomatism in the lithospheric mantle of cratons has been detected by both geophysical and geochemical studies, its influence on craton evolution remains elusive. Using a 2‒D thermomechanical viscoelastoplastic numerical model, we studied the craton extension of a heterogeneous lithospheric mantle with a rheologically weak layer. Our results demonstrate that the effect of the weak mantle layer is twofold: (1) enhances deformation of the overlying lithosphere and (2) inhibits deformation of the underlying lithospheric mantle. Depending on the weak‒layer depth, the Moho temperature and extension rate, three extension patterns are found (1) localized mantle necking with exposed weak layer, (2) widespread mantle necking with exposed weak layer, and (3) widespread mantle necking without exposed weak layer. The presence of the weak mantle layer reduces long‒term acting boundary forces required to sustain extensional deformation of the lithosphere.

  16. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Hasterok, Derrick

    2016-09-01

    An accurate viscosity structure is critical to truthfully modeling lithosphere dynamics. Here, we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. We further show that this viscosity is physically consistent with and better constrained than that derived from laboratory-based rheology. We conclude that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.

  17. Io: Generation of Silicate Magma by Shear Melting at the Base of a Basaltic Lithosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1985-01-01

    Tidal theory and observational evidence indicates that about 1 w/sq. m. of energy is released at the surface of Io. In order to place limits on how much tidal energy can be dissipated within a rigid lithosphere, depth-temperature profiles were calculated for different lithosphere thickness assuming that the tidal energy was dissipated uniformly throughout the lithosphere. Thus a thick lithosphere implies that a significant fraction of the tidal energy is dissipated below the depth where solidus temperatures are reached. One possibility is that Io has a crust consisting of a low melting temperature fraction such as basalt, overlying a mantle of a high melting temperature fraction such as peridotite. Thus, if the lithosphere of Io is thicker than 30 km, as appears probable, then high rates of silicate volcanism are implied and a significant fraction of the tidal energy must be dissipated by viscous deformation rather than rigid flexure.

  18. Lithosphere stress changes due to groundwater unloading in North China Plain

    NASA Astrophysics Data System (ADS)

    Pang, Yajin; Zhang, Huai; Shi, Yaolin

    2015-04-01

    find that the earthquake events between1978-2014 are obviously less than that during the former 35-year period. There are 11 earthquakes with magnitude greater than M6.0 occurred during 1942-1977 and none in the period of 1978-2014. Although the seismicity may have natural fluctuations, the human effects cannot be excluded, as earthquake events are controlled by regional tectonic stress, which is significantly perturbed by groundwater overpumping in North China Plain. This study also suggests that earth is a complex system, in which each part interacts with others. Human activities on the earth surface may not only affect the atmosphere and the hydrosphere as well known, but also affect the lithosphere.

  19. The age of the lithospheric mantle beneath the Northern Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Debaille, V.; Mattielli, N. D.; Weis, D. A.

    2009-12-01

    geochemically distinct younger lavas (<10 Myr) [3], and show no implication of continental lithosphere beneath the Northern Kerguelen Plateau. These results are consistent with mixture of enriched plume material and depleted mantle horizontally migrating in sublithospheric channels from the ridge to the archipelago, though this process likely progressively vanished at ~26 Myr ago [4]. The internal Sm-Nd and Lu-Hf isochrons that will be obtained on the basic and ultrabasic xenoliths should provide important information about the age and the nature of the lithospheric mantle beneath the Northern Kerguelen Plateau, in a plume-ridge interaction context. [1] Hassler, D. and Shimizu, N. (1998), Science 28, 418-420 [2] Gregoire, M. et al. (1998), Contrib. Mineral. Petrol. 133, 259-283 [3] Mattielli, N. et al. (2002), J. Petrol. 43, 1327-1339 [4] Doucet, S. et al. (2002), J. Petrol. 43, 1341-1366

  20. Birth of the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL)

    NASA Astrophysics Data System (ADS)

    James, D. E.; Sacks, I. S.

    2002-05-01

    As recently as 1984 institutions doing portable seismology depended upon their own complement of instruments, almost all designed and built in-house, and all of limited recording capability and flexibility. No data standards existed. Around 1980 the National Research Council (NRC) of the National Academy of Sciences (NAS), with National Science Foundation (NSF) support, empanelled a committee to study a major new initiative in Seismic Studies of the Continental Lithosphere (SSCL). The SSCL report in 1983 recommended that substantial numbers (1000 or more) of new generation digital seismographs be acquired for 3-D high resolution imaging of the continental lithosphere. Recommendations of the SSCL committee dovetailed with other NRC/NAS and NSF reports that highlighted imaging of the continental lithosphere as an area of highest priority. For the first time in the history of portable seismology the question asked was "What do seismologists need to do the job right?" A grassroots effort was undertaken to define instrumentation and data standards for a powerful new set of modern seismic research tools to serve the national seismological community. In the spring and fall of 1983 NSF and IASPEI sponsored workshops were convened to develop specifications for the design of a new generation of portable instrumentation. PASSCAL was the outgrowth of these seminal studies and workshops. The first step toward the formal formation of PASSCAL began with an ad-hoc organizing committee, comprised largely of the members of the NAS lithospheric seismology panel, convened by the authors at Carnegie Institution in Washington in November 1983. From that meeting emerged plans and promises of NSF support for an open organizational meeting to be held in January 1984, in Madison, Wisconsin. By the end of the two-day Madison meeting PASSCAL and an official consortium of seismological institutions for portable seismology were realities. Shortly after, PASSCAL merged with the complementary

  1. Deformation of the lithosphere and what microstructures can tell us about it (Stephan Mueller Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée

    2016-04-01

    The lithosphere is a roughly stratified and heterogeneous rock body that constitutes the outer layer of our planet. It is subdivided into irregularly shaped stiff plates that move with respect to one another deforming each other along their margins. At the large scale the lithosphere is usually modeled as a flat-lying multi-layer, its rheological profile being based on flow laws determined experimentally for key minerals of the crust and upper mantle. At the somewhat smaller scale of field observations, geometrical and physical complexities become apparent: rocks are folded, sheared and fractured, and - in general - quite heterogeneously deformed. And finally, at the even smaller scale of mechanical testing and microscopic investigations, rocks are seen as polycrystalline aggregates or granular composites whose bulk properties depends both on the composition and shape of the individual grains and the spatial arrangement of the crystals with respect to one another. In other words, the physical properties of the lithosphere and the inferred style or type of deformation depend very much on the scale of observation. Microstructures and textures (crystallographic preferred orientations) of deformed rocks provide a wealth of information: when used as archives of the deformation history, they allow us to unravel the tectonic evolution of the lithosphere at plate boundaries. At the same time, they enable us to assess past and/or present geophysical properties. By comparing the microstructures of experimentally and naturally deformed rocks it is possible to infer the active deformation mechanisms and thus to extrapolate flow laws to geological time scales. With the advent of digital image processing, microstructure and texture analysis have taken a great leap forward. By amalgamating methods from neighbouring disciplines such as mathematical morphometry, stereology, geostatistics, material sciences, etc., microstructure and texture analysis have come a long way since the

  2. Revealing the Fine Structures of the Lithosphere Asthenosphere Boundary

    NASA Astrophysics Data System (ADS)

    Olugboji, Tolulope Morayo

    Earth's near surface layer is made of relatively strong materials and often referred to as tectonic plates (or the lithosphere). Below this layer is a softer layer called the asthenosphere. The transition from strong lithosphere to weak asthenosphere is caused by temperature. However, recent high-resolution seismological observations suggest that the transition from the lithosphere to the asthenosphere cannot be attributed to the temperature alone: the change in seismic wave velocity at the boundary is too sharp and too large to be attributed solely to the gradual increase in temperature. There have been hot debates on what causes the observed sharp transition between two layers. In this dissertation, I synthesize insights from seismological observation, in particular receiver functions, with experiments and theory of anelasticity caused by grain-boundary sliding, to test and assess candidate models for the oceanic lithosphere asthenosphere boundary (LAB) as well as the Mid-lithospheric discontinues (MLD) observed in stable continental regions. I conduct new statistical analysis of the results of mineral physics experiments, providing a description of the uncertainties in the parameters of an elastically accommodated grain boundary sliding model (EAGBS). I extend the EAGBS model originally proposed by Karato (2012) to describe and explain the seismological signatures at the oceanic LAB, showing that this hypothesis suitably explains both the oceanic LAB and MLD in the continents within the limits of uncertainties in both mineral physics studies and seismological models. I then describe new supporting evidence for the specific predictions of the EAGBS model using novel seismological technique and data from stations in the oceanic regions. High-resolution receiver function (RF) stacking techniques can provide robust characterization of the age-dependence in the sharpness, depth, and anisotropic fabric within the normal oceanic LAB and underneath 'anomalous' Pacific

  3. Evolution of large Venusian volcanoes: Insights from coupled models of lithospheric flexure and magma reservoir pressurization

    NASA Astrophysics Data System (ADS)

    Galgana, Gerald A.; McGovern, Patrick J.; Grosfils, Eric B.

    2011-03-01

    The growth and evolution of large volcanic edifices on Venus should reflect interactions between local magma reservoir-induced stresses and broader-scale stresses resulting from flexure of the lithosphere beneath the edifice load. Here, we explore the relationship between magma movement in the lithosphere and the flexural stress state via static, gravitationally loaded, axisymmetric finite element models. We find that reservoirs situated in the lower (extensional) lithosphere fail at the bottom and are therefore not viable long-term conduits for upward magma transport. Furthermore, for high-stress conditions (e.g., large edifices or thin lithospheres), chambers in the lowermost lithosphere exceed the failure criterion even before pressurization and are therefore unstable. In contrast, magma chambers located in the upper (compressional) lithosphere fail at or somewhat above the reservoir midsection, promoting lateral sill injection; continued failure in this mode would tend to produce oblate magma chambers with zones of intrusion at their margins. Reservoirs near the flexural neutral plane require the greatest overpressure to reach failure, emplacing cone sheets that transition to sills further from the chamber. The out-of-plane orientation of principal extensional stresses in the flexed lower lithosphere predicts the presence of radial dikes that are likely the main conduits for any subsequent magma ascent from the mantle melt source region. Our results also explain how the evolving stress state in the lithosphere tends to redirect magma passage over time: magma ascending into the lithosphere beneath the edifice is diverted to lateral sills in the upper lithosphere, inhibiting summit eruptions and possibly shifting eruption locations to the lower flanks at and beyond the distal margins of an oblate chamber or sill complex. We apply these results to interpret the observed structure and tectonism of Sapas Mons, Venus, in terms of flexurally controlled intrusive

  4. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frédéric; Cloetingh, Sierd

    2015-08-01

    The initiation and subsequent evolution of intra-plate orogens, resulting from continental plate interior deformation due to transmission of stresses over large distances from the active plate boundaries, is controlled by lateral and vertical strength contrasts in the lithosphere. We present lithospheric-scale analogue models combining 1) lateral strength variations in the continental lithosphere, and 2) different vertical rheological stratifications. The experimental continental lithosphere has a four-layer brittle-ductile rheological stratification. Lateral heterogeneity is implemented in all models by increased crustal strength in a central narrow block. The main investigated parameters are strain rate and strength of the lithospheric mantle, both playing an important role in crust-mantle coupling. The experiments show that the presence of a strong crustal domain is effective in localizing deformation along its boundaries. After deformation is localized, the evolution of the orogenic system is governed by the mechanical properties of the lithosphere such that the final geometry of the intra-plate mountain depends on the interplay between crust-mantle coupling and folding versus fracturing of the lithospheric mantle. Underthrusting is the main deformation mode in case of high convergence velocity and/or thick brittle mantle with a final asymmetric architecture of the deep lithosphere. In contrast, lithospheric folding is dominant in case of low convergence velocity and low strength brittle mantle, leading to the development of a symmetric lithospheric root. The presented analogue modelling results provide novel insights for 1) strain localization and 2) the development of the asymmetric architecture of the Pyrenees.

  5. Water and its influence on the lithosphere-asthenosphere boundary.

    PubMed

    Green, David H; Hibberson, William O; Kovács, István; Rosenthal, Anja

    2010-09-23

    The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the

  6. Water and its influence on the lithosphere-asthenosphere boundary.

    PubMed

    Green, David H; Hibberson, William O; Kovács, István; Rosenthal, Anja

    2010-09-23

    The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the

  7. Present Lithospheric Deformation and Asthenospheric Flow beneath the Central Mongolia

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Guan, J.; Gao, M.; Munkhuu, U.; Demberel, S. G.

    2013-12-01

    The Central Asian Orogeny Belt (CAOB), which separates the Siberia Shield to the north from the Sino-Korean Craton and Tarim Craton to the south and extends from the Ural Orogeny in the west to the Western Pacific Subduction Zone in the east, is one of the World's largest Paleozoic orogeny zone, with more than 50% juvenile crust. CAOB provides a unique place to study the continental growth process and mechanism. 68 broadband seismometers were deployed for 2 years in the central Mongolian from August 2011, funded by the international cooperation project of Ministry of Science and Technology of China----The Geophysical Investigation and Deep Structure Modeling for Seismic Hazard Assessment in the Far East (2011DFB20120). As a part of the joint project, the aim of the passive seismic observation (CM Array) is to investigate the deep structure of the Central Mongolia. Upper mantle deformation features are deduced from the splitting of the teleseismic shear wave such as SKS and SKKS phases. At the temporary CM array across the central Mongolia, we observe delay times of SKS splitting ranging from 0.8 to more than 2.0s. The observed SKS fast direction at most of the stations is dominated by NW-SE, which is almost orthogonal to the trend of lithospheric structure, striking in NE-SW in the central and eastern Mongolia and thought to be formed by the closure of the Mongol-Okhotsk ocean from the Devonian to Triassic. Such a feature implies that the fossil lithospheric deformation may not be preserved in the central Mongolia, even though the finial closure of the Mongol-Okhostk ocean occurred at the end of Triassic. It is noted that the angular difference between the fast direction and the APM for most of the stations is within 40°; such a difference could be considered to be within the uncertainty but also may reflect a true differential motion between the Earth surface and the convective mantle. The present-day deformation of Mongolia started at the end of the Oligocene

  8. Linking numerical models of lithospheric deformation and magnetotelluric images

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.

    2012-12-01

    Efficient modeling of geodynamic processes requires constraints from different fields of geosciences. Frequently used are data on crustal structure and composition and their evolution constrained by seismic, gravity and petrological/geochemical studies. However, links between geodynamic modeling and rapidly developing field of magnetotelluric (MT) studies are still insufficient. I'll consider two recent examples of MT observations and geodynamic modeling demonstrating that joint analyses of thermomechanical models of lithospheric deformation and MT images may be useful to understand geodynamic processes. One set of observations is MT data for San Andreas Fault (SAF) in the region close to the SAFOD Site (Becken et al., 2011) that shows high conductivity anomalies in the mantle, that are interpreted as fluid flow feeding creeping part of SAF south of the SAFOD Site. Interestingly, zones of high conductivity do not coincide with the expected zones of the recent active deformation (SAF), but are located to the west of it. Based on thermomechanical model of the evolution of the SAFS in Central and Northern California during the last 20 Mln. years (Popov et al., 2012), I'll demonstrate that high conductivity anomalies precisely coincide with the expected zones of the highest accumulated shear strain. Possible interpretation of this coincidence is that strong preferred orientation of olivine crystals in the highly deformed mantle shear zone causes high permeability of fluids. Another set of observations is MT data showing high conductivity anomalies in the crust of Tibet (Unsworh et al., 2005, Bai et al., 2010) and Pamirs (Sass et al., 2011) that are often interpreted as an evidence for the widely spread partially molten crust. Using 2D thermomechanical models of the collision between India and Eurasia, I'll demonstrate that such structures in the crust cannot appear without delamination of the mantle lithosphere during tectonic shortening. Internal heating of the

  9. A lithospheric 3D temperature study from the South Atlantic

    NASA Astrophysics Data System (ADS)

    Hirsch, K. K.; Scheck-Wenderoth, M.; Maystrenko, Y.; Sippel, J.

    2009-04-01

    The East African continental margin is a passive volcanic margin that experienced a long post-rifting history after break up in Early Cretaceous times. The break up resulted in the formation of a number of basins along the margin. The by far largest depocentre in the South Atlantic, the Orange Basin, was the location of previously performed studies. These studies of the Orange Basin have been performed to investigate the crustal structure and the temperature evolution of the basin. In this way, they gave way to new insights and to a number of questions. With 3D gravity modelling we found the crust to include high density bodies. Furthermore, a rifting model was developed which explained both the geometry and the thermal constraints of the basin. Now, this study has been extended spatially to cover a larger area and into depth to include the deep lithosphere. The main goal is to combine information on the geometry and properties of the sedimentary part of the system with data on the geometry and physical properties of the deep crust. It was also aimed to integrate both the continental and the oceanic parts of the margin into a consistent 3D structural model on a lithospheric scale. A 3D temperature model was evaluated for the passive continental margin of the South Atlantic including the lithospheric structure of the margin. We evaluate a case study for different scenarios to estimate the influence of sediments and crustal structures on the thermal field. The calculated conductive field is constrained by temperature measurements and 3D gravity modelling. At the Norwegian continental margin it has been found that a differentiation of the physical properties of the lower crust and the mantle is needed between the oceanic and continental domains to explain the observations. We aim to compare the younger setting of the Norwegian continental margin with the old passive margin in the South Atlantic. In particular, the South Atlantic is interesting since the southern half

  10. Constraining the dynamic response of subcontinental lithospheric mantle to rifting using Re-Os model ages in the Western Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.

    2012-12-01

    lithosphere extends beneath the TAM. With further analyses we hope to determine if there is lateral flow of cratonic lithosphere into the rift. Huismans, R., Beaumount, C., 2011. Depth-dependent extension, two stage breakup and cratonic underplating at rifted margins. Nature 473, 74-78. Reisberg, L.C., Lorand, J.P., 1995. Longevity of sub-continental mantle lithosphere from osmium isotope systematics in orogenic peridotite massifs. Nature 376, 159-162. Rudnick, R.L., Walker, R.J., 2009. Interpreting ages from Re-Os isotopes in peridotites. Lithos 1125, 1083-1095.

  11. Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C. P.

    2012-12-01

    Domal uplifts, volcanism, basin formation and rifting have often struck the same continent in different areas at the same time. Their characteristics and orientations are difficult to reconcile with mantle convection or tectonic forces and suggest a driving mechanism that is intrinsic to the continent. The rifts seem to develop preferentially at high angles to the edge of the continent whereas swells and basins seem confined to the interior. Another intriguing geometrical feature is that the rifts often branch out in complicated patterns at their landward end. In Western Africa, for example, magmatic activity currently occurs in a number of uplifted areas including the peculiar Cameroon Volcanic Line that stretches away from the continental margin over about 1000 km. Magmatic and volcanic activity has been sustained along this line for 70 My with no age progression. The mantle upwelling that feeds the volcanoes is not affected by absolute plate motions and hence is attached to the continent. The Cameroon Volcanic Line extends to the Biu swell to the North and the Jos plateau to the West defining a striking Y-shaped pattern. This structure segues into several volcanic domes including the Air, the Hoggar, the Darfur, the Tibesti and the Haruj domes towards the Mediterranean coast. Another example is provided by North America, where the late Proterozoic-early Ordovician saw the formation of four major basins, the Michigan, Illinois, Williston and Hudson Bay, as well as of major rifts in southern Oklahoma and the Mississipi Valley within a short time interval. At the same time, a series of uplifts developed, such as the Ozark and Nashville domes. Motivated by these observations, we have sought an explanation in the continental lithosphere itself. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant

  12. Electromagnetic induction studies. [of earth lithosphere and asthenosphere

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    Recent developments in electromagnetic induction studies of the lithosphere and the asthenosphere are reviewed. Attention is given to geoelectrical studies of active tectonic areas in terms of the major zones of crustal extension, the basin and range province along western regions of North America, and the Rio Grande rift. Studies have also been performed of tectonic activity around Iceland, the Salton Trough and Cerro Prieto, and the subduction zones of the Cascade Mountains volcanic belt, where magnetotelluric and geomagnetic variation studies have been done. Geomagnetic variations experiments have been reported in the Central Appalachians, and submarine electromagnetic studies along the Juan de Fuca ridge. Controlled source electromagnetic and dc resistivity investigations have been carried out in Nevada, Hawaii, and in the Adirondacks Mountains. Laboratory examinations on the conductivity of representative materials over a broad range of temperature, pressure, and chemistry are described.

  13. Pre-seismic Lithosphere, Atmosphere and Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kamogawa, M.

    2006-12-01

    Pre-seismic anomalous states in the atmosphere and ionosphere as well as those in the telluric currents and ultra-low frequency electromagnetic waves have been reported since the 1970s. These pre-seismic phenomena have not yet been universally accepted, partly because the low occurrence frequency of large earthquakes has hindered establishing their statistical significance. Recent achievements in this respect, however, seem to be highly encouraging for promoting further studies on the pre-seismic lithosphere-atmosphere-ionosphere (LAI) coupling. Liu et al. (JGR, 2006) constructed a set of quantitative definitions for ionospheric anomalies (depression of foF2) and examined the statistical correlation between thus defined ionospheric anomalies and all the Taiwan M>=5 earthquakes (184 in number) during the period 1994-1999. The results indicated that anomalies appeared within 5 days before the earthquakes. Examining the validity of the pre-seismic anomalous transmission of VHF electromagnetic waves beyond the line-of-sight, Fujiwara and Kamogawa et al. (GRL, 2004) statistically demonstrated the existence of atmospheric anomalies lasting for a few minutes to several hours before earthquakes. They found that the anomalies were significantly enhanced within 5 days before M>=4.8 earthquakes. If the pre-seismic atmospheric - ionospheric anomalies are real, some phenomena causing them should be detectable on the ground. If such causal phenomena are identified, the concept of lithosphere - atmosphere - ionosphere coupling (LAI coupling) will be greatly strengthened. Possible mechanisms for energy-transport channels from the lithosphere to the atmosphere-ionosphere are summarized as follows: First, the atmospheric electric field generated on/near the ground surface during the pre-seismic period may cause the ionospheric anomalies. Such an atmospheric electric field may be caused by ions generated from radon emissions. Actually, a number of reports have been published for pre

  14. Deformation of island-arc lithosphere due to steady plate subduction

    NASA Astrophysics Data System (ADS)

    Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro

    2016-02-01

    Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction

  15. On the relations between cratonic lithosphere thickness, plate motions, and basal drag

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2002-01-01

    An overview of seismic, thermal, and petrological evidence on the structure of Precambrian lithosphere suggests that its local maximum thickness is highly variable (140-350 km), with a bimodal distribution for Archean cratons (200-220 km and 300-350 km). We discuss the origin of such large differences in lithospheric thickness, and propose that the lithospheric base can have large depth variations over short distances. The topography of Bryce Canyon (western USA) is proposed as an inverted analog of the base of the lithosphere. The horizontal and vertical dimensions of Archean cratons are strongly correlated: larger cratons have thicker lithosphere. Analysis of the bimodal distribution of lithospheric thickness in Archean cratons shows that the "critical" surface area for cratons to have thick (>300 km) keels is >6-8 ?? 106 km2 . Extrapolation of the linear trend between Archean lithospheric thickness and cratonic area to zero area yields a thickness of 180 km. This implies that the reworking of Archean crust should be accompanied by thinning and reworking of the entire lithospheric column to a thickness of 180 km in accord with thickness estimates for Proterozoic lithosphere. Likewise, extrapolation of the same trend to the size equal to the total area of all Archean cratons implies that the lithospheric thickness of a hypothesized early Archean supercontinent could have been 350-450 km decreasing to 280-400 km for Gondwanaland. We evaluate the basal drag model as a possible mechanism that may thin the cratonic lithosphere. Inverse correlations are found between lithospheric thickness and (a) fractional subduction length and (b) the effective ridge length. In agreement with theoretical predictions, lithospheric thickness of Archean keels is proportional to the square root of the ratio of the craton length (along the direction of plate motion) to the plate velocity. Large cratons with thick keels and low plate velocities are less eroded by basal drag than small

  16. Lithosphere Structure and Mantle Characterization of the Alpine-Himalayan Belt: Atlas, Zagros and Tibet

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Tunini, L.; Fernandez, M.; Verges, J.; Garcia-Castellanos, D.

    2015-12-01

    By combining geophysical and petrological information, we investigate the crust and upper mantle of three orogens of the Alpine-Himalayan Belt (Atlas, Zagros and Tibet), characterizing the lithosphere from the thermal, compositional and seismological viewpoint. The modeling is based on an integrated geophysical-petrological methodology combining elevation, gravity, geoid, surface heat flow, seismic and geochemical data.The results show prominent lithospheric mantle thickening beneath the Moroccan margin followed by thinning beneath the Atlas Mountains. Different convergence accommodation between the crust and lithospheric mantle suggests a decoupled crustal-mantle mechanical response. In the northern Zagros the lithosphere-asthenosphere boundary rises sharply below the Sanandaj Sirjan Zone in a narrow region, whereas in the central Zagros the thinning is smoother and affects a wider region. The transition from the Arabian to the Eurasian lithospheric domain is located beneath the Zagros range, and it is marked by a change in the mantle velocity anomaly and in the lithospheric mantle composition. In the western Himalaya-Tibetan orogen, the lithosphere thickening is gradual reaching the maximum below the northern edge of the Plateau. The Indian lithospheric mantle underlies the whole Tibetan Plateau up to the boundary with the Tarim Basin. In the eastern sector, the thickening generates sharp steps beneath the Himalaya Range, and it thins abruptly beneath the Qiangtang and the Songpan Ganzi terrains. The Indian underthrusting is restricted to the southern Plateau. Different Eurasian domains have been also identified beneath the Tarim Basin, the Altaids region and NE Plateau by means of different lithospheric mantle compositions. The lithospheric models crossing Zagros and Tibetan Plateau show that the present-day lithosphere mantle structure of the Arabia-Eurasia and India-Eurasia collision zones are laterally-varying along the strike of both orogens, not just in

  17. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  18. Plume- Ridge Lithospheric Interactions: Cases of Afar (Africa)

    NASA Astrophysics Data System (ADS)

    Montagner, J. P.; Stutzmann, E.; Sicilia, D.; Sebai, A.; Beucler, E.; Silveira, G.; Cara, M.; Debayle, E.; Leveque, J. J.

    2003-04-01

    Detection of mantle plumes in geophysical and geochemical data is controversial and trigger vigorous debates. It remains unclear how plumes are formed, their origin at depth, and whether they act independently from plate tectonics. We may learn about the role of plumes in mantle dynamics by studying their interactions with lithosphere and crust below ridges and the way in which they perturb the flow pattern in the uppermost mantle. Several regional tomographic studies of seismic velocity and anisotropy around several hotspots were obtained during the last 2 years. Their lateral resolution is smaller than 1000km and they enable to make qualitative intercomparison between Afar (Horn of Africa Program), Azores (COSEA project) in the Atlantic, La Reunion in the Indian Ocean and Pacific provinces hotspots. These models demonstrate that there is not only one family of plumes but several ones. Some plumes are confined in the uppermost 200km but a few can originate in the transition zone and even at the Core-mantle Boundary for superplumes. Seismic anisotropy which is a good marker of deformation processes and mantle flow pattern, shows that the interaction between a plume and a ridge below the lithosphere can occur over distances larger than 1000km, via sublithospheric channels. The existence of LACs (Low Anisotropy Channels) below the Pacific plate seems to be intimately related to the active hotspots in Central Pacific and indicate a future reorganization of plate boundaries. Another important consequence of the interaction between plume and ridge is the triggering of secondary convection in the asthenosphere, which will be discussed during the presentation.

  19. Constraints on Lithospheric Rheology from Observations of Coronae on Venus

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Smrekar, Suzanne; Moresi, Louis N.

    2016-10-01

    Coronae are enigmatic, quasi-circular features found in myriad geological environments. They are primarily distinguished as rings of concentric fractures superimposed on various topographic profiles with at least small-scale volcanism. Mantle plumes may produce coronae with interior rises, whereas coronae with central depressions are often attributed to downwellings like Rayleigh-Taylor instabilities. For almost three decades, modelers have attempted to reproduce the topographic and gravity profiles measured at coronae. Until recently, few studies also considered tectonic deformation and melt production. In particular, "Type 2" coronae have complete topographic rims but arcs of fractures extending less than 180°, signifying both brittle and ductile deformation. Only a narrow range of rheological parameters like temperature and volatile content may be compatible with these observations. Ultimately, identifying how lithospheric properties differ between Earth and Venus is critical to understanding what factors permit plate tectonics on rocky, Earth-sized planets.Here we present a hierarchical approach to study the formation of coronae. First, we discuss an observational survey enabled by a new digital elevation model derived from stereo topography for ~20% of the surface of Venus, which offers an order-of-magnitude improvement over the horizontal resolution (10 to 20 kilometers) of altimetry data from NASA's Magellan mission. Next, we search this new dataset for signs of lithospheric flexure around small coronae. Simple, thin-elastic plate models were fit to topographic profiles of larger coronae in previous studies, but data resolution impeded efforts to apply this method to the entire coronae population. Finally, we show simulations of the formation of coronae using Underworld II, an open-source code adaptable to a variety of geodynamical problems. We benchmark our code using models of pure Rayleigh-Taylor instabilities and then investigate the influence of

  20. Lithospheric architecture of the Hudson Bay region (Invited)

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Darbyshire, F. A.

    2009-12-01

    Hudson Bay conceals several fundamental tectonic elements of North America, including most of the ca. 1.8 Ga Trans Hudson orogen (THO) and the Paleozoic Hudson Bay basin. Formed due to a collision between the Superior and Churchill Provinces of the Canadian Shield, the THO is similar in scale and tectonic style to the modern Himalayan-Karakorum orogen. During collision, the lobate shape of the indentor (Superior Province) formed an orogenic template that, along with the Sask craton of central North America, exerted a persistent influence on the tectonic evolution of the region resulting in anomalous preservation of juvenile crustal material. Juvenile crust in the southeastern part of Hudson Bay is interpreted to have formed within an island-arc setting proximal to the Superior Province, in contrast to the Reindeer Zone of Saskatchewan and Manitoba, which accreted first to the Churchill Province. Thick, cold and refractory lithosphere that underlies the Bay is well imaged by surface-wave and S-Receiver function studies and comprises a large component of the cratonic mantle keel that forms the nucleus of the North American continent. The existence of an unusually thick mantle root beneath Hudson Bay indicates that subduction and plate collision during the Trans-Hudson orogeny were ‘root-preserving’ (if not ‘root-forming’) processes. Although the Hudson Bay basin is the largest by surface area of four major intracratonic basins in North America, it is also the shallowest. Crustal thinning imaged from ambient-noise tomography is consistent with previous models of basin subsidence caused by extension. Compared to other basins of similar age in North America, however, relatively stiff Early Paleozoic lithosphere may have inhibited subsidence of the Hudson Bay basin.

  1. Lithospheric flexure and gravity spreading of Olympus Mons volcano, Mars

    NASA Astrophysics Data System (ADS)

    Musiol, S.; Holohan, E. P.; Cailleau, B.; Platz, T.; Dumke, A.; Walter, T. R.; Williams, D. A.; Gasselt, S.

    2016-03-01

    The structural architecture of large volcanoes is governed substantially by gravity-driven deformation that is manifest as distinct processes such as basement flexure or volcanic spreading. Temporal effects and the mutual interplay of these processes have been investigated only to a limited extent, and so we present novel numerical models of the time-dependent deformation associated with them. The models simulate the combined effects of lithospheric flexure and volcanic spreading during growth increments of an elastoplastic volcanic cone. Different spreading scenarios are considered by a variable coupling decoupling behavior at the interface between volcano and basement. We apply our models to Olympus Mons on Mars, which is characterized by upper to middle flank terraces on the shield, is encircled by a basal scarp that has an average slope of 30° and is surrounded by distant deposits that resemble large-scale slumping features on Earth. Our results are consistent with the interpretation that terraces on Olympus Mons' flanks form by thrust faulting that results from lithospheric flexure. The presence and expression of terraces depend on the coupling of volcano and basement, on the time of volcano growth relative to mantle relaxation, and on the cohesion of the edifice. The encircling scarp may be related to a very low friction detachment at the edifice base, which leads to a normal fault regime on the lowermost flanks. With time and volcano growth, predicted stress and faulting regimes migrate only slightly, indicating that the structural architecture of volcanoes is largely set in the very early stages of formation.

  2. Re-Os systematics of the Siberian lithosphere: Evidence for melt percolation and lithospheric re-fertilization

    NASA Astrophysics Data System (ADS)

    Pernet-Fisher, J.; Pearson, D.; Barry, P. H.; Howarth, G. H.; Pokhilenko, N. P.; Taylor, L. A.

    2013-12-01

    The Siberian craton underwent multiple episodes of kimberlite magmatism spanning the Silurian to the Jurassic, during which numerous mantle xenoliths from the sub-continental lithospheric mantle (SCLM) were brought to the surface. During this time, kimberlite magmatism was interrupted by the emplacement of the Siberian Flood Basalts (SFB) at ~250 Ma, relating to the main stage of activity of the Siberian Superplume. This makes the Siberian craton an ideal location to characterize metasomatism of the SCLM over the life-cycle of a plume. We report new Re-Os isotope analyses on whole-rock and olivine separates, in parallel with detailed petrographic descriptions of two suites of peridotite xenoliths recovered from the Silurian Udachnaya (360 Ma) and Jurassic Obnazhennaya (160 Ma) kimberlite pipes, bracketing the climax of Superplume activity with eruption of the SFB. The 187Os/188Os values for Udachnaya are within the range of previously reported values [1]. The most depleted harzburgite sample displays the most unradiogenic 187Os/188Os (0.1082) yielding a Neoarchean (3.0-2.5 Ga) calculated model depletion age, consistent with estimated formation age of the Siberian lithospheric keel [1]. Udachnaya lherzolite samples yield younger Proterozoic model depletion ages ranging from ~1-2 Ga (average 1.5 Ga). This age range is consistent with the final stages of craton building [2] and is likely to reflect metasomatic events associated with the re-fertilization of the mantle from harzburgite to lherzolite, at this time. In contrast, the younger Obnazhennaya peridotites contain olivine with Fo >92 associated with radiogenic 187Os/188Os (average 0.1330), within the range of typical fertile mantle. Garnet melt reconstructions of these peridotites show evidence of re-equilibration with basaltic melts derived from the Siberian Superplume [3]. It is clear that extensive percolation of basaltic melts through the SCLM during the main phase of plume activity has had a profound impact

  3. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere

    NASA Astrophysics Data System (ADS)

    Schlindwein, Vera; Schmid, Florian

    2016-07-01

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere–asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  4. Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity

    NASA Astrophysics Data System (ADS)

    Hasterok, D.; Gard, M.

    2016-09-01

    While surface heat flow relates to the heat loss through the lithosphere, it can be difficult to quantify and separate the heat produced internally through radiogenic decay from the heat transferred across the base of the lithosphere by mantle convection. In this study, we apply a thermo-isostatic analysis to Australia and estimate the sub-lithospheric and radiogenic heat flow components by employing a simple 1-D conservation of energy model. We estimate an anomalous radiogenic heat production across much of eastern Australia generally accounting for >50 mW m-2, while western Australia appears to have high crustal compositionally corrected elevation, possibly related to chemical buoyancy of the mantle lithosphere. A moderately high sub-lithospheric heat flow (∼40 mW m-2) along the eastern and southeastern coast, including Tasmania, is coincident with locations of Cenozoic volcanism and supports an edge-driven convection hypothesis. However, the pattern of sub-lithospheric heat flow along the margin does not support the existence of hotspot tracks. Thermo-isostatic models such as these improve our ability to identify and quantify crustal from mantle sources of heat loss and add valuable constraints on tectonic and geodynamic models of the continental lithosphere's physical state and evolution.

  5. Intra-cratonic melting as a result of delamination of mantle lithosphere - insight from numerical modelling

    NASA Astrophysics Data System (ADS)

    Gorczyk, W.; Vogt, K.; Gerya, T.; Hobbs, B. E.

    2012-12-01

    It is becoming increasingly apparent that intense deformation, metamorphism and metasomatism occur within continental cratonic blocks far removed form subducting margins Such changes may occur intra-cratonically arising from lithospheric thickening and the development of gravitational instabilities, but mostly occur at the boundary of cratonic blocks. The contact of two cratons is characterized by rheological lateral variations within mantle-lithosphere and overlying crust. Tectonic stresses acting on craton/craton boundaries may lead to thinning or thickening due to delamination of the mantle lithosphere. This is reflected in tectonic deformation, topography evolution, melting and crustal metamorphism. To understand the controls on these processes a number of 2D, coupled petrological thermo-mechanical numerical experiments has been performed to test the response of a laterally weakened zone to a compressional regime. The results indicate that the presence of water-bearing minerals in the lithosphere and lower crust is essential to initiate melting, which in the later stages may expand to dry melting of crust and mantle. In the case of anhydrous crust and lithosphere, no melting occurs. Thus a variety of instabilities, melting behaviour and topographic responses occurs at the base of the lithosphere as well as intensive faulting and buckling in the crust dependent on the strength and "water" content of the lithosphere.

  6. Metasomatic Enrichment of the Lithosphere and its Potential Implications for the Formation of Oceanic and Continental Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Baker, M. B.; Stolper, E. M.; Muntener, O.

    2009-04-01

    The generation of oceanic and continental intra-plate magmas implied that the source of these magmas was enriched regarding the primitive mantle [1]. However, the nature and origin of the mantle components that melt below oceanic islands are still in debate. A hypothesis proposed that the enriched components which melt below oceanic islands correspond to recycled oceanic crust [2]. Alternatives suggest that these components could correspond to metasomatized continental or oceanic lithosphere [3-5]. However, if these two hypotheses are frequently presented as mutually exclusive, we suggest that theses hypotheses could be complementary. The fact that oceanic crust produces silica-saturated partial melts seems in agrement with the implication of this material in the generation of tholeiitic (i.e., hy- and qtz- normative) magmas from large oceanic islands and continental lava flows as proposed by [6]; however this fact makes it difficult to envision oceanic crust as a major component in the generation of alkaline (i.e., ne-normative) magmas. Experiments on metasomatic veins (hornblendites) and their dehydrated equivalents demonstrate that high-degree melting of these veins followed by variable amounts of interaction of the liquid with surrounding mantle can reproduce key features of the major- and trace-element compositions of alkaline magmas [7]. We suggest two scenarios for the production of alkaline magmas by melting metasomatized lithosphere: (i) the metasomatized lithosphere experiences a thermal perturbation or decompression and thereby melts in situ; or (ii) the metasomatized lithosphere is recycled into the convecting mantle by subduction or delamination and melts during later upwelling (e.g., in a plume). In continental alkaline magmas, the presence of amphibole xenocrysts compositionally similar to amphibole in metasomatic veins is consistent with the "in situ" hypothesis. While such veins may play a role in alkaline magmas for some oceanic islands and

  7. Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; O'Driscoll, Leland J.; Butcher, Amber J.; Thomas, Christine

    2015-12-01

    The westernmost Mediterranean has developed into its present day tectonic configuration as a result of complex interactions between late stage subduction of the Neo-Tethys Ocean, continental collision of Africa and Eurasia, and the Canary Island mantle plume. This study utilizes S receiver functions (SRFs) from over 360 broadband seismic stations to seismically image the lithosphere and uppermost mantle from southern Spain through Morocco and the Canary Islands. The lithospheric thickness ranges from ∼65 km beneath the Atlas Mountains and the active volcanic islands to over ∼210 km beneath the cratonic lithosphere in southern Morocco. The common conversion point (CCP) volume of the SRFs indicates that thinned lithosphere extends from beneath the Canary Islands offshore southwestern Morocco, to beneath the continental lithosphere of the Atlas Mountains, and then thickens abruptly at the West African craton. Beneath thin lithosphere between the Canary hot spot and southern Spain, including below the Atlas Mountains and the Alboran Sea, there are distinct pockets of low velocity material, as inferred from high amplitude positive, sub-lithospheric conversions in the SRFs. These regions of low seismic velocity at the base of the lithosphere extend beneath the areas of Pliocene-Quaternary magmatism, which has been linked to a Canary hotspot source via geochemical signatures. However, we find that this volume of low velocity material is discontinuous along strike and occurs only in areas of recent volcanism and where asthenospheric mantle flow is identified with shear wave splitting analyses. We propose that the low velocity structure beneath the lithosphere is material flowing sub-horizontally northeastwards beneath Morocco from the tilted Canary Island plume, and the small, localized volcanoes are the result of small-scale upwellings from this material.

  8. Cenozoic alkali basalts from Jingpohu, NE China: The role of lithosphere asthenosphere interaction

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zhao, Jian-Xin

    2008-06-01

    The geochemistry of Late Cenozoic volcanic rocks from Jingpohu, NE China, provides important constraints on the petrogenesis of continental alkali basalts and lithospheric evolution in the eastern Central Asian Orogenic Belt (CAOB). Miocene-Pleistocene and Holocene basalts from Jingpohu show alkali affinities and are characterized by Ocean Island Basalt (OIB)-like REE and trace element patterns somehow resembling Holocene potassic rocks from Wudalianchi which are considered to be derived from ancient enriched lithospheric mantle. These basalts show depleted Sr-Nd isotopic compositions ( 87Sr/ 86Sr = 0.7039-0.7046, ɛNd = 1.3-6.0) and Dupal-like but unradiogenic Pb isotopic signatures ( 206Pb/ 204Pb = 17.54-17.94, 207Pb/ 204Pb = 15.45-15.54, 208Pb/ 204Pb = 37.71-38.07), comparable to the OIB. The combined geochemical and isotopic signatures are consistent with magma source mixing between a Focal Zone (FOZO)-like asthenospheric mantle component (characterized by enriched Pb and depleted Sr-Nd isotopic compositions) and an isotopically enriched EM1-type subcontinental lithospheric mantle component. Lithospheric thickness inferred from alkali basalts from different regions implies a progressive thinning from west to east in the CAOB, which may be caused by lithosphere-asthenosphere interaction. We propose that upwelling of the asthenosphere and subsequent mechanical and chemical erosion beneath lithospheric mantle induced by subduction of the Pacific plate might have been responsible for the lithospheric thinning in the eastern CAOB. The lithospheric thinning has proceeded in a dischronous way in the western North China Craton, near the Daxinganling-Taihangshan gravity lineament, but this event did not take place in the corresponding area of the CAOB. The lithospheric thinning shows different styles both spatially and temporally in the two tectonic units.

  9. 26 million years of mantle upwelling below a segment of the Mid Atlantic Ridge: The Vema Lithospheric Section revisited

    NASA Astrophysics Data System (ADS)

    Cipriani, Anna; Bonatti, Enrico; Brunelli, Daniele; Ligi, Marco

    2009-07-01

    Temporal variations of temperature and composition of the mantle upwelling below a 80-km long segment of the Mid Atlantic Ridge were reconstructed from 20 to 4 Ma ago from peridotites sampled along a > 300-km long section of oceanic lithosphere (Vema Lithospheric Section or VLS) exposed south of the Vema transform at 11° N [Bonatti, E., Ligi, M., Brunelli, D., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., Ottolini, L., 2003. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variation in the formation of oceanic lithosphere, Nature, 423, 499-505]. We extended this time interval from 26 to 2 Ma by sampling mantle ultramafics at 18 new sites along the VLS. Peridotite orthopyroxene, clinopyroxene and spinel chemistry suggest a weak trend of decreasing extent of melting of the mantle from 26 to 18.5 Ma ago with superimposed short-wavelength (~ 4 Ma) oscillations followed by a steady increase of degree of melting from 18.5 to 2 Ma ago, with superimposed 3-4 Ma oscillations. Temporal variations of crustal thickness inferred from the Residual Mantle Bouguer Anomaly calculated from gravity data reveal similar trends. The older (26 to 18.5 Ma) and the younger (18.5 to 2 Ma) mantle suites differ in cpx Na 2O content and CaO/Al 2O 3 ratio, suggesting that not only the thermal regime, but also the composition of the mantle source might have been different in the two suites. The two trends are separated by a ~ 1.4 Ma-long stretch (from 18.2 to 16.8 Ma) where deformed ultramafic mylonites prevail, indicating probably an interval of nearly a-magmatic lithospheric emplacement at ridge axis, corresponding to a thermal minimum. Spatially offset correlation along the VLS of crustal thickness (i.e., quantity of basaltic melt released by the mantle) and mantle peridotite degree of melting led to an estimate of ~ 16.1 mm/a for the solid mantle average velocity of upwelling, a value close to the average half spreading rate for the 26 Ma interval covered by the

  10. Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Manatschal, Gianreto; Müntener, Othmar; Beltrando, Marco; Masini, Emmanuel

    2010-10-01

    The discovery of exhumed continental mantle and hyper-extended crust in present-day magma-poor rifted margins is at the origin of a paradigm shift within the research field of deep-water rifted margins. It opened new questions about the strain history of rifted margins and the nature and composition of sedimentary, crustal and mantle rocks in rifted margins. Thanks to the benefit of more than one century of work in the Alps and access to world-class outcrops preserving the primary relationships between sediments and crustal and mantle rocks from the fossil Alpine Tethys margins, it is possible to link the subsidence history and syn-rift sedimentary evolution with the strain distribution observed in the crust and mantle rocks exposed in the distal rifted margins. In this paper, we will focus on the transition from early to late rifting that is associated with considerable crustal thinning and a reorganization of the rift system. Crustal thinning is at the origin of a major change in the style of deformation from high-angle to low-angle normal faulting which controls basin-architecture, sedimentary sources and processes and the nature of basement rocks exhumed along the detachment faults in the distal margin. Stratigraphic and isotopic ages indicate that this major change occurred in late Sinemurian time, involving a shift of the syn-rift sedimentation toward the distal domain associated with a major reorganization of the crustal structure with exhumation of lower and middle crust. These changes may be triggered by mantle processes, as indicated by the infiltration of MOR-type magmas in the lithospheric mantle, and the uplift of the Briançonnais domain. Thinning and exhumation of the crust and lithosphere also resulted in the creation of new paleogeographic domains, the Proto Valais and Liguria-Piemonte domains. These basins show a complex, 3D temporal and spatial evolution that might have evolved, at least in the case of the Liguria-Piemonte basin, in the formation

  11. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process. PMID:9545216

  12. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  13. Continuous deformation versus faulting through the continental lithosphere of new zealand

    PubMed

    Molnar; Anderson; Audoine; Eberhart-Phillips; Gledhill; Klosko; McEvilly; Okaya; Savage; Stern; Wu

    1999-10-15

    Seismic anisotropy and P-wave delays in New Zealand imply widespread deformation in the underlying mantle, not slip on a narrow fault zone, which is characteristic of plate boundaries in oceanic regions. Large magnitudes of shear-wave splitting and orientations of fast polarization parallel to the Alpine fault show that pervasive simple shear of the mantle lithosphere has accommodated the cumulative strike-slip plate motion. Variations in P-wave residuals across the Southern Alps rule out underthrusting of one slab of mantle lithosphere beneath another but permit continuous deformation of lithosphere shortened by about 100 kilometers since 6 to 7 million years ago.

  14. Report of the panel on lithospheric structure and evolution, section 3

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Lang, Harold; Mcnutt, Marcia K.; Paylor, Earnest D.; Sandwell, David T.; Stern, Robert J.

    1991-01-01

    The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents.

  15. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  16. The electrical resistivity structure of lithosphere across the Dharwar craton nucleus and Coorg block of South Indian shield: Evidence of collision and modified and preserved lithosphere

    NASA Astrophysics Data System (ADS)

    Abdul Azeez, K. K.; Veeraswamy, K.; Gupta, Arvind K.; Babu, Narendra; Chandrapuri, Sateesh; Harinarayana, T.

    2015-10-01

    Magnetotelluric-derived two-dimensional lithospheric resistivity structure of the western Dharwar craton (WDC) and adjoining Coorg block indicates isolated low-resistivity zones in the crust and three striking upper mantle conductive features within the highly resistive Archean lithosphere. The crustal conductors in the WDC show good spatial correlation with the exposed supracrustal rocks conformable with the relic schist belt channels having conductive mineral grains. Conductive zones within the Coorg crust might be related to the relatively young (933 Ma) metamorphic processes in the area and/or possible fluids derived from the Cretaceous passage of Reunion plume in the proximity of Coorg area. A near-vertical conductive structure extending from the lower crust into the upper mantle coincides with the transition zone between Coorg and WDC. This is interpreted as the suture zone between the two tectonic blocks and provides evidence for the individuality of the two Archean terrains. An anomalous upper mantle conductive zone found beneath the craton nucleus may indicate a modified cratonic lithosphere. This could have been derived due to the collision between Coorg and WDC and possibly survived by the subsequent multiple episodes of melt and fluid infiltration processes experienced in the region. Thick (~190 km) and preserved lithosphere is mapped at the eastern segment of WDC. Resistive lithosphere of ~125 km thickness is imaged for the Coorg block.

  17. Geodynamic inversion to constrain the rheology of the lithosphere: What is the effect of elasticity?

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Kaus, Boris; Thielmann, Marcel

    2016-04-01

    The concept of elastic thickness (T_e) is one of the main methods to describe the integrated strength of oceanic lithosphere (e.g. Watts, 2001). Observations of the Te are in general agreement with yield strength envelopes estimated from laboratory experiments (Burov, 2007, Goetze & Evans 1979). Yet, applying the same concept to the continental lithosphere has proven to be more difficult (Burov & Diament, 1995), which resulted in an ongoing discussion on the rheological structure of the lithosphere (e.g. Burov & Watts, 2006, Jackson, 2002; Maggi et al., 2000). Recently, we proposed a new approach, which constrains rheological properties of the lithosphere directly from geophysical observations such as GPS-velocity, topography and gravity (Baumann & Kaus, 2015). This approach has the advantage that available data sets (such as Moho depth) can be directly taken into account without making the a-priori assumption that the lithosphere is thin elastic plate floating on the mantle. Our results show that a Bayesian inversion method combined with numerical thermo-mechanical models can be used as independent tool to constrain non-linear viscous and plastic parameters of the lithosphere. As the rheology of the lithosphere is strongly temperature dependent, it is even possible to add a temperature parameterisation to the inversion method and constrain the thermal structure of the lithosphere in this manner. Results for the India-Asia collision zone show that existing geophysical data require India to have a quite high effective viscosity. Yet, the rheological structure of Tibet less well constrained and a number of scenarios give a nearly equally good fit to the data. Yet, one of the assumptions that we make while doing this geodynamic inversion is that the rheology is viscoplastic, and that elastic effects do not significantly alter the large-scale dynamics of the lithosphere. Here, we test the validity of this assumption by performing synthetic forward models and retrieving

  18. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Zhang, Hongfu; Hu, Zhaochu; Santosh, M.

    2016-11-01

    The petrology, in situ analyses of major and trace elements as well as Sr isotopic compositions of spinel-facies lherzolite and harzburgite xenoliths from Weichang within the northern margin of the North China Craton (NCC) are reported for the first time in this study to evaluate the nature and evolution of the lithospheric mantle. These peridotite xenoliths display porphyroclastic texture and can be subdivided into two groups. Group I peridotites have slightly higher forsterite contents (Fo) (90.6-91.2) and 87Sr/86Sr ratios (0.7025-0.7043) in the cores than those in the rims (89.8-90.8; 0.7025-0.7038) of olivines and clinopyroxenes, respectively. The clinopyroxenes in these rocks exhibit uniform LREE-depleted patterns. These geochemical features suggest that the Group I peridotites were weakly metasomatized by recent asthenospheric melts. In contrast, Group II peridotites show sieve-texture and clear compositional zoning in minerals. The olivines and clinopyroxenes from these rocks have higher Fo (86.9-91.3) and 87Sr/86Sr ratios (0.7035-0.7049) in the cores than those in the rims (76.9-90.6; 0.7021-0.7046). The clinopyroxenes show three types of REE patterns: LREE-enriched, convex-upward and spoon-shaped. The LREE-enriched clinopyroxenes have the highest (La/Yb)N and lowest Ti/Eu and those with spoon-shaped REE patterns show an increase in LREE, Ba, Th and U contents from the cores to the rims. These features indicate that the Group II peridotites witnessed a high degree of refertilization by recent asthenosphere-derived silicate and carbonatite melts or their mixture. Compared with the data of the Mesozoic NCC lithospheric mantle, the heterogeneous and low 87Sr/86Sr ratios (0.7025-0.7049) in the LREE-depleted clinopyroxenes reveal that the ancient lithospheric mantle could have been modified by asthenospheric melts before the recent metasomatism event. We conclude that the lithospheric mantle beneath Weichang underwent multiple modifications through asthenosphere-lithosphere

  19. Magmatic evidence for Neogene lithospheric evolution of the central Andean ``flat-slab'' between 30°S and 32°S

    NASA Astrophysics Data System (ADS)

    Kay, S. M.; Abbruzzi, J. M.

    1996-06-01

    Geochemical data from Andean Miocene magmas erupted through the now volcanically-inactive "flat-slab" between 30°S to 32°S, coupled with geological and geophysical data, illuminate details on magmatic and continental lithospheric evolution over a progressively shallowing subduction zone. Pb, Sr and Nd isotopic and trace-element data show that Main Cordilleran, Precordilleran and Pampean magmas were contaminated in both the mantle and crust, and that the nature of the contaminants varied in time and space, reflecting tectonic events. Contaminants included both "enriched" (high LIL-element, high Sr and Pb, and low Nd isotopic ratios) and "depleted" (low LILE-element, low Sr and Pb, and high Nd isotopic ratios) types. In the western region, Main Cordilleran earlier Miocene lavas had contaminants with less "enriched" signatures than later Miocene lavas. Progressive "enrichment" is attributed to: (a) increasing amounts of sediment and tectonically eroded crust being subducted into the mantle wedge; and (b) contamination in a thickening Main Cordilleran lower crust whose composition was progressively "enriched". This "enrichment" occurred through addition of upper crust by an intracrustal mixing process driven by a propagating wedge tip associated with westward wedging, heating and deformation of crust from beneath the shortening Precordillera thrust belt to the east. Further east, magmas erupted through back-arc crust have more "depleted" signatures. Those erupted in the central part through the evolving Precordilleran thrust belt were contaminated by an older, thinner Grenville (˜ 1100 Ma) basement whose "depleted" signature is unique among Central Andean terranes. Late Miocene Pocho lavas erupted further east in conjunction with uplift of the Sierras Pampeanas show "enrichment" through time. Arguably, these magmas could contain a component mechanically removed from the base of the thinning continental lithosphere to the west, and progressively incorporated into the

  20. Dynamics of the Pacific Northwest Lithosphere and Asthenosphere

    NASA Astrophysics Data System (ADS)

    Humphreys, E.

    2013-12-01

    Seismic imaging resolves a complex structure beneath the Pacific Northwest (PNW) that is interpreted as: an high-velocity piece of accreted (~50 Ma) Farallon lithosphere that deepens from being exposed (at coast, where it is called Siletzia) to lower crust in SE Washington and then descending vertically to ~600 km as a 'curtain' beneath central Idaho; a stubby Juan de Fuca slab (to <250 km in most places, and with a gap beneath much of Oregon); and very slow 'fingers' above the slab with an especially anomalous volume beneath central Oregon. The evacuation of asthenosphere with the descending Juan de Fuca slab presents an interesting problem. Typical corner-flow supply is prevented because the mantle wind blows eastward. A stagnation line between mantle drawn west into the mantle wedge and that flowing east in the far field may exist near the Farallon curtain. Other sources of supply to the Cascadia mantle wedge include: mantle flowing north beneath California, entrained with the Pacific Plate; flow from below the Juan de Fuca slab, perhaps especially through the Oregon gap; toroidal flow around the southern edge of the slab; and possible up-flow beneath the backarc. Anisotropy studies suggest the importance of toroidal flow. PNW lithosphere stress is dominated by N-S compression, a result of the Sierra Nevada driving the PNW into British Columbia; this push, and oblique subduction, are responsible for PNW clockwise rotation. Modeled (in 2D, map view) north-directed tractions on the Cascadia mega-thrust average ~4 TN per meter of along-strike fault length, or probably a shear stress of ~40 MPa over much of the locked mega-thrust (i.e., much more shear stress than the typical earthquake stress drop of 1-10 MPa). Normal to the coast, southern Cascadia is relatively tensional (where margin-normal compression is less than typical ridge push by ~4 TN/m of along-strike fault length) whereas northern Cascadia is compressional. This indicates that the southern Cascadia

  1. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Jie; Zhang, Hong-Fu; Ying, Ji-Feng; Su, Ben-Xun

    2013-03-01

    Studies of mantle xenoliths have confirmed that Archean subcontinental lithospheric mantle (SCLM) is highly depleted in basaltic components (such as Al, Ca and Na) due to high-degree extraction of mafic and ultramafic melts and thus is refractory and buoyant, which made it chronically stable as tectonically independent units. However, increasing studies show that ancient SCLM can be refertilized by episodic rejuvenation events like infiltration of upwelling fertile material. The North China Craton is one of the most typical cases for relatively complete destruction of its Archean keel since the eruption of Paleozoic kimberlites, as is evidenced by a dramatic change in the compositions of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, reflecting significant lithospheric thinning and the change in the character of the SCLM. The compositional change has been interpreted as the result of refertilization of Archean SCLM via multiple-stage peridotite-melt reactions, suggested by linear correlations between MgO and indices of fertility, covariations of Al2O3 with CaO, La/Yb, 87Sr/86Sr, 143Nd/144Nd, 187Os/188Os and Re-depletion ages (TRD), high Re abundances, scatter in Re-Os isotopic plot, variable in situ TRD ages of sulfides, and correlation between TRD ages and olivine Fo of peridotite xenoliths in Paleozoic kimberlites and Cenozoic basalts on the craton. By integrating major and trace element, Sr, Nd and Os isotopic compositions of peridotite xenoliths and orogenic massif peridotites from the continents of Europe, Asia, America, Africa and Australia, together with previous studies of petrology and geochemistry of global peridotites, we suggest that (1) refertilization of cratonic and circum-cratonic lithospheric mantle is widespread; (2) Archean SCLM worldwide has experienced a multi-stage history of melt depletion and refertilization since segregation from the convecting mantle; (3) cratonic SCLM may be more susceptible to compositional change caused by

  2. A spherical model of lithospheric dynamics and seismicity

    NASA Astrophysics Data System (ADS)

    Rozenberg, Valerii; Ismail-Zadeh, Alik; Melnikova, Lidiya; Soloviev, Alexander

    2010-05-01

    The dynamics of lithospheric plates is approximated by an interaction of rigid blocks of the modeled lithosphere (spherical segments) and faults separating them. The spherical block-and-fault dynamics (BAFD) model consists of fifteens blocks approximating tectonic plates and several additional blocks representing parts of the plates, where deep seismicity is observed. The blocks move as a consequence of the prescribed underlying mantle motion. The block displacements at any time are defined so that the system of the blocks is in a quasi-static equilibrium state. Because of the block rigidity, all deformations take place in the fault zones. The interaction between the spherical blocks is visco-elastic (a state of stress accumulation), so long as the ratio of the stress to the pressure is below a certain strength level. When this level is exceeded in some part of a fault, a stress-drop (a synthetic earthquake) occurs in accordance with the dry friction law. Immediately following the earthquake and for some period of time, the corresponding parts of the faults are in a state of creep. Catalogs of synthetic earthquakes are produced as results of numerical simulations. Using the catalogs of synthetic events we study frequency-magnitude relationships, clustering of the events, long-range interaction of earthquakes, earthquake mechanisms, and fault slips. The model catalogs obtained reflect important features of global seismicity: (i) two large seismic belts, the circum-Pacific and Alpine-Himalayan; (ii) extensive, but less pronounced, seismicity at mid-oceanic ridges; and (iii) increased seismic activity associated with triple junctions of plate boundaries. The model results are consistent with the observations: Nazca/South America, Cocos/Caribbean, India/Eurasia, California region, Arabia/Eurasia, northern Australia, and the Philippine plate margin are marked in the model as the regions prone to strong earthquakes. The modeled seismic activity is moderate at the

  3. Structure, seismicity, and instrumentation of stable North American lithosphere

    NASA Astrophysics Data System (ADS)

    Wolin, Emily Lynne Gregonis

    The work in this thesis covers a number of different fields in seismology. These can be divided into three parts. In the first, I discuss earthquakes that occur along the North American passive margin. In the second, I investigate the noise characteristics of Superior Rifting Earthscope Experiment (SPREE) seismic stations. In the third, I evaluate the predictions of pre-existing tomographic models, expand raypath coverage in eastern North America by fitting waveforms, and produce an updated tomographic model focusing on the structure of stable North American lithosphere. First, I explore the rare, but moderate-to-large earthquakes that occur along the passive margin of North America, such as the August 2011 Mineral, Virginia earthquake. I discuss the tectonic setting, possible causes, and challenges of studying such earthquakes and propose directions for their future study. Examining the seismicity of the regions surrounding the 1929 Grand Banks and 1933 Baffin Bay earthquakes, I conclude that the aftershocks of these events continue today due to low strain rates along the margin. Second, I characterize the long-period noise characteristics of SPREE stations. At periods greater than 20 seconds, horizontal noise levels at SPREE stations vary seasonally and diurnally. I find that SPREE stations in sandy soil have the most consistent noise levels. Stations in fine-grained soil become extremely noisy during summer days, but very quiet when the surrounding soil freezes solid in winter. Finally, I evaluate previous generations of tomographic models and develop my own. I calculate synthetic seismograms for three tomographic models and compare them to new observed seismograms from earthquakes in stable North America. I find that adding data to a tomographic model does not necessarily improve predictions of regional S and Rayleigh waveforms. With this in mind, I apply the method of partitioned waveform inversion to derive constraints on S-velocity structure. I add these

  4. Development of a Package for Modeling Stress in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Williams, C. A.

    2006-05-01

    One of the primary difficulties when modeling stresses in the Earth's lithosphere is finding a numerical code with the necessary capabilities. The lithosphere represents a unique challenge due to structural complexity, the presence of faults, complex materials with large spatial variations in their properties, a wide range of pertinent spatial and temporal scales, and interactions with other processes (such as mantle convection), leading to complex boundary conditions. To address such problems, a modeling package should have a number of features that are not generally found in combination. The code should be able to use a number of different element types, allowing the geometry to be represented using any desired meshing package. The code should be able to accurately represent fault behavior, allowing both kinematic specification of fault slip as well as fault behavior defined by a constitutive relationship. The code should include a number of different material models (various combinations of elastic, viscous, and plastic behavior) and should also provide an easy mechanism for adding new material models. The code should be parallel and scalable, allowing the simulation of problems over a wide range of spatial scales and resolutions. The code should also be able to easily interact with other modeling codes, which could address some of the issues related to representing multiple time scales, as well as aiding in the determination of appropriate boundary conditions. Finally, the code should be easy to use, modular, and easily adaptable to different needs. We describe the current status, development plans and example usage of a finite element code with the above features as design goals. The current quasi-static finite element code (LithoMop) is being merged with the EqSim dynamic rupture code to form a new modeling package to be named PyLith. The code makes use of the Pyre simulation framework, with top-level code written in Python. This provides a number of useful

  5. Geodynamic constraints on stress and strength of the continental lithosphere during India-Asia collision.

    NASA Astrophysics Data System (ADS)

    Kaus, B. J. P.; Schmalholz, S. M.; Lebedev, S.; Deschamps, F.

    2009-04-01

    There has been quite some debate in recent years on what the long-term strength of the continental lithosphere is and how it is related to the occurrence of earthquakes. One of the best studied areas in this respect is the India-Asia collision zone, where -in some profiles- the Moho depth is known to within a few km's. A relocation of earthquake source locations revealed that in India earthquakes occur throughout the whole lithosphere whereas in Tibet, earthquakes are restricted to the upper 10-15 km of the crust with few exceptions slightly above or below the Moho. The lack of substantial earthquake activity in the sub-Moho mantle lithosphere seems puzzling since (1D) strength envelop models for the continental lithosphere predict large differential stresses (and brittle failure) in these locations. A way out of this paradox is to assume that the rheology of the mantle lithosphere (i.e. the effective viscosity) is significantly smaller than usually assumed, either because of the effects of hydration, or because of increased Moho temperatures. As a consequence, the strength of the lithosphere resides in the crust and not in the upper mantle as previously assumed. This conclusion gets some support from spectral-based inverse models of the effective elastic thickness (using topography and gravity as input data), which is typically smaller than the seismogenic thickness. Even though this explanation might appear appealing at first, there are at least two major problems with it: (1) Estimations of the effective elastic thickness (EET) of the lithosphere are non-unique and model-dependent. Others, using a direct (non-spectral) modelling approach, find significantly larger values of the EET in the same locations (again using gravity & topography as constraints). (2) Long term geodynamic models indicate that if the mantle lithosphere would indeed be as weak as suggested, it would be very difficult to generate plate-tectonics like behavior: Subducting slabs behave more

  6. Mars - Thickness of the lithosphere from the tectonic response to volcanic loads

    NASA Astrophysics Data System (ADS)

    Comer, R. P.; Solomon, S. C.; Head, J. W.

    1985-02-01

    The response to loading of the elastic lithosphere of Mars by seven large volcanic features is estimated based on the hypothesis of a flexural origin for a definable set of load-concentric graben. From the locations of such graben, or from their absence, the lithospheric thickness and flexural rigidity are inferred. For the Tharsis montes, Alba Patera, and Elysium Mons, elastic lithospheric thicknesses at the time of loading range from 20 to 50 km, assuming a Young's modulus of a trillion dyn/sq cm. The thickness exceeded 120 km beneath Olympus Mons and Isidis Planitia. The corresponding ranges in flexural rigidity are approximately 10 to the 30th to 31st dyn cm and greater than 10 to the 32nd dyn cm, respectively. These results indicate a local thinning of the lithosphere beneath portions of the central regions of the Tharsis and Elysium volcanic provinces at the time of loading-induced fracturing.

  7. Evolution of planetary lithospheres - Evidence from multiringed structures on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Melosh, H. J.

    1980-01-01

    The thickness and viscosity of a planetary lithosphere increase with time as the mantle cools, with a thicker lithosphere leading to the formation of one (or very few) irregular normal faults concentric to the crater. Since a gravity wave or tsunami induced by impact into a liquid mantle would result in both radial and concentric extension features, which are not observed in the case of the large impact structures on Ganymede and Callisto, an alternative mechanism is proposed in which the varying ice/silicate ratios, tectonic histories, and erosional mechanisms of the two bodies are considered to explain the subtle differences in thin lithosphere ring morphology between Ganymede and Callisto. It is concluded that the present lithosphere thickness of Ganymede is too great to permit the development of any rings.

  8. Lithospheric age dependence of off-ridge volcano production in the North Pacific

    SciTech Connect

    Batiza, R.

    1981-08-01

    Data for numbers of seamounts on North Pacific Ocean crust of different age indicate that the production rate of new off-ridge seamounts (volcanoes) is proportional to the inverse of the square root of the age of the lithosphere. This observation is consistent with several hypotheses which have been offered to explain the origin of off-ridge oceanic volcanism and, in combination with petrologic and paleomagnetic evidence for small oceanic volcanoes, leads to a new self-consistent model for off-ridge volcanism. In this model, the production rate of off-ridge volcanoes is controlled primarily by the availability of fracture-zone conduit systems in the thickening lithosphere. In contrast, mantle plume or ''hotspot'' volcanoes may punch through the oceanic lithosphere. Decreasing production rate of off-ridge volcanoes on old oceanic lithosphere may be associated with decreasing extent of partial melting of chemically and isotopically heterogeneous mantle material.

  9. Seismic structure of the lithosphere beneath the ocean islands near the mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2013-10-01

    Deciphering the seismic character of the young lithosphere near the mid-oceanic ridges (MOR) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs, using the P-to-s conversions isolated from good quality data recorded at 5 broadband seismological stations situated on the ocean Islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform modeling of the P receiver function stacks reveal that the crustal thickness varies between 6 and 8 km with the corresponding depths to the lithosphere asthenosphere boundary (LAB) varying between 43 and 68 km. However, the depth to the LAB at Macquire Island is intriguing in view of the observation of a thick (~ 87 km) lithosphere beneath a relatively young crust. At three other stations i.e., Ascension Island, Sao Jorge and Easter Island, we find evidence for an additional deeper low velocity layer probably related to the presence of a hotspot.

  10. Dramatic effect of elasticity on thermal softening and strain localization during lithospheric shortening

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Duretz, Thibault; Schmalholz, Stefan M.

    2016-02-01

    We present two-dimensional numerical simulations for shortening a viscoelastoplastic lithosphere to quantify the impact of elasticity on strain localization due to thermal softening. The model conserves energy and mechanical work is converted into heat or stored as elastic strain energy. For a shear modulus G = 1010 Pa, a prominent lithospheric shear zone forms and elastic energy release increases the localization intensity (strain rate amplification). For G = 5 × 1010 Pa shear zones still form but deformation is less localized. For G = 1012 Pa, the lithosphere behaves effectively viscoplastic and no shear zones form during homogeneous thickening. Maximal shearing-related increase of surface heat flux is 15-25 mW m-2 and of temperature at lower crustal depth is ˜150 °C, whereby these peak values are transient (0.1-1 My). Elasticity and related energy release can significantly contribute to strain localization and plate-like behaviour of the lithosphere required for plate tectonics.

  11. Support for a Uniformitarian Model of Continental Mantle Lithosphere Formation from the "Near-Cratonic" Composition of Proterozoic Southern African Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Janney, P. E.

    2014-12-01

    The transition at the end of the Archean between the generation of cratonic and mobile belt continental lithosphere is regarded as a first-order change in the mode of generation of continental lithosphere. It is widely debated whether this transition represented a fundamental change in the process by which the lithospheric mantle was generated (i.e., as melting residues of deep-seated mantle upwellings to residues of relatively shallow mantle melting at subduction zones), or whether it primarily reflected a more gradual change in the conditions (i.e., temperatures, depths and degrees of melting) of lithosphere generation in a suprasubduction zone setting. The marked contrast, in many cases, between the major element compositions of peridotite xenoliths from Archean cratons and those from adjacent post-Archean mobile belts has accentuated the significance of this transition. Peridotite xenoliths from the post-Archean mobile belt terranes surrounding the Kaapvaal craton in southern Africa are clearly Proterozoic in age from Re-Os isotope constraints, but they are unusual in that they share several key similarities in composition and mineralogy with Archean Kaapvaal peridotites (e.g., low bulk-rock Al2O3, relatively low modal olivine and high modal orthopyroxene). Although they lack the low FeO and high olivine Mg# values of the most extreme Kaapvaal samples, they show a very large degree of overlap (extending to olivine Mg# values of greater than 93 for example). These similarities support a common mode of origin for cratonic and post-cratonic lithosphere in southern Africa (although varying somewhat in the degrees and depths of melt extraction) and a similar history of post-formation modification. A comparison of the conditions of melt extraction for cratonic and post-cratonic lithosphere inferred from compatible and mildly incompatible trace elements will be presented.

  12. Evolution of Large Venusian Volcanoes: Insights from Coupled Models of Lithospheric Flexure and Magma Reservoir Pressurization

    NASA Astrophysics Data System (ADS)

    Galgana, G. A.; McGovern, P. J.; Grosfils, E. B.

    2009-12-01

    Many large volcanic edifices on Venus exhibit surficial evidence of subsurface magma transport and storage: summit caldera faults indicating collapse into a magma chamber, and radial grabens indicating radiating dikes (although uplift may also produce the latter). These tectonic features reflect interactions between local magma-induced stresses and broader-scale stresses resulting from flexure of the lithosphere beneath the edifice load. Here, we explore the relationship between magma movement in the lithosphere and the flexural stress state via axisymmetric finite element models of the Venusian lithosphere. The lithosphere, modeled as an elastic material of thickness Te, is overlain with a conical edifice and embedded with an inflating, hence overpressured, spherical magma reservoir that perturbs the surrounding region. The volcanic edifice acts as a continuous gravitational load, flexing the lithosphere. The resulting flexural stress state beneath the edifice is characterized by high differential stresses, extensional in the upper part of the lithosphere and compressional in the lower part. These two distinct regions are separated by a neutral plane, a region characterized by relatively low differential stresses and least compressive principal stress (σ3) oriented out of the model plane. We examine models with different reservoir depths and analyze the orientation patterns of maximum stresses along the magma chamber wall. For a given chamber model, we increase the overpressure until one of the normal stresses at some point on the wall satisfies the failure criterion (here taken to be 0 MPa, the onset of the tensile regime). We find that reservoirs situated in the lower (extensional) lithosphere fail at the bottom; such a chamber is unstable, because it would not collect magma but rather expel it downward. Thus, we conclude magma chamber formation in the lower lithosphere is unlikely. In contrast, failure promoting lateral sill formation occurs near the reservoir

  13. The Relationship Between Lithospheric Thickness and Tectonic Subsidence in Mildly- Extended Intra-Cratonic Basins

    NASA Astrophysics Data System (ADS)

    Crosby, A.; White, N.; Fishwick, S.

    2008-12-01

    In extensional sedimentary basins, the duration of post-rift subsidence depends on the thermal time constant and hence on the thickness of the lithosphere. It is well known that this thickness varies by at least a factor of two over the continents, and that many intra-cratonic basins have continued to accumulate accommodation space for longer than expected given a standard thickness of 125 km. In this study, we make use of recent advances in mapping the thickness of the lithosphere using surface wave tomography, and a global database of backstripped well-logs, to assess the applicability of the classic pure shear model to the stretching and subsidence of regions where the lithosphere is unusually thick. We start by using the known density structure of oceanic lithosphere, and independent seismic observations of crustal structure and lithosphere thickness, to isostatically quantify the average density depletion of the mantle. We find our observations are consistent with geochemical constraints. Using backstripped wells from basins where there has been only one obvious period of extension, and an adapted stretching model which incorporates temperature and composition-dependent thermal diffusivity and expansivity and the advection of depleted mantle, we then invert observations of tectonic subsidence for both thinning factors and lithospheric thickness, and compare our results with seismic observations at the present day. The subsidence of some basins, such as the Michigan Basin, is consistent with the thicker lithospheric template predicted using seismology. In other cases, such as the West Siberian Basin, the lithospheric thickness estimated from seismic tomography and subsidence analysis disagree. We also find strong local gradients in apparent lithospheric thickness, such as between the Michigan and Illinois Basins. The Congo Basin in central Africa can be explained fairly well by simple extension of locally thick lithosphere. However, the pronounced negative

  14. Lithospheric Structure of the Rio-Grande Rift and the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Lekic, V.; Fischer, K. M.

    2011-12-01

    Upper mantle and crustal velocity interfaces, such as those corresponding to the base of the crust and the base of the lithosphere, produce detectable conversions of seismic energy that can be analyzed using a receiver function approach. Unlike compressional-to-shear (Ps) receiver functions, in which signals from mantle discontinuities are often overprinted by crustal reverberations, shear-to-compressional (Sp) receiver functions allow identification of signals associated with the lithosphere-asthenosphere boundary (LAB) without reverberation interference. We use three-component broadband seismic data from permanent stations, the USArray Transportable Array and other temporary deployments to systematically map lithospheric thickness variations across the Colorado Plateau and the Rio Grande Rift. More than 30,000 individual Sp receiver functions are combined into a three-dimensional image of upper mantle discontinuities using common conversion point stacking. We observe thick (>100 km) lithosphere beneath most of the Colorado Plateau, although its thickness varies by ~40 km within the Plateau. In contrast, lithospheric thicknesses in the southern Basin and Range are typically 60-80 km. The thickness of the Colorado Plateau lithosphere is consistent with the relative lack of internal deformation within the Plateau even as surrounding regions underwent widespread extension. Variations in lithospheric thickness may offer clues to what caused uplift of the Plateau in the Pliocene, and how low-angle subduction and its cessation may have affected continental lithosphere. We quantitatively explore the relationship between recent volcanism along the margins of the Plateau and topography and strength of the LAB beneath those regions. Unlike the rifted regions of Southern California, where ~30 km of lithospheric thinning has recently been imaged (Lekic et al., 2011), the Rio Grande Rift is not underlain by an anomalously shallow LAB. This observation appears to rule out

  15. Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton

    NASA Astrophysics Data System (ADS)

    Sodoudi, F.; Yuan, X.; Kind, R.; Lebedev, S.; Tilmann, F. J.

    2013-12-01

    S receiver functions obtained from the data of 97 seismic stations present evidence for the existence of a layered and thick lithosphere beneath the Kalahari Craton. We identified three negative discontinuities within the lithosphere of the Archean cratons and Proterozoic mobile belts of southern Africa. We also employed a novel combination of SRFs and surface-wave analysis to constrain the anisotropic properties of the lithosphere and its internal layering. Our results show that frozen-in anisotropy and compositional changes can generate sharp Mid-Lithospheric Discontinuities (MLD) at depths of 85 and 150-200 km, respectively. We found that a 50 km thick anisotropic layer containing 3% S wave anisotropy and with a fast-velocity axis different from that in the layer beneath can account for the first MLD at about 85 km depth. This depth is largely consistent with that of 8° discontinuity suggested as a global characteristic of cratonic lithosphere. Significant correlation between the depths of an apparent boundary separating the depleted and metasomatic refertilized lithosphere, as inferred from chemical tomography, and those of our second MLD (at 150-200 km depth) led us to characterize this negative discontinuity as a compositional boundary, most likely due to the modification of the cratonic mantle lithosphere by magma infiltration. We detected this MLD at a depth of about 150 km beneath the Zimbabwe Craton and Limpopo belt with a steep deepening to about 200 km underneath the Kaapvaal Craton and its passive margin. The deepening of this boundary is spatially correlated with the surficial expression of the ancient Thabazimbi-Murchison Lineament (TML). This may imply that the translithospheric TML isolates the lithospheric block of the relatively younger Limpopo terrane from that of the ancient Kaapvaal terrane. Finally, the largest velocity contrast (3.6-4.7%) is observed at a boundary located at depths of 260-280 km beneath the Archean domains and the older

  16. Controls of Lithospheric Mechanical Strength on the Deformation Pattern of Tien Shan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xiong, X.; Zheng, Y.; Hu, X.; Zhang, Y.

    2015-12-01

    The Tien Shan is an outstanding example of intracontinental mountain belt, which was built rapidly and formed far away from plate boundaries. It exhibits 300~500 km in width and extends ~2000 km EW, located in central Asia. The Tien Shan is a key area for solution of the problems relating to intracontinental geodynamics. During last decades, despite a large amount of results based on various geological, geophysical and geodetic data about the Tien Shan, however, deformation mechanism remains controversial and other several principal problems related to its structure and evolution also have not been completely resolved. As for patterns of continental deformation, they are always controlled by both the forces applied to the lithosphere and by lithospheric resistance to the forces. The latter is often measured by the mechanical strength of lithosphere. The lateral variation of strength of lithosphere has been recognized to be an important factor controlling the spatial construction and temporal evolution of continent. In this study, we investigate the mechanical strength (Te) of lithosphere in the Tien Shan using wavelet coherency between Bouguer anomaly and topography. The patterns of Te variations are closely related to major tectonic boundaries and blocks. Mechanical strength exhibits a weak zone (Te~5-20km) beneath the Tien Shan while its surrounding blocks including Tarim Basin, Junggar Basin and Kazakh platform are characterized by a strong lithosphere (Te>40km). The lateral variations in mechanical strength and velocity field of horizontal movement with GPS demonstrate that strain localization appears at the margins of Tarim Basin, which is also the strong lithospheric domain. It is suggested that the weak lithosphere allows the crustal stress accumulation and the strong lithosphere helps to stress transfer. There is also a good agreement between mechanical strength and shear wave velocity structure in upper mantle. It indicates a strong domain located in the

  17. Lithosphere Removal in the Central Andes: Reconciling Seismic Images and Elevation History

    NASA Astrophysics Data System (ADS)

    Henderson, O.; Currie, C. A.

    2015-12-01

    Shortening of the upper crust should be accompanied by thickening of the deeper lithosphere. However, for many orogens, including the central Andes, geophysical and geological observations indicate that mantle lithosphere is spatially heterogeneous, being anomalously thin or absent. Seismic studies of the central Andes suggest that mantle lithosphere is locally removed. Also, present day elevations of the central Andean Plateau have been explained by rapid removal of mantle lithosphere over the last 10 Ma. Yet, the geological record is innately incomplete, and seismic tomography and receiver functions can offer only a present day snapshot of the subsurface. None of these techniques provides concrete insight into the physical processes responsible for current Andean elevations (3-5 km). A 2D plane-strain thermo-mechanical code, SOPALE, is used to examine the deep lithospheric dynamics connected to mantle lithosphere removal within a subduction zone setting, such as the Andes. Three models have been tested: removal by viscous dripping, by delamination, and a model with no removal. The removal models contain a high density eclogite root, creating a contrast between mantle lithosphere and mantle material. For the viscous drip models, mantle lithosphere is removed within 2.5-5 Myrs, descending subvertically through the mantle, causing subsequent surface rebound. Prior to this rebound, surface topography subsides locally over the dense root. This subsidence is influenced by crustal rheology, where weaker crustal rheologies produce deep, narrower basins (25-75 km wide, ~1 km deep), and stronger crustal rheologies produce shallow, broader basins (300-400 km wide, ~0.5 km deep). Delamination, which involves the coherent removal of mantle lithosphere along the Moho, affects a larger region, and is reflected in broader basins that extend into the back-arc. In all models, the deep lithosphere dynamics have an appreciable effect on surface topography, therefore, removal events

  18. Sequential, Multi-stage Processes for Intraplate and Intraslab Seismogenesis in Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, S. H.

    2011-12-01

    Marine geoscience surveys and thermal modeling have shown that oceanic lithosphere has an extremely complex tenure under the ocean basins and during slab descent involving magmatic, hydrothermal, and tectonic processes, processes that undoubtedly leave a cumulative imprint on plate/slab mineralogy, structure, and fluid makeup. These processes clearly have implications for the physical states of plate materials from ridges to trenches to deep slabs and give insights into the geological and geophysical observables, especially intraplate and intraslab earthquakes. Likely stages of this inheritance include: (1) Shallow melting and stretching deformation at Mid Ocean Ridges (MOR's) produce brittle faulting and earthquakes as well as hydrothermal alteration, segregation into oceanic crust and mantle, and internal plate deformation as indicated by seismic anisotropy. Hydrothermal alteration of faults cutting oceanic crust at MOR's have been posited as possible sources of dehydration fluids or dehydration embrittlement near the original seafloor during subsequent slab descent as an explanation of some intermediate-depth earthquakes. (2) Ocean Island (Plume) Volcanism produce an additional component of magmatic CO2 of deeper origin as well as plate deformation due to mass loading by the island edifices. [Kirby presentation in Session T13, this meeting]. (3) Intraplate deformation especially near triple junctions or other settings where discontinuous lateral boundary stresses propagate into plate interiors. (4) Near-trench deformation associated with plate bending that is expressed by shallow normal-faulting earthquakes, fault scarps on the ocean floor off trenches, and seismic reflections of normal faults, all of which locally indicate that such faulting penetrates well into the lithospheric mantle. It seems likely that even though the thermal conditions in most oceanic plates near trenches are relatively cold, mineral alteration along normal-fault pathways from ingress of

  19. Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach

    NASA Astrophysics Data System (ADS)

    Inati, Lama; Zeyen, Hermann; Nader, Fadi-Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, Francois

    2016-04-01

    One of the major uncertainties regarding the Levant Basin, known to be the site of rifting in the Late Paleozoic and Early Mesozoic, concerns its deep crustal configuration despite numerous old and recent geophysical studies in this region. The aim of this study is to deduce the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated and has major implications on understanding the regional tectonic and thermal evolution, and on constraining potential petroleum systems. The algorithm used is a trial and error method that delivers the crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution by integrating surface heat flow data, free-air gravity anomaly, Geoid and topography data. Moho depth and crustal thickness were locally constrained by refraction data where available. The models representing two EW sections show a progressively attenuated crystalline crust in an EW direction (35 to 8 km). The SN section represents a 12 km thick crust to the south, thins to 9-7 km towards the Lebanese coast and reaches 20 km in the north. The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Nevertheless, the Herodotus Basin shows a thin crust, likely oceanic, with a thickness between 6 and 10 kms. West of the Eratosthenes Seamount, a local crustal anomaly is interpreted to be the result of an underlying continental crust with a thickness of 13 kms. The Moho under the Arabian plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. Within the Levant Basin, the Moho appears to be situated between 20 and 23 km, reaching 26 km in the Herodotus Basin. While depth to LAB is around 110 km under the Arabian and the Eurasian plates, it

  20. Mesoproterozoic orangeites of Karelia (Kostomuksha-Lentiira): evidence for composition of mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Kargin, Alexey; Nosova, Anna; Larionova, Yulia; Kononova, Voctoria; Borisovskiy, Sergey; Kovalchuk, Elena; Griboedova, Irina

    2014-05-01

    The 1.23-1.20 Ga old diamondiferous lamproites and orangeites (kimberlites of II group) of the Kostomuksha-Taloveys and the Lentiira-Kuhmo dyke fields intrude the Archaean crust of the Karelian craton, NE of the East European Platform. Mineral (a trend of compositional evolution of mica, presence of carbonate minerals in basis, composition of olivine) and geochemical (major elements, ratio of trace elements, primitive mantle normalized trace elements patterns) characteristics of these rocks suggest an orangeitic rather than lamproitic or lamprophyric nature. The composition of Phl-Ol orangeites suggests intensive processes of fractional crystallization for their melts. Cpx-Phl-Ol orangeites indicate higher intensity of lithospheric mantle assimilation then other orangeitic types. Phl-Carb orangeites of the Taloveys area and Cpx-Phl-Ol one of the Lentiira area are closest to primary melts. The Ol-Phl-Cpx orangeites of the Lentiira area contain three generations of unaltered olivine that vary in composition and origin: a) xenocryst derived from depleted mantle peridotite; b) orangeitic olivine phenocryst and c) and olivine like early stage crystallization of megacryst assemblage or a product of metasomatic interaction between mantle peridotite and protokimberlitic melt. Orangeites of Kostomuksha-Lentiira have low- and medium-radiogenic value of (87Sr/86Sr)1200 that range from 0.7038 to 0.7067. Phl-Carb orangeites of Taloveys have less radiogenic isotopic composition of Nd (eNd -11 ... -12) then Cpx-Phl-Ol and Phl-Ol orangeites of Kostomuksha (eNd -6.9 ... -9.4). The study of Sm-Nd and Rb-Sr isotopic systems suggests that an ancient metasomatic mantle source took part in origin of orangeites. We propose a two-steps model of origin of their source (Kargin et al., 2014): 1) The metasomatic component of mantle source (like as MARID-type veins) formed during Lapland-Kola and/or Svecofennian orogeny events (2.1-1.8 Ga ago). 2) The intrusion of orangeites is comparable by

  1. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are

  2. Effective elastic thickness of the Venusian lithosphere with lateral viscosity variations in the mantle

    NASA Technical Reports Server (NTRS)

    Moresi, Louis

    1993-01-01

    Both the Earth and Venus have a convecting mantle at the top of which is a relatively strong, mechanical boundary layer. The surface topography and gravity signals which result from the convection within the viscous mantle are modified by the elastic properties of this lithospheric boundary layer. In particular the ability of the lithosphere to support loads and transmit stresses from below is a function of the wavelength of the load--the lithosphere is strong to loading at shorter wavelengths. As a consequence it is usual to expect that long wavelength topography cannot be supported by the mechanical strength of the lithosphere and must be compensated--isostatically or dynamically--within the uppermost mantle or the crust. The flexural rigidity of the lithosphere can therefore be determined by estimating the greatest wavelength at which uncompensated surface topography can be supported, usually by measuring the admittance as a function of wavelength. In fact this procedure for determining the elastic thickness relies upon being able to distinguish topography with underlying support from that supported by the brittle lithosphere on the basis of their each having a characteristic value of the admittance. However, in the presence of lateral viscosity variations in the mantle, it is possible for topography to be generated which is NOT compensated by density anomalies in the underlying mantle at the same wavelength. Although this effect is not likely to be important for the Earth, on Venus, where the high surface temperatures would be expected to give a weaker lithosphere, lateral viscosity variations in the mantle can give a misleadingly large apparent elastic thickness for the lithosphere.

  3. Lithospheric buckling and intra-arc stresses: A mechanism for arc segmentation

    NASA Technical Reports Server (NTRS)

    Nelson, Kerri L.

    1989-01-01

    Comparison of segment development of a number of arcs has shown that consistent relationships between segmentation, volcanism and variable stresses exists. Researchers successfully modeled these relationships using the conceptual model of lithospheric buckling of Yamaoka et al. (1986; 1987). Lithosphere buckling (deformation) provides the needed mechanism to explain segmentation phenomenon; offsets in volcanic fronts, distribution of calderas within segments, variable segment stresses and the chemical diversity seen between segment boundary and segment interior magmas.

  4. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Watts, A. B.

    2013-11-01

    long-term rheological properties of the lithosphere are fundamental for understanding both surface tectonics and mantle dynamics on Earth. In this study, we have developed 3-D finite element models for computing the load-induced surface deformation and stress for lithosphere and mantle with realistic nonlinear viscoelastic rheology including the frictional sliding, low-temperature plasticity, and high-temperature creep. We have determined the lithospheric deformation and stress due to volcano loading in the Hawaiian Islands region for the last few million years. By comparing model predictions with seismic observations of the depth to the top of oceanic crust and depth dependence of seismicity in the Hawaiian Islands region, we have sought to constrain lithospheric rheology. Our calculations show that the load-induced surface deformation is controlled by low-temperature plasticity and frictional sliding but is insensitive to high-temperature creep. Lithospheric strength predicted from laboratory-derived low-temperature plasticity needs to be reduced significantly, and a frictional coefficient μf ranging from 0.1 to 0.7 is required in order to account for the observations. However, μf = 0.1 weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the observed depth distribution of seismicity. Our results therefore suggest a value for μf between 0.25 and 0.7. Finally, the maximum stress that accumulates in the deformed lithosphere beneath the Hawaiian Islands is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on Earth.

  5. Crustal And Lithospheric Thickness Variation Across Alaska In Advance Of Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    O'Driscoll, L.; Miller, M. S.

    2014-12-01

    The Alaskan northern Cordillera is situated at the nexus of a major Pacific-North America plate boundary transition, characterized by the geometric complexity of a highly curved strike-slip fault system and ongoing shallow angle subduction. Existing seismic data from stations throughout southern Alaska and northward across the Dalton Highway are analyzed. Preliminary P wave receiver functions are presented to identify lateral variations in crustal thickness. S wave receiver functions reveal velocity discontinuities within the upper mantle, and we identify novel lithospheric structures. In the northern interior below the Brooks Range, 130 km thick lithosphere contrasts with the interior region that has shallow negative conversions (80 km), marking thinner lithosphere in the greater backarc region where heat flow is observed to be high. In the southeast Coastal Ranges, we interpret a thinner (80-90 km) North American lithosphere above a deeper interface that represents the base of the colliding Yakutat microplate. These imaging results provide context for the distribution of strain throughout the Alaskan Orocline. The presence of thick lithosphere below the Brooks Range may indicate strong lithosphere that deflects strain into central and southwestern Alaska. Thin lithosphere in east Alaska and adjacent Yukon Territory coincides with the occurrence of inboard crustal seismicity, and may be indicative of transmitted compression caused by the collision of the Yakutat microplate. The spatial distribution of the subducted portion of the Yakutat is found to lie below the Wrangell Volcanic Field and St. Elias Mountains. We establish new tectonic elements within a complex lithospheric system, and produce hypotheses that will be suitable for testing with upcoming seismic installations.

  6. Lithospheric structure of Africa: insights from its effective elastic thickness variations.

    NASA Astrophysics Data System (ADS)

    Pérez-Gussinyé, M.; Metois, M.; Fernández, M.; Vergés, J.; Fullea, J.

    2009-04-01

    Detailed images of lithospheric structure can help understand how surface deformation is related to Earth's deep structure. A proxy for lithospheric structure is its effective elastic thickness, Te, which mainly depends on its thermal state and composition. We present a new effective elastic thickness, Te, map of the African lithosphere estimated using the coherence function between topography and Bouguer anomaly. The Bouguer anomaly used in this study derives from the EGM 2008 model, which constitutes the highest resolution gravity database over Africa, allowing a significant improvement on lateral resolution in Te. Our map shows that Te is high > 100 km, in the West African, Congo, Kalahari and Tanzania cratons. Of these, the Kalahari presents the thinnest elastic thicknesses and, based on additional seismic and mineral physics studies, we suggest this may reflect modification of the lithosphere by anomalously hot mantle beneath the lithosphere. The effective elastic thickness is lowest beneath the Afar and Main Ethiopian rifts, where the maximum extension and thinnest lithosphere of Africa occur. The Tanzania craton appears as two rigid blocks separated by a relatively low Te area located southwest of lake Victoria. This coincides with the centre of seismic radial anisotropy beneath the craton, suggested to be the Victoria plume head by Weertrane et al. [2003]. Along the eastern branch of the East African rift Te is low and increases abruptly at 2 to 3 degrees South, coinciding with a deepening of earthquake depocenter and a change from narrow to wide rifting. These and other considerations suggest that the southern part of the eastern branch is underlain by thick, rigid cratonic lithosphere. Finally, the northern part of Africa is characterised by low Te on the Darfur, Tibesti, Hoggar and Cameroon line volcanic provinces, suggesting that the underlying lithospheric mantle has been thermally thinned. Corridors of low Te connect these volcanic provinces

  7. The phenomenon of synchronism in the magnetosphere-technosphere-lithosphere dynamical system

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Zotov, O. D.

    2012-06-01

    Synchronism in geophysical events became the focus of the research in the second half of the last century when the study of this subject was almost simultaneously launched in the former Soviet Union and the United States. Interest in this issue has recently risen after a 20-year hiatus. The impetus was provided by the successful application of the synchronous detection technique to analyzing vast volumes of digital data on the electromagnetic waves in the magnetosphere and on the earthquakes. These studies revealed signs of the strictly periodic synchronous influence of the technosphere on the regime of electromagnetic oscillations in cosmic plasma and on seismic activity. The phenomenon of synchronism between the electromagnetic and seismic events manifests itself in the form of the so-called hour-mark effect and the weekend effect. The hourmark effect shows itself in the 24th, 48th, and 96th harmonics, and the weekend effect, in the 7th subharmonic of the circadian rhythm. The both effects indicate that the technosphere has a nontrivial impact on the magnetosphere and lithosphere. The present review aims to introduce the morphology of the phenomenon and to focus the attention of researchers on the physical interpretation of the effects of synchronism, which is a challenging problem. Both the fundamental and practical value of the problem is analyzed. In particular, it is hypothesized that the study of the anthropogenic modulation of the natural wave processes will promote the development of energy saving technologies.

  8. Mantle xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo

    2016-04-01

    redox conditions (Δlog fO2: +1.2 to -0.7, Ballhaus, 1991) to Lessinean and Val d'Adige xenoliths which may indicate a local oxidation of the mantle below this portion of VVP. References • Beccaluva L., Bianchini G., Bonadiman C., Coltorti M., Milani L., Salvini L., Siena F., Tassinari R. (2007). Intraplate lithospheric and sublithospheric components in the Adriatic domain: Nephelinite to tholeiite magma generation in the Paleogene Veneto Volcanic Province, Southern Alps. Geological Society of America, 131-152. • Beccaluva L., Bonadiman C., Coltorti M., Salvini L., Siena F. (2001). Depletion events, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto Volcanic Province. Journal of Petrology, 42, 173-187. • Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L. (2006). Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithospere. Geochemical Journal, 40, 377-404. • Siena F., Coltorti M. (1989). Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinean volcanics (Northern Itlay). Chemical Geology, 77, 347-364.

  9. Application network for monitoring of green house gas emission from lithosphere in Khibina territories

    NASA Astrophysics Data System (ADS)

    Asavin, Alex; Nivin, Valentin; Litvinov, Artur; Chesalova, Elena; Baskov, Sergey

    2015-04-01

    total volume of gas stored within the complex? What contribution abiogenically produced hydrocarbon gases to the Earth's carbon cycle? Is it really that methane and hydrogen continually released to the atmosphere through the roofs of the Khibiny and Lovozero plutons? And if it is so how it influence on the negative anomaly in the ozone layer in central part of the Kola peninsula [Syvorotkin, 2002]? In addition, naturally combustible, and potentially explosive hydro-carbon gases, are released during mines work the apatite deposits of Khibiny pluton. Changes in gas chemistry and gas-dynamic indices have been documented during the changes in the geo-mechanical state of a rock. And therefore we may use these events as predictive indicators for, catastrophic, rock bursts during the underground works. It therefore is important to develop a comprehensive picture of the distribution of the HCG. It remains debatable by what means these reduced gases evolved in association with oxidized silicate rocks although recent models, suggest that hydro-carbon gases evolution might be the result of abiogenic sub solidus reactions, possibly of a Fischer-Tropsch reaction . However, the potential productivity of the reaction remains uncertain. Inflow of methane from soil is caused by methanotroph the microorganisms bioactivity, changing depending on a thermal model of microorganisms activity. However, inflow of lithosphere's gases, related to geological processes, remains practically uninvestigated. Unique devices have been developed in our project for maintenance service of gas emissions monitoring. Tools were constructed in department of physics and nano system of National Research Nuclear University of Moscow Engineering Physics in laboratory 'Mining and examination of sensor controls on the basis of MDP structure'. Heart of gas analyzer is device D-1. Data device D-1 represent sensing devices for measuring of concentrations of hydrogen, deuterium, hydrogen sulphide, dioxide of nitrogen

  10. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Kirby, Stephen H.; Stein, Seth; Okal, Emile A.; Rubie, David C.

    1996-05-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine → spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  11. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  12. Mesozoic subsidence rates and lithospheric loading in western Canada

    SciTech Connect

    Chamberlain, V.E.; McKerrow, W.S.; Lambert, R.S.

    1987-08-01

    The Mesozoic stratigraphy of the Foothills area of the Western Canada basin has been used to estimate sedimentation rates, and, hence, relative crustal subsidence rates, in this region throughout the Mesozoic. Average rates of subsidence range from 0 m/Ma to 120 m/Ma, with prominent maximums occurring three times during the Mesozoic - first during the Tithonian, when rates rose to 100 m/Ma, second, during the Albian to early Santonian, when rates rose to 120 m/Ma in the north and to 70 m/Ma in the south, with subsidence occurring earlier in the north than in the south. The third period of subsidence occurred during the Campanian and Maastrichtian with rates rising to 120 m/Ma in the southern part of the basin. Tectonic loading of the lithosphere is the probable cause of these peak crustal subsidence rates, the three separate episodes being due to the arrival of accreted terranes, first in northeast Oregon and central west Idaho during the Late Jurassic, secondly in the central Yukon during the Early Cretaceous, and thirdly in southeast British Columbia during the Late Cretaceous. During non-peak periods, average rates of subsidence ranged from 3.5 m/Ma to 35 m/Ma in the Triassic, from 0 m/Ma to 20 m/Ma in the Jurassic, and from 0 m/Ma to 30 m/Ma in the Cretaceous.

  13. A Swarm lithospheric magnetic field model to SH degree 80

    NASA Astrophysics Data System (ADS)

    Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier

    2016-07-01

    The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic field scalar and vector measurements from the three Swarm satellites between March 2014 and December 2015 and directly benefits from the explicit expression of the magnetic field gradients by the lower pair of Swarm satellites. The modeling scheme is a two-step one and relies first on a regional modeling approach that is very sensitive to small spatial scales and weak signals which we seek to describe. The final model is built from adjacent regional solutions and consists in a global spherical harmonics model expressed between degrees 16 and 80. The quality of the derived model is assessed through a comparison with independent models based on Swarm and the CHAMP satellites. This comparison emphasizes the high level of accuracy of the current model after only 2 years of measurements but also highlights the possible improvements which will be possible once the lowest two satellites reach lower altitudes.

  14. Constitutive models of faults in the viscoelastic lithosphere

    NASA Astrophysics Data System (ADS)

    Moresi, Louis; Muhlhaus, Hans; Mansour, John; Miller, Meghan

    2013-04-01

    Moresi and Muhlhaus (2006) presented an algorithm for describing shear band formation and evolution as a coallescence of small, planar, fricition-failure surfaces. This algorithm assumed that sliding initially occurs at the angle to the maximum compressive stress dictated by Anderson faulting theory and demonstrated that shear bands form with the same angle as the microscopic angle of initial failure. Here we utilize the same microscopic model to generate frictional slip on prescribed surfaces which represent faults of arbitrary geometry in the viscoelastic lithosphere. The faults are actually represented by anisotropic weak zones of finite width, but they are instantiated from a 2D manifold represented by a cloud of points with associated normals and mechanical/history properties. Within the hybrid particle / finite-element code, Underworld, this approach gives a very flexible mechanism for describing complex 3D geometrical patterns of faults with no need to mirror this complexity in the thermal/mechanical solver. We explore a number of examples to demonstrate the strengths and weaknesses of this particular approach including a 3D model of the deformation of Southern California which accounts for the major fault systems. L. Moresi and H.-B. Mühlhaus, Anisotropic viscous models of large-deformation Mohr-Coulomb failure. Philosophical Magazine, 86:3287-3305, 2006.

  15. Hydrosphere, Atmosphere, Lithosphere, Biosphere: A Global Geophysical Union

    NASA Astrophysics Data System (ADS)

    Milly, P.

    2009-05-01

    Water moves freely among the major spheres of the earth system, and, in so doing, it unites them. The atmosphere is driven, moistened and clouded by water in its changing phases, with ubiquitous climatic consequences. The biosphere's organisms depend on the "universal solvent" for access to and internal transport of nutrients, so much so that water availability defines the very geography of photosynthesis and life. The lithosphere is variously loaded, inflated, lubricated and eroded by water, with geodynamic consequences of all sorts. The ever-changing gravitational pull of earth's wandering waters is felt even in the exosphere. The movement of water among the spheres is partially regulated by, and has enormous consequences for, the anthroposphere. The influence of the hydrosphere on the other spheres creates interesting opportunities (indeed, necessities) for hydrologists to play with puzzles and problems beyond their own traditional sphere. In the experience of the speaker, the American Geophysical Union has been a playground that promotes such play, and the future promises more interdisciplinary fun; we have nothing to fear but spheres by themselves.

  16. Thermal Structure and Lithospheric Mobility of Super-Earths

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Stein, C.; Lowman, J. P.

    2010-12-01

    In recent years the understanding of the structure and dynamics of super-Earth exoplanets has attracted a lot of interest. In particular, the possibility of plate tectonics on Super-Earths has received considerable attention. Terrestrial planets with higher masses than the Earth are assumed to have higher Rayleigh numbers, heating rates and viscosity contrasts than the Earth which will affect the surface mobility. Utilizing two-dimensional numerical mantle convection models we study the effect of these parameters on the thermal structure and lithospheric mobility of super-Earths. In our models we allow for plate-like surface behaviour by considering temperature- and pressure-dependent viscosity in combination with either a stress-dependent rheology or the force-balance method. Our results reveal the strong influence of these parameters on the surface behaviour. The controlling parameter for the observed transition from mobile-lid to stagnant-lid convection is the heating rate. We show that for a parameter set assumed to be relevant for super-Earth exoplanets stagnant-lid convection prevails.

  17. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  18. Global rate and distribution of H2 gas produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, Stacey L.; Pratson, Lincoln F.; Karson, Jeffrey A.; Klein, Emily M.

    2016-06-01

    It has recently been estimated that serpentinization within continental lithosphere produces H2 at rates comparable to oceanic lithosphere (both are ~1011 mol H2/yr). Here we present a simple model that suggests that H2 production rates along the mid-oceanic ridge alone (i.e., excluding other marine settings) may exceed continental production by an order of magnitude (~1012 mol H2/yr). In our model, H2 production rates increase with spreading rate and the net thickness of serpentinizing peridotite (S-P) in a column of lithosphere. Lithosphere with a faster spreading rate therefore requires a relatively smaller net thickness of S-P to produce H2 at the same rate as lithosphere with a slower rate and greater thickness of S-P. We apply our model globally, incorporating an inverse relationship between spreading rate and net thickness of S-P to be consistent with observations that serpentinization is more common within lithosphere spreading at slower rates.

  19. The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere

    USGS Publications Warehouse

    Pollitz, F.F.

    2003-01-01

    Instantaneous velocity gradients within the continental lithosphere are often related to the tectonic driving forces. This relationship is direct if the forces are secular, as for the case of loading of a locked section of a subduction interface by the downgoing plate. If the forces are static, as for the case of lateral variations in gravitational potential energy, then velocity gradients can be produced only if the lithosphere has, on average, zero strength. The static force model may be related to the long-term velocity field but not the instantaneous velocity field (typically measured geodetically over a period of several years) because over short time intervals the upper lithosphere behaves elastically. In order to describe both the short- and long-term behaviour of an (elastic) lithosphere-(viscoelastic) asthenosphere system in a self-consistent manner, I construct a deformation model termed the expected interseismic velocity (EIV) model. Assuming that the lithosphere is populated with faults that rupture continually, each with a definite mean recurrence time, and that the Earth is well approximated as a linear elastic-viscoelastic coupled system, I derive a simple relationship between the instantaneous velocity field and the average rate of moment release in the lithosphere. Examples with synthetic fault networks demonstrate that velocity gradients in actively deforming regions may to a large extent be the product of compounded viscoelastic relaxation from past earthquakes on hundreds of faults distributed over large (??? 106 km2) areas.

  20. The effect of a vertical temperature gradient in the lithosphere on seismic and tectonic waves

    NASA Astrophysics Data System (ADS)

    Birger, B. I.

    2008-09-01

    A linear analysis of the stability of the lithosphere considered as a viscoelastic layer with an equilibrium vertical gradient of temperature is carried out. The problem is solved with a complete system of linearized equations of a continuous medium represented in the dimensionless form and containing a set of dimensionless parameters that determine thermomechanical properties of the lithosphere. As a result of the stability analysis, decrements are found that give the time dependence of perturbations and correspond to high-frequency seismic waves and low-frequency tectonic waves. The frequency and velocity of seismic waves are determined by the elasticity and inertial properties of the lithosphere, and their attenuation, by viscous properties of the lithosphere. The temperature gradient existing in the lithosphere influences seismic waves very weakly. On the contrary, the pattern of tectonic waves is controlled by the temperature gradient and viscous properties, while the effect of elastic and inertial properties on these waves is negligibly small. The stability of a viscoelastic lithosphere is examined using such rheological models as the Maxwell, standard linear, and Andrade media (the frequency of tectonic waves is zero in the Maxwell medium).

  1. Microearthquake activity, lithospheric structure, and deformation modes at an amagmatic ultraslow spreading Southwest Indian Ridge segment

    NASA Astrophysics Data System (ADS)

    Schmid, Florian; Schlindwein, Vera

    2016-07-01

    While nascent oceanic lithosphere at slow to fast spreading mid-ocean ridges (MOR) is relatively well studied, much less is known about the lithospheric structure and properties at ultraslow MORs. Here we present microearthquake data from a 1 year ocean bottom seismometer deployment at the amagmatic, oblique supersegment of the ultraslow spreading Southwest Indian Ridge. A refraction seismic experiment was performed to constrain upper lithosphere P-velocities and results were used to construct a 1D velocity model for earthquake location. Earthquake foci were located individually and subsequently relocated relative to each other to sharpen the image of seismically active structures. Frequent earthquake activity extends to 31 km beneath the seafloor, indicating an exceptionally thick brittle lithosphere and an undulating brittle-ductile transition that implies significant variations in the along-axis thermal structure of the lithosphere. We observe a strong relation between petrology, microseismicity distribution, and topography along the ridge axis: Peridotite-dominated areas associate with deepest hypocenters, vast volumes of lithosphere that deforms aseismically as a consequence of alteration, and the deepest axial rift valley. Areas of basalt exposure correspond to shallower hypocenters, shallower and more rugged axial seafloor. Focal mechanisms deviate from pure extension and are spatially variable. Earthquakes form an undulating band of background seismicity and do not delineate discrete detachment faults as common on slow spreading ridges. Instead, the seismicity band sharply terminates to the south, immediately beneath the rift boundary. Considering the deep alteration, large steep boundary faults might be present but are entirely aseismic.

  2. 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Connolly, J. A. D.; Jones, A. G.

    2013-04-01

    Here we present a 3-D multi-observable probabilistic inversion method, particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sub-lithospheric upper mantle that circumvents the problems associated with traditional inversion methods. The key aspects of the method are as follows: (a) it exploits the increasing amount and quality of geophysical datasets; (b) it combines multiple geophysical observables (Rayleigh and Love dispersion curves, body-wave tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid) with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) compositional a priori information relies on robust statistical analyses of a large database of natural mantle samples; and (f) it provides a natural platform to estimate realistic uncertainties. In addition, the modular nature of the method/algorithm allows for incorporating or isolating specific forward operators according to available data. The strengths and limitations of the method are thoroughly explored with synthetic models. It is shown that the a posteriori probability density function (i.e., solution to the inverse problem) satisfactorily captures spatial variations in bulk composition and temperature with high resolution, as well as sharp discontinuities in these fields. Our results indicate that only temperature anomalies of ΔT ⪆150°C and large compositional anomalies of ΔMg# > 3 (or bulk ΔAl2O3 > 1.5) can be expected to be resolved simultaneously when combining high-quality geophysical data. This resolving power is sufficient to explore some long-standing problems regarding the nature and evolution of the lithosphere (e.g., vertical stratification of cratonic mantle, compositional versus temperature signatures in seismic

  3. Spatial patterns in the distribution of kimberlites: relationship to tectonic processes and lithosphere structure

    NASA Astrophysics Data System (ADS)

    Chemia, Zurab; Artemieva, Irina; Thybo, Hans

    2015-04-01

    Since the discovery of diamonds in kimberlite-type rocks more than a century ago, a number of theories regarding the processes involved in kimberlite emplacement have been put forward to explain the unique properties of kimberlite magmatism. Geological data suggests that pre-existing lithosphere weakness zones may control the spatial patterns of kimberlites, but this hypothesis has never been tested by geophysical methods. As the first step in our analysis of tectonic and lithosphere control of kimberlite-type magmatism, we perform a detailed global analysis of the spatial patterns of kimberlites, and present the first results. The analysis is based on the assumption that the kimberlite emplacement is a two-stage process, and the two stages are controlled by the crustal and lithospheric mantle rheologies, respectively. Stage 1 includes the first-order, lithosphere-scale process that initiate the rise of kimberlite melts through the lithospheric mantle, which forms the major pipe. Stage 2 (second-order process) begins when the major pipe splits into daughter sub-pipes (tree-like pattern) at crustal depths. We apply cluster analysis to the spatial distribution of all known kimberlite fields with the goal of establishing characteristic scales for the stage 1 and stage 2 processes. To reveal similarities between the kimberlite data we use the density-based clustering technique, such as density-based spatial clustering of applications with noise (DBSCAN), which is efficient for large data sets, requires one input parameter, and can deal with clusters of any shape. The results indicate that characteristic scales for the stage 2 are almost globally uniform and thus are almost independent of the structure and the mantle lithosphere. In contrast, the characteristic scales for stage 1 (lithosphere-scale process) that initiate the rise of kimberlite melts through the lithospheric mantle forms the major pipes with characteristic distance ranging from 100 to 300 km and are

  4. Lithospheric structure of North America imaged using waveform inversion of global and USArray data

    NASA Astrophysics Data System (ADS)

    Schaeffer, Andrew; Lebedev, Sergei

    2015-04-01

    The North American continent has had a long, eventful tectonic history. The assembly of the stable cratonic core has undergone numerous collisions and accretion at its boundaries, major rifting episodes within it, as well as the loss of ancient lithosphere beneath parts of it, all of which are type examples of key elements of cratonic dynamics and evolution. Seismic tomography offers rich evidence on the structure and evolution of the cratonic lithosphere. With the deployment of the USArray during the last decade, much of the North American continent has been densely sampled with broadband seismic data. The resolution of regional-scale imaging, however, remains uneven, with important questions regarding deep structure, lateral extent and evolution difficult to answer. Here we present a new high-resolution model of the upper mantle beneath North America constrained by waveform fits of over 700,000 vertical-component broadband seismograms. Automated multimode waveform inversion was used to extract structural information from surface and S waveforms, yielding resolving power from the crust down to the transition zone, and improved resolution for a variety of features in North America. The internal structure of the Craton is resolved in detail, with clear delineation of the ancient cratonic lithosphere from the recently deforming continental margins. The northern boundaries of the cratonic lithosphere closely follow the coastlines, with North America's and Greenland's lithospheric roots clearly separated. Strong lateral velocity gradients at depth observed in western Canada indicate the transition from cratonic lithosphere to Cordillera closely follows the surface trace of the Deformation Front. On the eastern margin of the continent, where multiple episodes of continental rifting are superimposed, the craton boundary coincides with the western extent of the Appalachian orogenic front, with significantly lower lateral velocity gradients than in the west. Finally, high

  5. Comparison between spatial-temporal variations in paleoelevation and modern lithospheric structure of the Andean plateau

    NASA Astrophysics Data System (ADS)

    Garzione, C. N.; Beck, S. L.; Zandt, G.; Bershaw, J.; Auerbach, D.; Smith, J. J.

    2008-12-01

    Modern lithospheric structure of active mountain belts in comparison to paleoelevation reconstructions provides insights into the geodynamic processes that lead to the rise of orogenic plateaus. High altitude stable isotope records of fossil mammal teeth and pedogenic carbonates, collected between 17°S and 24°S, are used to reconstruct spatial and temporal variations in isotopic composition of paleo-surface waters. Both Subandean and Altiplano records are compared to modern rainfall compositions to evaluate climate trends over time that are potentially related to changes in paleoelevation. Prior paleoelevation estimates from the northern Altiplano near Callapa (17.5°S, 3800 m) suggest rapid late Miocene surface uplift of ~2.5 ± 1 km between 10.3 and 6.4 Ma. Based on relatively positive δ18O values of sedimentary carbonates that range in age from 16.3 Ma to 10.3 Ma from sites in both the northern and southern Altiplano, we infer a regional middle Miocene elevation approximately 1.5 to 2.5 km lower than modern elevations. Further evaluation of a late Miocene site near Quehua (20.0°S, 3800 m) in the southern Altiplano will indicate whether there is similar evidence for late Miocene surface uplift that would support the inference that a vast region of lower lithosphere was removed. Present day lithospheric structure, imaged by seismological studies, indicate that the upper mantle beneath the Altiplano and Eastern Cordillera is heterogeneous with large north south variations. The northern Altiplano is underlain by low seismic velocities consistent with little or no lithosphere. The central Altiplano seismic images indicate high velocities consistent with lithospheric mantle. However, the upper mantle beneath the Altiplano-Eastern Cordillera boundary has low seismic velocities strongly suggestive of little if any lithospheric mantle. The southern Altiplano and northern Puna appear to have much less mantle lithosphere and major surface volcanism. Taken together the

  6. The Residue of Lithospheric Convergence in the Alpine-Pannonian-Carpathian system

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Stuart, G. W.; Hetenyi, G.; Lorinczi, P.; Dando, B. D.

    2009-12-01

    The continuing collision of the Adriatic block with European continental lithosphere has its clearest expression now in the Alpine collision zone. In the Early Miocene the collision zone extended further east and included probably all of the regions within the Carpathian Mountain Range. In the Mid-Miocene between about 17 and 12 Ma, however, the Pannonian lithosphere extended rapidly and subsequently subsided, while convergence persisted in the Alps and the Carpathian arc. The change from convergence to extension in the Pannonian domain is associated with either rapid subduction roll-back or gravitational instability in which the lower part of the lithosphere was removed and replaced by hot asthenosphere. Throughout this time however, convergence has continued in the Alpine orogeny further west. It is surprising therefore to see similarities in the mantle transition zone beneath these two neighbouring regions whose lithospheres have, in the last 17 Myr at least, evolved in such different modes. New seismic images from beneath the Pannonian Basin (Hetenyi et al., GRL, in press) and from beneath the Alps (Lombardi et al., EPSL, 2009) show that both regions have a depressed 660 km discontinuity beneath a relatively normal-depth 410 km discontinuity. An important factor in both regions evidently is that relatively dense material derived from the mid-Miocene collision sits stagnant on top of the 660 km discontinuity, where further descent is obstructed by the negative Clapeyron slope of the spinel-to-perovskite phase transition and the high viscosity of the lower mantle. While the depression of the 660 km discontinuity beneath the Alps is directly associated with ongoing convergence, that beneath the Pannonian appears to be decoupled from the upper mantle circulation that accompanied the Miocene Pannonian extension. If the cold material at the base of the Pannonian upper mantle is the residue of lithospheric subduction, delamination, or gravitational instability, the

  7. Thermo-chemical heterogeneity of continental lithospheric mantle: examples from Europe, Siberia, and North America

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.

    2015-12-01

    I present models of lithosphere density and the non-thermal part of upper mantle Vs anomalies in different tectonic provinces of Eurasia and North America. The focus is on compositional heterogeneity of the lithospheric mantle, and therefore the effect of regional temperature variations on density and Vs is removed by applying regional temperature corrections, which are constrained by heat flow data. Significant parts of Precambrian cratons of Laurasia are characterized by extremely low surface heat flow values (<25-30 mW/m2), which imply the depth extent of the lithospheric keels down to 300-350 km, at least locally. These values are in apparent contradiction with a worldwide compilation of cratonic xenolith P-T arrays, which are usually consistent with surface heat flow of around 40 mW/m2 and the lithosphere thickness of 200-250 km depth. Models of lithosphere density and seismic velocity structure indicate that xenoliths do not sample mantle with the lowest density and the highest velocity. Density structure of continental lithosphere mantle correlates with crustal structure and surface tectonics. This observation is illustrated by examples from the East European and the Siberian cratons, where lateral variations in density structure of the lithospheric mantle are compared with petrological studies of mantle-derived xenoliths from the Fennoscandian and Siberian kimberlite provinces. The results indicate that in the Siberian craton isopycnicity is satisfied only in major kimberlite provinces. High lithosphere density in major sedimentary basins suggests the presence of eclogitic material. Since the depth distribution of density anomalies is unknown, the analysis is complemented by seismic data in order to understand better geodynamic causes of mantle density heterogeneity. Temperature-corrected seismic velocity structure based on published high-resolution tomography models indicates a pronounced stratification of lithospheric mantle in many Precambrian terranes

  8. Lithosphere continental rifting and necking in 3D analogue experiments: role of plate divergence rate.

    NASA Astrophysics Data System (ADS)

    Nestola, Y.; Storti, F.; Cavozzi, C.

    2014-12-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal state of rifted margins. Despite a large number of analogue and numerical modelling studies on lithosphere extension are available in the literature, a quantitative experimental description of lithosphere necking evolution is still lacking. Extensional strain rate and thermal layering of the lithosphere exert a fundamental control on necking shape and evolution. We focused our experimental work on the former parameter and simulated the progression of lithosphere thinning and necking during asymmetric orthogonal rifting at different plate divergence rates. Our models involve a 4-layer mechanical continental lithosphere, which rests on a glucose syrup asthenosphere. Both the topography and the base of the lithosphere were monitored by time-lapse laser scanning. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for the crust, mantle, and lithosphere as a whole. Laser-scanning monitoring provided also a detailed picture of the evolving neck shape, which shows a strong dependency on the strain-rate. At low strain-rates, necking is "boxed" with steep flanks and a flat-lying roof, and few deep basins develop at surface. At high strain-rates, more distributed thinning occurs and isolates portions of less deformed mantle. More distributed deformation affects the model topography. Despite large differences in shape, the aspect ratio (amplitude/wavelength) of the cross-sectional neck shapes converges towards very similar values at the end of the experiments.The significant differences and evolutionary pathways produced by the plate divergence rate on the lithosphere necking profile, suggest that this parameter exert a fundamental control on localization vs. distribution of deformation in the crust as in the whole mechanical lithosphere. Furthermore, it can exert a fundamental control on the time and space

  9. Constraining lithosphere deformation mode evolution for the Iberia-Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Mohn, Geoffroy; Manatschal, Gianreto

    2015-04-01

    The deformation of lithosphere and asthenosphere and its evolution during continental rifting leading to breakup and seafloor spreading initiation is poorly understood. The resulting margin architecture and OCT structure is complex and diverse, and observations at magma poor margins includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. A coupled kinematic-dynamic model of lithosphere and asthenosphere deformation has been used to investigate the sequence of lithosphere deformation modes for 2 conjugate margin profiles for the Iberia-Newfoundland rifted margins. We use the observed water-loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation, to test and constrain lithosphere and asthenosphere deformation models. A sequence of lithosphere deformation modes is represented by a succession of flow-fields, which are generated by a 2D finite element viscous flow model (FE-Margin), and is used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (e.g. Braun et al. 2000) is also kinematically included. The methodology of Katz et al., 2003 is used to predict melt generation by decompressional melting. The magnitude of extension used in the modelling is consistent with that proposed by Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and

  10. A Maximum-Likelihood Approach to the Characterization of the Elastic Lithosphere from Gravity and Topography Data

    NASA Astrophysics Data System (ADS)

    Simons, F. J.; Olhede, S. C.

    2010-12-01

    In the words of Albert Tarantola: "Don't make me a model - make me a thousand models, and then draw randomly from those". For seismology, this may be the only approach viable, but to address the related question: "What is the strength of the lithosphere?" we can do better. There we have a multitude of data (topography, gravity anomalies on dense grids) and only a handful of parameters to invert for - which has, however, historically, been surprisingly hard to do. Nevertheless, as Albert would have liked it, we can derive the exact statistical distribution of the estimated unknowns, the parameters of a differential equation with stochastic inputs, with minimal assumptions on the distribution of the data themselves. From this we construct practical algorithms. The lithosphere is modeled using a differential equation characterized by a set of parameters, at least one of which, under the assumption of elastic behavior, is a proxy for its strength: the flexural rigidity (D), or, by extension, the elastic thickness. This lithospheric "system" takes an input: topographic loading by mountain building and other processes, and maps it into an output: the gravity anomaly and the final, measurable, topography. The input is not measurable but some of its properties can be characterized. The outputs are measurable but the relation between them is obfuscated by their stochastic nature and the presence of unmodeled components. Estimating D, usually in the spectral domain, involves constructing summaries of gravity and topography. Both admittance and coherence are popular; both are ratios of the cross-spectral density of gravity and topography to the power spectral densities of either. Despite the fact that neither admittance nor coherence are Gaussian, estimating D usually comes down to the least-squares fitting of a parameterized curve, where Gaussian behavior is tacitly assumed. In this two-step procedure, admittance or coherence are first estimated, and subsequently inverted

  11. Helium isotope evidence for plume metasomatism of Siberian continental lithosphere

    NASA Astrophysics Data System (ADS)

    Barry, P. H.; Hilton, D. R.; Howarth, G. H.; Pernet-Fisher, J. F.; Day, J. M.; Taylor, L. A.

    2013-12-01

    The Siberian craton contains more than 1000 kimberlite intrusions of various ages (Silurian to Jurassic), making it an ideal setting for understanding temporal and spatial variations in subcontinental lithospheric mantle (SCLM) composition and metasomatism. This region also experienced one of the largest flood basalt events in the geologic record. The Permo-Triassic Siberian Flood Basalts (SFB) are considered to have erupted in response to plume-head impingement under the Siberian SCLM. Here we present new He-isotope data for a suite of peridotitic xenoliths (n=19) from two temporally and petrologically-distinct kimberlite pipes (i.e., Late-Devonian Udachnaya and Jurassic Obnazhennaya) in Siberia that span the age of eruption of the SFB. All samples have previously been well-characterized, mineralogically, petrographically, and for major- and trace-element abundance geochemistry. He-isotope ratios (3He/4He) of garnet, pyroxene and olivine separates from 2.7-3.1 Ga Siberian peridotites range from 0.11 to 8.4 RA, displaying both strongly radiogenic (i.e., low 3He/4He) and mantle-like (i.e., SCLM = 6.1 × 0.9 RA; MORB = 8 × 1 RA) values. In contrast, SFB values extend up to ~13 RA [1]. Helium concentrations span ~ five orders of magnitude from 0.05 to 350 [4He]C (×10-6) cm3STP/g. These findings are consistent with previous studies [2], which suggested that the SCLM is heterogeneous with respect to He and that this heterogeneity is strongly dependent on lithospheric age. Notably, all but one Obnazhennaya sample displays 3He/4He values in the mantle range and are He depleted. In contrast, all but one Udachnaya samples are radiogenic and have higher He contents. Previous studies have suggested that partially-melted subducted ocean crust amalgamated to form the Siberian craton at ~3 Ga [3], followed by a complex history of metasomatism until eruption of xenolith samples within kimberlites [4]. For example, during the main stage of SFB emplacement (i.e., Siberian plume

  12. Lithospheric Evolution of Magmas from the Northern Galapagos Province

    NASA Astrophysics Data System (ADS)

    Miller, M.; Geist, D.; Harpp, K. S.; Mittelstaedt, E. L.

    2010-12-01

    Volcanoes of the Northern Galapagos Providence (NGP) are crucial to understanding the interaction between the Galapagos Plume and the Galapagos Spreading Center (GSC). The NGP consists of five islands and nine volcanic lineaments, all located south of the GSC. Major and trace element compositions of seamounts within the NGP provide insight into the lithospheric evolution of magma within the province. The FLAMINGO cruise (June, 2010) dredged forty-seven localities in the NGP. Major element compositions were determined by XRF and microprobe analysis of submarine rocks and glasses. Crystallization as a function of pressure and temperature is modeled with MELTS and projections into ternary phase diagrams. The Wolf-Darwin Lineament (WDL) is divided into three groups for evaluation of the lavas’ petrology: Northern Wolf-Darwin lineament (that closest to the GSC including Darwin Island), Middle Wolf-Darwin lineament (MWDL, which includes Wolf Island), and Southern Wolf-Darwin lineament (that closest to the Galapagos Platform). Lavas from two other lineaments to the east of the WDL and around Pinta Island are assessed as well. Two parental compositions are modeled, one enriched and one depleted (K2O/TiO2 >0.23 as enriched and K2O/TiO2 =0.04 as depleted). CaO/Al2O3 and Al2O3 variations with Mg# vary considerably as a function of pressure. Magmas from most of the subregions of the NGP evolved by crystallization of olivine and plagioclase, with little CPX crystallization. This indicates that crystallization beneath these volcanoes is limited to pressures < 1 kb. In contrast, some MWDL magmas evolve by extensive crystallization of clinopyroxene-bearing assemblages, and our best pressure estimate is 3 kb. CPX crystallization is most likely due to polybaric crystal fractionation at the MWDL. Some of the NGP glasses are very rich in Al2O3, especially those of the MWDL, which peak at Al2O3 17.0 wt.% at Mg# of 59. The maximum Al2O3 of the other WDL subprovinces is 16.7 wt.%, at

  13. Metasomatism in the oceanic lithosphere beneath La Palma, Canary Islands

    NASA Astrophysics Data System (ADS)

    Janisch, Astrid; Ntaflos, Theodoros

    2016-04-01

    La Palma is the most active island within the Canary archipelago with historical eruption along the Cumbre Vieja Rift. Mantle peridotite xenoliths brought to the surface during the eruption 1677/78 at the site of San Antonio Volcano, close to Fuencaliente in the south of the island, gives us an excellent opportunity to study an old oceanic lithosphere. The collection of xenoliths comprises sp-harzburgites, sp-lherzolites, sp-dunites and pyroxenites but only the first three were used for this work. Metasomatic processes are evident in all samples. A common feature is a variable channelling of melt flow through the mantle xenoliths displayed in variations from pervasively metasomatized, through veined to dyke intruded peridotites. Orthopyroxene breakdown into olivine, clinopyroxene and glass is evidence for anhydrous melt percolation. Furthermore, fine-grained veins in various thicknesses consisting of olivine, pyroxene as well as amphibole with apatite and phlogopite reveal additional anhydrous and hydrous metasomatic processes, respectively. Peridotites mainly influenced by anhydrous metasomatism exhibit locally phlogopite and/or amphibole around spinel or in glass-veinlets. Pentlandite has been found in all veined samples. Amphiboles are mostly pargasites but kaersutites are also present in the amphibole-bearing veins. Two different types of amphibole veins have been recognized. The first type is an amphibole-apatite-glass-bearing amphibolite, forming a cross-cutting vein that propagates through the xenolith. The amphiboles in this vein are coarse-grained while the disseminated amphiboles are fine-grained. Clinopyroxene always occurs in association with amphibole and in textural equilibrium suggesting that both minerals have grown together. The glass is of tephritic/basanitic to trachy-basaltic composition. The second amphibole-vein contains phlogopite and traces of apatite. Textural evidence (cross-cutting olivine grains and the absence of hydrous minerals in the

  14. Metasomatism in the lithospheric mantle beneath southern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Kolosova-Satlberger, Olesya; Ntaflos, Theodoros; Bjerg, Ernesto

    2015-04-01

    Mantle xenoliths from Gobernador Gregores, southern Patagonia are spinel- lherzolites, harzburgites and wehrlites. Composite xenoliths consisting of websterites, olivine-websterites and spinel- lherzolites or harzburgites are present as well. The lithospheric mantle beneath Gobernador Gregores region was affected by multiple modal metasomatic events as can be inferred by the presence of amphibole, phlogopite and apatite. The existence of amphibole as inclusion in clinopyroxene suggests dehydration reaction of peridotites, which previously experienced modal metasomatism. This textural evidence records the earliest detectable metasomatic event. A second distinct modal metasomatic event consists of disseminated up to 6 mm in diameter coarse grained amphiboles (100*mg# =89.9) which show breakdown reactions and pseudomorphic replacement by glass and fine grained second generation of olivine, clinopyroxene and spinel. The intensity of the breakdown reaction is variable. In most cases amphibole occurs as a relict within these pseudomorphs. However, melt pockets of up to 10 mm in diameter are abundant, irregular in shape and having the same minerals such as in the pseudomorphs, indicate clearly amphibole breakdown because remnants of it were found enclosed by second generation clinopyroxene. Similar breakdown reactions experienced the phlogopite in the samples where is present. The Phlogopite (100*mg# =88.6) breakdown produces the same mineral phases as the amphibole. The second generation minerals formed after breakdown of amphibole and phlogopite show minor differences in their composition. However, the chemical composition of glass varies considerably. The glasses formed after breakdown of amphibole and phlogopite have trachyandesitic and tephriphonolitic composition, respectively. Some harzburgites and composite xenoliths reveal another metasomatic event: peridotite, enriched in orthopyroxene (mainly orthopyroxenite veinlets, rare websterite), suggests interaction with

  15. Lithosphere-scale geodynamics in the Rhodope: assumptions and implications

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Burg, Jean-Pierre; Kostopoulos, Dimitrios; Schenker, Filippo

    2014-05-01

    The Rhodope Metamorphic Complex (RMC) is a synmetamorphic nappe stack located in the hinterland of the Hellenide orogen which is part of the Alpine-Himalayan chain. Advances in analytical instrumentation in petrology over the last 10 years made possible the documentation of high-to ultrahigh-pressure conditions in this complex. Despite the wealth of petrologic P-T-t data and the multitude of generic models on the evolution of the RMC, only few geodynamic restorations project long enough back in time to cover the entire life span of the orogen since the Jurassic. There are many reasons for the different (and often contrasting) models proposed for the RMC that deserve to be mentioned. Here, we present the different reconstructions published together with the assumptions on which they were built and their geodynamic implications. We then proceed to carefully assess those implications individually from the mineral to the lithosphere scale. Our assessment poses important constrains on the pressure, temperature and deformation history of the complex on a regional scale that cannot be satisfied by all reconstructions. Such constrains involve the length of the subducting plate, the thermal histories of the metamorphic rocks, the age response of the isotopic systems and last, but not least, the structural record of km-scale movements that can be identified in the field. In addition, the presence of ultrahigh-pressure rocks is restricted to shear zones all across the RMC and this requires an explanation. We examine the possibility of non-lithostatic pressure variations within crustal-scale ductile shear zones.

  16. Heterogeneous structure of the lithosphere of the Taimyr Peninsula

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Petrova, Alevtina

    2016-04-01

    Magnetic anomalies of the lower crust is well manifested in the satellite measurements and their reductions for the heights H = 100 and 400 km. Currently, however, a great interest is the area of negative magnetic anomalies, allocated to the same heights. They are confined to a special permeable zones of the crust and lithosphere, having increased geothermal activity and are associated with a variety of minerals. In digital magnetic anomalies and gravity anomalies circumpolar map of the Arctic Ocean (Total) was built geomagnetic and density sections along latitudinal and longitudinal cross sections of negative magnetic anomalies (n = 100 km). In the Taimyr Peninsula they capture the largest Fadyukudinsko Kotuiskaya-ring structure. In the north-central Siberia Fadyukudinsko Kotuiskaya ring structure is the "hub" articulation largest geoblocks (Anabar, Kureisko-Tunguska and North Kara). It is manifested in the gravity and magnetic field is also a ring structure. With Fadyukudinsko Kotui-ring structure formation associated injectors and high-carbonate metasomatic rocks tectonites controlling uranium and thorium-uranium-fluorite-barite-rare earth mineralization (VF Proskurnin, et al. 2010). It hypabyssal front of the hot spots. Fadyukudinsko-Kotuiskaya structure is defined posletrappovoe place in the north of the Eurasian plate, responding to a hot spot or a spot lower mantle plumes Triassic [Kravchenko SM, Hain VE 1996 Sazonov AM, Zvyagin EA, Leontiev SI et al., 2010]. Latitude and longitude revealed Profile permeable zones of low magnetic properties and density, confined to a weakened layer in the middle crust. Negative satellite magnetic anomalies (n = 100 km) at depths of 20 - 25-30 km weakly magnetic lens revealed a low density. The upper crust they overlap and dense magnetic rocks. At the bottom of the crust, these lenses are underlain by layers of dense and magnetic structures.

  17. Lithosphere-Mantle Interactions Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Gerault, M.; Becker, T. W.; Husson, L.; Humphreys, E.

    2014-12-01

    Episodes of flat-slab subduction along the western margin of the Americas may have lead to the formation of intra-continental basins and seas, as well as mountain belts and continental plateaux. Here, we explore some of the consequences of a flat slab morphology, linking dynamic topography and stress patterns in continents to slab and mantle dynamics. Using a 2-D cylindrical code, we develop general models and apply them to the North and South America plates. The results are primarily controlled by the coupling along the slab-continent interface (due to geometry and viscosity), the viscosity of the mantle wedge, and the buoyancy of the subducted lithosphere. All models predict broad subsidence, large deviatoric stresses, and horizontal compression above the tip of the flat slab and the deep slab hinge. In models where the slab lays horizontally for hundreds of kilometers, overriding plate compression focuses on both ends of the flat segment, where normal-dip subduction exerts a direct downward pull. In between, a broad low-stress region gets uplifted proportionally to the amount of coupling between the slab and the continent. Anomalously buoyant seafloor enhances this effect but is not required. The downward bending of the flat slab extremities causes its upper part to undergo extension and the lower part to compress. These results have potential for explaining the existence of relatively undeformed, uplifted regions surrounded by mountain belts, such as in the western U.S. and parts of the Andes. Adequately modeling topography and stress in the unusual setting of southwestern Mexico requires a low-viscosity subduction interface and mantle wedge. Our results are only partially controlled by the buoyancy of the subducting plate, suggesting that the viscosity and the morphology of the slab are important, and that the often-used low resolution and "Stokeslet" models may be missing substantial effects.

  18. Numerical simulation of lithospheric plate dynamics and seismicity

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Rozenberg, V.; Melnikova, L.; Soloviev, A.

    2009-12-01

    We model the lithospheric plate dynamics as an interaction of rigid blocks (spherical segments) and faults separating them. The spherical block-and-fault dynamics (BAFD) model consists of 15 blocks approximating tectonic plates and 5 additional blocks representing parts of the plates, where deep seismicity is observed. The blocks move as a consequence of the prescribed underlying mantle motion. The block displacements at any time are defined so that the system of the blocks is in a quasi-static equilibrium state. Because of the block rigidity, all deformations take place in the fault zones. The interaction between the spherical blocks is visco-elastic (a state of stress accumulation), so long as the ratio of the stress to the pressure is below a certain strength level. When this level is exceeded in some part of a fault, a stress-drop (a synthetic earthquake) occurs in accordance with the dry friction law. Immediately following the earthquake and for some period of time, the corresponding parts of the faults are in a state of creep. Catalogs of synthetic earthquakes are produced as results of numerical simulations. Using the catalogs of synthetic events we can study frequency-magnitude relationships, clustering of the events, long-range interaction of earthquakes, earthquake mechanisms, and fault slips. The model catalogs obtained reflect important features of global seismicity: (i) two large seismic belts, the circum-Pacific and Alpine-Himalayan; (ii) extensive, but less pronounced, seismicity at mid-oceanic ridges; and (iii) increased seismic activity associated with triple junctions of plate boundaries. The model results are consistent with the observations: Nazca/South America, Cocos/Caribbean, India/Eurasia, California region, Arabia/Eurasia, northern Australia, and the Philippine plate margin are marked in the model as the regions prone to strong earthquakes. The modeled seismic activity is moderate at the boundaries such as the southern Pacific plate, Nazca

  19. Boron Isotopic Variation in the Subcontinental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Guild, M. R.; Bell, D. R.; Hervig, R. L.

    2013-12-01

    Boron contents and isotopic compositions (δ11B) of phlogopite mica, amphibole, and selected coexisting anhydrous phases were measured by secondary ion mass spectrometry in mantle xenolith samples from the Kaapvaal Craton of South Africa, in order to better understand processes of volatile element transfer in the mantle. We have documented a wide range of δ11B (>40‰) and B contents (<10ppb to 10's of ppm) in mica from three broad groups identified based on petrographic and compositional criteria, and B geochemistry. The first group, characterized by light δ11B values (-17‰ to -30‰) and low B contents (a few ppb to 100's ppb), consists of mica megacrysts in kimberlite and mica in garnet harzburgites (gt hz) and lherzolites (gt lz) containing variably abundant metasomatic mica, orthopyroxene (opx) and, in some cases, clinopyroxene (cpx). Boron contents and δ11B show a broad positive correlation with modal intensity of metasomatism from gt hz to mica-rich websteritic gt lz. Metasomatic fluids, parental to this group, are proposed to originate in partially-dehydrated subducting oceanic lithosphere, consistent with high LILE/HFSE mineral chemistry. The second group is characterized by relatively B-rich (~1ppm) micas and amphiboles from MARID xenoliths, cpx and gt in cpx-rich peridotite, and (B-poor) subcalcic cpx megacrysts, which all have δ11B of ~-10‰, indistinguishable from primitive mantle estimates. The fluids associated with the second group of samples may have originated in mantle plumes. The third group is heterogeneous showing δ11B values from ~-5 to +15‰ with B contents from 0.5-10 ppm. These samples (all micas) exhibit secondary textures that appear to result from fluid processes associated with kimberlite emplacement. Other analyzed samples (hydrous and anhydrous) may record contact with multiple fluids. The current dataset shows that boron is a useful tracer of fluids in the mantle and can contribute to the understanding of global geochemical

  20. Multi-Observable Thermochemical Tomography of the lithosphere and upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Yang, Y.; Rawlinson, N.; Jones, A. G.; Fullea, J.; Qashqai, M.

    2015-12-01

    Current knowledge of the present-day physical state and structure of the lithosphere and upper mantle essentially derives from four independent sources: i) gravity field and thermal modelling, ii) modelling/inversion of different seismic datasets, iii) magnetotelluric studies, and iv) thermobarometric and geochemical data from exhumed mantle samples. Unfortunately, the integration of these different sources of information in modern geophysical studies is still uncommon and significant discrepancies and/or inconsistencies in predictions between these sources are still the rule rather than the exception.In this contribution we will present a thermodynamically-constrained multi-observable probabilistic inversion method capable of jointly inverting i) surface and body wave datasets, gravity anomalies, geoid height, gravity gradients, receiver functions, surface heat flow, magnetotelluric data, and elevation (static and dynamic) in 3D spherical coordinates. Key aspects of the method are: (a) it combines multiple geophysical observables with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (b) it works with thermophysical models of the Earth rather than with parameterized structures of physical parameters (e.g. Vs, Vp, density, etc), (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) a priori compositional information relies on robust statistical analyses of a large database of natural mantle samples; (f) it provides a natural platform to estimate realistic uncertainties; (g) it handles multiscale parameterizations and complex physical models, and (h) it includes dynamic (convection) effects on surface observables by solving the complete Stokes flow using multi-dimensional decomposition methods. We will present results for both synthetic and real case studies, which serve to highlight the advantages and limitations of this new

  1. Interaction between mantle and crustal detachments: a non-linear system controlling lithospheric extension

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Regenauer-Lieb, K.; Weinberg, R. F.

    2009-12-01

    We use numerical modelling to investigate the development of crustal and mantle detachment faults during lithospheric extension. Our models simulate a wide range of rift systems with varying values of crustal thickness and heat flow, showing how strain localization in the mantle interacts with localization in the upper crust and controls the evolution of extensional systems. Model results reveal a richness of structures and deformation styles, which grow in response to a self-organized mechanism that minimizes the internal stored energy of the system by localizing deformation at different levels of the lithosphere. Crustal detachment faults are well developed during extension of overthickened (60 km) continental crust, even when the initial heat flow is relatively low (50 mW/m2). In contrast, localized mantle deformation is most pronounced when the extended lithosphere has a normal crustal thickness (30-40 km) and an intermediate (60-70 mW/m2) heat flow. Results show a non-linear response to subtle changes in crustal thickness or heat flow, characterized by abrupt and sometime unexpected switches in extension modes (e.g. from diffuse rifting to effective lithospheric-scale rupturing) or from mantle- to crust-dominated strain localization. We interpret this non-linearity to result from the interference of doming wavelengths. Disharmony of crust and mantle doming wavelengths results in efficient communication between shear zones at different lithospheric levels, leading to rupturing of the whole lithosphere. In contrast, harmonious crust and mantle doming inhibits interaction of shear zones across the lithosphere and results in a prolonged rifting history prior to continental breakup.

  2. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    PubMed

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have