Science.gov

Sample records for natural lithospheric radioxenon

  1. Categorization of Radioxenon

    SciTech Connect

    Keller, Paul E.

    2012-04-26

    This report summarizes a study into some false positive issues in the use of radioxenon as a method to verify a clandestine nuclear weapons explosion. False positives arise due to similarities between the radioxenon signature generated in medical isotope production and that generated in a nuclear weapon explosion. This report also discusses how to categorize the radioxenon by levels of urgency for manual analysis and interpretation and recommends applying machine learning and time series analysis techniques in the automation of radioxenon characterization. The literature indicates that medical isotope production is a major contributor to atmospheric radioxenon and is the main source of confusion in determining the source of radioxenon. While radioxenon emissions from nuclear power plants can be distinguished from that from nuclear weapon explosions, emissions from medical isotope production generate signatures similar to certain nuclide ratios found in nuclear weapons explosions. Different techniques for analyzing nuclide concentrations and ratios as well as including other sensing modalities via sensor fusion are discussed.

  2. Generation of Radioxenon Isotopes

    DTIC Science & Technology

    2008-09-01

    container. Quartz Wool Aluminum Bottle Filter Paper U3O8 Powder Figure 1-A. Schematic of the RXG. The overall length...the detector calibration and was considered the superior approach. Radioxenon from Fissioning of U-235 The RXG is composed of 10.1 grams of U3O8 ...uranium oxide) powder , with the uranium being 95% U-235. A diagram of the RXG is shown in Figure 1-A. The uranium-oxide powder is double sealed in 3

  3. Triple Coincidence Radioxenon Detector

    SciTech Connect

    McIntyre, Justin I.; Aalseth, Craig E.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Reeder, Paul L.

    2004-09-22

    The Automated Radioxenon Sampler/Analyzer (ARSA) built by Pacific Northwest National Laboratory (PNNL) is on e of the world’s most sensitive systems for monitoring the four radioxenon isotopes 133Xe, 133mXE, 131mXe and 135Xe. However, due to size, weight and power specifications appropriate to meet treaty-monitoring requirements; the ARSA is unsuitable for rapid deployment using modest transportation means. To transition this technology to a portable unit can be easily and rapidly deployed can be achieved by significant reductions in size, weight and power consumption if concentration were not required. As part of an exploratory effort to reduce both the size of the air sample and the gas processing requirement PNNL has developed an experimental nuclear detector to test and qualify the use of triple coincidence signatures (beta, conversion electron, x-ray) from two of the radioxenon isotopes (135Xe and 133Xe) as well as the more traditional beta-gamma coincidence signatures used by the ARSA system. The additional coincidence requirement allows for reduced passive shielding, and makes it possible for unambiguous detection of 133Xe and 153Xe in the presence of high 222Rn backgrounds. This paper will discuss the experimental setup and the results obtained for a 133Xe sample with and without 222Rn as an interference signature.

  4. Using natural laboratories and modeling to decipher lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Sobolev, Stephan

    2013-04-01

    Rheology is obviously important for geodynamic modeling but at the same time rheological parameters appear to be least constrained. Laboratory experiments give rather large ranges of rheological parameters and their scaling to nature is not entirely clear. Therefore finding rheological proxies in nature is very important. One way to do that is finding appropriate values of rheological parameter by fitting models to the lithospheric structure in the highly deformed regions where lithospheric structure and geologic evolution is well constrained. Here I will present two examples of such studies at plate boundaries. One case is the Dead Sea Transform (DST) that comprises a boundary between African and Arabian plates. During the last 15- 20 Myr more than 100 km of left lateral transform displacement has been accumulated on the DST and about 10 km thick Dead Sea Basin (DSB) was formed in the central part of the DST. Lithospheric structure and geological evolution of DST and DSB is rather well constrained by a number of interdisciplinary projects including DESERT and DESIRE projects leaded by the GFZ Potsdam. Detailed observations reveal apparently contradictory picture. From one hand widespread igneous activity, especially in the last 5 Myr, thin (60-80 km) lithosphere constrained from seismic data and absence of seismicity below the Moho, seem to be quite natural for this tectonically active plate boundary. However, surface heat flow of less than 50-60mW/m2 and deep seismicity in the lower crust ( deeper than 20 km) reported for this region are apparently inconsistent with the tectonic settings specific for an active continental plate boundary and with the crustal structure of the DSB. To address these inconsistencies which comprise what I call the "DST heat-flow paradox", a 3D numerical thermo-mechanical model was developed operating with non-linear elasto-visco-plastic rheology of the lithosphere. Results of the numerical experiments show that the entire set of

  5. Environmental Applications of Stable Xenon and Radioxenon Monitoring

    SciTech Connect

    Dresel, P. Evan; Olsen, Khris B.; Hayes, James C.; McIntyre, Justin I.; Waichler, Scott R.; Kennedy, B. M.

    2008-06-01

    Improved detection capabilities are needed at several Department of Energy sites to make remedial decisions about facilities and landfill cleanup. For facility monitoring air samples can be collected from within a facility and analyzed for short lived radioxenons to estimate inventories of residual plutonium holdup within the facility. For landfill cleanup activities soil gas sampling for xenon isotopes can be used to define the locations of spent fuel and transuranic wastes. Short-lived radioxenon isotopes are continuously produced by spontaneous fission of plutonium-240 in transuranic wastes. Large volume soil-gas samples provide extremely sensitive measurement of radioxenon in the subsurface; a characteristic of transuranic waste. The analysis employs a modified Automated Radioxenon Sampling and Analysis (ARSA) system. Proof of principle measurements at a Hanford Site liquid waste disposal site showed xenon-133 at levels in soil gas are approximately 16,000 times the detection limit and lower levels of xenon-135 from the spontaneous fission of plutonium-240 were also measured. Stable xenon isotopes are also produced by spontaneous fission but are subject to background concentrations in ambient air samples (facilities) but less so in soil gas where free exchange with ambient air is restricted. Rare gas mass spectrometry is used for highly precise stable xenon isotopic measurements. Stable xenon isotopic ratios from fission are distinct from natural xenon background ratios. Neutron capture on xenon-135 produces an excess of xenon-136 above fission ratios and thus provides a means of distinguishing reactor sources (e.g. spent fuel) from separated transuranic materials (plutonium).

  6. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  7. Redesigned β γ radioxenon detector

    NASA Astrophysics Data System (ADS)

    Cooper, Matthew W.; McIntyre, Justin I.; Bowyer, Ted W.; Carman, April J.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; Lidey, Lance; Litke, Kevin E.; Morris, Scott J.; Ripplinger, Michael D.; Suarez, Reynold; Thompson, Robert

    2007-08-01

    The Automated Radio-xenon Sampler/Analyzer (ARSA), designed by Pacific Northwest National Laboratory (PNNL) collects and detects several radioxenon isotopes, and is used to monitor underground nuclear explosions. The ARSA is very sensitive to 133Xe, 131mXe, 133mXe, and 135Xe (<1 mBq/SCM) [M. Auera et al., Wernspergera, Appl. Radiat. 6 (2004) 60] through use of its compact high efficiency β-γ coincidence detector. For this reason, it is an excellent treaty monitoring system and it can be used as an environmental sampling device as well. Field testing of the ARSA has shown it to be both robust and reliable, but the nuclear detector requires a detailed photomultiplier tube (PMT) gain matching regime difficult to implement in a field environment. Complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint, and efforts to reduce these issues have led to development of a simplified β-γ coincident detector. The new design reduces the number of PMT's and the complexity of the calibration needed in comparison to the old design. New scintillation materials (NaI(Tl), CsI(Na), and CsI(Tl)) were investigated and a comparison of three different gamma sensitive well detectors has been completed. A new plastic-scintillator gas cell was constructed and a new method of forming the scintillator gas cell was developed. The simplified detector system compares favorably with the original ARSA design in spectral resolution and efficiency and is significantly easier to set up and calibrate. The new materials and configuration allow the resulting β-γ coincidence detector to maintain the overall performance of the ARSA type β-γ detector while simplifying the design.

  8. Progress in Advanced Spectral Analysis of Radioxenon

    SciTech Connect

    Haas, Derek A.; Schrom, Brian T.; Cooper, Matthew W.; Ely, James H.; Flory, Adam E.; Hayes, James C.; Heimbigner, Tom R.; McIntyre, Justin I.; Saunders, Danielle L.; Suckow, Thomas J.

    2010-09-21

    Improvements to a Java based software package developed at Pacific Northwest National Laboratory (PNNL) for display and analysis of radioxenon spectra acquired by the International Monitoring System (IMS) are described here. The current version of the Radioxenon JavaViewer implements the region of interest (ROI) method for analysis of beta-gamma coincidence data. Upgrades to the Radioxenon JavaViewer will include routines to analyze high-purity germanium detector (HPGe) data, Standard Spectrum Method to analyze beta-gamma coincidence data and calibration routines to characterize beta-gamma coincidence detectors. These upgrades are currently under development; the status and initial results will be presented. Implementation of these routines into the JavaViewer and subsequent release is planned for FY 2011-2012.

  9. Radioxenon Production from an Underground Nuclear Detonation

    NASA Astrophysics Data System (ADS)

    Sun, Y.

    2016-12-01

    The Comprehensive Nuclear Test Ban Treaty of 1996 has sparked the attention of many nations around the world for detecting Underground Nuclear Explosions (UNEs). The radioisotopes, specifically isotopes of xenon, Xe-131m, Xe-133m, Xe-133, and Xe-135, are being studied using their half-lives and decay networks for distinguishing civilian nuclear applications from UNEs. This study aims to simulate radioxenon concentrations and their uncertainties using analytical solutions of radioactive decay networks.

  10. The lithosphere

    SciTech Connect

    Not Available

    1983-01-01

    This document is the report of a week-long workshop on problems relating to the interpretations of the composition and dynamics of the lithosphere. A wide range of topics was discussed, dealing not only with the lithosphere itself, but also with possible interactions between the lithosphere and underlying mantle, down to and including the core-mantle boundary zone. Emphasis, very broadly, was on the physical and chemical properties of the lower crust and the subcrustal lithosphere: the physical and chemical characteristics of the prominent seismic discontinuities down to the core-mantle boundary; the nature and patterns of possible convection within the mantle and its relation to the generation, subduction, and intermixing of lithospheric and mantle material; the location and nature and evolution of reservoirs supplying magmas to the crust; and the various models that have been proposed to account for the location, nature, and geological history of these magma reservoirs. The general applicability of the plate tectonics model was assumed, but virtually every widely accepted explanation for the dynamics of that model and of possible unrelated phenomena such as deep-mantle plumes and hot spots was brought into question. 83 refs., 19 figs.

  11. The modes of propagation of the North Anatolian Fault and the mechanical nature of the Aeagean lithosphere

    NASA Astrophysics Data System (ADS)

    Huet, B.; Le Pourhiet, L.; Jolivet, L.

    2010-12-01

    The Aegean lithosphere has been extended in a wide rift to metamorphic core complex (MCC) mode for the last 30 Myr. This supposes that the crust and lithosphere was warm and weak. However, in the last 5 Myr, this supposed weak lithosphere has been cut across by the propagation of the North Anatolian Fault (NAF) in the Aegean system. To a large community, the propagation of the NAF contradicts the weakness of the Aegean lithosphere, and it is difficult to reconcile the formation of the MCCs with the presence of the fault. Based on the comparison of simplified numerical models with today’s strain-rate field in the North Aegean Sea and in continental Greece, this contribution proposes a conceptual model in which the North Aegean lithosphere has been made strong in response to the formation of the Aegean metamorphic core complexes. In the first place, we present the results of a 2D thermo-mechanical models of MCC, which we validate through large dataset of P-T-t path and field observations. This model shows that during the formation of the domes, the weak lower crust has been sucked from beneath the North Aegean sea up to the Cyclades and Rhodope and that in the post extension phase, the Aegean lithosphere is much stronger than before at the current location of the NAF. In the second place, we design 3D simplified mechanical models of the propagation of the NAF and perform a parametric studies in which we vary the coupling between the upper crust and the mantle by varying the nature of the lower crust in half of the model. This coupling affects the localization of the deformation in the mantle lithosphere and the timing of the progressive localization of the fault in the crust.

  12. Global radioxenon emission inventory based on nuclear power reactor reports.

    PubMed

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  13. Automatic radioxenon analyzer for CTBT monitoring

    SciTech Connect

    Bowyer, T.W.; Abel, K.H.; Hensley, W.K.

    1996-12-01

    Over the past 3 years, with support from US DOE`s NN-20 Comprehensive Test Ban Treaty (CTBT) R&D program, PNNL has developed and demonstrated a fully automatic analyzer for collecting and measuring the four Xe radionuclides, {sup 131m}Xe(11.9 d), {sup 133m}Xe(2.19 d), {sup 133}Xe (5.24 d), and {sup 135}Xe(9.10 h), in the atmosphere. These radionuclides are important signatures in monitoring for compliance to a CTBT. Activity ratios permit discriminating radioxenon from nuclear detonation and that from nuclear reactor operations, nuclear fuel reprocessing, or medical isotope production and usage. In the analyzer, Xe is continuously and automatically separated from the atmosphere at flow rates of about 7 m{sup 3}/h on sorption bed. Aliquots collected for 6-12 h are automatically analyzed by electron-photon coincidence spectrometry to produce sensitivities in the range of 20-100 {mu}Bq/m{sup 3} of air, about 100-fold better than with reported laboratory-based procedures for short time collection intervals. Spectral data are automatically analyzed and the calculated radioxenon concentrations and raw gamma- ray spectra automatically transmitted to data centers.

  14. Measurements of Worldwide Radioxenon Backgrounds - The "EU" Project

    SciTech Connect

    Bowyer, Ted W.; Cooper, Matthew W.; Hayes, James C.; Forrester, Joel B.; Haas, Derek A.; Hansen, Randy R.; Keller, Paul E.; Kirkham, Randy R.; Lidey, Lance S.; McIntyre, Justin I.; Miley, Harry S.; Payne, Rosara F.; Saey, Paul R.; Thompson, Robert C.; Woods, Vincent T.; Williams, Richard M.

    2009-09-24

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), radioactive xenon (radioxenon) measurements are one of the principle techniques used to detect nuclear underground nuclear explosions, and specifically, the presence of one or more radioxenon isotopes allows one to determine whether a suspected event was a nuclear explosion or originated from an innocent source. During the design of the International Monitoring System (IMS), which was designed as the verification mechanism for the Treaty, it was determined that radioxenon measurements should be performed at 40 or more stations worldwide. At the time of the design of the IMS, however, very few details about the background of the xenon isotopes was known and it is now recognized that the backgrounds were probably evolving anyhow. This paper lays out the beginning of a study of the worldwide concentrations of xenon isotopes that can be used to detect nuclear explosions and several sources that also release radioxenons, and will have to be accounted for during analysis of atmospheric levels. Although the global concentrations of the xenon isotopes are the scope of a much larger activity that could span over several years, this study measures radioxenon concentrations in locations where there was either very little information or there was a unique opportunity to learn more about emissions from known sources. The locations where radioxenon levels were measured and reported are included.

  15. The nature of the lithosphere-asthenosphere boundary from laboratory investigations of olivine anisotropy

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Qi, Chao; Warren, Jessica; Kohlstedt, David; Holtzman, Benjamin; Wallis, David

    2017-04-01

    The nature of the lithosphere-asthenosphere boundary (LAB) determines the mechanical coupling between rigid plates and the underlying convecting mantle. Seismological studies reveal distinct reflectors (G discontinuity) in the uppermost oceanic mantle that are sometimes interpreted as the LAB. The discontinuity in seismic velocity is suggested to arise from abrupt changes in composition, including the melt fraction. Interestingly, these reflectors roughly correlate with the location of discontinuities in radial seismic anisotropy, but do not correlate with the location of discontinuities in azimuthal anisotropy. To investigate the correlation between these datasets, we draw on recent laboratory measurements of crystallographic texture development in olivine-rich rocks. The textural evolution of dry olivine aggregates has been well described in recent experiments, while micromechanical models are available for incorporating these observations into larger-scale models of upper-mantle flow. Unfortunately, the systematics of textural evolution in melt-bearing olivine aggregates have not been similarly described. Here we present a new experimental data set detailing the evolution of anisotropy during deformation of partially molten peridotite. Torsion experiments were conducted on samples composed of San Carlos olivine and basaltic melt at a temperature of 1473 K and a confining pressure of 300 MPa. Seismically fast axes of olivine tend to lie at a high angle to the flow direction in a manner similar to previous experiments. The anisotropy in these samples is weak compared to that in dry, melt-free olivine deformed to similar strains. The anisotropy also exhibits relatively little change in strength and orientation with progressive deformation. Detailed microstructural analyses allow us to distinguish between competing models for the grain-scale deformation processes, favoring one in which crystallographically controlled grain shapes govern grain rotations. We

  16. Radioxenon detector calibration spike production and delivery systems

    SciTech Connect

    Foxe, Michael P.; Cameron, Ian M.; Cooper, Matthew W.; Haas, Derek A.; Hayes, James C.; Kriss, Aaron A.; Lidey, Lance S.; Mendez, Jennifer M.; Prinke, Amanda M.; Riedmann, Robin A.

    2016-03-01

    Abstract Beta-Gamma coincidence radioxenon detectors must be calibrated for each of the four-radioxenon isotopes (135Xe, 133Xe, 133mXe, and 131mXe). Without a proper calibration, there is potential for the misidentification of the amount of each isotope detected. It is important to accurately determine the amount of each radioxenon isotope, as the ratios can be used to distinguish between an anthropogenic source and a nuclear explosion. We have developed a xenon calibration system (XeCalS) that produces calibration spikes of known activity and pressure for field calibration of detectors. The activity concentrations of these calibration spikes are measured using a beta-gamma coincidence detector and a high purity germanium (HPGe) detector. We will present the results from the development and commissioning of XeCalS, along with the future plans for a portable spike implementation system.

  17. Radioxenons: Their role in monitoring a Comprehensive Test Ban Treaty

    SciTech Connect

    Perkins, R. W.; Casey, L. A.

    1996-06-01

    Monitoring for xenon radionuclides which are produced in a nuclear detonation can provide a strong deterrent to the violation of a Comprehensive nuclear Test Ban Treaty (CTBT). There are 18 known radioactive xenon isotopes produced in nuclear fission with half-lives ranging from less than one second to 11.9 days. However, only four of these remain in significant amounts more than a day after a detonation. In order for radioxenon monitoring to be practical, it was necessary to develop an automated measurement system which could operate unattended for periods of months, measure the entire spectrum of radioxenons, and provide hundreds of times better sensitivities than current laboratory procedures. This capability was developed at the US Department of Energy`s Pacific Northwest National Laboratory based on rapid separation of atmospheric xenon coupled with a unique high sensitivity measurement device for the radioxenons. A fieldable prototype analyzer is scheduled for testing in August 1996 with commercial availability planned by 1998.

  18. Radioxenon background at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Saey, Paul R. J.; Wotawa, Gerhard; de Geer, Lars-Erik; Axelsson, Anders; Bean, Marc; D'Amours, Real; Elmgren, Klas; Peterson, Jenny; Ringbom, Anders; Stocki, Trevor J.; Ungar, R. K.

    2006-09-01

    As part of the International Noble Gas Experiment (INGE) two stations were deployed in remote regions at high northern latitudes: Longyearbyen, Spitsbergen, Norway (78.2°N), and Yellowknife, Canada (62.5°N). With one exception, both stations are 2000 km or more from any single known stationary nuclear facility. Nevertheless, the short-lived anthropogenic radionuclide ? = 5.24 days) has been detected on a regular basis at both stations, and also ? = 11.84 days) was found at the Yellowknife station. Measuring these very low concentrations (˜0.1 mBq/m3) has been possible because of the introduction of new and sensitive equipment developed specifically for the verification of the Comprehensive Nuclear-Test Ban Treaty. By means of atmospheric transport modeling, it was determined that the measurements at both sites are broadly consistent with reported releases from reactors in North America and Europe and that the Spitsbergen station is much more susceptible to this influence than the Yellowknife station. Especially at Spitsbergen, the simplified assumption of a continuous bulk release across Europe could well explain the month-to-month variation of the time series. A future radioxenon event classification scheme for treaty verification purposes thus needs to consider the actual meteorological situation and large-scale transport processes.

  19. On the nature and origin of highly-refractory Archean lithosphere: Petrological and geophysical constraints from the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; McMahon, S. C.; Day, J. A.; Dawson, J. B.

    2012-12-01

    The nature and timescales of garnet formation are important to understanding how subcontinental lithospheric mantle (SCLM) has evolved since the Archean, and also to mantle dynamics, because the presence of garnet greatly influences the density of the lower lithosphere and hence the long-term stability of thick (150 to 220 km) subcratonic lithosphere. Nevertheless, the widespread occurrence of garnet in the SCLM remains one of the 'holy grails' of mantle petrology. Garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle evolved during the last 3 billion years. Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element patterns similar to hypothetical garnets proposed to have formed in the Earth's SCLM during the Archean, prior to metasomatism [Stachel et al., 2004]. These rare ultradepleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with highly-refractory olivine (Fo95.4) and orthopyroxene (Mg#=96.4). These phases are all more magnesian than generally encountered in global mantle harzburgites and diamond inclusions. The ultradepleted garnets form interconnecting networks around grains of orthopyroxene which give the rocks a banded appearance: we propose that the increase in pressure associated with cratonization may have caused isochemical exsolution of ultradepleted garnet from orthopyroxene. These unique garnets have not previously been identified in global suites of mantle xenoliths or diamond inclusions. We believe they are rare because their low concentrations of trace elements make them readily susceptible to geochemical overprinting. This highly-refractory low-density peridotite may be common in the 'shallow' SCLM but not normally brought to the

  20. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  1. Nature and melting processes of the lithosphere beneath the North-East Qiangqtang terrane, Central Tibet, during Eocene times.

    NASA Astrophysics Data System (ADS)

    Goussin, Fanny; Guillot, Stéphane; Schulmann, Karel; Cordier, Carole; Oliot, Emilien; Replumaz, Anne; Roperch, Pierrick; Dupont-Nivet, Guillaume

    2016-04-01

    pyroxene xenocrysts, suggest that enrichment occurred at the source by metasomatism of the lithospheric mantle. Further work will precise which mechanisms could have accounted for such a metasomatism of the mantle beneath the Northern Qiangtang terrane during Eocene, and whether the lower crust had an autochtonous or allochtonous nature.

  2. Inverse modeling of April 2013 radioxenon detections

    NASA Astrophysics Data System (ADS)

    Hofman, Radek; Seibert, Petra; Philipp, Anne

    2014-05-01

    Significant concentrations of radioactive xenon isotopes (radioxenon) were detected by the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in April 2013 in Japan. Particularly, three detections of Xe-133 made between 2013-04-07 18:00 UTC and 2013-04-09 06:00 UTC at the station JPX38 are quite notable with respect to the measurement history of the station. Our goal is to analyze the data and perform inverse modeling under different assumptions. This work is useful with respect to nuclear test monitoring as well as for the analysis of and response to nuclear emergencies. Two main scenarios will be pursued: (i) Source location is assumed to be known (DPRK test site). (ii) Source location is considered unknown. We attempt to estimate the source strength and the source strength along with its plausible location compatible with the data in scenario (i) and (ii), respectively. We are considering also the possibility of a vertically distributed source. Calculations of source-receptor sensitivity (SRS) fields and the subsequent inversion are aimed at going beyond routine calculations performed by the CTBTO. For SRS calculations, we employ the Lagrangian particle dispersion model FLEXPART with high resolution ECMWF meteorological data (grid cell sizes of 0.5, 0.25 and ca. 0.125 deg). This is important in situations where receptors or sources are located in complex terrain which is the case of the likely source of detections-the DPRK test site. SRS will be calculated with convection enabled in FLEXPART which will also increase model accuracy. In the variational inversion procedure attention will be paid not only to all significant detections and their uncertainties but also to non-detections which can have a large impact on inversion quality. We try to develop and implement an objective algorithm for inclusion of relevant data where samples from temporal and spatial vicinity of significant detections are added in an

  3. Observational Strategy of ACROSS towards the Time-evolving Natures in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Kumazawa, M.; Fujii, N.; Kasahara, J.

    2005-12-01

    ACROSS (Accurately Controlled, Routinely Operated Signal System) is aiming at the detection of very small changes in physical states in the lithosphere, particularly for the focal region of the anticipated huge earthquakes as demanded socially. Our technical challenge is to device an ideal methodology to enable us to acquire the ideal observation data towards the real understanding of the EarthOs interiors even under the inherent noise and physical limitations. We need light to illuminate the dark EarthOs interiors, eyes to observe them and a brain to interpret the result: The light should be designed well to be really coherent, the eyes with high fidelity should be accurately synchronized to the light transmission and the brain should be smart enough to evolve by itself. In order for the whole system to be robust against noise, we have to devise all that can be done. In addition, a significant demand is imposed onto us; non-destructiveness against our environment. The recent progress of technology makes it possible what was impossible several years, so that we try to find out the ideal way to go. We have spent about 10 years for developmental works, which started a moment before the disastrous Kobe earthquake of 1995. Now we believe that the background theory has been known in addition to some of the basic technology elements, whereas the user-friendly hardware and other auxiliary tools including practical theory and software have not been acquired yet. The examples of the field observation have started to accumulate for demonstration as reported by companion papers. The data acquired by ACROSS in seismology is not seismogram but tensor transfer function (Green function) in frequency domain. The data carry substantially new information with high quality and rigorous estimate of reliability. The availability of ACROSS would change the strategy for underground study in the coming years. We would like to call for your attention and discussion to the next way to go

  4. Lithospheric processes

    SciTech Connect

    Baldridge, W.S.; Wohletz, K.; Fehler, M.C.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective was to improve understanding of the origin and evolution of the Earth`s lithosphere by studying selected processes, such as deformation and magmatic intrusion during crustal extension, formation and extraction of mantle melts, fluid transport of heat and mass, and surface processes that respond to deep-seated events. Additional objectives were to promote and develop innovative techniques and to support relevant educational endeavors. Seismic studies suggest that underplating of crust by mantle melts is an important crustal-growth mechanism, that low-angle faults can be seismogenic, and that shear deformation creates mantle anisotropy near plate boundaries. Results of geochemical work determined that magmas from oceanic intraplate islands are derived from a uniform depth in the upper mantle, whereas melts erupted at mid-ocean ridges are mixed from a range of depths. The authors have determined the extent and style of fluid infiltration and trace-element distribution in natural magmatic systems, and, finally, investigated {sup 21}Ne as a tool for dating of surficial materials.

  5. (135)Xe measurements with a two-element CZT-based radioxenon detector for nuclear explosion monitoring.

    PubMed

    Ranjbar, Lily; Farsoni, Abi T; Becker, Eric M

    2017-04-01

    Measurement of elevated concentrations of xenon radioisotopes ((131m)Xe, (133m)Xe, (133)Xe and (135)Xe) in the atmosphere has been shown to be a very powerful method for verifying whether or not a detected explosion is nuclear in nature. These isotopes are among the few with enough mobility and with half-lives long enough to make their detection at long distances realistic. Existing radioxenon detection systems used by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) suffer from problems such as complexity, need for high maintenance and memory effect. To study the response of CdZnTe (CZT) detectors to xenon radioisotopes and investigate whether it is capable of mitigating the aforementioned issues with the current radioxenon detection systems, a prototype detector utilizing two coplanar CZT detectors was built and tested at Oregon State University. The detection system measures xenon radioisotopes through beta-gamma coincidence technique by detecting coincidence events between the two detectors. In this paper, we introduce the detector design and report our measurement results with radioactive lab sources and (135)Xe produced in the OSU TRIGA reactor. Minimum Detectable Concentration (MDC) for (135)Xe was calculated to be 1.47 ± 0.05 mBq/m(3).

  6. Impact of Monthly Radioxenon Source Time-Resolution on Atmospheric Concentration Predictions

    NASA Astrophysics Data System (ADS)

    Schöppner, Michael; Kalinowski, Martin; Plastino, Wolfango; Budano, Antonio; de Vincenzi, Mario; Ringbom, Anders; Ruggieri, Federico; Schlosser, Clemens

    2014-03-01

    The general characterisation of the global radioxenon background is of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty. Since the major background sources are only a few isotope production facilities, their source term has an emphasized influence on the worldwide monitoring process of radioxenon. In this work, two different datasets of source terms are applied through atmospheric transport modelling, to estimate the concentration at two radioxenon detection stations in Germany and Sweden. One dataset relies on estimated average annual emissions; the other includes monthly resolved measurements from an isotope production facility in Fleurus, Belgium. The quality of the estimations is then validated by comparing them to the radioxenon concentrations that have been sampled at two monitoring stations over the course of 1 year.

  7. Improved β-γ Coincidence Detector For Radioxenon Detection

    SciTech Connect

    Cooper, Matthew W; Carman, April J; Hayes, James C; Heimbigner, Tom R; Hubbard, Charles W; Litke, Kevin E; McIntyre, Justin I; Morris, Scott J; Ripplinger, Michael D; Suarez, Reynold

    2005-08-31

    The Automated Radio-xenon Analyzer/Sampler (ARSA), built by Pacific Northwest National Laboratory (PNNL), can collect and detect several radioxenon isotopes. ARSA is very sensitive to 133Xe, 131mXe, 133mXe and 135Xe due to the compact high efficiency coincidence detector it uses. For this reason it is an excellent treaty monitoring and environmental sampling device. Although the system is shown to be both robust and reliable, based on several field tests, it is also complex due to a detailed photomultiplier tube gain matching regime. This complexity is a problem from a maintenance and quality assurance/quality control (QA/QC) standpoint. To reduce these issues a simplified coincident detector has been developed. A comparison of three different well detectors has been completed. In addition, a new plastic scintillator gas cell was constructed. The new simplified detector system has been demonstrated to equal or better performance compared with the original ARSA design in spectral resolution and efficiency and significantly easier to setup and calibrate.

  8. A fluid-based measurement system for airborne radioxenon surveillance

    SciTech Connect

    Rooney, B.; Gross, K.C.; Nietert, R.; Valentine, J.; Russ, W.

    1997-10-01

    A new and innovative technique for concentrating heavy noble gases from the atmosphere and subsequently measuring the radioactive xenon isotopes has recently been developed at Argonne National Laboratory. The concentration technique is based on the discovery of a phenomenon where certain organic fluids absorb heavy noble gases with very high efficiency at room temperature and release the noble gases when slightly warmed (about 60{degrees}C). Research has been conducted to study the application of this technology to the design of an ultra sensitive radioxenon measurement system. Such a system could be used to monitor or sample the atmosphere for noble gas fission products ({sup 133}Xe, {sup 133m}Xe, and {sup 135}Xe) generated by nuclear testing. A system that utilizes this fluid-based technology provides a simpler, more portable, less-expensive means of concentrating xenon than current cryogenic techniques and avoids some of the complications associated with charcoal-based systems. Preliminary experiments to demonstrate the feasibility of utilizing this fluid-based technology in the design of an atmospheric radioxenon measurement have been very promising and research is continuing toward applying this technology to monitoring activities which support the Comprehensive Test Ban Treaty (CTBT).

  9. Testing of the KRI-developed Silicon PIN Radioxenon Detector

    SciTech Connect

    Foxe, Michael P.; McIntyre, Justin I.

    2015-01-23

    Radioxenon detectors are used for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in a network of detectors throughout the world called the International Monitoring System (IMS). The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Provisional Technical Secretariat (PTS) has tasked Pacific Northwest National Laboratory (PNNL) with testing a V.G. Khlopin Radium Institute (KRI) and Lares Ltd-developed Silicon PIN detector for radioxenon detection. PNNL measured radioxenon with the silicon PIN detector and determined its potential compared to current plastic scintillator beta cells. While the PNNL tested Si detector experienced noise issues, a second detector was tested in Russia at Lares Ltd, which did not exhibit the noise issues. Without the noise issues, the Si detector produces much better energy resolution and isomer peak separation than a conventional plastic scintillator cell used in the SAUNA systems in the IMS. Under the assumption of 1 cm3 of Xe in laboratory-like conditions, 24-hr count time (12-hr count time for the SAUNA), with the respective shielding the minimum detectable concentrations for the Si detector tested by Lares Ltd (and a conventional SAUNA system) were calculated to be: 131mXe – 0.12 mBq/m3 (0.12 mBq/m3); 133Xe – 0.18 mBq/m3 (0.21 mBq/m3); 133mXe – 0.07 mBq/m3 (0.15 mBq/m3); 135Xe – 0.45 mBq/m3 (0.67 mBq/m3). Detection limits, which are one of the important factors in choosing the best detection technique for radioxenon in field conditions, are significantly better than for SAUNA-like detection systems for 131mXe and 133mXe, but similar for 133Xe and 135Xe. Another important factor is the amount of “memory effect” or carry over signal from one radioxenon measurement to the subsequent sample. The memory effect is

  10. Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring.

    PubMed

    Haas, Derek A; Eslinger, Paul W; Bowyer, Theodore W; Cameron, Ian M; Hayes, James C; Lowrey, Justin D; Miley, Harry S

    2017-08-14

    The Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes. Radioxenon systems with lower detection limits are currently in development. Historically, the sensitivity of radioxenon systems was measured by the minimum detectable concentration for each isotope. In this paper we analyze the response of radioxenon systems using rigorous metrics in conjunction with hypothetical representative releases indicative of an underground nuclear explosion instead of using only minimum detectable concentrations. Our analyses incorporate the impact of potential spectral interferences on detection limits and the importance of measuring isotopic ratios of the relevant radioxenon isotopes in order to improve discrimination from background sources particularly for low-level releases. To provide a sufficient data set for analysis, hypothetical representative releases are simulated every day from the same location for an entire year. The performance of three types of samplers are evaluated assuming they are located at 15 IMS radionuclide stations in the region of the release point. The performance of two IMS-deployed samplers and a next-generation system is compared with proposed metrics for detection and discrimination using representative releases from the nuclear test site used by the Democratic People's Republic of Korea. Copyright © 2017. Published by Elsevier Ltd.

  11. Environmental characterisation of a major radioxenon source in Europe

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Becker, A.; Camps, J.; Paquet, N.; Sonck, M.; Taffary, T.; van der Meer, K.; Verboomen, B.; Zähringer, M.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon has been studied. It was recently shown that radiopharmaceutical facilities (RPF) have a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily International Monitoring System (IMS) noble gas measurements around the globe are influenced from such anthropogenic sources that could hide relevant radioxenon signals. To distinguish a nuclear explosion from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no high-sensitive measurements in and close to radiopharmaceutical facilities have ever been performed. During the summer of 2008, a three week field campaign was carried out in the region around the Belgian radiopharmaceutical facility IRE in Fleurus, the world third largest one. The scope was to obtain the activity concentration of the releases and the isotopic composition. Two 6-hour noble gas measurements, using mobile SAUNA sampling equipment were collected each day at different distances from the facility (1 - 100 km). The sampling locations were guided by atmospheric dispersion model results. Three samples from the stack itself were also collected. All 38 samples were shipped after collection to and measured with a SAUNA at the laboratory in Stockholm, Sweden. The environmental concentrations of 133Xe were measured and found to be in the range between 0.7 - 4 105 mBq/m3. Nine samples contained all four CTBT relevant radioxenon isotopes. The concentrations of the stack spike samples were in the range 2 109 - 4 1010 mBq/m3. This corresponds to a daily release of around 1 TBq. This is

  12. Nature and Evolution of the lithospheric mantle beneath the Hoggar swell (Algeria): a record from mantle xenoliths.

    NASA Astrophysics Data System (ADS)

    Kourim, Fatna; Bodinier, Jean-Louis; Alard, Olivier; Bendaoud, Abderrahmane; Vauchez, Alain; Dautria, Jean-Marie

    2013-04-01

    The mantle xenoliths sampled by the Quaternary alkaline volcanics from the Tahalgha district (Central Hoggar) represent the subcontinental lithospheric mantle beneath the boundary between two major structural domains of the Tuareg Shield: the "Polycyclic Central Hoggar" to the East and the "Western Hoggar", or "Pharusian Belt", to the West. Samples were collected from volcanic centres located on both sides of the 4°10, a major lithospheric shear zone separating these two domains. Although showing substantial variations in their deformation microstructures, equilibrium temperatures, and modal and chemical compositions, the studied samples do not display systematic variations of these features across the 4°10. The observed variations rather record small-scale heterogeneities distributed throughout the whole studied area and mostly related to the asthenosphere-lithosphere interaction events associated with the evolution of the Hoggar swell, in the Cenozoic. These features include partial annealing of pre-existing deformation microstructures, post-deformation metasomatic reactions, and trace-element enrichment, coupled with heating from 750-900°C (low-temperature lherzolites) to 900-1150°C (intermediate-T lherzolites and high-T harzburgites and wehrlites). Trace element modelling confirms that the whole range of REE fractionation observed in the Tahalgha xenoliths may be accounted for by reactive porous flow involving a single stage of basaltic melt infiltration into a LREE-depleted protolith. The striking correlations between equilibrium temperatures and trace-element enrichments favor a scenario whereby the high-temperature peridotites record advective heat transport along melt conduits while the intermediate- and low-temperature lherzolites would represent more conductive heating of the host Mechanical Boundary Layer. This indicates that the lithosphere did not reach thermal equilibrium, suggesting that the inferred heating event was transient and rapidly erased

  13. Lithospheric processes

    SciTech Connect

    Baldridge, W.

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  14. Environmental Radioxenon Levels in Europe: a Comprehensive Overview

    NASA Astrophysics Data System (ADS)

    Saey, Paul R. J.; Schlosser, Clemens; Achim, Pascal; Auer, Matthias; Axelsson, Anders; Becker, Andreas; Blanchard, Xavier; Brachet, Guy; Cella, Luis; de Geer, Lars-Erik; Kalinowski, Martin B.; Le Petit, Gilbert; Peterson, Jenny; Popov, Vladimir; Popov, Yury; Ringbom, Anders; Sartorius, Hartmut; Taffary, Thomas; Zähringer, Matthias

    2010-05-01

    Activity concentration data from ambient radioxenon measurements in ground level air, which were carried out in Europe in the framework of the International Noble Gas Experiment (INGE) in support of the development and build-up of a radioxenon monitoring network for the Comprehensive Nuclear-Test-Ban Treaty verification regime are presented and discussed. Six measurement stations provided data from 5 years of measurements performed between 2003 and 2008: Longyearbyen (Spitsbergen, Norway), Stockholm (Sweden), Dubna (Russian Federation), Schauinsland Mountain (Germany), Bruyères-le-Châtel and Marseille (both France). The noble gas systems used within the INGE are designed to continuously measure low concentrations of the four radioxenon isotopes which are most relevant for detection of nuclear explosions: 131mXe, 133mXe, 133Xe and 135Xe with a time resolution less than or equal to 24 h and a minimum detectable concentration of 133Xe less than 1 mBq/m3. This European cluster of six stations is particularly interesting because it is highly influenced by a high density of nuclear power reactors and some radiopharmaceutical production facilities. The activity concentrations at the European INGE stations are studied to characterise the influence of civilian releases, to be able to distinguish them from possible nuclear explosions. It was found that the mean activity concentration of the most frequently detected isotope, 133Xe, was 5-20 mBq/m3 within Central Europe where most nuclear installations are situated (Bruyères-le-Châtel and Schauinsland), 1.4-2.4 mBq/m3 just outside that region (Stockholm, Dubna and Marseille) and 0.2 mBq/m3 in the remote polar station of Spitsbergen. No seasonal trends could be observed from the data. Two interesting events have been examined and their source regions have been identified using atmospheric backtracking methods that deploy Lagrangian particle dispersion modelling and inversion techniques. The results are consistent with known

  15. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  16. Measurement and modelling of radioxenon plumes in the Ottawa Valley.

    PubMed

    Stocki, T J; Armand, P; Heinrich, Ph; Ungar, R K; D'Amours, R; Korpach, E P; Bellivier, A; Taffary, T; Malo, A; Bean, M; Hoffman, I; Jean, M

    2008-11-01

    Since 2001 a real-time radiation monitoring network of Canadian nuclear facilities and major population centres has been implemented for response to nuclear incidents including a possible terrorist attack. Unshielded NaI(Tl) spectroscopic detectors are employed to measure gamma radiation from airborne radioactivity and radioactivity deposited on the ground. These detectors are composed of a standard 3''x3'' cylindrical NaI(Tl) spectrometers with data storage and integrated telemetry. Some of the detectors have been deployed in the Ottawa Valley near Chalk River Laboratories and Ottawa, which has a complex radioxenon environment due to the proximity of nuclear power reactors, and medical isotope facilities. Although not a health threat, these releases have provided an opportunity for the Canadian Meteorological Centre and the Commissariat à l'Energie Atomique to validate their meteorological models. The meteorological models of the two organizations are in good agreement on the origin and the source terms of these releases.

  17. The international lithosphere program

    NASA Astrophysics Data System (ADS)

    Flinn, Edward A.

    The International Lithosphere Program is a new international interdisciplinary research program in the solid earth sciences that has been established by the International Council of Scientific Unions (ICSU) at the joint request of the International Union of Geodesy and Geophysics (IUGG) and the International Union of Geological Sciences (IUGS). Its goal is a better understanding of the development of the earth, particularly those aspects upon which human society depends for its well-being.The International Lithosphere Program (ILP) is a natural sequel to a series of international cooperative projects in the geosciences that began with the International Geophysical Year in 1957-58 and continued with the Upper Mantle Project in the 1960's and the International Geodynamics Project (IGP) in the 1970's. In 1977, IUGG and IUGS established an inter-union task group to consider the possibility of a successor to the IGP for the 1980's. The task group, under cochairmen Carl Kisslinger (Cooperative Institute for Research in Environmental Sciences, University of Colorado), foreign secretary of the American Geophysical Union, and J. Henning Illies (Geophysical Institute, University of Karlsruhe, Federal Republic of Germany), invited suggestions and comments from the two unions and the national committees in the member countries. Their report, which was completed late in 1978, proposed a new project on the dynamics, origin, and evolution of the lithosphere. This proposal was approved by the IUGS Executive Committee in December 1979 and by the IUGS Council in June 1980. An inter-union steering committee, established in 1979 under the joint chairmanship of Kisslinger and Illies, developed the organizational framework and constitution of the new program. These were approved by resolution of the ICSU Governing Board in September 1980, and the Inter-Union Commission on the Lithosphere (ICL) was established to implement the program. National members of ICSU were urged to establish

  18. Monitoring of reported sudden emission rate changes of major radioxenon emitters in the northern and southern hemispheres in 2008 to assess their contribution to the respective radioxenon backgrounds

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Auer, M.; Becker, A.; Colmanet, S.; Hoffmann, E.; Nikkinen, M.; Schlosser, C.; Sonck, M.

    2009-04-01

    Atmospheric radioxenon monitoring is a key component of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Radiopharmaceutical production facilities (RPF) have recently been identified of emitting the major part of the environmental radioxenon measured at globally distributed monitoring sites deployed to strengthen the radionuclide part of the CTBT verification regime. Efforts to raise a global radioxenon emission inventory revealed that the global total emission from RPF's is 2-3 orders of magnitude higher than the respective emissions related to maintenance of all nuclear power plants (NPP). Given that situation we have seen in 2008 two peculiar hemisphere-specific situations: 1) In the northern hemisphere, a joint shutdown of the global largest four radiopharmaceutical facilities revealed the contribution of the normally 'masked' NPP related emissions. Due to an incident, the Molybdenum production at the "Institut des Radioéléments" (IRE) in Fleurus, Belgium, was shut down between Monday 25 August and 2 December 2008. IRE is the third largest global producer of medical isotopes. In the same period, but for different reasons, the other three worldwide largest producers (CRL in Canada, HFR in The Netherlands and NTP in South Africa) also had scheduled and unscheduled shutdowns. The activity concentrations of 133Xe measured at the Schauinsland Mountain station near Freiburg in Germany (situated 380 km SW of Fleurus) which have a mean of 4.8 mBq/m3 for the period February 2004 - August 2008, went down to 0.87 mBq/m3 for the period September - November 2008. 2) In the southern hemisphere, after a long break, the only radiopharmaceutical facility in Australia started up test production in late November 2008. In the period before the start-up, the background of radioxenon in Australia (Melbourne and Darwin) was below measurable quantities. During six test runs of the renewed RPF at ANSTO in Lucas Heights, up to 6 mBq/m3 of 133Xe were measured in

  19. Understanding radioxenon isotopical ratios originating from radiopharmaceutical facilities

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Ringbom, A.; Bowyer, T. W.; Becker, A.; de Geer, L.-E.; Nikkinen, M.; Payne, R. F.

    2009-04-01

    It was recently shown that radiopharmaceutical facilities (RPF) are major contributors to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentrations but also the ratios of the four different CTBT relevant radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) have to be well understood. First measurements taken recently in and around two of the world's largest RPF's: NTP at Pelindaba, South Africa and IRE at Fleurus, Belgium have been presented. At both sites, also stack samples were taken in close cooperation with the facility operators. The radioxenon in Belgium could be classified in four classes: the normal European background (133Xe activity between 0 - 5 mBq/m3) on one hand and then the samples where all four isotopes were detected with 133mXe/131mXe > 1. In northern South Africa the Pelindaba RPF is in practice the sole source of radioxenon. It generated a background of 133Xe at the measurement site some 230 km to the west of the RPF of 0 - 5 mBq/m3. In the cases where the air from the Pelindaba facility reached the measurement site directly and in a short time period, the 133Xe was higher, also 135Xe was present and in some samples 133mXe as well. The ratios of the activity concentrations of 135Xe/133Xe vs. 133mXe/131mXe (Multiple Isotope Ratio Plot - MIRC) have been analysed. For both facilities, the possible theoretical ratio's for different scenarios were calculated with the information available and compared with the measurements. It was found that there is an excess of 131mXe present in the European samples compared to theoretical calculations. A similar excess has also been seen in samples measured in northern America. In South Africa, neither the environmental samples nor the stack ones contained 131mXe at measurable levels. This can probably be explained by different processes and

  20. Field test of the PNNL Automated Radioxenon Sampler/Analyzer (ARSA)

    SciTech Connect

    Lagomarsino, R.J.; Ku, E.; Latner, N.; Sanderson, C.G.

    1998-07-01

    As part of the requirements of the Comprehensive Test Ban Treaty (CTBT), the Automated Radioxenon/Sampler Analyzer (ARSA) was designed and engineered by the Pacific Northwest National Laboratory (PNNL). The instrument is to provide near real-time detection and measurement of the radioxenons released into the atmosphere after a nuclear test. Forty-six field tests, designed to determine the performance of the ARSA prototype under simulated field conditions, were conducted at EML from March to December 1997. This final report contains detailed results of the tests with recommendations for improvements in instrument performance.

  1. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  2. Constraints on the Thermal and Compositional Nature of the Oceanic Lithosphere-Asthenosphere Boundary from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Beghein, C.; Yuan, K.; Schmerr, N. C.; Xing, Z.

    2014-12-01

    In this study we modeled S-wave velocities, radial and azimuthal anisotropy beneath the Pacific ocean, and compared our model with detections of the Gutenberg (G) discontinuity at 40-100 km depth to evaluate its context and relation to the lithosphere-asthenosphere boundary (LAB). The G is often associated with the LAB, but its sharpness and the low correlation between its depth and oceanic plate age suggest a compositional origin, in contradiction with tomographic models of isotropic wave velocities. Here, we inverted fundamental and higher mode anisotropic Rayleigh wave phase velocity maps to which we applied non-linear crustal corrections. Our model defines three layers within the upper 250km of the mantle. The bottom layer is characterized by relatively low velocities, strong (3%) azimuthal anisotropy, fast seismic directions that follow the absolute plate motion (APM), and strong (5%) radial anisotropy with VSH>VSV. This suggests alignment of olivine fast axes with mantle flow direction in the asthenosphere. The middle layer has fast axes aligned with the paleospreading directions, and the boundary between the bottom and middle layers follows a half-space cooling model. This suggests a thermal origin of the LAB if we use the change in alignment of the fast axes with the APM as a proxy for the LAB. Remarkably, a change in azimuthal anisotropy is found between the two top layers at a roughly constant depth that coincides with the location of the G. The G is therefore located within the thermal lithosphere and is primarily associated with a vertical gradient in azimuthal anisotropy, which may result from compositional changes. Dehydration of the mantle underlying mid-ocean ridges offers a possible explanation for our results. It could generate a chemically depleted, viscous layer that becomes overprinted by lowered temperatures as the plate cools and migrates away from the ridge. The olivine fast axes would align with the spreading direction at the ridge in the

  3. Operations of the Automated Radioxenon Sampler/Analyzer - ARSA

    SciTech Connect

    Hayes, James C.; Abel, Keith H.; Bowyer, Ted W.; Heimbigner, Tom R.; Panisko, Mark E.; Reeder, Paul L.; McIntyre, Justin I.; Thompson, Robert C.; Todd, Lindsay C.; Warner, Ray A.

    1999-09-01

    The Automated Radioxenon Sampler/ Analyzer (ARSA), designed and built by Pacific Northwest National Laboratory (PNNL), for the Department of Energy, has exceeded measurement requirements for noble gas measurement systems established by the Comprehensive Nuclear-Test-Ban Treaty. Two units, one at PNNL and a second, sent to DME Corp. of Florida, were built and extensively tested. Both systems have successfully demonstrated stable xenon yields greater than 1.5 cm3 for an eight-hour collection period, corresponding to minimum detectable concentrations for 133Xe on the order of 0.1 mBq/m3 three times per day. High stable xenon yields are critical in obtaining these low minimum detectable concentrations. A history of testing and results that led to the high xenon yields of the ARSA system is presented. A compilation of field tests, laboratory tests and baseline tests that led to cost reduction, power savings and size reduction of the ARSA are also discussed. Lastly, the type of data generated from the ARSA of interest to data center personnel are discussed.

  4. Application of thermodynamic modelling to natural mantle xenoliths: examples of density variations and pressure-temperature evolution of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Ziberna, L.; Klemme, S.

    2016-02-01

    In this paper, we show how the results of phase equilibria calculations in different mantle compositions can be reconciled with the evidence from natural mantle samples. We present data on the response of bulk rock density to pressure (P), temperature (T) and compositional changes in the lithospheric mantle and obtain constraints on the P-T evolution recorded by mantle xenoliths. To do this, we examine the mantle xenolith suite from the Quaternary alkali basalts of Pali-Aike, Patagonia, using phase equilibria calculation in six representative compositions. The calculations were done subsolidus and in volatile-free conditions. Our results show that the density change related to the spinel peridotite to garnet peridotite transition is not sharp and strongly depends on the bulk composition. In a depleted mantle composition, this transition is not reflected in the density profile, while in a fertile mantle it leads to a relative increase in density with respect to more depleted compositions. In mantle sections characterized by hot geothermal gradients (~70 mW/m2), the spinel-garnet transition may overlap with the lithosphere-asthenosphere boundary. Phase equilibria calculations in peridotitic compositions representative of the Pali-Aike mantle were also used to constrain the origin and evolution of the mantle xenoliths. Our results indicate that the mineral modes and compositions, and the mineral zonation reported for the low-temperature peridotites (spinel and spinel + garnet harzburgites and lherzolites), are linked to a cooling event in the mantle which occurred long before the eruption of the host basalts. In addition, our phase equilibria calculations show that kelyphitic rims around garnets, as those observed in the high-temperature garnet peridotites from Pali-Aike, can be explained simply by decompression and do not require additional metasomatic fluid or melt.

  5. Metastable Radioxenon Verification Laboratory (MRVL) Year-End Report

    SciTech Connect

    Cooper, Matthew W.; Hayes, James C.; Lidey, Lance S.

    2014-11-07

    This is the year end report that is due to the client. The MRVL system is designed to measure multiple radioxenon isotopes (135Xe, 133Xe, 133mXe and 133mXe) simultaneously. The system has 12 channels to load samples and make nuclear measurements. Although the MRVL system has demonstrated excellent stability in measurements of Xe-133 and Xe-135 over the year of evaluation prior to delivery, there has been concern about system stability over measurements performed on samples with orders of magnitude different radioactivity, and samples containing multiple isotopes. To address these concerns, a series of evaluation test have been performed at the end-user laboratory. The evaluation was performed in two separate phases. Phase 1 made measurements on isotopically pure Xe-133 from high radioactivity down to the system background levels of activity, addressing the potential count rate dependencies when activities change from extreme high to very low. The second phase performed measurements on samples containing multiple isotopes (Xe-135, Xe-133 and Xe-133m), and addressed concerns about the dependence of isotopic concentrations on the presence of additional isotopes. The MRVL showed a concentration dependence on the Xe-133 due to the amount of Xe-133m that was in the sample. The dependency is due to the decay of Xe-133m into Xe-133. This document focuses on the second phase and will address the analysis used to account for ingrowth of Xe-133 from Xe-133m.

  6. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  7. Rifting of the Tyrrhenian Basin: A Natural Laboratory to Study Extension of Continental Lithosphere and Conjugate Rifted Margin Formation

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Sallares, V.; Grevemeyer, I.; Zitellini, N.; Vendrell, M. G.; Prada, M.; Moeller, S.; Party, M. C.; Medoc Cruise Party

    2011-12-01

    The Tyrrhenian basin has been created by extension of continental lithosphere above a retreating slab during the Neogene. The basin is not currently extending, but its structure preserves information of the time evolution of the rifting process. The basin opened from north to south with different amounts of extension. The northern region stopped opening after relatively low extension. The amount of extension increases southwards to a region where full crustal separation produced mantle exhumation. The final structure displays two conjugate margins with an asymmetric structure. We present results from a two-vessel seismic experiment that took place in spring 2010. The cruise was carried out with the Spanish R/V Sarmiento de Gamboa (SdG) and the Italian R/V Urania in a first leg. The ships collected 5 E-W trending wide-angle seismic (WAS) profiles across the entire basin using 17 Ocean Bottom Seismometers and 25 Ocean Bottom Hydrophones and a 4800 c.i. G-II gun array. During the second leg the R/V SdG collected 16 Multichannel Seismic Reflection (MCS) profiles using a 3.75 km-long streamer and a 3000 c.i. G-II gun array. MCS profiles were acquired coincident with the WAS profiles, and a number of additional lines concentrated in the central region of the basin where mantle exhumation took place. The seismic data covers the region of the basin that experienced different amount of extension from north to south. In this presentation we compare observations from different transects to study the evolution of the processes of continental margin formation by trading space (different areas with different extension factors) for time (evolution of extension). Each transect provides the tectonic structure, the geometry of sedimentary deposits, and seismic velocity distribution. This information allows to interpret the mechanisms of deformation and to study the symmetry-asymmetry structure of the conjugated margins, and thus of the processes involved in their formation. The

  8. Comparison of Phoswich and ARSA-type detectors for Radioxenon Measurements

    SciTech Connect

    Ward, Rebecca; Biegalski, Steven R.; Haas, Derek A.; Hennig, Wolfgang

    2009-12-01

    The monitoring of atmospheric radioxenon to ensure compliance with the Comprehensive Nuclear Test Ban Treaty has driven the development of improved detectors for measuring xenon, including the development of a phoswich detector. This detector uses only one PMT to detect beta-gamma coincidence, thus greatly reducing the bulk and electronics of the detector in comparison to the ARSA-type detector. In this experiment, 135Xe was produced through neutron activation and a phoswich detector was used to attain spectra from the gas. These results were compared to similar results from an ARSA-type beta-gamma coincidence spectrum. The spectral characteristics and resolution were compared for the coincidence and beta spectra. Using these metrics, the overall performance of the phoswich detector for beta-gamma coincidence of radioxenon was evaluated.

  9. Categorisation of nuclear explosions from legitimate radioxenon sources with atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Schoeppner, M.; Postelt, F.; Kalinowski, M.; Plastino, W.

    2012-04-01

    Radioxenon is produced during nuclear explosions and due to its high fission ratio during the reaction and its noble gas character the isotopes can be detected remote from the location of the explosion. Therefore it is used by the Comprehensive Nuclear-Test-Ban Organization (CTBTO) as an indicator for the nuclear character of an explosion and is monitored with the International Monitoring System (IMS). The concentration of radioxenon in the air is continuously measured by multiple stations worldwide and is in need of an automatic categorization scheme in order to highlight signals of interest and to sort out signals that can be explained by legitimate sources. The dispersion and transport of radioxenon emissions through the atmosphere can be simulated with atmospheric transport modelling. Many legitimate sources of radioxenon exist: Nuclear power plants and isotope production facilities are mainly responsible for the worldwide background. The characterisation of this background is an important prerequisite to discriminate nuclear explosion signals against the background. It has been discovered that the few existing isotope production facilities are the major contributors to the background, each with emission strengths in the order of magnitude or more than all nuclear power plants together. Therefore, especially the characterization of these few, but strong, emitters can improve the quality of the signal prediction. Since the location of such an emitter is usually known the source-receptor sensitivity matrices can be utilized together with measured radioxenon concentrations from IMS stations in order to deduct information about the time dependent emissions from the strong emitter. An automatic method to determine an approximated, time dependent source term of an emitter with known location has been developed and is presented. This is a potentially valid tool for the categorization of radioxenon samples, because it can be used to assess whether the measured

  10. Calculation of Minimum-Detectable-Concentration Levels of Radioxenon Isotopes Using the PNNL ARSA System

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Reeder, Paul L.

    2006-03-11

    Measurement of xenon fission product isotopes is a key element in the global network being established to monitor the Comprehensive Nuclear-Test-Ban Treaty. The automated Radio-xenon Analyzer/Sampler (ARSA), built by Pacific Northwest National Laboratory, can detect 131mXe, 133mXe, 133Xe, and 135Xe via a beta-gamma counting system. Due to the variable background and sources of these four radio-xenon isotopes, it is important to have as sensitive a detection system as possible and to quantify the Minimum-Detectable-Concentrations (MDC) that such a system will be able to detect to preclude false negative and false positive results. From data obtained from IAR in Germany MDC values for 133Xe were well below the 1 mBq/SCMA as required by the PTS for the Comprehensive Test BAn Treaty [WGB TL-11,1999].

  11. Evaluation of radioxenon releases in Australia using atmospheric dispersion modelling tools.

    PubMed

    Tinker, Rick; Orr, Blake; Grzechnik, Marcus; Hoffmann, Emmy; Saey, Paul; Solomon, Stephen

    2010-05-01

    The origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated (133)Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia.

  12. Existing Data Format for Two-Parameter Beta-Gamma Histograms for Radioxenon

    SciTech Connect

    TW Bowyer; TR Heimbigner; JI McIntyre; AD McKinnon; PL Reeder; E Wittinger

    1999-03-23

    There is a need to establish a commonly acceptable format for storing beta-gated coincidence data for stations in the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The current aerosol RMS type data format is not applicable for radioxenon in that the current format contains implicit assumptions specific to conventional gamma-ray spectrometry. Some assumptions in the current RMS format are not acceptable for the beta-gated spectra expected from the U.S. Department of Energy PNNL Automated Radioxenon Sampler-Analyzer (ARSA) and other similar systems under use or development from various countries. The RMS data format is not generally applicable for radioxenon measurements in the CTBT for one or more of the following main reasons: 1) The RMS format does not currently support 2-dimensional data. That is, the RMS data format is setup for a simple l-dimensional gamma-ray energy histogram. Current data available from the ARSA system and planned for other radioxenon monitors includes spectral information from gamma-rays and betas/conversion electrons. It is worth noting that the beta/conversion electron energy information will be used to separate the contributions from the different radioxenons. 2) The RMS data format assumes that the conversion between counts and activity can be calculated based (in part) on a simple calibration curve (detector efficiency curve) that depends only on energy of the gamma-ray. In the case of beta-gated gamma-ray spectra and for 2-dimensional spectra, there are generally two detector calibration curves that must be convoluted, the lower energy cutoff for the betas must be considered, and the energy acceptance window must be taken into account to convert counts into activity. . 3) The RMS format has header information that contains aerosol-specific information that allows the activity (Bq) calculated to be converted into a concentration (Bq/SCM). This calculation is performed by dividing the

  13. Lithospheric dynamics near plate boundaries

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.

    1992-09-01

    The progress report on research conducted between 15 Mar. - 14 Sep. 1992 is presented. The focus of the research during the first grant year has been on several problems broadly related to the nature and dynamics of time-dependent deformation and stress along major seismic zones, with an emphasis on western North America but with additional work on seismic zones in oceanic lithosphere as well. The principal findings of our research to date are described in the accompanying papers and abstract. Topics covered include: (1) Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting; (2) Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986-1989; (3) present-day crustal deformation in the Salton Trough, southern California; (4) oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the lithosphere; and (5) crustal strain and the 1992 Mojave Desert earthquakes.

  14. Lithospheric dynamics near plate boundaries

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1992-01-01

    The progress report on research conducted between 15 Mar. - 14 Sep. 1992 is presented. The focus of the research during the first grant year has been on several problems broadly related to the nature and dynamics of time-dependent deformation and stress along major seismic zones, with an emphasis on western North America but with additional work on seismic zones in oceanic lithosphere as well. The principal findings of our research to date are described in the accompanying papers and abstract. Topics covered include: (1) Global Positioning System measurements of deformations associated with the 1987 Superstition Hills earthquake: evidence for conjugate faulting; (2) Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986-1989; (3) present-day crustal deformation in the Salton Trough, southern California; (4) oceanic transform earthquakes with unusual mechanisms or locations: relation to fault geometry and state of stress in the lithosphere; and (5) crustal strain and the 1992 Mojave Desert earthquakes.

  15. Arctic lithosphere - A review

    NASA Astrophysics Data System (ADS)

    Pease, V.; Drachev, S.; Stephenson, R.; Zhang, X.

    2014-07-01

    This article reviews the characteristics of Arctic lithosphere and the principal tectonic events which have shaped it. The current state-of-knowledge associated with the crust, crustal-scale discontinuities, and their ages, as well as knowledge of the lithosphere as a whole from geophysical data, permits the division of Arctic lithosphere into discrete domains. Arctic continental lithosphere is diverse in age, composition, and structure. It has been affected by at least two periods of thermal overprinting associated with large volumes of magmatism, once in the Permo-Triassic and again in the Aptian. In addition, it was attenuated as the result of at least five phases of rifting (in the late Devonian-early Carboniferous, Permo-Triassic, Jurassic, Early Cretaceous, and Late Cretaceous-Cenozoic). Older phases of consolidation are associated with continental lithosphere and occurred through a series of continent-continent collisions in the Paleozoic. Jurassic and Cretaceous extensional phases are related to the dismembering of Pangea and Eurasia, and were concentrated in the Norway-Greenland and Canadian-Alaskan Arctic regions. Large areas of submarine, hyperextended continental (?) lithosphere developed in parts of the Amerasia Basin. After continental breakup and the accretion of new oceanic lithosphere, the Eurasia and Canada basins were formed.

  16. Evaluation of environmental radioxenon isotopical signals from a singular large source emitter

    NASA Astrophysics Data System (ADS)

    Saey, P. R. J.; Bowyer, T. W.; Aldener, M.; Becker, A.; Cooper, M. W.; Elmgren, K.; Faanhof, A.; Hayes, J. C.; Hosticka, B.; Lidey, L. S.

    2009-04-01

    In the framework of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) the atmospheric background of environmental radioxenon is been studied near areas that could be affected by man-made sources. It was recently shown that radiopharmaceutical facilities (RPF) make a major contribution to the general background of 133Xe and other xenon isotopes both in the northern and southern hemisphere. The daily IMS noble gas measurements around the globe are influenced from such anthropogenic sources that could mask radioxenon signals from a nuclear explosion. To distinguish a nuclear explosion signal from releases from civil nuclear facilities, not only the activity concentration but also the ratio of different radioxenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) plays a crucial role, since the ratios can be used to discriminate source types. Theoretical release and ratio studies were recently published, but no measurements close to radiopharmaceutical facilities have ever been performed. The world's fourth largest radiopharmaceutical facility, NTP Radioisotopes Ltd, is located in Pelindaba, South Africa. Other than a small nuclear power plant, located 1300 km southwest, near Cape Town and a small research reactor in the DR of Congo, located 2700 km northwest, this is the only facility that is known to emit any radioxenon on the African continent south of the Equator. This source is likely very dominant with respect to xenon emission. This makes it a point source, which is a unique situation, as all other worldwide large radiopharmaceutical facilities are situated in regions surrounded by many other nuclear facilities. Between 10 November and 22 December 2008, radioxenon was measured continuously with a radioactive xenon measurement system, at the North-West University, Mafikeng, South Africa, which is situated 250 km northwest of Pelindaba. Fifty-six 12-hour samples were measured with a beta-gamma coincidence detector, of which 55 contained 133Xe with

  17. Neural Network Based State of Health Diagnostics for an Automated Radioxenon Sampler/Analyzer

    SciTech Connect

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-13

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA’s complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  18. Neural-network-based state of health diagnostics for an automated radioxenon sampler/analyzer

    NASA Astrophysics Data System (ADS)

    Keller, Paul E.; Kangas, Lars J.; Hayes, James C.; Schrom, Brian T.; Suarez, Reynold; Hubbard, Charles W.; Heimbigner, Tom R.; McIntyre, Justin I.

    2009-05-01

    Artificial neural networks (ANNs) are used to determine the state-of-health (SOH) of the Automated Radioxenon Analyzer/Sampler (ARSA). ARSA is a gas collection and analysis system used for non-proliferation monitoring in detecting radioxenon released during nuclear tests. SOH diagnostics are important for automated, unmanned sensing systems so that remote detection and identification of problems can be made without onsite staff. Both recurrent and feed-forward ANNs are presented. The recurrent ANN is trained to predict sensor values based on current valve states, which control air flow, so that with only valve states the normal SOH sensor values can be predicted. Deviation between modeled value and actual is an indication of a potential problem. The feed-forward ANN acts as a nonlinear version of principal components analysis (PCA) and is trained to replicate the normal SOH sensor values. Because of ARSA's complexity, this nonlinear PCA is better able to capture the relationships among the sensors than standard linear PCA and is applicable to both sensor validation and recognizing off-normal operating conditions. Both models provide valuable information to detect impending malfunctions before they occur to avoid unscheduled shutdown. Finally, the ability of ANN methods to predict the system state is presented.

  19. Nature of the lithospheric mantle beneath the Arabian Shield and genesis of Al-spinel micropods: Evidence from the mantle xenoliths of Harrat Kishb, Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed H.; Moghazi, Abdel Kader M.; Moufti, Mohamed R.; Dawood, Yehia H.; Ali, Kamal A.

    2016-01-01

    The Harrat Kishb area of western Saudi Arabia is part of the Cenozoic volcanic fields in the western margin of the Arabian Shield. Numerous fresh ultramafic xenoliths are entrained in the basanite lava of Harrat Kishb, providing an opportunity to study the nature and petrogenetic processes involved in the evolution of the lithospheric mantle beneath the Arabian Shield. Based on the petrological characteristics and mineralogical compositions, the majority of the mantle xenoliths ( 92%) are peridotites (lherzolites and pyroxene-bearing harzburgites); the remaining xenoliths ( 8%) are unusual spinel-rich wehrlites containing black Al-spinel micropods. The two types of mantle xenoliths display magmatic protogranular texture. The peridotite xenoliths have high bulk-rock Mg#, high forsterite (Fo90-Fo92) and NiO (0.24-0.46 wt.%) contents of olivine, high clinopyroxene Mg# (0.91-0.93), variable spinel Cr# (0.10-0.49, atomic ratio), and approximately flat chondrite-normalized REE patterns. These features indicate that the peridotite xenoliths represent residues after variable degrees of melt extraction from fertile mantle. The estimated P (9-16 kbar) and T (877-1227 °C) as well as the oxidation state (∆logfO2 = - 3.38 to - 0.22) under which these peridotite xenoliths originated are consistent with formation conditions similar to most sub-arc abyssal-type peridotites worldwide. The spinel-rich wehrlite xenoliths have an unusual amount ( 30 vol.%) of Al-spinel as peculiar micropods with very minor Cr2O3 content (< 1 wt.%). Olivines of the spinel-rich wehrlites have low-average Fo (Fo81) and NiO (0.18 wt.%) contents, low-average cpx Mg# (0.79), high average cpx Al2O3 content (8.46 wt.%), and very low-average spinel Cr# (0.01). These features characterize early mantle cumulates from a picritic melt fraction produced by low degrees of partial melting of a garnet-bearing mantle source. The relatively high Na2O and Al2O3 contents of cpx suggest that the spinel-rich wehrlites

  20. Unstable deformation in layered media: Application to planetary lithospheres

    NASA Astrophysics Data System (ADS)

    Zuber, Maria Theresa

    Described are theoretical models in which observed length scales of deformation on a planetary surface are used to make inferences about the mechanical properties, style of deformation and nature of forces acting on the lithosphere. Each model represents an application of linearized hydrodynamic stability theory in which the lithosphere is treated as a strength and density stratified continuum in a state of horizontal extension or compression. The first paper, Extension of Continental Lithosphere: A Model for Two Scales of Basin and Range Deformation, demonstrates that short and long wavelengths of deformation may develop in response to unstable extension of the strong upper crust and upper mantle regions of the lithosphere, respectively. The second paper, Rifting by Ductile Lithosphere Extension: A Dynamic Model for Rift Morphology, analyzes the dynamic contribution to rift morphology of flow induced by a necking instability in an extending lithosphere. It is shown that deformation which nucleates about an initial thickness perturbation in the strong layer of an extending lithosphere results in a rift-like structure, with a width related to the dominant wavelength of the extensional instability. The third paper, Unstable Compression of Oceanic Lithosphere: An Analysis of Intraplate Deformation in the Central Indian Basin, shows that the wavelength of intraplate deformation observed in the Indian Ocean can provide constraints on the strong layer strength of the lithosphere.

  1. H2O contents and geochemistry of peridotite xenoliths from the Anyuan: Nature and evolution of lithospheric mantle beneath the west Cathaysia block SE China

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zheng, J.; Lu, J.; Tang, Z.

    2015-12-01

    The major-, trace-elements and H2O contents of minerals from peridotite xenoliths hosted in the Mesozoic lamprophyres of Anyuan area (SE China) were analyzed by electron microprobe, LA-ICPMS and Fourier transform infrared spectroscopy, respectively. The xenoliths include spinel harzburgites, lherzolites with or without spinel. The harzburgites and lherzolites with spinels are moderately refractory (Mg#Ol=90.2-91.2), whereas lherzolites without spinels are fertile (Mg#Ol=89.1-89.9). The REE patterns of clinopyroxenes in these xenoliths vary from LREE-depleted, through flat, to LREE-enriched patterns, and commonly exhibit negative U, Pb and Ti anomalies. The results suggest that the xenoliths mostly experienced 1-10% partial melting and subsequently silicate metasomatism. Water contents of clinopyroxene (cpx), orthopyroxene (opx), and olivine (ol) range from 330 to 404 ppm, 126 to 279 ppm, and 11 to 33 ppm, respectively. No correlations between H2O content and melting index (i.e., YbN in cpx, Cr# in spinel) and metasomatic index ((La/Yb)N in cpx) show that extent of partial melting and mantle metasomatism did not modify the initial H2O contents. Most water contents of the mantle source are largely preserved in pyroxenes. The whole-rock water contents range from 67 to 124 ppm, similar to that of the MORB source. Therefore, we suggest that the Cenozoic lithospheric mantle of the Cathaysia block is accreted from the upwelled and cooled asthenospheric mantle. On the other hand, the widespread refractory lithospheric mantle ever existed in the western Cathaysia. The coexistence of fertile mantle and refractory-transitional mantle beneath the west Cathaysia block might be attributed to the refertilization of the lithospheric mantle by the upwelling asthenospheric materials and eventually replacement resulting from the cooling of the upwelled asthenosphere.

  2. Nature and evolution of the lithospheric mantle beneath the eastern Central Asian Orogenic Belt: Constraints from peridotite xenoliths in the central part of the Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Pan, Shaokui; Zheng, Jianping; Griffin, W. L.; Xu, Yixian; Li, Xiyao

    2015-12-01

    Our knowledge of the lithospheric mantle beneath the Central Asian Orogenic Belt is still sparse. Petrologic, major- and trace-element studies on the peridotite xenoliths from the Cenozoic volcanic fields in the Aershan area, the central part of the Great Xing'an Range, NE China, provide insights into the nature and evolution of the lithospheric mantle beneath the eastern part of the belt. According to the REE patterns of clinopyroxene, these peridotites can be divided into three groups which show clear differences in microstructure, geochemistry and equilibration temperature. Group 1 xenoliths (LREE-depleted patterns of Cpx) are lherzolites, with protogranular microstructure and high modal Cpx (8-13 wt.%), low Cr# in spinel (< 21.1), high whole-rock CaO and Al2O3 contents and estimated temperatures of 834-849 °C. Group 2 xenoliths (flattened REE patterns of Cpx) are harzburgites, with microstructures transitional between mosaic and tabular and low Cpx content (2-3 wt.%); they have high Cr# in spinel (41.1-49.6), low whole-rock CaO and Al2O3 levels and equilibration temperatures of 1183-1244 °C. Group 1 peridotites represent the newly accreted fertile mantle which was not significantly affected by post-melting enrichment; while Group 2 xenoliths may be older relics of moderately refractory mantle that underwent H2O bearing silicate-melt metasomatism (Ti/Eu > 3300, (La/Yb)N < 1 and occurrence of amphibole). Group 3 peridotites (convex-up REE patterns of Cpx) comprise both lherzolite and harzburgite; they have porphyroclastic microstructures, and show a broad range of Cpx modes (0-7 wt.%), spinel-Cr# (26.5-71.1), bulk rock CaO and Al2O3 contents and temperatures (941-1239 °C). The high TiO2 contents (up to 1.42 wt.%) in spinels of Group 3 imply the involvement of melt/rock reactions. We suggest that the upwelling of asthenospheric material played a key role in modifying the lithospheric mantle underneath the eastern Central Asian Orogenic Belt, and resulted in

  3. Comparison of new and existing algorithms for the analysis of 2D radioxenon beta gamma spectra

    DOE PAGES

    Deshmukh, Nikhil; Prinke, Amanda; Miller, Brian; ...

    2017-01-13

    The aim of this study is to compare radioxenon beta–gamma analysis algorithms using simulated spectra with experimentally measured background, where the ground truth of the signal is known. We believe that this is among the largest efforts to date in terms of the number of synthetic spectra generated and number of algorithms compared using identical spectra. We generate an estimate for the minimum detectable counts for each isotope using each algorithm. The paper also points out a conceptual model to put the various algorithms into a continuum. Finally, our results show that existing algorithms can be improved and some newermore » algorithms can be better than the ones currently used.« less

  4. State-of-Health Software for the Automated Radioxenon Sampler/Analyzer

    SciTech Connect

    Heimbigner, Tom R.; Bowyer, Ted W.; Hayes, James C.; Hubbard, Charles W.; McIntyre, Justin I.; Panisko, Mark E.; Ripplinger, Mike D.; Suarez, Reynold

    2004-09-22

    The Automated Radioxenon Analyzer/Sampler (ARSA) is a complex gas-collection and analysis system that requires constant online monitoring of system operations and overall system health. The software-control system records and monitors and over 100 different system sensors (temperature, pressures, voltages, etc.) A real-time record of the system state allows the system to monitor for unsafe conditions and maintain the system in a safe state regardless of external or internal failures (vacuum pump, valve or power failures, and runaway temperatures are a few examples). Another function of real-time monitoring allows the user to troubleshoot the system when a problem arises, should a minor sensor or a major system failure occur. This paper will outline the general scheme used by the state-of-health program to monitor and assess the system, the graphical user interface program and the alert message system, and give specific examples of proper system performance and some system failures.

  5. Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi; Tenzer, Robert

    2017-07-01

    In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).

  6. A program to generate simulated radioxenon beta–gamma data for concentration verification and validation and training exercises

    SciTech Connect

    McIntyre, Justin I.; Schrom, Brian T.; Cooper, Matthew W.; Prinke, Amanda M.; Suckow, Thomas J.; Ringbom, Anders; Warren, Glen A.

    2016-03-08

    Abstract Several hundred simulated radioxenon beta-gamma data files were developed to assist in evaluating the performance and results from radioxenon concentration calculation analysis at the International Data Center (IDC) and other National Data Centers (NDC). PNNL developed a Beta-Gamma Simulator (BGSim) that incorporated GEANT-modeled data sets from radioxenon decay chains, as well as functionality to use nuclear detector-acquired data sets to create new beta-gamma spectra with varying amounts of background, 133Xe, 131mXe, 133mXe, 135Xe, and 222Rn and its decay products. The program has been implemented on a web-based applications platform and allows the user to create very specific data sets that incorporate most of the operational parameters for the current beta-gamma systems deployed in the International Monitoring System (IMS) and the On-site Inspection (OSI) equipment. After an initial beta-gamma simulations program was developed, additional uses began to be identified for the program output: training sets of two-dimensional spectra for data analysts at the IDC and other NDC, spectra for exercises such as the Integrated Field Exercise 2014 (IFE14) held in Jordan at the Dead Sea, and testing new analysis methods and algorithms

  7. Lithospheric and crustal thinning

    NASA Technical Reports Server (NTRS)

    Moretti, I.

    1985-01-01

    In rift zones, both the crust and the lithosphere get thinner. The amplitude and the mechanism of these two thinning situations are different. The lithospheric thinning is a thermal phenomenon produced by an asthenospherical uprising under the rift zone. In some regions its amplitude can exceed 200%. This is observed under the Baikal rift where the crust is directly underlaid by the mantellic asthenosphere. The presence of hot material under rift zones induces a large negative gravity anomaly. A low seismic velocity zone linked to this thermal anomaly is also observed. During the rifting, the magmatic chambers get progressively closer from the ground surface. Simultaneously, the Moho reflector is found at shallow depth under rift zones. This crustal thinning does not exceed 50%. Tectonic stresses and vertical movements result from the two competing effects of the lithospheric and crustal thinning. On the one hand, the deep thermal anomaly induces a large doming and is associated with extensive deviatoric stresses. On the other hand, the crustal thinning involves the formation of a central valley. This subsidence is increased by the sediment loading. The purpose here is to quantify these two phenomena in order to explain the morphological and thermal evolution of rift zones.

  8. NSF Continental Lithosphere Program

    NASA Astrophysics Data System (ADS)

    Mayhew, Michael; MacGregor, Ian

    For several months the Continental Lithosphere Program (CL) of the National Science Foundation has been subject to a major review. The process was stimulated by a series of budget setbacks over the past few years. Although Presidential budget requests have been very favorable for the Division of Earth Sciences (EAR), and there has been strong support within the National Science Foundation and Congress, actual appropriations by Congress have been disappointing.In each year the final allocation to EAR has been affected by external factors beyond the control of the Foundation. In the four fiscal years from 1986 through 1989 the factors include reductions tied to the Gramm-Rudman deficit reduction measures, congressional reaction to the October 1987 stock market crash, and two years of protection for the Ocean Sciences part of the NSF budget that was paid for from the budgets of the Atmospheric and Earth Sciences divisions.

  9. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    PubMed

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006

    SciTech Connect

    Ringbom, Anders; Elmgren, K.; Lindh, Karin; Peterson, Jenny; Bowyer, Ted W.; Hayes, James C.; McIntyre, Justin I.; Panisko, Mark E.; Williams, Richard M.

    2009-12-03

    Abstract Following the claimed nuclear test in the Democratic People’s Republic of Korea (DPRK) on October 9, 2006, and a reported seismic event, a mobile system for sampling of atmospheric xenon was transported to the Republic of South Korea (ROK) in an attempt to detect possible emissions of radioxenon in the region from a presumed test. Five samples were collected in the ROK during October 11–14, 2006 near the ROK–DPRK border, and thereafter transported to the Swedish Defense Research Agency (FOI) in Stockholm, Sweden, for analysis. Following the initial measurements, an automatic radioxenon sampling and analysis system was installed at the same location in the ROK, and measurements on the ambient atmospheric radioxenon background in the region were performed during November 2006 to February 2007. The measured radioxenon concentrations strongly indicate that the explosion in October 9, 2006 was a nuclear test. The conclusion is further strengthened by atmospheric transport models. Radioactive xenon measurement was the only independent confirmation that the supposed test was in fact a nuclear explosion and not a conventional (chemical) explosive.

  11. True Polar Wander of Bodies with Elastic Lithospheres: the Role of Elastic Energy in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Matsuyama, Isamu M.; Nimmo, F.; Mitrovica, J. X.

    2006-09-01

    True polar wander (TPW) refers to the reorientation of the rotation axis of a body in response to changes in the inertia tensor due to mass redistribution. Since the state of the lowest kinetic energy for a rigid body corresponds to rotation about the principal axis associated with the largest moment of inertia, it is generally assumed that any internal energy dissipation will tend to drive the body to that state. The equatorial location of the Tharsis province on Mars, and the polar location of Enceladus' hot spot may be explained by reorientation of these bodies due to TPW (Matsuyama et al. 2006, JGR, 111, E02003; Nimmo and Pappalardo 2006, Nature, 441). Ojakangas and Stevenson (1986, BAAS, 18) indicate that the minimum total energy state may not correspond to principal axis rotation for planets with elastic lithospheres because reorientation generates elastic strains within the lithosphere, which reduces the energy available to drive further reorientation. We generalize the approach of Matsuyama et al. (2006, JGR, 111, E02003) to obtain TPW solutions by finding the minimum total energy state that includes a self-consistent elastic energy stored in the lithosphere. We expect the addition of the lithospheric strain term to reduce the total amount of reorientation compared to analyses that neglect this effect. This stabilizing effect is likely to be less important on bodies which have broken plates (Earth) compared with those that have continuous plates (Venus, Mars).

  12. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  13. Lithospheric Architecture Beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, R. W.; Miller, M. S.; Darbyshire, F. A.

    2015-12-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches 􏰂350 km thick but is thinner (􏰂200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the lithosphere-asthenosphere boundary (LAB) conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  14. Isotopic Characterization of Radioiodine and Radioxenon in Releases from Underground Nuclear Explosions with Various Degrees of Fractionation

    NASA Astrophysics Data System (ADS)

    Kalinowski, Martin B.; Liao, Yen-Yo

    2014-03-01

    Both radioxenon and radioiodine are possible indicators for a nuclear explosion. Therefore, they will be, together with other relevant radionuclides, globally monitored by the International Monitoring System in order to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty once the treaty has entered into force. This paper studies the temporal development of radioxenon and radioiodine activities with two different assumptions on fractionation during the release from an underground test. In the first case, only the noble gases are released, in the second case, radioiodine is released as well while the precursors remain underground. For the second case, the simulated curves of activity ratios are compared to prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of the time of atmospheric air sampling for concentration measurements of 135I, 133I and 131I. In addition, the effect of both fractionation cases on the isotopic activity ratios is shown in the four-isotope-plot (with 135Xe, 133mXe, 133Xe and 131mXe) that can be utilized for distinguishing nuclear explosion sources from civilian releases.

  15. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station.

    PubMed

    Eslinger, Paul W; Bowyer, Ted W; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T; Seibert, Petra; Stein, Ariel F; Ungar, Kurt; Yi, Jing

    2016-06-01

    The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward. An understanding of natural and man-made radionuclide backgrounds can be used in accordance with the provisions of the treaty (such as event screening criteria in Annex 2 to the Protocol of the Treaty) for the effective implementation of the verification regime. Fission-based production of (99)Mo for medical purposes also generates nuisance radioxenon isotopes that are usually vented to the atmosphere. One of the ways to account for the effect emissions from medical isotope production has on radionuclide samples from the IMS is to use stack monitoring data, if they are available, and atmospheric transport modeling. Recently, individuals from seven nations participated in a challenge exercise that used atmospheric transport modeling to predict the time-history of (133)Xe concentration measurements at the IMS radionuclide station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well. A model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in understanding how to discriminate those releases from

  16. The history and fate of three families of lithosphere on Earth

    NASA Astrophysics Data System (ADS)

    Lee, C. T.

    2016-12-01

    the number of clinopyroxene pinning points. In summary, a lithosphere's fate depends on the nature of its origin. Continental lithospheres born thick will have long, boring lives, continental lithospheres born thin will be forever tormented, and oceanic lithospheres are fated to have calm but brief lives at the Earth's surface.

  17. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  18. Lithospheric architecture beneath Hudson Bay

    NASA Astrophysics Data System (ADS)

    Porritt, Robert W.; Miller, Meghan S.; Darbyshire, Fiona A.

    2015-07-01

    Hudson Bay overlies some of the thickest Precambrian lithosphere on Earth, whose internal structures contain important clues to the earliest workings of plate formation. The terminal collision, the Trans-Hudson Orogen, brought together the Western Churchill craton to the northwest and the Superior craton to the southeast. These two Archean cratons along with the Paleo-Proterozoic Trans-Hudson internides, form the core of the North American craton. We use S to P converted wave imaging and absolute shear velocity information from a joint inversion of P to S receiver functions, new ambient noise derived phase velocities, and teleseismic phase velocities to investigate this region and determine both the thickness of the lithosphere and the presence of internal discontinuities. The lithosphere under central Hudson Bay approaches ˜350 km thick but is thinner (˜200-250 km) around the periphery of the Bay. Furthermore, the amplitude of the LAB conversion from the S receiver functions is unusually large for a craton, suggesting a large thermal contrast across the LAB, which we interpret as direct evidence of the thermal insulation effect of continents on the asthenosphere. Within the lithosphere, midlithospheric discontinuities, significantly shallower than the base of the lithosphere, are often imaged, suggesting the mechanisms that form these layers are common. Lacking time-history information, we infer that these discontinuities reflect reactivation of formation structures during deformation of the craton.

  19. Effect of Upper Mantle Heterogeneities on Lithosphere Stresses and Topography

    NASA Astrophysics Data System (ADS)

    Osei Tutu, A.; Steinberger, B.; Rogozhina, I.; Sobolev, S. V.

    2016-12-01

    The orientation and magnitude of lithosphere stresses give us knowledge about most of the processes within the Earth that are not easy to observe. It has been established (Steinberger, Schmeling, and Marquart 2001) that large contribution of the forces producing lithosphere stresses have their source origination from the buoyancies of both the upper and lower mantle acting beneath the lithosphere. The contribution of the crustal thickness to the stresses has been estimated to be less than 10% (Steinberger et al. 2001) in most region and increases in areas with high gravitational potential energy like the Himalayas. In most of these studies, the effect of the crust was determined separately by computing the gravitational potential energy from the crust (Ghosh et al. 2013) and applied as correction. (Artyushkov 1973) showed that the inhomogeneous nature of the crust contribute to the stresses observed as against using constant lithosphere thickness in most studies, due to the complexities for implementing a variable lithosphere. We seek extend the approach of Ghosh et al. (2013) by coupling the Crust 1.0 (Laske et al. 2013) to a varaible lithosphere thickness in our numerical method. Using a 3D global lithosphere-asthenosphere model (Popov and Sobolev 2008) with visco-elasto-plastic rheology, coupled at 300 km depth to a mantle modeled with a spectral technique (Hager and O'Connell, 1981), we compute lithosphere stresses and topography. we compare our model with observations; the World Stress Map, Global Strain Rate Map and the observed topgraphy. We use S40RTS seismic tomography below 300 km depth, with radial viscosity distribution (Steinberger et al 2006). To account for all the heterogeneities in the upper mantle (300 km) we used different 3D temperatures models setups. The first model is the thermal lithosphere model (Artemieva and Mooney, 2001) in continental regions and assumes half-space cooling of sea floor with age (Müller et al. 2008) for oceans. For the

  20. Geodynamic inversion to constrain the nonlinear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, Tobias; Kaus, Boris

    2015-04-01

    A common method to determine the strength of the lithosphere is through estimating its effective elastic thickness from the coherence between gravity and topography. This method assumes a priori that the lithosphere is a thin elastic plate floating on a viscous mantle. Whereas this seems to work well with oceanic plates, it has given controversial results in continental collision zones. Usually, continental collisions zones are well-studied areas for which additional geophysical datasets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere, as this also requires knowledge of the rheology of the lithosphere. Experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent approach is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. Our method combines numerical thermo-mechanical forward models of the present-day lithosphere with a massively parallel Bayesian inversion approach. The geometry of the forward models is part of the a priori knowledge and is constructed from seismological data. We jointly invert topography, gravity, horizontal and vertical surface velocities to constrain the unknown rheological material parameters of the forward models in a probabilistic sense. The model rheology is described with experimentally determined viscous creep laws and other parameters describing the plastic behaviour. As viscosity is temperature dependent, the temperature structure of the forward models is parameterised as well. We apply the method to cross-sections of the India-Asia collision system. In this case, we deal with 17 to 20 model parameters, which requires solving up to 2 × 106 forward

  1. Analog Modeling of Continental Lithosphere Subduction

    NASA Astrophysics Data System (ADS)

    Willingshofer, E.; Sokoutis, D.; Luth, S.; Beekman, F.; Cloetingh, S.

    2012-12-01

    Lithospheric-scale analog modeling sheds light on the consequences of decoupling within the continental lithosphere and along plate interfaces during continental collision. The model results provide valuable information in terms of strain localization, deformation of the subducting slab and the evolution and architecture of the overlying mountain belt and its topography. A weak layer has been implemented in three-layer models to simulate decoupling along the plate interface and at different levels of the lithosphere (brittle-ductile transition, entire lower crust, crust-mantle boundary). Additionally, varying the strength of the mantle lithosphere of both the upper as well as the lower plate regulated the degree of plate coupling. Plate boundaries were orthogonal to the convergence direction. All models emphasize that strong decoupling at the plate interface is a pre-requisite for the subduction of continental lithosphere. In addition, deformation of the subducting slab was found to be sensitive to the strength contrast between the subduction zone and the mantle lithosphere of the downgoing as well as the upper plate. As such, a low strength contrast between the plate interface and the lower plate leads to deformation of the subducting slab by thickening and the development of a shallow slab. Conversely, when the strength contrast is high, deep slabs evolve which undergo relatively less deformation. Furthermore, the level of decoupling in the downgoing plate governs how much continental crust is subducted together with the mantle lithosphere. Shallow decoupling, at the brittle-ductile transition, results in subduction of the lower crust whereas small amounts of lower crust are subducted when decoupling occurs at the level of the Moho. Weak plate coupling and a weak lower crust of the lower plate steer the evolution of mountain belts such that deformation propagates outward, in the direction of the incoming plate, by successive imbrication of upper crustal thrust

  2. Carbon, Halogens and Sulfur: Key Volatiles in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Frezzotti, M. L.; Ferrando, S.; Oglialoro, E.; Peverelli, V.; Villa, I. M.

    2016-12-01

    The role of volatiles in the lithosphere, especially in the C-O-H-S-halogens system, is crucial to upper mantle geodynamic evolution, metasomatism, and melting. Although it is clear that halogen (± sulfur)-rich aqueous fluids exert a key influence on the geochemical signature of the lithosphere in subduction zones, the composition and the distribution of fluids and/or volatile-rich melts in the oceanic and continental lithospheric mantle in intraplate and extensional tectonic settings have been taken into account only in recent times. Potential tracers of the nature of volatiles include fluid and melt inclusions in peridotite xenoliths, which represent proxies for mantle volatiles at lithospheric depths. Here, we present petrological and fluid/melt inclusion studies in peridotite xenoliths in intraplate and extensional tectonic regions of active magmatism, that include Ethiopia, Hawaii, and the Canary Islands. Mantle fluids are CO2-rich, but contain significant, although variable, amounts of H2O, halogens, and sulfur species. Chlorine represents the most abundant halogen (mole fraction up to 0.04), and sulfur is present either as H2S, SO2, or sulfates. Such compositions are unknown from intraplate and extensional settings and show unexpected similarities to fluids preserved in kimberlitic diamonds. Data delineate changes in volatile speciation and redox conditions in the lithosphere, and yield improved insights on how ascending hydrous carbonate-rich melts exsolve aqueous-carbonic fluids enriched in halogens and sulfur, which may be locally immiscible. Carbon, halogens and sulfur in lithospheric mantle fluids support an origin that includes incorporation of recycled crustal sediments and basaltic oceanic crust, away from subduction zones. The composition and the distribution of lithospheric fluids suggest a possible role of recycling in transporting predominantly CO2, H2O, and some fluid mobile elements via paleo-subduction events in the convective mantle.

  3. Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2011-12-01

    experimental results at lithospheric temperatures. Seamounts and oceanic islands are therefore a 'natural laboratory', we believe, to study lithospheric rheology on both short and long time scales.

  4. Is the Venusian lithosphere subducting?

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Using data collected by the Magellan spacecraft, we are exploring the hypothesis that the cooler and more rigid outer layer of Venus (i.e., the lithosphere) is sinking (subducting) into the interior of Venus. If this process is occurring, it provides a mechanism for cooling the interior of Venus and also for recycling the lighter crustal rocks back into the interior. In addition, since subduction zones drive the plate tectonic motion on the Earth, evidence for lithospheric subduction on Venus raises the possibility of limited plate tectonic-like activity on Venus.

  5. Failure strength of icy lithospheres

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Banerdt, W. B.

    1987-01-01

    Lithospheric strengths derived from friction on pre-existing fractures and ductile flow laws show that the tensile strength of intact ice under applicable conditions is actually an order of magnitude stronger than widely assumed. It is demonstrated that this strength is everywhere greater than that required to initiate frictional sliding on pre-existing fractures and faults. Because the tensile strength of intact ice increases markedly with confining pressure, it actually exceeds the frictional strength at all depths. Thus, icy lithospheres will fail by frictional slip along pre-existing fractures at yeild stresses greater than previously assumed rather than opening tensile cracks in intact ice.

  6. Global Seismic Imaging of the Lithosphere Asthenosphere Boundary

    NASA Astrophysics Data System (ADS)

    Tharimena, S.; Rychert, C.; Harmon, N.

    2015-12-01

    The lithosphere asthenosphere boundary (LAB) beneath oceans separates rigid, conductively cooling plates from the underlying warm ductile convecting mantle, characterized by low seismic wave velocities and high attenuation. The depth and nature of the lithosphere asthenosphere boundary is fundamental to our understanding of plate tectonics and mantle convection. Although conductive cooling models establish that oceanic lithosphere cools, thickens and subsides as it ages, this simple realization of the tectonic plates is not well understood. The depth, sharpness, composition and defining mechanism of the LAB remains elusive. Although oceanic lithosphere constitutes the bulk of the tectonic plates, precisely imaging the LAB has proved challenging. Here we use SS precursors from 25 years of seismic data to image and globally map the depth of the LAB across the Pacific, Atlantic and Indian Oceans. The result represents a vast improvement in lateral coverage of discontinuities in comparison to previous results. The depth of the discontinuity varies from 25 to 130 km within an error of ±5 km. We observe a general trend of increasing discontinuity depth with plate age, although some old oceanic lithosphere has shallower discontinuities. Overall, the results are suggestive of two distinct mantle layers.

  7. Magmatic expressions of continental lithosphere removal

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Currie, Claire A.

    2015-10-01

    Gravitational lithosphere removal in continental interior has been inferred from various observations, including anomalous surface deflections and magmatism. We use numerical models and a simplified theoretical analysis to investigate how lithosphere removal can be recognized in the magmatic record. One style of removal is a Rayleigh-Taylor-type instability, where removal occurs through dripping. The associated magmatism depends on the lithosphere thermal structure. Four types of magmatism are predicted: (1) For relatively hot lithosphere (e.g., back arcs), the lithosphere can be conductively heated and melted during removal, while the asthenosphere upwells and undergoes decompression melting. If removal causes significant lithospheric thinning, the deep crust may be heated and melted. (2) For moderately warm lithosphere (e.g., average Phanerozoic lithosphere) in which the lithosphere root has a low density, only the lithosphere may melt. (3) If the lithosphere root has a high density in moderately warm lithosphere, only asthenosphere melt is predicted. (4) For cold lithosphere (e.g., cratons), no magmatism is induced. An alternate style of removal is delamination, where dense lithosphere peels along Moho. In most cases, the lithosphere sinks too rapidly to melt. However, asthenosphere can upwell to the base of the crust, resulting in asthenospheric and crustal melts. In delamination, magmatism migrates laterally with the detachment point; in contrast, magmatism in Rayleigh-Taylor-type instability has a symmetric shape and converges toward the drip center. The models may explain the diversity of magmatism observed in areas with inferred lithosphere removal, including the Puna Plateau and the southern Sierra Nevada.

  8. Constraints on Composition, Structure and Evolution of the Lithosphere

    NASA Astrophysics Data System (ADS)

    Bianchini, Gianluca; Bonadiman, Costanza; Aulbach, Sonja; Schutt, Derek

    2015-05-01

    The idea for this special issue was triggered at the Goldschmidt Conference held in Florence (August 25-30, 2013), where we convened a session titled "Integrated Geophysical-Geochemical Constraints on Composition and Structure of the Lithosphere". The invitation to contribute was extended not only to the session participants but also to a wider spectrum of colleagues working on related topics. Consequently, a diverse group of Earth scientists encompassing geophysicists, geodynamicists, geochemists and petrologists contributed to this Volume, providing a comprehensive overview on the nature and evolution of lithospheric mantle by combining studies that exploit different types of data and interpretative approaches. The integration of geochemical and geodynamic datasets and their interpretation represents the state of the art in our knowledge of the lithosphere and beyond, and could serve as a blueprint for future strategies in concept and methodology to advance our knowledge of this and other terrestrial reservoirs.

  9. The extending lithosphere (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Brun, Jean-Pierre

    2017-04-01

    Extension of the lithosphere gives birth to a wide range of structures, with characteristic widths between 10 and 1000 km, which includes continental rifts, passive margins, oceanic rifts, core complexes, or back-arc basins. Because the rheology of rocks strongly depends on temperature, this variety of extensional structures falls in two broad categories of extending lithospheres according to the initial Moho temperature TM. "Cold extending systems", with TM < 750°C and mantle-dominated strength, lead to narrow rifts and, if extension is maintained long enough, to passive margins and then mantle core complexes. "Hot extending systems", with TM > 750°C and crustal-dominated strength, lead, depending on strain rate, to either wide rifts or metamorphic core complexes. A much less quoted product of extension is the exhumation of high-pressure (HP ) metamorphic rocks occurring in domains of back-arc extension driven by slab rollback (e.g. Aegean; Appennines-Calabrian) or when the subduction upper plate undergoes extension for plate kinematics reasons (e.g. Norwegian Caledonides; Papua New Guinea). In these tectonic environments, well-documented pressure-temperature-time (P - T - t) paths of HP rocks show a two-stage retrogression path whose the first part corresponds to an isothermal large pressure drop ΔP proportional to the maximum pressure Pmax recorded by the rocks. This linear relation between ΔP and Pmax, which likely results from a stress switch between compression and extension at the onset of exhumation, is in fact observed in all HP metamorphism provinces worldwide, suggesting that the exhumation of HP rocks in extension is a general process rather than an uncommon case. In summary, the modes and products of extension are so diverse that, taken all together, they constitute a very versatile natural laboratory to decipher the rheological complexities of the continental lithosphere and their mechanical implications.

  10. The structural evolution of the deep continental lithosphere

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Miller, Meghan S.; Moresi, Louis

    2017-01-01

    Continental lithosphere houses the oldest and thickest regions of the Earth's surface. Locked within this deep and ancient rock record lies invaluable information about the dynamics that has shaped and continue to shape the planet. Much of that history has been dominated by the forces of plate tectonics which has repeatedly assembled super continents together and torn them apart - the Wilson Cycle. While the younger regions of continental lithosphere have been subject to deformation driven by plate tectonics, it is less clear whether the ancient, stable cores formed and evolved from similar processes. New insight into continental formation and evolution has come from remarkable views of deeper lithospheric structure using enhanced seismic imaging techniques and the increase in large volumes of broadband data. Some of the most compelling observations are that the continental lithosphere has a broad range in thicknesses (< 100 to > 300 km), has complex internal structure, and that the thickest portion appears to be riddled with seismic discontinuities at depths between 80 and 130 km. These internal structural features have been interpreted as remnants of lithospheric formation during Earth's early history. If they are remnants, then we can attempt to investigate the structure present in the deep lithosphere to piece together information about early Earth dynamics much as is done closer to the surface. This would help delineate between the differing models describing the dynamics of craton formation, particularly whether they formed in the era of modern plate tectonics, a transitional mobile-lid tectonic regime, or are the last fragments of an early, stagnant-lid planet. Our review paper (re)introduces readers to the conceptual definitions of the lithosphere and the complex nature of the upper boundary layer, then moves on to discuss techniques and recent seismological observations of the continental lithosphere. We then review geodynamic models and hypotheses for the

  11. Fossilized Dipping Fabrics in Continental Mantle Lithosphere as Possible Remnants of Stacked Oceanic Paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, V.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2015-12-01

    We have examined seismic anisotropy within the mantle lithosphere of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-wave anisotropy delimit domains of the mantle lithosphere, each of them having a consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics in the mantle lithosphere. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  12. Lithospheric Displacement Features on Europa and Their Interpretation

    NASA Astrophysics Data System (ADS)

    Tufts, Bruce Randall

    A geologic study of lithospheric displacements on the Jovian moon Europa reveals lateral motions and plate flexure. Tectonics are governed by the rotation rate, nature of the lithosphere and underlying decoupling layer, the nature and causes of lateral displacements, plus mechanisms for creating and consuming surface area, and for restoring lithospheric rigidity. Astypalaea Linea is an 810-km-long strike-slip fault near the south pole, with 42 km of right-lateral offset, and includes a large pull-apart. Considering scale and contaminants, the lithosphere may have a tensile strength of ~2.5 bars. The fault probably formed as a crack due to stresses from nonsynchronous rotation and diurnal tides, and was displaced by 'walking' due to diurnal tides. Adjacent regional structures record earlier episodes of strike-slip. Wedge-shaped bands in the antijovian fracture zone are reconstructed, confirming the occurrence of block rotation and episodic dilation. A band on the leading side of the satellite is also reconstructed. Whether these bands formed under the influence of the same stress patterns which caused Astypalaea Linea is unclear; regional structures in the antijovian region suggest deformation by distributed shear. Dilation has also occurred across at least one ridge representative of a type independently interpreted as dilational based on ridge morphology. Other ridges apparently flex the underlying lithospheric plate downward. The lithosphere is inferred from flexural parameters at one locality to be 0.25-3.5 km thick. New lithosphere forms by ratchet-type spreading at bands and some ridges. Surface area may be removed by chaos formation or other processes. A global time marker based on a shift in ridge size is used to show that displacement was probably long-lived as well as widespread. During displacement, lithospheric plates were rigid and integral despite the appearance of cracks, perhaps due to annealing processes. Tides are the primary driving force for

  13. Lithospheric foundering and underthrusting imaged beneath Tibet

    NASA Astrophysics Data System (ADS)

    Chen, Min; Niu, Fenglin; Tromp, Jeroen; Lenardic, Adrian; Lee, Cin-Ty A.; Cao, Wenrong; Ribeiro, Julia

    2017-06-01

    Long-standing debates exist over the timing and mechanism of uplift of the Tibetan Plateau and, more specifically, over the connection between lithospheric evolution and surface expressions of plateau uplift and volcanism. Here we show a T-shaped high wave speed structure in our new tomographic model beneath South-Central Tibet, interpreted as an upper-mantle remnant from earlier lithospheric foundering. Its spatial correlation with ultrapotassic and adakitic magmatism supports the hypothesis of convective removal of thickened Tibetan lithosphere causing major uplift of Southern Tibet during the Oligocene. Lithospheric foundering induces an asthenospheric drag force, which drives continued underthrusting of the Indian continental lithosphere and shortening and thickening of the Northern Tibetan lithosphere. Surface uplift of Northern Tibet is subject to more recent asthenospheric upwelling and thermal erosion of thickened lithosphere, which is spatially consistent with recent potassic volcanism and an imaged narrow low wave speed zone in the uppermost mantle.

  14. Lithospheric foundering and underthrusting imaged beneath Tibet.

    PubMed

    Chen, Min; Niu, Fenglin; Tromp, Jeroen; Lenardic, Adrian; Lee, Cin-Ty A; Cao, Wenrong; Ribeiro, Julia

    2017-06-06

    Long-standing debates exist over the timing and mechanism of uplift of the Tibetan Plateau and, more specifically, over the connection between lithospheric evolution and surface expressions of plateau uplift and volcanism. Here we show a T-shaped high wave speed structure in our new tomographic model beneath South-Central Tibet, interpreted as an upper-mantle remnant from earlier lithospheric foundering. Its spatial correlation with ultrapotassic and adakitic magmatism supports the hypothesis of convective removal of thickened Tibetan lithosphere causing major uplift of Southern Tibet during the Oligocene. Lithospheric foundering induces an asthenospheric drag force, which drives continued underthrusting of the Indian continental lithosphere and shortening and thickening of the Northern Tibetan lithosphere. Surface uplift of Northern Tibet is subject to more recent asthenospheric upwelling and thermal erosion of thickened lithosphere, which is spatially consistent with recent potassic volcanism and an imaged narrow low wave speed zone in the uppermost mantle.

  15. Lithospheric foundering and underthrusting imaged beneath Tibet

    PubMed Central

    Chen, Min; Niu, Fenglin; Tromp, Jeroen; Lenardic, Adrian; Lee, Cin-Ty A.; Cao, Wenrong; Ribeiro, Julia

    2017-01-01

    Long-standing debates exist over the timing and mechanism of uplift of the Tibetan Plateau and, more specifically, over the connection between lithospheric evolution and surface expressions of plateau uplift and volcanism. Here we show a T-shaped high wave speed structure in our new tomographic model beneath South-Central Tibet, interpreted as an upper-mantle remnant from earlier lithospheric foundering. Its spatial correlation with ultrapotassic and adakitic magmatism supports the hypothesis of convective removal of thickened Tibetan lithosphere causing major uplift of Southern Tibet during the Oligocene. Lithospheric foundering induces an asthenospheric drag force, which drives continued underthrusting of the Indian continental lithosphere and shortening and thickening of the Northern Tibetan lithosphere. Surface uplift of Northern Tibet is subject to more recent asthenospheric upwelling and thermal erosion of thickened lithosphere, which is spatially consistent with recent potassic volcanism and an imaged narrow low wave speed zone in the uppermost mantle. PMID:28585571

  16. Understanding lithospheric stresses in Arctic: constraints and models

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Minakov, Alexander; Lebedeva-Ivanova, Nina; Gaina, Carmen

    2016-04-01

    This pilot project aims to model stress patterns and analyze factors controlling lithospheric stresses in Arctic. The project aims to understand the modern stresses in Arctic as well as to define the ways to test recent hypotheses about Cenozoic evolution of the region. The regions around Lomonosov Ridge and Barents Sea are of particular interest driven by recent acquisition of high-resolution potential field and seismic data. Naturally, the major contributor to the lithospheric stress distribution is the gravitational potential energy (GPE). The study tries to incorporate available geological and geophysical data to build reliable GPE. In particular, we use the recently developed integrated gravity inversion for crustal thickness which incorporates up-to-date compilations of gravity anomalies, bathymetry, and sedimentary thickness. The modelled lithosphere thermal structure assumes a pure shear extension and the ocean age model constrained by global plate kinematics for the last ca. 120 Ma. The results of this approach are juxtaposed with estimates of the density variation inferred from the upper mantle S-wave velocity models based on previous surface wave tomography studies. Although new data and interpretations of the Arctic lithosphere structure become available now, there are areas of low accuracy or even lack of data. To compensate for this, we compare two approaches to constrain GPE: (1) one that directly integrates density of modelled lithosphere and (2) one that uses geoid anomalies which are filtered to account for density variations down to the base of the lithosphere only. The two versions of GPE compared to each other and the stresses calculated numerically are compared with observations. That allows us to optimize GPE and understand density structure, stress pattern, and factors controlling the stresses in Arctic.

  17. Slab Detachment and Polarity Reversal of Convergent Mantle Lithosphere at Continental Plate Collision

    NASA Astrophysics Data System (ADS)

    Pysklywec, R. N.

    2001-12-01

    Plate collision involving oceanic lithosphere is characterized by subduction which may proceed for hundreds of millions of years and associated descending slabs may be traced deep into the mantle. Less certain is the nature of lithospheric deformation during continental plate convergence. Recent studies suggest that shortening mantle lithosphere (i.e., sub-crustal lithosphere) may be accommodated by a subduction-like style of deformation beneath the crustal thickening and orogenesis. However, it is not clear how this process evolves and how it is different from ``classical'' plate subduction. Using visco-plastic (thermally activated power-law creep; frictional Coulomb) numerical models of the crust-mantle system these issues are considered for the case of an idealized continent-continent plate convergence. The experiments suggest that while mantle lithosphere can continue to subduct after collision, it does not assume a steady form as in most cases of oceanic subduction. Instead, depending on the tectonic environment, the downgoing plate is prone to detach, resulting in a reversal of subduction polarity. Alternatively (largely depending on the strength of the model lithosphere), the mantle lithosphere may be consumed in an ablative manner with steepening and possible roll-over/polarity reversal of the downgoing plate(s). The results are compared to geophysical/geological observations at various collisional plate boundaries such as Taiwan; South Island, New Zealand; and the Himalayas which show similar styles of lithospheric deformation.

  18. The strength of Miranda's lithosphere

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert; Greeley, Ronald

    1991-01-01

    In attempting to understand the endogenic processes which have shaped the surface of an icy satellite, it is desirable to quantify the failure strength of the satellite's lithosphere. In a crust that is fractured on a large scale, frictional sliding along pre-existing fractures occurs in response to lower differential stresses than required to initiate fracture of pristine rock, thus governing failure of a brittle lithosphere. Failure is predicted along favorably oriented fracture planes; if fractures of all orientations are assumed to be present in the crust (as is expected of a heavily cratered lithosphere), frictional failure relations are directly applicable. The Coulomb criterion predicts that the shear stress (sigma sub t) and normal stress (sigma sub n) components on a fracture plane at failure are related as sigma sub t = mu-sigma sub n + S sub o, where S sub o is the cohesion and mu is the coefficient of friction. At moderate to high pressures, the frictional sliding strength of most materials is found to be sigma sub t = 0.85 sigma sub n.

  19. The Role of the Mantle Lithosphere in Continent Stability

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Ancuta, L. D.; Fouch, M. J.; Idleman, B. D.; Ionov, D. A.; James, D. E.; Meltzer, A.; Pearson, G.; Shirey, S. B.; Zeitler, P. K.

    2012-12-01

    compositions (Barry et al., Lithos, 2007) not obviously consistent with a plume contribution to this activity. We suggest instead that the basaltic activity relates to the fertile nature of the Mongolian lithospheric mantle and that this area will remain geologically unsettled until and unless the mantle lithosphere can be replaced with infertile mantle similar to that underlying cratons.

  20. Revisiting the Ridge-Push Force Using the Lithospheric Geoid

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2014-12-01

    energy required through filtering of the geoid. We evaluate the role of revised ridge push forces with plate-scale stress models. Our revised estimate of the ridge push force based on the lithospheric geoid, and corresponding stress models, further emphasizes the "active" rather than "passive" nature of the plates themselves in plate tectonics.

  1. Some Problems of the Lithosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory A.

    2015-04-01

    relationship between faulting and earthquake activity and the continuous deformation field below the seismogenic layer continues to be poorly understood. Prominent surface faults may be a natural consequence of the localization of strain caused by processes within the ductile layer such as shear heating, grain-size reduction, or simply the interaction of non-Newtonian constitutive law and irregular geometry. Where intra-plate convergence occurs the lithosphere must thicken, and the question naturally arises as to whether the thickened lithosphere will remain stable or somehow be removed by convective overturn with underlying asthenophere. Such overturn is expected of a viscous lithospheric layer that is denser than the asthenosphere; it will be denser because it is colder, unless there is some compositional contrast which makes it intrinsically buoyant. A relatively low viscosity is required, however, in order that the instability can grow at a sufficiently fast rate to overcome diffusive stabilisation of the temperature field. The high stresses created by plate convergence may provide the mechanism that activates the viscosity (and explains why the lithosphere elsewhere is generally stable). High-resolution tomographic investigations find convincing evidence of small-scale mantle drips occurring beneath recently active orogenic zones such as the western USA and the SE Carpathians. However, seismic observations of thickened lithosphere remaining beneath Tibet apparently contradict the interpretation of mantle overturn suggested by recent volcanism and uplift. Although the Tibetan mantle lithosphere may be relatively buoyant, the possibility that this layer has overturned internally may allow these conflicting interpretations to be reconciled.

  2. Limiting depth of magnetization in cratonic lithosphere

    NASA Technical Reports Server (NTRS)

    Toft, Paul B.; Haggerty, Stephen E.

    1988-01-01

    Values of magnetic susceptibility and natural remanent magnetization (NRM) of clino-pyroxene-garnet-plagioclase granulite facies lower crustal xenoliths from a kimberlite in west Africa are correlated to bulk geochemistry and specific gravity. Thermomagnetic and alternating-field demagnetization analyses identify magnetite (Mt) and native iron as the dominant magnetic phases (totaling not more than 0.1 vol pct of the rocks) along with subsidiary sulfides. Oxidation states of the granulites are not greater than MW, observed Mt occurs as rims on coarse (about 1 micron) Fe particles, and inferred single domain-pseudosingle domain Mt may be a result of oxidation of fine-grained Fe. The deepest limit of lithospheric ferromagnetism is 95 km, but a limit of 70 km is most reasonable for the West African Craton and for modeling Magsat anomalies over exposed Precambrian shields.

  3. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  4. Dynamic lithosphere within the Great Basin

    NASA Astrophysics Data System (ADS)

    Porter, Ryan C.; Fouch, Matthew J.; Schmerr, Nicholas C.

    2014-04-01

    place new constraints on the short-term, broad-scale lithospheric evolution of plate interiors, we utilize broadband seismic data from the Great Basin region of the Western United States to produce high-resolution images of the crust and upper mantle. Our results suggest that parts of the Great Basin lithosphere has been removed, likely via inflow of hot asthenosphere as subduction of the Farallon spreading center occurred and the region extended. In our proposed model, fragments of thermal lithosphere removed by this process were gravitationally unstable and subsequently sank into the underlying mantle, leaving behind less dense, stronger, chemically depleted lithosphere. This destabilization process promotes volcanism, deformation, and the reworking of continental lithosphere inboard from plate margins. Our results provide evidence for a new mechanism of lithospheric evolution that is likely common and significant in postsubduction tectonic settings.

  5. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708

  6. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    NASA Astrophysics Data System (ADS)

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W. W., Jr.; Miller, T. P.

    1989-11-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16-37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121-0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15-25), moderate δ18O (+8.3 to +8.6), high SIR (0

  7. A numerical study of forced lithospheric thinning

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, A.; Fishbein, E.

    1985-01-01

    Subsolidus lithospheric thinning by mantle plumes may be involved in the creation of swells, hotspots, and rifts. Among the major questions concerning this process are the timescale on which it occurs and the structure of the plumes. The lithosphere is known to have been substantially thinned in 10 Ma or less. Current studies are focused on the lithospheric thinning by time-dependent plumes hypothesized to have large temperature differences across them.

  8. Venus Chasmata: A Lithospheric Stretching Model

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.

  9. The mantle lithosphere and the Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Heron, Philip; Pysklywec, Russell; Stephenson, Randell

    2017-04-01

    In the view of the conventional theory of plate tectonics (e.g., the Wilson Cycle), crustal inheritance is often considered important in tectonic evolution. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Deep seismic imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. Recent studies have interpreted mantle lithosphere heterogeneities to be pre-existing structures, and as such linked to the Wilson Cycle and inheritance. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, characteristic of stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in controlling deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics. We outline the difficulty in unravelling the causes of tectonic deformation, alongside discussing the role of deep lithosphere processes in plate tectonics.

  10. Lithospheric-scale centrifuge models of pull-apart basins

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  11. Continental Rifts: Lithospheric Weakness and Strength Contrasts as Triggers for Necking Instabilities

    NASA Astrophysics Data System (ADS)

    Wenker, S.; Beaumont, C.

    2014-12-01

    Rifted margin geometry is too complex and diverse to be explained by simple kinematic models. Instead, we consider the effects of strain localization and the growth of necking instabilities as they apply to rifted margins. The intrinsic layering of the lithosphere will affect the growth rate of necking instabilities, leading to depth-dependent extension. In addition, continents are far from homogeneous after multiple cycles of collision, strike-slip motion and rifting. The resulting inherited heterogeneities may serve to localize strain and initiate necking instabilities. We use 2D finite element models containing embedded finite weak zones in the crust and/or mantle as well as a vertical lithospheric boundary across which lithospheric layering changes resulting in an overall strength contrast. We show that there are two controls on the style of rifting: Control 1, the stiff/pliable nature of the lithospheric layers and; Control 2, the distribution of the background strain rate in the lithosphere. Control 1 depends on the lithospheric rheology, such that necking instabilities grow faster in a stiff, dominantly plastic, layer than in equivalent layers with a pliable, mostly viscous, rheology. Control 2 is important where a strength contrast at a lithospheric boundary influences the distribution of the background strain rate. Necking is a mechanism that amplifies the background strain rate, which implies faster necking in parts of the lithosphere where background strain rates are highest. In a laterally homogeneous lithosphere, the background strain rate will be uniform in each layer and Control 1 will dominate giving necking in stiff layers. However, juxtaposed lithospheres with different strengths will distribute strain giving the weaker lithosphere the higher strain rate, implying the fastest necking may occur under Control 2 in pliable layers with the higher strain rate. An end-member case is where strong lithosphere acts as a rigid block. Here, no necking

  12. DANUBE 2004 Lithosphere Research Program

    NASA Astrophysics Data System (ADS)

    Hegedus, E.; Brueckl, E.; Csabafi, R.; Fancsik, T.; Grad, M.; Guterch, A.; Hajnal, Z.; Keller, R.; Kovacs, A. C.; Komminaho, K.; Kozlovskaya, E.; Tiira, T.; Torok, I.; Yliniemi, J.

    2005-12-01

    The DANUBE 2004 (Deep imAgiNg of hUngarian BasEment) lithosphere research program following significant seismic lithospheric experiments in Central Europe (e.g., CELEBRATION 2000), was coordinated by the ELGI, on the commission of the Public Agency for Radioactive Waste Management (PURAM), in international cooperation. The goal of the research program was to allocate and characterize the potential geological site for high-level radioactive waste disposal in SW Hungary (Central Europe) using seismic methods. The research program comprised of two main fields: 1) 2D, 3D active seismic measurements 2) passive seismotectonic monitoring 1) Detailed 2D seismic reflection measurements were carried out along four profiles in the study area using 20 m geophone spacing with >100 folds in order to image the deep geological structure of the potential waste disposal site. Tomographic imaging of the reflection data along the four profiles was also carried out, whereas a 40 km long wide angle tomographic profile and a 50 square kilometers 3D tomography were performed in the prospective location. 2) Passive seismotectonic monitoring of the waste disposal site is also part of the program. 30 SP stations with continuous data recording (100 sps) are used to gather the seismic signals emerging from local tectonic activity in the 2000 square kilometers area so as to locate tectonically active zones in the region. The passive monitoring focuses on low (M< or =1) magnitude seismic signals that are expected from the study area.

  13. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  14. Estimates of radioxenon released from Southern Hemisphere medical isotope production facilities using measured air concentrations and atmospheric transport modeling.

    PubMed

    Eslinger, Paul W; Friese, Judah I; Lowrey, Justin D; McIntyre, Justin I; Miley, Harry S; Schrom, Brian T

    2014-09-01

    The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and (133)Xe data from three IMS sampling locations to estimate the annual releases of (133)Xe from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8 × 10(14) Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 2.2 × 10(16) to 2.4 × 10(16) Bq, estimates for the facility in Indonesia vary from 9.2 × 10(13) to 3.7 × 10(14) Bq and estimates for the facility in Argentina range from 4.5 × 10(12) to 9.5 × 10(12) Bq. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Improvements in Calibration and Analysis of the CTBT-relevant Radioxenon Isotopes with High Resolution SiPIN-based Electron Detectors

    NASA Astrophysics Data System (ADS)

    Khrustalev, K.

    2016-12-01

    Current process for the calibration of the beta-gamma detectors used for radioxenon isotope measurements for CTBT purposes is laborious and time consuming. It uses a combination of point sources and gaseous sources resulting in differences between energy and resolution calibrations. The emergence of high resolution SiPIN based electron detectors allows improvements in the calibration and analysis process to be made. Thanks to high electron resolution of SiPIN detectors ( 8-9 keV@129 keV) compared to plastic scintillators ( 35 keV@129keV) there are a lot more CE peaks (from radioxenon and radon progenies) can be resolved and used for energy and resolution calibration in the energy range of the CTBT-relevant radioxenon isotopes. The long term stability of the SiPIN energy calibration allows one to significantly reduce the time of the QC measurements needed for checking the stability of the E/R calibration. The currently used second order polynomials for the E/R calibration fitting are unphysical and shall be replaced by a linear energy calibration for NaI and SiPIN, owing to high linearity and dynamic range of the modern digital DAQ systems, and resolution calibration functions shall be modified to reflect the underlying physical processes. Alternatively, one can completely abandon the use of fitting functions and use only point-values of E/R (similar to the efficiency calibration currently used) at the energies relevant for the isotopes of interest (ROI - Regions Of Interest ). Current analysis considers the detector as a set of single channel analysers, with an established set of coefficients relating the positions of ROIs with the positions of the QC peaks. The analysis of the spectra can be made more robust using peak and background fitting in the ROIs with a single free parameter (peak area) of the potential peaks from the known isotopes and a fixed E/R calibration values set.

  16. Anatomy of lithosphere necking during orthogonal rifting

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio

    2013-04-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.

  17. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Müntener, O.; Jean, G.; Schoene, B.; Schaltegger, U.

    2016-12-01

    The temporal coincidence between LIPs and mass extinctions has led many to pose a causal relationship between the two. However, there is still no consensus on a mechanistic model that explains how magmatism leads to the turnover of terrestrial and marine plants, invertebrates and vertebrates. Here, we present a synthesis of stratigraphic constraints on the Triassic-Jurassic and Pliensbachian-Toarcian boundaries combined with geochronological data demonstrating that these biotic crises are both associated with rapid change from an initial cool period to greenhouse conditions. As current hypothesis for LIPs seems unable to produce these successive climatic changes, we evaluate an alternative suggesting that the initial cooling could be due to gas release during the initial thermal erosion of the cratonic lithosphere due to emplacement of the CAMP and Karoo-Ferrar volcanic provinces. Karoo and CAMP areas were underlain by thick lithosphere (>200 km) prior to continental break up. Even in presence of abnormal potential mantle temperature, the presence of thick lithosphere excludes significant melting of the asthenospheric mantle without initial stage of thermal erosion of the cratonic lithosphere. Various studies on Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. We argue that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission. We suggest that the nature of the underlying lithosphere during large LIP eruption exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  18. The Lithospheric Structure of Madagascar

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Pratt, M. J.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.; Nyblade, A.; Aleqabi, G. I.; Shore, P.; Tucker, R.; Wiens, D. A.; Rambolamanana, G.

    2016-12-01

    The lithosphere of Madagascar is revealed for the first time from a combination of studies using data from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the IRIS PASSCAL program (funded by NSF, with additional data from the RHUM-RUM and Madagascar Seismic Profile projects). Methods include seismicity locations, body-wave receiver functions, Pn tomography, body-wave tomography, and ambient-noise and two-plane-wave earthquake surface-wave analyses. Madagascar's crustal thickness varies greatly, from 20 to 45 km, in good agreement with its past tectonic history of rifting from the mainland and having India break away to the north. The crust is thickest along the central spine of the island, along a ridge of mountains, but unusually high elevations suggest some amount f thermal buoyancy in the mantle. Crust is also thick along the east coast, where archean terranes were severed from India. Crust is thinnest along the west coast, where thick sedimentary basins up to 8 km thick are found on top of unusually thinned basement crust (about 12 km thick), a remnant of rifting away from Africa 130-160 Ma ago. Madagascar has an unusually high level of intraplate seismicity, with 918 earthquakes located during the 2-year period. Seismicity shows interesting correlations with paleotectonic features, but much is located in the central regions of the island, associated with normal faulting along several graben structures. This region also corresponds to the central of three regions within Madagascar (north, central, and southwest) that display strong lithospheric seismic low-velocity anomalies that underlie regions of current or recent volcanic activity. Surface waves show that these low-velocity zones (LVZs) extending down into the asthenosphere, and body-wave tomography shows them extending even deeper. Pn tomography shows that the width of the central LVZ is only about 100-200 km in diameter at the top of the mantle, indicative of

  19. The lithosphere-asthenosphere transition and radial anisotropy beneath the Australian continent

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Kennett, B. L. N.

    2015-05-01

    A new 3-D S wave speed model for the Australian region derived from multimode surface waves allows us to examine the nature of the lithosphere-asthenosphere transition (LAT) and its relation to radial anisotropy. In eastern Phanerozoic Australia the estimated depths of the LAT tie well with those from receiver functions. However, in the Archean and Proterozoic lithosphere in western and central Australia, the LAT derived from the surface wave model is generally much deeper than the discontinuities recognized from receiver functions and shows a smooth transition. There is significant radial anisotropy (SH > SV) in the upper lithosphere as well as in the LAT and the underlying asthenosphere. Strong anisotropy in the asthenosphere reflects the effects of present shear flow in the mantle beneath the continent. The lateral variation of lithospheric anisotropy correlates well with the suture zones between cratonic blocks, representing frozen anisotropy associated with the ancient tectonics of Australia.

  20. Metasomatized lithosphere and the origin of alkaline lavas.

    PubMed

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  1. Deformation in the continental lithosphere

    NASA Astrophysics Data System (ADS)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  2. Lithospheric flexure at fracture zones

    NASA Technical Reports Server (NTRS)

    Sandwell, D.; Schubert, G.

    1982-01-01

    Studies attempting to demonstrate that lithospheric flexure occurs across the Pioneer and Mendocino fracture zones, and that the flexural topography is a topographic expression at these fracture zones, are presented. The flexure is modelled and compared with predicted depths with five bathymetric profiles which cross the two fracture zones at different ages. The model uses a thin elastic plate overlying an incompressible fluid half-space, and incorporates a temperature-dependent effective elastic thickness. Several conclusions were derived from this study. First, it is found that no significant slip on the fossil fault planes of the Mendocino and Pioneer fracture zones exists. In addition, the flexural amplitude is determined to increase with age. Finally, it is concluded that there is elastic coupling between the Mendocino and Pioneer fracture zones since the separation is less than a flexural wavelength.

  3. Lithosphere dynamics and continental deformation

    NASA Astrophysics Data System (ADS)

    Bird, Peter

    1995-07-01

    The unifying theme in this section is the remarkable weakness of major faults. I will consider the diverse new evidence for weakness, and the evidence for high pore pressure localized in faults as a fundamental cause. With this background one can better understand why faults remain active even after large rotations with respect to stress: I will look at large Neogene (≤23.7 million year old) rotations about horizontal axes in the Basin and Range province, and about vertical axes along the Pacific margin. Recent developments will be summarized from studies of Neogene tectonics (neotectonics) in California, Alaska, and the Mississippi embayment, in the context of a weak North American stress field that results mainly from topographic forces. To close, I will present new geophysical studies relevant to the continuing controversy over whether the basic structure of the North American mantle lithosphere was altered by an early Tertiary episode of flat subduction.

  4. Dynamic topography as constraints on stress and viscosity in the mantle and lithosphere

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2015-12-01

    Pas, and convection-induced lithospheric stress is unlikely to exceed 200 MPa (i.e., the yield stress for plate interiors). I will discuss the general implications of the results for mantle dynamics including dynamic generation of plate tectonics and the nature of mantle structures (i.e., slabs and plumes) as imaged seismically.

  5. Lithospheric foundering and underthrusting imaged beneath Tibet

    NASA Astrophysics Data System (ADS)

    Chen, M.; Niu, F.; Tromp, J.; Lenardic, A.; Lee, C. T.; Cao, W.; Ribeiro, J.

    2016-12-01

    New tomographic images unveil a large-scale, high wave speed structure beneath South-Central Tibet in the middle to lower portions of the upper mantle. We interpret this structure as a remnant of an earlier lithospheric foundering event. Spatial correlations between foundering lithosphere and ultrapotassic and adakitic magmatism support the hypothesis of convective removal of thickened Tibetan lithosphere causing a major rise of Southern Tibet during the Oligocene. Lithospheric foundering induces an asthenospheric drag force, which drives continued underthrusting of the Indian continental lithosphere and associated shortening of the remaining Tibetan lithosphere. We speculate that more recent asthenospheric upwelling leads to a thermal modification of thickened lithosphere beneath Northern Tibet and subsequent surface uplift, consistent with the correlation of recent potassic volcanism and an imaged narrow low wave speed zone in the uppermost mantle. In contrast, the unusually high seismic wave speeds in the uppermost mantle beneath Southern Tibet, reminiscent of images beneath the North American craton, suggest a possible prototype of modern craton formation due to continued under-accretion of Indian continent.

  6. Rheology of the lithosphere: selected topics.

    USGS Publications Warehouse

    Kirby, S.H.; Kronenberg, A.K.

    1987-01-01

    Reviews recent results concerning the rheology of the lithosphere with special attention to the following topics: 1) the flexure of the oceanic lithosphere, 2) deformation of the continental lithosphere resulting from vertical surface loads and forces applied at plate margins, 3) the rheological stratification of the continents, 4) strain localization and shear zone development, and 5) strain-induced crystallographic preferred orientations and anisotropies in body-wave velocities. We conclude with a section citing the 1983-1986 rock mechanics literature by category.-Authors

  7. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  8. Yellowstone hotspot-continental lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Jean, Marlon M.; Hanan, Barry B.; Shervais, John W.

    2014-03-01

    The Snake River Plain represents 17 m.y. of volcanic activity that took place as the North American continent migrated over a relatively fixed magma source, or hotspot. We present new Pb, Sr, and Nd data for a suite of 25 basalts collected from Western and Central Snake River Plain (SRP). The new isotope data, combined with previously published data from the SRP, provide a traverse of the Wyoming craton margin, from the 87Sr/86Sr = 0.706 line boundary of western SRP with Phanerozoic accreted terranes, east through the central and eastern SRP, to the Yellowstone Plateau. Low-K basalts from the western SRP, overlain by high-K basalts, provide a temporal record of regional source variation from ∼16.8 to 0.2 Ma. Principal Component Analysis (PCA) of the new and previously published SRP basalt Pb isotopes reveals that >97% of the total variability is accounted for by mixing between three end-members and is consistent with a sublithospheric Yellowstone hotspot mantle source with a radiogenic isotope composition similar to the mantle source of the early Columbia River Basalt Group (CRBG) and two continental lithosphere end-members, heterogeneous in age and composition. We use the SRP Pb, Sr, and Nd isotope data to model the Yellowstone Hotspot-continental lithosphere interaction by three component mixing between two continental lithospheric components, Archean lithosphere (CL1) that represents older lithosphere underlying the Yellowstone Plateau in the east, and Paleoproterozoic lithosphere (CL2) representing the younger lithosphere underlying the SRP in the west near the craton margin, and a sublithospheric end-member, representing the Yellowstone hotspot (PL). The results suggest a continuous flow of PL material westward as the NA continental lithosphere migrated over the upwelling hotspot along a shoaling gradient in the sub-continental mantle lithosphere. The model shows a decrease in Total Lithosphere end-members (CL1 + CL2) and the Lithosphere Ratio (CL1/CL2

  9. A Multi-Layer Phoswich Radioxenon Detection System, Reporting Period 07/01/07 - 09/30/07

    SciTech Connect

    David M. Hamby

    2007-10-25

    previous simulations, to confirm convergence of the solutions provided by our software methods. We have initiated our investigation into the radon signature expected in our XEPHWICH system. We intend to utilize this signature to confirm earth movement, in the event of an underground nuclear explosion, by continuously monitoring radon levels and noting increases in radon concentration in conjunction with increased levels of radioxenons. The research group is also designing and constructing a fission chamber to be used for the collection of radioxenon gases following neutron bombardment of HEU in the Oregon State University TRIGA reactor. To this point, we have completed milling the aluminum housing and have modeled fission product nuclide production associated with the fissioning of HEU. Additionally, the students have been busy compiling the appropriate information in preparation for irradiation approvals. Using beta spectra of three initial nuclides collected on the prototype phoswich detector, spectral identification by a preliminary neural network was compared to that of solvers of a linear system of equations. Pre-processing in areas such as smoothing and endpoint identification is also being investigated as a means of improving spectral identification.

  10. Horizontal stresses induced by vertical processes in planetary lithospheres

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    1993-01-01

    Understanding the state of stress in the elastic lithosphere is of fundamental importance for planetary geophysics, as it is the link between the observed geologic structures on the surface and the processes which form and modify these structures. As such, it can provide valuable constraints for the difficult problem of determining interior structure and processes. On the Earth, most large scale, organized deformation can be related to lateral tectonics associated with plate dynamics; however, the tectonics on many extraterrestrial bodies (such as the Moon, Mars, and most of the outer-planet satellites) appears to be primarily vertical in nature, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. The largest stress contributions from vertical loading come from the flexure of the lithosphere, which induces both bending moments and membrane stresses. We are concerned here only with nonflexural changes in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. It is also of interest for providing a reference state of stress for interpreting stress measurements in the crust of the Earth.

  11. The Arctic lithosphere: an overview

    NASA Astrophysics Data System (ADS)

    Drachev, S.; Pease, V.; Stephenson, R.

    2012-04-01

    The Arctic is comprised of three deepwater oceanic basins, the Norwegian-Greenland, Eurasia, and Amerasia basins, surrounded by continental masses of the Achaean to Early Proterozoic North American, Baltica and Siberian cratons and intervening Neoproterozoic and Phanerozoic fold belts. Though the tectonic history of the Arctic continental realm spans almost three billions of years, the formation of the Arctic began with the creation of Pangaea-II supercontinent at end of Permian epoch. Between 250 and 150 Ma the Proto-Arctic was represented by the Anyui Ocean, or Angayuchum Sea - a Paleo-Pacific embayment into Pangaea II. During the Mesozoic Pangaea II was destroyed and the Anyi Ocean was isolated from the Paleo-Pacific, finally leading to the separation of Arctic Alaska-Chukchi Microcontinent from the North American side of Laurasia; the collision of this microplate with the Siberian margin occurred at ca. 125 Ma in association with the opening of the Canada Basin. The final stage of the Arctic formation took place in the Cenozoic, and was related to the propagation of the divergent Atlantic lithospheric plate boundary between North America and Baltica with the separation of the Lomonosov continental sliver from the Eurasian margin and opening of the Eurasia oceanic basin between 56 and 0 Ma. The present-day Arctic, especially its shelves and oceanic basins, is one of the least studied places on the Earth. Though we know the geology of the surrounding continental masses, there are still many questions remaining about major lithospheric divides beneath the Arctic seas, such as: • Where are the plate boundaries associated with the Amerasia Basin? • How and when did the Canada Basin open? • What was the pre-drift setting of the Chukchi Borderland? • Which tectonic processes formed the East Siberian shelves? • How and when did the major ridges in the Amerasia Basin form? • Where are the Early Tertiary plate boundaries in the Arctic? • What is the

  12. Rifting on Venus: Implications for lithospheric structure

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1985-01-01

    Lithospheric strength envelopes on Venus are reviewed and their implications for large scale rifting are discussed. Their relationship to crustal thicnesses and thermal gradients are explored. Also considered are the implications of a theory for rift formation.

  13. Lithosphere structure underneath the North China Craton inferred from elevation, gravity and geoid anomalies

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2015-12-01

    The North China Craton (NCC) is a classical example of ancient destroyed cratons. The NCC experienced widespread thermotectonic reactivations in the Phanerozoic. Recent work suggested that the old craton has been significantly modified or destroyed during this process. However, most of the studies were confined to the Eastern NCC, the nature and evolution of the lithosphere beneath the Central and Western NCC was less constrained due to the lack of data. While, recent geodetic data, with the advantages of high resolution and coverage, offers an opportunity to study the deep structure underneath the whole NCC. Here we construct a lithospheric-scale 3D model based on the integration of regional elevation, gravity, geoid and thermal data together with available seismic data. The combined interpretation of these data provides information on the density and temperature distribution at different depth ranges. In the Eastern NCC, a rapid thickness decrease of both crust and lithosphere is reflected, concordant with abrupt changes in surface topography and Bouguer gravity anomaly. Our results together with the widespread magmatic rocks suggest that the Eastern NCC has experienced significant destruction of the lithospheric mantle with substantial modifications and thinning of the crust. In the Central and Western NCC, the generally thick and 'cold' lithosphere suggests that the cratonic mantle root is preserved in the central and western NCC, in agreement with the relatively low heat flow, rare magmatic activity and long-term tectonic stability observed at the surface, with some areas mildly modified as indicated by thin lithosphere.

  14. A sharp lithosphere-asthenosphere boundary imaged beneath eastern North America.

    PubMed

    Rychert, Catherine A; Fischer, Karen M; Rondenay, Stéphane

    2005-07-28

    Plate tectonic theory hinges on the concept of a relatively rigid lithosphere moving over a weaker asthenosphere, yet the nature of the lithosphere-asthenosphere boundary remains poorly understood. The gradient in seismic velocity that occurs at this boundary is central to constraining the physical and chemical properties that create differences in mechanical strength between the two layers. For example, if the lithosphere is simply a thermal boundary layer that is more rigid owing to colder temperatures, mantle flow models indicate that the velocity gradient at its base would occur over tens of kilometres. In contrast, if the asthenosphere is weak owing to volatile enrichment or the presence of partial melt, the lithosphere-asthenosphere boundary could occur over a much smaller depth range. Here we use converted seismic phases in eastern North America to image a very sharp seismic velocity gradient at the base of the lithosphere-a 3-11 per cent drop in shear-wave velocity over a depth range of 11 km or less at 90-110 km depth. Such a strong, sharp boundary cannot be reconciled with a purely thermal gradient, but could be explained by an asthenosphere that contains a few per cent partial melt or that is enriched in volatiles relative to the lithosphere.

  15. The Stability of Tibetan Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory; England, Philip

    2017-04-01

    The large area of thickened crust beneath the Tibetan Plateau is a consequence of sustained continental convergence between India and the Eurasian land mass during the last 50 m.y. Although the Tibetan crust has thickened, there has been much debate about the consequences for its sub-crustal mantle lithosphere. The onset of crustal thinning in the late Miocene appears to require an increase in the gravitational potential energy of the plateau at that time. One explanation for that increase depended on the idea that the mantle lithosphere beneath Tibet had been replaced by asthenosphere, either by some form of convective thinning or by a delamination process akin to retreating subduction acting on the unstable lithospheric mantle layer. Such ideas seem consistent with the history of magmatism and volcanism on the plateau. However, the dispersion of surface waves crossing the plateau implies that a relatively cold and fast layer of mantle remains beneath the plateau to depths of at least 250 km. Because the surface wave data appear inconsistent with the idea that mantle lithosphere has been removed, we investigate an alternative explanation that could explain the apparent increase in gravitational potential energy of the Tibetan lithosphere. If that mantle lithosphere has remained largely in place due to an intrinsic compositional buoyancy but, on thickening, has become unstable to an internal convective overturn, then: (1) mantle material at near asthenospheric temperatures would be emplaced below the crust, and (2) colder mantle from beneath the Moho could become stranded above about 250 km depth. This mechanism is feasible if the Tibetan sub-continental mantle lithosphere is depleted and intrinsically less dense than the underlying asthenosphere. The mechanism is broadly consistent with the surface wave analyses (which cannot resolve the short horizontal wavelengths on which overturn is likely to occur), and it predicts the kind of short-wavelength variations that

  16. Lithosphere-asthenosphere boundary: Where and why?

    NASA Astrophysics Data System (ADS)

    Aryasova, Olga; Khazan, Yakov

    2015-04-01

    A necessary condition of the lithosphere steady state is that the convective boundary layer (CBL) accommodating a transition from the lithosphere to the convecting mantle is on the verge of instability. The common practice of solving the stationary heat equation with boundary conditions (temperature and heat flow) imposed on the surface provides a solution which does not necessarily satisfy the marginal stability condition (MSC) of the CBL and therefore does not necessarily describe a valid steady state. We suggest the approach to the thermal modeling that uses the MSC instead of the heat flow boundary condition, which guarantees that the solution describes the steady-state lithosphere. In addition, in contrast to the commonly used approach, the MSC-based solution only weakly depends on the uncertainty of the crustal heat production in the sense that any two steady-state geotherms corresponding to different crustal heat production, but the same potential temperature and lithosphere structure, converge at depth. We demonstrate that if there is no obstacle to the mantle convection like chemical boundary layer (ChBL) comprising the crust and the layer of depleted rock then the lithosphere base occurs at the rheological depth, Hrh, which is of 70 to 50 km under the potential temperature of 1300 to 1350oC. This situation is characteristic of the mantle beneath the old oceanic crust areas far from disturbed regions, with the heat flow and the seafloor depth depending only on the potential temperature,Tp. An absence of noticeable distinctions between the heat flows in different oceanic basins suggests a global constancy of the potential temperature Tp at least in suboceanic mantle. Beneath continents, the ChBL thickness, Hdepl, exceeds Hrh even in Phanerozoic regions and, all the more so, in Precambrian ones. Therefore, in the subcontinental mantle the lithosphere is the same as the chemical boundary layer and the CBL is immediately adjacent to the lithosphere base. We

  17. Seismic anisotropy of Precambrian lithosphere: Insights from Rayleigh wave tomography of the eastern Superior Craton

    NASA Astrophysics Data System (ADS)

    Petrescu, Laura; Darbyshire, Fiona; Bastow, Ian; Totten, Eoghan; Gilligan, Amy

    2017-05-01

    The thick, seismically fast lithospheric keels underlying continental cores (cratons) are thought to have formed in the Precambrian and resisted subsequent tectonic destruction. A consensus is emerging from a variety of disciplines that keels are vertically stratified, but the processes that led to their development remain uncertain. Eastern Canada is a natural laboratory to study Precambrian lithospheric formation and evolution. It comprises the largest Archean craton in the world, the Superior Craton, surrounded by multiple Proterozoic orogenic belts. To investigate its lithospheric structure, we construct a frequency-dependent anisotropic seismic model of the region using Rayleigh waves from teleseismic earthquakes recorded at broadband seismic stations across eastern Canada. The joint interpretation of phase velocity heterogeneity and azimuthal anisotropy patterns reveals a seismically fast and anisotropically complex Superior Craton. The upper lithosphere records fossilized Archean tectonic deformation: anisotropic patterns align with the orientation of the main tectonic boundaries at periods ≤110 s. This implies that cratonic blocks were strong enough to sustain plate-scale deformation during collision at 2.5 Ga. Cratonic lithosphere with fossil anisotropy partially extends beneath adjacent Proterozoic belts. At periods sensitive to the lower lithosphere, we detect fast, more homogenous, and weakly anisotropic material, documenting postassembly lithospheric growth, possibly in a slow or stagnant convection regime. A heterogeneous, anisotropic transitional zone may also be present at the base of the keel. The detection of multiple lithospheric fabrics at different periods with distinct tectonic origins supports growing evidence that cratonization processes may be episodic and are not exclusively an Archean phenomenon.

  18. Why lithospheric extension separated the Aegean from Turkey

    NASA Astrophysics Data System (ADS)

    Ring, U.; Gessner, K.; Thomson, S. N.; Markwitz, V.

    2015-12-01

    The Aegean Sea region in the eastern Mediterranean is one of the classic and best-studied extensional provinces. Inspired by recent 3D geodynamic models of laterally heterogeneous accretion during rollback we discuss the nature of the transition from the Aegean Sea basin (Hellenides) into the Anatolian plateau of west Turkey (Anatolides). The Hellenides and Anatolides experienced similar rates of convergence, but display remarkable differences in lithospheric structure. Whereas the Aegean is characterized by sustained high-pressure metamorphism followed by slab retreat since c. 60 Ma, a south verging greenschist-facies thrust-and-fold belt formed in the Anatolides since c. 45 Ma. Fission-track contour maps show that since c. 24 Ma extension in both regions evolved differently. Gravity data, earthquake locations and seismic velocity anomalies highlight a N-S oriented subvertical boundary in the upper mantle between a fast slab below the Aegean and a slow asthenospheric region below west Turkey, the West Anatolia Transfer Zone (WATZ). Our data support the hypothesis that the WATZ developed as a result of laterally inhomogeneous convergence along the boundary of the Adriatic and Anatolian lithospheres. 3D numerical simulations of laterally inhomogeneous convergence predict a similar evolution, where two distinct domains develop along strike: a region of distributed shortening where the systems gets congested by a microcontinent (Anatolides), and a region of extension associated with rollback of the active subduction zone (Hellenides). Strike-slip deformation concentrates perpendicular to the boundary of the two domains (WATZ). The numerical simulations also predict other salient features of regional geology and geodynamics, including the origin of a lithospheric window below west Turkey, local ocean floor topography, and the formation of the North Anatolian Fault zone. We argue that the seemingly complex tectonic evolution of the Aegean-Anatolian portion of the

  19. The structure of the Ionian lithosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Clow, G. D.

    1984-01-01

    Exploratory work on the structure of the Ionian lithosphere is reported. The approach is to examine temperature profiles within the lithosphere that result from different distributions of sulfur and silicates and different conductive heat fluxes, then compare such profiles with observations in the expectation that only a limited set of the profiles are possible. In this preliminary work some rather simplistic assumptions were taken and the report should be viewed more as a demonstration of a method rather than a presentation of results.

  20. Lithospheric layering in the North American craton.

    PubMed

    Yuan, Huaiyu; Romanowicz, Barbara

    2010-08-26

    How cratons-extremely stable continental areas of the Earth's crust-formed and remained largely unchanged for more than 2,500 million years is much debated. Recent studies of seismic-wave receiver function data have detected a structural boundary under continental cratons at depths too shallow to be consistent with the lithosphere-asthenosphere boundary, as inferred from seismic tomography and other geophysical studies. Here we show that changes in the direction of azimuthal anisotropy with depth reveal the presence of two distinct lithospheric layers throughout the stable part of the North American continent. The top layer is thick ( approximately 150 km) under the Archaean core and tapers out on the surrounding Palaeozoic borders. Its thickness variations follow those of a highly depleted layer inferred from thermo-barometric analysis of xenoliths. The lithosphere-asthenosphere boundary is relatively flat (ranging from 180 to 240 km in depth), in agreement with the presence of a thermal conductive root that subsequently formed around the depleted chemical layer. Our findings tie together seismological, geochemical and geodynamical studies of the cratonic lithosphere in North America. They also suggest that the horizon detected in receiver function studies probably corresponds to the sharp mid-lithospheric boundary rather than to the more gradual lithosphere-asthenosphere boundary.

  1. Intraplate Seismicity and Lithospheric Strength as Inferred from 3D Seismic Models

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Pollitz, F. F.; Ritsema, J.

    2014-12-01

    Focal mechanism studies and other stress indicators indicate that intraplate earthquakes in central and eastern North America are consistent with an ENE-WSW compressive stress field that acts on existing faults. Here we argue that either locally thinned lithosphere (as beneath the Reelfoot Rift, central US) or regional lithospheric thinning (as beneath the edge of the North American craton or the rifted continental margin) constitutes zones of relatively low lithospheric strength where crustal strain accumulates. We use seismic surface waves to determine the 3D shear-wave seismic velocity structure of the lithosphere, and find that the Reelfoot Rift is underlain by a zone with low mantle seismic velocities that extends to at least 200 km depth. Thus, the Reelfoot Rift, which hosts the New Madrid Seismic Zone, is unique among North American paleo-rifts in term of the properties in the mantle. We hypothesize that this low-velocity mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively lower elastic plate thickness that would tend to concentrate tectonic stress within this zone. On a continental scale, the 3D velocity model clearly identifies an approximately 220-km-thick, high seismic velocity lithospheric root beneath the North America craton which has a low rate of crustal seismicity and very few events with Mw≥6. We attribute the relatively aseismic nature of the craton to dry, cold conditions within the cratonic lower crust and mantle lithosphere. Conversely, we find that a high proportion of intraplate events are concentrated around the pronounced lateral gradient in lithospheric thickness that surrounds the craton. We attribute this observation to a lateral decrease in lithospheric strength at the edge of the North American craton. This relationship between intraplate seismicity and lithospheric properties is apparent in maps that compare regional and continental lithospheric thickness with crustal seismicity. We

  2. Unstable extension of Enceladus' lithosphere

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Beyer, Ross A.; Showman, Adam P.

    2007-12-01

    Regions near Enceladus' equator, Sarandib and Diyar Planitia, contain extensive sets of parallel ridges and troughs that may be diagnostic of the region's formation conditions. We present photoclinometry profiles across these ridges and troughs, which indicate that they are periodic, low-slope features with dominant wavelengths of 3 to 4 km and amplitudes between 100 and 400 m. The morphology of these terrains is consistent with formation via unstable extension of the lithosphere. Our numerical modeling demonstrates that unstable extension can generate large-scale topography under Enceladus-like conditions. Comparison of our photoclinometry profiles with the dominant wavelengths produced by our numerical model permits estimation of the background heat flow at the time the Sarandib-Diyar province formed. We estimate heat flows of 110 to 220mWm, suggesting that resurfacing of the planitiae was accompanied by strong, localized heating. The extension necessary to produce the ridges and troughs may have been caused by now-inactive diapirs, internal phase changes, or other mechanisms. Our heat flux estimates imply elastic thickness at the time of resurfacing of 0.4 to 1.4 km, which are sufficient to have allowed satellite reorientation if the province was underlain by a low-density region. It is therefore plausible that Enceladus has experienced multiple heating events, each leading to localized resurfacing and global reorientation.

  3. Seismic evidence for the layered mantle lithosphere: a comparsion between Zagros and South Africa

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough; Kind, Rainer

    2014-05-01

    Recent S receiver function studies present evidence for the existence of the layered mantle lithosphere beneath ancient cratons. However, the nature of these layers is still unclear. They can be attributed to the presence of accumulated melts, remnants of subduction interfaces, changes in anisotropic properties or fluids. Further characterization of these layers is needed to provide more insights into the assembly and evolution of cratons. Here we compare the mantle lithosphere of the ancient Kalahari craton with the relatively young mantle lithosphere of Zagros, which is assumed as the location of the future craton. We applied the S receiver function method to map the internal layering of the lithosphere and to image its lower limit. For this aim, we used teleseismic events recorded at 97 seismic stations within the Kalahari craton and those recorded at 61 permanent seismic stations in Iran. Our results reveal a thick and stratified mantle lithosphere beneath the Kalahari craton containing three significant negative velocity contrasts at 85, 150-200, and 260-280 km depth. Moreover, they imply that frozen-in anisotropy as well as notable compositional variations can lead to sharp Mid-Lithospheric Discontinuities (MLD) that can be clearly observed in the SRF data. We show that a 50 km thick anisotropic layer just below the Moho boundary with 3% S wave anisotropy may be responsible for producing a MLD at 85 km depth. The horizontal anisotropy in the upper lithosphere may be attributed to processes during the formation of the Kalahari Craton. Furthermore, significant correlation between the depths of an apparent boundary separating the depleted and metasomatised lithosphere, as inferred from chemical tomography, and those of our second layer led us to characterize it as a compositional boundary, most likely due to the modification of the cratonic mantle lithosphere by magma infiltration. The largest velocity contrast (3.6-4.7%) is observed at a boundary located at

  4. Electromagnetic Studies Of The Lithosphere And Asthenosphere

    NASA Astrophysics Data System (ADS)

    Heinson, Graham

    In geodynamic models of the Earth's interior, the lithosphere and asthenosphere are defined in terms of their rheology. Lithosphere has high viscosity, and can be divided into an elastic region at temperatures below 350 °C and an anelastic region above 650 °C. Beneath the lithosphere lies the ductile asthenosphere, with one- to two-orders of magnitude lower viscosity. Asthenosphere represents the location in the mantle where the melting point (solidus) is most closely approached, and sometimes intersected. Seismic, gravity and isostatic observations provide constraints on lithosphere-asthenosphere structure in terms of shear-rigidity, density and viscosity, which are all rheological properties. In particular, seismic shear- and surface-wave analyses produce estimates of a low-velocity zone (LVZ) asthenosphere at depths comparable to the predicted rheological transitions. Heat flow measurements on the ocean floor also provide a measure of the thermal structure of the lithosphere.Electromagnetic (EM) observations provide complementary information on lithosphere-asthenosphere structure in terms of electrical conductivity. Laboratory studies of mantle minerals show that EM observations are very sensitive to the presence of melt or volatiles. A high conductivity zone (HCZ) in the upper mantle therefore represents an electrical asthenosphere (containing melt and/or volatile) that may be distinct from a rheological asthenosphere and the LVZ. Additionally, the vector propagation of EM fields in the Earth provides information on anisotropic conduction in the lithosphere and asthenosphere. In the last decade, numerous EM studies have focussed on the delineation of an HCZ in the upper mantle, and the determination of melt/volatile fractions and the dynamics of the lithosphere-asthenosphere. Such HCZs have been imaged under a variety of tectonic zones, including mid-ocean ridges and continental rifts, but Archaean shields show little evidence of an HCZ, implying that the

  5. Lithospheric controls on the formation of provinces hosting giant orogenic gold deposits

    USGS Publications Warehouse

    Bierlein, F.P.; Groves, D.I.; Goldfarb, R.J.; Dube, B.

    2006-01-01

    Ages of giant gold systems (>500 t gold) cluster within well-defined periods of lithospheric growth at continental margins, and it is the orogen-scale processes during these mainly Late Archaean, Palaeoproterozoic and Phanerozoic times that ultimately determine gold endowment of a province in an orogen. A critical factor for giant orogenic gold provinces appears to be thickness of the subcontinental lithospheric mantle (SCLM) beneath a province at the time of gold mineralisation, as giant gold deposits are much more likely to develop in orogens with subducted oceanic or thin continental lithosphere. A proxy for the latter is a short pre-mineralisation crustal history such that thick SCLM was not developed before gold deposition. In constrast, orogens with protracted pre-mineralisation crustal histories are more likely to be characterised by a thick SCLM that is difficult to delaminate, and hence, such provinces will normally be poorly endowed. The nature of the lithosphere also influences the intrinsic gold concentrations of potential source rocks, with back-arc basalts, transitional basalts and basanites enriched in gold relative to other rock sequences. Thus, segments of orogens with thin lithosphere may enjoy the conjunction of giant-scale fluid flux through gold-enriched sequences. Although the nature of the lithosphere plays the crucial role in dictating which orogenic gold provinces will contain one or more giant deposits, the precise siting of those giants depends on the critical conjunction of a number of province-scale factors. Such features control plumbing systems, traps and seals in tectonically and lithospherically suitable terranes within orogens. ?? Springer-Verlag 2006.

  6. Permeability Barrier Generation in the Martian Lithosphere

    NASA Astrophysics Data System (ADS)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  7. Modeling Geodynamic Mobility of Anisotropic Lithosphere

    NASA Astrophysics Data System (ADS)

    Perry-Houts, J.; Karlstrom, L.

    2016-12-01

    The lithosphere is often idealized as a linear, or plastic layer overlying a Newtonian half-space. This approach has led to many insights into lithospheric foundering that include Rayligh-Taylor drips, slab-style delaminations, and small scale convection in the asthenosphere. More recent work has begun to quantify the effect of anisotropic lithosphere viscosity on these same phenomena. Anisotropic viscosity may come about due to stratigraphic deposition in the upper crust, dike/sill emplacement in the mid crust, or volcanic underplating at the Moho related to arcs or plumes. Anisotropic viscosity is also observed in the mantle, due to preferential orientation of olivine grains during flow. Here we extend the work of Lev & Hager (2008) on modeling anisotropic lithospheric foundering to investigate the effects of anisotropic regions which vary in size, magnitude, and orientation. We have extended Aspect, a modern geodynamic finite element code with a large developer and user base, to model exotic constitutive laws with an arbitrary fourth order tensor in place of the viscosity term. We further implement a material model to represent a transverse isotropic medium, such as is expected in a layered, or fractured lithosphere. We have validated our implementation against previous results, and analytic solutions, reproducing the result that horizontally oriented anisotropy tends to inhibit drips, and produce longer-wavelength instabilities. We expect that increased lateral extent of anisotropic regions will exaggerate this effect, to a limit at which the effect will plateau. Varying lithosphere thickness, and mantle anisotropy anisotropy may produce similar behavior. The implications of this effect are significant to lithospheric foundering beneath arcs and hotspots, possibly influencing the recycling of eclogite, production of silicic magmas, and dynamic topography.

  8. Tracing lithosphere amalgamation through time: chemical geodynamics of sub-continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine

    2014-05-01

    of Re-Os isotope dating of cratonic peridotites. Empiric mineralogical and geochemical data of continental and oceanic lithospheric mantle has been examined extensively and metasomatism has been studied in great detail. I will present a numerical modelling approach generating a comprehensive catalogue of variously depleted plagioclase-, spinel- and garnet-peridotite major and trace element compositions. In addition primary Pb, Sr, Nd, Hf and Os isotope data will approximate refractory mantle generated during Earth's major episodes of depletion and continental crust formation (1.2, 1.8, 2.9, 3.8 Ga). These hypothetical compositions will be compared to natural peridotites from on- and off-cratonic xenoliths, abyssal and orogenic peridotites to identify those rare samples least altered by interaction with silicate, hydrous and carbonatitic melts. Extremely depleted mantle has the potential to harbour Pb, Sr, Nd, Hf and Os isotope compositions that would be easily recognized if silicate melts were generated from this type of pristine mantle and the record of volcanic rocks will be examined to identify potential lithospheric melts.

  9. The thermal structure and thermal evolution of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1984-01-01

    The thermal structure and evolution of the continental lithosphere are examined. Surface heat flow data and the factors which modify them are addressed, and the diversity of thermal phenomena in the lithosphere is discussed in the framework of plate interactions. The lithosphere is divided into three sections for the purposes of discussion. In the upper, near-surface zone, temperatures can be strongly affected by near-surface processes, which must be taken into account in the measurement and evaluation of surface heat flow. The thermal structure of the middle, internal zone of the lithosphere responds to the heat balance and thermal properties of the lithosphere, which define its steady state thermal structure. Internal deformation and magmatic intrusion within this zone, and interaction between the lithosphere and the asthenosphere in the lower boundary zone of the lithosphere cause transient thermal disturbances in the lithosphere. The criteria for defining the base of the thermal lithosphere are briefly discussed.

  10. New Seismic Observables Constrain Structure within the Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Cunningham, E. E.; Lekic, V.

    2014-12-01

    The origin and stability of the continental lithosphere play a fundamental role in plate tectonics and enable the survival of Archean crust over billions of years. Recent advances in seismic data and imaging have revealed a velocity drop with depth within continental cratons too shallow to be interpreted as the lithosphere asthenosphere boundary (Rychert and Shearer 2009). The significance of this "mid lithospheric discontinuity" (MLD) - or multiple MLDs as suggested recently (Lekic & Fischer, 2013) - is not fully understood, and its implications for continental formation and stability are only beginning to be explored. Discrepancies call for both improving the constraints on the nature of the MLD, and relating these observations to tectonic setting and deformation history. The extensive coverage of the EarthScope USArray presents an unprecedented opportunity to systematically map the structure of the continental lithosphere. We use receiver functions (RFs) to isolate converted phases (Ps or Sp) produced across velocity discontinuities beneath a seismometer, and thereby constrain vertical density and seismic velocity variations. We show that at some stations, the apparent velocity contrast across the MLD demonstrates a dependence on seismic wave frequency, being greater at low frequencies than at high frequencies. This suggests that the MLD - at least in certain locations - is distributed across tens of kilometers in depth. The gradient of the MLD fingerprints physical process at play; a weak gradient indicates thermal origin, while an abrupt discontinuity implicates change in composition or partial melting. Furthermore, we map the strength, depth, and ratio of amplitudes of waves converted across the MLD and the Moho throughout the US. Because these receiver function based measurements only reveal relative velocity variations with depth, we combine them with frequency-dependent measurements of apparent incidence angles of P and S waves. Doing so allows us to

  11. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes

  12. Continental growth by successive accretion of oceanic lithosphere: Evidence from tilted seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Babuska, V.; Plomerova, J.; Karato, S. I.

    2012-04-01

    Although many studies indicate that subduction-related accretion, subduction-driven magmatism and tectonic stacking are major crustal-growth mechanisms, how the mantle lithosphere forms remains enigmatic. Cook (AGU Geod. Series 1986) published a model of continental 'shingling' based on seismic reflection data indicating dipping structures in the deep crust of accreted terranes. Helmstaedt and Gurney (J. Geoch. Explor. 1995) and Hart et al. (Geology 1997) suggest that the Archean continental lithosphere consists of alternating layers of basalt and peridotite derived from subducted and obducted Archean oceanic lithosphere. Peridotite xenoliths from the Mojavian mantle lithosphere (Luffi et al., JGR 2009), as well as xenoliths of eclogites underlying the Sierra Nevada batholith in California (Horodynskij et al., EPSL 2007), are representative for oceanic slab fragments successively attached to the continent. Recent seismological findings also seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Aust. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- (or D-) type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered almost a half century ago (Hess, Nature 1964). Though it is difficult to determine seismic anisotropy within an active subducting slab (e.g., Healy et al., EPSL 2009; Eberhart-Phillips and Reyners, JGR 2009), field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved there to a depth of at least 200-300 km. Dipping anisotropic fabrics in domains of the European mantle lithosphere were interpreted as systems of 'frozen' paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the

  13. Lithospheric buoyancy and continental intraplate stresses

    USGS Publications Warehouse

    Zoback, M.L.; Mooney, W.D.

    2003-01-01

    Lithospheric buoyancy, the product of lithospheric density and thickness, is an important physical property that influences both the long-term stability of continents and their state of stress. We have determined lithospheric buoyancy by applying the simple isostatic model of Lachenbruch and Morgan (1990). We determine the crustal portion of lithospheric buoyancy using the USGS global database of more than 1700 crustal structure determinations (Mooney et al., 2002), which demonstrates that a simple relationship between crustal thickness and surface elevation does not exist. In fact, major regions of the crust at or near sea level (0-200 m elevation) have crustal thicknesses that vary between 25 and 55 km. Predicted elevations due to the crustal component of buoyancy in the model exceed observed elevations in nearly all cases (97% of the data), consistent with the existence of a cool lithospheric mantle lid that is denser than the asthenosphere on which it floats. The difference between the observed and predicted crustal elevation is assumed to be equal to the decrease in elevation produced by the negative buoyancy of the mantle lid. Mantle lid thickness was first estimated from the mantle buoyancy and a mean lid density computed using a basal crust temperature determined from extrapolation of surface heat flow, assuming a linear thermal gradient in the mantle lid. The resulting values of total lithosphere thickness are in good agreement with thicknesses estimated from seismic data, except beneath cratonic regions where they are only 40-60% of the typical estimates (200-350 km) derived from seismic data. This inconsistency is compatible with petrologic data and tomography and geoid analyses that have suggested that cratonic mantle lids are ??? 1% less dense than mantle lids elsewhere. By lowering the thermally determined mean mantle lid density in cratons by 1%, our model reproduces the observed 200-350+ km cratonic lithospheric thickness. We then computed

  14. The hydrothermal power of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2015-03-01

    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (<1 Ma) is about 50% of the total, significantly higher than previous estimates. This low hydrothermal power estimate originates from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (yielding lower heat flow), and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and convective mantle.

  15. The hydrothermal power of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, C. J.; Afonso, J. C.

    2015-10-01

    We have estimated the power of ventilated hydrothermal heat transport, and its spatial distribution, using a set of recently developed plate models which highlight the effects of axial hydrothermal circulation and thermal insulation by oceanic crust. Testing lithospheric cooling models with these two effects, we estimate that global advective heat transport is about 6.6 TW, significantly lower than most previous estimates, and that the fraction of that extracted by vigorous circulation on the ridge axes (< 1 My old) is about 50 % of the total, significantly higher than previous estimates. These new estimates originate from the thermally insulating properties of oceanic crust in relation to the mantle. Since the crust is relatively insulating, the effective properties of the lithosphere are "crust dominated" near ridge axes (a thermal blanketing effect yielding lower heat flow) and gradually approach mantle values over time. Thus, cooling models with crustal insulation predict low heat flow over young seafloor, implying that the difference of modeled and measured heat flow is due to the heat transport properties of the lithosphere, in addition to ventilated hydrothermal circulation as generally accepted. These estimates may bear on important problems in the physics and chemistry of the Earth because the magnitude of ventilated hydrothermal power affects chemical exchanges between the oceans and the lithosphere, thereby affecting both thermal and chemical budgets in the oceanic crust and lithosphere, the subduction factory, and the convective mantle.

  16. Insolation driven variations of Mercury's lithospheric strength

    NASA Astrophysics Data System (ADS)

    Williams, Jean-Pierre; Ruiz, Javier; Rosenburg, Margaret A.; Aharonson, Oded; Phillips, Roger J.

    2011-01-01

    Mercury's coupled 3:2 spin-orbit resonance in conjunction with its relatively high eccentricity of ˜0.2 and near-zero obliquity results in both a latitudinal and longitudinal variation in annual average solar insolation and thus equatorial hot and cold regions. This results in an asymmetric temperature distribution in the lithosphere and a long wavelength lateral variation in lithosphere structure and strength that mirrors the insolation pattern. We employ a thermal evolution model for Mercury generating strength envelopes of the lithosphere to demonstrate and quantify the possible effects the insolation pattern has on Mercury's lithosphere. We find the heterogeneity in lithosphere strength is substantial and increases with time. We also find that a crust thicker than that of the Moon or Mars and dry rheologies for the crust and mantle are favorable when compared with estimates of brittle-ductile transition depths derived from lobate scarps. Regions of stronger and weaker compressive strength imply that the accommodation of radial contraction of Mercury as its interior cooled, manifest as lobate scarps, may not be isotropic, imparting a preferential orientation and distribution to the lobate scarps.

  17. Magnetic mineralogy of the Mercurian lithosphere

    NASA Astrophysics Data System (ADS)

    Strauss, B. E.; Feinberg, J. M.; Johnson, C. L.

    2016-11-01

    Mercury and Earth are the only inner solar system planets with active, internally generated dynamo magnetic fields. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission recently detected magnetic fields on Mercury that are consistent with lithospheric magnetization. We investigate the physical and chemical environment of Mercury's lithosphere, past and present, to establish the conditions under which magnetization may have been acquired and modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: redox conditions in the planet's crust and mantle, the iron content of the lithosphere, and, for any remanent magnetization, the temperature profile of the lithosphere and its evolution over time. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is both hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any remanent crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework is used both to constrain plausible candidate minerals that could carry magnetic remanence on Mercury and to evaluate their capacity to acquire and retain sufficient magnetization to be detectable from satellite orbit. We propose that iron metal and its alloys are likely to be the dominant contributors to induced and remanent magnetization in Mercury's lithosphere, with additional contributions from iron silicides, sulfides, and carbides.

  18. Dynamics of lithospheric thinning and melting by edge-driven convection

    NASA Astrophysics Data System (ADS)

    Kaislaniemi, Lars; van Hunen, Jeroen

    2014-05-01

    We have studied the dynamics of the mantle melting and lithosphere erosion during edge-driven convection (EDC), a process that takes place at locations of pronounced lithosphere thickness gradients (e.g. ocean-continent boundary, craton edge). EDC can be driven by either the cratonic lithosphere cooling the asthenosphere under the thinner lithosphere next to it, thus causing downwelling (EDC sensu stricto), or by upwelling of the hotter asthenosphere from below the craton along the edge (continental insulation, causing secondary EDC). EDC has been shown by previous studies to be, for example, a viable mechanism for flood basalt formation (King and Anderson 1995) and for the recent volcanism around the edges of the Colorado plateau (van Wijk et al. 2010). Recently, EDC has been suggested to explain the thinning of the lithosphere, consequent high topography, and Cenozoic volcanism at the Moroccan Atlas mountains (Missenard and Cadoux, 2012). In this study, we test this hypothesis. Many of the previous studies on EDC do not show or discuss the lithospheric thinning by EDC in detail. Results from our numerical mantle convection models with hydrous melting parametrization and varying mantle potential temperatures, water contents and rheological activation energies, show that varying amounts (15-45 km) of lithospheric erosion due to EDC is possible. Different amounts of melts can be produced, including production rates similar to those observed at the Maroccon Atlas mountains (0.5 to 30 m/Myr). However, the amount of lithospheric thinning is not a major control in the amount of volcanism, but instead it is more strongly controlled by the overall thickness of the lithosphere. EDC can lead to significant dynamic topography, where the down- and upwellings of the convection cell produce topographic low and high, respectively, in order of a few meters. More vigorous convection caused by the EDC results in increased heat flow through the lithosphere, and thus for Moho

  19. Radioxenon detections in the CTBT International Monitoring System likely related to the announced nuclear test in North Korea conducted on February 12, 2013

    SciTech Connect

    Ringbom, Anders; Axelssson, A.; Aldener, M.; Auer, M.; Bowyer, Ted W.; Fritioff, T.; Hoffman, Ian; Khrustalev, Kirill; Nikkinen, Mika; Popov, Vladimir Y.; Popov, Y.; Ungar, R. Kurt; Wotawa, G.

    2014-02-01

    Abstract: Observations of the radioxenon isotopes 133Xe and 131mXe collected at the IMS stations RN38 and RN58 on April 7-8, and April 12-13 2013, respectively, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7 weeks later. More than one release is required to explain all observations. The 131mXe source terms for each release were calculated to 7x1011 Bq, corresponding to about 1-10% of the total xenon inventory for a 10-kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test.

  20. Inelastic models of lithospheric stress - I. Theory and application to outer-rise plate deformation

    USGS Publications Warehouse

    Mueller, S.; Choy, G.L.; Spence, W.

    1996-01-01

    Outer-rise stress distributions determined in the manner that mechanical engineers evaluate inelastic stress distributions within conventional materials are contrasted with those predicted using simple elastic-plate models that are frequently encountered in studies of outer-rise seismicity. This comparison indicates that the latter are inherently inappropriate for studies of intraplate earthquakes, which are a direct manifestation of lithospheric inelasticity. We demonstrate that the common practice of truncating elastically superimposed stress profiles so that they are not permitted to exceed laboratory-based estimates of lithospheric yield strength will result in an accurate characterization of lithospheric stress only under relatively restrictive circumstances. In contrast to elastic-plate models, which predict that lithospheric stress distributions depend exclusively upon the current load, inelastic plate models predict that stress distributions are also significantly influenced by the plate-loading history, and, in many cases, this influence is the dominant factor in determining the style of potential seismicity (e.g. thrust versus normal faulting). Numerous 'intuitive' interpretations of outer-rise earthquakes have been founded upon the implicit assumption that a unique relationship exists between a specified combination of plate curvature and in-plane force, and the resulting lithospheric stress distribution. We demonstrate that the profound influence of deformation history often invalidates such interpretations. Finally, we examine the reliability of 'yield envelope' representations of lithospheric strength that are constructed on the basis of empirically determined frictional sliding relationships and silicate plastic-flow laws. Although representations of this nature underestimate the strength of some major interplate faults, such as the San Andreas, they appear to represent a reliable characterization of the strength of intraplate oceanic lithosphere.

  1. Viscosity of the lithosphere of Enceladus

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.

    1983-01-01

    Regions of the Enceladus surface are shown by high resolution Voyager II images to be highly cratered, as if by heavy bombardment, with crater forms similar to those of fresh lunar surfaces but often shallower in depth. The flattening of these craters and the bowing up of their floors indicate viscous relaxation of the topography. Viscosity at the top of the lithosphere is suggested by crater form analysis to lie between 10 to the 24th and 10 to the 25th P. The zones where flattened craters occur may be regions of past or present heat flow that is higher than in adjacent terrains. Encedalus probably has a mixture of ammonia ice and water ice in the lithosphere, while the lithospheres of Ganymede and Callisto are primarily composed of water ice

  2. Lithospheric structure in the Pacific geoid

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.; Hinojosa, J. H.

    1985-01-01

    The high degree and order SEASAT geoid in the central Pacific correlates closely with the structure of the cooling lithosphere. Relative changes in plate age across major fracture zones in relatively young seafloor frame the east-west trending pattern formed by the geoid anomalies. The field removal in bathymetry corresponds to removal of some of the low degree and order geoidal components, the step like structure across fracture zones is also removed. The regional thermal subsidence was removed from the bathymetry by subtracting a mean subsidence surface from the observed bathymetry. This produces a residual bathymetry map analogous to the usual residual depth anomaly maps. The residual bathymetry obtained in this way contains shallow depths for young seafloor, and larger depths for older seafloor, thus retaining the structure of the lithosphere while removing the subsidence of the lithosphere.

  3. Thermal regime of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Sass, J. H.

    1984-01-01

    From studies of the global heat flow data set, it has been generalized, with respect to the continental lithosphere, that there is a negative correlation between heat flow and the lithosphere's tectonic edge, and that the lithosphere's thermal evolution is similar to that of the ocean basins, resulting in a 'stable geotherm' in both environments. It is presently noted that a regional study perspective for heat flow data leads to doubts concerning the general applicability of either statement. Rao et al. (1982) have demonstrated that the data are not normally distributed, and that it is not possible to establish a negative correlation between heat flow and age in a rigorous statistical fashion. While some sites of stable continental blocks may have a geotherm that is by chance similar to that for old ocean basins, this need not hold true generally, and many stable continental terranes will be characterized by geotherms very different from those for old ocean basins.

  4. Viscosity of the lithosphere of Enceladus

    NASA Technical Reports Server (NTRS)

    Passey, Q. R.

    1983-01-01

    Regions of the Enceladus surface are shown by high resolution Voyager II images to be highly cratered, as if by heavy bombardment, with crater forms similar to those of fresh lunar surfaces but often shallower in depth. The flattening of these craters and the bowing up of their floors indicate viscous relaxation of the topography. Viscosity at the top of the lithosphere is suggested by crater form analysis to lie between 10 to the 24th and 10 to the 25th P. The zones where flattened craters occur may be regions of past or present heat flow that is higher than in adjacent terrains. Encedalus probably has a mixture of ammonia ice and water ice in the lithosphere, while the lithospheres of Ganymede and Callisto are primarily composed of water ice

  5. Lithospheric mantle thickness gradient focuses seismic activity

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-09-01

    Using an array of 556 seismic sensors, Levander and Miller charted two key features of the subsurface structure of the western continental United States, with implications for explaining the locations of seismic and volcanic activity. The solid crust and the solid mantle of the Earth combine to form the lithosphere; together they overlay the plastic mantle of the asthenosphere. Deeper still are the upper and lower mantles and the liquid and solid cores. The boundary between the crust and the solid mantle is known as the Mohorovičić discontinuity (Moho), and the one between the solid and plastic mantle is the lithosphere-asthenosphere boundary (LAB). Measuring seismic waves produced by 163 earthquakes from 2005 to 2009, the authors charted the depth of Moho and LAB in the western United States and thus the thickness of the solid lithospheric mantle.

  6. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Annular moats and outer rises around large Venus coronas such as Artemis, Latona, and Eithinoha are similar in arcuate planform and topography to the trenches and outer rises of terrestrial subduction zones. On earth, trenches and outer rises are modeled as the flexural response of a thin elastic lithosphere to the bending moment of the subducted slab; this lithospheric flexure model also accounts for the trenches and outer rises outboard of the major coronas on Venus. Accordingly, it is proposed that retrograde lithospheric subduction may be occurring on the margins of the large Venus coronas while compensating back-arc extension is occurring in the expanding coronas interiors. Similar processes may be taking place at other deep arcuate trenches or chasmata on Venus such as those in the Dali-Diana chasmata area of aestern Aphrodite Terra.

  7. BASE Flexible Array Preliminary Lithospheric Structure Analysis

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Anderson, M. L.; Siddoway, C. S.; Erslev, E.; Harder, S. H.; Miller, K. C.

    2009-12-01

    The Bighorns Arch Seismic Experiment (BASE) is a Flexible Array experiment integrated with EarthScope. The goal of BASE is to develop a better understanding of how basement-involved foreland arches form and what their link is to plate tectonic processes. To achieve this goal, the crustal structure under the Bighorn Mountain range, Bighorn Basin, and Powder River Basin of northern Wyoming and southern Montana are investigated through the deployment of 35 broadband seismometers, 200 short period seismometers, 1600 “Texan” instruments using active sources and 800 “Texan” instruments monitoring passive sources, together with field structural analysis of brittle structures. The novel combination of these approaches and anticipated simultaneous data inversion will give a detailed structural crustal image of the Bighorn region at all levels of the crust. Four models have been proposed for the formation of the Bighorn foreland arch: subhorizontal detachment within the crust, lithospheric buckling, pure shear lithospheric thickening, and fault blocks defined by lithosphere-penetrating thrust faults. During the summer of 2009, we deployed 35 broadband instruments, which have already recorded several magnitude 7+ teleseismic events. Through P wave receiver function analysis of these 35 stations folded in with many EarthScope Transportable Array stations in the region, we present a preliminary map of the Mohorovicic discontinuity. This crustal map is our first test of how the unique Moho geometries predicted by the four hypothesized models of basement involved arches fit seismic observations for the Bighorn Mountains. In addition, shear-wave splitting analysis for our first few recorded teleseisms helps us determine if strong lithospheric deformation is preserved under the range. These analyses help lead us to our final goal, a complete 4D (3D spatial plus temporal) lithospheric-scale model of arch formation which will advance our understanding of the mechanisms

  8. Uppermantle anisotropy and the oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Regan, J.

    1983-01-01

    Published Rayleigh and Love wave phase and group velocity data have been inverted taking into account sphericity, anelastic dispersion, and transverse isotropy. For a PREM-type modular parameterization, the thickness of the high velocity mantle seismic lithosphere (LID) varies in thickness from about 30 km for young ocean to about 50 km for old ocean, much less than previous estimates based on isotropic inversion of similar data. This LID thickness is comparable to the elastic or flexural thickness found from studies of seamount loading and flexure at trenches, suggesting that the thickness of the lithosphere may be controlled by mineralogy, composition, or crystal orientation rather than by temperature alone.

  9. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  10. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  11. Multidisciplinary approach to assess thermo-mechanical properties of the Asian lithosphere

    NASA Astrophysics Data System (ADS)

    Stolk, Ward; Kaban, Mikhail; Tesauro, Magdala; Beekman, Fred; Cloetingh, Sierd

    2013-04-01

    Assessing the thermo-mechanical properties of the lithospheric mantle is a complex business and still poses many problems. Seismic studies indicate large heterogeneities within the mantle lithosphere, but cannot discern between e.g. thermal and compositional effects. Similarly, gravity field analysis can constrain density heterogeneities, but is by its nature unable to distinguish between e.g. stacked density anomalies or lateral density anomalies. A joint analysis of both data types potentially leads to an improved insight in the mantle lithosphere, though the solution to the problem at hand remains non-unique and additional constraints are required. We have combined a high resolution tomography model with a recent global gravity field model to improve our knowledge of both the compositional and thermal aspects of the mantle lithosphere in the Asian continent. The preliminary results presented here will focus on the four major cratonic areas in Asia: the East European Platform, Siberia, Northeast China and India. These regions represent two distinct types of cratonic lithosphere (deep root and shallow root). Xenolith studies help us to further constrain the trade off between temperature and compositional effects.

  12. Assessing thermo-mechanical properties of the lithospheric mantle in Asia

    NASA Astrophysics Data System (ADS)

    Stolk, W.; Kaban, M. K.; Beekman, F.; Tesauro, M.; Cloetingh, S.

    2012-12-01

    Asia is a key natural laboratory for the study of active intra-continental deformation in response to the ongoing far-field collision of India and Eurasia. The resulting tectonic processes strongly depend on the thermo-mechanical structure of the lithosphere. However, the problem of the thermo-mechanical properties of the lithospheric mantle is complex and still not well resolved. While seismic studies give an indication of the heterogeneity of the mantle lithosphere it alone is insufficient to attribute these anomalies to thermal differences, since compositional difference may have a significant effect on observed wave velocities. Using solely gravity field analysis one cannot distinguish between e.g. stacked density anomalies or lateral density anomalies. Combining both datasets allows for a better insight into the mantle lithosphere, though the solution to the problem at hand remains non-unique. This study, of which the preliminary results will be presented here, attempts to gain insight into both compositional and thermal aspects of the mantle lithosphere in Asia. By combining a recent high resolution tomographic inversion with gravity field data, but without the assumption of a steady state mantle, a trade off between compositional and thermal effects can be made. Furthermore, susceptibility of the resulting model to small changes in parameter space can be obtained thus creating a 'playing field' for possible solutions to the thermo-mechanical problem. This 'playing field' can be further constrained by additional data from other sources, such as xenolith studies.

  13. Quantitative petrological constraints on the depth of the Lithosphere-Asthenosphere boundary and the implications for changes in cratonic lithosphere thickness through time

    NASA Astrophysics Data System (ADS)

    Mather, K. A.; Pearson, G.; Kjarsgaard, B. A.

    2010-12-01

    between the eruption of the kimberlite and today. Explanation of these differences is crucial to an improved understanding of craton evolution through time, and the nature of the LAB itself. McKenzie, D., Jackson, J., and Priestley, K., 2005, Thermal structure of oceanic and continental lithosphere: Earth and Planetary Science Letters, v. 233, p. 337-349. Yuan, H. and Romanowicz, B., 2010, Lithospheric layering in the North American craton: Nature, v. 466 doi:10.1038/nature09332

  14. A dynamical model of lithosphere extension and sedimentary basin formation

    NASA Technical Reports Server (NTRS)

    Houseman, G.; England, P.

    1986-01-01

    The effect of convection-induced stresses at the base of the continental lithosphere on surface and extensional deviatoric stresses is investigated. The biaxial strain in the continental lithosphere is controlled by power law creep in the upper and lower crust, brittle failure, and the Dorn plasticity law. The relationship between the lithosphere stress distribution and Moho temperatures is examined. The extension factors, basin subsidence, heat flow, and sediment loading of the lithosphere are studied.

  15. Lithospheric thickness and mantle/lithosphere density contrast beneath Beta Rigio, Venus

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Schubert, Gerald

    1995-01-01

    The spatial variation of the geoid/topography ratio over the large Venusian volcanic highland Beta Regio is suggestive of thermal compensation, i.e., support of the highland's topography by lithospheric thinning. Both the thickness of the lithosphere and the density contrast at its base can be inferred from a quadratic regression of suitably filtered (600 km less than wavelength less than 4000 km) geoid vs. topography data. The regression yields a mean lithospheric thickness of 270 km and a density contrast of magnitude 2.5% to 3.0%. Simple isostatic balance of the long-wavelength topography at Beta Regio requires thinning of the lithosphere by 50-60% beneath the rise.

  16. Global lithospheric imaging using teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Rondenay, S.; Spieker, K.; Halpaap, F.; Farestveit, M.; Sawade, L.; Zijerveld, L.

    2015-12-01

    Project GLImER (Global Lithospheric Imagining using Earthquake Recordings) aims to conduct a global survey of lithospheric interfaces using converted teleseismic body waves. Data from permanent and temporary seismic networks worldwide will be processed automatically to produce global maps of key interfaces (Moho, intra-lithospheric interfaces, lithosphere-asthenosphere boundary). In this presentation, we discuss the challenges associated with automating the analysis of converted waves and the potential of the resulting data products to be used in novel imaging approaches. With regards to automation, we address in particular the search for an optimal deconvolution method in receiver function analysis. To do so, we carry out a systematic comparison of various commonly used deconvolution methods and find that all methods produce equally robust receiver functions provided that a suitable regularization parameter is found. We further note that a suitable regularization can be found objectively for most approaches, thus challenging the belief that only time-domain deconvolution is a viable option for receiver function automation. With regards to imaging applications, we investigate how the resulting global database of receiver functions will be amenable to existing processing approaches as well as new approaches adapted from seismic exploration, including industry-based interpretation tools.

  17. Volcanism, Earth Degassing and Replenished Lithosphere Mantle

    NASA Astrophysics Data System (ADS)

    Bailey, D. K.

    1980-07-01

    Volcanism that pierces plate interiors is characteristically rich in alkalis and volatiles, and its cause and persistence are essentially expressions of the Earth's outgassing. The general balance of mobile elements (such as H, C, F and Cl) rules out recycling of sea floor, hydrosphere, sediments or atmosphere: furthermore, it is not in accord with accepted planet degassing budgets. The typical eruptive mode of volatile-rich magmatism means that the observed regional chemical variations, and even differences between adjacent volcanoes, must largely reflect source heterogeneity. In a broader context, this magmatism is also at odds with a concept of continental crust underlain by strongly depleted (refractory) mantle. Repetition of activity along crustal zones of weakness shows that the lithosphere mantle (a) is structurally complex and (b) still holds continuing (or continual) rich reserves of mobile elements. Unbroken lithosphere muffles the evolutionary escape of volatiles from the deep mantle: any lesion that appears then offers easy escape channels, whereby volatiles are drained from a large mantle region and funnelled through the plate. Horizontal movement of thick continental lithosphere releases volatiles from deep sources, imparting some of the special chemical characteristics of the stable continental magmatism. Present evidence requires consideration of the continental lithosphere as a site of primordial heterogeneity that has been accentuated rather than diminished by geological processes.

  18. Global thermal models of the lithosphere

    NASA Astrophysics Data System (ADS)

    Cammarano, Fabio; Guerri, Mattia

    2017-07-01

    Unravelling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere helps to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.

  19. Variations in lithospheric thickness on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, C. L.; Sandwell, David T.

    1992-01-01

    Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.

  20. Imaging Lithospheric Structure beneath the Indian continent

    NASA Astrophysics Data System (ADS)

    Maurya, S.; Montagner, J. P.; Mangalampally, R. K.; Stutzmann, E.; Burgos, G.; Kumar, P.; Davuluri, S.

    2015-12-01

    The lithospheric structure and thickness to the LAB are the most debated issues, especially beneath continents. In this context, the structure and thickness of the Indian lithosphere has been controversial. Paleomagnetic data reveals that the Indian continent moved northwards at exceptionally high speeds (18-20 cm/year) and subsequently slowed down to 4-5 cm/year after its collision with Asia ≈40 Myr ago. This super mobility has been explained by an unusually thin Indian lithosphere (≈100 km; Kumar et al., 2007) in contradiction with the thick lithosphere that commonly underlies old cratonic nuclei. It is pertinent to note that the thermobarometric estimates on the ultramafic xenoliths from 65 Myr kimberlites of the Central India (Babu et al. 2009) suggest an approximately 175 km thick lithosphere. Also, recent results of P and S wave travel time tomography of India suggest that the lithospheric roots are not uniformly thick on a regional scale. Although high velocity roots typical of Precambrian shields are preserved beneath a few cratons of the Indian shield, they seem to have suffered attrition, in the plume ravaged regions like the NDVP and the Southern SGT (Singh et al., 2014). We assembled a new massive surface wave database towards obtaining 3D isotropic and anisotropic models for the Indian sub-continent, using surface waves. This necessitated processing of data from more than 500 seismic broadband stations across India and surrounding regions. Surface waves group and phase dispersion measurements are performed in a broad frequency range (16-250s). Our phase velocity anomaly maps recover most of the known geological structures. The cratons are associated with high velocity (4-6%) anomalies till 200 sec, with the WDC being faster than the EDC. Slow velocities in NW India and very high velocity anomalies (6-8%) beneath the central part of the Indo-Gangetic plains are possibly associated with the subducting Indian lithosphere. The LAB depths inferred from

  1. In-Situ Lithospheric Rheology Measurement Using Isostatic Response and Geophysical State

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.; Becker, T. W.; Buehler, J. S.; ma, X.; Miller, M. S.; Perez-Gussinye, M.; Ravat, D.; Schutt, D.

    2013-12-01

    Measurements of effective elastic thickness, Te, from flexural isostatic modeling are sensitive to flow rheology of the lithosphere. Nevertheless, Te has not been widely used to estimate in-situ rheology. Past methodological controversies regarding Te measurement are partly to blame for under-utilization of isostatic response in rheology studies, but these controversies are now largely resolved. The remaining hurdles include uncertainties in properties of geophysical state such as temperature, lithology, and water content. These are ambiguous in their relative contributions to total strength, and the unknown state-of-stress adds to ambiguity in the rheology. Dense seismic and other geophysical arrays such as EarthScope's USArray are providing a wealth of new information about physical state of the lithosphere, however, and these data promise new insights into rheology and deformation processes. For example, new estimates of subsurface mass distributions derived from seismic data enable us to examine controversial assumptions about the nature of lithospheric loads. Variations in crustal lithology evident in bulk crustal velocity ratio, vP/vS, contribute a surprisingly large fraction of total loading. Perhaps the most interesting new information on physical state derives from imaging of uppermost mantle velocities using refracted mantle phases, Pn and Sn, and depths to negative velocity gradients imaged as converted phases in receiver functions (so-called seismic lithosphere-asthenosphere boundary, 'LAB', and mid-lithosphere discontinuity, 'MLD'). Imaging of the ~580°C isotherm associated with the phase transition from alpha- to beta-quartz affords another exciting new avenue for investigation, in part because the transition closely matches the Curie temperature thought to control magnetic bottom in some continental crust. Reconciling seismic estimates of temperature variations with measurements of Te and upper-mantle negative velocity gradients in the US requires

  2. Magnetic mineralogy of the Mercurian lithosphere

    NASA Astrophysics Data System (ADS)

    Strauss, Becky; Feinberg, Joshua; Johnson, Catherine

    2016-04-01

    Mercury and Earth are the only inner solar system planets with present-day core-dynamo magnetic fields, in contrast to the past fields of Mars and the Moon and the absence of evidence for a past or present field at Venus. Recently, the MESSENGER mission also measured magnetic fields from lithospheric magnetization on Mercury for the first time. These fields are consistent with remanent magnetization held by rocks exposed to an ancient, internally generated planetary magnetic field. However, the conditions for magnetization in the lithosphere of Mercury are unique among terrestrial planets, and the mechanisms for the acquisition (induced versus remanent) and alteration of magnetization are still unknown. We investigate the physical and chemical environment of Mercury's crust, past and present, to establish the conditions in which magnetization may have been acquired and subsequently modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: the temperature profile of the lithosphere and its evolution over time, redox conditions in the planet's crust and mantle, and the iron content of the lithosphere. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is distinct from that of other inner solar system planets in that it is both very hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework isused to constrain plausible candidate magnetic mineralogies, which can then be analyzed in terms of their capacity to acquire and retain magnetic remanence that is detectable from satellite orbit. We propose a suite of minerals and materials that could be carriers of remanence in the lithosphere of Mercury, including iron alloys, silicides, and sulfides.

  3. Tracing Archean sulfur across stitched lithospheric blocks

    NASA Astrophysics Data System (ADS)

    LaFlamme, Crystal; Fiorentini, Marco; Lindsay, Mark; Wing, Boswell; Selvaraja, Vikraman; Occhipinti, Sandra; Johnson, Simon; Bui, Hao Thi

    2017-04-01

    Craton margins are loci for volatile exchange among lithospheric geochemical reservoirs during crust formation processes. Here, we seek to revolutionise the current understanding of the planetary flux and lithospheric transfer of volatiles during supercontinent formation by tracing sulfur from the atmosphere-hydrosphere through to the lithosphere during crust formation. To do so, we trace the transfer of sulfur by following mass independently fractionated sulfur at ancient tectonic boundaries has the potential to. Mass independent fractionation of sulfur (MIF-S) is a signature (quantified as Δ33S and Δ36S) that is unique to the Archean sedimentary rock record and imparted to sulfur reservoirs that interacted with the oxygen-poor atmosphere before the Great Oxidation Event (GOE) at ca. 2.4 Ga. Here we present multiple sulfur isotopes from across a Proterozoic post-GOE orogenic belt, formed when Archean cratons were stitched together during supercontinent amalgamation. For the first time, multiple sulfur isotope data are presented spatially to elucidate volatile pathways across lithospheric blocks. Across the orogenic belt, the Proterozoic granitoid and hydrothermal rock records proximal to Archean cratons preserve values of Δ33S up to +0.8\\permil and a Δ33S-Δ36S array of -1.2, whereas magmatic and hydrothermal systems located more distally from the margin do not display any evidence of MIF-S. This is the first study to identify MIF-S in a Proterozoic orogen indicates that tectonic processes controlling lithospheric evolution and crust formation at tectonic boundaries are able to transfer sulfur from Archean supracrustal rock reservoirs to newly formed Proterozoic granitoid crust. The observation of MIF-S in the Proterozoic granitoid rock record has the potential to revolutionise our understanding of secular changes in the evolution of crust formation mechanisms through time.

  4. Lithospheric gravitational instability beneath the Southeast Carpathians

    NASA Astrophysics Data System (ADS)

    Lorinczi, P.; Houseman, G. A.

    2009-09-01

    The Southeast corner of the Carpathians, known as the Vrancea region, is characterised by a cluster of strong seismicity to depths of about 200 km. The peculiar features of this seismicity make it a region of high geophysical interest. In this study we calculate the seismic strain-rate tensors for the period 1967-2007, and describe the variation of strain-rate with depth. The observed results are compared with strain-rates predicted by numerical experiments. We explore a new dynamical model for this region based on the idea of viscous flow of the lithospheric mantle permitting the development of local continental mantle downwelling beneath Vrancea, due to a Rayleigh-Taylor instability that has developed since the cessation of subduction at 11 Ma. The model simulations use a Lagrangean frame 3D finite-element algorithm solving the equations of conservation of mass and momentum for a spatially varying viscous creeping flow. The finite deformation calculations of the gravitational instability of the continental lithosphere demonstrate that the Rayleigh-Taylor mechanism can explain the present distribution of deformation within the downwelling lithosphere, both in terms of stress localisation and amplitude of strain-rates. The spatial extent of the high stress zone that corresponds to the seismically active zone is realistically represented when we assume that viscosity decreases by at least an order of magnitude across the lithosphere. The mantle downwelling is balanced by lithospheric thinning in an adjacent area which would correspond to the Transylvanian Basin. Crustal thickening is predicted above the downwelling structure and thinning beneath the basin.

  5. Resolving Lithospheric Interfaces Using SS Waveform Stacks

    NASA Astrophysics Data System (ADS)

    Rychert, C. A.; Shearer, P. M.

    2009-12-01

    We image lithospheric interfaces globally using variations in the character of SS waveform stacks. The variations are caused by reflected phases, i.e., underside reflections (SS precursors) and topside multiples (SS reverberations), created at discontinuities near the midpoint of the SS raypath. Stacks from continental versus oceanic bouncepoint regions produce distinctly different SS waveforms, consistent with the large continent/ocean difference in crustal thickness. This difference can also be seen in data binned in bouncepoint caps with 10° radii. We develop a method to invert for the depth of lithospheric discontinuities using a modeling technique in which a reference waveform is convolved with a crustal operator. We demonstrate the utility of this method by inverting for Moho depth beneath Asia, where continental bouncepoint coverage is highest. The results from our method are correlated (correlation coefficient 0.8) with the CRUST 2.0 values averaged over sample bins of 10° radius. Beneath oceans, crustal depths are too shallow to be resolved by this method. However, SS stacks from regions in the Pacific where bouncepoint coverage is highest suggest the presence of a deeper velocity decrease with depth, which may be related to the lithosphere-asthenosphere boundary. Inversions for the depth of the interface indicate that it is centered at 15 - 170 km depth beneath the best-resolved bins. The character of the discontinuity varies systematically, increasing in depth from the East Pacific Rise towards older oceanic lithosphere. This imaging method has broad lateral resolution in comparison to receiver functions, but has the potential to sample lithospheric interfaces in regions where station coverage may be sparse.

  6. Erosion of the continental lithosphere at the cusps of the Calabrian arc: Evidence from S receiver functions analysis

    NASA Astrophysics Data System (ADS)

    Miller, Meghan S.; Piana Agostinetti, Nicola

    2011-12-01

    Mediterranean tectonics has been characterized by an irregular, complex temporal evolution with episodic rollback and retreat of the subducted plate followed by period of slow trench-migration. To provide insight into the geodynamics of the Calabrian arc, we image the characteristics and lithospheric structure of the convergent, Apulian and Hyblean forelands at the cusps of the arc. Specifically we investigate the crustal and lithospheric thicknesses using teleseismic S-to-p converted phases, applied to the Adria-Africa plate margin for the first time. We find that the Moho in the Apulian foreland is nearly flat at ˜30 km depth, consistent with previous P receiver functions results, and that the Hyblean crustal thickness is more complex, which can be understood in terms of the nature of the individual pieces of carbonate platform and pelagic sediments that make up the Hyblean platform. The lithospheric thicknesses range between 70-120 km beneath Apulia and 70-90 km beneath Sicily. The lithosphere of the forelands at each end of the Calabrian arc are continental in nature, buoyant compared to the subducting oceanic lithosphere and have previously been interpreted as mostly undeformed carbonate platforms. Our receiver function images also show evidence of lithospheric erosion and thinning close to Mt. Etna and Mt. Vulture, two volcanoes which have been associated with asthenospheric upwelling and mantle flow around of the sides the slab. We suggest that as the continental lithosphere resists being subducted it is being thermo-mechanically modified by toroidal flow around the edges of the subducting oceanic lithosphere of the Calabrian arc.

  7. Sub-Moho Reflectors, Mantle Faults and Lithospheric Rheology

    NASA Astrophysics Data System (ADS)

    Brown, L. D.

    2013-12-01

    One of the most unexpected and dramatic observations from the early years of deep reflection profiling of the continents using multichannel CMP techniques was the existing of prominent reflections from the upper mantle. The first of these, the Flannan thrust/fault/feature, was traced by marine profiling of the continental margin offshore Britain by the BIRPS program, which soon found them to be but one of several clear sub-crustal discontinuities in that area. Subsequently, similar mantle reflectors have been observed in many areas around the world, most commonly beneath Precambrian cratonic areas. Many, but not all, of these mantle reflections appear to arise from near the overlying Moho or within the lower crust before dipping well into the mantle. Others occur as subhorizontal events at various depths with the mantle, with one suite seeming to cluster at a depth of about 75 km. The dipping events have been variously interpreted as mantle roots of crustal normal faults or the deep extension of crustal thrust faults. The most common interpretation, however, is that these dipping events are the relicts of ancient subduction zones, the stumps of now detached Benioff zones long since reclaimed by the deeper mantle. In addition to the BIRPS reflectors, the best known examples include those beneath Fennoscandia in northern Europe, the Abitibi-Grenville of eastern Canada, and the Slave Province of northwestern Canada (e.g. on the SNORCLE profile). The most recently reported example is from beneath the Sichuan Basin of central China. The preservation of these coherent, and relatively delicate appearing, features beneath older continental crust and presumably within equally old (of not older) mantle lithosphere, has profound implications for the history and rheology of the lithosphere in these areas. If they represent, as widely believe, some form of faulting with the lithosphere, they provide corollary constraints on the nature of faulting in both the lower crust and

  8. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction

    NASA Astrophysics Data System (ADS)

    Pilet, Sebastien; Guex, Jean; Muntener, Othmar; Bartolini, Annachiara; Spangenberg, Jorge; Schoene, Blair; Schaltegger, Urs

    2016-04-01

    studies of the composition of the Kaapvaal craton have shown that sulfide minerals are enclosed in the basal part of the cratonic lithosphere. The formation of these sulfide minerals are linked to multiple refertilization/metasomatic events, which affected the base of the subcontinental lithospheric mantle from the Archean to the Proterozoic. We suggest that the transitions from an initial cool period to greenhouse conditions recorded by T-J and Pl-To sedimentary sections result of changing gas species emitted during the progressive thermal erosion of cratonic lithosphere by plume activity or thermal internal heating of the lithosphere. Our petrological model for LIP magmatism argues that initial gas emission was dominated by sulfur liberated from sulfide-bearing cratonic lithosphere causing global cooling and eustatic regression, which was followed by warming/transgression associated with the progressive increase of CO2 in the atmosphere associated to LIPs emission and metamorphic reactions in sedimentary basins. We suggest that the nature of the underlying lithosphere during large LIP eruption potentially exerts an important control on the consequences at the Earth's surface. This model offers an explanation for why LIPs erupted through oceanic lithosphere are not associated with climatic and biotic crises comparable to LIPs emitted through cratonic lithosphere.

  9. Geodynamic inversion to constrain the non-linear rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Baumann, T. S.; Kaus, Boris J. P.

    2015-08-01

    One of the main methods to determine the strength of the lithosphere is by estimating it's effective elastic thickness. This method assumes that the lithosphere is a thin elastic plate that floats on the mantle and uses both topography and gravity anomalies to estimate the plate thickness. Whereas this seems to work well for oceanic plates, it has given controversial results in continental collision zones. For most of these locations, additional geophysical data sets such as receiver functions and seismic tomography exist that constrain the geometry of the lithosphere and often show that it is rather complex. Yet, lithospheric geometry by itself is insufficient to understand the dynamics of the lithosphere as this also requires knowledge of the rheology of the lithosphere. Laboratory experiments suggest that rocks deform in a viscous manner if temperatures are high and stresses low, or in a plastic/brittle manner if the yield stress is exceeded. Yet, the experimental results show significant variability between various rock types and there are large uncertainties in extrapolating laboratory values to nature, which leaves room for speculation. An independent method is thus required to better understand the rheology and dynamics of the lithosphere in collision zones. The goal of this paper is to discuss such an approach. Our method relies on performing numerical thermomechanical forward models of the present-day lithosphere with an initial geometry that is constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology

  10. Electrical conductivity in the precambrian lithosphere of western canada

    PubMed

    Boerner; Kurtz; Craven; Ross; Jones; Davis

    1999-01-29

    The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.

  11. Chapman Conference on Generation of the Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Presnall, D. C.; Hales, A. L.; Frey, F. A.

    On April 6-10, 1981, the Chapman conference on Generation of the Oceanic Lithosphere was held at Airlie House, Warrenton, Virginia. It was convened by D.C. Presnall, A.L. Hales (both at the University of Texas at Dallas), and F.A. Frey (Massachusetts Institute of Technology). The purpose of the conference was to bring together scientists with diverse specialties to develop a better understanding of the constraints imposed by geophysics, geochemistry, petrology, and tectonics on processes of oceanic lithosphere generation. Sessions were held on the nature of the crust and upper mantle at spreading centers; trace elements and isotopes; experimental petrology; magma chamber dynamics, melt migration, and mantle flow; slow versus fast spreading ridges; Atlantic spreading centers; Pacific spreading centers; and hydrothermal activity, metasomatism, and metamorphism. Fifty-four oral papers and 47 poster papers were presented. One hundred twenty-eight scientists attended from Australia, Canada, Cyprus, Denmark, France, Iceland, Japan, Mexico, United Kingdom, United States, and the USSR.

  12. International lithosphere program - Exploiting the geodynamics revolution

    NASA Technical Reports Server (NTRS)

    Flinn, E. A.

    1984-01-01

    After presenting a development history of the application of spacecraft technology in the field of earth dynamics, which encompasses the measurement of the motion and the large scale deformation of the tectonic plates as well as the monitoring of earth's gravity and magnetic fields, attention is given to the International Lithosphere Program (ILP). ILP studies the dynamics and evolution of the lithosphere, with a view to earth resources identification and geological hazard reduction. Among the major problems being addressed is the mechanism by which magmas are generated, extruded, and intruded, at convergent and divergent plate boundaries and within plates. By contrast to current understanding of rifting, almost nothing is known about how the process of subduction begins. The methods used to measure tectonic plate phenomena are: laser ranging to both the moon and man-made satellites, and VLBI.

  13. Lithospheric structure in the Pacific geoid

    NASA Technical Reports Server (NTRS)

    Marsh, B. D.

    1984-01-01

    In order that sub-lithospheric density variations be revealed with the geoid, the regional geoid anomalies associated with bathymetric variations must first be removed. Spectral techniques were used to generate a synthetic geoid by filtering the residual bathymetry assuming an Airy-type isostatic compensation model. An unbiased estimated of the admittances show that for region under study, no single compensation mechanism will explain all of the power in the geoid. Nevertheless, because topographic features are mainly coherent with the geoid, to first order an isostationally compensated lithosphere cut by major E-W fracture zones accounts for most of the power in the high degree and other SEASAT geoid in the Pacific.

  14. Thermal stresses in planetary elastic lithospheres

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1983-01-01

    The role of thermal stresses in the tectonics of the moon is reexamined in this paper. A model is used that considers a spherical elastic shell overlying a fluid core. It is shown that the thermal stresses generated by temperature changes within the shell usually dominate over the thermal contraction or expansion of the core. During the entire evolution of the moon the cooling of the lithosphere is likely to have dominated the cooling of the interior and the result would be tensional lithospheric thermal stresses. However, during the recent evolution of the moon the change in the near surface thermal stresses is compressional. It is argued that the surface compressional features on Mercury are not due to the thermal contraction of the interior

  15. The lithosphere-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling II: 3D thermal and compositional structure

    NASA Astrophysics Data System (ADS)

    Fullea, J.; Muller, M. R.; Jones, A. G.; Afonso, J. C.

    2014-02-01

    The lithosphere-asthenosphere boundary (LAB) depth represents a fundamental parameter in any quantitative lithospheric model, controlling to a large extent the temperature distribution within the crust and the uppermost mantle. The tectonic history of Ireland includes early Paleozoic closure of the Iapetus Ocean across the Iapetus Suture Zone (ISZ), and in northeastern Ireland late Paleozoic to early Mesozoic crustal extension, during which thick Permo-Triassic sedimentary successions were deposited, followed by early Cenozoic extrusion of large scale flood basalts. Although the crustal structure in Ireland and neighboring offshore areas is fairly well constrained, with the notable exception of the crust beneath Northern Ireland, the Irish uppermost mantle remains to date relatively unknown. In particular, the nature and extent of a hypothetical interaction between a putative proto Icelandic mantle plume and the Irish and Scottish lithosphere during the Tertiary opening of the North Atlantic has long been discussed in the literature with diverging conclusions. In this work, the present-day thermal and compositional structure of the lithosphere in Ireland is modeled based on a geophysical-petrological approach (LitMod3D) that combines comprehensively a large variety of data (namely elevation, surface heat flow, potential fields, xenoliths and seismic tomography models), reducing the inherent uncertainties and trade-offs associated with classical modeling of those individual data sets. The preferred 3D lithospheric models show moderate lateral density variations in Ireland characterized by a slightly thickened lithosphere along the SW-NE trending ISZ, and a progressive lithospheric thinning from southern Ireland towards the north. The mantle composition in the southern half of Ireland (East Avalonia) is relatively and uniformly fertile (i.e., typical Phanerozoic mantle), whereas the lithospheric composition in the northern half of Ireland (Laurentia) seems to vary

  16. Flexural deformation of the continental lithosphere

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior work focused primarily on the Adriatic and northern Ionian regions. The results of these studies have been summarized previously, and so are only briefly discussed. More recent work focuses on two different topics: (1) analysis of foredeep basin geometry, sedimentary style, and thrust belt structure in light of the kinematics at the associated plate boundary and subduction zone dynamics; and (2) the evolution and plate strength of early Proterozoic lithosphere.

  17. Flexure and rheology of Pacific oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  18. Gravity, geoid and the oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1985-01-01

    Plate tectonics and its contribution to progress in studies of the Earth's gravitational field is discussed. In acquisition, the development of forced feedback accelerometers, satellite navigation, and satellite radar altimetry significantly improved the accuracy and coverage of gravity data over the oceans. In interpretation, gravity and geoid anomalies are used to determine information on the thermal and mechanical properties of the oceanic lithosphere and the forces that drive plate motions.

  19. Is the Martian lithosphere sulfur rich

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.

    1979-01-01

    Several models are proposed to explain the abundance of sulfurand chlorine-containing compounds in the Martian fines. Preliminary analyses attributed the S and Cl enrichment to the upward migration of soluble salt. Alternative possibilities are examined, including remnant primitive lithosphere, a primitive component in the regolith, and trapping of volcanic gases. The alternative models encompass various features of the accretion chemistry thermal history, and core size-mass relationships that have been proposed for Mars.

  20. Paleoproterozoic Collisional Structures in the Hudson Bay Lithosphere Constrained by Multi-Observable Probabilistic Inversion

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.

    2015-12-01

    The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay

  1. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure

  2. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton

    NASA Astrophysics Data System (ADS)

    Smith, Chris B.; Pearson, D. Graham; Bulanova, Galina P.; Beard, Andrew D.; Carlson, Richard W.; Wittig, Nadine; Sims, Keith; Chimuka, Lovemore; Muchemwa, Ellah

    2009-11-01

    Inclusion-bearing diamonds, mantle xenoliths, and kimberlite concentrates from the Cambrian-aged Murowa and Sese kimberlites have been studied to characterise the nature of the lithospheric mantle beneath the southern Zimbabwe Craton. The diamonds are mostly octahedral, moderately rich in nitrogen with moderate to high aggregation, and contain mainly dunite-harzburgite mineral inclusions. Similarly, dunite xenoliths predominate over harzburgite and lherzolite and carry olivines with Mg/Mg + Fe (Mg#) values of 0.92-0.95, spanning the average signatures for Kaapvaal Craton peridotites. Eclogitic xenoliths are extremely rare, in contrast to the Kaapvaal mantle lithosphere. The Zimbabwe mantle assemblage has been only slightly affected by later silicic metasomatism and re-fertilisation with re-introduction of pyroxenes in contrast to the Kaapvaal and many cratonic lithospheric blocks elsewhere where strong metasomatism and re-fertilisation is widespread. Pyroxene, garnet and spinel thermobarometry suggests an ambient 40 mW m - 2 geotherm, with the lithosphere extending down to 210 km at the time of kimberlite eruption. Whole rock peridotite Re-Os isotope analyses yield T RD model ages of 2.7 to 2.9 Ga, providing minimum estimates of the time of melt depletion, are slightly younger in age than the basement greenstone formation. These model ages coincide with the mean T RD age of > 200 analyses of Kaapvaal Craton peridotites, whereas the average Re-Os model age for the Zimbabwe peridotites is 3.2 Ga. The Os data and low Yb n/Lu n ratios suggest a model whereby thick lithospheric mantle was stabilised during the early stages of crustal development by shallow peridotite melting required for formation of residues with sufficiently high Cr/Al to stabilise chromite which then transforms to low Ca, high Cr garnet. Sulphide inclusions in diamond produce minimum T RD model ages of 3.4 Ga indicating that parts of the lithosphere were present at the earliest stages of crust

  3. Identifying mantle lithosphere inheritance in controlling intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-09-01

    Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.

  4. Lithospheric stratigraphy beneath the southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Zurek, Brian; Dueker, Ken

    The Continental Dynamics-Rocky Mountains (CD-ROM) experiment seeks to constrain the evolution, stabilization and modification of the continental lithosphere of the southern Rocky Mountains. In this paper, we present the detailed results of images constructed using broadband teleseismic receiver functions of the continental lithosphere in the interior western United States, with focus on the southern Rocky Mountains. The targets of this experiment are the Cheyenne suture, an Archean continent/Proterozoic arc terrane boundary, and the Jemez suture/volcanic lineament, that separates the Proterozoic Mazatzal and Yavapai provinces. The main features observed across the Cheyenne belt are a thick lithosphere (>150 km) as evidenced by changes in the mantle lithospheric layering across the Cheyenne Suture. Underlying the Cheyenne suture is a Proterozoic oceanic slab fragment, most plausibly tectonically emplaced beneath the rifted Wyoming margin. Below the Jemez volcanic lineament two strong sub-crustal layers are imaged down to 100 km depth that reside within the tomographically imaged low velocity zone. This layering is interpreted to map the depth extent of the lithosphere and most plausibly results from changes in chemical composition of the lithosphere. In contrast to the Cheyenne suture, little evidence is seen beneath the Jemez lineament for a suture that extends through the lithosphere. Our conclusions are that beneath the Archean-Proterozoic Cheyenne belt the lithosphere is at least 150 km thick and preserves 1.7 Ga. lithospheric scale structure, while across the Proterozoic-Proterozoic Jemez boundary, the lithosphere is at least 100 km thick.

  5. Lithospheric Thickness Modeled from Long Period Surface Wave Dispersion

    SciTech Connect

    Pasyanos, M E

    2008-05-15

    The behavior of surface waves at long periods is indicative of subcrustal velocity structure. Using recently published dispersion models, we invert surface wave group velocities for lithospheric structure, including lithospheric thickness, over much of the Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean. Thicker lithosphere under Precambrian shields and platforms are clearly observed, not only under the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under smaller blocks like the Tarim Basin and Yangtze craton. In contrast, it is found that remobilized Precambrian structures like the Saharan Shield and Sino-Korean Paraplatform do not have well-established lithospheric keels. The thinnest lithospheric thickness is found under oceanic and continental rifts, as well as along convergence zones. We compare our results to thermal models of continental lithosphere, lithospheric cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) estimates from S-wave receiver functions, and velocity variations of global tomography models. In addition to comparing results for the broad region, we examine in detail the regions of Central Africa, Siberia, and Tibet. While there are clear differences in the various estimates, overall the results are generally consistent. Inconsistencies between the estimates may be due to a variety of reasons including lateral and depth resolution differences and the comparison of what may be different lithospheric features.

  6. A Multi-Layer Phoswich Radioxenon Detection System (7th Qtr Report), Reporting Period 10/01/07 - 12/31/07

    SciTech Connect

    David M. Hamby

    2008-01-29

    Description of activities conducted this report period: (1) Electronics Development--To improve the overall performance of the two-channel digital pulse processor (DPP2), the PCB has been redesigned and the new printed board is now under assembly. The system is enhanced with two new fast ADCs from Analog Devices (AD9230-250), each with a sampling rate of 250 MHz and a resolution of 12 bits. The data bus uses a high performance Low Voltage Differential Signaling (LVDS) standard. The offset and gain of each channel are separately controlled digitally by the GUI software. (2) GUI Software Development--A GUI is being developed using the Python programming language. All functions from the preceding MATLAB code have been re-implemented including basic waveform readout, pulse shape discrimination, and plotting of energy spectra. In addition, the GUI can be used to control sampling runs based on the number of pulses captured, either in real or live time. Calibration coefficients and pulse shape discrimination boundaries can be changed on the fly so that the detector may be characterized experimentally. Plots generated by the GUI can be exported as graphic data. At present, the software has only been tested using one channel, pending availability of the new DPP board (DPP2). However, the functions have been written to allow easy expansion to two channels. (3) Light Collection Modeling--The XEPHWICH design has been modeled to determine its light capture efficiency. Research in the 7th quarter includes additional simulations representing significant increase in data resolution, well over an order of magnitude greater than previous simulations. The final data set represents approximately 11 billion visible photons divided equally among 110 thousand data points. A laboratory experiment is being designed and executed to experimentally determine light capture efficiency as a function of position within the scintillators. (4) Radioxenon Fission Source--We have designed and

  7. Flexure of lithosphere beneath the Alberta Foreland Basin: Evidence of an eastward stiffening continental lithosphere

    SciTech Connect

    Wu, P. )

    1991-03-01

    The flexure of the Mississippian Unconformity (MU) is used to constrain the stiffness of the lithosphere beneath the Alberta Foreland Basin (AFB). This flexure supports the sedimentological evidence for the absence of a forebulge in the AFB and implies that the peak of the forebulge lies further east of the Alberta Saskatchewan border. It is demonstrated that an eastwards stiffening lithosphere is required in order to fit the flexure of the MU. When flexural stiffness is expressed in terms of effective thickness, it varies from about 38km west of the Rocky Mountains to more than 200km underneath the North American craton. This variation of stiffness indicates that there is a strong lateral temperature and chemical variation underneath. Eastwards stiffening also implies an eastwards thickening of the elastic lithosphere. Such a model is in good agreement with recent petrological and geophysical evidences in the west and underneath the craton.

  8. Rheology, tectonics, and the structure of the Venus lithosphere

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.

    1994-01-01

    Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.

  9. Investigating Canada's Lithosphere and earthquake hazards with portable arrays

    NASA Astrophysics Data System (ADS)

    Eaton, D. W.; Adams, J.; Asudeh, I.; Atkinson, G. M.; Bostock, M. G.; Cassidy, J. F.; Ferguson, I. J.; Samson, C.; Snyder, D. B.; Tiampo, K. F.; Unsworth, M. J.

    A multi-institutional research initiative, POLARIS, is providing scientists with unprecedented opportunities to map Earth structure and assess earthquake hazards across Canada. By completion of the initiative's installation phase in August 2005, deployments of POLARIS (Portable Observatories for Lithospheric Analysis and Research Investigating Seismicity) instruments will include 100 telemetered broadband seismograph systems, 10 with continuous-recording magnetotelluric (MT) devices (devices that record natural variations in the geomagnetic field). Data from these observatories are transmitted by satellite (with a latency of 5 s) to data acquisition hubs in London (Canada) and Ottawa, where they are made available in near real-time by an automatic data-request manager (AutoDRM).Conceived in 2000 by an interdisciplinary group of 10 geoscientists, the 4-year, C$11 million infrastructure project is fostering strong partnerships between academia, government laboratories, and the private sector.

  10. Spectral Analysis of Radioxenon

    DTIC Science & Technology

    2008-09-01

    reasons for spectral fitting being a supplement to the standard energy spectrum ROI method. Fermi- Kurie plot Given the difficulty in fitting a beta...continuum, it is important to find an alternative method. A Fermi- Kurie plot (Krane 1988) is one method, which allows a beta spectrum to be plotted ...corrective function takes into account the initial and final spin and polarity states. A rb itr ar y un its Figure 6. Fermi- Kurie plot . T (MeV

  11. Radioxenon spiked air

    SciTech Connect

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  12. Radioxenon spiked air

    DOE PAGES

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; ...

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  13. Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Jianping; Pan, Shaokui; Lu, Jianggu; Li, Yihe; Xiang, Lu; Lin, Abing

    2017-08-01

    Knowledge about the nature and history of the lithospheric mantle beneath the west Cathaysia block (South China) is still sparse. The major- and trace-element compositions and H2O contents of minerals from peridotite xenoliths entrained in the Cenozoic lamprophyres of the Anyuan area (SE China), were conducted to investigate the nature and evolution of the lithospheric mantle, as well as the factors controlling the distribution of water. The xenoliths including spinel harzburgites and lherzolites are moderately refractory (Mg# Olivine = 90.2-91.2) with minor fertile lherzolites (Mg# Olivine = 89.1-89.9). Clinopyroxenes in lherzolites show variable REE patterns from LREE-depleted to LREE-enriched patterns, and commonly exhibit negative anomalies of U, Pb and Ti. The mantle represented by the xenoliths mostly experienced 1-10% partial melting and obvious subsequent silicate metasomatism. H2O contents of clinopyroxene, orthopyroxene, and olivine in the peridotites are 320-404 ppm, 138-200 ppm, and 11-33 ppm, respectively. The whole-rock H2O contents range from 63 to 120 ppm, similar to that estimated for the MORB source. The negative correlations of H2O contents with Mg# in olivine and lack of correlation correlations with (La/Yb)N in clinopyroxene suggest that the H2O contents are mainly controlled by the partial melting process rather than mantle metasomatism. The fertile and moderately refractory peridotite xenoliths have similar equilibrium temperatures, implying that the lithospheric mantle is not compositionally stratified. Integrated with published data, we suggest that the widespread fertile and moderately refractory lithospheric mantle beneath the studied area (west Cathaysia), even the whole South China, might be eroded or melt-rock reacted by upwelling asthenospheric materials. Finally, the cooling of the upwelled asthenospheric materials resulted in the formation of the accreted lithospheric mantle mixed with pre-existing moderately refractory volumes.

  14. Bounds on Lithospheric Thickness on Venus from Magellan Gravity and Topography Data

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine L.; Sandwell, David

    1997-01-01

    The primary objective of the work executed under NAGW-4784 is to provide constraints on the thermal and tectonic evolution of Venus. Establishing thermal and tectonic evolution models requires not only geological, but geophysical constraints, in particular the nature of temporal and spatial variations in crustal and lithospheric thickness. The major topics of study completed under NAGW-4784 (described more fully below) are: (1) detailed analyses of the resolution of Magellan Line-Of-Site (LOS) Doppler data to establish the minimum resolvable wavelength in the gravity data; (2) calculations of the global strain field in the venusian lithosphere and comparisons with global strain patterns from geological mapping; (3) study of the geological history of coronae at E. Eistla Regio; (4) estimation of crustal and lithospheric thickness by modeling of topography at asymmetric and symmetric rift-like chasmata; (5) preliminary investigations of spatial versus temporal variations in lithospheric thickness. Both the PI and Co-I have presented papers based on these topics at national and international meetings (American Geophysical Union Meetings, Lunar and Planetary Science Conferences, Chapman Conference on the Geodynamics of Venus).

  15. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization

    PubMed Central

    Farla, Robert J. M.; Karato, Shun-ichiro; Cai, Zhengyu

    2013-01-01

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine–orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere. PMID:24067645

  16. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization.

    PubMed

    Farla, Robert J M; Karato, Shun-Ichiro; Cai, Zhengyu

    2013-10-08

    For plate tectonics to operate on a terrestrial planet, the surface layer (the lithosphere) must have a modest strength (Earth, ≤ 200 MPa), but a standard strength profile based on olivine far exceeds this threshold value. Consequently, it is essential to identify mechanisms that reduce the strength of the lithosphere on Earth. Here we report results of high-strain laboratory deformation experiments on a representative olivine-orthopyroxene composition that show the addition of orthopyroxene substantially reduces the strength in the ductile regime within a certain temperature window. The reduction in strength is associated with the formation of small orthopyroxene and olivine grains. Our samples show heterogeneous microstructures similar to those observed in natural peridotites in shear zones: fine-grained regions containing both orthopyroxene and olivine that form interconnected bands where a large fraction of strain is accommodated. A model is developed to apply these results to geological conditions. Such a model, combined with our experimental observations, suggests that orthopyroxene may play a key role in the plastic deformation of the lithosphere in a critical temperature range, leading to long-term weakening associated with strain localization in the lithosphere.

  17. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process.

  18. Preface to "Insights into the Earth's Deep Lithosphere"

    SciTech Connect

    Pasyanos, M E

    2009-11-19

    Dear Readers: I am pleased to present a special issue of Tectonophysics entitled 'Insights into the Earth's Deep Lithosphere.' This compilation sought to capture the flavor of the increasing number of studies that are emerging to investigate the complex lithospheric structure of the earth. This issue evolved out of a Fall 2007 AGU special session entitled 'Understanding the Earth's Deep Lithosphere' that I organized with Irina Artemieva from the University of Copenhagen. For that session, we solicited talks that discussed the increasing number of methods that have surfaced to study various aspects of the earth's deep lithosphere. These methods include seismic, gravity, thermal, geochemical, and various combinations of these methods. The quality of the presentations (2 oral sessions with 16 talks and 23 associated poster presentations) was such that we felt that the emerging topic deserved a dedicated forum to address these questions in greater detail. The availability of new data sets has also improved the number and quality of lithospheric studies. With many new studies and methodologies, a better understanding of both continental and oceanic lithospheres is starting to emerge. Questions remain about the thickness and evolution of the lithosphere, the presence of lithospheric keels, the density and anisotropy of lithospheric roots, mechanisms of lithospheric thinning, and differences between mechanical, thermal and chemical boundary layers. While we did not get contributions on the full gamut of methods and regions, a lot of ground was covered in this issue's manuscripts. Like any collection of papers on the deep lithosphere, the topics are quite varied in methodology, geographic location, and what aspect of the lithosphere being studied. Still, the results highlight the rewarding aspects of earth structure, history, and evolution that can be gleaned. A brief synopsis of the papers contained in this issue is given.

  19. Kimberlites and aillikites as probes of the continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Francis, Don; Patterson, Michael

    2009-04-01

    Although the mantle xenoliths carried by kimberlites are the source of much of our information about the composition of the mantle beneath the continents, the compositions of kimberlites themselves have received little attention for the information they carry about the nature of the lithospheric mantle. This neglect in part reflects their common fragmental, contaminated, and hybrid nature, but also the pervasive view that Group-I kimberlites are sourced in the underlying asthenosphere. Insight into the nature of kimberlites and their relationship to the other alkaline ultramafic rocks, such as aillikites, olivine lamproites, and meimechites, can be obtained by comparing their major element compositions in a way that treats their carbonate content as a primary magmatic phase. Group-I kimberlites and aillikites contain significant magmatic carbonate and their compositions fall to the Si-poor side of the composition of olivine. Group-I kimberlite can be distinguished from aillikite on the basis of Fe content, but there appears to be a gradation between these two end-members. In contrast, olivine lamproites and meimechites contain relatively little primary magmatic carbonate and have compositions that are more Si-rich than olivine. Pearce element ratio analysis assuming P as a conserved element indicates that much of the major element variation in hypabyssal kimberlites can be explained by variable amounts of olivine and orthopyroxene in proportions (˜ 70/30) similar to that of cratonic mantle xenoliths. Much of the olivine is present as xenocrysts, but the orthopyroxene is occult and has presumably been assimilated. The fact that individual fields of alkaline ultramafic rocks are characterized by uniform Fe and Ti contents that can be mapped on a regional scale suggests that the major element composition of these unusual rocks, and Group-I kimberlites in particular, is a reflection of the continental lithospheric mantle with which they have interacted. The

  20. Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12, 2013.

    PubMed

    Ringbom, A; Axelsson, A; Aldener, M; Auer, M; Bowyer, T W; Fritioff, T; Hoffman, I; Khrustalev, K; Nikkinen, M; Popov, V; Popov, Y; Ungar, K; Wotawa, G

    2014-02-01

    Observations made in April 2013 of the radioxenon isotopes (133)Xe and (131m)Xe at measurement stations in Japan and Russia, belonging to the International Monitoring System for verification of the Comprehensive Nuclear-Test-Ban Treaty, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7-8 weeks later. More than one release is required to explain all observations. The (131m)Xe source terms for each release were calculated to 0.7 TBq, corresponding to about 1-10% of the total xenon inventory for a 10 kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Lateral heterogeneity and vertical stratification of cratonic lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Cherepanova, Yulia; Lundvig, Kasper; Thybo, Hans; Vinnik, Lev; Xia, Bing

    2017-04-01

    We compare geophysical models for different cratons, with focus on structure and thermo-compositional heterogeneity of the lithospheric mantle. They include regional models of lithosphere density heterogeneity as constrained by free-board and satellite gravity data, thermal structure of the lithosphere based on surface heat flow data and supported by regional xenolith P-T arrays, and the non-thermal part of upper mantle seismic velocity heterogeneity based on joint analysis of thermal and seismic tomography data. Density structure of the cratonic lithosphere constrained independently by free-board and satellite gravity shows significant lateral variations, that are well correlated with crustal structure, surface tectonics, and regional xenolith data. In all cratons for which we have data the Archean - early Proterozoic cratonic nuclei has lower density than Proterozoic sutures and intracratonic basins. However, xenoliths never sample most depleted lithospheric mantle of the Archean nuclei. We analyze correlations between mantle density, lithosphere tectono-thermal age and the emplacement age of kimberlites. We also present correlations between the crustal structure and the density structure of the lithospheric mantle. Since the depth distribution of density anomalies cannot be constrained, we complement the analysis by seismic data. An analysis of temperature-corrected seismic velocity structure indicates strong vertical and lateral heterogeneity of the cratonic lithospheric mantle, with a pronounced stratification in many Precambrian terranes. We argue that a significant part of lateral and vertical heterogeneity of the cratonic lithosphere mantle can be explained by melt-metasomatism.

  2. Study of the time evolution of the lithosphere

    NASA Technical Reports Server (NTRS)

    Roufosse, M. C.

    1983-01-01

    The behavior and mechanical properties of the lithosphere were studied. This is a prerequisite to an understanding of the mechanisms and processes that occur in the Earth's mantle, which are masked by the lithospere. Geoid heights derived from the GEOS-3 and SEASAT radar altimeters were used. The correlation between bathymetry and geoid heights gives information on the mechanical properties of the lithosphere, such as its thickness, which is related to the age of the lithospheric plate. By probing in several locations spanning various temporal situations, the time evolution of the lithospheric plates were retraced.

  3. Transient creep and convective instability of the lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2012-12-01

    Laboratory experiments with rock samples show that transient creep, at which strain grows with time and strain rate decrease at constant stress, occurs while creep strains are sufficiently small. The transient creep at high temperatures is described by the Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. At the transient creep, the effective viscosity, found in the study of postglacial flows, differs significantly from the effective viscosity, which characterizes convective flow, since timescales of these flows are very different. Besides, the transient creep changes the elastic crust thickness estimated within the power-law rheology of the lithosphere. Two problems of convective stability for the lithosphere with the Andrade rheology are solved. The solution of the first problem shows that the state, in which large-scale convective flow in the mantle occurs under lithospheric plates, is unstable and must bifurcate into another more stable state at which the lithospheric plates become mobile and plunge into the mantle at subduction zones. If the lithosphere had the power-law fluid rheology, the effective viscosity of the stagnant lithospheric plates would be extremely high and the state, in which large-scale convection occurs under the stagnant plates, would be stable that contradicts plate tectonics. The mantle convection forms mobile lithospheric plates if the effective viscosity of the plate is not too much higher than the effective viscosity of the underlying mantle. The Andrade rheology lowers the plate effective viscosity corresponding to the power-law fluid rheology and, thus, leads to instability of the state in which the plates are stagnant. The solution of the second stability problem shows that the state, in which the lithospheric plate

  4. Theory and detection scheme of seismic EM signals transferred into the atmosphere from the oceanic and continental lithosphere

    NASA Astrophysics Data System (ADS)

    Novik, Oleg; Ershov, Sergey; Ruzhin, Yuri; Smirnov, Fedor; Volgin, Maxim

    2014-07-01

    Due to the compound structure of the medium and large portions of energy transferred, a seismic excitation in the oceanic or continental lithosphere disturbs all types of geophysical fields. To investigate the problem of electromagnetic (EM) disturbances in the atmosphere from the seismically activated lithosphere, we have formulated two mathematical models of interaction of fields of different physical nature resulting in arising of the low-frequency (from 0.1 to 10 Hz by amplitude of a few hundreds of pT) EM signals in the atmosphere. First we have considered the EM field generation in the moving oceanic lithosphere and then in the moving continental one. For both cases, the main physical principles and geological data were applied for formulation of the model and characteristics of the computed signals of different nature agree with measurements of other authors. On the basis of the 2D model of the seismo-hydro-EM-temperature interaction in the lithosphere-Ocean-atmosphere domain, a block-scheme of a multisensory vertically distributed (from a seafloor up to the ionosphere) tsunami precursors' detection system is described. On the basis of the 3D model of the seismo-EM interaction in a lithosphere-atmosphere domain, we explain why Prof. Kopytenko (Inst. IZMIRAN of Russian Acad. Sci.) and co-authors were able to estimate location of the future seismic epicenter area from their magnetic field measurements in the atmosphere near the earth's surface.

  5. Lithospheric models of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd

    2015-04-01

    We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the

  6. Terrestrial heat flow and lithosphere structure

    NASA Astrophysics Data System (ADS)

    Lister, Clive

    The International Meeting on Terrestrial Heat Flow and Lithosphere Structure was held at the Castle of Bechyně, Czechoslovakia, during June 1-6, 1987. This meeting brought together 81 participants from 24 countries in a remarkable setting away from interruptions and distractions. The Castle of Bechyně is several hundred years old and is constructed in the Austrian imperial style. The compact, if somewhat primitive, accommodations for the conferees encouraged scientific exchanges and ensured a high level of attendance for the formal sessions.

  7. Lithospheric delamination underneath Far East Russia

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theodoros; Koutsovitis, Petros; Aschchepkov, Igor; Hauzenberger, Christoph; Prikhodko, Vladimir; Asseva, Anna

    2013-04-01

    In the back-arc environment of Far East Russia, mantle xenoliths from Sikhoti-Alin( Komku area, KO) and Primorie (Sviyaginsky area, SV), Far East Russia are fertile spinel lherzolites with traces of amphibole, phlogopite and hyalophane in some of the studied samples. Though samples from both localities are fertile there is a systematic difference in their fertility. The KO samples have mg# varying from 0.891 to 0.899 and are slightly more fertile than the SV samples that have mg# ranging from 0.898 to 0.904. LA-ICP-MS analyses on clinopyroxenes confirm this trend as the (La/Yb)N in KO samples range from 0.1to 1.0 and in SV samples from 0.15 to 1.73. The estimated equilibration temperatures for the KO suite range from 940 °C to 1035 °C and for the SV suite from 770 to 945. The differences in the estimated equilibrium temperatures between the KO and SV suites suggest that the less fertile SV suite originated in shallower depths than the more fertile KO suite. Pargasitic amphibole, kaersutite, and extremely Ti-rich phlogopite, up to 14 wt% TiO2, are associated with intergranular glass indicating clearly metasomatism of undersaturated hydrous alkaline melts. Incompatible element abundances, besides Ba, Sr and Ti that are slightly enriched in the amphibole, are similar in both phases suggesting minor metasomatism due to percolation of small amounts of water-rich fluids. The Sr and Nd cpx isotopic ratios range from 0.702599 to 0.703567 and 0.512915 to 513153, repectively and the model Nd isotope age range from 1.5 to 2.2 Ga indicating an old (Proterozoic?) partial melt event. The lithospheric mantle beneath the studied area represents the residue after partial melting of up to 2 % of a primitive mantle and is comparable to that of Mongolia. Despite the fact that the studied area experienced several subducting episodes, the lithospheric mantle appears to be unaffected from the upwelling fluids/melts of the subducted slab(s). Since there is no indication for plume

  8. Splitting, Stretching and Spreading of Lithosphere

    NASA Astrophysics Data System (ADS)

    Buck, W.

    2003-12-01

    That lithospheric plates diverge across relatively narrow zones has been accepted since the late nineteen sixties. Thus, in surprise many that several basic features of continental rifts and oceanic spreading centers were first observed in the last few years. Several of these new findings concern the distribution of molten or frozen magma along segments of present or past divergence. One view that the observations reinforce is that tectonic processes often cannot be understood without accounting for magmatism. This talk highlights the impact of new observations on how we think about the processes of faulting and magmatism from the plate tectonic scale to the scale of individual faults and magma chambers.

  9. Ductile crustal flow in Europe's lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2011-12-01

    Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a

  10. Deformation of Indian Ocean Lithosphere Implies Highly Non-linear Rheological Law for Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Gordon, Richard; Houseman, Gregory

    2015-04-01

    The width of diffuse oceanic plate boundaries is determined by the rheology of oceanic lithosphere. Here we apply thin viscous sheet models, which have been successfully applied to deformation in several continental deforming zones, to investigate the deformation of oceanic lithosphere in the diffuse oceanic plate boundaries between the India, Capricorn, and Australia plates. We apply kinematic boundary conditions based on the current motion between these plates. We neglect buoyancy forces due to plate thinning or thickening and assume that the thin viscous sheet has the same depth-integrated non-linear viscosity coefficient everywhere. Our initial models have only one adjustable parameter, n, the power-law exponent, with n=1, 3, 10, 30, 100. The predicted width of the deforming zone decreases with increasing n, with n ≥ 30 explaining the observations. This n-value is higher than has been estimated for continental lithosphere, and suggests that more of the strength of oceanic lithosphere lies in layers deforming by faulting or by dislocation glide than for continental lithosphere. To obtain a stress field that better fits the distribution and type of earthquake focal mechanisms in the diffuse oceanic plate boundary, we add a second adjustable parameter, representing the effect of slab-pull stretching the oceanic plate near the Sumatra trench. We show that an average velocity increment on this boundary segment of 5 mm/a (relative to the average velocity of the India and Australia plates) fits the observed distribution of fault types better than velocities of 3.3 mm/a or 10 mm/a.

  11. Experimental study of lithosphere-troposphere-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Fedorov, Oleh; Lizunov, Georgy

    The ionosphere is the closest to the Earth area of near-Earth space and because of this the powerful natural and man-made processes, such as hurricanes, earthquakes, tsunami, big explosions and starts of heavy rockets to name a few, have to create corresponding disturbances there. Numerous experimental observations evidence the existence of such "terragenic" variations of ionospheric parameters, created by the sources below the ionosphere, in the troposphere and even in the lithosphere. Probably the most important question here is whether it is possible to detect enough reliably the ionospheric disturbances, related to the earthquake preparation state, at the background of the much stronger influences "from above" - of solar and galactic sources. So, the seismo-ionospheric coupling is one of the hottest topics of modern scientific research. The importance to shed more light to this process is connected with the study of possible earthquakes precursors in the ionosphere, monitoring of which could be a further step to the scientifically substantiated solution of the problem of earthquakes warning. The processing results of the data collected at Ukrainian Antarctic Station "Academician Vernadsky" are discussed. Basing on these data the theoretical study was performed and the energy transmission mechanism in the lithosphere-atmosphere-ionosphere system is analyzed. The atmospheric gravity waves are proposed as the most probable energy carriers for troposphere-ionosphere coupling. Basing on this study, as well as on the experience of preparation of several dedicated satellite mission (e. g., WARNING, INTERBALL-PROGNOZ) a new idea of spatial experiment IONOSAT is proposed to study in details the mechanism of seismo-ionospheric coupling and its realization peculiarities are discussed. This study was supported by NSAU contract No 1-02/03.

  12. Sulphidation of the oceanic lithosphere: an experimental approach

    NASA Astrophysics Data System (ADS)

    Los, Catharina; Hansen, Christian; Bach, Wolfgang

    2017-04-01

    Newly formed oceanic lithosphere close to spreading centers can be influenced by fluids that feed hydrothermal vents. These fluids often carry high amounts of dissolved gases such as H2S, which can trigger precipitation of sulphide minerals in the interacting rock during percolation. This process occurs equally in exposed mantle rock, serpentinised mantle rock, troctolite or gabbro and basalt, the lithology depending on the spreading rate at the ridge where hydrothermal activity is present. These later-stage fluid-rock interactions can develop different types of sulphide mineralization in the lithosphere. In order to better understand these sulphidation reactions, we have conducted several batch experiments that placed different oceanic lithologies in contact with an H2S saturated, iron-free solution. The mixture was heated to 250°C at 400 bars and kept under these conditions for 2-8 weeks. In situ fluid and gas sampling was used to monitor reaction progress. REM-analysis of the solid products has shown the growth of euhedral pyrite and magnetite crystals as well as dissolution textures in feldspar and olivine. The presence of pyrite (gabbro experiment) and magnetite (troctolite and serpentinite) is in agreement with the measured H2- and H2S-content in the analysed fluids. These Fe-bearing minerals grew although no iron was added to the fluid, showing the replacive nature of the reaction. Geochemical modeling can be used to extend the application of these observations to different PT-conditions. Using this technique, we can start tackling the problem of replacive sulphide formation within hydrothermal discharge zones in oceanic basement of variable composition.

  13. Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach

    NASA Astrophysics Data System (ADS)

    Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François

    2016-12-01

    This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.

  14. Limited Extent of Fast Seismic Anomaly Beneath Northern Apennines Favors a Lithospheric Delamination Scenario

    NASA Astrophysics Data System (ADS)

    Levin, V. L.; Benoit, M. H.; Torpey, M.; Park, J. J.

    2010-12-01

    Tectonic evolution of the Apennines is generally understood in the framework of subducting slab rollback, with Adriatic lithosphere being consumed in the process. Recently, studies of upper mantle deformation and surface uplift patterns questioned the validity of a rollback scenario for the northern Apennines, at least in the last few million years. A key element of the rollback scenario is the presence of a slab that descends at an angle, and is connected to the lithosphere on the surface. The lower end of this slab should either cut through the transition zone or else be deflected within or above it. Past imaging efforts in central Italy identified the sub-vertical fast feature, although vertical resolution was not sufficient to establish either the continuity with the Adriatic lithosphere or the exact nature of interaction with the transition zone. Using data recorded by the 2003-2006 RETREAT network we perform P and S body wave tomographic imaging, and also carry out receiver function common conversion point stacking. In tomographic images based on nearly 11000 measurements of both P and S waves, we identify a very clear fast anomaly, ~50 km thick and descending vertically from the Apennines to depths ~300 km. Resolution of our model is sufficient to rule out the possibility of this feature extending into the transition zone. Also, the feature is truncated laterally, extending north-westward from 43°N. Results of common conversion point stacking of over 3200 individual receiver functions show that there is no thickening of the transition zone beneath northern Apennines, which suggests that there is no unusually cold material within it. Our results are consistent with a lithosphere delamination scenario proposed for the region, and are not consistent with a long-lived retreating subduction zone. The limited vertical extent of the cold anomaly likely implies a recent episode of delamination. It may, however, be an example of a "stagnant" lithospheric drip

  15. Imaging the Subduction of Continental Lithosphere in the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; De Wit, M.; van Bergen, M.

    2014-12-01

    We present a 3D tomographic model of Australasia obtained by full seismic waveform inversion. Our model features a sharp lateral velocity contrast extending to >200 km depth, coincident with the abrupt transition from low to high Helium ratios in arc volcanics near 123°E (see figure). The joint analysis of the tomographic model and isotope data (for He, Pb, Nd, Sr) suggests that the North Australian craton subducted beneath the Banda Sea to around 100 km depth. The continuous increase of computing power combined with advances in numerical seismology allow us to develop full waveform inversion techniques that translate complete seismograms into 3D Earth models. The natural incorporation of any type of body and surface waves in full waveform inversion improves tomographic resolution in terms of both resolution length and amplitude recovery. We applied full waveform inversion to Australasia, including the Sunda and Banda arcs. The correlation of the tomographic model with isotope signatures of arc volcanics supports the shallow-angle subduction of North Australian lithosphere. The integrated data suggest that the late Jurassic ocean lithosphere north of the North Australian craton was capable of entraining large volumes of continental lithosphere. A plausible explanation involves delamination within the continental crust, separating upper from lower crustal units. This interpretation is consistent with the existence of a massive accretionary complex on Timor island, with evidence from Pb isotope analysis for lower-crust involvement in arc volcanism; and with the approximate gravitational stability of the subducted lithosphere as inferred from the tomographic images. The Banda arc example demonstrates that continental lithosphere in arc-continent collisions may not generally be preserved, thus increasing the complexity of tectonic reconstructions and models of recycling continental crust.

  16. Interference of lithospheric folding in Central Asia by simultaneous Indian and Arabian plate indentation

    NASA Astrophysics Data System (ADS)

    Smit, J. H. W.; Cloetingh, S. A. P. L.; Burov, E.; Sokoutis, D.; Kaban, M.; Tesauro, M.; Burg, J.-P.

    2012-04-01

    Although large-scale folding of the crust and the lithosphere in Central Asia as a result of the indentation of India has been extensively documented, the impact of continental collision between Arabia and Eurasia has been largely overlooked. The resulting Neogene shortening and uplift of the Zagros, Albors, Kopet Dagh and Kaukasus mountain belts in Iran and surrounding areas is characterised by a simultaneous onset of major topography growth at ca. 5 Ma. At the same time, the adjacent Caspian, Turan and Amu Darya basins underwent an acceleration in subsidence. It is common knowledge that waves with different orientations will interfere with each other. Folding, by its nature similar to a standing wave, is not likely to be an exception. We demonstrate that collision of the Eurasian plate with the Arabian and Indian plates generates folding of the Eurasian lithosphere in two different directions and that interaction between both generates characteristic interference patterns that can be recognised from the regional gravity signal. We present evidence for interference of lithospheric folding patterns induced by Arabian and Indian collision with Eurasia. Wavelengths (from 50 to 250 km) and spatial patterns are inferred from satellite-derived topography and gravity models and attest for rheologically stratified lithosphere with relatively strong mantle rheology (thickness of strong mechanical core on the order of 40-50 km) and less competent crust (thickness of the mechanical core on the order of 10-15 km). The observations are compared with inferences from numerical and analogue tectonic experiments for a quantitative assessment of factors such as lithosphere rheology and stratification, lateral variations in lithosphere strength, thermo-mechanical age and distance to the plate boundary on the activity of folding as a mechanism of intra-plate deformation in this area. The observed interference of the patterns of folding appears to be primarily the result of spatial

  17. Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Eaton, David W.; Bastow, Ian D.

    2013-07-01

    The Hudson Bay basin in northern Canada conceals one of the major collisional zones of the Canadian Shield, the Trans-Hudson Orogen (THO), which marks the Paleoproterozoic collision between the Archean Superior and Western Churchill cratons at ˜1.9-1.8Ga. Improved knowledge of upper mantle structure beneath the region is essential to establish the nature of the THO, specifically whether Himalayan-style plate tectonics operated in Paleoproterozoic times. Detailed seismological constraints on lithospheric architecture are also required to advance our understanding of the mechanism and timing of keel formation. We use surface wave tomography to illuminate new details of the lithospheric architecture of the Hudson Bay region, resolving both seismic wavespeed and azimuthal anisotropy. Phase velocity maps are calculated from fundamental-mode Rayleigh wave dispersion curves, then used to construct a 3D model exploring upper mantle structure to depths of ˜300km. Fast shear wavespeeds suggest a lithospheric thickness varying from ˜180km to almost 280 km beneath the Hudson Bay region. The new study confirms previous inferences that there is no correlation between crustal ages and lithospheric thickness. Patterns of shear wavespeed and azimuthal anisotropy indicate a layered lithosphere. In the uppermost mantle, both the highest velocities and the anisotropic fast directions wrap around the Bay. This structure is likely related to the formation processes of the Paleozoic intracratonic basin. At greater depth (˜70-150km) we resolve two high-wavespeed cores separated by a relatively narrow near-vertical lower-velocity curtain. This internal architecture is suggested to result from the terminal phase of a modern-style plate-tectonic collision between the Archean Superior and Churchill cratons during the Trans-Hudson orogeny, entrapping juvenile Proterozoic material. The lower lithosphere (≥160km depth) has a relatively homogeneous wavespeed structure across the region

  18. Lithospheric Structure In Asia Based On Pp-, P-waves Data

    NASA Astrophysics Data System (ADS)

    Bushenkova, N.

    There is the RR-R method of tomographic inversion, which is based on joint use of teleseismic P or S refracted rays and corresponding PP or SS rays with bounce points located within a study region. This scheme allows imaging the deep seismic structure beneath "blank" areas where there are neither recording stations nor earthquakes. Uti- lization of differential travel times makes it possible to avoid the difficulty of source and station corrections, which cause problems in teleseismic tomography. The RR-R scheme has been applied to more than 10000 ray pairs from the ISC database to in- vestigate a large region from the North Arctic Ocean to the northern part of China and Mongolia. Velocity anomalies were computed in grid nodes distributed in the study 3D area according to ray density. Relatively high velocities beneath the Siberian cra- ton (positive velocity anomalies under 3 % ) observed down to the depth of 350 km are consistent with the geothermal model of Artemieva and Mooney (2001) and with global seismic tomography and may correspond to traces of thick lithosphere. A local low-velocity anomaly is imaged in the northern part of the Siberian craton at sub- lithospheric depths below 300 km. Its centre coincides with the swell of the contem- porary Putorana plateau. This isolated anomaly may be accounted for by the presence of a limited volume of hot and light mantle material that, by its buoyancy, provides a dynamic uplift of the surface. Upper mantle beneath West Siberia is dominated by low velocities which can be interpreted as a result of relatively thin lithosphere. The veloc- ity jump at the base of the lithosphere (~150 km) is smooth due to its essentially ther- mal nature. The velocity anomalies in the southern part of the study area have NW-SE trend, which corresponds to the strike of major lithospheric structures formed by suc- cessive accretion of terranes to the Siberian craton through the Paleozoic (Molnar and Tapponnier, 1975; Sengör et al., 1993

  19. Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology

    NASA Astrophysics Data System (ADS)

    Heap, Michael J.; Byrne, Paul K.; Mikhail, Sami

    2017-01-01

    Surface gravitational acceleration (surface gravity) on Mars, the second-smallest planet in the Solar System, is much lower than that on Earth. A direct consequence of this low surface gravity is that lithostatic pressure is lower on Mars than on Earth at any given depth. Collated published data from deformation experiments on basalts suggest that, throughout its geological history (and thus thermal evolution), the Martian brittle lithosphere was much thicker but weaker than that of present-day Earth as a function solely of surface gravity. We also demonstrate, again as a consequence of its lower surface gravity, that the Martian lithosphere is more porous, that fractures on Mars remain open to greater depths and are wider at a given depth, and that the maximum penetration depth for opening-mode fractures (i.e., joints) is much deeper on Mars than on Earth. The result of a weak Martian lithosphere is that dykes-the primary mechanism for magma transport on both planets-can propagate more easily and can be much wider on Mars than on Earth. We suggest that this increased the efficiency of magma delivery to and towards the Martian surface during its volcanically active past, and therefore assisted the exogeneous and endogenous growth of the planet's enormous volcanoes (the heights of which are supported by the thick Martian lithosphere) as well as extensive flood-mode volcanism. The porous and pervasively fractured (and permeable) nature of the Martian lithosphere will have also greatly assisted the subsurface storage of and transport of fluids through the lithosphere throughout its geologically history. And so it is that surface gravity, influenced by the mass of a planetary body, can greatly modify the mechanical and hydraulic behaviour of its lithosphere with manifest differences in surface topography and geomorphology, volcanic character, and hydrology.

  20. The correct mechanism of lithospheric plates movement

    NASA Astrophysics Data System (ADS)

    Ostrihansky, L.

    2016-12-01

    Imagination that lithospheric plates move above low-viscous seismic low-velocity zone contradicts to reality but alternating movement of variations of the Earth's rotation deform plastic mantle. Because these deformations never return to original position and solidified ascending magma in mid-ocean ridge prevents return, the lithospheric plates move plunging to mantle by their own weight and move westward pushed by force of tidal friction enlarged by alternating movement of heavy and large-volume mantle. This imagination has been proven by calculating azimuths of Moon and opposite tidal bulging in a moment of earthquake. They resulted occurring on local eastern horizon when earthquake was triggered and also calculated tidal torques in their maximums coincided with earthquakes. To distinguish these tidal properties the earthquakes in Hindu Kush in westward moving Eurasian plate were examined and also in northward moving Indian plate. LOD graph has shown that in Hindu Kush tidal friction triggers earthquake almost every day and large earthquakes are triggered in large positive LOD anomalies corresponding to deceleration. In the Indian plate the calculated maximum tidal torques corresponding to accelerations (LOD minimums) coincided with the greatest earthquakes: with the Great Sumatra 2004, largest Nepal earthquake 1934, large earthquake Nepal 2015 evoked by resonance effect and others.

  1. Chinese Lithosphere Rheology and Geodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Zhang, H.; Cao, J.; Zhang, C.; Sun, L.

    2009-04-01

    Rock rheology is of critical importance to affect lithosphere deformation. Laboratory experiments show that viscosity of rocks strongly depends on temperature. Therefore, reliable estimation of geotherm is the first step for understanding lithospheric rheology. Deduction of geotherm from surface heat flow and thermal conductivity has been applied widely. However, error in temperature estimated this way increases with depth. In our study, we use seismic tomographic data to estimate mantle temperature ranges 50 to 200 km depth, and get a better constraint of temperature at depth. We use new petrology data to construct the crustal structure and viscosity model of China. To test the validity of extrapolation of flow law of rock from laboratory sample size and higher strain rate to large field scale and much lower strain rate, we use post seismic GPS deformation observation to invert lower crust viscosity for comparison. We then apply the viscosity model to simulate a number of tectonic problems in China, such as GPS velocity clockwise rotation around the eastern syntax of the Himalaya and uplift of the Tibetan plateau, decoupling of stress indicated by compression in the upper crust and extensional normal fault earthquake in the upper mantle in Taiwan southwest coast, and different stress accumulation rate in the upper and lower crust in Longmenshan area, Sichuan Province to estimate the reccurence time of large earthquakes.

  2. Rejuvenation of the Lithosphere by the Hawaiian Plume

    NASA Astrophysics Data System (ADS)

    Kind, R.; Li, X.; Yuan, X.; Woelbern, I.; Hanka, W.

    2003-12-01

    Thickness of oceanic lithosphere increases with distance from the ocean ridge due to cooling. If the lithosphere overrides a mantle plume, it will be modified. There exist several models describing the interaction of a plume with the lithosphere. However, existing seismic imaging techniques did not have sufficient resolution to decide for one of the models. We applied the S receiver function technique to data of three permanent seismic broadband stations on the Hawaiian islands to map the thickness of the lithosphere in so far unequaled detail. Under Big Island the lithosphere is 100-110 km thick, as expected for a 90-100 Myr old oceanic plate not modified by a plume. From there it is thinning gradually along the island chain to about 50-60 km below Kauai. The lithosphere retains its normal thickness in the region about 150 km to the north and to the south of the island chain, still well within the region of the topographic swell. Our data favour the rejuvenation model, in which the plume returns the lithosphere into conditions close to its origin at the mid ocean ridge. The maximum observed rejuvenation of the lithosphere at Kauai is delayed by about 3-4 Myr (the approximate age difference between Big Island and Kauai) and its thickness is nearly cut in half within that time.

  3. Understanding lithospheric stresses: systematic analysis of controlling mechanisms with applications to the African Plate

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei

    2016-10-01

    gives us confidence that our methodology appropriately models the stress pattern of Africa, and that it may be further applied to other plates on Earth. Our modelling approach allows us to quantify several important features controlling the lithospheric stress pattern. Even though the initial oversimplified model does not fit the observations satisfactorily, it shows how ridge push may create significant compressive stresses in the lithosphere. More complex models show the importance of the density structure of the lithosphere, specifically in the subcrustal lithosphere. The stress regime within the TAP mainly results from a global balance of masses and mass moments between continental and oceanic parts of the plate. The orientation of stresses, in turn, is influenced more by local features expressed by topographic and crustal density variations, whereas existent subcrustal density variations appear to be smoothed by the crust above. The models show that accounting separately for either basal tractions or rheological heterogeneities brings moderate improvement, but the combination of these two mechanisms results in a substantially better match between model and observations. The bending stresses caused by isostatical re-adjustment improve the model match, but they have to be analysed with caution because of their depth-dependent nature.

  4. Upper mantle flow and lithospheric dynamics beneath the Eurasian region

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Jiang, G.; Jia, Z.; Gao, R.; Fu, R.

    2010-12-01

    plateau, Tarim Basin, Tian Shan Mountains, Zungarian Basin and Altai Mountains correspond successively to the downward flow, the upward flow, the downward flow and the upward flow in the mantle. It shows that the basic tectonic pattern of the interphase basin-and-range structure corresponds to the convective pattern of the interphase downward-and-upward flows. In China-Mongolian Continent, the convective pattern in the eastern area of 105°E structural zone is entirely different from the western area, weak in the East and intensive in the West. West Pacific island arc-underthrust belt is located in the intensive convective areas and along this northeastern belt, there exist a series of interphase downward-and-upward flows. In summary, our results suggest that small-scale mantle convection in the upper mantle is one of the main driving forces of lithospheric dynamics of the Eurasian region. This work was supported by the Sinoprobe-02 project, the National Natural Science Foundation of China (40874067) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070491520)

  5. Three-dimensional density structure of the lunar upper lithosphere

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Du, J.; Chen, C.; Li, Y.

    2011-12-01

    The lithosphere of the Moon has a thickness over 1200 km according to the seismology studies. It records the giant impact events during the processes of solidification. The upper lithosphere including the crust and the upper mantle was thought to be a nonuniform layer in thickness and seismic velocity, yet the lateral density structure remains poorly understood. The global gravity data thus provides a significant constraint on the three-dimensional (3-D) density structure of the Moon. Previous studies assumed that the crust and the mantle have constant density the gravity anomalies are only produced by the variations of interface between the crust and the mantle. Therefore, the constant density may give overestimation or underestimation of the Moho depth. In contrast, we apply a 3-D inverse method in spherical coordinate to the lunar gravity anomaly. It is a direct way in recovering the density structures beneath mascon basins or the lateral density heterogeneities in the upper lithosphere. The gravity anomaly we use in this study is the Bouguer gravity anomaly calculated at 1750 km radius relative to the reference radius, 1737.153 km[1], from the newly gravity field model SGM100i[2] and the topography model LRO_LTM02[1]. In order to understand the global feature of density variation, we truncate the long wavelength anomaly up to the order of 30 to reconstruct the density distribution above the depth of 100 km in the Moon. With the inverse technique, we obtain a global 3-D density structure of the lunar lithosphere down to 100 km depth. The major features are dominated by the mascons with dense materials and the broad region of the farside highland with relative low density mass. From this structure, the huge mass concentrations are found beneath the South Pole-Aitken (SPA) basin, meaning that the oblique impact not only excavated the SPA basin into deep but also made the mantle uplifted close to a depth of 30 km (relative to a 1738 km radius). We suggest here that

  6. Evolution of the oceanic lithosphere inferred from Po/So waves traveling in the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Shito, Azusa; Suetsugu, Daisuke; Furumura, Takashi

    2015-07-01

    Po/So waves are characterized by their high-frequency content and long-duration travel over great distances (up to 3000km) through the oceanic lithosphere. Po/So waves are developed by the multiple forward scattering of P and S waves due to small-scale stochastic random heterogeneities. To study the nature of these heterogeneities, Po/So waves are analyzed in the Philippine Sea Plate, which consists of three regions with different lithospheric ages. In the Philippine Sea Plate, Po/So waves propagate in the youngest region (15 Ma) and propagate more effectively in older regions. We investigate the mechanism of this propagation efficiency using numerical finite difference method simulations of 2-D seismic wave propagation. The results of this study demonstrate that the increase in propagation efficiency of Po/So waves depends on the age of the oceanic lithosphere, and this relationship can be qualitatively explained by thickening of the oceanic lithosphere including small-scale heterogeneities and a reduction in the intrinsic attenuation. These small-scale heterogeneities may form continuously in oceanic lithosphere from the time of its formation at a spreading ridge, via the solidification of melts distributed in the asthenosphere.

  7. Lithospheric cooling as a basin forming mechanism within accretionary crust.

    NASA Astrophysics Data System (ADS)

    Holt, P. J.; Allen, M.; van Hunen, J.; Björnseth, H. M.

    2009-04-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, lithospheric stretching, lithospheric cooling following rifting and, possibly, dynamic topography. In this work forward models have been used to investigate lithospheric growth due to cooling beneath accretionary crust, as a new basin forming mechanism. Accretionary crust is formed from collision of island arcs, accretionary complexes and fragments of reworked older crust at subduction zones, and therefore has thin lithosphere due to melting and increased convection. This is modeled using a 1D infinite half space cooling model similar to lithospheric cooling models for the oceans. The crustal composition and structure used in the models has been varied around average values of accretionary crust to represent the heterogeneity of accretionary crust. The initial mantle lithosphere thickness used in the model was 20 km. The model then allows the lithosphere to thicken as it cools and calculates the subsidence isostatically. The model produces sediment loaded basins of 2-7 km for the various crustal structures over 250 Myrs. Water-loaded tectonic subsidence curves from the forward models were compared to tectonic subsidence curves produced from backstripping wells from the Kufrah and Ghadames basins, located on the accretionary crust of North Africa. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. This shows that lithospheric cooling provides a good method for producing large basins with prolonged subsidence in accretionary crust without the need for initial extension.

  8. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones.

  9. Temperature-dependent transient creep and dynamics of cratonic lithosphere

    NASA Astrophysics Data System (ADS)

    Birger, Boris I.

    2013-11-01

    Large-scale mantle convection forms the upper boundary layer (lithosphere) where the vertical temperature drop is about 1300 K. Theoretical rheology and laboratory experiments with rock samples show that transient creep occurs while creep strains are sufficiently small. The transient creep is described by the temperature-dependent Andrade rheological model. Since plate tectonics allows only small deformations in lithospheric plates, creep of the lithosphere plates is transient whereas steady-state creep, described by non-Newtonian power-law rheological model, takes place in the underlying mantle. The solution of stability problem shows that the lithosphere is stable but small-scale convective oscillations are attenuated very weakly in regions of thickened lithosphere beneath continental cratons (subcratonic roots) where the thickness of the lithosphere is about 200 km. These oscillations create small-scale convective cells (the horizontal dimensions of the cells are of the order of the subcratonic lithosphere thickness). Direction of motion within the cells periodically changes (the period of convective oscillations is of the order of 3 × 108 yr). In this study, the oscillations of cratonic lithosphere caused by initial relief perturbation are considered. This relief perturbation is assumed to be created by overthrusting in orogenic belts surrounding cratons. The perturbation of the Earth's surface relief leads to a fast isothermal process of isostatic recovery. In the presence of vertical temperature gradient, vertical displacements, associated with the recovery process in the lithosphere interior, instantly produce the initial temperature perturbations exciting thermoconvective oscillations in the cratonic lithosphere. These small-amplitude convective oscillations cause oscillatory crustal movements which form sedimentary basins on cratons.

  10. Perennial plate tectonics with lasting mantle lithosphere scars

    NASA Astrophysics Data System (ADS)

    Heron, P.; Pysklywec, R. N.; Stephenson, R.

    2015-12-01

    Although the conventional theory of plate tectonics can explain non-rigid behaviour at plate boundaries, it cannot adequately explain the processes involved in deformation and seismicity within plate interiors. Here, we consider that the pre-existing deformation or "scarring" within the mantle lithosphere may have a very long lived presence that could incorporate deformation of the plate interior and plate boundary. Mantle lithosphere scars from continent-continent collisions could generate virtual plate boundaries that remain over long timescales, producing "perennial" plate tectonics. Local geophysical studies can map the crustal environment well, and global whole mantle tomography models are rapidly improving, yet high-resolution images of the mantle lithosphere are often not available in regions where scarring may be present. Where mantle lithosphere heterogeneities have been observed (usually interpreted simply as subduction scars), the same attention has not been afforded to them as, for example, re-activation of faults within the Earth's crust. In idealized numerical simulations, we compare how relic scarring at varying depths in the lithosphere affects patterns of deformation. High-resolution thermal-mechanical numerical experiments explore continental lithospheric deformation featuring a weakened crust and mantle lithosphere scars. Our models show that deep lithospheric scars can control the tectonic evolution of a region over shallow geological features, indicating the importance of mantle lithosphere heterogeneities. The Altyn Tagh Fault (ATF) in central China is an example of an ancient continental collision zone that undergoes periodic deformation during times of regional compression. We suggest that the ATF may be a locale where a long-lasting mantle lithosphere scar can control the subsequent crustal evolution and deformation, with ancient plate boundaries having a "perennial" plate tectonic presence.

  11. Sedimentary loading, lithospheric flexure and subduction initiation at passive margins

    SciTech Connect

    Erickson, S.G. . Dept. of Earth Sciences)

    1992-01-01

    Recent theoretical models have demonstrated the difficulty of subduction initiation at passive margins, whether subduction is assumed to initiate by overcoming the shear resistance on a thrust fault through the lithosphere or by failure of the entire lithosphere in bending due to sedimentary loading. A mechanism for subduction initiation at passive margins that overcomes these difficulties incorporates the increased subsidence of a marginal basin during decoupling of a previously locked margin. A passive margin may decouple by reactivation of rift-related faults in a local extensional or strike-slip setting. Flexure of marginal basins by sedimentary loading is modeled here by the bending of infinite and semi-infinite elastic plates under a triangular load. The geometry of a mature marginal basin fits the deflection produced by loading of an infinite plate in which the flexural rigidity of continental lithosphere is larger than that of oceanic lithosphere. Decoupling of such a locked passive margin by fault reactivation may cause the lithospheric bending behavior of the margin to change from that of an infinite plate to that of a semi-infinite plate, with a resultant increase in deflection of the marginal basin. The increase in deflection depends on the flexural rigidities of continental and oceanic lithosphere. For flexural rigidities of 10[sup 30]-10[sup 31] dyn-cm (elastic lithosphere thicknesses 24--51 km), the difference in deflections between infinite and semi-infinite plates is 15--17 km, so that decoupling sinks the top of the oceanic lithosphere to depths of ca 35 km. Additional sedimentation within the basin and phase changes within the oceanic crust may further increase this deflection. Subduction may initiate if the top of the oceanic lithosphere sinks to the base of the adjacent elastic lithosphere.

  12. The model of lithospheric thickness beneath China from gravity data

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Ravat, D.

    2015-12-01

    We compare estimates of lithospheric thickness from several studies in China and examine whether the available gravity field anomalies can constrain these estimates. Ma (1987) suggested based on integrated geophysics that the lithospheric thickness varies from ~130 km in Qinling Dabie orogenic belt to ~60 km in Beijing, and ~50 km in Bohai bay. Lebedev and Nolet (2003) determined the lithospheric thickness in Bohai bay to be ~140 km from S wave tomography. Sodoudi et al.'s (2006) estimate of the lithospheric thickness is 72 km in Qinling Dabie orogenic belt and ~60 km in north China block. Since physical character differences exist between lithosphere and asthenosphere, it is possible to determine the thickness of lithospheric though gravity data. In this study, we use the crustal thickness obtained from teleseismic receiver functions (Li et al., 2014) to model the Moho gravity field variation and then remove this variation from the observed gravity field. Based on the residual field, the lithospheric thickness is obtained by the Parker inversion. Results show that the lithospheric thickness beneath China varies from ~80 km in the north of XinJiang to ~140 km in Tibet, and it changes to ~100 km in Eastern China. The residual field used for inversion is smooth which results in a smooth lithosphere-asthenosphere boundary (LAB). The LAB is generally in agreement with the previous seismic inversion result along profiles in eastern China (e.g. Li et al., 2011) and suggests that our method could be used to estimate the regional lithospheric variation in other areas in China, and somewhere else.

  13. Folded Lithospheric Basins in Central Asia: Altai-Sayan and Tien Shan basins in a folding lithosphere

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Cloetingh, Sierd; Beekman, Fred; Sokoutis, Dimitrios; Burov, Evguenii; Buslov, Misha; Abdrakhmatov, Kanatbeck

    2014-05-01

    Central Asia is a classic example for continental lithospheric folding. In particular, the Altay-Sayan belt in South-Siberia and the Kyrgyz Tien Shan display a special mode of lithospheric deformation, involving decoupled lithospheric mantle folding and upper crustal folding and faulting. A review of the paleostress data and tectono-stratigraphic evolution of the Kurai-Chuya basin in Siberian Altai, Zaisan basin in Kazakh South Altai and Issyk-Kul basin in Kyrgyz Tien Shan suggests that these basins were initiated in an extensional context and later inverted by a combination of fault-controlled deformation and flexural folding. They deformed by a combination of lithospheric buckling inducing surface tilting, uplift and subsidence, together with upper crustal fault-controlled deformation. They are good examples of Folded Lithospheric Basins (FLB) which typically form in a buckling lithosphere. Their characteristic basin fill and symmetry, inner structure, folding wavelength and amplitude, thermal regime and time frame are examined in relation to basement structure, stress field, strain rate, timing of deformation, and compared to existing modelling results. Both regions of active lithospheric folding have a heterogeneous crust with a long history of accretion-collision, subsequently reactivated as a far-field effect of the Indian-Eurasian collision. Thanks to the youthfulness of the tectonic deformation in this region (peak deformation in late Pliocene - early Pleistocene), the surface expression of lithospheric deformation is well documented by the surface topography and superficial tectonic structures.

  14. Earthquakes associated with diffuse zones of deformation in the oceanic lithosphere: some examples

    NASA Astrophysics Data System (ADS)

    Wang-Ping, Chen; Grimison, Nina L.

    1989-09-01

    We review the results of source parameters of earthquakes associated with the eastern end of the Azores-Gibraltar plate boundary, the Davie ridge near Madagascar, and the Horizon bank in the north Fiji basin to characterize the nature of present-day tectonics in diffuse zones of deformation in the oceanic lithosphere. In comparison with typical plate boundaries, diffuse zones of deformation are in general characterized by complex morphological expressions and scattered seismicity of up to several hundred kilometers width. Although the average rate of displacement across these regions is not resolvable by current models of global plate reconstruction, the deformation is not truly intraplate in nature because strain is concentrated and often distinct tectonic boundaries can be identified. Earthquakes with seismic moments as large as 8 × 10 20 Nm have occurred in bands of scattered seismicity that are associated with diffuse zones of deformation in the oceanic lithosphere. In two cases, the zones of diffuse deformation continue into the continental lithosphere east of Gibraltar and north of the Davie ridge. However, the largest earthquakes occur in the oceanic part of these two zones. In contrast to previous reports, the depth of earthquakes is quite shallow (< 15 km) near the Horizon bank (also known as the Hazel-Holme fracture zone) where the predominant mode of deformation is strike-slip motion. This zone is an important tectonic feature in the southwestern Pacific because the rate of seismic strain release along it in recent years is several orders of magnitude higher than that of a proposed nascent plate boundary north of the north Fiji basin. The maximum focal depth reaches about 50 km in the zone of ocean-ocean collision on the eastern end of the Azores-Gibraltar plate boundary where most of the mechanical lithosphere must have been broken during large earthquakes. Focal depths of up to 35 km were observed beneath ocean floors of Mesozoic age at the zone of

  15. Cratonic lithosphere: an electrifying view (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, A. G.

    2013-12-01

    Deep-probing electromagnetic studies reveal the vertical and lateral electrical conductivity structure of cratonic lithosphere. At lithospheric temperatures and for silicate mantle minerals, semi-conduction is from small polaron hopping and, in the presence of water, proton conduction, both of which is thermally-driven and can be described by an Arrhenius equation. There is little compositional sensitivity, save for the far higher water contents prevalent in pyroxenes (typically 200-400 wt ppm) compared to olivine (typically 10-100 wt ppm), with the latter exhibiting a depth dependence and the former none. Seismological methods are sensitive to temperature and composition, and virtually insensitive to low amounts of water. Taken together, the two are highly complementary. Seismological and magnetotelluric studies across Southern Africa can be employed together to constraint temperature and water content, where there is a significant difference at 100 km depth between the Kaapvaal Craton compared to the Angola (Congo) Craton compared to the Zimbabwe Craton. The Congo Craton is driest but hottest, the Kaapvaal Craton exhibits laterally-varying water content and is coldest, and the Zimbabwe Craton is the wettest and intermediate in temperature. Such thermal and water content variation results in lateral rheological variation, with the wettest and warmest being more deformable. For the Canadian Shield, there is again significant lateral variation at 100 km, with the Superior Province being mostly dry, and the Slave Craton and Rae/Hearne Provinces being far wetter. By 200 km however, all of the Canadian Shield is dry, consistent with the xenolith-based observations from the Kaapvaal Craton of far higher water contents in olivine at 100 km (50-100 wt ppm) decreasing with depth to around 10 wt ppm at 200 km. The lithosphere beneath the Kimberley area of the Kaapvaal Craton has been forward modeled in a manner that is self-consistent not only with the seismological and

  16. Lithosphere Response to Intracratonic Rifting: Examples from Europe and Siberia

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.; Thybo, H.; Herceg, M.; Cherepanova, Y. V.; Chemia, Z.; Cammarano, F.

    2012-12-01

    Several cratons have experienced a significant modification of their crustal and mantle lithosphere structure during Phanerozoic large-scale lithosphere-mantle interactions. In Eurasia, the most prominent examples include the Dniepre-Donets rift in the East European craton, the Oslo graben in the Baltic shield, the Viluy rift and the Baikal rift in Siberia. Despite some similarities, mostly in the crustal structure, there are also significant differences in the lithospheric structure of these rifts. Besides, a large lithosphere-scale Riphean suture/rift runs across the East European craton. While this suture can be recognized in the crustal structure, it is not clearly seen in the structure of the lithospheric mantle. In contrast, Phanerozoic processes associated with emplacement of large magma volumes had a strong effect on modification of the lithosphere structure, primarily by infiltration of basaltic magmas and consequently in a change in mantle density and seismic velocities. Although kimberlite magmatism is commonly not considered as a rifting events, its deep causes may be similar to the mantle-driven rifting and, as a consequence, modification of mantle density and velocity structure may also be expected. We present a new model for the structure of the crust in an area that encompasses the East European craton, the West Siberian basin, and the Siberian cratons. The region includes a nearly continuous age record for lithosphere evolution over ca. 3.6-3.8 billion years. The crustal model is based on critically assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. We also use global shear-wave tomography models, gravity constraints based on GOCE data, and thermal models for the lithosphere to speculate on thermo-chemical heterogeneity of the mantle. An analysis of the lithosphere structural heterogeneity is presented in relation to geotectonic setting and mantle geodynamics based on

  17. Evidence for a large-scale remnant of subducted lithosphere beneath Fiji.

    PubMed

    Chen, W P; Brudzinski, M R

    2001-06-29

    We combine spatial variations of P- and S-wave speeds, 1000 fault plane solutions, and 6600 well-determined hypocenters to investigate the nature of subducted lithosphere and deep earthquakes beneath the Tonga back-arc. We show that perplexing patterns in seismicity and fault plane solutions can be accounted for by the juxtaposition of a steep-dipping Wadati-Benioff zone and a subhorizontal remnant of slab that is no longer attached to the actively subducting lithosphere. The detached slab may be from a previous episode of subduction along the fossil Vitiaz trench about 5 to 8 million years ago. The juxtaposition of slabs retains a large amount of subducted material in the transition zone of the mantle. Such a configuration, if common in the past, would allow the preservation of a primordial component in the lower mantle.

  18. Long-wave tangential stresses in the lithosphere and mantle of Venus

    SciTech Connect

    Zharkov, V.N.; Marchenkov, K.I.; Lyubimov, V.M.

    1987-01-01

    The loading coefficients are calculated for real models of Venus taking into account the asthenosphere for anomalous density waves positioned at different characteristic levels. An associated analysis of the topography and the non-equilibrium part of the gravitational field allows one to determine long-wave primary tangential stresses in the lithosphere and mantle for zonal harmonics with n = 2-8. The stresses in the lithosphere of Venus are approximately equal to 30 bar, while those in the lower mantle can be up to 45 bar, but they are only on the order of a few bars in the weakened upper mantle. The low level of tangential stresses in the core and mantle of Venus is an important indication that the interior of the planet is intensely heated. A conclusion is drawn on aseismic nature of Venus.

  19. Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology

    SciTech Connect

    Flemings, P.B.; Jordan, T.E. )

    1990-05-01

    The authors incorporate the processes of erosion and deposition in a numerical model to predict the stratal geometries and facies patterns produced during episodic thrusting in a nonmarine foreland basin. The resultant stratigraphic record is characterized by a stairstepped facies package in which each retrogradation of facies (toward the thrust) marks the onset of a thrusting event. The retrogradation of facies coincides with the migration of the forebulge toward the thrust and the generation of an erosional unconformity. In the past, changes in basin wavelength during basin evolution have been interpreted to record viscoelastic relaxation of the lithosphere. This model suggests that changes in basin wavelength are a natural consequence of the interplay between thrust and sediment loading on an elastic lithosphere.

  20. Numerical modelling of lithospheric flexure at subduction zones: what controls the formation of petit-spot volcanoes?

    NASA Astrophysics Data System (ADS)

    Bessat, Annelore; Pilet, Sébastien; Duretz, Thibault; Schmalholz, Stefan M.

    2017-04-01

    quantifying stresses, strain rates, and viscosities to evaluate the thermo-mechanical conditions which are important for the percolation of melt initially stocked at the base of the lithosphere. References (1) Hirano et al., 2006. Science 313, 1426-1428. (2) Yamamoto et al., 2014, Geology 42, 967-970. (3) Pilet et al., 2016, Nature Geoscience 9, 898-903.

  1. Thermomechanical model of the North American lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter

    2014-05-01

    An integrated thermomechanical model of the lithosphere has been constructed based on various data sets and method. A consistent 3D model of the North American crust is based on the most recent seismic data from the USGS database. To this aim, we (1) defined the geometry of the main geological provinces of North America, (2) selected and evaluated the reliability of seismic crustal models in the database, (3) estimated the P-wave seismic velocity and thickness of the upper, middle and lower crust for each geological province. Temperature variations in the upper mantle have been estimated, taking into account compositional changes in cratonic regions, by applying a new inversion technique, which jointly interpret seismic velocities and gravity data. First, we inverted two tomography models into temperatures, using a uniform composition representative of a 'Primitive' mantle, which was affected by a small amount of melt extraction. In the next step, the thermal component of the density was estimated according to these initial thermal fields and was subtracted from the total density, to obtain the compositional component. These preliminary results might be affected by compositional changes of the cratonic upper mantle, usually depleted in heavy constituents. Then, the gravity effect of temperature variations is estimated and removed from the mantle gravity anomalies. The residual (temperature free) mantle anomalies are used to evaluate compositional changes in the cratonic mantle. We re-estimated the temperatures, using this new composition, and repeat calculations of the thermal and compositional density variations. These steps are reiterated until the convergence is reached. The results show that the upper mantle of the Archean North American cratons is characterized by temperatures higher than ~150°C compared to the initial thermal model, and by strong negative compositional density anomalies (-0.03 g/cm3), corresponding to Mg # (100xMg/(Mg+Fe)) >92. In turn, in

  2. Fluids and fractures in the lithosphere

    NASA Astrophysics Data System (ADS)

    Vigneresse, Jean Louis

    2001-07-01

    For a long time, Nancy has been the place for studies related to fluids and fluid inclusions. The former Fluid Inclusions group benefited from the impetus provided by Bernard Poty. He initiated such studies, leading to seminal studies of water-rock interactions. In a similar way, he developed a research group centred on CREGU, which now moved to a larger unit, G2R, namely 'Géologie et Gestion des Ressources minérales et énergétiques'. We took the opportunity of having this new group to organise a workshop centred on 'Fluids and Fractures in the Lithosphere' from 25th to 27th March, 1999. Marc Lespinasse and Jean Louis Vigneresse took their time off to organise the workshop and later bring out a special issue edited out of the presented papers.

  3. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Though there is no plate tectonics per se on Venus, recent Magellan radar images and topographic profiles of the planet suggest the occurrence of the plate tectonic processes of lithospheric subduction and back-arc spreading. The perimeters of several large coronae (e.g., Latona, Artemis, and Eithinoha) resemble Earth subduction zones in both their planform and topographic profile. The planform of arcuate structures in Eastern Aphrodite were compared with subduction zones of the East Indies. The venusian structures have radii of curvature that are similar to those of terrestrial subduction zones. Moreover, the topography of the venusian ridge/trench structures is highly asymmetric with a ridge on the concave side and a trough on the convex side; Earth subduction zones generally display the same asymmetry.

  4. Thermal state of continental and oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Hasterok, Derrick P.

    The thermal state of the continental and oceanic lithosphere is reassessed on the basis of new databases for global heat flow and lithospheric heat production, recent advances in thermophysical properties measurements of minerals at high pressures and temperatures, and a better understanding of convective heat loss in young seafloor. The updated global heat flow database incorporates >60,000 records with >44,800 heat flow determinations. The update significantly increases the quantity and spatial coverage of global heat flow data since the last update in 1993. A new family of continental geotherms is proposed that is parametric in surface heat flow and takes advantage of thermophysical property data. The range of geotherms is constrained by xenolith P--T estimates; a cratonic geotherm consistent with a surface heat flow of 40 mW/m2 is particularly well constrained. Upper crustal heat production represents ˜26% of the total surface heat flow. Average heat production for the continental lower crust and mantle are 0.4 muW/m3 and 0.02 muW/m3, respectively. Recent controversy about the interpretation of heat flow observations in young seafloor is resolved by careful filtering of data based on sediment thickness and distance from seamounts and weighting marine studies where the environment of heat flow measurements is carefully documented. Oceanic geotherms, fit to bathymetry and heat flow data, are produced for a plate model with 7 km thick crust, a plate thickness of 95 km, and mantle potential temperature of 1425°C. While the current estimate of global heat loss (44 TW) is reasonable, these new reference models will be instrumental in refining and estimating uncertainty in the solid Earth's global heat loss.

  5. Moho, seismogenesis, and rheology of the lithosphere

    NASA Astrophysics Data System (ADS)

    Chen, Wang-Ping; Yu, Chun-Quan; Tseng, Tai-Lin; Yang, Zhaohui; Wang, Chi-yuen; Ning, Jieyuan; Leonard, Tiffany

    2013-12-01

    The Moho is not always a sharp interface; but seismic phase SsPmp yields robust, physically averaged estimates of crustal thickness (virtual deep seismic sounding, VDSS). In S. Tibet where the Moho is as deep as 75 km, bimodal distribution of earthquake depths, with one peak in the upper crust and the other below the Moho, generated much interest in how lithological contrast affects seismicity and rheology. Generally seismicity is limited by distinct temperatures (Tc): 350 ± 50 °C in the crust and 700 ± 100 °C in the mantle (Earthquake Thermometry). Laboratory experiments show that distinct Tc reflect the onset of substantial crystal plasticity in major crustal and mantle minerals, respectively. Above these Tc, frictional instability ends due to velocity weakening of slip. So the seismic to aseismic transition is closely linked with brittle-ductile transitions in the crust and in the uppermost mantle, where the strength of the continental lithosphere is expected to peak (“Jelly Sandwich”). Plasticity depends exponentially on temperature (which evolves over time), so interplay between the geotherm and crustal thickness could result in concentrated seismicity in the upper crust - the only portion of a very warm lithosphere where temperature is below ~ 350 °C (“Crème Brûlée”). Conversely, where the entire crust is below ~ 350 °C (and the uppermost mantle is also below ~ 700 °C), then earthquakes could occur over a wide range of depths, including the entire crust and the uppermost mantle (“Caramel Slab”).

  6. Tectonic determinations of lithospheric thickness on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The concept of the Maxwell time of a viscoelastic material (4.5) is used in conjunction with calculated thermal profiles to evaluate the significance of tectonic estimates of lithospheric thickness. Thermal lithospheric thicknesses provide fundamental constraints on planetary thermal histories that complement the constraints provided by dateable surface deposits of endogenic origin. Lithospheric constraints are of particular value on the icy satellites where our understanding of both rheology and surface ages is considerably poorer than it is for the terrestrial planets. Certain extensional tectonic features can and have been used to estimate lithospheric thicknesses on Ganymede and Callisto. These estimates, however, refer to the depth of the elastic lithosphere defined by the zone of brittle failure. The relation between the elastic lithosphere and the thermal lithosphere (generally defined by the zone of conductive heat transport) is not straightforward, because the depth of brittle failure depends not only on the thermal profile, but also on rheology and strain rate (or the characteristic time over which stresses build towards failure). Characteristic time considerations are not trivial in this context because stresses generating brittle failure on the icy satellites may be produced by impacts, with characteristic times of seconds to days, or by geologic processes with time scales of hundreds of millions of years.

  7. Rejuvenation of the lithosphere by the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Li, Xueqing; Kind, Rainer; Yuan, Xiaohui; Wölbern, Ingo; Hanka, Winfried

    2004-02-01

    The volcanism responsible for creating the chain of the Hawaiian islands and seamounts is believed to mark the passage of the oceanic lithosphere over a mantle plume. In this picture hot material rises from great depth within a fixed narrow conduit to the surface, penetrating the moving lithosphere. Although a number of models describe possible plume-lithosphere interactions, seismic imaging techniques have not had sufficient resolution to distinguish between them. Here we apply the S-wave `receiver function' technique to data of three permanent seismic broadband stations on the Hawaiian islands, to map the thickness of the underlying lithosphere. We find that under Big Island the lithosphere is 100-110km thick, as expected for an oceanic plate 90-100 million years old that is not modified by a plume. But the lithosphere thins gradually along the island chain to about 50-60km below Kauai. The width of the thinning is about 300km. In this zone, well within the larger-scale topographic swell, we infer that the rejuvenation model (where the plume thins the lithosphere) is operative; however, the larger-scale topographic swell is probably supported dynamically.

  8. The Lithospheric Structure of Southern Africa from Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Jones, A. G.; Atekwana, E. A.

    2014-12-01

    Measurements of mantle electrical conductivity, made through the magnetotelluric method, offer considerable insight into the structure of cratonic lithosphere. A particularly expansive data set has been collected in Southern Africa, started through the Southern Africa Magnetotelluric Experiment (SAMTEX) experiment, now continuing north through Zambia as part of the Project for Rift Initiation Development and Evolution (PRIDE) experiment. The combined data set highlights large variability in lithospheric structure that broadly correlates with surface geology: cratonic lithosphere is generally thick and electrically resistive, while much thinner lithosphere is seen beneath mobile belts. In areas of relatively uniform resistivity structure, we have constructed resistivity-depth profiles and use new laboratory data to place constraints on the water content of lithospheric mantle. Uncertainty in our estimates arises from differences between different laboratory results, but our data are generally consistent with a slightly damp upper lithospheric mantle above a dry and strong cratonic root. Other areas show complexity of structure that is difficult to understand using current knowledge of conductivity -the Bushveld complex, where the mantle is highly conductive, is one such example. In southwestern Zambia, the lithosphere is seen to be very thin (around 50km) beneath mobile belt terrain, as was inferred nearly 40 years ago on the basis of high heatflow. The mantle is highly conductive, most likely due to a combination of elevated temperatures, water content and perhaps a trace amount of melting. This anomalous structure may be linked to the southwest propagation of the East African Rift system.

  9. Seasat observations of lithospheric flexure seaward of trenches

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Martin, C. F.

    1984-01-01

    Lithospheric flexure seaward of deep ocean trenches is evident in Seasat altimeter observations of the marine geoid. In fact, mechanical models of lithospheric flexure can be tested directly on the Seasat altimeter data. A simple elastic model has been used for the oceanic lithosphere and, after least squares adjustments, estimates have been recovered of model parameters including outer rise (OR) amplitude, OR wavelength, and effective lithospheric thickness. Effective lithospheric thicknesses have been recovered for six regions: the Mariana, the Kuril, the Philippine, the Aleutian, the Izu-Bonin, and the Middle America OR's. These results support the proposition that effective thickness Te increases with age of lithosphere in approximate accord with the relation Te approximately C x square root of age where C approximately 4 km/square root of (m.y.). In fact, altimetric results agree more closely with this relation than do published results based on bathymetric data. The close agreement with the thickness-age relation suggests that there is no longer any need to assume that significant horizontal compression acts across the Kuril, Marianas, and Izu-Bonin trenches. This thickness-age relation implies that flexural strength of the oceanic lithosphere is temperature controlled.

  10. SEASAT observations of lithospheric flexure seaward of trenches

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Martin, C. F.

    1983-01-01

    Lithospheric flexure seaward of deep ocean trenches in SEASAT altimeter observations of the marine geoid. In fact, mechanical models of lithospheric flexure can be tested directly on the SEASAT altimeter data. A simple elastic model was used for the oceanic lithosphere and, after least squares adjustments, estimates of model parameters were recovered including Outer Rise (OR) amplitude, OR wavelength, and effective lithospheric thickness. Effective lithospheric thickness was recovered for five regions: the Mariana, the Kuril, the Philippine, the Aleutian and the Middle America OR. These results support the suggestion of Bodine et al. (1981) that effective thickness, T, increased with age of lithosphere in approximate accord with the relation T approximately equals x age to the 1/2 power where C approximately equals 4 km x my to the -1/2 power. Altimetric results agree more closely with this relation than do published results based on bathymetric data. The close agreement with the thickness-age relation suggests that there is no longer any need to assume that significant horizontal compression acts across the Kuril, Marianas and Izo-Bonin trenches. This thickness-age relation implies that flexural strength of the oceanic lithosphere is temperature controlled.

  11. Rejuvenation of the lithosphere by the Hawaiian plume.

    PubMed

    Li, Xueqing; Kind, Rainer; Yuan, Xiaohui; Wölbern, Ingo; Hanka, Winfried

    2004-02-26

    The volcanism responsible for creating the chain of the Hawaiian islands and seamounts is believed to mark the passage of the oceanic lithosphere over a mantle plume. In this picture hot material rises from great depth within a fixed narrow conduit to the surface, penetrating the moving lithosphere. Although a number of models describe possible plume-lithosphere interactions, seismic imaging techniques have not had sufficient resolution to distinguish between them. Here we apply the S-wave 'receiver function' technique to data of three permanent seismic broadband stations on the Hawaiian islands, to map the thickness of the underlying lithosphere. We find that under Big Island the lithosphere is 100-110 km thick, as expected for an oceanic plate 90-100 million years old that is not modified by a plume. But the lithosphere thins gradually along the island chain to about 50-60 km below Kauai. The width of the thinning is about 300 km. In this zone, well within the larger-scale topographic swell, we infer that the rejuvenation model (where the plume thins the lithosphere) is operative; however, the larger-scale topographic swell is probably supported dynamically.

  12. Lithospheric structure of Venus from gravity and topography

    NASA Astrophysics Data System (ADS)

    Jiménez-Díaz, Alberto; Ruiz, Javier; Kirby, Jon F.; Romeo, Ignacio; Tejero, Rosa; Capote, Ramón

    2015-11-01

    There are many fundamental and unanswered questions on the structure and evolution of the venusian lithosphere, which are key issues for understanding Venus in the context of the origin and evolution of the terrestrial planets. Here we investigate the lithospheric structure of Venus by calculating its crustal and effective elastic thicknesses (Tc and Te, respectively) from an analysis of gravity and topography, in order to improve our knowledge of the large scale and long-term mechanical behaviour of its lithosphere. We find that the venusian crust is usually 20-25 km thick with thicker crust under the highlands. Our effective elastic thickness values range between 14 km (corresponding to the minimum resolvable Te value) and 94 km, but are dominated by low to moderate values. Te variations deduced from our model could represent regional variations in the cooling history of the lithosphere and/or mantle processes with limited surface manifestation. The crustal plateaus are near-isostatically compensated, consistent with a thin elastic lithosphere, showing a thickened crust beneath them, whereas the lowlands exhibit higher Te values, maybe indicating a cooler lithosphere than that when the venusian highlands were emplaced. The large volcanic rises show a complex signature, with a broad range of Te and internal load fraction (F) values. Finally, our results also reveal a significant contribution of the upper mantle to the strength of the lithosphere in many regions.

  13. Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delamination below the Archean Singhbhum Craton?

    NASA Astrophysics Data System (ADS)

    Mandal, Prantik

    2017-02-01

    We herein present shear velocity structure extending down to 300 km depth below the Archean Singhbhum-Odisha Craton (SOC) and Proterozoic Chotanagpur granitic-gneissic terrain (CGGT), which has been obtained through the inversion modeling of P-receiver functions. We use three-component broadband recordings of 200 teleseismic earthquakes (30° ≤ ∆ ≤ 90°) from a 15 station seismic network that has been operational in the Eastern Indian shield since February 2013. We obtain the thinnest crust of 35 km overlying a thin lithosphere of 78 km, below the region near south Singhbhum shear zone, which could be attributed to the 1.6 Ga plume activity associated with Dalma volcanic. However, the thickest crust of 47 km overlying a thin lithosphere of 81 km is noticed below the region near the Singhbhum granite of 3.6 Ga. This thinning of lithosphere could be attributed to the delamination of lithospheric root due to the Himalayan orogeny with a shortening rate of 2 cm/year. This delamination model in SOC gets further support from the densification of the lower crust, which could result from repeated episodes of basaltic underplating associated with episodes related to Dalma ( 1.6 Ga) and Rajmahal ( 117 Ma) volcanisms. This led to relatively more mafic, heterogeneous and deformed crustal structure in SOC as well as EGMB (with an average crustal Vs of 4.0 km/s) in comparison to that in CGGT (with an average crustal Vs of 3.9 km/s), as seen through our modeling results. The thickest lithosphere of 100 km is observed in the southwestern SOC as well as northeastern CGGT. We also notice that a sharp and flat Moho in CGGT, which could be attributed to thermal reactivation and large volume melting of the mafic cratonic crust during the late Archean subduction process and associated volcanism episodes. This model gets further support from the estimated 169 km thick lower Vs zone in the upper mantle below CGGT. Our modeling results also support a northward subduction of Archean

  14. Lithospheric cooling and thickening as a basin forming mechanism

    NASA Astrophysics Data System (ADS)

    Holt, Peter J.; Allen, Mark B.; van Hunen, Jeroen; Bjørnseth, Hans Morten

    2010-12-01

    Widely accepted basin forming mechanisms are limited to flexure of the lithosphere, and lithospheric stretching followed by cooling and thermal subsidence. Neither of these mechanisms works for a group of large basins, sometimes known as "intracontinental sags". In this paper we investigate cooling and thickening of initially thin lithosphere as a basin forming mechanism, by a combination of forward modelling and a backstripping study of two Palaeozoic North African basins: Ghadames and Al Kufrah. These are two of a family of basins, once unified, which lie over the largely accretionary crust of North Africa and Arabia. Such accretionary crust tends to be juvenile, consisting of amalgamated island arcs, accretionary prisms and melanges, and typically has near-normal crustal thicknesses but initially thin mantle lithosphere. Post-accretion subsidence is modelled using a plate cooling model similar to cooling models for oceanic lithosphere. The crustal composition and thickness used in the models are varied around average values of accretionary crust to represent likely heterogeneity. The model allows the lithosphere to thicken as it cools and calculates the resulting isostatic subsidence. Water-loaded tectonic subsidence curves from these forward models are compared to tectonic subsidence curves produced from backstripped wells from Al Kufrah and Ghadames Basins. A good match between the subsidence curves for the forward model and backstripping is produced when the best estimates for the crustal structure, composition and the present day thickness of the lithosphere for North Africa are used as inputs for the forward model. The model produces sediment loaded basins of 2-7 km thickness for the various crustal assemblies over ~ 250 Myr. This shows that lithospheric cooling provides a viable method for producing large basins with prolonged subsidence, without the need for initial extension, provided the condition of initially thin mantle lithosphere is met.

  15. Constraints of the Style of Tibetan Lithospheric Deformation and their Consequences for Resolving the Orogeny Paradox.

    NASA Astrophysics Data System (ADS)

    Silver, P. G.; Flesch, L.

    2005-12-01

    The process of continent-continent collision is central to our understanding of continental dynamics. The Tibetan plateau, the most spectacular manifestation of this phenomenon, has long been used as a natural laboratory for studying the collisional process. While the most obvious properties of Tibet, namely its high topography and thickened crust, are easily explained by the shortening and thickening of continental lithosphere, idealized by the deformation of a thin viscous sheet, there remain basic thermomechanical properties that do not fit this simple picture. In particular, the expected advective thickening of continental geotherms predicts a strong, cool, upper mantle. In contrast, the basic morphology of the plateau, the observation of low mantle seismic velocities, the presence of N-S-oriented normal faulting, and significant volcanic activity, all argue instead for weak, high temperature lithosphere beneath the plateau. This discrepancy, which we have referred to as the "Orogeny Paradox", has led researchers to propose models that invoke more complex styles of deformation, such as mantle delamination, lower crustal flow, and continental subduction. The simple thin-viscous-sheet model, as well as these more complex models, make predictions about the relationship between crust and mantle deformation, that form the basis for a test. We have recently completed a study of the mechanical properties of Tibet (Flesch et al., 2005) and surrounding regions that places important constraints on the actual style of Tibetan lithospheric deformation. This study jointly modeled the surface deformation field estimated from geodesy and Quaternary fault slip, and the mantle deformation field inferred from shear-wave splitting observations. The results strongly support a lithosphere in which its crust and mantle components are mechanically coupled, deform coherently, and are roughly similar in strength. It is thus difficult to reconcile these observations with the more

  16. Lithospheric structure on Venus from tectonic modelling of compressional features

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; Golombek, M. P.

    1987-01-01

    In previous studies, extensional models were used that incorporated realistic rheologies in order to constrain lithospheric structure. Lithospheric modelling is considered herein from the standpoint of compressional deformation. Features of presumed compressional tectonic origin are reviewed and a model for compressional folding based on lithospheric strength envelopes are presented that include the effects of both brittle and ductile yielding as well as finite elastic strength. Model predictions are then compared with the widths and spacings of observed tectonic features and it is concluded that the results are consistent with a thin crust overlying a relatively stronger mantle, with thermal gradients probably in the range of 10 to 15 deg/km.

  17. EURho: Density structure of the European crust and lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Lundvig, Kasper; Artemieva, Irina; Thybo, Hans

    2017-04-01

    We present a new density model of the (1) European crust and (2) lithospheric mantle by integrating seismic, thermal and gravimetric data. (1) Crustal density: We obtain crustal segment thicknesses (i.e. sediments, upper crust, middle crust, lower crust and lowermost crust) and mean p-wave segment velocity (vp) from the recent seismic crustal model EUNAseis (Artemieva and Thybo, 2013). By converting each mean crustal segment vp into mean crustal segment rock density using Brocher's empirical polynomial relationship (Brocher, 2005), we calculate mean crustal density for the entire crustal column as a weighted mean. (2) Lithospheric mantle density: Due to strong seismic anisotropy in the European lithospheric mantle, we limit the vp to rock density conversion to the crust. Instead, we estimate lithospheric mantle densities from residual mantle gravity. We use crustal segment densities to calculate the total crustal gravimetric contribution. We find a strong linear relationship between crustal thickness and crustal gravimetric contribution, and we exploit this relationship as our reference model. We remove the anomalous crustal gravimetric contribution by subtracting it from the Free-Air Anomaly in WGM2012 (Balmino et al., 2012). By implementing the thermal model TC1 (Artemieva, 2006) and by defining the base of the lithosphere as the depth where the local geotherm reaches a temperature of 1300 oC we effectively constrain the thickness of the thermal lithosphere. We remove the effect of undulating Moho and LAB (Lithosphere Asthenosphere Boundary) depth variations, and the effect of thermal expansion. From the resulting residual mantle gravity, we estimate lithospheric mantle density on a 1 x 1 degree's grid. Our results show that the thick crust in the East European Craton (East European Platform and shield and the Baltic shield) is significantly denser (2.83 ± 0.05 Mg m-3) than the thin crust in Western Europe (2.77 ± 0.04 Mg m-3). Contrastingly, the thick

  18. Influence of heterogeneities within the lithosphere on the deformation pattern of continental rift systems.

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Thieulot, Cedric; van Wijk, Jolante; Sokoutis, Dimitrios; Willingshofer, Ernst; Cloetingh, Sierd

    2013-04-01

    Understanding how heterogeneities within the lithosphere influence the deformation pattern in continental rifts still remains a challenge and is of real importance to constrain continental break-up. We have selected the Main Ethiopian Rift in East Africa and the Rio Grande Rift in the south-western U.S. These two rifts are perfect natural laboratories to investigate the effect of inherited as they share similar structural characteristics but develop above different kinds of lithosphere-scale heterogeneities. From a structural point of view both rifts show similar length (1000km), width (50 to 70 km) and asymmetry. The Main Ethiopian rift is the NE-SW trending plate boundary between the Nubian and Somalian plates that has been developing for the past 11 Ma above a palaeo-Proterozoic lithospheric-scale weak zone re-heated by the Afar hotspot, whereas the Rio Grande Rift is the eastern "boundary" of the Basin & Range system which has been developing for the past 30 Ma in the frame of a westward-retreating Farallon subduction zone. However, the Rio Grande Rift shows evidence of low angle normal faulting whereas the Main Ethiopian Rift shows steeply dipping (with a mean close to 70°) normal faults. The Main Ethiopian Rift shows larger volume of erupted lavas than the Rio Grande Rift. Combined with a structural analyses of both rifts, we present here a series of 2D cross sections numerical models that allow better understanding of the influence of initial heterogeneities such as 1) the rheological state of the crust; 2) the presence of a crustal-scale to lithospheric-scale discrete weak or strong zone, 3) the effects of the presence of magma. We illustrate that rheological boundaries are not reactivated if the rheological contrast it too high, which is the case of the Rio Grande Rift that developed to the east of the North American Craton within thinned lithosphere. We also illustrate that the width of the weak zone do no have any influence on the exhumation of the

  19. Lithospheric low-velocity zones associated with a magmatic segment of the Tanzanian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Plasman, M.; Tiberi, C.; Ebinger, C.; Gautier, S.; Albaric, J.; Peyrat, S.; Déverchère, J.; Le Gall, B.; Tarits, P.; Roecker, S.; Wambura, F.; Muzuka, A.; Mulibo, G.; Mtelela, K.; Msabi, M.; Kianji, G.; Hautot, S.; Perrot, J.; Gama, R.

    2017-07-01

    Rifting in a cratonic lithosphere is strongly controlled by several interacting processes including crust/mantle rheology, magmatism, inherited structure and stress regime. In order to better understand how these physical parameters interact, a 2 yr long seismological experiment has been carried out in the North Tanzanian Divergence (NTD), at the southern tip of the eastern magmatic branch of the East African rift, where the southward-propagating continental rift is at its earliest stage. We analyse teleseismic data from 38 broad-band stations ca. 25 km spaced and present here results from their receiver function (RF) analysis. The crustal thickness and Vp/Vs ratio are retrieved over a ca. 200 × 200 km2 area encompassing the South Kenya magmatic rift, the NTD and the Ngorongoro-Kilimanjaro transverse volcanic chain. Cratonic nature of the lithosphere is clearly evinced through thick (up to ca. 40 km) homogeneous crust beneath the rift shoulders. Where rifting is present, Moho rises up to 27 km depth and the crust is strongly layered with clear velocity contrasts in the RF signal. The Vp/Vs ratio reaches its highest values (ca. 1.9) beneath volcanic edifices location and thinner crust, advocating for melting within the crust. We also clearly identify two major low-velocity zones (LVZs) within the NTD, one in the lower crust and the second in the upper part of the mantle. The first one starts at 15-18 km depth and correlates well with recent tomographic models. This LVZ does not always coexist with high Vp/Vs ratio, pleading for a supplementary source of velocity decrease, such as temperature or composition. At a greater depth of ca. 60 km, a mid-lithospheric discontinuity roughly mimics the step-like and symmetrically outward-dipping geometry of the Moho but with a more slanting direction (NE-SW) compared to the NS rift. By comparison with synthetic RF, we estimate the associated velocity reduction to be 8-9 per cent. We relate this interface to melt ponding

  20. Introduction of sub-lithospheric component into melted lithospheric base by propagating crack: Case study of migrated Quaternary volcanoes in Wudalianchi, China

    NASA Astrophysics Data System (ADS)

    Chuvashova, Irina; Sun, Yi-min

    2016-04-01

    mantle beneath the northern Songliao basin and that admixture of the common sub-lithospheric component was locally introduced into the melted region by mechanism of propagating crack. This study is based on analytical data obtained for volcanic rocks in the Chinese-Russian Wudalianchi-Baikal Research Center on recent volcanism and environment. Major oxides were determined by "wet chemistry" at the Institute of the Earth's Crust SB RAS, Irkutsk. Trace-elements were measured by ICP-MS technique using mass-spectrometer Agilent 7500ce of the Center for collective use "Microanalysis" (Limnological Institute of SB RAS, Irkutsk) and Nd, Pb, and Sr isotopes by TIMS technique using mass-spectrometer Finnigan MAT 262 of the Center for collective use "Geodynamics and geochronology" (Institute of the Earth's Crust SB RAS). The work was supported by the RFBR grant № 16-05-00774. References Chuvashova, I.S., Rasskazov, S.V., Liu, J., Meng, F., Yasnygina, T.A., Fefelov, N.N., Saranina, E.V., 2009. Isotopically-enriched components in evolution of Late Cenozoic potassic magmatism in Heilongjiang province, northeast China, Proceedings of the Irkutsk State University. Series of Earth Sciences, 2 (2), pp. 181-198. Guide book for field mission to Wudalianchi National Park, China, 2010. Prepared by Wudalianchi National Park and Nature Management Committee Heilongjiang province, 50 p. Foulger, G.R., 2010. Plates vs. plumes: a geological controversy. Wiley-Blackwell, 328 p. Rasskazov, S.V., Yasnygina, T.A., Chuvashova, I.S. Mantle sources of the Cenozoic volcanic rocks of East Asia: Derivatives of slabs, the sub-lithospheric convection, and the lithosphere. Russian Journal of Pacific Geology. 2014. V. 8 (5), 355-371. Wang, Y., Chen, H., 2005. Tectonic controls on the Pleistocene-Holocene Wudalianchi volcanic field (northeastern China), Journal of Asian Earth Sciences, 24, pp. 419-431.

  1. Faster seafloor spreading and lithosphere production during the mid-Cenozoic

    NASA Astrophysics Data System (ADS)

    Conrad, Clinton P.; Lithgow-Bertelloni, Carolina

    2007-01-01

    Concurrent changes in seawater chemistry, sea level, and climate since the mid-Cretaceous are thought to result from an ongoing decrease in the global rate of lithosphere production at ridges. The present-day area distribution of seafloor ages, however, is most easily explained if lithosphere production rates were nearly constant during the past 180 m.y. We examined spatial gradients of present-day seafloor ages and inferred ages for the subducted Farallon plate to construct a history of spreading rates in each major ocean basin since ca. 140 Ma, revealing dramatic Cenozoic events. Globally, seafloor spreading rates increased by ˜20% during the early Cenozoic due to an increase in plate speeds in the Pacific basin. Since then, subduction of the fast-spreading Pacific-Farallon ridge system has led to a 12% decrease in average global spreading rate and an 18% or more decrease in the total rate of lithosphere production by the most conservative estimates. These rapid changes during the Cenozoic defy models of steady-state seafloor formation, and demonstrate the time-dependent and evolving nature of plate tectonics on Earth.

  2. An Equivalent Source Method for Modelling the Lithospheric Magnetic Field Using Satellite and Airborne Magnetic Data

    NASA Astrophysics Data System (ADS)

    Kother, L. K.; Hammer, M. D.; Finlay, C. C.; Olsen, N.

    2014-12-01

    We present a technique for modelling the lithospheric magnetic field based on estimation of equivalent potential field sources. As a first demonstration we present an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010. Three component vector field data are utilized at all latitudes. Estimates of core and large-scale magnetospheric sources are removed from the satellite measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid with an increasing grid resolution towards the airborne survey area. The corresponding source values are estimated using an iteratively reweighted least squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data error variances on quasi-dipole latitudes. Results show good consistency with the CM5 and MF7 models for spherical harmonic degrees up to n = 95. Advantages of the equivalent source method include its local nature and the ease of transforming to spherical harmonics when needed. The method can also be applied in local, high resolution, investigations of the lithospheric magnetic field, for example where suitable aeromagnetic data is available. To illustrate this possibility, we present preliminary results from a case study combining satellite measurements and local airborne scalar magnetic measurements of the Norwegian coastline.

  3. Continental Scale Body Wave Tomography of India: Evidence for Attrition and Preservation of Lithospheric Roots

    NASA Astrophysics Data System (ADS)

    Mangalampally, R.; Singh, A.; Mercier, J.; Davuluri, S.; Chadha, R. K.

    2012-12-01

    We assemble P and S waveforms of 2302 teleseismic earthquakes registered at 432 broadband seismic stations spanning the Indian plate from the southern tip of India to the Himalayan collision belt and generate an accurate data set of 54632 P and 30608 S arrival times through the multi-channel cross correlation approach. These travel times are then inverted to obtain 3D P and S velocity structures of the subcontinent at a 2° lateral resolution. A heterogeneous nature of the Indian lithospheric mantle revealed in this study suggests that the lithospheric roots are not uniformly thick on a regional scale. Although high velocity roots typical of Precambrian shields are preserved beneath a few cratons of the Indian shield, particularly in regions associated with the older kimberlite pipes like the Wajrakarur and Majhgawan (of age ~1100 Ma) that entrained diamonds, they seem to have suffered attrition, particularly in the plume ravaged regions like the northwestern Deccan Volcanic Province and the Southern Granulite Terrain. Also, the much younger (~65Ma) Mainpur kimberlite field that is characterized by low or normal velocities might represent a region where the erosion of lithospheric roots has taken place under the influence of the Deccan plume. Further, the low velocities beneath the Southern Granulite Terrain can be explained invoking the Marion plume responsible for separation of India from Madagascar and high temperatures required for granulite formation.

  4. Grain size in lithospheric-scale shear zones: Chicken or Egg?

    NASA Astrophysics Data System (ADS)

    Thielmann, M.; Rozel, A.; Kaus, B. J. P.; Ricard, Y.

    2012-04-01

    Lithospheric-scale shear zones are commonly defined as regions inhomogeneous and localized deformation. Strain softening has been demonstrated to be necessary for localization in those shear zones, but there is still debate about the physical cause of this softening. As natural shear zones typically have a significantly reduced grain size, it has been proposed that grain size reduction provides the necessary strain softening to localize deformation. As grain size reduces, the dominant deformation mechanism switches from dislocation to diffusion creep, thus requiring less stress to deform the rock. Until recently, the equilibrium grain size has been thought to follow a piezometric relationship, thus indicating the stress under which a shear zone deformed. More recent work (Austin and Evans (2007), Rozel et. al. (2011)) suggests that the equilibrium grain size is not dependent on stress, but rather on the deformational work. Using this relationship, we use numerical models to investigate the effect of grain size evolution on lithospheric deformation. We focus on the question if grain size provides sufficient weakening to effectively localize deformation under lithospheric conditions or if it's effect is rather passive and as such a marker for the deformational work done in a shear zone. We then compare the localization potential of grain size reduction to shear heating and investigate the interplay between the two weakening mechanisms.

  5. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

    PubMed

    Schaefer, Bruce F; Turner, Simon; Parkinson, Ian; Rogers, Nick; Hawkesworth, Chris

    2002-11-21

    The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

  6. Investigating the Lithospheric Structure of Southern Madagascar

    NASA Astrophysics Data System (ADS)

    Tilmann, F. J.; Yuan, X.; Rumpker, G.; Heit, B.; Rambolamana, G.; Rindraharisaona, E.; Priestley, K. F.

    2013-12-01

    The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material, with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (> 1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (<120 km) throughout Madagascar, but are based on sparse data and cannot resolve the difference between eastern and western Madagascar. We are operating a ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the

  7. Determination of the Earth's lithospheric magnetic field with satellite data

    NASA Astrophysics Data System (ADS)

    Kotsiaros, Stavros; Olsen, Nils; Finlay, Christopher

    2016-07-01

    Satellites such as Magsat, Ørsted, CHAMP and Swarm provide the most effective means of determining on a global scale the Earth's lithospheric magnetic field. In particular, the Swarm three-satellite constellation mission aims at capturing the smallest-scale features of the lithospheric field that have ever been captured from space. To achieve that, explicit advantage of the constellation aspect of Swarm has to be taken by using gradient estimates. We derive lithospheric field models using more than one year of magnetic gradient data, which are approximated by first differences of field vector data between the two lower Swarm satellites and along each satellite orbit, respectively. We find that gradient data are less sensitive to large-scale external field fluctuations. Moreover, gradient data appear to be a very efficient way of increasing the resolution of lithospheric field models and thus providing an initial validation of the gradient concept underlying the Swarm mission.

  8. Global strength and elastic thickness of the lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2012-06-01

    The strength and effective elastic thickness (Te) of the lithosphere control its response to tectonic and surface processes. Here, we present the first global strength and effective elastic thickness maps, which are determined using physical properties from recent crustal and lithospheric models. Pronounced strength contrasts exist between old cratons and areas affected by Tertiary volcanism, which mostly coincide with the boundaries of seimogenic zones. Lithospheric strength is primarily controlled by the crust in young (Phanerozoic) geological provinces characterized by low Te (~ 25 km), high topography (> 1000 m) and active seismicity. In contrast, the old (Achaean and Proterozoic) cratons of the continental plates show strength primarily in the lithospheric mantle, high Te (over 100 km), low topography (< 1000 m) and very low seismicity.

  9. The Changing Lithosphere: formation of minerals and dissapearance of rocks

    NASA Astrophysics Data System (ADS)

    Vignola, Teresa; Floriano, Michele A.

    2014-05-01

    dissolve under acid conditions;as such substances can be present in rain, for example. A clear example in nature of calcium carbonate dissolution by acid rain is the karst.The phenomenon was discussed with the aid ofimages depicting karst landscapes wherethe erosion phenomena produced by acid precipitations were evident. Therefore, acidity is one of the causes of erosion triggered by atmospheric precipitation and increasing acidity produced by volcanic eruptions or anthropic activities will enhance lithosphere erosionphenomena.

  10. Lithospheric Stress and Deformation (Paper 7R0323)

    NASA Astrophysics Data System (ADS)

    McNutt, Marcia

    1987-07-01

    The study of the mechanisms, magnitudes, and modes of lithospheric stress and deformation occupies a central position in the discipline of Tectonophysics. It is therefore difficult in assembling a comprehensive review to place limits on what should be included. For example, one cannot discuss stress and deformation apart from considerations of the rheological models of the lithosphere which link the two and ultimately control the behavior of plates at their margins and in their interiors. Once admitting to the importance of rheological considerations in discussing stress and deformation, one is then compelled to include information relating to the thermal state of the lithosphere, since temperature is one of the foremost environmental variables controlling rheology. Furthermore, lithospheric processes cannot be considered in isolation from those affecting the asthenosphere, since surely there exists some coupling between the motion of the lithosphere and convection in the Earth's interior. In fact, an understanding of lithospheric stress and deformation can be considered a prerequisite to solving problems in geodynamics because it is through the lithospheric filter that one detects the consequences of thermal and compositional anomalies at greater depth. The topic of this report cannot even be cleanly separated from reviews in other disciplines such as Seismology and Geodesy. The magnitude and orientation of lithospheric stress is often indicated by earthquakes, while lithospheric strain can be observed geodetically. The philosophy I have adopted here is that some overlap with other review papers in this series is unavoidable, and probably desirable from the standpoint of emphasizing how recent work n other areas of geophysics has contributed to the advancement in our understanding of the lithosphere's state-of-stress and mechanisms of deformation. I have, however, resisted the temptation to include extraterrestrial studies, presumably covered in the Planetary

  11. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau Based on Postseismic Deformation

    NASA Astrophysics Data System (ADS)

    Huang, M. H.; Burgmann, R.; Freed, A. M.

    2014-12-01

    The fundamental geological structure, geodynamics, and rheology of the Tibetan Plateau have been debated for decades. Two end-member models have been proposed: (1) the deformation of Tibet is broadly distributed and associated with ductile flow in the mantle and middle or lower crust, (2) the Tibetan Plateau formed during interactions between rigid lithospheric blocks with localization of deformation along major faults. The nature and distribution of continental deformation are governed by the varying rheology of rocks and faults in the lithosphere. Insights into lithospheric rheology can be gained from observations of postseismic deformation, which represents the response of the Earth's interior to coseismic stress changes. Here we use up to 2 years of InSAR and GPS measurements to investigate postseismic displacements following the 2008 Mw 7.9 Wenchuan earthquake in eastern Tibet and probe the differences in rheological properties across the edge of the Plateau. We find that near-field displacements can be explained by shallow afterslip on the Beichuan Fault, which is anti-correlated with the coseismic slip distribution. Far-field displacements cannot be explained by a homogeneous rheology, but instead require a viscoelastic lower crust (from 45 to 60 km depth) beneath Tibet with an initial effective viscosity of 4.4×1017 Pas and a long-term viscosity of 1018 Pas, whereas the Sichuan Basin block has a high-viscosity upper mantle (>1020 Pa s) underlying an elastic 35-km-thick crust. The inferred strong contrast in lithospheric rheologies between the Tibetan Plateau and the Sichuan Basin is consistent with models of ductile lower crustal flow that predict maximum topographic gradients across the Plateau margins where viscosity differences are greatest.

  12. Probing the lithospheric rheology across the eastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, Mong-Han; Bürgmann, Roland; Freed, Andrew M.

    2014-06-01

    The fundamental geological structure, geodynamics, and rheology of the Tibetan Plateau have been debated for decades. Two end-member models have been proposed: (1) the deformation of Tibet is broadly distributed and associated with ductile flow in the mantle and middle or lower crust, (2) the Tibetan Plateau formed during interactions between rigid lithospheric blocks with localization of deformation along major faults. The nature and distribution of continental deformation are governed by the varying rheology of rocks and faults in the lithosphere. Insights into lithospheric rheology can be gained from observations of postseismic deformation, which represents the response of the Earth's interior to coseismic stress changes. Here we use up to 2 years of InSAR and GPS measurements to investigate postseismic displacements following the 2008 Mw 7.9 Wenchuan earthquake in eastern Tibet and probe the differences in rheological properties across the edge of the Plateau. We find that near-field displacements can be explained by shallow afterslip on the Beichuan Fault, which is anti-correlated with the coseismic slip distribution. Far-field displacements cannot be explained by a homogeneous rheology, but instead require a viscoelastic lower crust (from 45 to 60 km depth) beneath Tibet with an initial effective viscosity of 4.4×1017 Pa s and a long-term viscosity of 1018 Pa s, whereas the Sichuan Basin block has a high-viscosity upper mantle (>1020 Pa s) underlying an elastic 35-km-thick crust. The inferred strong contrast in lithospheric rheologies between the Tibetan Plateau and the Sichuan Basin is consistent with models of ductile lower crustal flow that predict maximum topographic gradients across the Plateau margins where viscosity differences are greatest.

  13. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Li, Wei; Yuan, Xiaohui; Badal, José; Teng, Jiwen

    2015-03-01

    Shear wave birefringence is a direct diagnostic of seismic anisotropy. It is often used to infer the northern limit of the underthrusting Indian lithosphere, based on the seismic anisotropy contrast between the Indian and Eurasian plates. Most studies have been made through several near north-south trending passive-source seismic experiments in southern Tibet. To investigate the geometry and the nature of the underthrusting Indian lithosphere, an east-west trending seismic array consisting of 48 seismographs was operated in the central Lhasa block from September 2009 to November 2010. Splitting of SKS waves was measured and verified with different methods. Along the profile, the direction of fast wave polarization is about 60° in average with small fluctuations. The delay time generally increases from east to west between 0.2 s and 1.0 s, and its variation correlates spatially with north-south oriented rifts in southern Tibet. The SKS wave arrives 1.0-2.0 s later at stations in the eastern part of the profile than in the west. The source of the anisotropy, estimated by non-overlapped parts of the Fresnel zones at stations with different splitting parameters, is concentrated above ca. 195 km depth. All the first-order features suggest that the geometry of the underthrusting Indian lithospheric slab in the Himalayan-Tibetan collision zone beneath southern Tibet is characterized by systematic lateral variations. A slab tearing and/or breakoff model of Indian lithosphere with different subduction angles is likely a good candidate to explain the observations.

  14. Experimental Insights into the Stability and Composition of Hydrous Phases in the Metasomatized Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2014-12-01

    Mantle xenoliths and exhumed peridotite bodies from all tectonic settings record pervasive metasomatism of the mantle lithosphere by volatile-rich fluids. These fluids commonly enrich the lithospheric mantle not only in H2O but also K2O and Na2O as well as other minor elements. As a result, alkali-bearing hydrous phases (amphibole and biotite) become an important part of the mineralogy of mantle lithosphere. We have performed high-pressure-temperature experiments on alkali-enriched fertile and depleted mantle with low bulk H2O (0.65 wt.%) from 950 - 1150°C and 2 - 4 GPa to determine the stability fields and composition of these hydrous phases in the mantle as a function of temperature, pressure and bulk composition. We find that our stability field for amphibole at 0.65 wt.% H2O is similar to that of (1) and (2). This stability for amphibole extends to higher pressures and temperatures than that found by (3), indicating that bulk H2O content exercises an important control on hydrous mineral phase stability (4). We also find that metasomatic compositional changes induce other mineralogical changes. The stability and composition of other phases, particularly the typical aluminous phases spinel and garnet, are significantly affected by the formation of Al-bearing amphibole. We combine our experimental results with those of other experimental studies to more rigorously assess and quantify the influence of compositional changes in the lithospheric mantle on hydrous and anhydrous phase stability. (1) Niida & Green (1999) CMP 135, 18-40; (2) Fumagalli et al. (2009) CMP 158, 723-737; (3) Grove et al. (2006) EPSL 249, 74-89; (4) Green et al. (2010) Nature 448-451.

  15. Flexural anisotropy in the continental lithosphere: How robust are our estimates?

    NASA Astrophysics Data System (ADS)

    Kalnins, Lara; Simons, Frederik; Kirby, Jon; Wang, Dong; Olhede, Sofia

    2015-04-01

    In addition to considering the magnitude and lateral variation of the long-term strength of the lithosphere, we must also consider its directional variation, its anisotropy. Many geological materials and processes are themselves anisotropic; this might lead to a natural expectation of widespread anisotropy in lithosphere strength, which both modulates and is modulated by many key tectonic processes. Cratons, with their long, complex geological histories, and orogenic belts, the result of extremely anisotropy processes, might seem especially likely to show anisotropy in their flexural rigidity. The observed coherence between gravity and topography remains the most popular metric for the analysis of flexural rigidity, and, indeed, it is frequently anisotropic. However, does this correspond to anisotropy in the actual mechanical strength of the lithosphere? Using coherence, we should only reject the null hypothesis of isotropy when there is significant anisotropy in both the observed coherence and the resulting flexural strength. In addition, the anisotropy should not arise purely from marginal (in the statistical sense) anisotropy in the topography and gravity data themselves. We use wholly isotropic synthetic models to test two common methods for estimating coherence, multitapers and wavelets, and find widespread spurious anisotropy using both methods. Using a series of statistical and geophysical tests developed to identify and remove such spurious directionality, our global reanalysis shows sparse evidence for meaningful anisotropy in the mechanical strength of the lithosphere. Although the geological argument for anisotropy in these regions and its role in tectonic cycles remains highly plausible, this anisotropy has not yet been convincingly verified by any cross-spectral method.

  16. Lithospheric discontinuities beneath Australia: interaction of large-scale and fine scale structure

    NASA Astrophysics Data System (ADS)

    Kennett, Brian L. N.; Yoshizawa, Kazunori

    2016-04-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main information on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer scale structures comes though body wave studies, including detailed seismic tomography and P wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features there is not a need for strong fine-scale variations. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P wave reflectivity. The presence of reflections in the 0.5-3.0 Hz band in the uppermost mantle suggests variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. There are some indications of a change of reflection character in the lower part of the lithosphere in the transition to the asthenosphere. In some parts of central Australia there is a reasonable tie between a change in reflectivity and other information on mid-lithospheric discontinuities. Individual seismic probes illuminate different aspects of the heterogeneity, but the full spectrum has to be taken into account to understand the properties of apparent discontinuities and their geodynamic implications. Once fine-scale structure is taken into consideration it becomes apparent that wave interference plays a very important role in determining the nature of apparent discontinuities seen with lower frequency probes such as S wave receiver functions. Changes in the character of fine-scale heterogeneity can

  17. Subducting Plate Breakup by Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Koptev, A.; Gerya, T.; Jolivet, L.; Leroy, S. D.

    2016-12-01

    We use a 3D high-resolution thermo-mechanical modeling to investigate the impact of active mantle plume on a subducting lithospheric plate. Initial model setup consists of an overriding continental lithosphere and subducting lithospheric plate including oceanic and continental lithosphere. A mantle plume thermal anomaly has been initially seeded at the bottom of the model box underneath the continental segment of subducting plate. Mantle plume impingement on lithospheric bottom leads to thinning of continental lithosphere and decompressional melting of both lithospheric and sublithospheric mantle along stretched trench-parallel zone. Further continental breakup is followed by opening of an oceanic basin separating a newly formed microcontinent from the main subducting continent. Despite continuous push applied at the boundary of subducting plate, plume-induced oceanic basin opens during several Myrs reaching several hundred kilometers wide. Cooling of the mantle plume and beginning of collision between the separated microcontinent and the overriding continental plate lead to gradual closure of newly formed oceanic basin that gets further involved into subduction and collision. The final stage sees continental subduction of main body of subducting plate and simultaneous tectonic exhumation of the upper crust of the subducted microcontinent. This scenario involving a plume-induced rifting of a microcontinent away from main body of subducted plate can be compared to the Mesozoic-Cenozoic development of the African plate characterized by the consecutive separation of the Apulian microcontinent and Arabian plate (in the Jurassic and the Neogene, respectively) during subduction of Neo-Tethys oceanic lithosphere beneath the Eurasian margin.

  18. The effects of strain heating in lithospheric stretching models

    NASA Technical Reports Server (NTRS)

    Stanton, M.; Hodge, D.; Cozzarelli, F.

    1985-01-01

    The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.

  19. The elastic properties of the lithosphere beneath Scotian basin

    NASA Astrophysics Data System (ADS)

    Zheng, Ying; Arkani-Hamed, Jafar

    2002-02-01

    To assess the possibility that the North Atlantic Ocean may subduct at Scotian basin east of Canada, we investigate the present compensation state of this deep basin. A Fourier domain analysis of the bathymetry, depth to basement and observed gravity anomalies over the oceanic area east of Nova Scotia indicates that the basin is not isostatically compensated. Moreover, the analysis emphasizes that in addition to the sediments, density perturbations exist beneath the basin. The load produced by the sediments and these density perturbations must have been supported by the lithosphere. We simulate the flexure of the lithosphere under this load by that of a thin elastic plate overlying an inviscid interior. It is shown that a plate with a uniform rigidity does not adequately represent the lithosphere beneath the basin as well as the oceanic lithosphere far from the basin, rather the rigidity of the lithosphere directly beneath the basin is about one to two orders of magnitude smaller than elsewhere. We relate this weakening to the thermal blanketing effects of the thick sediments and the fact that the lithosphere has a temperature-dependent rheology. We suggest that this weak zone would have a controlling effect on the reactivation of normal faults at the hinge zone of the basin, that were formed during the break-up of Africa and North America and were locked in the early stages after the break-up. The weak zone would facilitate reactivation of the faults if tensional stresses were produced by possible reorientation of the spreading direction of the North Atlantic Ocean in the future. The reactivation of the faults would create a free boundary condition at the hinge zone, allowing further bending of the lithosphere beneath the basin and juxtaposition of this lithosphere to the mantle beneath the continent. This may provide a favorable situation for initiation of slow subduction due to subsequent compressional forces.

  20. Solar Insolation Driven Variations of Mercury's Lithospheric Strength

    NASA Astrophysics Data System (ADS)

    Williams, Jean-pierre; Ruiz, J.; Rosenburg, M. A.; Aharonson, O.; Phillips, R. J.

    2010-10-01

    Mercury's coupled 3:2 spin-orbit resonance in conjunction with its relatively high eccentricity of 0.2 results in a surface variation in annual average solar insolation and thus equatorial hot and cold regions. This results in an asymmetric temperature distribution in the lithosphere and a long wavelength lateral variation in lithosphere structure and strength that mirrors the insolation pattern. We employ a thermal evolution model for Mercury generating strength envelopes of the lithosphere to demonstrate and quantify the possible effects the insolation pattern has on Mercury's lithosphere. We find the heterogeneity in lithosphere strength is substantial, increases with time, and is accentuated by the differential timing of the mantle contribution to the lithosphere strength. For example, by the end of late heavy bombardment ( 4 Ga) we find a difference in brittle-ductile transition depth of 6 km between the hot and cold equatorial thermal poles and 24 km between the hot equatorial pole and the latitudes ±90°. We also find that a crust thicker than that of the Moon or Mars and dry rheologies for the crust and mantle are favorable when compared with estimates of brittle-ductile transition depths derived from lobate scarps. Regions of stronger and weaker compressive strength imply that the accommodation of radial contraction of Mercury as its interior cooled, manifest as lobate scarps, may not be isotropic, imparting a preferential orientation and distribution to the lobate scarps. Although many of the parameters of the model are poorly constrained for Mercury, the overall lithospheric heterogeneity remains regardless of the choice of parameters. The latitudinal surface temperature variation experienced by Mercury is not unlike that of the Earth's Moon presently and thus one should expect an analogous latitude dependence on lithospheric strength to have developed over time on the Moon as well. Funded by the NSF Astrophysics Research Grants program (AST-0709151).

  1. Fertile Lithospheric Mantle beneath Far East Russia; evidence for Lithospheric delamination

    NASA Astrophysics Data System (ADS)

    Ntaflos, T.; Koutsovitis, P.; Aschchepkov, I.; Hauzenberger, C. A.; Prikhodko, V.; Barkar, A.

    2012-12-01

    In the back-arc environment of Far East Russia, mantle xenoliths from Sikhoti-Alin( Komku area, KO) and Primorie (Sviyaginsky area, SV), Far East Russia are fertile spinel lherzolites with traces of amphibole, phlogopite and hyalophane in some of the studied samples. Though samples from both localities are fertile there is a systematic difference in their fertility. The KO samples have mg# varying from 0.891 to 0.899 and are slightly more fertile than the SV samples that have mg# ranging from 0.898 to 0.904. LA-ICP-MS analyses on clinopyroxenes confirm this trend as the (La/Yb)N in KO samples range from 1.49 to 5.4 and in SV samples from 0.15 to 1.73. The estimated equilibration temperatures for the KO suite range from 940 °C to 1035 °C and for the SV suite from 770 to 945. The differences in the estimated equilibrium temperatures between the KO and SV suites suggest that the less fertile SV suite originated in shallower depths than the more fertile KO suite. Kaersutite, and extremely Ti-rich phlogopite, up to 14 wt% TiO2, are associated with intergranular glass indicating clearly metasomatism of undersaturated alkaline melts. Pargasitic amphibole occurs as inclusion in clinopyroxene. Incompatible element abundances, besides Ba, Sr and Ti that are slightly enriched in the amphibole, are similar in both phases suggesting minor metasomatism due to percolation of small amounts of water-rich fluids. The lithospheric mantle beneath the studied area represents the residue after partial melting of up to 2 % of a primitive mantle and is comparable to that of Mongolia. Despite the fact that the studied area experienced several subducting episodes, the lithospheric mantle appears to be unaffected from the upwelling fluids/melts of the subducted slab(s). Since there is no indication for plume activity, and/or evidence for refertilization, it is likely that the lithospheric mantle has been delaminated as the result of tectonic events (lithospheric attenuation, inverse

  2. Lithospheric imaging via teleseismic scattering tomography

    NASA Astrophysics Data System (ADS)

    Frederiksen, A. W.; Revenaugh, J.

    2004-12-01

    The coda of the teleseismic P phase consists largely of energy scattered by small inhomogeneities in the receiver-side lithosphere. Given large collections of teleseismic data from dense permanent networks, previous workers have successfully back-propagated coda energy back to scattering source points using various kinematic migration schemes, as well as by inverting using an inverse scattering/radon transform approach. Under the Born approximation, seismic scattering is a linear process; therefore it is possible to approach coda scattering as a linear waveform inversion problem, mathematically similar to transmission-based tomography. Assuming ray-theoretical propagation and Rayleigh scattering, we pose the inverse scattering problem in tomographic form, and recover perturbations in density and P and S velocities from Pp and Ps scattered data. The method is applied to data from the Southern California Seismic Network (SCSN) covering the San Jacinto-Anza region. The results show a considerable correlation between seismicity and velocity perturbation structure, particularly in the region between the Mission Creek and Banning fault branches. Features connecting the Coyote Creek and Elsinore faults at right angles are correlated with seismicity lineations and may represent conjugate faulting with no surface expression.

  3. Lithospheric growth at margins of cratons

    NASA Astrophysics Data System (ADS)

    Snyder, D. B.

    2002-09-01

    Deep seismic reflection profiles collected across Proterozoic-Archean margins are now sufficiently numerous to formulate a consistent hypothesis of how continental nuclei grow laterally to form cratonic shields. This picture is made possible both because the length of these regional profiles spans all the tectonic elements of an orogen on a particular cratonic margin and because of their great depth range. Key transects studied include the LITHOPROBE SNORCLE 1 transect and the BABEL survey, crossing the Slave and Baltic craton margins, respectively. In most cases, the older (Archean) block appears to form a wedge of uppermost mantle rock embedded into the more juvenile (Proterozoic) block by as much as 100-200 km at uppermost mantle depths and Archean lithosphere is therefore more laterally extensive at depth than at the surface. Particularly bright reflections along the Moho are cited as evidence of shear strain within a weak, low-viscosity lower crustal channel that lies along the irregular top of the indenting wedge. The bottom of the wedge is an underthrust/subduction zone, and associated late reversal in subduction polarity beneath the craton margin emerges as a common characteristic of these margins although related arc magmatism may be minor.

  4. Geochemical and geophysical estimates of lithospheric thickness variation beneath Galápagos

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D.

    2010-12-01

    Active volcanism in Galápagos is far more widespread (> 40,000 km 2) than in other hotspot-related archipelagos, such as Hawaii (~ 20,000 km 2). Here we employ both geochemical and geophysical models to constrain the causes of this large spatial extent of melt generation and the diverse compositions of erupted basalts. Insight in to the physical as well as the chemical nature of the melting regime beneath Galápagos -- and the cause of the relatively widespread, non-linear age-progressive distribution of volcanism - is provided by incompatible-trace-element ratios of basaltic magmas. Whilst variations in these (and isotopic) ratios of basalts from individual Galápagos volcanoes are limited, considerable differences have been observed in basalts erupted across the archipelago. We have used rare-earth-element inversion modelling for basalts dominated by "plume" and depleted MORB mantle components to constrain the depth to the top of the melt column beneath different Galápagos volcanoes. By converting S-wave data from a recently published tomographic experiment [Villagomez, D.R. et al., 2007. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. J. Geophys. Res. 112] to temperature we have been able to map the base of the Galápagos lithosphere, i.e. where the geotherm, with a mantle potential temperature of 1315 °C, intersects the anhydrous peridotite solidus. An excellent correlation exists between the results of our geophysical and geochemical models. These predict that lithospheric thickness varies from ~60 km beneath islands in the south west of the Galápagos Archipelago ( e.g. Fernandina and Isabela) to ~ 45 km below those in the northeast ( e.g. Genovesa, Marchena, eastern Santiago and northern Santa Cruz). The thinner lithosphere away from the postulated site of the present-day plume axis, combined with the lateral deflection of the plume, is responsible for active volcanism over a relatively large area. Non

  5. Nature

    NASA Astrophysics Data System (ADS)

    Heinhorst, Sabine; Cannon, Gordon

    1997-01-01

    The fact that two of the original articles by this year's Nobel laureates were published in Nature bears witness to the pivotal role of this journal in documenting pioneering discoveries in all areas of science. The prize for Physiology or Medicine was awarded to immunologists Peter C. Doherty (University of Tennessee) and Rolf M. Zinkernagel (University of Zurich, Switzerland), honoring work that, in the 1970s, laid the foundation for our current understanding of the way in which our immune system differentiates between healthy cells and virus-infected ones that are targeted for destruction (p 465 in the October 10 issue of vol. 383). Three researchers share the Chemistry award for their discovery of C60 buckminsterfullerenes. The work by Robert Curl, Richard Smalley (both at Rice University), and Harry Kroto (University of Sussex, UK) has led to a burst of new approaches to materials development and in carbon chemistry (p 561 of the October 17 issue of vol. 383). This year's Nobel prize in physics went to three U.S. researchers, Douglas Osheroff (Stanford University) and David M. Lee and Robert C. Richardson (Cornell University), who were honored for their work on superfluidity, a frictionless liquid state, of supercooled 3He (p 562 of the October 17 issue of vol. 383).

  6. Lithosphere - asthenosphere boundary (LAB) around the Trans-European Suture Zone (TESZ)

    NASA Astrophysics Data System (ADS)

    Plomerova, J.; Babuska, V.; Vecsey, L.; Passeq Working Group

    2012-04-01

    platform in the west and the East European Craton in the east. Lateral variations of anisotropic parameters across the zone indicate differences in mantle lithosphere fabrics on both sides. Distinct deepening of the LAB towards the east across the TESZ is detected by different approaches of the LAB modelling, but on the other hand, it is the region where European LAB models differ substantially (Jones et al., Lithos 2010). This finding re-opens a question to which extent different methods identify the same discontinuity, though discrepancies may also reflect differences in resolution and accuracy of individual methods. On the other hand, if there are differences in a nature of the LAB, we should try to understand which physical parameters are relevant to the most important interface in the upper mantle from the plate-tectonic point of view.

  7. International challenge to predict the impact of radioxenon releases from medical isotope production on a comprehensive nuclear test ban treaty sampling station

    SciTech Connect

    Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal; Chai, Tianfeng; Deconninck, Benoit; Freeman, Katie; Generoso, Sylvia; Hayes, Philip; Heidmann, Verena; Hoffman, Ian; Kijima, Yuichi; Krysta, Monika; Malo, Alain; Maurer, Christian; Ngan, Fantine; Robins, Peter; Ross, J. Ole; Saunier, Olivier; Schlosser, Clemens; Schöppner, Michael; Schrom, Brian T.; Seibert, Petra; Stein, Ariel F.; Ungar, Kurt; Yi, Jing

    2016-06-01

    Abstract The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward (Bowyer et al., 2013). Fission-based production of 99Mo for medical purposes also releases radioxenon isotopes to the atmosphere (Saey, 2009). One of the ways to mitigate the effect of emissions from medical isotope production is the use of stack monitoring data, if it were available, so that the effect of radioactive xenon emissions could be subtracted from the effect from a presumed nuclear explosion, when detected at an IMS station location. To date, no studies have addressed the impacts the time resolution or data accuracy of stack monitoring data have on predicted concentrations at an IMS station location. Recently, participants from seven nations used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at an IMS station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well (a high composite statistical model comparison rank or a small mean square error with the measured values). The results suggest release data on a 15 min time spacing is best. The model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. Further research is needed to identify optimal methods for selecting ensemble members and those methods may depend on the specific transport problem. None of the submissions based only

  8. Geodynamic Inversion to Constrain the Nonlinear Rheology of the Lithosphere

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Baumann, T.

    2015-12-01

    The rheology of the lithosphere is of key importance for the physics of the lithosphere. Yet, it is probably the most uncertain parameter in geodynamics as experiments have to be extrapolated to geological conditions and as existing geophysical methods such as EET estimation make simplifying assumptions about the structure of the lithosphere. Here, we therefore discuss a new method that employs thermo-mechanical lithospheric-scale forward models of the lithosphere using a realistic initial geometry constructed from geophysical data sets. We employ experimentally determined creep-laws for the various parts of the lithosphere, but assume that the parameters of these creep-laws as well as the temperature structure of the lithosphere are uncertain. This is used as a priori information to formulate a Bayesian inverse problem that employs topography, gravity, horizontal and vertical surface velocities to invert for the unknown material parameters and temperature structure. In order to test the general methodology, we first perform a geodynamic inversion of a synthetic forward model of intraoceanic subduction with known parameters. This requires solving an inverse problem with 14-16 parameters, depending on whether temperature is assumed to be known or not. With the help of a massively parallel direct-search combined with a Markov Chain Monte Carlo method, solving the inverse problem becomes feasible. Results show that the rheological parameters and particularly the effective viscosity structure of the lithosphere can be reconstructed in a probabilistic sense. This also holds, with somewhat larger uncertainties, for the case where the temperature distribution is parametrized. Finally, we apply the method to a cross-section of the India-Asia collision system. In this case, the number of parameters is larger, which requires solving around 1.9 × 106 forward models. The resulting models fit the data within their respective uncertainty bounds, and show that the Indian mantle

  9. Thermal thickness and evolution of Precambrian lithosphere: A global study

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  10. New Research initiatives for Imaging the Iberian Lithosphere

    NASA Astrophysics Data System (ADS)

    Carbonell, R.

    2006-12-01

    Topo-Iberia is a research program that involves more than 100 PhD researchers from 10 different groups and institutions in Spain. It corresponds to the willingness and interest of the Spanish scientific community to establish an integrated framework to develop multidisciplinary geoscientific studies in our country with an unprecedented resolution. The ˜micro-continent" formed by the Iberian Peninsula and its margins constitutes a most suitable natural laboratory, well identified by the international scientific community, to develop innovative, frontier research on its topography and 4-D evolution. The objective of Topo-Iberia is to understand the interaction between deep, surficial and atmospheric processes, by integrating research on geology, geophysics, geodesy and geotechnology. The knowledge on the relief changes and its causes is of great social impact concerning the climate change and the evaluation of natural resources and hazards. A major aim of this programme is to significantly increase the high-quality information available, by deploying a technological observatory platform, IberArray, of high resolution multisampling. With this programme, our community could join the leading edge of international research, marked by similar initiatives, such as TopoEurope/EuroArray in Europe or the ongoing US programme Earthscope. Three major domains of research have been identified: the southern and northern borders of the Iberian plate (the Betic-Rif system and the Pyrenean-Cantabrian system) and its central core (Meseta and Central-Iberian systems). It is intended to build up a comprehensive, multidisciplinary base of data and results to tackle the key existing questions by developing novel interpretation strategies. In the southern Iberia domain, this project will provide a back bone seismic array of Broad-Band stations in the Peninsula, actively contributing to the on going multidisciplinary/multiproject PICASSO research initiative. PICASSO aims to understand the

  11. Investigating the Lithospheric Structure of Southern Madagascar

    NASA Astrophysics Data System (ADS)

    Tilmann, Frederik; Yuan, Xiaohui; Rümpker, Georg; Gerard, Rambolamana; Elisa, Rindraharisaona; Priestley, Keith

    2014-05-01

    The island of Madagascar occupies a key region in both the assembly and the multi-stage breakup of Gondwanaland, itself part of the super-continent Pangaea. Madagascar consists of an amalgamation of continental material, with the oldest rocks being of Archaean age. Its ancient fabric is characterised by several shear zones, some of them running oblique to the N-S trend, in particular in the south of the island. More recently during the Neogene, moderate volcanism has occurred in the Central and Northern part of the island, and there are indications of uplift throughout Eastern Madagascar over the last 10 Ma. Although Madagascar is now located within the interior of the African plate and far away from major plate boundaries (> 1000 km from the East African rift system and even further from the Central and South-West Indian Ridges), its seismic activity indicates that some deformation is taking place, and present-day kinematic models based on geodetic data and earthquake moment tensors in the global catalogues identify a diffuse N-S-oriented minor boundary separating two microplates, which appears to pass through Madagascar. In spite of the presence of Archaean and Proterozoic rocks continent-wide scale studies indicate a thin lithosphere (<120 km) throughout Madagascar, but are based on sparse data. We are operating a ENE-WSW oriented linear array of 25 broadband stations in southern Madagascar, extending from coast to coast and sampling the sedimentary basins in the west as well as the metamorphic rocks in the East, cutting geological boundaries seen at the surface at high angle. The array crosses the prominent Bongolava-Ranotsara shear zone which is thought to have been formed during Gondwanaland assembly, although this interpretation has recently been questioned. The array recorded the magnitude 5.3 earthquake of January 25, 2013 which occurred just off its western edge. In addition, in May 2013 we have deployed 25 short period sensors in the eastern part of the

  12. Lithosphere-Atmosphere-Ionosphere coupling model

    NASA Astrophysics Data System (ADS)

    Kachakhidze, M. K., III

    2015-12-01

    The present work offers interpretation of a mechanism of formation of hypothetic ideal electromagnetic contour, creation of which is envisaged in incoming earthquake focal zone. Model of generation of EM emissions detected before earthquake is based on physical analogues of distributed and conservative systems and focal zones. According to the model the process of earthquake preparation from the moment of appearance of cracks in the system, including completion of series of foreshocks, earthquake and aftershocks, are entirely explained by oscillating systems.According to the authors of the work electromagnetic emissions in radio diapason is more universal and reliable than other anomalous variations of various geophysical phenomena in earthquake preparation period; Besides, VLF/LF electromagnetic emissions might be declared as the main precursor of earthquake because it might turn out very useful with the view of prediction of large (M5) inland earthquakes and to govern processes going on in lithosphere-atmosphere-ionosphere coupling (LAIC) system. Based on this model, in case of electromagnetic emissions spectrum monitoring in the period that precedes earthquake it is possible to determine, with certain accuracy, the time, location and magnitude of an incoming earthquake simultaneously.The present item considers possible physical mechanisms of the geophysical phenomena, which may accompany earthquake preparation process and expose themselves several months, weeks or days prior to earthquakes. Such as: Changing of intensity of electro-telluric current in focal area; Perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations; Perturbations of atmospheric electric field; Irregular changing of characteristic parameters of the lower ionosphere (plasma frequency, electron concentration, height of D layer, etc.); Irregular perturbations reaching the upper ionosphere, namely F2-layer, for 2-3 days before the earthquake

  13. Growth of lithospheric-scale fault system in NE Tibet: numerical modeling constrained by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Fu, Zhen; Zhang, Haiming

    2016-04-01

    The growth of lithospheric-scale fault system is strongly coupled with the deformation of continental lithosphere in Tibetan Plateau. Therefore, prediction of fault growth is important to understand the tectonic history of continental deformation with fault system. Recently, high-resolution seismic reflection profiling across the Kunlun fault in northeasten Tibet reveals several fault systems at the scale of lithosphere. A 2D mid-crustal strain-transfer model, which emphasized on the lateral heterogeneity of crust, was proposed to explain the seismic reflection profiling under the condition of compression. In order to understand the dynamic process of lithospheric deformation, an elastic-plastic constitutive relationship in finite element modeling is used to investigate the mechanism of the fault growth in the section under the condition of compression by allowing permanent strains to develop in response to the applied loads. The vertical and lateral heterogeneity of material, effect of plastic parameters and geometry of models from nature structure are all discussed in this study. The results compared with high-resolution seismic image show that well-designed geomechanical modeling can produce overall process of fault growth for both continuum without preexisting fault and discontinuous deformation with a peexisting fault. But the model of the Kunlun fault cutting down the Moho is not supported by the results compared with the seismic data.

  14. Temporal evolution of continental lithospheric strength in actively deforming regions

    USGS Publications Warehouse

    Thatcher, W.; Pollitz, F.F.

    2008-01-01

    It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic

  15. Global model for the lithospheric strength and effective elastic thickness

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.

    2013-08-01

    Global distribution of the strength and effective elastic thickness (Te) of the lithosphere are estimated using physical parameters from recent crustal and lithospheric models. For the Te estimation we apply a new approach, which provides a possibility to take into account variations of Young modulus (E) within the lithosphere. In view of the large uncertainties affecting strength estimates, we evaluate global strength and Te distributions for possible end-member 'hard' (HRM) and a 'soft' (SRM) rheology models of the continental crust. Temperature within the lithosphere has been estimated using a recent tomography model of Ritsema et al. (2011), which has much higher horizontal resolution than previous global models. Most of the strength is localized in the crust for the HRM and in the mantle for the SRM. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" model for the lithosphere structure. Changing from the SRM to HRM turns most of the continental areas from the totally decoupled mode to the fully coupled mode of the lithospheric layers. However, in the areas characterized by a high thermal regime and thick crust, the layers remain decoupled even for the HRM. At the same time, for the inner part of the cratons the lithospheric layers are coupled in both models. Therefore, rheological variations lead to large changes in the integrated strength and Te distribution in the regions characterized by intermediate thermal conditions. In these areas temperature uncertainties have a greater effect, since this parameter principally determines rheological behavior. Comparison of the Te estimates for both models with those determined from the flexural loading and spectral analysis shows that the 'hard' rheology is likely applicable for cratonic areas, whereas the 'soft' rheology is more representative for young orogens.

  16. The Elastic Properties of the Lithosphere Beneath Scotian Basin

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Arkani-Hamed, J.

    2001-12-01

    To assess the possibility that the North Atlantic Ocean may subduct at Scotian basin east of Canada, we investigate the present compensation state of this deep basin. A Fourier domain analysis of the bathymetry, depth to basement and observed gravity anomalies over the oceanic area east of Nova Scotia indicates that the basin is not isostatically compensated. Moreover, the analysis emphasizes that density perturbations in excess to sediments exist beneath the basin. The load produced by the sediments and these density perturbations must have been supported by the lithosphere. We simulate the flexure of the lithosphere under this load by that of a thin elastic plate overlying an inviscid interior. It is shown that a plate with a uniform rigidity does not adequately represent the lithosphere beneath the basin as well as the oceanic lithosphere far from the basin, rather the rigidity of the lithosphere directly beneath the basin is about one to two orders of magnitude smaller than elsewhere. We relate this weakening to the thermal blanketing effects of the thick sediments and the fact that the lithosphere has a temperature dependent rheology. We suggest that this weak zone would have a controlling effect on the reactivation of normal faults at the hinge zone of the basin, that were formed during the break-up of Africa and North America and were locked in the early stages after the break-up. The weak zone would facilitate reactivation of the faults if tensional stresses were produced by possible reorientation of the spreading direction of the North Atlantic Ocean in the future. The reactivation of the faults would create a free boundary condition at the hinge zone, allowing further bending of the lithosphere beneath the basin and juxtaposition of that to the mantle beneath the continent. This may provide a favorable situation for initiation of slow subduction due to subsequent compressional forces.

  17. Thermomechanical lithospheric structure of the central Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Kaikkonen, P.; Moisio, K.; Heeremans, M.

    2000-05-01

    The deep seismic sounding (DSS) profiles BALTIC, including its southern continuation, the Sovetsk-Kohtla-Järve (SKJ) profile, SVEKA, the northern part of BABEL, POLAR, FENNIA and Pechenga-Kovdor-Kostomuksha, were used in studying the present-day thermomechanical structure of the central Fennoscandian Shield. These profiles are located in different tectonic units, which represent different stages in Precambrian crustal and lithospheric growth. First, present-day geotherms were constructed for several points along the DSS profiles. Successively, strength envelopes were calculated using the obtained geotherms and rheological flow laws. Variations in strain rate were also considered in the computations of the strength envelopes. The integrated crustal and lithospheric strengths, the thicknesses of the mechanically strong crust (MSC) and mechanically strong lithosphere (MSL), and the rheological thickness of the lithosphere were derived from these strength envelopes. The obtained mechanical structures for different regions were analysed and compared with other geophysical data; e.g., seismicity-depth and isotherm-depth distributions. The rheological results show lateral variations in the lithospheric strength reflecting the geometry of the lithosphere and following roughly the same trend as the geochronological development of the Fennoscandian Shield. The mechanical structure shows distinct decoupling of the weak lower crust and the strong upper mantle, particularly with a wet rheology. This decoupling interrupts the transmission of the differential stress from the brittle upper crust to the ductile lower crust and through it to the mantle lithosphere. The weak lower crustal layer is also detected with a dry rheology in the Svecofennian area, whereas in the Archaean side, it is not distinct. The assumed frictional transition temperature of 350°C varies between the depths of 25 and 44 km with an average value of 35 km. This is in good agreement with the observed focal

  18. Lithospheric thermal and strength model of the Arctic region

    NASA Astrophysics Data System (ADS)

    Struijk, Maartje; Tesauro, Magdala; Lebedeva-Ivanova, Nina; Beekman, Fred; Gaina, Carmen; Cloetingh, Sierd

    2016-04-01

    We estimate the lithospheric strength distribution in the Arctic region. With this aim, we use the most recently updated models of the Arctic's crust of Lebedeva-Ivanova et al. (in preparation), based on seismic and gravity data. These models include the thickness and density of the crust and sediments, the boundaries between the continental and oceanic crust, and the age of the oceanic lithosphere. We estimate the temperature variation in the continental lithosphere by using the one-dimensional steady-state heat conductive equation, assuming a ratio between the upper and lower crust of 0.5 and 0.7 and a constant surface heat flow of 50 and 65 mWm ^ 2, respectively. We take also into account the temperature dependence of the the thermal conductivity in the lithospheric mantle. We adopt the cooling plate model of McKenzie (1976) to estimate the temperature in the oceanic domain. At a depth of 50 km, the resulting thermal models show a stronger lateral variations in the oceanic (~550 °C) than in the continental lithosphere (~100°C). Within the continental domain, the increase of a surface heat flow from 50 to 65mWm ^ 2 raises the temperatures of ~300 °C. This is translated in a significant lithospheric strength reduction (from 3x10 ^ 13 Pa to ~ 0.5x10 ^ 13 Pa) and decoupling between the crust and mantle lithosphere. Other parameters, such as the crustal rheology and thickness cause second order strength variations. Continental strength variations reflect the different tectonic evolution of the Artic basins and ridges.

  19. Stability of the boundary layer between the lithosphere and convecting mantle and the steady-state lithospheric geotherm

    NASA Astrophysics Data System (ADS)

    Khazan, Ya. M.; Aryasova, O. V.

    2014-07-01

    In the steady state, the convective boundary layer (CBL) (the transition from the lithosphere to the convecting mantle, the lithosphere-asthenosphere boundary) is on the verge of stability. This determines its depth, thickness, and the steady-state temperature distribution in the lithosphere. Had the mantle been homogeneous, the base of the lithosphere at the current potential temperature would lie globally at the same depth H rh of 50 to 70 km. Actually, the regime of interaction of the mantle convection with the lithosphere is determined by the relationship between this depth and the thickness H depl of the chemical boundary layer including the crust and the layer of the depleted rock. If the thickness of the chemical boundary layer is small H depl < H rh, as it is the case in the present-day oceanic mantle, the suboceanic regime is established with the mantle convection that does not reach the base of the chemical boundary layer. In this case, the top of CBL is located at depth H rh, while the oceanic heat flow and the depth of the seafloor only depend on the potential temperature T p and, within the areas where the crust is older than 60 to 70 Ma, are the same everywhere far from the disturbed territories (the hot points and the subduction zones). The absence of noticeable distinctions between the heat flow in the different oceanic basins suggests a global constancy of the potential temperature. If H depl > H rh, the subcontinental regime of the interaction of the mantle convection with the lithosphere is established. In this case, the CBL is immediately adjacent to the depleted lithosphere, its top is located at depth H depl, and the surface heat flow q( T p, H depl) not only depends on the potential temperature T p but also on the the thickness of the depleted lithosphere H depl; it decreases with increasing H depl and, therefore, with the age of the lithosphere. Given the potential temperature, the dependence q( T p, H depl) agrees well with the envelope of

  20. Global Lithospheric Apparent Susceptibility Distribution Converted from Geomagnetic Models by CHAMP and Swarm Satellite Magnetic Measurements

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing

    2016-04-01

    magnetic measurements and obtained global lithospheric apparent susceptibility distribution models. Finally, we compared these deduced models with previous results in the literature and some other geophysical, geodetic and geologic datum. Both tests and applications suggest, indeed, that the improved AS85 method can be adopted as a fast and effective interpretation tool of global induced large-scale magnetic anomaly field models in form of spherical harmonics. Arkani-Hamed, J. & Srangway, D.W., 1985. Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data, J. Geophys. Res., 90(B3), 2655-2664. Gubbins, D., Ivers, D., Masterton, S.M. & Winch, D.E., 2011. Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187(1), 99-117. Hemant, K. & Maus, S., 2005. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 110, B12103, doi: 10.1029/2005JB003837. Masterton, S.M., Gubbins, D., Müller, R.D. & Singh, K.H., 2013. Forward modeling of oceanic lithospheric magnetization, Geophys. J. Int., 192(3), 951-962. Nolte, H.J. & Siebert, M., 1987. An analytical approach to the magnetic field of the Earth's crust, J. Geophys., 61, 69-76. This study is supported by State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy and Geophysics, Chinese Academy of Sciences) (SKLGED2015-5-5-EZ), Natural Science Fund of Hubei Province (2015CFB361), International Cooperation Project in Science and Technology of China (2010DFA24580), China Postdoctoral Science Foundation (2015M572217 and 2014T70753), Hubei Subsurface Multi-scale Imaging Key Laboratory (Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan) (SMIL-2015-06) and National Natural Science Foundation of China (41574070, 41104048 and 41504065).

  1. Wrinkle ridges, reverse faulting, and the depth penetration of lithospheric stress in lunae planum, Mars

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.

    1993-01-01

    Tectonic features on a planetary surface are commonly used as constraints on models to determine the state of stress at the time the features formed. Quantitative global stress models applied to understand the formation of the Tharsis province on Mars constrained by observed tectonics have calculated stresses at the surface of a thin elastic shell and have neglected the role of vertical structure in influencing the predicted pattern of surface deformation. Wrinkle ridges in the Lunae Planum region of Mars form a conentric pattern of regularly spaced features in the eastern and southeastern part of Tharsis; they are formed due to compressional stresses related to the response of the Martian lithosphere to the Tharsis bulge. As observed in the exposures of valley walls in areas such as the Kasei Valles, the surface plains unit is underlain by an unconsolidated impact-generated megaregolith that grades with depth into structurally competent lithospheric basement. The ridges have alternatively been hypothesized to reflect deformation restricted to the surface plains unit ('thin skinned deformation') and deformation that includes the surface unit, megaregolith and basement lithosphere ('thick skinned deformation'). We have adopted a finite element approach to quantify the nature of deformation associated with the development of wrinkle ridges in a vertically stratified elastic lithosphere. We used the program TECTON, which contains a slippery node capability that allowed us to explicitly take into account the presence of reverse faults believed to be associated with the ridges. In this study we focused on the strain field in the vicinity of a single ridge when slip occurs along the fault. We considered two initial model geometries. In the first, the reverse fault was assumed to be in the surface plains unit, and in the second the initial fault was located in lithospheric basement, immediately beneath the weak megaregolith. We are interested in the conditions underwhich

  2. Garnet Pyroxenites from Kaula, Hawaii: Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Bizimis, M.; Garcia, M. O.; Norman, M. D.

    2006-12-01

    The presence of garnet pyroxenite xenoliths on Oahu and Kaula Islands, Hawaii, provides the rare opportunity to investigate the composition of the deeper oceanic mantle lithosphere and the nature of plume-lithosphere interaction in two dimensions, downstream from the center of the Hawaiian plume. Kaula (60 miles SW of Kauai) is on the same bathymetric shallow as Kauai and the Kaula-Niihau-Kauai islands form a cross-trend relationship to the Hawaiian Island ridge. Here, we present the first Sr-Nd isotope data on clinopyroxenes (cpx) from Kaula pyroxenites, and we compare them with the Salt Lake Crater (SLC) pyroxenites from Oahu. The Kaula cpx major element compositions overlap those of the (more variable) SLC pyroxenites (e.g. Mg# = 0.79-0.83), except for their higher Al2O3 contents (9% vs. 5-8%) than the SLC. The Kaula cpx are LREE enriched with elevated Dy/Yb ratios, similar to the SLC pyroxenites and characteristic of the presence of garnet that preferentially incorporates the HREE. In Sr-Nd isotope space, the Kaula pyroxenite compositions (87Sr/86Sr= 0.70312-0.70326, ɛNd= 7.2-8.6) overlap those of both the Oahu-Kauai post erosional lavas and the SLC pyroxenites, falling at the isotopically depleted end of the Hawaiian lava compositions. The depleted Sr-Nd isotope compositions of the Kaula pyroxenites suggest that they are not related to the isotopically enriched shield stage Hawaiian lavas, either as a source material (i.e. recycled eclogite) or as cumulates. Their elevated 87Sr/86Sr ratios relative to MORB also suggests that they are not likely MORB-related cumulates. The similarities between the Oahu and Kaula pyroxenites, some 200 km apart, suggest the widespread presence of pyroxenitic material in the deeper (>60km) Pacific lithosphere between Oahu and Kaula-Kauai, as high pressure cumulates from melts isotopically similar to the secondary Hawaiian volcanism. The presence of this material within the lower lithosphere is consistent with seismic observations

  3. A Preliminary Study on the Lithosphere-Asthenosphere Boundary beneath the South China Sea

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.

    2014-12-01

    The lithosphere-asthenosphere boundary (LAB) is an important boundary at which the rigid lithosphere translates coherently upon the viscous asthenosphere. New observations have been made on LAB through detailed seismic analysis, especially that from receiver functions. Previous studies have found LAB depth varies significantly, systematically getting shallower from continental to oceanic lithosphere. In smaller scale, the depth and sharpness of LAB also differ from region to region, suggesting the effects of a combination of thermal and compositional origins. In this study, we investigate the LAB beneath the South China Sea, a region poorly instrumented that conventional seismological are less effective and impractical. The South China Sea is on the Sunda Plate, which is considered to be once the southeastern part of the Eurasia Plate before separating with a distinct moving direction from that of India-Eurasia continental collision. The South China Sea is Phanerozoic in age and continental in nature, but the striped magnetic anomalies observed from the sea floor have suggested multiple spreading events since early Miocene, indicating the presence of latter formed oceanic lithosphere. Previous seismic studies of this region focused mainly on shallow basin structure pertaining to petroleum exploration. The lithospheric structure, particularly the LAB, remains elusive, while it provides important insight into the complex tectonic history in this region. To image the LAB, we use the precursor of SS phase. The precursor bounces at the LAB discontinuity at depth would appear before the SS and presents a signal amenable to analysis for depth and properties. We collect seismic waveform data recorded mainly at Japan and Cocos Islands of corresponding teleseismic events from Southern Sumatera and Japan, with SS and potential precursors bouncing beneath the South China Sea. We employ an analysis technique, velocity spectral analysis (vespagrams), to identify precursory

  4. Lithospheric structure and compensation mechanisms of the Galapagos Archipelago

    NASA Astrophysics Data System (ADS)

    Feighner, Mark A.; Richards, Mark A.

    1994-04-01

    Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also

  5. Formation of Oceanic Lithosphere by Basal Magma Accretion

    NASA Astrophysics Data System (ADS)

    Hamza, V. M.; Cardoso, R. R.; Alexandrino, C. H.

    2009-12-01

    The thermal models of the lithosphere proposed to date have failed to provide satisfactory accounts of some of the important features in large-scale variations of ocean floor bathymetry and heat flow. The systematic difference between model calculations and observational data have given rise to the so-called “oceanic heat flow paradox”, for which no satisfactory solution has been found for over the last forty years. In the present work, we point out that this paradox is a consequence of the assumption that lateral temperature variations are absent in the sub-lithospheric mantle. In the present work we propose a simple magma accretion model and examine its implications for understanding the thermal field of oceanic lithosphere. The new model (designated VBA) assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere, similar in character to those observed in magma solidification processes in the upper crust. However, unlike the previous thermal models of the lithosphere, the ratio of advection to conduction heat transfer (the Peclet number) is considered a space dependent variable. The solution to the problem of variable basal heat input has been obtained by the method of integral transform. The results of VBA model simulations reveal that the thickness of the young lithosphere increases with distance from the ridge axis, at rates faster than those predicted by Half-Space Cooling and Plate models. Another noteworthy feature of the new model is its ability to account for the main observational features in the thermal behavior of both young and old oceanic lithosphere. Thus, heat flow and bathymetry variations calculated on the basis of the VBA model provide vastly improved fits to respective observational datasets. More importantly, the improved fits to bathymetry and heat flow have been achieved for the entire age range of oceanic lithosphere and without the need to invoke

  6. Descending lithosphere slab beneath the Northwest Dinarides from teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Šumanovac, Franjo; Dudjak, Darko

    2016-12-01

    The area of study covers the marginal zone between the Adriatic microplate (African plate) and the Pannonian segment (Eurasian plate). We present a tomography model for this area, with special emphasis on the northwest Dinarides. A dense distribution of temporary seismic stations in the area of the Northern Dinarides along with permanent seismic stations located in the area, allowed us to construct this P-wave tomographic model. We assembled our travel-time dataset based on 26 seismic stations were used to collect the dataset. Teleseismic events were recorded for a period of 18 months and a set of 76 distant earthquakes were used to calculate the P-wave travel-time residuals. We calculated relative rather than absolute arrival-time residuals in the inversion to obtain depths of 0-400 km. We imaged a pronounced fast velocity anomaly below the NW Dinarides which directly indicates a lithosphere slab downgoing beneath the Dinarides. This fast anomaly extends towards the NW direction to at least 250 km depth, and we interpreted it as a descending lithosphere slab. The thrusting of the Adriatic microplate may be brought about by sub-lithosphere rising movement beneath the Pannonian region, along with a push from African plate. In our interpretation, the Adriatic lower lithosphere has been detached from the crust, and steeply sinks beneath the Dinarides. A lithosphere model of the contact between the Adriatic microplate and Pannonian tectonic segment was constructed based on the tomographic velocity model and results of previous crustal studies.

  7. Electrical lithosphere beneath the Kaapvaal craton, southern Africa

    NASA Astrophysics Data System (ADS)

    Evans, Rob L.; Jones, Alan G.; Garcia, Xavier; Muller, Mark; Hamilton, Mark; Evans, Shane; Fourie, C. J. S.; Spratt, Jessica; Webb, Susan; Jelsma, Hielke; Hutchins, Dave

    2011-04-01

    A regional-scale magnetotelluric (MT) experiment across the southern African Kaapvaal craton and surrounding terranes, called the Southern African Magnetotelluric Experiment (SAMTEX), has revealed complex structure in the lithospheric mantle. Large variations in maximum resistivity at depths to 200-250 km relate directly to age and tectonic provenance of surface structures. Within the central portions of the Kaapvaal craton are regions of resistive lithosphere about 230 km thick, in agreement with estimates from xenolith thermobarometry and seismic surface wave tomography, but thinner than inferred from seismic body wave tomography. The MT data are unable to discriminate between a completely dry or slightly "damp" (a few hundred parts per million of water) structure within the transitional region at the base of the lithosphere. However, the structure of the uppermost ˜150 km of lithosphere is consistent with enhanced, but still low, conductivities reported for hydrous olivine and orthopyroxene at levels of water reported for Kaapvaal xenoliths. The electrical lithosphere around the Kimberley and Premier diamond mines is thinner than the maximum craton thickness found between Kimberley and Johannesburg/Pretoria. The mantle beneath the Bushveld Complex is highly conducting at depths around 60 km. Possible explanations for these high conductivities include graphite or sulphide and/or iron metals associated with the Bushveld magmatic event. We suggest that one of these conductive phases (most likely melt-related sulphides) could electrically connect iron-rich garnets in a garnet-rich eclogitic composition associated with a relict subduction slab.

  8. Comprehensive plate models for the thermal evolution of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, Christopher J.; Afonso, Juan Carlos

    2013-09-01

    Seafloor spreading and the cooling of oceanic lithosphere is a fundamental feature of plate tectonics in the Earth, the details of which are unveiled by modeling with constraints from mineral physics and geophysical observations. To work toward a more complete model of the thermal evolution of oceanic lithosphere, we investigate the contributions of axial hydrothermal circulation, oceanic crust, and temperature-pressure-dependent thermal properties. We find that models with only temperature-dependent properties disagree with geophysical observations unless properties are artificially modified. On the other hand, more comprehensive models are in better agreement with geophysical observations. Our preferred model requires a thermal expansivity reduction of 15% from a mineral physics estimate, and predicts a plate thickness of about 110-130 km. A principal result of our analysis is that the oceanic crust is a major contributor to the cooling of oceanic lithosphere. The oceanic crust acts as an insulating lid on the mantle, causing the rate of lithospheric cooling to increase from "crustal" values near the ridge to higher mantle values at old-age. Major consequences of this insulation effect are: (a) low seafloor subsidence rate in proximity to ridge axes (<5 Ma), (b) the thermal structure of oceanic lithosphere is significantly warmer than previous models, (c) seafloor heat flow is significantly lower over young (<35 Ma) seafloor compared to simple models, (d) a low net seafloor heat flux (˜27 TW), and (e) temperature at the base of the seismogenic zone extends to 700-800°C mantle.

  9. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  10. Isotopic evidence for lithospheric thinning during extension: Southeastern Great Basin

    SciTech Connect

    Daley, E.E.; DePaolo, D.J. Lawrence Berkeley Lab., CA )

    1992-02-01

    Mafic rocks erupted during late Cenozoic extension near Las Vegas, Nevada, show temporal patterns of variation in Nd and Sr isotope ratios and in bulk chemistry. The patterns indicate that depths of magma generation were varying through time and that lithospheric mantle was partially replaced with asthenospheric mantle as extension proceeded. In alkalic rocks, {epsilon}{sub Nd} changed through time from {minus}9.1 (typical of lithospheric mantle in this area) before the onset of major (16 Ma) extension to +6.4 (typical of asthenospheric mantle) after extension (4.6 Ma). Near the end of the period of major extension (10-6 Ma), tholeiitic rocks erupted, the {epsilon}{sub Nd} of which ranged from {minus}10.1 to {minus}7.9; this indicates that the lithosphere had not thinned sufficiently by that time to bring asthenospheric mantle into the depth range of tholeiitic magma generation (33-50 km). The lithosphere in the Las Vegas area appears to have thinned by about 50%, less than would be predicted by the magnitude of upper crustal extension (a factor of 3 or 4), and indicative of a nonuniform lithospheric response to extension.

  11. Thermoelastic stress in oceanic lithosphere due to hotspot reheating

    NASA Technical Reports Server (NTRS)

    Zhu, Anning; Wiens, Douglas A.

    1991-01-01

    The effect of hotspot reheating on the intraplate stress field is investigated by modeling the three-dimensional thermal stress field produced by nonuniform temperature changes in an elastic plate. Temperature perturbations are calculated assuming that the lithosphere is heated by a source in the lower part of the thermal lithosphere. A thermal stress model for the elastic lithosphere is calculated by superposing the stress fields resulting from temperature changes in small individual elements. The stress in an elastic plate resulting from a temperature change in each small element is expressed as an infinite series, wherein each term is a source or an image modified from a closed-from half-space solution. The thermal stress solution is applied to midplate swells in oceanic lithosphere with various thermal structures and plate velocities. The results predict a stress field with a maximum deviatoric stress on the order of 100 MPa covering a broad area around the hotspot plume. The predicted principal stress orientations show a complicated geographical pattern, with horizontal extension perpendicular to the hotspot track at shallow depths and compression along the track near the bottom of the elastic lithosphere.

  12. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    SciTech Connect

    Denlinger, R.P. ); Savage, W.Z. )

    1989-01-10

    Theories based upon thermal contraction of cooling oceanic lithosphere provide a successful basis for correlating seafloor bathymetry and heat flow. The horizontal components of the contraction of the lithosphere as it cools potentially give rise to large thermal stresses. Current methods to calculate these stresses assume that on the time scales of cooling, the lithosphere initially behaves as an inviscid fluid and instantly freezes into an elastic solid at some critical temperature. These instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason the authors use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y.) when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way.

  13. Majorite Garnet and Lithosphere Evolution: Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Tessalina, S.; O'Reilly, S. Y.

    2013-12-01

    The uppermost 50-70 km of the subcontinental lithospheric mantle (SCLM) beneath the Kaapvaal Craton (S. Africa) consists largely of highly-depleted chromite harzburgites. These rocks are understudied, mainly because of their uniformity and their lack of indicator minerals such as garnet and clinopyroxene (cpx). Kimberlite-borne xenoliths of these rocks contain rare volumes of cpx-spinel (modal 76/24) symplectite, with smooth grain boundaries; many studies have suggested that these might represent low-pressure breakdown products of garnet (majorite + olivine → cpx + spinel). Our reconstruction of a suite of these grains, using element mapping and EMP analysis of constituent minerals, gives a majoritic garnet with mean composition 21.8% CaO, 15.8% Cr2O3, 9.22% Al2O3, Si=3.118, mg#=0.93. The majorite contents suggest formation at depths of 250-280 km. Ni contents imply temperatures ≥1500 °C, but have large uncertainties related to the subtraction of olivine (ca 20%) during the reconstruction calculation. LAM-ICPMS analyses show strongly sinuous REE patterns with CN Dy/Lu <0.1 and Ce/Dy >100. Most analyses have negative Eu anomalies, consistent with chromite compositions that indicate strongly reducing conditions (ΔfO2(FMQ) = -4 to -5). Melt modeling suggests that the harzburgites are products of 30-40% melting of asthenospheric mantle at 250 km depth, leaving residues of ol+opx+chromite. The presence of the majorites and their overall LREE enrichment are ascribed to the introduction of carbonatitic metasomatic fluids, similar to those recorded by diamond-inclusions (subcalcic garnets), shortly after the depletion. We suggest that the melting, the metasomatism and the ultimate breakdown of the majorite track a process of mantle upwelling, with melt-extraction at depth providing the buoyancy that allowed the residual harzburgites to rise to shallow levels and stabilize the SCLM. Os-isotope analyses of sulfides associated with the majorites give TRD = 2.5-3.4 Ga

  14. Deep earthquakes in the lithospheric structure of northern Germany

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Plenefisch, Thomas; Tanner, David; Gestermann, Nicolai; Steffen, Holger

    2017-04-01

    One of the major challenges in seismology is to understand the distribution and controlling factors of intraplate earthquakes. Northern Germany is an area with both prehistoric and historic earthquakes of moderate magnitude that cluster along major reverse faults (Brandes et al., 2015), and therefore serves as natural laboratory for the study of low-strain intraplate regions. The remarkable feature in this area are five deep earthquakes that have hypocentre depths between 16 and 30 km. They have been instrumentally recorded over the last 16 years. These earthquakes have magnitudes in a range of ML 1.3 to 3.1 and illuminate major structural elements in the lithosphere. The depth range of these earthquakes is manifested by the localization itself as well as particularly by the relatively small cross-over distance of the Pn phase versus the Pg phase, which is a strong indicator of their deep foci. One of the earthquakes can be attributed to the Elbe Line and another to the Thor Suture. This supports the idea that earthquakes in this intraplate regions concentrate on pre-existing zones of weakness. Three earthquakes group around the Moho and imply that the crust/mantle boundary in northern Germany acts as structural discontinuity at which deformation localizes. The location of one of the earthquakes indicates that the Thor Suture probably reaches deeper than previously expected and might sole out into the Moho. References: Brandes, C., Steffen, H., Steffen R. and Wu, P. (2015) Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43, 611-614

  15. Lithospheric records of orogeny within the continental U.S.

    NASA Astrophysics Data System (ADS)

    Porter, Ryan; Liu, Yuanyuan; Holt, William E.

    2016-01-01

    In order to better understand the tectonic evolution of the North American continent, we utilize data from the EarthScope Transportable Array network to calculate a three-dimensional shear velocity model for the continental United States. This model was produced through the inversion of Rayleigh wave phase velocities calculated using ambient noise tomography and wave gradiometry, which allows for sensitivity to a broad depth range. Shear velocities within this model highlight the influence of orogenic and postorogenic events on the evolution of the lithosphere. Most notable is the contrast in crustal and upper mantle structure between the relatively slow western and relatively fast eastern North America. These differences are unlikely to stem solely from thermal variations within the lithosphere and highlight both the complexities in lithospheric structure across the continental U.S. and the varying impacts that orogeny can have on the crust and upper mantle.

  16. Statistical analysis of the lithospheric magnetic anomaly data

    NASA Astrophysics Data System (ADS)

    Pavon-Carrasco, Fco Javier; de Santis, Angelo; Ferraccioli, Fausto; Catalán, Manuel; Ishihara, Takemi

    2013-04-01

    Different analyses carried out on the lithospheric magnetic anomaly data from GEODAS DVD v5.0.10 database (World Digital Magnetic Anomaly Map, WDMAM) show that the data distribution is not Gaussian, but Laplacian. Although this behaviour has been formerly pointed out in other works (e.g., Walker and Jackson, Geophys. J. Int, 143, 799-808, 2000), they have not given any explanation about this statistical property of the magnetic anomalies. In this work, we perform different statistical tests to confirm that the lithospheric magnetic anomaly data follow indeed a Laplacian distribution and we also give a possible interpretation of this behavior providing a model of magnetization which depends on the variation of the geomagnetic field and both induced and remanent magnetizations in the terrestrial lithosphere.

  17. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  18. Intraplate seismicity and stresses in young oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Wiens, D. A.; Stein, S.

    1984-01-01

    A systematic study has been conducted of oceanic intraplate seismicity in the 1964-1983 period occurring in lithosphere younger than 35 million years. Detailed findings are presented on the stress in young lithosphere, depth of seismicity, intraplate events in fracture zones, seismicity distributions, and regional concentrations of seismicity. It is concluded that there is no evidence of a general transition from tensional to compressive stresses at any particular age of the lithosphere. Extensional events are located mostly in the Indian Ocean and have tensional axes oriented at large angles to the spreading direction. Compressional axes of thrust faulting events show a weak preferred orientation parallel to the spreading direction. Normal faulting events occur at greater depths and temperatures than thrust faulting events. Differential thermal contraction along fracture zones is not a significant source of intraplate seismicity.

  19. Properties of the lithosphere and asthenosphere deduced from geoid observations

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1985-01-01

    Data from the GEOS-3 and SEASAT Satellites provided a very accurate geoid map over the oceans. Broad bathymetric features in the oceans such as oceanic swells and plateaus are fully compensated. It is shown that the geoid anomalies due to the density structures of the lithosphere are proportional to the first moment of the density distribution. The deepening of the ocean basins is attributed to thermal isostasy. The thickness of the oceanic lithosphere increases with age due to the loss of heat to the sea floor. Bathymetry and the geoid provide constraints on the extent of this heat loss. Offsets in the geoid across major fracture zones can also be used to constrain this problem. Geoid bathymetry correlations show that the Hawaiian and Bermuda swells and the Cape Verde Rise are probably due to lithospheric thinning.

  20. Geoid anomalies and the thickness of the lithosphere

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Mcadoo, D. C.

    1979-01-01

    By using accepted crustal density distributions and either error function or linear temperature distributions the difference in geoid height between stable continental areas and deep ocean basins has been determined as a function of the continental lithospheric thickness. If the continental lithosphere were greater than 200 km thick, the geoid anomaly over the continents would be systematically negative in relation to that over the ocean basins. By using the GEM 9 satellite geoid the mean geoid anomalies over ocean basins and stable continental areas have been obtained. No systematic difference between continental and oceanic geoids is observed. It is concluded that the thickness of the continental lithosphere is near 180 km. This is in good agreement with various interpretations of the surface heat flow observations.

  1. Lithospheric structure of the south-central United States

    SciTech Connect

    Mickus, K.L. ); Keller, G.R. )

    1992-04-01

    Recent seismic data in the Ouachita Mountains area and the Gulf of Mexico make it possible to construct a lithospheric-scale cross section (transect) from the midcontinent region to the gulf. The authors constructed a transect in the form of a gravity model, but it incorporates all available seismic, drill hole, and geologic data as constraints. The thrust sheets of the Ouachita orogenic belt appear as a thin veneer covering the southern part of the Arkoma basin and the preserved Paleozoic continental margin. Mesozoic rifting is evident in three areas: (1) southern Arkansas and northern Louisiana where extension was minor, (2) the vicinity of the Texas-Louisiana coastline where modification of the lithosphere and subsidence were considerable, and (3) the deep Gulf of Mexico where rifting was successful. A significant variation in the average density of the mantle, which could delineate the North American craton as a lithospheric feature, was detected near the Paleozoic continental margin.

  2. Oceanic earthquakes and the tectonic evolution of oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.

    1988-01-01

    The body waveform inversion method of Nabelek (1984) is used to study the centroid depths and source properties of oceanic earthquakes. The source parameters for 50 earthquakes which occurred along slowly spreading midocean ridges between 1962 and 1983 are used to examine the mechanical characteristics of the median valley, including the water depth in the epicentral region, the depth range of seismic faulting, the centroid depth and seismic moment versus spreading rate, and the seismic moment budget. The locations and source characteristics of oceanic intraplate earthquakes are discussed, including near-ridge earthquakes, lithospheric stress, and earthquakes in older oceanic lithosphere. The results suggest that the median valley form by the necking of a strong layer. The properties of near-ridge earthquakes support the hypothesis that thermal stress generated by diferential cooling of the plate can be stored and accumulated over millions of years. Earthquakes in older oceanic lithosphere are most likely to reflect stresses generated by plate driving forces.

  3. A global view of the lithosphere-asthenosphere boundary.

    PubMed

    Rychert, Catherine A; Shearer, Peter M

    2009-04-24

    The lithosphere-asthenosphere boundary divides the rigid lid from the weaker mantle and is fundamental in plate tectonics. However, its depth and defining mechanism are not well known. We analyzed 15 years of global seismic data using P-to-S (Ps) converted phases and imaged an interface that correlates with tectonic environment, varying from 95 +/- 4 kilometers beneath Precambrian shields and platforms to 81 +/- 2 kilometers beneath tectonically altered regions and 70 +/- 4 kilometers at oceanic island stations. High-frequency Ps observations require a sharp discontinuity; therefore, this interface likely represents a boundary in composition, melting, or anisotropy, not temperature alone. It likely represents the lithosphere-asthenosphere boundary under oceans and tectonically altered regions, but it may constitute another boundary in cratonic regions where the lithosphere-asthenosphere boundary is thought to be much deeper.

  4. Model geoid anomalies due to subduction of inextensible lithosphere

    SciTech Connect

    Willemann, R.J.; Anderson, C.A.

    1987-08-01

    We compute geoid slopes from models of subduction in which the subducted lithosphere is much stronger than the surrounding mantle. Geoid slope contributions from both the lithospheric slab and mantle boundary deformations are computed from finite element analysis of mantle flow. The finite element model includes a slab of finite length and a depth dependent Newtonian rheology for the surrounding mantle. We find that observed geoid anomalies at subduction zones, which are positive, cannot be matched by models with uniform mantle viscosity. However, even with a strong subducted lithosphere, the ratio of driving load to boundary deformation is significantly increased by a ten-fold increase of viscosity with depth, resulting in a geoid high. We find that the sign of the geoid slopes within 3000 km of the trench are independent of maximum depth of the slab for maximum depths from 700 km to 2800 km. copyright American Geophysical Union 1987

  5. Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region

    NASA Astrophysics Data System (ADS)

    Gac, Sébastien; Klitzke, Peter; Minakov, Alexander; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena

    2016-11-01

    Interpretation of tomography data indicates that the Barents Sea region has an asymmetric lithospheric structure characterized by a thin and hot lithosphere in the west and a thick and cold lithosphere in the east. This suggests that the lithosphere is stronger in the east than in the west. This asymmetric lithosphere strength structure may have a strong control on the lithosphere response to tectonic and surface processes. In this paper, we present computed strength and effective elastic thickness maps of the lithosphere of the Barents Sea and Kara Sea region. Those are estimated using physical parameters from a 3D lithospheric model of the Barents Sea and Kara Sea region. The lithospheric strength is computed assuming a temperature-dependent ductile and brittle rheology for sediments, crust and mantle lithosphere. Results show that lithospheric strength and elastic thickness are mostly controlled by the lithosphere thickness. The model generally predicts much larger lithospheric strength and elastic thickness for the Proterozoic parts of the East Barents Sea and Kara Sea. Locally, the thickness and lithology of the continental crust disturb this general trend. At last, the gravitational potential energy (GPE) is computed. Our results show that the difference in GPE between the Barents Sea and the Mid-Atlantic Ridge provides a net horizontal force large enough to cause contraction in the western and central Barents Sea.

  6. Heterogeneity of Water Concentrations in the Mantle Lithosphere Beneath Hawaii

    NASA Technical Reports Server (NTRS)

    Bizimis, M.; Peslier, A. H.; Clague, D.

    2017-01-01

    The amount and distribution of water in the oceanic mantle lithosphere has implications on its strength and of the role of volatiles during plume/lithosphere interaction. The latter plays a role in the Earth's deep water cycle as water-rich plume lavas could re-enrich an oceanic lithosphere depleted in water at the ridge, and when this heterogeneous lithosphere gets recycled back into the deep mantle. The main host of water in mantle lithologies are nominally anhydrous minerals like olivine, pyroxene and garnet, where hydrogen (H) is incorporated in mineral defects by bonding to structural oxygen. Here, we report water concentrations by Fourier transform infrared spectrometry (FTIR) on olivine, clino- and orthopyroxenes (Cpx & Opx) from spinel peridotites from the Pali vent and garnet pyroxenite xenoliths from Aliamanu vent, both part of the rejuvenated volcanism at Oahu (Hawaii). Pyroxenes from the Aliamanu pyroxenites have high water concentrations, similar to the adjacent Salt Lake Crater (SLC) pyroxenites (Cpx 400-500 ppm H2O, Opx 200 ppm H2O). This confirms that pyroxenite cumulates form water-rich lithologies within the oceanic lithosphere. In contrast, the Pali peridotites have much lower water concentrations than the SLC ones (<25 ppm vs. 50-96 ppm H2O respectively) despite being relatively fertile with >10% modal Cpx and low spinel Cr# (0.09-0.10). The contrast between the two peridotite suites is also evident in their trace elements and radiogenic isotopes. The Pali Cpx are depleted in light REE, consistent with minimal metasomatism. Those of SLC have enriched light REE patterns and Nd and Hf isotopes consistent with metasomatism by alkaline melts. These observations are consistent with heterogeneous water distribution in the oceanic lithosphere that may be related to metasomatism, as well as relatively dry peridotites cross-cut by narrow (?) water-rich melt reaction zones.

  7. A Sharp Edge of the Cratonic Lithosphere of North America

    NASA Astrophysics Data System (ADS)

    Harper, T. B.; Skryzalin, P. A.; Menke, W. H.; Levin, V. L.; Darbyshire, F. A.

    2015-12-01

    Using teleseismic travel time delays, we develop a tomographic model of the lithosphere beneath northeastern North America, from the shore of James Bay in Quebec to the Atlantic coast of New England and to a depth of 300 km. Three major terranes lie within this cratonic margin: the 2.7 Ga Superior province, the 1 Ga Grenville orogenic belt and the 0.3-0.4 Ga Appalachian terranes, which are bounded by the Grenville Front (GF) and Appalachian Front (AF), respectively. Additionally, the 0.8 Ga Avalon terrain was accreted to coastal New England by strike-skip faulting during the Appalachian orogeny. Our tomographic model uses earthquake seismograms recorded by permanent US and Canadian stations, the Transportable Array and the temporary QMIII deployment. All data were corrected for instrument response and record sections were examined visually to identify gross errors in response and timing. Differential arrival times of P and PKP waves were determined by cross-correlation and have a maximum amplitude of about ±1 second. In our model, lithospheric boundaries do not correlate well with geological boundaries, nor do they strike parallel to them. The seismically-fast (by 5% relative to AK135) cratonic lithosphere of North America is much thicker than that of the younger terranes, extending to 200 km or more depth but with a sharp east-dipping eastern edge located (at Moho depths) 100-250 km northwest of the GF. The lithosphere beneath the Grenville and Appalachian terranes, which were affected by subduction during the Grenville and Appalachian orogenies, is slower (by 4%). A sliver of seismically-fast lithosphere, extending to ~150 km depth, occurs along the Atlantic coast and is interpreted as the Avalonian lithosphere.

  8. Thermal rejuvenation of continental lithosphere in the Michigan Basin Area

    SciTech Connect

    Ahern, J.L.; Dikeou, P.J.

    1985-01-01

    Using depths to formation tops from almost 500 wells, the authors have determined changes in shape of the Michigan Basin during the Phanerozoic. Flexural rigidity of the lithosphere was then estimated for several time intervals by assuming that changes in shape were caused by deflection of an elastic plate subjected to a disk load. It is found that the flexural rigidity generally increased over time, from less than 10/sup 29/ dyne-cm early in the basin's history, to more than 10/sup 30/ dyne-cm late in the basin's development. They attribute this increase in rigidity to cooling and thickening of the elastic portion of the lithosphere as the basin was subsiding. Low flexural rigidity early in the basin's history indicates that the lithosphere was probably rejuvenated prior to basin subsidence. The rejuvenation process is investigated using a finite-difference thermal model in which a 142-km plate is temporarily heated from below. Taking the depth to the 450/sup 0/C isotherm to be the effective elastic thickness of the lithosphere, rigidity predicted by the thermal model is consistent with the observed increase in rigidity over time. They conclude that the lithosphere in this area was rejuvenated approximately 500 million years ago. As the lithosphere cooled, it thickened; it also contracted and subsided. Observed rapid subsidence between about 500 and 450 million years ago cannot be explained by thermal contraction; in fact, it occurs when the thermal model predicts heating and uplift. This subsidence episode may have been the result of densification processes accompanying rejuvenation.

  9. Tibetan Apples and Oranges: Surficial Sutures and Overlapping Lithospheres

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Hung, S. H.; Wang, C. Y.; Tseng, T. L.

    2014-12-01

    Multi-scale, finite-frequency tomography across the Himalayas-Tibet shows a clear, subhorizontal anomaly of high VP and VSin the upper mantle that can be traced from under N. India all the way to beneath central Tibet. This configuration of the "Greater India" (GI), or the submerged, northern portion of the Indian shield, is combined with other constraints to reconstruct position of the Indian lithospheric mantle (ILM) relative to Asia back to about 15 Ma ago, or the onset of the latest magmatic activity in Tibet. By then, the leading edge of the ILM (Indian mantle front, IMF) has advanced subhorizontally past the entire Lhasa terrane and also probably have caused the lithospheric mantle beneath the Qiangtang terrane to thicken. The thickening is likely to have led to Rayleigh-Taylor instability, causing widespread but small volume of magmatic activity in northern Tibet. Meanwhile, the detached lithospheric mantle foundered through the upper mantle to rest at the bottom of the mantle transition zone (MTZ), just above the lower mantle. This detached lithospheric mantle manifests itself as a large-scale seismic anomaly of high compressional wave speed (VP) but curiously is undetectable through shear-waves. Based on laboratory data for nominally anhydrous olivine and its high-pressure polymorphs (NAO), the discordant results between P- and S-waves is explained by abundant hydroxyls in the foundered lithospheric mantle, a hypothesis supported by other evidences as well. Since NAO can hold ~1 wt% of water throughout the upper mantle and the MTZ, foundering of thickened lithospheric mantle caused by continental collision is an under-appreciated but effective pathway for water to enter the deep mantle. Currently, the Indus-Yarlung suture between northern India and the Lhasa terrane appears to be an inactive, crustal feature, as the GI continues to pass beneath it. On the other hand, even though the IMF has now advanced northward beyond the Bangong-Nujiang suture (BNS

  10. Seismic Tomography of the Arctic Lithosphere and Asthenosphere

    NASA Astrophysics Data System (ADS)

    Schaeffer, Andrew; Lebedev, Sergei

    2015-04-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, primarily reflect variations in the temperature of the rocks at depth. Seismic tomography thus provides a proxy for lateral changes in the temperature and thickness of the lithosphere, in addition to delineating the deep boundaries between tectonic blocks with different properties and age of the lithosphere. Our new, 3D tomographic model of the upper mantle and the crust of the Arctic region is constrained by an unprecedentedly large global dataset of broadband waveform fits (over one million seismograms) and provides improved resolution of the lithosphere, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. Sharp velocity gradients in western Canada indicate that the craton boundary at depth closely follows the Rocky Mountain Front. High velocities between the Great Bear Arc and Beaufort Sea provide convincing evidence for the recently proposed 'MacKenzie Craton', unexposed at the surface. In Eurasia, cratonic continental lithosphere extends northwards beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons and intervening Proterozoic belts mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures and deformation fronts. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster

  11. Remobilization in the cratonic lithosphere recorded in polycrystalline diamond

    PubMed

    Jacob; Viljoen; Grassineau; Jagoutz

    2000-08-18

    Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

  12. Lithospheric structural controls on magma composition: the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Omenda, P. A.; Simiyu, S.; Anthony, E. Y.; Keller, G. R.; Dean, R. L.

    2001-12-01

    Lithospheric structure, as delineated by geophysics, plays a fundamental role in both felsic and mafic magmatic compositions in the Kenya Rift. With respect to the mafic rocks, there are, first, silica-undersaturated basanites of the Chyulu Hills. This location is off-axis to the rift, where the lithosphere is thick. The lavas have been modeled as high-pressure, small degree partial melts. This origin contrasts to that for the silica-saturated transitional basalts, basaltic trachy-andesites, and andesites in the axis of the rift. These magmas were generated by higher degrees of partial melt and are also much more evolved, with Mg numbers approximately 40 to 50. The lavas have seen substantial crystal fractionation prior to eruption. An important component of lithospheric structure within the rift axis is the Kenya Dome: it is an area of thick crust and high elevation and heat flow. The crust is made thicker by a 6.8 km/sec lower crustal layer. Immediately below this crust is a very slow upper mantle. Velocities become more lithospheric to the south of the Kenya Dome in the vicinity of Suswa. This lithosphere then thickens southward into Tanzania. The felsic central volcanoes of the rift, which are significant geothermal targets, reflect these lithospheric variations. Eburru and Olkaria are both centered on the Kenya Dome. Eburru is pantellerite and can be modeled as resulting from crystallization of silica-saturated basalt. Olkaria is comendite and resulted from fusion of lower crustal syenite. That we find such distinct petrogenesis for two closely spaced volcanoes indicates that this area of very warm mantle has the temperatures necessary to generate high degree partial melt magmas, which evolve into pantellerites, and also fuse the lower crust. Suswa, which is the southernmost volcano and in the area where lithosphere thickens, is composed on phonolites, which can be modeled as resulting from crystallization of silica-undersaturated mafic parents. Presumably

  13. Effect Of Oceanic Lithosphere Age Errors On Model Discrimination

    NASA Astrophysics Data System (ADS)

    DeLaughter, J. E.

    2016-12-01

    The thermal structure of the oceanic lithosphere is the subject of a long-standing controversy. Because the thermal structure varies with age, it governs properties such as heat flow, density, and bathymetry with important implications for plate tectonics. Though bathymetry, geoid, and heat flow for young (<70 MY) lithosphere fit a half space model which varies as the inverse square of age, it appears to be shallower than expected for older lithosphere indicating a plate model is a better fit. It is therefore useful to jointly fit bathymetry, geoid, and heat flow data to an inverse model to determine lithospheric structure details. Though inverse models usually include the effect of errors in bathymetry, heat flow, and geoid, they rarely examine the effects of errors in age. This may have the effect of introducing subtle biases into inverse models of the oceanic lithosphere. Because the inverse problem for thermal structure is both ill-posed and ill-conditioned, these overlooked errors may have a greater effect than expected. The problem is further complicated by the non-uniform distribution of age and errors in age estimates; for example, only 30% of the oceanic lithosphere is older than 80 MY and less than 3% is older than 150 MY. To determine the potential strength of such biases, I have used the age and error maps of Mueller et al (2008) to forward model the bathymetry for half space and GDH1 plate models. For ages less than 20 MY, both models give similar results. The errors induced by uncertainty in age are relatively large and suggest that when possible young lithosphere should be excluded when examining the lithospheric thermal model. As expected, GDH1 bathymetry converges asymptotically on the theoretical result for error-free data for older data. The resulting uncertainty is nearly as large as that introduced by errors in the other parameters; in the absence of other errors, the models can only be distinguished for ages greater than 80 MY. These results

  14. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet.

    PubMed

    Tilmann, Frederik; Ni, James

    2003-05-30

    A tomographic image of the upper mantle beneath central Tibet from INDEPTH data has revealed a subvertical high-velocity zone from approximately 100- to approximately 400-kilometers depth, located approximately south of the Bangong-Nujiang Suture. We interpret this zone to be downwelling Indian mantle lithosphere. This additional lithosphere would account for the total amount of shortening in the Himalayas and Tibet. A consequence of this downwelling would be a deficit of asthenosphere, which should be balanced by an upwelling counterflow, and thus could explain the presence of warm mantle beneath north-central Tibet.

  15. Extensional and compressional instabilities in icy satellite lithospheres

    NASA Technical Reports Server (NTRS)

    Herrick, David L.; Stevenson, David J.

    1990-01-01

    The plausibility of invoking a lithospheric instability mechanism to account for the grooved terrains on Ganymede, Encedalus, and Miranda is presently evaluated in light of the combination of a simple mechanical model of planetary lithospheres and asthenospheres with recent experimental data for the brittle and ductile deformation of ice. For Ganymede, high surface gravity and warm temperatures render the achievement of an instability sufficiently great for the observed topographic relief virtually impossible; an instability of sufficient strength, however, may be able to develop on such smaller, colder bodies as Encedalus and Miranda.

  16. Project Skippy explores lithosphere and mantle beneath Australia

    NASA Astrophysics Data System (ADS)

    van der Hilst, Rob; Kennett, Brian; Christie, Doug; Grant, John

    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband seismic data from over 60 sites across the continent (Figure 1).The main goal of the Skippy Project, which is run by Australian National University's Research School of Earth Sciences (RSES), is to delineate the three-dimensional seismic structure of the lithosphere and mantle beneath the continent.

  17. Parameters driving strain localization in the lithosphere are highly scale-dependent

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent

    2016-04-01

    Modelling lithospheric deformation requires specifying mechanisms that promote strain localization. This can be done in different ways, such as the inclusion of weaker zones in the model setup (to initiate subduction or slab tearing, for instance) or using various sorts of weakening processes depending upon temperature, grain-size, fluid content or metamorphic reactions, among others. In most cases, this choice is ad hoc because the relevant parameters are largely unknown, especially at the scale of geodynamic models. Two lines of research have been developed, a traditional one which seeks to determine the rheological parameters of natural or synthetic rocks experimentally, and a more recent one, promoted by the development of fast computing, which aims at reproducing a natural tectonic or rheological evolution through time, not only geometries. The latter requires that the parameters allowing this reproduction are significant at the scale of the model, and which may be different from those obtained in the experimental lab, thus questioning the extrapolation through a wide range of scales of experimental parameters. This apparent discrepancy is due to the intrinsic complexity of the lithosphere, and even more so for the continental lithosphere with its highly heterogeneous crust and its long tectonic history, which implies the co-existence of many different parameters active in nature. In this presentation, we review the main localizing factors and look to the range of scales in which they are significant. Small-scale processes such as grain-size reduction, coexistence of several mineralogical phases with different strength and rheological behaviour, fluid-rock interactions and/or metamorphic reactions, often cannot initiate strain localization in nature but are all efficient to locally reduce the strength of rock material once localization has started. Some exceptions to this rule, however, exist, such as the mixing of ductile and brittle behaviour in the same

  18. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    /(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine containing 90.5 - 92.0 mole % forsterite). The rocks which were subjected to significant decrease of mg# of silicates (down to 84) may be difficult to distinguish from cumulates. However, since the alkaline basaltic melts do not precipitate orthopyroxene under lithospheric pressures, their mineral composition is different than that of mantle harzburgites. Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358: 635-641. Tursack E, Liang Y (2012) A comparative study of melt-rock reactions in the mantle: laboratory dissolution experiments and geological field observations. Contributions to Mineralogy and Petrology 163: 861-876

  19. Deformation Processes In SE Tibet: How Coupled Are The Surface And The Deeper Lithosphere? (Invited)

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Meltzer, A.

    2010-12-01

    We all like to cite the Himalayan collision as a type example of continent-continent collision, and the region has been used as a natural laboratory by a considerable number of diverse investigations. Southeastern Tibet and the Lhasa Block provide an interesting case to consider in this context. Surrounding portions of the Himalayan-Tibet system have been and are being intensely deformed, whereas the Andean-arc lithosphere of the Lhasa Block has remained enigmatically unscathed. High elevations throughout much of the terrane are fairly uniform but the eastern and western portions of block have experienced very different degrees of exhumation. Regions that experienced more exhumation have thinner crustal thicknesses, with the results that that Moho is warped up with respect to the surface. Thicker, less-exhumed portions of the Lhasa Block currently are underlain by what is inferred to be eclogitized lower crust, but this eclogitization is not seen where exhumation is significant. Beneath SE Tibet, subduction of the Indian lithosphere has been complicated, with tomographic imaging showing variations in mantle structure that do not register with the strike of surface features. Adjacent to the Lhasa Block, the Namche Barwa-Gyala metamorphic massif demonstrates a strong coupling between shallower crustal flow and localized erosion that is significant for the evolution of the Lhasa Block in the way that this feature controls base level for the upper Tsangpo drainage and thus the erosional driver for the system. More broadly, a weak lower crust and lower-crustal flow have been invoked by many workers to explain aspects of the region’s deformation patterns and topography. Thus it would seem that in SE Tibet, mid-to-upper crustal, lower-crustal, and whole-lithosphere processes all have the potential to either impact Earth-surface dynamics or be impacted by them. This leads to a number of questions about the 4D nature and scale of compensation, controls on the evolution of

  20. The lithospheric stress field from joint modeling of lithosphere and mantle circulation using constraints from the latest global tomography models

    NASA Astrophysics Data System (ADS)

    Wang, X.; Holt, W. E.; Ghosh, A.

    2013-12-01

    An understanding of the lithospheric stress field is important because these stresses are one indication of processes within the Earth's interior. In order to calculate the lithosphere stress field it is necessary to take into account the effects of lithosphere structure and topography along with coupling with 3-D mantle flow. We separate these effects into two parts: (1) contributions from topography and lithosphere structure are calculated by computing the stresses associated with gravitational potential energy (GPE) differences, and (2) stresses associated with mantle tractions are computed using the latest tomography models. The contributions from GPE and tractions are then combined to obtain model estimates of the lithospheric stress field, strain rate field, and surface velocity field. We simultaneously use the World Stress Map, the Global Strain Rate Model, and the No-Net-Rotation (NNR) surface velocity vectors to constrain models. We systematically test the latest global tomography models (SEMum [Lekic and Romanowicz, 2011], S40RTS [Ritsema et al., 2011], and S362ANI_PREM [Kustowski et al., 2008]) and the composite tomography model (SMEAN [Becker and Boschi, 2002]), along with the influence of different mantle radial viscosity models. We find that a coupled model with a weak viscosity channel, sandwiched between a strong lithosphere and strong lower mantle is best able to match the observational constraints, although there is a slight difference in stress field among the different tomography models. There is considerable evidence that the contributions from shallow versus deeper sources vary dramatically over the surface of the globe. We quantify these relative contributions as a function of position on the globe and systematically compare the results of different tomography models. Subduction zones are dominated by the effects of GPE differences, whereas within many of the plate interiors the contributions from mantle flow dominate.

  1. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Schutt, Derek L.; Jones, Alan G.; Fullea, Javier; Griffin, William L.

    2016-10-01

    We apply a novel 3-D multiobservable probabilistic tomography method that we have recently developed and benchmarked, to directly image the thermochemical structure of the Colorado Plateau and surrounding areas by jointly inverting P wave and S wave teleseismic arrival times, Rayleigh wave dispersion data, Bouguer anomalies, satellite-derived gravity gradients, geoid height, absolute (local and dynamic) elevation, and surface heat flow data. The temperature and compositional structures recovered by our inversion reveal a high level of correlation between recent basaltic magmatism and zones of high temperature and low Mg# (i.e., refertilized mantle) in the lithosphere, consistent with independent geochemical data. However, the lithospheric mantle is overall characterized by a highly heterogeneous thermochemical structure, with only some features correlating well with either Proterozoic and/or Cenozoic crustal structures. This suggests that most of the present-day deep lithospheric architecture reflects the superposition of numerous geodynamic events of different scale and nature to those that created major crustal structures. This is consistent with the complex lithosphere-asthenosphere system that we image, which exhibits a variety of multiscale feedback mechanisms (e.g., small-scale convection, magmatic intrusion, delamination, etc.) driving surface processes. Our results also suggest that most of the present-day elevation in the Colorado Plateau and surrounding regions is the result of thermochemical buoyancy sources within the lithosphere, with dynamic effects (from sublithospheric mantle flow) contributing only locally up to ˜15-35%.

  2. Microstructural and geochemical constraints on the evolution of deep arc lithosphere

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Soustelle, Vincent; Hirth, Greg; Saal, Alberto E.; Kruckenberg, Seth C.; Eiler, John M.

    2016-07-01

    Mantle xenoliths from the Sierra Nevada, California, USA, sampled a vertical column (60-120 km) of lithosphere that formed during Mesozoic continental arc magmatism. This lithosphere experienced an anticlockwise P-T-t path resulting in rapid cooling that effectively "quenched in" features inherited from earlier high-temperature conditions. Here we combine new mineral chemistry data (water, trace element, and major element concentrations) with mineral crystallographic preferred orientations (CPOs) to investigate the relationship between melt infiltration and deformation. The peridotites record a refertilization trend with increasing depth, starting from shallow, coarse-protogranular, less-melt-infiltrated spinel peridotite with strong, orthorhombic olivine CPO to deep, fine-porphyroclastic, highly melt-infiltrated garnet peridotite with weak, axial-[010] olivine CPO. In contrast to the observed axial-[010] CPOs, subgrain boundary orientations and misorientation axes suggest the dominant activation of the (001)[100] slip system, suggesting deformation under moderately hydrous conditions. After accounting for effects of subsolidus cooling, we see coherent trends between mineral trace element abundance and water content, indicating that melt infiltration led to an increase in water content of the peridotites. However, measured olivine and pyroxene water contents in all peridotites (5-10 and 30-500 wt ppm, respectively) are lower than that required to promote dominant (001)[100] slip system observed in both natural and experimental samples. These results suggest that deformation occurred earlier along the P-T path, probably during or shortly after hydrous melt infiltration. Subsequent rapid cooling at 90 Ma led to water loss from olivine (owing to decreased solubility at low temperature), leaving behind a deep arc lithosphere that remained viscously coupled to the Farallon slab until the opening of the slab window in the late Cenozoic.

  3. An equivalent source method for modelling the global lithospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Kother, Livia; Hammer, Magnus D.; Finlay, Christopher C.; Olsen, Nils

    2015-10-01

    We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when it was at its lowest altitude and solar activity was quiet. All three components of the vector field data are utilized at all available latitudes. Estimates of core and large-scale magnetospheric sources are removed from the measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron grid at a depth of 100 km below the surface. The corresponding model parameters are estimated using an iteratively reweighted least-squares algorithm that includes model regularization (either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices are implemented, accounting for the dependence of data variances on quasi-dipole latitude. The resulting equivalent source lithospheric field models show a degree correlation to MF7 greater than 0.7 out to spherical harmonic degree 100. Compared to the quadratic regularization approach, the entropy regularized model possesses notably lower power above degree 70 and a lower number of degrees of freedom despite fitting the observations to a very similar level. Advantages of our equivalent source method include its local nature, the possibility for regional grid refinement and the production of local power spectra, the ability to implement constraints and regularization depending on geographical position, and the ease of transforming the equivalent source values into spherical harmonics.

  4. Seismic Reflection Imaging of the Lithosphere-asthenosphere Boundary Across the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Marjanovic, M.; Audhkhasi, P.; Mehouachi, F.

    2015-12-01

    Until now, the nature of the lithosphere-asthenosphere boundary (LAB) has been constrained by teleseismic data, which has resolution of tens of kilometres and sample the LAB sparsely. Seismic reflection imaging technique, in contrast, can provide both lateral and vertical resolution of a few hundred meters, but has not been used for imaging deep structures, thus so far. In March-April 2015, we acquired over 2,750 km of ultra-deep seismic reflection data in the Atlantic Ocean. To image LAB variations as a function of age one of our profiles extends continuously starting from 75 Ma old oceanic lithosphere off the margin of Africa, crosses the Mid-Atlantic Ridge at zero age, to up to 25 Ma old South America lithosphere. To image large differences in the LAB depth we also cross three major fracture zones in the equatorial Atlantic. For imaging deep structures, we used a very large energy source, 10,170 cubic inches, rich in low frequencies and a 12 km long multi-component streamer allowing to record low frequency energy reflected from deep earth and remove reverberation in the water column. Initial results show reflected seismic energy from 50-60 km depth. The seismic reflection experiment will be complemented by seismic refraction study to determine the crustal and upper mantle P-wave velocity, magnetotelluric study to determine resistivity, and broadband ocean bottom seismometer experiment for teleseismic study, collocated with our seismic reflection profiles. In this paper, we will present the design of the seismic reflection experiment and preliminary results from the onboard processed data.

  5. Imaging and Interpreting Lithospheric Structure in the Southern Appalachians using the SESAME Broadband Array

    NASA Astrophysics Data System (ADS)

    Verellen, D.; Alberts, E.; Parker, H., Jr.; Hawman, R. B.; Fischer, K. M.; Wagner, L. S.

    2016-12-01

    The Southeastern Suture of the Appalachian Margin Experiment (SESAME) was designed to investigate the role of crustal and subcrustal deformation associated with Alleghanian collision and Mesozoic extension of the lithosphere across the southeastern United States. It involved the deployment of three profiles with a total length of 1300 kilometers. In this study, we use zero-offset reflections generated by the global seismic phase PKIKP as a virtual source to image structure within the lithosphere. Together with Consortium for Continental Reflection Profiling (COCORP) surveys, these data allow us to study the nature of the Moho and other discontinuities over a wide range of scales. A major objective of this work is to track variations in the detailed structure of the crust-mantle transition from Grenville basement beneath the Valley & Ridge to accreted terranes beneath the Coastal Plain and across the boundary between Laurentian and Gondwanan lithosphere. We also investigate the scale of layering in the uppermost mantle and its possible relation to contrasts in anisotropy in relation to shearing. Preliminary findings for a single earthquake (mb=6.1) recorded along a profile trending northwest across the Carolina Terrane, Inner Piedmont, and Blue Ridge show dipping reflectors at a depth of approximately 15-20 km in the crust, and layered, relatively flat-lying reflectors at a depth of roughly 70 km in the upper mantle. Ongoing work includes stacking of waveforms for multiple events in order to enhance signal-to-noise levels and construction of images for two additional north-south trending profiles across the Coastal Plain, where deep structure is more difficult to image due to reverberations within low-velocity sediments. The resulting broadband images of P-wave reflectivity will be used in combination with models of S-wave reflectivity derived by other methods to provide insight into the complex deformational history of the southern Appalachian system.

  6. The crust and lithosphere thicknesses in South America: trying to find the lithosphere- asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Heit, B.; Sodoudi, F.; Yuan, X.; Bianchi, M.; Kind, R.

    2007-05-01

    During the past years, a series of seismological investigations have been carried out to study the crustal and mantle structures all over the world. In South America, this investigation has not been an easy task as there are different regions where the geodynamics involves the subduction of an oceanic plate, the building of a mountain range as the Andes, the interaction with older lithosphere as the Brazilian Shield and the presence of active deformation fronts between the last two regions. In order to investigate the thickness of the lithosphere in such a complex context we have performed S-wave receiver function analysis (Vinnik and Farra, 2000; Li et al., 2004). The S receiver function technique looks for the S-to-P converted waves at seismic discontinuities beneath a station in the same way as the conventional P receiver function method that deals with P-to-S conversions. The S receiver function technique have proved to be useful to map the Moho and the LAB in many regions where other methods (i.e. surface waves) failed to provide reliable information (e.g. Li et al., 2004; Kumar et al., 2004a, 2004b; Sodoudi et al., 2006). We present here the results of S receiver function technique that has been applied to all the available temporary seismic experiments (e.g. BANJO, SEDA, REFUCA, BLSP) and the permanent stations from the IRIS network. We have been able to investigate the upper mantle discontinuities at all the depths beneath the stations and obtained coherent Moho depths along the entire Andes and in other South American continental regions. The LAB has been clearly detected below some stations, particularly those that are located far away from the subduction zone. By comparing our results with those from the P receiver functions, we have been able to further constrain the thicknesses of the crust and LAB in different regions including shields, mobile belts, basins and mountain ranges. At many stations we have also been able to map the upper mantle

  7. Petrological imaging of the Cordilleran lithosphere beneath Craven Lake, NCVP, BC, Canada: local evidence for a texturally diverse, hydrous lithosphere

    NASA Astrophysics Data System (ADS)

    Miller, Christine; Edwards, Benjamin R.; Russell, James K.; Peterson, Nils

    2010-05-01

    Peridotite and pyroxenite xenoliths from the glaciovolcanic Craven Lake center (Edwards et al., 2006) provide local evidence for a texturally diverse, hydrous lithosphere beneath the Stikine terrane, in the Canadian Cordilleran lithosphere. Although the xenolith suite is dominated by spinel lherzolite, websterite and Ol websterite xenoliths also occur. Veins of amphibole, with local apatite, have so far been found in one spinel lherzolite and one websterite xenolith. Although interstitial amphibole has been reported from at least two localities in the northern Cordillera, we believe that this is the first documented occurrence of an amphibole vein in lithospheric peridotite and pyroxenite. Textural analysis shows that the xenoliths from Craven Lake are on average finer grained (~2.0 mm) and less equigranular than xenolith suites from localities to the north (e.g. Harder and Russell, 2005) or to the south (e.g. Peslier et al., 2002). Clinopyroxene-orthopyroxene geothermometry of a peridotite sample indicates that the temperatures of equilibration (964-1022C at 0.1 GPa) are well within the established stability limits of amphibole at lithospheric pressures. Observations on the Craven Lake suite have important implications for the petrology of the Cordilleran lithosphere. Textural observations confirm that the lithosphere beneath the accreted terranes in British Columbia is distinctly heterogeneous, which is consistent with at least local lithospheric variation that could be due in part to tectonism during Mesozoic terrane accretion. Documentation of veins of amphibole plus apatite in the Cordilleran lithosphere is consistent with the Francis and Ludden (1995) hypothesis that the veins could be lithospheric sources for volumetrically minor but spatially wide-spread nephelinite throughout the Canadian Cordilleran, which were remelted during Neogene to Recent, extension-related magmatism. The formation of the veins may be linked to Mesozoic subduction zone metasomatism

  8. Lithospheric strength variations in Mainland China: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Deng, Yangfan; Tesauro, Magdala

    2016-10-01

    We present a new thermal and strength model for the lithosphere of Mainland China. To this purpose, we integrate a thermal model for the crust, using a 3-D steady state heat conduction equation, with estimates for the upper mantle thermal structure, obtained by inverting a S wave tomography model. With this new thermal model and assigning to the lithospheric layers a "soft" and "hard" rheology, respectively, we estimate integrated strength of the lithosphere. In the Ordos and the Sichuan basins, characterized by intermediate temperatures, strength is primarily concentrated in the crust, when the rheology is soft, and in both the crust and upper mantle, when the rheology is hard. In turn, the Tibetan Plateau and the Tarim basin have a weak and strong lithosphere mainly on account of their high and low temperatures, respectively. A comparison of temperatures, strength, and effective viscosity variations with earthquakes distribution and their seismic energy released indicates that both the deep part of the crust and the upper mantle of the Tibetan Plateau are weak and prone to flow toward adjacent areas. The high strength of some of the tectonic domains surrounding Tibet (Tarim, Ordos, and Sichuan basins) favors the flow toward the weak western part of South China block.

  9. Lithospheric and atmospheric interaction on the planet Venus

    NASA Technical Reports Server (NTRS)

    Volkov, Vladislav P.

    1991-01-01

    Lithospheric and atmospheric interaction in the planet Venus are discussed. The following subject areas are covered: (1) manifestation of exogenic processes using photogeological data; (2) the chemical composition and a chemical model of the troposphere of Venus; (3) the mineral composition of surface rock on Venus; and (4) the cycles of volatile components.

  10. Seismicity in Romania--evidence for the sinking lithosphere.

    PubMed

    Roman, C

    1970-12-19

    The revision of Romanian earthquakes shows a distribution suggesting a sinking lithosphere under the Carpathian arc. Thermal and gravitational anomalies, as well as petrological and tectonic features, provide further evidence on the cause and character of intermediate earthquakes of Romania. This is consistent with the theory of plate tectonics in south-east Europe.

  11. Flexure of Europa's lithosphere due to ridge-loading

    NASA Astrophysics Data System (ADS)

    Hurford, T. A.; Beyer, R. A.; Schmidt, B.; Preblich, B.; Sarid, A. R.; Greenberg, R.

    2005-10-01

    Using photoclinometry, topographic profiles across europan ridges have been produced. These profiles allow the identification of bulges in the terrain adjacent to the ridges. The bulges are assumed to have been produced by flexure of the elastic lithosphere due to the load of the ridges, which lie along cracks in the crust. The distance from the crack to these "fore-bulges" depends on the thickness of the elastic plate being flexed. Based on a survey of ridges in Galileo images with resolution <300 m/pixel, the thickness of the elastic lithosphere has been determined by this method at a wide variety of sites along the leading and trailing hemispheres of Europa. The average thickness is about 200 m. The elastic lithosphere underneath smooth dilational bands tends to be thicker than plains morphology, an effect that is pronounced at Thynia Linea and Astypalaea Linea. Among the ridges investigated here, more recent loading correlates with a thicker elastic lithosphere, which may either reflect an intrinsically thicker layer, or less viscous relaxation over the shorter time period.

  12. Imaging the lithospheric structure beneath the Indian continent

    NASA Astrophysics Data System (ADS)

    Maurya, S.; Montagner, J.-P.; Kumar, M. Ravi; Stutzmann, E.; Kiselev, S.; Burgos, G.; Rao, N. Purnachandra; Srinagesh, D.

    2016-10-01

    We present a high-resolution 3-D lithospheric model of the Indian plate region down to 300 km depth, obtained by inverting a new massive database of surface wave observations, using classical tomographic methods. Data are collected from more than 550 seismic broadband stations spanning the Indian subcontinent and surrounding regions. The Rayleigh wave dispersion measurements along 14,000 paths are made in a broad frequency range (16-250 s). Our regionalized surface wave (group and phase) dispersion data are inverted at depth in two steps: first an isotropic inversion and next an anisotropic inversion of the phase velocity including the SV wave velocity and azimuthal anisotropy, based on the perturbation theory. We are able to recover most of the known geological structures in the region, such as the slow velocities associated with the thick crust in the Himalaya and Tibetan plateau and the fast velocities associated with the Indian Precambrian shield. Our estimates of the depth to the Lithosphere-Asthenosphere boundary (LAB) derived from seismic velocity Vsv reductions at depth reveal large variations (120-250 km) beneath the different cratonic blocks. The lithospheric thickness is 120 km in the eastern Dharwar, 160 km in the western Dharwar, 140-200 km in Bastar, and 160-200 km in the Singhbhum Craton. The thickest (200-250 km) cratonic roots are present beneath central India. A low velocity layer associated with the midlithospheric discontinuity is present when the root of the lithosphere is deep.

  13. Venus topography: Clue to hot-lithosphere tectonics?

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.

    1983-01-01

    The topography of Venus is studied in order to learn about hot lithosphere tectonic processes of Archean Earth. Except for the difference in H2O abundances (Archaen Earth was wet; modern Venus is very dry), linear zones on Venus may be analogous to the tectonic settings for some Archean greenstone belts.

  14. European Lithospheric Mantle; geochemical, petrological and geophysical processes

    NASA Astrophysics Data System (ADS)

    Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.

    2017-04-01

    The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).

  15. Horizontal stress in planetary lithospheres from vertical processes

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    1991-01-01

    Understanding the stress states in a lithosphere is of fundamental importance for planetary geophysics. It is closely linked to the processes which form and modify tectonic features on the surface and reflects the behavior of the planet's interior, providing a constraint for the difficult problem of determining interior structure and processes. The tectonics on many extraterrestrial bodies (Moon, Mars, and most of the outer planet satellites) appears to be mostly vertical, and the horizontal stresses induced by vertical motions and loads are expected to dominate the deformation of their lithospheres. Herein, only changes are examined in the state of stress induced by processes such as sedimentary and volcanic deposition, erosional denudation, and changes in the thermal gradient that induce uplift or subsidence. This analysis is important both for evaluating stresses for specific regions in which the vertical stress history can be estimated, as well as for applying the proper loading conditions to global stress models. All references to lithosphere herein should be understood to refer to the elastic lithosphere, that layer which deforms elastically or brittlely when subjected to geologically scaled stresses.

  16. Convective instability within the Tibetan Lithospheric Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Molnar, P. H.; Evans, L.; England, P. C.

    2013-12-01

    Studies of seismic surface waves in Asia show that shear-wave speeds at depths of ~120-250km beneath the Tibetan Plateau are higher than is generally observed for continents, other than beneath Archaean cratons. The high-speed layer has been interpreted as continental lithosphere that was thickened during the convergence between India and Asia. This interpretation contradicts conceptual models in which gravitational instabilities remove a significant fraction of the mantle lithosphere beneath Tibet during that convergence. In contrast, the suggestion of relatively recent (post-early-Miocene) surface uplift of the Plateau, inferred from the onset of normal faulting across the plateau, synchronous increased rates of compressional deformation in the surroundings of the the plateau, and widespread volcanism in the northern part of the plateau, implies action of a mechanism that increased the gravitational potential energy of, and temperatures within, the Tibetan lithosphere in a way that would not occur if the mantle lithosphere had simply thickened continually throughout the India-Asia convergence. A resolution to this paradox is suggested by the observation that, while shear-wave speeds are indeed high at depths of 120-250 km beneath the Tibetan plateau, they are anomalously low at shallower depths, implying a temperature inversion that is hard to reconcile with uninterrupted lithospheric thickening. We suggest that the ensemble of observations may be explained by the convective overturn of a lithospheric root that is depleted in iron such that it remains buoyant with respect to normal upper mantle. The increased rate of strain within the Tibetan lithosphere once convergence began reduced its effective viscosity, and continuing convergence thickened the lithospheric root. These conditions led to convective overturn, similar to the original conceptual models, with the difference that the overturn was confined within the root, which remains buoyant with respect to the

  17. Seismic constraints on the lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.

    2014-05-01

    The basic tenet of plate tectonics is that a rigid plate, or lithosphere, moves over a weaker asthenospheric layer. However, the exact location and defining mechanism of the boundary at the base of the plate, the lithosphere-asthenosphere boundary (LAB) is debated. The oceans should represent a simple scenario since the lithosphere is predicted to thicken with seafloor age if it thermally defined, whereas a constant plate thickness might indicate a compositional definition. However, the oceans are remote and difficult to constrain, and studies with different sensitivities and resolutions have come to different conclusions. Hotspot regions lend additional insight, since they are relatively well instrumented with seismic stations, and also since the effect of a thermal plume on the LAB should depend on the defining mechanism of the plate. Here I present new results using S-to-P receiver functions to image upper mantle discontinuity structure beneath volcanically active regions including Hawaii, Iceland, Galapagos, and Afar. In particular I focus on the lithosphere-asthenosphere boundary and discontinuities related to the base of melting, which can be used to highlight plume locations. I image a lithosphere-asthenosphere boundary in the 50 - 95 km depth range beneath Hawaii, Galapagos, and Iceland. Although LAB depth variations exist within these regions, significant thinning is not observed in the locations of hypothesized plume impingement from receiver functions (see below). Since a purely thermally defined lithosphere is expected to thin significantly in the presence of a thermal plume anomaly, a compositional component in the definition of the LAB is implied. Beneath Afar, an LAB is imaged at 75 km depth on the flank of the rift, but no LAB is imaged beneath the rift itself. The transition from flank of rift is relatively abrupt, again suggesting something other than a purely thermally defined lithosphere. Melt may also exist in the asthenosphere in these regions

  18. Hyperextension of continental lithospheric mantle to oceanic-like lithosphere: the record of late gabbros in the Ronda subcontinental lithospheric mantle section (Betic Cordillera, S-Spain)

    NASA Astrophysics Data System (ADS)

    Hidas, Karoly; Garrido, Carlos; Targuisti, Kamal; Padron-Navarta, Jose Alberto; Tommasi, Andrea; Marchesi, Claudio; Konc, Zoltan; Varas-Reus, Maria Isabel; Acosta Vigil, Antonio

    2014-05-01

    Rupturing continents is a primary player in plate tectonic cycle thus longevity, stability, evolution and breakup of subcontinental lithosphere belongs for a long time to a class of basic geological problems among processes that shape the view of our Earth. An emerging body of evidences - based on mainly geophysical and structural studies - demonstrates that the western Mediterranean and its back-arc basins, such as the Alborán Domain, are hyperextended to an oceanic-like lithosphere. Formation of gabbroic melts in the late ductile history of the Ronda Peridotite (S-Spain) - the largest (ca. 300 km2) outcrop of subcontinental lithospheric mantle massifs on Earth - also attests for the extreme thinning of the continental lithosphere that started in early Miocene times. In the Ronda Peridotite, discordant gabbroic veins and their host plagioclase lherzolite, as well as gabbroic patches in dunite were collected in the youngest plagioclase tectonite domains of the Ojén and Ronda massifs, respectively. In Ojén, gabbro occurs as 1-3 centimeter wide discordant veins and dikes that crosscut the plagioclase tectonite foliation at high angle (60°). Within the veins cm-scale igneous plagioclase and clinopyroxene grains show a shape preferred orientation and grow oriented, subparallel to the trace of high temperature host peridotite foliation and oblique to the trend of the vein. In contrast to Ojén, mafic melts in the Ronda massif crystallized along subcentimeter wide anastomozing veins and they often form segregated interstitial melt accumulations in the host dunite composed of plagioclase, clinopyroxene and amphibole. Despite the differences in petrography and major element composition, the identical shape of calculated REE patterns of liquid in equilibrium with clinopyroxenes indicates that the percolating melt in Ronda and Ojén shares a common source. However, unlike gabbros from the oceanic lithosphere that shows clinopyroxene in equilibrium with LREE-depleted MORB

  19. The continental lithosphere: Reconciling thermal, seismic, and petrologic data

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina M.

    2009-04-01

    The goal of the present study is to extract non-thermal signal from seismic tomography models in order to distinguish compositional variations in the continental lithosphere and to examine if geochemical and petrologic constraints on global-scale compositional variations in the mantle are consistent with modern geophysical data. In the lithospheric mantle of the continents, seismic velocity variations of a non-thermal origin (calculated from global Vs seismic tomography data [Grand S.P., 2002. Mantle shear-wave tomography and the fate of subducted slabs. Philosophical Transactions of the Royal Society of London. Series A, 360, 2475-2491.; Shapiro N.M., Ritzwoller M.H. 2002. Monte-Carlo inversion for a global shear velocity model of the crust and upper mantle. Geophysical Journal International 151, 1-18.] and lithospheric temperatures [Artemieva I.M., Mooney W.D., 2001. Thermal structure and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research 106, 16387-16414.] show strong correlation with tectono-thermal ages and with regional variations in lithospheric thickness constrained by surface heat flow data and seismic velocities. In agreement with xenolith data, strong positive velocity anomalies of non-thermal origin (attributed to mantle depletion) are clearly seen for all of the cratons; their amplitude, however, varies laterally and decreases with depth, reflecting either a peripheral growth of the cratons in Proterozoic or their peripheral reworking. These cratonic regions where kimberlite magmas erupted show only weakly positive compositional velocity anomalies, atypical for the "intact" cratonic mantle. A reduction in the amplitude of compositional velocity anomalies in kimberlite provinces is interpreted to result from metasomatic enrichment (prior or during kimberlite emplacement) of the cratonic mantle, implying that xenolith data maybe non-representative of the "intact" cratonic mantle.

  20. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Gao, Min; Fan, Majie; Moucha, Robert

    2016-08-01

    The mechanism of Laramide deformation in the central Rocky Mountains remains enigmatic. It is generally agreed that the deformation resulted from low-angle subduction of the Farallon plate beneath the North American plate during the latest Cretaceous-early Eocene; however, recent studies have suggested the importance of slab removal or slab rollback in causing this deformation. Here we infer Wyoming lithosphere structure and surface deformation pattern by conducting 2-D flexural subsidence modeling in order to provide constraints on the mechanism of Laramide deformation. We assume that Wyoming lithosphere behaved as an infinite elastic plate subject to tectonic loading of mountain ranges and conduct 2-D flexural subsidence modeling to major Laramide basins to document lithospheric stiffness and mountain load height. Our results show that the stiffness of Wyoming lithosphere varied slightly in each basin during the ~30 Myr duration of the Laramide deformation and decreased from northeastern Wyoming (Te = 32-46 km) to southwestern Wyoming (Te = 6-9 km). Our results also imply that the increase of equivalent load height of major Laramide ranges accelerated during the early Eocene. We propose that the bending stresses induced by the topographic load of the Sevier fold-and-thrust belt combined with crust-mantle decoupling initiated by the overthickened Sevier hinterland and the end loads due to the low-angle subduction at the western edge of the thick Wyoming craton have caused the southwestward decrease of lithospheric stiffness in Wyoming. Moreover, we attribute the accelerated load height gain during the early Eocene to both dynamic and isostatic effects associated with slab rollback.

  1. Fabrics of Mantle Lithosphere of Fennoscandia Inferred from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Vecsey, L.; Plomerova, J.; Munzarova, H.; Babuska, V.

    2015-12-01

    Though crust in Archean cratons often displays a relatively simple architecture in comparison with younger orogens, where Moho topography and deep crustal structure are more complex, differences in structure of the mantle lithosphere are less prominent. The mantle lithosphere of Fennoscandia is built by domains with their own fossil inclined fabrics, which are similar to those we retrieved in younger continental provinces from investigations of seismic anisotropy. Passive seismic experiments SVEKALAPKO and LAPNET provided data for structural studies of the upper mantle beneath Fennoscandia. We evaluate the large-scale anisotropy in the upper mantle from (1) splitting of SKS waves (Vecsey et al., 2008), (2) directional terms of relative P-wave travel time residuals, (3) teleseismic tomography and (4) jointly interpreted body-wave anisotropic parameters (Plomerova et al., 2011). The domains of mantle lithosphere are sharply bounded both in the Proterozoic and Archean provinces and can be modelled in 3D by peridotite aggregates with dipping lineation a or foliation (a,c). The domains represent lithosphere fragments retaining fossil olivine preferred orientation created before the micro-plates assembled. Wedge-like penetration of the Archean domain into the Proterozoic province in the south-central Finland, supported by alternating ages of mantle xenoliths, seems to continue towards the north, where a westward shift of a boundary between regions with positive and negative velocity perturbations in teleseismic P-wave tomography can indicate an inclination of the Baltic-Bothnia Megashear Zone. We search for a mechanism which could create the observed inclined fabrics within continental assemblages. Such mechanism should differ from simple cooling processes which would lead to a horizontal stratification of the lithosphere without creating domains exhibiting different fabrics.

  2. Preseismic Lithosphere-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    hardly verified so far, a statistical approach has been unique way to promote the research. After the 2000s, several papers showing robust statistical results have arisen. In this paper, we focus on publications satisfying the following identification criteria: 1) A candidate of precursor, namely anomaly, is quantitatively defied. 2) Two time-series of anomalies and earthquake are constructed within the fixed thresholds such as a minimum magnitude, a region, and a lead-time. 3) To obtain a statistical correlation, a statistical process which includes four relations considering all combination among earthquake - no earthquake versus anomaly and no anomalies is applied, e. g., phi correlation. 4) For correlations under various thresholds the results keep consistency. 5) Large anomalies appear before large earthquakes. One of papers based on the identification criteria, which concerns preseismic geoelectrically anomalies, is introduced as an educative example. VAN method in Greece, i. e., Geo-electric potential difference measurement for precursor study in Greece, has been often discussed in the point of view of success and failure performance for practical prediction [Varotsos et al, Springer, 2011] to show a correlation and then less number of papers shows the statistical correlation with satisfying the identification criteria [Geller (ed.), GRL, 1996], so that the phenomena had been controversial. However, recent related study in Kozu-Island, Japan which satisfied the criteria showed the robust correlation [Orihara and Kamogawa et al., PNAS, 2012]. Therefore, the preseismic geoelectric anomalies are expected to be a precursor. Preseismic lithosphere-atmosphere-ionosphere coupling has been intensively discussed [Kamogawa, Eos, 2006]. According to review based on the identification criteria with considering recent publications, plausible precursors have been found, which are tropospheric anomaly [Fujiwara and Kamogawa, GRL, 2004], daytime electron depletion in F region

  3. Western United States lithosphere-asthenosphere interaction: Modern day small scale convection, plume and ancient lithospheric heterogeneity

    NASA Astrophysics Data System (ADS)

    Yuan, Huaiyu

    I present teleseismic imaging results from several temporary arrays in the southern and northern Rockies in the western U.S. This part continental lithosphere is a perfect lab in the world to study continent growth, stabilization and reactivation due to numerical mantle processes since the continental formation. A major hypothesis to test in this dissertation is the continent in the southern and northern Rockies retains its upper mantle structural heterogeneities formed during the early accretionary events, and remains as a kinematically stable lithosphere during subsequent tectonic events since the accretion. The main goals of this dissertation are to pursuit fine scale high resolution lithospheric seismic images of this region, focusing two primary key structures that record different stages of continent growth: the old Precambrian suture zones that mark the amalgamation of distinctly aged lithospheric provinces in 1.8--1.6 Ga, and the late Cenozoic Yellowstone hotspot track system that has been injecting magma into stable continental crust since 17 Ma. Methods such as body-wave tomography, receiver functions and a newly developed shear-wave splitting method are used in this thesis.

  4. The Lithosphere-Ocean-Atmosphere Seismo-Electromagnetic Transformer and Applications for the Seaquake Monitoring

    NASA Astrophysics Data System (ADS)

    Novik, O.; Ershov, S.; Mikhaylovskaya, I.; Ruzhin, Y.

    2004-12-01

    To clear the physical nature of seismic electromagnetic (EM) signals observed in near sea regions a mathematical model of seismo-hydro-EM interaction in a lithosphere-ocean-atmosphere domain is formulated on the basis of principles of electrodynamics of moving continuous media. Generation and propagation of seismic, EM, temperature, and hydrodynamic waves caused by elastic displacements (main frequencies 0.1 to 1 Hz and amplitude and duration of the order of a few cm and sec respectively) in the upper mantle under the seafloor are traced numerically up to the low boundary of the ionosphere. The first measurable (50 pT) signal of the described seismic excitation (SE) of the ocean lithosphere arises in the form of ULF oscillations, in the frequency range of the SE, of the horizontal component of the magnetic field at the sea bottom's surface 3.5 sec after the beginning (t = 0) of the seaquake (the axes of polarization of the SE is approximately vertical). The seismic P wave caused by the SE arrives at the bottom a few sec later (depends on the focal depth). Let us note that the computed diffusive EM signal arises (t = 7 sec) at the sea surface together with the hydro-acoustic wave propagating upward from the sea bottom deformed by the seismic P wave. By runs with different reasonable geophysical characteristics of the medium and weak precursory SEs (see above), the magnetic signal amplitude is of the order of a few hundreds of pT at the sea surface and a of the order of a few tens of pT near the lower boundary of ionosphere, t=10 sec. The signal amplitude increases in proportion to the amplitude of a SE. So, the lithosphere-ocean-atmosphere system may be regarded as a seismo-EM transformer. The computed long (150 km) tsunami wave's amplitude far from a shore is about 15 cm only and EM signals (propagating in the atmosphere above the ocean with the light velocity) must be recorded. Basing on these and other numerical results (computed amplitudes, frequencies and

  5. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, G.L.; McGarr, A.

    2002-01-01

    The radiated energies, Es, and seismic moments, Mo, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (??a = ?? Es/Mo, where ?? is the modulus of rigidity). The globally averaged ??a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (??a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7-29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-??a events. The depth distribution of ??a, which shows peak values somewhat greater than 25 MPa in the depth range 20-25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5-30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10-30 km, our set of high-??a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ??a for

  6. Lithospheric deformation and mantle/crust coupling related to slab roll-back and tearing processes: the role of magma-related rheological weakening highlighted by 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Guillou-Frottier, Laurent; Sternai, Pietro; Gerya, Taras

    2016-04-01

    Active convergent margins are the locus of various large-scale lithospheric processes including subduction, back-arc opening, lithospheric delamination, slab tearing and break-off. Coexistence of such processes results in a complex lithospheric deformation pattern through the rheological stratification of the overriding lithosphere. In this context, another major feature is the development of an intense arc- and back-arc-related magmatism whose effects on lithospheric deformation by rheological weakening are largely unknown. Quantifying this magma-related weakening effect and integrating the three-dimensional (3D) natural complexity of subduction system is however challenging because of the large number of physico-chemical processes involved (e.g. heat advection, dehydration of subducted material, partial melting of the mantle wedge). We present here a set of 3D high-resolution petrological and thermo-mechanical numerical experiments to assess the role of low-viscosity magmatic phases on lithospheric deformation associated with coeval oceanic and continental subduction, followed by slab retreat and tearing processes. Results in terms of crustal kinematics, patterns of lithospheric deformation and distribution and composition of magmatic phases are then compared to a natural example displaying a similar geodynamical evolution: the eastern Mediterranean subduction zone. Our modeling results suggest that the asthenospheric flow controls the ascending trajectories of mantle-derived magmatic sources developed in the mantle wedge in response to dehydration of oceanic slab. Once stored at the base of the overriding continental crust, low-viscosity mantle- and crustal-derived magmatic phases allow to decrease the lithospheric strength. This weakening then enhances the propagation of localized extensional and strike-slip deformation in response to slab roll-back and extrusion tectonics respectively. In addition, we show that storage of large amounts of low-viscosity magmas

  7. Lithospheric structure and deformation of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter

    2013-04-01

    We estimate the integrated strength and elastic thickness (Te) of the North American lithosphere based on thermal, density and structural (seismic) models of the crust and upper mantle. The temperature distribution in the lithosphere is estimated considering for the first time the effect of composition as a result of the integrative approach based on a joint analysis of seismic and gravity data. We do this via an iterative adjustment of the model. The upper mantle temperatures are initially estimated from the NA07 tomography model of Bedle and Van der Lee (2009) using mineral physics equations. This thermal model, obtained for a uniform composition, is used to estimate the gravity effect and to remove it from the total mantle gravity anomalies, which are controlled by both temperature and compositional variations. Therefore, we can predict compositional variations from the residual gravity anomalies and use them to correct the initial thermal model. The corrected thermal model is employed again in the gravity calculations. The loop is repeated until convergence is reached. The results demonstrate that the lithospheric mantle is characterized by strong compositional heterogeneity, which is consistent with xenolith data. Seismic data from the USGS database allow to define P-wave velocity and thickness of each crustal layer of the North American geological provinces. The use of these seismic data and of the new compositional and thermal models gives us the chance to estimate lateral variation of rheology of the main lithospheric layers and to evaluate coupling-decoupling conditions at the layers' boundaries. In the North American Cordillera the strength is mainly localized in the crust, which is decoupled from the mantle lithosphere. In the cratons the strength is chiefly controlled by the mantle lithosphere and all the layers are generally coupled. These results contribute to the long debates on applicability of the "crème brulée" or "jelly-sandwich" models for the

  8. Garnet: a key to unraveling Earth's dynamic lithosphere

    NASA Astrophysics Data System (ADS)

    Smit, M. A.; Scherer, E. E.; Mezger, K.; Lee, J.; Ratschbacher, L.; Kooijman, E.; Stearns, M. A.

    2015-12-01

    Garnet enables constraints on all parameters relevant to lithosphere studies: pressure, temperature, strain, and time. This aspect, in combination with its widespread occurrence in metamorphic rocks and ability to resist retrogression, make the mineral a prime target in research into the dynamics of mountain belts. Garnet-based petrological and geochemical tools have diversified and improved as a result of recent advancements in spatial and analytical resolution. In particular, our ability to obtain precise age constraints using garnet Lu-Hf and Sm-Nd geochronology, and interpret these in a geological context has greatly improved. This contribution highlights a series of recent enhancements to the garnet toolkit and demonstrates its versatility in two case studies set in an archetypal collisional orogen: the Pamir-Himalaya-Tibet mountain chain. To enable a more effective use of garnet geochronology, we investigated the retentiveness of Lu-Hf and Sm-Nd isotope signatures in naturally metamorphosed garnet. Diffusive re-equilibration of these signatures is shown to occur to a minor, if not insignificant, extent during crustal metamorphism, thus firmly establishing these methods as reliable geochronometers. Diffusive major-element zoning analysis of the same garnet led to the development of a new thermometric tool, which was shown to provide reliable temperature estimates for a wide variety of rocks and terranes. We used Lu-Hf garnet geochronology to show that mid-crustal flow and 'Barrovian-type' metamorphism of rocks now exposed in the North Himalayan Gneiss Domes in Central Tibet commenced in the early Eocene. This result is the first to confirm that crustal thickening and contraction in the Tibetan Himalaya was broadly synchronous with the collision between Greater India and Eurasia. Garnet dating and thermometry, and rutile U-Pb thermochronology in the Pamir revealed a history of heating to 750-830 °C, commencing at 37 Ma in the South Pamir and occurring

  9. Applying modern measurements of Pleistocene loads to model lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Beard, E. P.; Hoggan, J. R.; Lowry, A. R.

    2011-12-01

    The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper

  10. Impact of the lithosphere on dynamic topography: Insights from analogue modeling

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Kiraly, Agnes; Faccenna, Claudio; Funiciello, Francesca; Becker, Thorsten W.; Globig, Jan; Fernandez, Manuel

    2017-03-01

    Density anomalies beneath the lithosphere are expected to generate dynamic topography at the Earth's surface due to the induced mantle flow stresses which scale linearly with density anomalies, while the viscosity of the upper mantle is expected to control uplift rates. However, limited attention has been given to the role of the lithosphere. Here we present results from analogue modeling of the interactions between a density anomaly rising in the mantle and the lithosphere in a Newtonian system. We find that, for instabilities with wavelengths of the same order of magnitude as lithosphere thickness, the uplift rate and the geometry of the surface bulge are inversely correlated to the lithosphere thickness. We also show that a layered lithosphere may modulate the topographic signal. With respect to previous approaches our models represent a novel attempt to unravel the way normal stresses generated by mantle flow are transmitted through a rheologically stratified lithosphere and the resulting topographic signal.

  11. The Lithospheric Geoid as a Constraint on Plate Dynamics

    NASA Astrophysics Data System (ADS)

    Richardson, R. M.; Coblentz, D. D.

    2015-12-01

    100 years after Wegener's pioneering work there is still considerable debate about the dynamics of present-day plate motions. A better understanding of present-day dynamics is key to a better understanding of the supercontinent cycle. The Earth's gravity field is one of the primary data sets to help constrain horizontal density contrasts, and hence plate dynamic forces. Previous work has shown that the global average for the geoid step up from old oceanic lithosphere across passive continental margins to stable continental lithosphere is about 6-9m, and the global average for the geoid anomaly associated with cooling oceanic lithosphere (the so-called "ridge push") is 10-12m. The ridge geoid anomaly corresponds to a net force of ~3x1012N/m (averaged over the thickness of the lithosphere) due to 'ridge push.' However, for individual continental margins and mid-ocean ridge systems, there is considerable variation in the geoid step and geoid anomaly and consequently the associated forces contributing to the stress field. We explore the variation in geoid step across passive continental margins looking for correlations with age of continental breakup (and hence place within the supercontinent cycle), hot spot tracks, continental plate velocities, long-wavelength geoid energy (that may be masking signal), and small scale convection. For mid-ocean ridges, we explore variations in geoid anomaly looking for correlations with plate spreading rates, hot spot tracks, long-wavelength geoid energy (that may be masking signal), and small scale convection. We use a band-pass spherical harmonic filter on the full geoid (e.g., EGM2008-WGS84, complete to spherical harmonic degree and order 2159) between orders 6 and 80. The evaluation of the role of spatial variations in the geoid gradient for cooling oceanic lithosphere and across the continental margin in the dynamics of the intraplate stress field requires high spatial resolution modeling. We perform a high resolution finite

  12. Matching Lithosphere velocity changes to the GOCE gravity signal

    NASA Astrophysics Data System (ADS)

    Braitenberg, Carla

    2016-07-01

    Authors: Carla Braitenberg, Patrizia Mariani, Alberto Pastorutti Department of Mathematics and Geosciences, University of Trieste Via Weiss 1, 34100 Trieste Seismic tomography models result in 3D velocity models of lithosphere and sublithospheric mantle, which are due to mineralogic compositional changes and variations in the thermal gradient. The assignment of density is non-univocal and can lead to inverted density changes with respect to velocity changes, depending on composition and temperature. Velocity changes due to temperature result in a proportional density change, whereas changes due to compositional changes and age of the lithosphere can lead to density changes of inverted sign. The relation between velocity and density implies changes in the lithosphere rigidity. We analyze the GOCE gradient fields and the velocity models jointly, making simulations on thermal and compositional density changes, using the velocity models as constraint on lithosphere geometry. The correlations are enhanced by applying geodynamic plate reconstructions to the GOCE gravity field and the tomography models which places today's observed fields at the Gondwana pre-breakup position. We find that the lithosphere geometry is a controlling factor on the overlying geologic elements, defining the regions where rifting and collision alternate and repeat through time. The study is carried out globally, with focus on the conjugate margins of the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105---- Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th

  13. New isostatic model of the lithosphere and gravity field

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Schwintzer, P.; Reigber, Ch.

    2003-04-01

    A new global model of the isostatic gravity field based on the up-to-date data sets is computed in terms of gravity and geoid. The initial gravity field model is improved using the new CHAMP data. For a construction of the isostatic model of the lithosphere we use the latest compilation of crustal data. Globally this is the CRUST2.0 model, which is supplemented by detailed original data for large parts of North America and North Eurasia. The long-wavelengths of the computed isostatic anomalies up to spherical harmonic degree 20 reflect deep density heterogeneities and the influence of mantle convection through the dynamic topography. The signal contribution of the isostatically balanced lithosphere to the observed gravity or geoid is still significant also for the long-wavelengths: -30- +60 mGal and -15- +40 m peak-to-peak, respectively. Generally the long-wavelength isostaticaly reduced gravity field has much less correlation with the lithosphere patterns than the observed field. This demonstrates that the long-wavelength isostatic gravity field is more appropriate for a modelling of mantle convection than the observed one. The smaller scale isostatic anomalies (wavelengths less than 2000 km) on the other hand are highly sensitive to the quality of the input data used for their computation. To a large extent they reflect internal crustal density inhomogeneities, not included in the isostatic compensation scheme, and uncertainties in the initial crustal data. Thus, small-scale isostatic anomalies may not be always interpreted as a measure of the disturbances of isostatic balance of the lithosphere. Instead we suggest to compute for the smaller scale spectral part the non-isostatic residual topography. The initial crust - upper mantle density model is corrected by gravity inversion in a least squares adjustment. Then, the residual (unbalanced) topography computed with the corrected density distribution represents the isostatic state of the lithosphere. The maximum

  14. Lithospheric Decoupling and Rotations: Hints from Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Muluneh, A. A.; Cuffaro, M.; Doglioni, C.; Kidane, T.

    2014-12-01

    Plates move relative to the mantle because some torques are acting on them. The shear in the low-velocity zone (LVZ) at the base of the lithosphere is the expression of these torques. The decoupling is allowed by the low viscosity in the LVZ, which is likely few orders of magnitudes lower than previously estimated. The viscosity value in the LVZ controls the degree of coupling/decoupling between the lithosphere and the underlying mantle. Lateral variations in viscosity within the LVZ may explain the velocity gradient among tectonic plates as the one determining the Ethiopian Rift (ER) separating Africa from Somalia. While it remains not fully understood the mechanisms of the torques acting on the lithosphere (thermally driven mantle convection or the combination of mantle convection with astronomical forces such as the Earth's rotation and tidal drag), the stresses are transmitted across the different mechanical layers (e.g., the brittle upper crust, down to the viscous-plastic ductile lower crust and upper mantle). Differential basal shear traction at the base of the lithosphere beneath the two sides of the East African Rift System (EARS) is assumed to drive and sustain rifting. In our analysis, the differential torques acting on the lithospheric/crustal blocks drive kinematics and block rotations. Since, ER involves the whole lithosphere, we do not expect large amount of rotation. Rotation can be the result of the whole plate motion on the sphere moving along the tectonic equator, or the second order sub-rotation of a single plate. Further rotation may occur along oblique plate boundaries (e.g., left lateral transtensional setting at the ER). Small amount of vertical axis rotation of blocks in northern ER could be related to the presence of local, shallower decollement layers. Shallow brittle-ductile transition (BDT) zone and differential tilting of crustal blocks in the northern ER could hint a possibility of detachment surface between the flow in the lower

  15. Viscoelastic Lithosphere Response and Stress Memory of Tectonic Force History (Invited)

    NASA Astrophysics Data System (ADS)

    Kusznir, N. J.

    2009-12-01

    While great attention is often paid to the details of creep deformation mechanisms, brittle failure and their compositional controls when predicting the response of lithosphere to tectonic forces, the lithosphere’s elastic properties are usually neglected; a viscous rheology alone is often used to predict the resulting distribution of stress with depth or to determine lithosphere strength. While this may simplify geodynamic modelling of lithosphere response to tectonic processes, the omission of the elastic properties can often give misleading or false predictions. The addition of the elastic properties of lithosphere material in the form of a visco-elastic rheology results is a fundamentally different lithosphere response. This difference can be illustrated by examining the application of horizontal tectonic force to a section of lithosphere incorporating the brittle-visco-elastic response of each infinitesimal lithosphere layer with temperature and stress dependent viscous rheology. The transient response of a visco-elastic lithosphere to a constant applied tectonic force and the resulting distribution of stress with depth are substantially different from that predicted by a viscous lithosphere model, with the same lithosphere composition and temperature structure, subjected to a constant lateral strain rate. For visco-elastic lithosphere subject to an applied horizontal tectonic force, viscous creep in the lower crust and mantle leads to stress decay in these regions and to stress amplification in the upper lithosphere through stress redistribution. Cooling of lithosphere with a visco-elastic rheology results in thermal stresses which, as a consequence of stress dissipation by creep and brittle failure, results in a complex and sometimes counter-intuitive distribution of stress with depth. This can be most clearly illustrated for the cooling of oceanic lithosphere, however similar or more complex behaviour can be expected to occur for continental lithosphere

  16. South China Sea crustal thickness and lithosphere thinning from satellite gravity inversion incorporating a lithospheric thermal gravity anomaly correction

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Gozzard, Simon; Alvey, Andy

    2016-04-01

    The distribution of ocean crust and lithosphere within the South China Sea (SCS) are controversial. Sea-floor spreading re-orientation and ridge jumps during the Oligocene-Miocene formation of the South China Sea led to the present complex distribution of oceanic crust, thinned continental crust, micro-continents and volcanic ridges. We determine Moho depth, crustal thickness and continental lithosphere thinning (1- 1/beta) for the South China Sea using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir, 2008). The gravity inversion method provides a prediction of ocean-continent transition structure and continent-ocean boundary location which is independent of ocean isochron information. A correction is required for the lithosphere thermal gravity anomaly in order to determine Moho depth accurately from gravity inversion; the elevated lithosphere geotherm of the young oceanic and rifted continental margin lithosphere of the South China Sea produces a large lithosphere thermal gravity anomaly which in places exceeds -150 mGal. The gravity anomaly inversion is carried out in the 3D spectral domain (using Parker 1972) to determine 3D Moho geometry and invokes Smith's uniqueness theorem. The gravity anomaly contribution from sediments assumes a compaction controlled sediment density increase with depth. The gravity inversion includes a parameterization of the decompression melting model of White & McKenzie (1999) to predict volcanic addition generated during continental breakup lithosphere thinning and seafloor spreading. Public domain free air gravity anomaly, bathymetry and sediment thickness data are used in this gravity inversion. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we improve the determination of pre-breakup rifted margin conjugacy, rift orientation and sea-floor spreading trajectory. SCS conjugate margins

  17. HuBLE-UK: the Hudson Bay Lithospheric Experiment: Insights into the Formation of the Canadian Shield From Broadband Seismology

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Thompson, D. A.; Kendall, J.-M.; Helffrich, G.; Wookey, J.; Snyder, D.; Eaton, D.; Darbyshire, F.

    2012-04-01

    The Canadian Shield is one of the largest exposures of Precambrian rocks on Earth. It is a mosaic of several Archean terranes that were brought together during a series of Paleoproterozoic orogens culminating in the so-called Trans-Hudson orogen, which is thought to have been similar to the Himalayan orogen in scale and nature. The tectonic evolution and lithospheric subdivisions of this region are poorly understood, but new seismic networks in northern Hudson Bay provide fresh opportunity to place constraints on the Preachbrian processes that formed and shaped it. Using a combination of seismic tomography, anisotropy and receiver function analysis we show that the lithosphere of the northern Hudson Bay region retains a strong signature of Archean-Paleoproterozoic tectonics. We map the boundary between the upper (Churchill) and lower (Superior) plates that collided ca. 1.8 Ga and identify backazimuth dependent shear-wave splitting parameters (phi, dt) on Baffin Island that indicate complex anisotropy (e.g., dipping fabric) beneath the region. Our results support the view that significant lithospheric deformation occurred during the Paleoproterozoic and that modern-day plate tectonic processes were thus in operation by at least ca. 1.8 Ga.

  18. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary

    PubMed Central

    Grayver, Alexander V.; Schnepf, Neesha R.; Kuvshinov, Alexey V.; Sabaka, Terence J.; Manoj, Chandrasekharan; Olsen, Nils

    2016-01-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere. PMID:27704045

  19. Thermoremanence acquisition and demagnetization for titanomagnetite under lithospheric pressures

    NASA Astrophysics Data System (ADS)

    Launay, Nicolas; Rochette, Pierre; Quesnel, Yoann; Demory, François; Bezaeva, Natalia S.; Lattard, Dominique

    2017-05-01

    The geological sources of large-scale lithospheric magnetic field anomalies are poorly constrained. Understanding the magnetic behavior of rocks and minerals under the pressures and temperatures encountered at large crustal depths is particularly important in that task. The impact of lithospheric pressure is not well known and most of the time neglected in numerical models of the geological sources of magnetic anomalies. We present thermal remanent magnetization (TRM) acquisition and stepwise thermal demagnetization on synthetic titanomagnetite dispersed powder, within an amagnetic cell under hydrostatic pressure up to 1 GPa. TRM is measured after thermal cycling within a cryogenic magnetometer. Pressure-dependent increase in the Curie temperature (initially in the 50-70°C range) is observed, mostly between 0.3 and 0.6 GPa, on the order of 20 K/GPa. TRM intensity also increases with pressure up to 200% at 675 MPa, although the pressure variation with temperature inside the cell complicates the interpretation.

  20. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    USGS Publications Warehouse

    Denlinger, R.P.; Savage, W.Z.

    1989-01-01

    Instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y. when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way. -from Authors

  1. Physico-chemical constraints on cratonic lithosphere discontinuities

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Rondenay, Stéphane; Huismans, Ritske

    2014-05-01

    The origins of the mid-lithospheric discontinuity (MLD) and lithosphere-asthenosphere boundary (LAB) have received much attention over the recent years. Peculiarities of cratonic lithosphere construction - compositional and rheological stratification due to thickening in collisional settings or by plume subcretion, multiple metasomatic overprints due to longevity - offer a variety of possibilities for the generation of discontinuities. Interconnected small degrees of conductive partial melt (carbonate-rich melts, such as carbonatites and kimberlites, or highly alkaline melts) at the cratonic LAB, which produce seismic discontinuities, may be generated in the presence of volatiles. These depress the peridotite solidus sufficiently to intersect the mantle adiabat at depths near the cratonic LAB at ~160-220 km, i.e. above the depth of metal saturation where carbonatite becomes unstable. The absence of agreement between the different seismic and magnetotelluric estimates for the depth of the LAB beneath Kaapvaal may be due to impingement of a plume, leading to a pervasively, but heterogeneously metasomatised ('asthenospherised') hot and deep root. Such a root and hot sublithosphere may yield conflicting seismic-thermal-geochemical depths for the LAB. The question arises whether the chemical boundary layer should be defined as above or below the asthenospherised part of the SCLM, which has preserved isotopic, compositional (non-primitive olivine forsterite content) and physical evidence (e.g. from teleseismic tomography and receiver functions) for a cratonic heritage and which therefore is still distinguishable from the asthenospheric mantle. If cratonic lithosphere overlies anomalously hot mantle for extended periods of time, the LAB may be significantly thinned, aided by penetration of relatively high-degree Fe-rich partial melts, as has occurred beneath the Tanzanian craton. Xenoliths from the deep Slave craton show little evidence for 'asthenospherisation'. Its root

  2. Thick plate flexure. [for lithospheric models of Mars and earth

    NASA Technical Reports Server (NTRS)

    Comer, R. P.

    1983-01-01

    Analytical expressions are derived for the displacements and stresses due to loading of a floating, uniform, elastic plate of arbitrary thickness by a plane or axisymmetric harmonic load. The solution is exact except for assumptions of small strains and linear boundary conditions, and gravitation within the plate is neglected. For typical earth parameters its predictions are comparable to those of the usual thin plate theory frequently assumed in studies of lithospheric flexure, gravity and regional isostasy. Even for a very thick lithosphere, which may exist in some regions of Mars, the thin plate theory is a better approximation to the thick plate solution than the elastic half-space limit, except for short-wavelength loads.

  3. The elastic thickness of the lithosphere in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Calmant, Stephane

    1987-09-01

    The effective elastic thickness T(e) of the oceanic lithosphere along the Hawaiian-Emperor, the Marquesas, the Pitcairn-Mururoa-Gloucester (PMG) chains, the Tuamotu archipelago, and the Samoa islands was determined by computing the deflection of a continuous elastic plate under the load of volcanoes and was constrained by the geoid heights over the oceans provided by Seasat. The prediction by Watts (1978) according to which the value of the T(e) should increase with the square root of crustal age of the lithosphere at the time of volcano emplacement was not confirmed; while the T(e) estimate of the Hawaiian-Emperor chain and an isolated estimate in the Samoan group agree with the empirical trend found by Watts, the Marquesas and the PMG chains, as well as the previously analyzed Cook-Austral and Society chains, present anomalously low values which increase only slightly with age.

  4. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary.

    PubMed

    Schmerr, Nicholas

    2012-03-23

    The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.

  5. Tidal tectonics and lateral variations of lithospheric thickness

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2012-09-01

    Most icy satellites of the outer planets show prominent tectonic features on a global scale which can be due to periodic tides, polar wander, despinning, contraction (or expansion), orbital recession and convection [1]. Among these causes, periodic tides stand out because they can explain recent tectonic activity on Europa [2] and Enceladus [3, 4] whereas other mechanisms (apart from convection) most likely occurred in the far past. Periodic tides include diurnal tides associated with an eccentric orbit (obliquity tides are usually negligible) and nonsynchronous rotation. Until now, tidal stresses have been computed under the assumption of spherical symmetry [5]. However the thickness of the lithosphere (or ice crust) is affected (1) by solar insolation, making it thinner at the equator, and (2) by internal heating, making it thinner for example at the south pole of Enceladus (where active plumes have been detected by the probe Cassini). I compute here tidal stresses assuming that the lithospheric thickness varies with latitude.

  6. Satellite tidal magnetic signals constrain oceanic lithosphere-asthenosphere boundary.

    PubMed

    Grayver, Alexander V; Schnepf, Neesha R; Kuvshinov, Alexey V; Sabaka, Terence J; Manoj, Chandrasekharan; Olsen, Nils

    2016-09-01

    The tidal flow of electrically conductive oceans through the geomagnetic field results in the generation of secondary magnetic signals, which provide information on the subsurface structure. Data from the new generation of satellites were shown to contain magnetic signals due to tidal flow; however, there are no reports that these signals have been used to infer subsurface structure. We use satellite-detected tidal magnetic fields to image the global electrical structure of the oceanic lithosphere and upper mantle down to a depth of about 250 km. The model derived from more than 12 years of satellite data reveals a ≈72-km-thick upper resistive layer followed by a sharp increase in electrical conductivity likely associated with the lithosphere-asthenosphere boundary, which separates colder rigid oceanic plates from the ductile and hotter asthenosphere.

  7. On geoid heights and flexure of the lithosphere at seamounts

    NASA Astrophysics Data System (ADS)

    Watts, A. B.; Ribe, N. M.

    1984-12-01

    The sea surface height has now been mapped to an accuracy of better than ±1 m by using radar altimeters on board orbiting satellites. The major influence on the mean sea surface height is the marine geoid which is an equipotential surface. We have carried out preliminary studies of how oceanic volcanoes, which rise above the ocean floor as isolated seamounts and oceanic islands or linear ridges, contribute to the marine geoid. Simple one- and two-dimensional models have been constructed in which it is assumed that the oceanic lithosphere responds to volcanic loads as a thin elastic plate overlying a weak fluid substratum. Previous studies based on gravity and bathymetry data and uplift/subsidence patterns show that the effective flexural rigidity of oceanic lithosphere and the equivalent elastic thickness Te increase with the age of the lithosphere at the time of loading. The models predict that isolated seamounts emplaced on relatively young lithosphere on or near a mid-ocean ridge crest will be associated with relatively low amplitude geoid anomalies (about 0.4-0.5 m/km of height), while seamounts formed on relatively old lithosphere, on ridge flanks, will be associated with much higher amplitude anomalies (1.4-1.5 m/km). Studies of the Seasat altimetric geoid prepared by NASA's Jet Propulsion Laboratory support these model predictions; geoid amplitudes are relatively low over the Mid-Pacific Mountains and Line Islands, which formed on or near a mid-ocean ridge crest, and relatively high over the Magellan Seamounts and Wake Guyots, which formed off ridge. Direct modeling of the altimetric geoid over these features is complicated, however, by the wide spacing of the satellite tracks (which can exceed 100 km) and poor bathymetric control beneath individual satellite tracks. In regions where multibeam bathymetric surveys are available, models can be constructed that fit the altimetric geoid to better than ±1 m. Studies of geoid anomalies over the Emperor seamount

  8. Structure of the deep oceanic lithosphere in the Northwestern Pacific ocean basin derived from active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S.

    2015-12-01

    Many seismological studies have detected the sharp seismic discontinuities in the upper mantle, some of which are interpreted the lithosphere-asthenosphere boundary (LAB). However there are few data at the old Pacific plate, in particular at ocean basin, which is critical information for understanding nature of the oceanic LAB. In 2014 we conducted an active-source refraction/reflection survey along a 1130-km-long line in southeast of the Shatsky Rise. Five ocean bottom seismometers (OBSs) were deployed and recovered by R/V Kairei of JAMSTEC. We used an airgun array with a total volume of 7,800 cubic inches with firing at intervals of 200 m. Multi-channel seismic reflection (MCS) data were also collected with a 444-channel, 6,000-m-long streamer cable. In OBS records the apparent velocity of the refraction waves from the uppermost mantle was high (< 8.6 km/sec), and considered to be caused by preferred orientation of olivine (e.g., Kodaira et al., 2014). Another remarkable feature is wide-angle reflection waves from the deep lithosphere at large (150-500 km) offsets. We applied the traveltime mapping method (Fujie et al., 2006), forward analysis (Zelt and Smith, 1992) and the amplitude modeling (Larsen and Grieger, 1998) to the OBS data. The results show that deep mantle reflectors exist at the depths from 35 to 60 km, and one possible explanation is that these reflectors correspond to patched low velocity zones around the base of the lithosphere. On MCS sections the clear and sharp Moho was imaged only at the southwestern end of the profile, but Moho was ambiguous or even not imaged in the most part of the profile. Since our seismic line covers the oceanic lithosphere with different ages that correspond to different stages of the Shatsky activity, the Moho appearance may reflect the variation of the Shatsky activity.

  9. Lithospheric Structure Across the Cordillera-Craton Transition in NW Canada from Surface Waves Traversing the CANOE Array

    NASA Astrophysics Data System (ADS)

    Gaherty, J.; Chen, P.; Zhao, L.; Bostock, M.; Garnero, E.; Revenaugh, J.

    2006-12-01

    The Canadian Northwest Experiment (CANOE) is a nearly sixty-station broadband PASSCAL array extending from the Slave Craton in the Canadian NWT, across the Canadian Rockies in northern British Columbia and Yukon and south to Edmonton, Alberta. The array crosses a series of compressive orogens that span 4 Ga of geologic time and are undisrupted by later periods of extension or extensive volcanism, and thus provide an ideal platform for studying the growth of continental cratons through accretion. There are two competing hypothesis for the nature of the cordillera-craton transition in this region: (1) Terranes accreted in the cordillera during the Mesozoic are lithospheric-scale features. This suggests substantial growth of the North American continent since the Proterozoic, and a craton boundary near the deformation front. (2) Terranes are thin-skin thrust features overlying Proterozoic North American lithosphere. This suggests little continental growth since the Proterozoic, and a craton boundary near the Pacific coast. Surface waves traversing the CANOE array provide an excellent data set to evaluate these hypotheses. A cross-correlation procedure is used to measure the frequency-dependent travel times and amplitudes of Love and Rayleigh waveforms traversing the array. The data are derived from recordings of regional and teleseismic earthquakes recorded between June 2004 and Sept 2005. Using accurate three-dimensional sensitivity kernels for both amplitude and phase, these data are inverted for 3D tomographic images of anisotropic shear- velocities in the crust and upper-mantle across the transition from craton to cordillera. Preliminary results suggest a sharp lateral gradient in both shear velocity and shear anisotropy in the lithospheric mantle that is located very close to the current deformation front, consistent with hypothesis (1). The surface-wave observations will be integrated with receiver function and shear-wave splitting data, providing a

  10. Lithospheric Structure Across the Cordillera-Craton Transition in NW Canada from Surface Waves Traversing the CANOE Array

    NASA Astrophysics Data System (ADS)

    Gaherty, J. B.; Chen, P.; Zhao, L.; Bostock, M.; Revenaugh, J.; Garnero, E.

    2007-12-01

    The Canadian Northwest Experiment (CANOE) is a nearly sixty-station broadband PASSCAL array extending from the Slave Craton in the Canadian NWT, across the Canadian Rockies in northern British Columbia and Yukon and south to Edmonton, Alberta. The array crosses a series of compressive orogens that span 4 Ga of geologic time and are undisrupted by later periods of extension or extensive volcanism, and thus provide an ideal platform for studying the growth of continental cratons through accretion. There are two competing hypothesis for the nature of the cordillera-craton transition in this region: (1) Terranes accreted in the cordillera during the Mesozoic are lithospheric-scale features. This suggests substantial growth of the North American continent since the Proterozoic, and a craton boundary near the deformation front. (2) Terranes are thin-skin thrust features overlying Proterozoic North American lithosphere. This suggests little continental growth since the Proterozoic, and a craton boundary near the Pacific coast. Surface waves traversing the CANOE array provide an excellent data set to evaluate these hypotheses. We have developed and applied a new multi-station cross-correlation procedure to precisely measure the frequency-dependent travel times and amplitudes of Love and Rayleigh waveforms traversing the array. The data are derived from recordings of regional and teleseismic earthquakes recorded between June 2004 and Sept 2005. Using accurate three-dimensional sensitivity kernels for both amplitude and phase, these data are inverted for 3D tomographic images of anisotropic shear- velocities in the crust and upper- mantle across the transition from craton to cordillera. Preliminary results suggest a sharp lateral gradient in both shear velocity and shear anisotropy in the lithospheric mantle that is located very close to the current deformation front, consistent with hypothesis (1). The surface-wave observations will be integrated with receiver function

  11. The compositional and thermal structure of the lithosphere from thermodynamically-constrained multi-observable probabilistic inversion

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Jones, A. G.; Griffin, W. L.; Connolly, J. A. D.; O'Reilly, S. Y.; Lebedev, S.

    2012-04-01

    Our capacity to image and characterize the thermal and compositional structure of the lithospheric and sublithospheric upper mantle is a fundamental prerequisite for understanding the formation and evolution of the lithosphere, the interaction between the crust-mantle and lithosphere-asthenosphere systems, and the nature of the lithosphere-asthenosphere boundary (LAB). In this context, the conversion of geophysical observables (e.g. travel-time data, gravity anomalies, etc) into robust estimates of the true physical and chemical state of the Earth's interior plays a major role. Unfortunately, available methods/software used to make such conversions are not well suited to deal with one or more of the following problems: 1) Strong non-linearity of the system. Traditional linearized inversions do not generally provide reliable estimates. 2) The temperature effect on geophysical observables is much greater than the compositional effect, therefore the latter is much harder to isolate. 3) Non-uniqueness of the compositional field. Different compositions can fit equally well seismic and potential field observations. 4) Strong correlations between physical parameters and geophysical observables complicate the inversion procedure and their effects are poorly understood. 5) Trade-off between temperature and composition in wave speeds. In this contribution we present a new full-3D multi-observable inversion method particularly designed to circumvent these problems. Some other key aspects of the method are: a) it combines multiple datasets (ambient noise tomography, receiver function analysis, body-wave tomography, magnetotelluric, geothermal, petrological, and gravity) in a single thermodynamic-geophysical framework, b) a general probabilistic (Bayesian) formulation is used to appraise the data, c) neither initial models nor well-defined a priori information is required, and d) it provides realistic uncertainty estimates. Both synthetic models and preliminary results for real

  12. The base of the seismogenic zone in the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Greg, H.; Behn, M.; McGuire, J.

    2008-12-01

    Geophysical observations indicate that seismicity in the oceanic lithosphere is generally limited to depths above the 600°C isotherm. This relationship is in good agreement with extrapolation of experimental data on the frictional behavior of olivine (Boettcher et al., 2007). Under laboratory conditions, a transition from unstable to stable frictional sliding is observed at a temperature of approximately 1000°C. By accounting for the rate-dependence of crystal plasticity at asperities, the same transition is predicted to occur at a temperature of approximately 600°C in the Earth. While this agreement is encouraging, several issues remain poorly constrained - resolution of which may provide important insights into understanding the dynamics of earthquakes in general. A unique aspect of many oceanic earthquakes is that they likely occur in what was previously undamaged rock. Owing to upwelling and corner flow, the mantle rocks cool below the 600°C isotherm prior to any brittle deformation. Thus, rocks in the source regions for these earthquakes are likely intact at relatively high pressure with no pore fluids present. In other words, almost all the mechanisms hypothesized to produce weakening along faults in continental settings are unlikely to be active prior to an earthquake in the oceanic lithosphere. These rocks could thus be capable of supporting shear stresses in the range of 500 MPa at depths of 20 to 30 km. We will review these rheological constraints, discuss the evidence (or lack thereof) for high stresses based on earthquake seismology, and investigate alternate mechanisms that could be responsible for weakening the oceanic lithosphere - such as penetration of fluid from the surface to the greatest depths of lithospheric seismicity.

  13. Variations in effective elastic thickness of the North American lithosphere

    NASA Technical Reports Server (NTRS)

    Bechtel, Timothy D.; Forsyth, Donald W.; Sharpton, Virgil L.; Grieve, Richard A. F.

    1990-01-01

    A technique for estimating flexural rigidity that is not limited to sedimentary basins is used here to map variations in the effective elastic thickness of the North American lithosphere. The effective elastic thickness ranges from a minimum of about 4 km in the Basin and Range Province to more than 100 km in the Precambrian core of the continent. This finding supports the idea that flexural rigidity has increased with time since the last thermal event.

  14. Observations of flexure and the rheology of the oceanic lithosphere

    SciTech Connect

    Bodine, J.H.; Steckler, M.S.; Bodine, J.H.; Watts, A.B.

    1981-05-10

    Observations of flexure indicate that the effective flexural rigidity of oceanic lithosphere is a function of the age of the lithosphere at the time of loading, and hence temperature. We have used a yield stress envelope model constrained by data from experimental rock mechanics to determine how the flexure parameters and rheologic properties of oceanic lithosphere are related. The results of our model for seamounts and oceanic island loads in the interior of plates suggest that following loading, rapid stress relaxation occurs as the plate 'thins' from its short-term to its long-term (>10/sup 6/ years) mechanical thickness. The mechanical thickness, which determines the effective flexural rigidity of the plate, is strongly dependent on temperature and weakly dependent on load size and duration (>1-10 m.y.). The results of our model for convergent plate boundaries suggest that changes in the shape of the Outer Rise along an individual trench system may be due to variations in the horizontal load acting across the boundary (<1 kbar). The model predicts a narrow zone of high strain accumulation seaward of a trench which is in agreement with variations in crustal velocities and seismicity patterns observed along some trench systems.

  15. Volcanism and Volatile Recycling on Venus from Lithospheric Delamination

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, L. T.; Hess, P. C.; Smrekar, S. E.; Parmentier, E. M.

    2005-01-01

    Venus has an unmoving lithosphere, a young surface indicative of volcanic resurfacing, and a wide variety of volcanic and tectonic features. The planet s ubiquitous magmatic features include 100,000 small shield volcanoes as well as the descriptively named pancakes, ticks, and arachnoids [1]. Coronae, volcanic and tectonic features up to 2,600 km in diameter, have been attributed to lithospheric interactions with upwelling plumes [e.g., 2], but more recently to delamination of the lower lithosphere with [3] or without [4] a central upwelling. Lavas issuing from different volcanic features appear to have a range of compositions, as evidenced by their apparent viscosities and by data from Soviet landers. Steep-sided or "pancake" domes [e.g., 5] appear to consist of more viscous magma [6], perhaps silicic compositions created by remelting basaltic crust [7]. These steep-sided domes are associated with coronae and with shield volcanoes effusing basaltic magmas [7,8] with apparently low viscosities (low enough to allow fluid flow for hundreds of km, creating channels reminiscent of water rivers on Earth). Pancake domes, in contrast, can be up to 3 km in height and have volumes from 30 to approx.3,000 km3 [calculated from data in 8], and hundreds dot the planet [6-8].

  16. Dynamic topography and lithospheric stresses since 400Ma

    NASA Astrophysics Data System (ADS)

    Greff-Lefftz, M.; Besse, J., Sr.; Robert, B.

    2016-12-01

    We present a model of dynamic topography and lithospheric stresses in a reference frame linked to the fixed Africa since 400 Ma. We start with a simple geodynamical model in which we combine contributions due to subducted lithosphere and to long wavelength upwellings during the last 400 million years. Once built this model of temporal variation of the large-scale mantle heterogeneities, we calculate the associated surface topography and lithospheric stresses and compare them with geological observations. We discuss the temporal evolution of the topographic spectrum and the permanent extensional regime over Africa. Indeed, the Peri-Pacific girdle of subduction creates a large-wavelength positive topography at the center of the ring, that is to say over Africa. The superimposition of this extension with the one induced by the dome at the bottom of the mantle leads to a permanent extensional regime over Africa which creates faults with azimuth directions depending on the direction of the most active part of the ring of subductions. We obtain fractures with an NW-SE azimuth during the period 275-165 Ma, and with an E-W direction, between 155-95 Ma. Finally, during the Mesozoic and the Cenozoic, we correlate the permanent extensional regime over Africa with the observed direction of the rifts.

  17. A Top to Bottom Lithospheric Study of Africa and Arabia

    SciTech Connect

    Pasyanos, M

    2006-10-31

    We study the lithospheric structure of Africa, Arabia and adjacent oceanic regions with fundamental-mode surface waves over a wide period range. Including short period group velocities allows us to examine shallower features than previous studies of the whole continent. In the process, we have developed a crustal thickness map of Africa. Main features include crustal thickness increases under the West African, Congo, and Kalahari cratons. We find crustal thinning under Mesozoic and Cenozoic rifts, including the Benue Trough, Red Sea, and East, Central, and West African rift systems. Crustal shear wave velocities are generally faster in oceanic regions and cratons, and slower in more recent crust and in active and formerly active orogenic regions. Deeper structure, related to the thickness of cratons and modern rifting, is generally consistent with previous work. Under cratons we find thick lithosphere and fast upper mantle velocities, while under rifts we find thinned lithosphere and slower upper mantle velocities. There are no consistent effects in areas classified as hotspots, indicating that there seem to be numerous origins for these features. Finally, it appears that the African Superswell has had a significantly different impact in the north and the south, indicating specifics of the feature (temperature, time of influence, etc.) to be dissimilar between the two regions. Factoring in other information, it is likely that the southern portion has been active in the past, but that shallow activity is currently limited to the northern portion of the superswell.

  18. Impact of different weakening parameterizations on crust and lithosphere deformation

    NASA Astrophysics Data System (ADS)

    Thielmann, Marcel

    2017-04-01

    Rocks typically exhibit a decrease in strength with ongoing deformation. This decrease in strength is often related to processes that occur on the grain scale, such as grain size reduction, fluid percolation, interconnection of weak phases etc. Other processes that affect deformation on a larger scale include e.g. shear heating and the formation of oriented fault arrays. In numerical geodynamical models, the weakening behavior is usually accounted for by introducing a simple strain weakening parameterization. However, those parameterizations are mostly ad hoc and do not consider the underlying physical mechanisms that control the amount and transient behavior of the weakening process. Here, I study the impact of different strain weakening parameterizations on crustal and lithosphere deformation using two dimensional finite element models. Through a parametric study, I show the effect of different parameters that enter the weakening parameterization. As expected, the stress field of the lithosphere and its transient evolution during extension/compression is strongly affected by the shape of the strain weakening parameterization. Additionally, many physical processes resulting in weakening do in fact no depend on the amount of strain a rock has experienced, but rather on the deformational work that has been used to deform the rock. Treating weakening as a work-dependent property also facilitates conservation of energy. For this reason, I also investigate the effect of employing work-weakening parameterizations in numerical models of lithosphere deformation and highlight differences to conventional strain weakening formulations.

  19. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  20. Improved determination of vector lithospheric magnetic anomalies from MAGSAT data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1993-01-01

    Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).

  1. The State of Lithospheric Stress in Greater Thailand

    NASA Astrophysics Data System (ADS)

    Meyers, B.; Furlong, K. P.; Pananont, P.; Pornsopin, P.

    2013-12-01

    Thailand and its surrounding regions occupy an important, but often overlooked, location in terms of plate tectonics and lithospheric deformation. The lateral extrusion of Tibet southeastward and eastward along deep strike slip faults to the north and the Sumatra-Andaman subduction zone to the south and west bound the region of greater Thailand. While it is adjacent to some of the most seismically active plate boundaries and intra-plate regions on Earth, this region has experienced only a low level of background seismicity. Thus, the long-term seismic potential of greater Thailand remains highly uncertain. Although historic seismicity is one indicator for future seismicity it is not the only tool we have for determining seismic hazard; we can assess the state of lithospheric stress. The stress conditions in this apparent aseismic region will be controlled by the forces acting on it boundaries. We can analyze those conditions through a study of fault structure, earthquake activity, and kinematics in the boundary area. Using Global Seismic Network (GSN) data augmented with Thai seismic network data to constrain the kinematics, and numerical finite element modeling of crustal and lithospheric deformation of the region, we are able to determine to overall stress conditions. This stress model can be compared to the known fault states in Thailand to assess the potential for earthquake activity.

  2. A global coupled model of the lithosphere and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.

    2004-12-01

    Understanding the dynamics of global lithospheric motion is one of the most important problems in geodynamics today. Mantle convection is commonly accepted as the driving force for plate motion but, while the kinematics of plate movement is well known from space geodetic and paleomagnetic observations, we lack a rigorous description of the coupled mantle convection-plate motion system. Here we present first results from a coupled mantle convection-global lithosphere motion model following a similar effort by Lithgow-Bertelloni and Guynn. Our plate motion code is SHELLS, a thinsheet FEM code developed by Bird which computes global plate motion and explicitly accounts for faults. The global mantle convection code is TERRA, a high-resolution 3-D FEM code developed and parallelized by Bunge and Baumgardner. We perform simple modeling experiments in which the shear tractions applied to the bottom of the lithosphere arise directly from the mantle circulation model. Our mantle circulation model includes a history of subduction and accounts, among others, for variations in mantle viscosity and strong bottom heating from the core. We find that our results are sensitive to the amount of core heating, an inference that has received renewed attention lately, and that models with stronger core heating overall are in better agreement with observations of intraplate stresses derived from the World Stress Map.

  3. Local recovery of lithospheric stress tensor from GOCE gravitational tensor

    NASA Astrophysics Data System (ADS)

    Eshagh, Mehdi

    2017-01-01

    SUMMARYThe sub-<span class="hlt">lithospheric</span> stress due to mantle convection can be computed from gravity data and propagated through the <span class="hlt">lithosphere</span> by solving the boundary-value problem of elasticity for the Earth's <span class="hlt">lithosphere</span>. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics or Legendre polynomials is involved in the expressions. Here, new relations between the spherical harmonic coefficients of the stress and gravitational tensor elements are presented. Thereafter integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer (GOCE) mission, in November 2009, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/123343','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/123343"><span>Geoid data and thermal structure of the oceanic <span class="hlt">lithosphere</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Richardson, W.P.; Stein, S.; Stein, C.A.</p> <p>1995-07-15</p> <p>A long-standing question is whether old oceanic <span class="hlt">lithosphere</span> continues cooling as the boundary layer of a halfspace or approaches thermal equilibrium as modeled by a finite thickness plate. Although the latter is the most direct inference from seafloor depths and heat flow, other explanations have been proposed. We investigate this issue using published results for the derivative of the oceanic geoid with age estimated from geoid offsets across fracture zones. Such data have not been used extensively in analyses of the thermal evolution of the <span class="hlt">lithosphere</span>, primarily because they are inconsistent with two commonly used thermal models; a halfspace or a 125-km-thick plate. Recent studies, however, find that depth and heat flow data are better fit by a thinner (95 km) plate model. We thus compile published geoid slope results, and find that these data, though scattered, can discriminate between the models. Geoid slope changes with age, rather than being constant as predicted for a cooling halfspace. This variation is greater than predicted for a thick plate and is better fit by a thin plate. Geoid data should thus be useful for improving thermal models of the <span class="hlt">lithosphere</span>. 30 refs., 4 figs., 1 tab.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7669C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7669C"><span><span class="hlt">Lithospheric</span> structure and kinematic decoupling across the Pollino range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chiarabba, Claudio; Piana Agostinetti, Nicola; Bianchi Bianchi, Irene</p> <p>2017-04-01</p> <p>The Pollino area in southern Italy is the hinge between the Apennines and the Calabrian arc. The area lacks of significant large earthquakes in historic times and is thought to be a persistent seismic gap. Recently, seismic swarms occurred within the gap area, creating concerns for incoming large earthquakes. In this study, we investigate the <span class="hlt">lithosphere</span> structure across the Pollino range by merging a huge set of broadband data recorded at permanent and temporary stations. We compute angular harmonics of the P-wave receiver function (RF) data-set along profiles normal to the boundary between the Southern Apennines and the Calabrian arc and perpendicular to the Ionian subduction. The k=0 harmonics, i.e. the isotropic components, of the RF are migrated at 40 km depth, by using the CCP approach. Migrated RF profiles show a sub-vertical <span class="hlt">lithospheric</span> discontinuity across the range, defined by an abrupt change in Moho depth and mantle fabrics. The earthquake swarm activity occurs south of the <span class="hlt">lithospheric</span>-scale discontinuity that likely decouples the delamination-related extension of the Apennines from the extensional collapse of the Calabrian fore-arc. This large-scale discontinuity implies the segmentation of the normal fault system across the range, limiting the lateral extent of faults.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Litho.189...28J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Litho.189...28J"><span>The <span class="hlt">lithosphere</span>-asthenosphere system beneath Ireland from integrated geophysical-petrological modeling - I: Observations, 1D and 2D hypothesis testing and modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, Alan G.; Afonso, Juan Carlos; Fullea, Javier; Salajegheh, Farshad</p> <p>2014-02-01</p> <p>Modeling the continental <span class="hlt">lithosphere</span>'s physical properties, especially its depth extent, must be done within a self-consistent petrological-geophysical framework; modeling using only one or two data types may easily lead to inconsistencies and erroneous interpretations. Using the LitMod approach for hypothesis testing and first-order modeling, we show how assumptions made about crustal information and the probable compositions of the <span class="hlt">lithospheric</span> and sub-<span class="hlt">lithospheric</span> mantle affect particular observables, particularly especially surface topographic elevation. The critical crustal parameter is density, leading to ca. 600 m error in topography for 50 kg m- 3 imprecision. The next key parameter is crustal thickness, and uncertainties in its definition lead to around ca. 4 km uncertainty in LAB for every 1 km of variation in Moho depth. Possible errors in the other assumed crustal parameters introduce a few kilometers of uncertainty in the depth to the LAB. We use Ireland as a <span class="hlt">natural</span> laboratory to demonstrate the approach. From first-order arguments and given reasonable assumptions, a topographic elevation in the range of 50-100 m, which is the average across Ireland, requires that the <span class="hlt">lithosphere</span>-asthenosphere boundary (LAB) beneath most of Ireland must lie in the range 90-115 km. A somewhat shallower (to 85 km) LAB is permitted, but the crust must be thinned (< 29 km) to compensate. The observations, especially topography, are inconsistent with suggestions, based on interpretation of S-to-P receiver functions, that the LAB thins from 85 km in southern Ireland to 55 km in central northern Ireland over a distance of < 150 km. Such a thin <span class="hlt">lithosphere</span> would result in over 1000 m of uplift, and such rapid thinning by 30 km over less than 150 km would yield significant north-south variations in topographic elevation, Bouguer anomaly, and geoid height, none of which are observed. Even juxtaposing the most extreme probable depleted composition for the <span class="hlt">lithospheric</span> mantle</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....10849W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....10849W"><span><span class="hlt">Lithospheric</span> structure and geodynamic evolution of the northern Molucca Sea area constrained by 3-D gravity field inversion of a combined sea-surface and satellite gravity dataset</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Widiwijayanti, C.; Tiberi, C.; Diament, M.; Deplus, C.; Mikhailov, V.; Louat, R.; Tikhotsky, S.; Gvishiani, A.</p> <p>2003-04-01</p> <p>The Molucca Sea extending from northeastern Indonesia to southern Philippines islands, is a zone of oceanic basin closure between two opposite-facing subduction zones. This convergence results in the collision of two subduction zones, which style evolves from the southern to the northern parts of the Molucca Sea. In order to provide new insights into the present-day <span class="hlt">lithospheric</span> structures in the Molucca Sea area, we inverted satellite and sea-surface gravity data into an iterative scheme including a priori seismological data. The seismological data were collected from two networks of Ocean Bottom Seismometer (OBS). These data allowed us to locate local seismic events and to build 3D tomographic images. We relate these results to the different stages of collision. The gravity data consists of combined sea-surface and satellite derived gravity. We used Kolmogorov-Wiener optimal (mean-square) filter to extract the gravity signal associated with <span class="hlt">lithospheric</span> structures, then analyzed it to determine main regional features of <span class="hlt">lithospheric</span> structure. For this purpose we employed a selection of Euler solutions based on a new clustering technique. To identify the geometry and <span class="hlt">nature</span> of <span class="hlt">lithospheric</span> structures, we also performed a 3-D gravity inversion for the northern Molucca Sea data, introducing our tomographic model as an independent constraint. The combination of both methods permits us to obtain a coherent image of the <span class="hlt">lithospheric</span> structure. The results of this study illustrate the heterogeneity of <span class="hlt">lithospheric</span> units in the northern Molucca Sea, which results from the collision between the Sangihe margin and <span class="hlt">lithospheric</span> fragments from the Phillipine plate such as the Snellius plateau or the Halmahera volcanic arc. Three phenomena can explain the observed <span class="hlt">lithospheric</span> structure: 1) the rupture of the Molucca Sea plate, accompanied by the appearance at the surface of slices of oceanic crust, favoring the development of suture zones as the collision evolves, 2) the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.2727W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.2727W"><span><span class="hlt">Lithospheric</span> Structure of the Northeastern North China Craton Imaged by S Receiver Functions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xingchen; Ding, Zhifeng; Zhu, Lupei</p> <p>2016-08-01</p> <p><span class="hlt">Lithosphere</span> thickness variation is important for understanding the significant tectonic reactivation of the North China Craton (NCC) in the Mesozoic and Cenozoic time. Here, we determined the <span class="hlt">lithospheric</span> structure in the northeastern NCC using S receiver functions from 305 teleseismic events recorded by 223 seismic stations. The Moho and <span class="hlt">lithosphere</span>-asthenosphere boundary (LAB) are imaged clearly beneath the region. The Moho depth decreases from ~45 km beneath the western NCC to ~25 km beneath the eastern NCC. We found that the <span class="hlt">lithospheric</span> thickness varies from 60 to 80 km beneath the Trans-North China Orogen (TNCO) and eastern NCC with no significant change of the LAB depth. The <span class="hlt">lithosphere</span> thickness beneath the northwestern Ordos plateau is 100-130 km. In addition, there is a mid-<span class="hlt">lithosphere</span> discontinuity at a depth of 80 km beneath the plateau that is connected to the base of thinned <span class="hlt">lithosphere</span> in TNCO and eastern NCC. We suggest that the mid-<span class="hlt">lithosphere</span> discontinuity represents a mechanically weak zone in the original cratonic <span class="hlt">lithosphere</span> of the NCC. The material in the lower <span class="hlt">lithosphere</span> of the craton, when warmed and hydrated by water released from the subducting slab of Western Pacific, became weak due to decrease in viscosity and/or partial melting and was subsequently removed through small-scale mantle convections.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710725P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710725P"><span>New insights on <span class="hlt">lithospheric</span> foundering from thermo-mechanically coupled numerical modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pastor-Galán, Daniel; Thieulot, Cedric</p> <p>2015-04-01</p> <p>Earth's <span class="hlt">lithosphere</span> is recycled into the mantle as required by global mass considerations. At least during the latest 1 G.y. the main mechanism of <span class="hlt">lithospheric</span> foundering into the mantle has been subduction. Yet other mechanisms of mantle removal such as Rayleigh-Taylor-type instability or delamination have significant influence at present as revealed by mantle anomalies, and are considered to be likely candidates for the main recycling mechanisms of <span class="hlt">lithospheric</span> during the Archean. Although <span class="hlt">lithospheric</span> mantle removal has been geophysically imaged, e.g. Carpathians, Colorado Plateau, at many other locations geophysical and geological observations also seem to indicate that mantle <span class="hlt">lithosphere</span> is anomalously thin or absent. Potential places where <span class="hlt">lithospheric</span> mantle foundering processes took place are The Urals, the Variscides, underneath the Ibero Armorican Orocline in western Europe, and the Tibetan, Puna and Anatolian Plateaus. <span class="hlt">Lithospheric</span> foundering has been blamed for, among others, cratonization processes, rapid surface uplift, generation of voluminous magmatism, changes in crustal stress from compression to extension and a long etc. However, its triggering mechanisms are not well studied, and a variety of possible explanations have been given for <span class="hlt">lithospheric</span> foundering processes, including convective instability following orogenic thickening or some other perturbation of thermal boundary layers, development of eclogitic roots, erosion of the <span class="hlt">lithosphere</span> by a flat-subducting slab or partial melting of the asthenosphere, and partial intruding pyroxenites into the base of <span class="hlt">lithosphere</span>. To understand the mechanisms, causes and consequences of <span class="hlt">lithospheric</span> foundering, we explored <span class="hlt">lithospheric</span> foundering in an assortment of scenarios using the numerical code, ELEFANT, an user-friendly multipurpose geodynamics code. Preliminary results indicate that changes in geometry, thermal state and composition of the <span class="hlt">lithosphere</span>, associated with mantle flow, can have a first</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMNH41A1594L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMNH41A1594L"><span>Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the <span class="hlt">Lithosphere</span>-Atmosphere-Ionosphere system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, L.; Huang, Q.; Wang, Y.</p> <p>2012-12-01</p> <p>The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the <span class="hlt">lithosphere</span>-atmosphere-ionosphere system, irregular variations in SR parameters can be <span class="hlt">naturally</span> attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the <span class="hlt">lithosphere</span> and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is <span class="hlt">naturally</span> excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the <span class="hlt">lithosphere</span>-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMDI43B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMDI43B..03D"><span><span class="hlt">Lithosphere</span> and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dasgupta, R.</p> <p>2014-12-01</p> <p>The depth of the <span class="hlt">lithosphere</span>-asthenosphere boundary (LAB) and the change in properties across the <span class="hlt">lithosphere</span>, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across <span class="hlt">lithosphere</span> and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the <span class="hlt">lithosphere</span>. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-<span class="hlt">lithospheric</span> discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014safc.book...77K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014safc.book...77K"><span><span class="hlt">Lithosphere</span>-Atmosphere-Ionosphere Coupling System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kachakhidze, Manana; Kachakhidze, Nino; Kaladze, Tamaz</p> <p>2014-06-01</p> <p>Modern ground-based and satellite methods of viewing enables to reveal those multiple anomalous geophysical phenomena which become evident in the period preceding earthquake and are directly connected with the process of its preparation. Lately special attention is attributed to the electromagnetic emissions fixed during large earthquake, and has already been successfully detected in Japan, America and Europe. Unfortunately there is no electromagnetic emissions detection network in Georgia, but the offered work, based on experimental data of foreign researchers and electrodynamics, presents an important theory about the electromagnetic emissions generation fixed in the earthquake preparation period. The extremely interesting methodology of possible prediction of earthquake is created and all anomalous geophysical phenomena are interpreted which take place some months, days or hours before earthquake in the lithosphereatmosphere-ionosphere coupling system. Most interesting is the idea of the authors to consider the electromagnetic radiation as the main earthquake precursor for the purpose of earthquake prediction, because of its informative <span class="hlt">nature</span> and to consider all other anomalous geophysical phenomena which accompany the process of earthquake preparation as earthquake indicators. The offered work is the completely novel approach in earthquake problem searching with the view of earthquake prediction. It can form the base for creation of principally new trend in seismology, to be called conditionally "Earthquake Predictology".</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T43C4733B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T43C4733B"><span>Structure of the <span class="hlt">Lithosphere</span> in Central Europe: Integrated Density Modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bielik, M.; Grinč, M.; Zeyen, H. J.; Plašienka, D.; Pasteka, R.; Krajňák, M.; Bošanský, M.; Mikuška, J.</p> <p>2014-12-01</p> <p>Firstly, we present new results related to the <span class="hlt">lithospheric</span> structure and tectonics of the Central Europe and the Western Carpathians. For geophysical study of the <span class="hlt">lithosphere</span> in Central Europe we calculated four original 2D <span class="hlt">lithosphere</span>-scales transects crossing this area from the West European Platform in the North to the Aegean Sea in the South and from the Adriatic Sea in the West to the East European Platform in the East. Modelling is based on the joint interpretation of gravity, geoid, topography and surface heat flow data with temperature-dependent density. Wherever possible, crustal structure is constrained by seismic data. The thickness of the <span class="hlt">lithosphere</span> decreases from the older and colder platforms to the younger and hotter Pannonian Basin with a maximum thickness under the Eastern and Southern Carpathians. The thickness of the Carpathian arc <span class="hlt">lithosphere</span> varies between 150 km in the North (the Western Carpathians) and about 300 km in the Vrancea zone (the Eastern and Southern Carpathian junction). In the Platform areas it is between 120 and 150 km and in the Pannonian Basin it is about 70 km. The models show that the Moesian Platform is overthrust from the North by the Southern Carpathians and from the South by the Balkanides and characterized by bending of this platform. In all transects, the thickest crust is found underneath the Carpathian Mountains or, as in the case of the Vrancea area, under their immediate foreland. The thickest crust outside the orogens is modelled for the Moesian Platform with Moho depths of up to 45 km. The thinnest crust is located under the Pannonian Basin with about 26-27 km. Secondly, our presentation deals with construction of the stripped gravity map in the Turiec Basin, which represents typical intramontane Neogene depression of the Western Carpathians. Based on this new and original gravity map corrected by regional gravity effect we were able to interpret the geological structure and tectonics of this sedimentary basin</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGP51A1361X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGP51A1361X"><span>The <span class="hlt">Lithospheric</span> Structure of Southeast China, Inferred from Magnetotelluric Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, S.; Unsworth, M. J.; Hu, X.</p> <p>2016-12-01</p> <p>The South China block is a major structural unit in southern China which was assembled in the Neoproterozoic by the collision of the Yangtze craton in the west and the Cathaysia in the east along the Jiangshan-Shaoxing suture. Despite a significant number of studies, a number of questions about the structure and tectonic history of the South China block remain unresolved. These include the location and geometry of the Jiangshan-Shaoxing suture and the geodynamic processes that caused the Mesozoic extension and magmatism. The <span class="hlt">lithospheric</span> structure of South China block is significant to understanding the geological framework of the Eurasian continent. Magnetotellurics (MT) is a useful tool to study the structure of ancient subduction zones, extensional regimes and tectonothermal events. We used broadband MT data to study the resistivity structure of the South China block. This included MT data collected from 2009 to 2010 during the Sinoprobe project and additional MT surveys in 2016. A 2-D inversion was first performed to derive resistivity models along seven profiles. However, these 2-D inversions were unable to fit some of data that exhibited out-of-quadrant phases, which suggested the existence of 3-D resistivity structure or current channeling. Therefore, 3-D resistivity structures were investigated using inversions of the full impedance tensor with the ModEM inversion code. The 3-D model showed a number of major resistivity features: (1) The Jiangshan-Shaoxing suture was imaged as an east dipping conductive zone. (2) High resistivity anomalies were found at the Jiangnan orogen, corresponding to the thickened <span class="hlt">lithosphere</span>. (3) To the east of the Jiangnan orogen, low resistivity zones resolved in the lower crust and upper mantle suggested <span class="hlt">lithospheric</span> thinning beneath the Wuyi-yunkai orogen. This may indicate the Paleozoic Wuyi-yunkai orogen was largely reworked in the Mesozoic extension of the South China block. However, the extension did not lead to a consistent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T52C..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T52C..01R"><span><span class="hlt">Lithospheric</span> Stress and Geodynamics: History, Accomplishments and Challenges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richardson, R. M.</p> <p>2016-12-01</p> <p>The kinematics of plate tectonics was established in the 1960s, and shortly thereafter the Earth's stress field was recognized as an important constraint on the dynamics of plate tectonics. Forty years ago the 1976 Chapman Conference on the Stress in the <span class="hlt">Lithosphere</span>, which I was fortunate to attend as a graduate student, and the ensuing 1977 PAGEOPH Stress in the Earth publication's 28 articles highlighted a range of datasets and approaches that established fertile ground for geodynamic research ever since. What are the most useful indicators of stress? Do they measure residual or tectonic stresses? Local or far field sources? What role does rheology play in concentrating deformation? Great progress was made with the first World Stress Map in 1991 by Zoback and Zoback, and the current version (2016 release with 42,348 indicators) remains a tremendous resource for geodynamic research. Modeling sophistication has seen significant progress over the past 40 years. Early applications of stress to dynamics involved simple <span class="hlt">lithospheric</span> flexure, particularly at subduction zones, Hawaii, and continental foreland basin systems. We have progressed to full 3-D finite element models for calculating the flexure and stress associated with loads on a crust and mantle with realistic non-linear viscoelastic rheology, including frictional sliding, low-temperature plasticity, and high-temperature creep. Initial efforts to use <span class="hlt">lithospheric</span> stresses to constrain plate driving forces focused on a "top-down" view of the <span class="hlt">lithosphere</span>. Such efforts have evolved to better include asthenosphere-<span class="hlt">lithosphere</span> interactions, have gone from simple to complicated rheologies, from 2-D to 3-D, and seek to obtain a fully thermo-mechanical model that avoids relying on artificial boundary conditions to model plate dynamics. Still, there are a number of important issues in geodynamics, from philosophy (when are more complicated models necessary? can one hope to identify "the" answer with modeling, or only</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T13G..02Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T13G..02Z"><span>Lateral variations in <span class="hlt">lithospheric</span> and landscape evolution at both ends of the Himalaya-Tibet orogen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeitler, P. K.; Schmidt, J. L.; Meltzer, A.</p> <p>2015-12-01</p> <p>At the broadest scale, like many orogens the Himalaya encompass a range of orogenic features that are remarkably similar along much of the length of the mountain belt and its neighboring terranes. At one scale of consideration, these similarities appear to be a signal that fundamental processes associated with <span class="hlt">lithospheric</span> collision have been active. However, the vast size of the Himalaya and Tibet, the different climate regimes experienced by the orogen across time and space, and the along-strike variations in the continental and arc margins that faced one another before collision, make it at once remarkable that any similarities exist, and important to more critically evaluate their <span class="hlt">nature</span>. The eastern and western Himalayan syntaxes confound any attempt to generalize too much about the Himalaya-Tibet orogen. By area these features occupy at least 25% of the orogenic belt, and compared to the "main" portions of the arc they show clear differences in their <span class="hlt">lithospheric</span> structures, landscapes, and evolution. The boundary and initial conditions that shaped the eastern and western indentor corners were and are different, as is the <span class="hlt">nature</span> and timing of erosional exhumation. Some of the most active geologic processes on Earth have recently been in play within the syntaxes, and the evolution of landscapes and fluvial systems, important in developing the sedimentary record of the Himalaya-Tibet system, has been complex and variable in space and time. Southeasternmost Tibet and the Lhasa Block in particular exemplify this complexity both in its complex topographic evolution linked to surface processes and climate, and in lateral variability in <span class="hlt">lithospheric</span> structure. Taking a system viewpoint, an important question to debate is the degree to which there are features in the Himalaya-Tibet system that are robustly emergent, given the broad boundary conditions of the continental collision plus the suite of local and regional geodynamical processes that have operated during</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/scitech/biblio/22590980','SCIGOV-STC'); return false;" href="https://www.osti.gov/scitech/biblio/22590980"><span><span class="hlt">Lithosphere</span>-Surfacesphere–Atmosphere-Ionosphere coupling model for Vrancea seismic zone in Romania</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Zoran, Maria; Savastru, Roxana; Savastru, Dan</p> <p>2016-03-25</p> <p>This paper presents a complex multidisciplinary approach concept to explain the <span class="hlt">nature</span> of short-term earthquake precursors observed in land surface, atmosphere, ionosphere and magnetosphere for strong intermediate depth earthquakes recorded in Vrancea region in Romania. A developed <span class="hlt">Lithosphere</span>-Surfacesphere-Atmosphere-Ionosphere (LSAI) coupling model can explain most of these presignals as a synergy between different anomalies of geophysical/geochemical parameters. These anomalies prior to medium to strong earthquakes are attributed to the thermodynamic, degassing and ionization processes in the Earth-Atmosphere system and micro-fracturing in the rocks especially along area’s active faults. The main outcome of this paper is an unified concept for systematic validation of different types of earthquake precursors of which Land Surface Temperature (LST), outgoing Long wave Radiation (OLR), Surface Latent Heat Flux (SLHF), Air Temperature (AT), radon gas concentration, ionospheric Total Electron Content (TEC) are the most reliable parameters within the chain of the processes described by LSAI model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1302P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1302P"><span>Events related to <span class="hlt">lithosphere</span>-atmosphere-ionosphere-magnetosphere coupling observed by DEMETER</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parrot, Michel; Hattori, Katsumi; Liu, Tiger; Namgaladze, Alexander; Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio</p> <p>2015-04-01</p> <p>There are several models of <span class="hlt">Lithosphere</span>-Atmosphere-Ionosphere-Magnetosphere (LAIM) coupling to explain ionospheric perturbations which are observed prior to earthquakes. In 2013 an ISSI Team led by S. Pulinets (RU) and D. Ouzounov (US) started to work with the following aim: "Multi-instrument Space-Borne Observations and Validation of the Physical Model of the LAIM Coupling" (see http://www.issibern.ch/teams/spaceborneobserve/). In the frame of this model validation several events have been studied with the DEMETER satellite data. It concerns the effects of (i) the ancient <span class="hlt">natural</span> nuclear reactor located at Oklo (Gabon), (ii) the sand storms in Sahara, (iii) the volcanic activity, (iv) the lightning activity, and (v) the hurricanes. The main signature of these events in the ionosphere will be shown in this presentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.V51D..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.V51D..03G"><span>Geochemical and Geophysical Estimates of <span class="hlt">Lithospheric</span> Thickness Variation Beneath Galápagos</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, S. A.; Geist, D.</p> <p>2010-12-01</p> <p> base of the Galápagos thermal <span class="hlt">lithosphere</span>. An excellent correlation exists between the results of this modelling and our estimates of the top of the melt column from geochemical modelling. The seismic data suggest that the base of the thermal <span class="hlt">lithosphere</span> is ~56 km beneath western Galapagos and ~50 km beneath the northeast of the archipelago. These estimates are also consistent with those derived from models of conductive geotherms for plate ages of 5 and 10 Ma and a mantle potential temperature of 1400oC. We propose that thinner <span class="hlt">lithosphere</span> away from the postulated site of the present-day Galápagos plume axis, combined with the lateral deflection of the plume head, is responsible for active volcanism over a relatively large area. Non-uniform variations in <span class="hlt">lithospheric</span> thickness relative to distance from the Galápagos Spreading Centre are consistent with the complex <span class="hlt">nature</span> of the oceanic <span class="hlt">lithosphere</span> beneath this part of the Pacific. [1] Villagomez, D.R. et al., 2007. Upper mantle structure beneath the Galápagos Archipelago from surface wave tomography. JGR 112.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T43A2294V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T43A2294V"><span>Electromagnetic, seismic and petro-physical investigations of the <span class="hlt">lithosphere</span>-asthenosphere boundary in central Tibet</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vozar, J.; Fullea, J.; Jones, A. G.; Agius, M. R.; Lebedev, S.</p> <p>2011-12-01</p> <p>Combined seismological and electromagnetic investigations of the <span class="hlt">lithosphere</span> and underlying asthenosphere have the potential to yield superior inferences than using either one on its own. Central Tibet offers an excellent <span class="hlt">natural</span> laboratory for testing such approaches, given the high quality seismological and magnetotelluric (MT) data available as a consequence of INDEPTH studies. In particular, the presence and lateral and vertical extent of the Indian <span class="hlt">lithosphere</span> beneath Tibet is highly debated. Integrated petrological-geophysical modeling of MT and surface-wave data, which are differently sensitive to temperature and composition, allows us to reduce the uncertainties associated with modeling these two data sets independently, as commonly undertaken. For the MT data, we use selected distortion-corrected MT transfer functions, from INDEPTH Phase III line 500 across central Tibet for 1D modeling. The selected data fit well the 1D assumption and exhibit large penetration depth. Our deep resistivity models can be classified into two different groups: i) the Lhasa Terrane and ii) the Qiangtang Terrane. For the Lhasa Terrane group, the models show the existence of two high conductive layers localized at depths of 60-80 km and more than 200 km, whereas for the Qiangtang Terrane these conductive layers appears to be occur at shallower depths, namely 30-50 km and 120 km depth respectively. Our dispersion curves for Rayleigh and Love surface waves were measured using seismograms recorded by stations of INDEPTH and PASSCAL experiments. Dispersion curves for central Lhasa and Qiangtang terranes show similarly low phase velocities at periods sampling the thick crust beneath the regions, but differ at periods sampling the mantle. Inverting the dispersion data for 1D, radially-anisotropic Vs profiles, we find that beneath central Qiangtang terrane shear velocity is lower than the global average down to 75 km below the Moho, indicating relatively high temperatures, whereas</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614734G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614734G"><span><span class="hlt">Lithosphere</span> extension and magmatism at volcanic passive margins</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geoffroy, Laurent; Gernigon, Laurent; Werner, Philippe</p> <p>2014-05-01</p> <p>We present onshore and offshore evidences suggesting that volcanic passive margins are distinct in origin and evolution from non-volcanic hyper-extended margins. Consecutively, they should not be integrated in a single evolutionary process and do not necessarily represent the ultimate stage of an hyper-extension with or without mantle exhumation. Volcanic passive margins usually form in mobile areas between cratonic areas which may have been submitted to long-term periods of divergence and convergence or strike-slip tectonics. In the NE-Atlantic, for example, a complete illustration of a Wilson cycle is illustrated between Greenland and Baltica cratonic areas. From the Devonian to the end of the Jurassic, the Caledonian orogenic crust has suffered from a number of wrench and extensional tectonic stretching episodes. The late-Jurassic/Early Cretaceous extension was severe, lead