Science.gov

Sample records for natural mosquito population

  1. A field bioassay to evaluate potential spatial repellents against natural mosquito populations.

    PubMed

    Chauhan, K R; Aldrich, J R; McCardle, P W; White, G B; Webb, R E

    2012-12-01

    A field bioassay evaluating candidate chemicals as aerial repellents was developed and evaluated against natural mosquito populations in Beltsville, MD. The bioassay consisted of an attractive source surrounded by a grid of 16 septa containing a volatile candidate aerial repellent, compared with an attractive source without such a grid. The attractive source was a Centers for Disease Control and Prevention light trap supplemented with carbon dioxide. Significant sources of variation included weather, position, and the differential response of mosquito species. Despite these sources of variation, significant repellent responses were obtained for catnip oil, E,Z-dihydronepetalactone, and DEET. PMID:23393752

  2. Artificial natural selection: can supplemental feeding domesticate mosquitoes and control mosquito-borne diseases?

    PubMed

    Egeth, Marc; Kurzban, Robert

    2012-08-29

    A new method is proposed for controlling mosquito-borne diseases. In particular, instead of trying to kill mosquitoes, we suggest provisioning them with food from artificial feeders. Because mosquito populations are frequently limited by ecological factors other than blood meals, such as the availability of egg-laying sites, feeding mosquitoes would not necessarily increase the total number of mosquitoes, but could reduce the number of human-drawn mosquito meals. Like mosquito traps, feeders could divert biting mosquitoes away from people by means of lures, but, after diversion, prevent subsequent human bites by satiating the mosquitoes instead of killing them. Mosquito feeders might reduce the problem of the evolution of resistance to control: in an ecology with mosquito feeders, which provide safe and abundant calories for adult female mosquitoes, there could be selection for preferring (rather than avoiding) feeders, which could eventually lead to a population of feeder-preferring mosquitoes. Artificial feeders also offer the chance to introduce novel elements into the mosquito diet, such as anti- malarial or other anti-parasitic agents. Feeders might directly reduce human bites and harnesses the power of natural selection by selectively favoring feeder-preferring (rather than trap-resistant) mosquitoes.

  3. Naturally Occurring Incompatibilities between Different Culex pipiens pallens Populations as the Basis of Potential Mosquito Control Measures

    PubMed Central

    Chen, Lin; Zhu, Changliang; Zhang, Donghui

    2013-01-01

    Background Vector-borne diseases remain a threat to public health, especially in tropical countries. The incompatible insect technique has been explored as a potential control strategy for several important insect vectors. However, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in China. Previous works used introgression to generate new strains that matched the genetic backgrounds of target populations while harboring a new Wolbachia endosymbiont, resulting in mating competitiveness and cytoplasmic incompatibility. The generation of these incompatible insects is often time-consuming, and the long-term stability of the newly created insect-Wolbachia symbiosis is uncertain. Considering the wide distribution of Cx. pipiens pallens and hence possible isolation of different populations, we sought to test for incompatibilities between natural populations and the possibility of exploiting these incompatibilities as a control strategy. Methodology/Principal Findings Three field populations were collected from three geographic locations in eastern China. Reciprocal cross results showed that bi-directional patterns of incompatibility existed between some populations. Mating competition experiments indicated that incompatible males could compete with cognate males in mating with females, leading to reduced overall fecundity. F1 offspring from incompatible crosses maintained their maternal crossing types. All three populations tested positive for Wolbachia. Removal of Wolbachia by tetracycline rendered matings between these populations fully compatible. Conclusions/Significance Our findings indicate that naturally occurring patterns of cytoplasmic incompatibility between Cx. pipiens pallens populations can be the basis of a control strategy for this important vector species. The observed incompatibilities are caused by Wolbachia. More tests including field trials are warranted to evaluate the feasibility of this strategy as a

  4. Genetic control of mosquitoes: population suppression strategies.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2012-01-01

    Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

  5. Molecular detection of Wolbachia pipientis in natural populations of mosquito vectors of Dirofilaria immitis from continental Portugal: first detection in Culex theileri.

    PubMed

    DE Pinho Mixão, V; Mendes, A M; Maurício, I L; Calado, M M; Novo, M T; Belo, S; Almeida, A P G

    2016-09-01

    Wolbachia pipientis (Rickettsiales: Rickettsiaceae) protects mosquitoes from infections with arboviruses and parasites. However, the effect of its co-infection on vector competence for Dirofilaria immitis (Spirurida: Onchocercidae) in the wild has not been investigated. This study aimed to screen vectors of D. immitis for wPip, to characterize these, and to investigate a possible association between the occurrence of W. pipientis and that of the nematode. The presence of W. pipientis was assessed in the five mosquito potential vectors of D. immitis in Portugal. Polymerase chain reaction (PCR) products were sequenced, and wPip haplotypes were determined by PCR-restricted fragment length polymorphism (RFLP). Results showed that wPip was detected in 61.5% of Culex pipiens (Diptera: Culicidae) pools and 6.3% of Culex theileri pools. wPip 16s rRNA sequences found in Cx. theileri exactly match those from Cx. pipiens, confirming a mosquito origin, rather than a nematode origin, as some specimens were infected with D. immitis. Only wPip haplotype I was found. No association was found between the presence of wPip and D. immitis in mosquitoes and hence a role for this endosymbiont in influencing vectorial competence is yet to be identified. This study contributes to understanding of wPip distribution in mosquito populations and, to the best of the authors' knowledge, is the first report of natural infections by wPip in Cx. theileri. PMID:27279553

  6. Natural and manipulated populations of the treehole mosquito, Ochlerotatus triseriatus, at its northernmost range limit in southern Ontario, Canada.

    PubMed

    Williams, D Dudley; MacKay, Sarah E; Verdonschot, Ralf C M; Tacchino, Pierre J P

    2007-12-01

    Ochlerotatus triseriatus, the eastern treehole mosquito, reaches its northernmost range limit in the extreme southeast of Canada. As a known vector of West Nile and La Crosse encephalitis viruses and a potential vector of eastern equine encephalitis, its population biology is of interest. In southern Ontario, high larval densities occur in urban woodlots within sugar maple and American beech treehole communities comprising rotifers, nematode worms, mites, other dipterans, and scirtid beetles. Treehole water was characterized by low dissolved oxygen levels and seasonally variable pH and temperature, with the latter being most influential on local populations. Densities were significantly higher (up to 503 larvae 100 ml(-1)) in tree holes close to the forest floor (<1 m) and in experimental tree holes seeded with autumn-shed maple leaves as opposed to leaves of black oak and beech. In this locality, weekly sampling showed Oc. triseriatus to be multivoltine, with mass egg hatching beginning under coldwater (<10 degrees C) conditions in March/April, and thereafter producing three successful generations with a possible, less successful fourth in late summer. Some 1st instar larvae were present in water as cold as 0.7 degree C. Compared with larval psychodids living in the same tree hole, population losses of Oc. triseriatus due to washout during major rainfall events were negligible despite high flowthrough of water derived from stemflow. PMID:18260525

  7. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes.

    PubMed

    Kean, Joy; Rainey, Stephanie M; McFarlane, Melanie; Donald, Claire L; Schnettler, Esther; Kohl, Alain; Pondeville, Emilie

    2015-03-23

    Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.

  8. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes

    PubMed Central

    Kean, Joy; Rainey, Stephanie M.; McFarlane, Melanie; Donald, Claire L.; Schnettler, Esther; Kohl, Alain; Pondeville, Emilie

    2015-01-01

    Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence. PMID:26463078

  9. Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes

    PubMed Central

    Buck, Moritz; Nilsson, Louise K. J.; Brunius, Carl; Dabiré, Roch K.; Hopkins, Richard; Terenius, Olle

    2016-01-01

    The intolerable burden of malaria has for too long plagued humanity and the prospect of eradicating malaria is an optimistic, but reachable, target in the 21st century. However, extensive knowledge is needed about the spatial structure of mosquito populations in order to develop effective interventions against malaria transmission. We hypothesized that the microbiota associated with a mosquito reflects acquisition of bacteria in different environments. By analyzing the whole-body bacterial flora of An. gambiae mosquitoes from Burkina Faso by 16 S amplicon sequencing, we found that the different environments gave each mosquito a specific bacterial profile. In addition, the bacterial profiles provided precise and predicting information on the spatial dynamics of the mosquito population as a whole and showed that the mosquitoes formed clear local populations within a meta-population network. We believe that using microbiotas as proxies for population structures will greatly aid improving the performance of vector interventions around the world. PMID:26960555

  10. Mosquito Population Regulation and Larval Source Management in Heterogeneous Environments

    PubMed Central

    Smith, David L.; Perkins, T. Alex; Tusting, Lucy S.; Scott, Thomas W.; Lindsay, Steven W.

    2013-01-01

    An important question for mosquito population dynamics, mosquito-borne pathogen transmission and vector control is how mosquito populations are regulated. Here we develop simple models with heterogeneity in egg laying patterns and in the responses of larval populations to crowding in aquatic habitats. We use the models to evaluate how such heterogeneity affects mosquito population regulation and the effects of larval source management (LSM). We revisit the notion of a carrying capacity and show how heterogeneity changes our understanding of density dependence and the outcome of LSM. Crowding in and productivity of aquatic habitats is highly uneven unless egg-laying distributions are fine-tuned to match the distribution of habitats’ carrying capacities. LSM reduces mosquito population density linearly with coverage if adult mosquitoes avoid laying eggs in treated habitats, but quadratically if eggs are laid in treated habitats and the effort is therefore wasted (i.e., treating 50% of habitat reduces mosquito density by approximately 75%). Unsurprisingly, targeting (i.e. treating a subset of the most productive pools) gives much larger reductions for similar coverage, but with poor targeting, increasing coverage could increase adult mosquito population densities if eggs are laid in higher capacity habitats. Our analysis suggests that, in some contexts, LSM models that accounts for heterogeneity in production of adult mosquitoes provide theoretical support for pursuing mosquito-borne disease prevention through strategic and repeated application of modern larvicides. PMID:23951118

  11. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    PubMed

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  12. Mosquito management in the face of natural selection.

    PubMed

    Agusto, Folashade B; Bewick, Sharon; Parshad, Rana D

    2012-09-01

    The sterile insect technique (SIT) is an appealing method for managing mosquito populations while avoiding the environmental and social costs associated with more traditional control strategies like insecticide application. Success of SIT, however, hinges on sterile males being able to compete for females. As a result, heavy and/or continued use of SIT could potentially diminish its efficacy if prolonged treatments result in selection for female preference against sterile males. In this paper we extend a general differential equation model of mosquito dynamics to consider the role of female choosiness in determining the long-term usefulness of SIT as a management option. We then apply optimal control theory to our model and show how natural selection for female choosiness fundamentally alters management strategies. Our study calls into question the benefits associated with developing SIT as a management strategy, and suggests that effort should be spent studying female mate choice in order to determine its relative importance and how likely it is to impact SIT treatment goals. PMID:22617381

  13. Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential

    PubMed Central

    Gu, Weidong; Müller, Günter; Schlein, Yosef; Novak, Robert J.; Beier, John C.

    2011-01-01

    An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens. PMID:21283732

  14. Sustainable control of mosquito larvae in the field by the combined actions of the biological insecticide Bti and natural competitors.

    PubMed

    Kroeger, Iris; Liess, Matthias; Dziock, Frank; Duquesne, Sabine

    2013-06-01

    Integrated management of mosquitoes is becoming increasingly important, particularly in relation to avoiding recolonization of ponds after larvicide treatment. We conducted for the first time field experiments that involved exposing natural populations of the mosquito species Culex pipiens to: a) application of the biological insecticide Bacillus thuringiensis israelensis (Bti), b) the introduction of natural competitors (a crustacean community composed mainly of Daphnia spp.), or c) a combined treatment that involved both introduction of a crustacean community and the application of Bti. The treatment that involved only the introduction of crustaceans had no significant effect on mosquito larval populations, while treatment with Bti alone caused only a significant reduction in the abundance of mosquito larvae in the short-term (within 3-10 days after treatment). In contrast, the combined treatment rapidly reduced the abundance of mosquito larvae, which remained low throughout the entire observation period of 28 days. Growth of the introduced crustacean communities was favored by the immediate reduction in the abundance of mosquito larvae following Bti administration, thus preventing recolonization of ponds by mosquito larvae at the late period (days 14-28 after treatment). Both competition and the temporal order of establishment of different species are hence important mechanisms for efficient and sustainable mosquito control.

  15. Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India

    PubMed Central

    Chandel, Kshitij; Mendki, Murlidhar J.; Parikh, Rasesh Y.; Kulkarni, Girish; Tikar, Sachin N.; Sukumaran, Devanathan; Prakash, Shri; Parashar, Brahma D.; Shouche, Yogesh S.; Veer, Vijay

    2013-01-01

    The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a

  16. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  17. Historical applications of induced sterilisation in field populations of mosquitoes

    PubMed Central

    Dame, David A; Curtis, Christopher F; Benedict, Mark Q; Robinson, Alan S; Knols, Bart GJ

    2009-01-01

    Research on sterile mosquito technology from 1955 to the 1980s provided a substantial body of knowledge on propagation and release of sterile mosquitoes. Radiation sterilisation and chemosterilisation have been used effectively to induce dominant lethality and thereby sterilise important mosquito vectors in the laboratory. Experimental releases of chemosterilised males provided complete control of Anopheles albimanus in a small breeding population (14-15 sq km) in El Salvador. Releases of radiation sterilised males failed to control either Aedes aegypti or Anopheles quadrimaculatus in the USA. Releases of radiation-sterilised and chemosterilised male Culex quinquefasciatus in the USA and India were successful in some instances. Development of genetic sexing systems for Anopheles and improved physical separation methods for Culex have made it possible to rear and release males almost exclusively (> 99%) minimizing the release of potential vectors, the females. Factors that affected efficacy in some field programmes included reduction of competitiveness by radiation, immigration of fertilized females from outside the release zones, and inability of laboratory-bred males to perform in the wild. Despite significant progress, institutional commitments to carry the process further were generally lacking in the late 1970s and until recently. Now, with renewed interest and support for further assessment of this technology, this paper summarizes the current knowledge base, prioritizes some areas of investigation, and challenges scientists and administrators to maintain an awareness of progress, remain realistic about the interpretation of new findings, and make decisions about the sterile insect technique on the basis of informed scientific documentation. Areas recommended for priority research status include the establishment of genetic sexing mechanisms that can be transferred to other mosquito species, re-examination of radiation sterilisation, aerial release technology

  18. Measurement, analysis, and depiction of activity in adult mosquito populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globalization, open trading practices, and climate change increase the likelihood of introduction of exotic mosquito species. These mosquitoes may harbor disease agents that threaten public and animal health. Successful containment and eradication of exotic mosquito species and (in the case of exo...

  19. Transient Population Dynamics of Mosquitoes during Sterile Male Releases: Modelling Mating Behaviour and Perturbations of Life History Parameters

    PubMed Central

    Stone, Christopher M.

    2013-01-01

    The release of genetically-modified or sterile male mosquitoes offers a promising form of mosquito-transmitted pathogen control, but the insights derived from our understanding of male mosquito behaviour have not fully been incorporated into the design of such genetic control or sterile-male release methods. The importance of aspects of male life history and mating behaviour for sterile-male release programmes were investigated by projecting a stage-structured matrix model over time. An elasticity analysis of transient dynamics during sterile-male releases was performed to provide insight on which vector control methods are likely to be most synergistic. The results suggest that high mating competitiveness and mortality costs of released males are required before the sterile-release method becomes ineffective. Additionally, if released males suffer a mortality cost, older males should be released due to their increased mating capacity. If released males are of a homogenous size and size-assortative mating occurs in nature, this can lead to an increase in the abundance of large females and reduce the efficacy of the population-suppression effort. At a high level of size-assortative mating, the disease transmission potential of the vector population increases due to male releases, arguing for the release of a heterogeneously-sized male population. The female population was most sensitive to perturbations of density-dependent components of larval mortality and female survivorship and fecundity. These findings suggest source reduction might be a particularly effective complement to mosquito control based on the sterile insect technique (SIT). In order for SIT to realize its potential as a key component of an integrated vector-management strategy to control mosquito-transmitted pathogens, programme design of sterile-male release programmes must account for the ecology, behaviour and life history of mosquitoes. The model used here takes a step in this direction and can

  20. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential

    PubMed Central

    Zouache, Karima; Fontaine, Albin; Vega-Rua, Anubis; Mousson, Laurence; Thiberge, Jean-Michel; Lourenco-De-Oliveira, Ricardo; Caro, Valérie; Lambrechts, Louis; Failloux, Anna-Bella

    2014-01-01

    Interactions between pathogens and their insect vectors in nature are under the control of both genetic and non-genetic factors, yet most studies on mosquito vector competence for human pathogens are conducted in laboratory systems that do not consider genetic and/or environmental variability. Evaluating the risk of emergence of arthropod-borne viruses (arboviruses) of public health importance such as chikungunya virus (CHIKV) requires a more realistic appraisal of genetic and environmental contributions to vector competence. In particular, sources of variation do not necessarily act independently and may combine in the form of interactions. Here, we measured CHIKV transmission potential by the mosquito Aedes albopictus in all combinations of six worldwide vector populations, two virus strains and two ambient temperatures (20°C and 28°C). Overall, CHIKV transmission potential by Ae. albopictus strongly depended on the three-way combination of mosquito population, virus strain and temperature. Such genotype-by-genotype-by-environment (G × G × E) interactions question the relevance of vector competence studies conducted with a simpler set of conditions. Our results highlight the need to account for the complex interplay between vectors, pathogens and environmental factors to accurately assess the potential of vector-borne diseases to emerge. PMID:25122228

  1. Signatures of aestivation and migration in Sahelian malaria mosquito populations.

    PubMed

    Dao, A; Yaro, A S; Diallo, M; Timbiné, S; Huestis, D L; Kassogué, Y; Traoré, A I; Sanogo, Z L; Samaké, D; Lehmann, T

    2014-12-18

    During the long Sahelian dry season, mosquito vectors of malaria are expected to perish when no larval sites are available; yet, days after the first rains, mosquitoes reappear in large numbers. How these vectors persist over the 3-6-month long dry season has not been resolved, despite extensive research for over a century. Hypotheses for vector persistence include dry-season diapause (aestivation) and long-distance migration (LDM); both are facets of vector biology that have been highly controversial owing to lack of concrete evidence. Here we show that certain species persist by a form of aestivation, while others engage in LDM. Using time-series analyses, the seasonal cycles of Anopheles coluzzii, Anopheles gambiae sensu stricto (s.s.), and Anopheles arabiensis were estimated, and their effects were found to be significant, stable and highly species-specific. Contrary to all expectations, the most complex dynamics occurred during the dry season, when the density of A. coluzzii fluctuated markedly, peaking when migration would seem highly unlikely, whereas A. gambiae s.s. was undetected. The population growth of A. coluzzii followed the first rains closely, consistent with aestivation, whereas the growth phase of both A. gambiae s.s. and A. arabiensis lagged by two months. Such a delay is incompatible with local persistence, but fits LDM. Surviving the long dry season in situ allows A. coluzzii to predominate and form the primary force of malaria transmission. Our results reveal profound ecological divergence between A. coluzzii and A. gambiae s.s., whose standing as distinct species has been challenged, and suggest that climate is one of the selective pressures that led to their speciation. Incorporating vector dormancy and LDM is key to predicting shifts in the range of malaria due to global climate change, and to the elimination of malaria from Africa. PMID:25470038

  2. Detection and Monitoring of Spatio-temporal Change in the Distribution of Mosquito Vector Populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquitoes transmit blood-borne disease agents that cause morbidity and mortality in human and animal populations. Preemption of epidemics/epizootics of mosquito-borne disease is predicated on the timely and effective application of vector control. Such timing is decided on the basis of adult mosq...

  3. Evaluation of the bio-efficacy of three brands of repellents against wild populations of anthropophilic mosquitoes.

    PubMed

    Magesa, S M; Kamugisha, M L

    2006-09-01

    Three commercial repellents marketed in Tanzania: Zero Bite (a blend of microcrystalline waxes, mineral oils, natural flavours, Olibanum oil, Eucalyptus oil, Geranium oil, Citronella oil and Isopropyl myristrate); X-pel (a petroleum jelly formulation containing diethyl toluamide (DEET) and dimethyl phthalate); No Bite (a spray formulation with diethyl toluamide, 2 methyl 2,4 pentondiol and pthalic ester acids) were tested and compared for their repellency effect against wild anthropophilic mosquito populations. Human forearms, feet and legs were treated with the repellent products. All repellents provided protection against wild populations of biting mosquitoes (mainly Culex quinquefasciatus and Aedes scatophagoides) with varying levels of efficacy. No Bite provided the best overall protection (98%) followed by X-pel (87%). Zero Bite gave the least protection (48%) against the two mosquito species. All products except No Bite displayed reduced efficacy after four hours of application. The results indicate that the two best products give satisfactory levels of personal protection against biting mosquitoes at least for the first five hours, following application, thus could provide complementary protection against mosquito bites particularly during the period when most people have not retired to bed where they may be protected by treated bednets. PMID:18254505

  4. Transposable element insertion location bias and the dynamics of gene drive in mosquito populations.

    PubMed

    Rasgon, J L; Gould, F

    2005-10-01

    Some vector-borne disease control strategies using transgenic mosquitoes require transgene spread to high frequency in populations. Transposable elements (TEs) are DNA sequences that replicate and transpose within the genomes of other organisms and may therefore be represented in the next generation in higher frequencies than predicted by Mendelian segregation. This over-representation has allowed some TEs to spread through natural populations. Transgenes incorporated within a TE sequence are expected to be driven into populations as long as there is a positive balance between fitness costs and over-representation. Models have been used to examine parameters that affect this balance but did not take into account biased insertion of TEs to linked sites in the genome. A simulation model was created to examine the impact of insertion bias on TE spread in mosquito populations. TEs that induce no fitness costs are predicted to increase in frequency over a wide range of parameter values but spread is slower for lower levels of transposition and non-local movement. If TEs are costly, high proportions of local movement can slow or halt spread. To function as a robust transgene drive mechanism a TE should replicate and transpose > 10%/insert/generation, induce < 1% fitness cost/insert, and move preferentially to unlinked sites in the genome.

  5. Comparisons of mosquito populations before and after construction of a wetland for water quality improvement in Pitt County, North Carolina, and data-reliant vectorborne disease management.

    PubMed

    Anderson, Alice L; O'Brien, Kevin; Hartwell, Megan

    2007-04-01

    Wetlands serve an important purpose in flood control and water quality, but constructed-wetland sites also provide habitats for mosquito breeding. Communities near constructed-wetland sites often raise a "mosquito" objection when constructed wetlands are proposed. Wildlife and wetland advocates can confuse the public by making unsubstantiated claims about natural predators eliminating or controlling mosquito problems in a constructed wetland. Management of constructed-wetland mosquito habitat, with adequate mosquito surveillance and data analysis, can help lead to a successful project and satisfied citizens. The cooperative project described in this paper, was conducted in the town of Simpson, North Carolina, and was designed to determine the mosquito population impact of wetland construction at Mill Branch Stream, a small tributary of the Tar River in Eastern North Carolina. In the authors' analysis of three years of mosquito surveillance data, month (time of year standing in for temperature and day length) was a significant factor in regression analysis for mosquito numbers, but rainfall was not. Numbers of mosquitoes were not found to be significantly higher after construction than before construction.

  6. Spatiotemporal investigation of adult mosquito (Diptera: Culicidae) populations in an eastern Iowa county, USA.

    PubMed

    DeGroote, John; Mercer, David R; Fisher, Jeffrey; Sugumaran, Ramanathan

    2007-11-01

    Landscape and climatic factors regulate distributions of mosquitoes (Diptera: Culicidae) over time and space. The anthropogenic control of mosquito populations is often carried out at a local administrative scale, and it is applied based on the relevant agency's experiential knowledge rather than systematic analysis of spatial and temporal data. To address this shortcoming, a spatial and temporal analysis of landscape and climatic parameters in relation to mosquito populations in Black Hawk County, IA, USA, has been carried out. Adult mosquito sampling took place using CDC light traps from May to August 2003 in representative landscapes. Mosquitoes were identified to species level with Aedes trivittatus (Coquillet) and Aedes vexans (Meigen) dominating the collection totals. The best publicly available spatial data on landscape and demographic attributes were collated and included land cover, human census, soils, floodplain, elevation, wetlands, hydrography, roads, and vegetation indices derived from satellite imagery. Spatial processing was carried out to organize landscape attributes for statistical comparison with abundance data from the potentially important West Nile virus (family Flaviviridae, genus Flavivirus, WNV) vector species Ae. vexans and Ae. trivittatus. Landscape parameters shown to be significantly correlated with mosquito counts included soil hydrological properties, presence in floodplain, wetland areas, and deciduous and bottomland forest cover. Data on temperature and precipitation were used to investigate the climatic influence on the temporal occurrence of mosquito population abundances. Late spring rain provided ample moisture for mosquito development, but low temperatures delayed widespread emergence of Ae. trivittatus and Ae. vexans until June 2003. Landscape and climatic impacts on adult mosquito population distributions were demonstrated, and these results could form the basis for the development of a spatiotemporal modeling framework that

  7. Mosquito fauna and perspectives for integrated control of urban vector-mosquito populations in Southern Benin (West Africa).

    PubMed

    Lingenfelser, Andre; Rydzanicz, Katarzyna; Kaiser, Achim; Becker, Norbert

    2010-01-01

    This study aims at an integrated vector management (IVM) concept of implementing biological control agents against vector mosquito larvae as a cost-effective and scalable control strategy. In the first step, the mosquito species composition fauna of southern Benin was studied using standard entomological procedures in natural and man-made habitats. Altogether, 24 species belonging to 6 genera of mosquitoes Aedes, Anopheles, Culex, Mansonia, Uranotaenia, Ficalbia were recorded. Five species, Cx. thalassius, Cx. nebulosus, Cx. perfuscus, Cx. pocilipes and Fi. mediolineata are described the first time for Benin. The local mosquito species showed high susceptibility to a Bacillus sphaericus formulation (VectoLex(R) WDG ) in a standardized field test. A dosage of 1 g/m(2) was effective to achieve 100 percent mortality rate for Cx. quinquefasciatus late instar larvae in a sewage habitat, with a residual effect of up to 7 days. After more than 1 year of baseline data collection, operational larviciding with B. thuringiensis var. israelensis and B. sphaericus was commenced in 2006 in selected areas. Microbial insecticides products for larval control show great potential within IVM programmes and may augment control efforts against adult insects, such as the use of insecticide-treated bed nets or indoor wall spraying in many parts of Africa.

  8. Population genetic structure of Anopheles gambiae mosquitoes on Lake Victoria islands, west Kenya

    PubMed Central

    Chen, Hong; Minakawa, Noboru; Beier, John; Yan, Guiyun

    2004-01-01

    Background Understanding the genetic structure of island Anopheles gambiae populations is important for the current tactics in mosquito control and for the proposed strategy using genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are a potential site for testing GMM. The objective of this study was to determine the genetic structure of A. gambiae populations on the islands in Lake Victoria, western Kenya. Methods The genetic diversity and the population genetic structures of 13 A. gambiae populations from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba District were examined using six microsatellite markers. The distance range of sampling sites varied between 2.5 and 35.1 km. Results A similar level of genetic diversity between island mosquito populations and adjacent mainland populations was found. The average number of alleles per locus was 7.3 for the island populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32 and 0.28 for the island and mainland populations, respectively. A low but statistically significant genetic structure was detected among the island populations (FST = 0.019) and between the island and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them were from the island populations. Conclusion A level of genetic differentiation between the island and mainland populations was found. Large extent of gene flow between the island and mainland mosquito populations may result from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site for the release program of GMM, mosquito dispersal between the islands and between the island and the mainland should be vigorously monitored. PMID:15581429

  9. Simulation of mosquitoes population dynamic based on rainfall and average daily temperature

    NASA Astrophysics Data System (ADS)

    Widayani, H.; Seprianus, Nuraini, N.; Arum, J.

    2014-02-01

    This paper proposed rainfall and average daily temperature approximation functions using least square method with trigonometry polynomial. Error value from this method is better than Fast Fourier Transform method. This approximation is used to accommodate climatic factors into deterministic model of mosquitoes population by constructing a carrying capacity function which contains rainfall and average daily temperature functions. We develop a mathematical model for mosquitoes population dynamic which formulated by Yang et al (2010) with dynamic parameter of a daily rainfall as well as temperature on that model. Two fixed points, trivial and non-trivial, are obtained when constant entomological parameters assumed. Basic offspring number, Q0 as mosquitoes reproduction parameter is constructed. Non-trivial fixed point is stable if and only if Q0 > 1. Numerical simulation shown the dynamics of mosquitoes population significantly affected by rainfall and average daily temperature function.

  10. Mosquito population dynamic (Diptera: Culicidae) in a eutrophised dam.

    PubMed

    Wermelinger, E D; Benigno, C V; Machado, R N M; Cabello, P H; Meira, A M; Ferreira, A P; Zanuncio, J C

    2012-11-01

    This study observed the mosquito population in a rural eutrophised dam. Larvae of L3 and L4 stages and pupae were dipped out during twelve month collections and the reared to the adult stage for identification. The collections were done along nine metres from the edge of the dam divided in three parts (P1, P2 and P3), each part being 3 m long. P1 did not have vegetation (grass) along its edge,which would reach or sink into the water to promote some shade on the marginal water. A total of 217 adults of four species was identified with the following constancies and frequencies: Culex quinquefasciatus (Say, 1823) (83% and 40.6%), Anopheles (Nyssorhynchus) evansae (Brèthes, 1926) (92% and 26.7%), Anopheles (Nyssorhynchus) rangeli (Gabaldon, Cova Garcia and Lopez, 1940) (83% and 14.3%) and Culex nigripalpus (Theobald, 1901) (33% and 18.4%). C. quinquefasciatus, A. evansae, A. rangeli and C. nigripalpus were more frequent in the quarters Nov./Dec./Jan. (85.7%), May/June/July (75%), Aug./Sept./Oct. (29.4%) and Aug./Sept./Oct. (23.5%) particularly in the months of December (88.4%) Sept.tember (48.94), (38.3) and August (47.62) respectively. The presence of C. quinquefasciatus and the high incidence of Daphinia sp. and also the levels of Organic Nitrogen (0.28 mg/L) and of total Phosphorus (0.02 mg/L) are indications of the eutrophication of the dam. There was a difference regarding the total of Anopheles (A. avansae + A. rangeli) and Culex species (C. quinquefasciatus + C. nigripalpis) between P1 and P2 (χ(2) = 0.0097), P1 and P3 (χ(2) = 0.0005), but not between P2 and P3 (χ(2) = 0.2045).The high C. quinquefasciatus constancy and frequency were confirmed to be a good biological indicator for a eutrophised environment and A. evansae showed a good potential for this environment. Vegetation can be an important factor for anopheline population dynamic also in eutrophic breeding sites.

  11. Monitoring population and environmental parameters of invasive mosquito species in Europe.

    PubMed

    Petrić, Dušan; Bellini, Romeo; Scholte, Ernst-Jan; Rakotoarivony, Laurence Marrama; Schaffner, Francis

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  12. Monitoring population and environmental parameters of invasive mosquito species in Europe

    PubMed Central

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  13. Guidelines to site selection for population surveillance and mosquito control trials: a case study from Mauritius.

    PubMed

    Iyaloo, Diana P; Elahee, Khouaildi B; Bheecarry, Ambicadutt; Lees, Rosemary Susan

    2014-04-01

    Many novel approaches to controlling mosquito vectors through the release of sterile and mass reared males are being developed in the face of increasing insecticide resistance and other limitations of current methods. Before full scale release programmes can be undertaken there is a need for surveillance of the target population, and investigation of parameters such as dispersal and longevity of released, as compared to wild males through mark-release-recapture (MRR) and other experiments, before small scale pilot trials can be conducted. The nature of the sites used for this field work is crucial to ensure that a trial can feasibly collect sufficient and relevant information, given the available resources and practical limitations, and having secured the correct regulatory, community and ethical approvals and support. Mauritius is considering the inclusion of the sterile insect technique (SIT), for population reduction of Aedes albopictus, as a component of the Ministry of Health and Quality of Life's 'Operational Plan for Prevention and Control of Chikungunya and Dengue'. As part of an investigation into the feasibility of integrating the SIT into the Integrated Vector Management (IVM) scheme in Mauritius a pilot trial is planned. Two potential sites have been selected for this purpose, Pointe des Lascars and Panchvati, villages in the North East of the country, and population surveillance has commenced. This case study will here be used to explore the considerations which go into determining the most appropriate sites for mosquito field research. Although each situation is unique, and an ideal site may not be available, this discussion aims to help researchers to consider and balance the important factors and select field sites that will meet their needs.

  14. Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics.

    PubMed

    Chuang, Ting-Wu; Henebry, Geoffrey M; Kimball, John S; Vanroekel-Patton, Denise L; Hildreth, Michael B; Wimberly, Michael C

    2012-10-01

    Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems.

  15. Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics.

    PubMed

    Chuang, Ting-Wu; Henebry, Geoffrey M; Kimball, John S; Vanroekel-Patton, Denise L; Hildreth, Michael B; Wimberly, Michael C

    2012-10-01

    Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems. PMID:23049143

  16. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector.

    PubMed Central

    Weaver, S C; Scott, T W; Lorenz, L H; Lerdthusnee, K; Romoser, W S

    1988-01-01

    Arthropod-borne viruses were not previously believed to cause discernible pathologic changes in their natural mosquito vectors. We report cytopathologic lesions in the midgut of the mosquito, Culiseta melanura, 2 to 5 days after oral infection with eastern equine encephalomyelitis virus. Sloughing of densely staining, heavily infected epithelial cells into the midgut lumen was observed by light and transmission electron microscopy, along with degeneration of cells within the epithelium. Pathological changes in midgut epithelial cells sometimes included loss of brush border and basal lamina integrity. Disruption of the midgut basal lamina could result in bypassing of barriers to virus dissemination within the mosquito and allow rapid transmission to occur. Alternatively, luminal sloughing of heavily infected midgut epithelial cells may serve to modulate mosquito infections. These findings challenge previous beliefs regarding the benign nature of arbovirus-invertebrate host relationships. Images PMID:2896802

  17. Togavirus-associated pathologic changes in the midgut of a natural mosquito vector.

    PubMed

    Weaver, S C; Scott, T W; Lorenz, L H; Lerdthusnee, K; Romoser, W S

    1988-06-01

    Arthropod-borne viruses were not previously believed to cause discernible pathologic changes in their natural mosquito vectors. We report cytopathologic lesions in the midgut of the mosquito, Culiseta melanura, 2 to 5 days after oral infection with eastern equine encephalomyelitis virus. Sloughing of densely staining, heavily infected epithelial cells into the midgut lumen was observed by light and transmission electron microscopy, along with degeneration of cells within the epithelium. Pathological changes in midgut epithelial cells sometimes included loss of brush border and basal lamina integrity. Disruption of the midgut basal lamina could result in bypassing of barriers to virus dissemination within the mosquito and allow rapid transmission to occur. Alternatively, luminal sloughing of heavily infected midgut epithelial cells may serve to modulate mosquito infections. These findings challenge previous beliefs regarding the benign nature of arbovirus-invertebrate host relationships.

  18. [Comparison of 2 populations of Aedes aegypti mosquitoes from Santiago de Cuba with different rest conduct].

    PubMed

    Bisset, Juan A; Rodríguez, Magdalena; De Armas, Yaxsier

    2005-01-01

    Two populations of Aedes aegypti that were collected in Santiago de Cuba during the epidemics of 1971 were separated for having different rest habits, some of them rested naturally on the walls up to 1 m high (Santiago de Cuba strain) and the others were found resting in the roofs of the houses (Santiago de Cuba Techo strain). These strains did not show significant differences as regards their morphological characteristics. The mosquitoes corresponding to Santiago de Cuba Techo strain presented the same patches that those of Santiago de Cuba. The resistance to organophosphate insecticides is very similar in both populations; however, the Santiago de Cuba Techo strain shows a higher resistance to pyrethroid deltamethrin than the Santiago de Cuba strain. From the biochemical point of view and by using the DEF synergist, it was proved that esterases are associated with the high resistance to clorpirifos in both strains. It was not so with the MFO, which was demonstrated by means of the piperomyl butoxide sinergist. Nevertheless, the GST enzyme seems to be responsible for the high resistance to deltamethrin detected in the Santiago de Cuba Techo strain due to the elevated frequency value of that gene in this strain. The random amplified polymorphic DNA technique was used to observe the genetic variability between the 2 populations. The results revealed that there was genetic polymorphism between the populations under study, which could have an impact on the ecology and epidemiology of the vector.

  19. Population genomics of the filarial nematode parasite Wuchereria bancrofti from mosquitoes.

    PubMed

    Small, Scott T; Reimer, Lisa J; Tisch, Daniel J; King, Christopher L; Christensen, Bruce M; Siba, Peter M; Kazura, James W; Serre, David; Zimmerman, Peter A

    2016-04-01

    Wuchereria bancrofti is a parasitic nematode and the primary cause of lymphatic filariasis--a disease specific to humans. W. bancrofti currently infects over 90 million people throughout the tropics and has been acknowledged by the world health organization as a vulnerable parasite. Current research has focused primarily on the clinical manifestations of disease and little is known about the evolutionary history of W. bancrofti. To improve upon knowledge of the evolutionary history of W. bancrofti, we whole genome sequenced 13 W. bancrofti larvae. We circumvent many of the difficulties of multiple infections by sampling larvae directly from mosquitoes that were experimentally inoculated with infected blood. To begin, we used whole genome data to reconstruct the historical population size. Our results support a history of fluctuating population sizes that can be correlated with human migration and fluctuating mosquito abundances. Next, we reconstructed the putative pedigree of W. bancrofti worms within an infection using the kinship coefficient. We deduced that there are full-sib and half-sib relationships residing within the same larval cohort. Through combined analysis of the mitochondrial and nuclear genomes we concluded that this is likely a results of polyandrous mating, the first time reported for W. bancrofti. Lastly, we scanned the genomes for signatures of natural selection. Annotation of putative selected regions identified proteins that may have aided in a parasitic life style or may have evolved to protect against current drug treatments. We discuss our results in the greater context of understanding the biology of an animal with a unique life history and ecology. PMID:26850696

  20. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system.

    PubMed

    Zélé, F; Nicot, A; Duron, O; Rivero, A

    2012-07-01

    In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. PMID:22533729

  1. Using global information technology to detect, monitor, and control mosquito pest and disease vector populations.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geographic Information Systems (GIS), image analysis, and remote sensing comprise global information technologies that are used to characterize pest and vector populations of mosquitoes. At this national meeting, scientists from ARS and McNeese State University organized and convened a half-day sym...

  2. Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey

    NASA Astrophysics Data System (ADS)

    Degaetano, Arthur T.

    2005-05-01

    For two metropolitan New Jersey counties, monthly average adult mosquito (Culex) catch from New Jersey light trap data sets covering multiple decades is related to a number of meteorological factors. From June through August climatological conditions accounted for between 40% and 50% of the variation in average catch. In general, high monthly precipitation totals both in the month corresponding to the catch and the previous month were associated with increased trap catch. However, individual heavy rainfall events tended to reduce catch. Warm temperatures exerted a positive influence on mosquito abundance in June, but were associated with a low catch in August. Linear meteorological relationships explained only a small percentage of the variations in mosquito catch during May and September. During July, and particularly August, antecedent monthly catch also explained a significant portion of the variance in the contemporaneous catch. Over 60% of the variability in August catch could be attributed to the July population.

  3. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases.

    PubMed

    Goubert, C; Minard, G; Vieira, C; Boulesteix, M

    2016-09-01

    The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions.

  4. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases

    PubMed Central

    Goubert, C; Minard, G; Vieira, C; Boulesteix, M

    2016-01-01

    The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions. PMID:27273325

  5. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases.

    PubMed

    Goubert, C; Minard, G; Vieira, C; Boulesteix, M

    2016-09-01

    The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions. PMID:27273325

  6. Demographics of natural oral infection of mosquitos by Venezuelan equine encephalitis virus.

    PubMed

    Gutiérrez, Serafín; Thébaud, Gaël; Smith, Darci R; Kenney, Joan L; Weaver, Scott C

    2015-04-01

    The within-host diversity of virus populations can be drastically limited during between-host transmission, with primary infection of hosts representing a major constraint to diversity maintenance. However, there is an extreme paucity of quantitative data on the demographic changes experienced by virus populations during primary infection. Here, the multiplicity of cellular infection (MOI) and population bottlenecks were quantified during primary mosquito infection by Venezuelan equine encephalitis virus, an arbovirus causing neurological disease in humans and equids.

  7. Reduced productivity in adult yellowfever mosquito (Diptera: Culicidae) populations

    SciTech Connect

    Rodriguez, P.H.; Hamm, W.J.; Garcia, F.; Garcia, M.; Schirf, V.

    1989-04-01

    Male and female Aedes aegypti (L.) mosquitoes of the laboratory strain ROCK were irradiated with 130 mw of argon 514.5 nm laser microbeams for 0.04, 0.25, 0.4, and 0.5 s, respectively. Egg production, percentage hatch, and productivity (average number of adults surviving after 3 wk) were used to assess mutagenic effects. Mortality was high for males in all laser radiation groups and increased with time of exposure. Except for the group treated for 0.25 s, significant reductions in total F1 progeny also were demonstrated for all other experimentals when male parents were exposed to laser radiation. Females showed a high mortality when subjected to 0.4- and 0.5-s laser radiation. No F1 progeny were produced when parental females were exposed for 0.25, 0.4, and 0.5 s. Numbers of F1 progeny from females exposed to 0.04 s of laser radiation were significantly reduced. A comparison of weekly mean number of progeny showed that the important differences in productivity occurred during the first and second week, respectively, when either male or female adult parents were subjected to laser radiation.

  8. Productivity and population density estimates of the dengue vector mosquito Aedes aegypti (Stegomyia aegypti) in Australia.

    PubMed

    Williams, C R; Johnson, P H; Ball, T S; Ritchie, S A

    2013-09-01

    New mosquito control strategies centred on the modifying of populations require knowledge of existing population densities at release sites and an understanding of breeding site ecology. Using a quantitative pupal survey method, we investigated production of the dengue vector Aedes aegypti (L.) (Stegomyia aegypti) (Diptera: Culicidae) in Cairns, Queensland, Australia, and found that garden accoutrements represented the most common container type. Deliberately placed 'sentinel' containers were set at seven houses and sampled for pupae over 10 weeks during the wet season. Pupal production was approximately constant; tyres and buckets represented the most productive container types. Sentinel tyres produced the largest female mosquitoes, but were relatively rare in the field survey. We then used field-collected data to make estimates of per premises population density using three different approaches. Estimates of female Ae. aegypti abundance per premises made using the container-inhabiting mosquito simulation (CIMSiM) model [95% confidence interval (CI) 18.5-29.1 females] concorded reasonably well with estimates obtained using a standing crop calculation based on pupal collections (95% CI 8.8-22.5) and using BG-Sentinel traps and a sampling rate correction factor (95% CI 6.2-35.2). By first describing local Ae. aegypti productivity, we were able to compare three separate population density estimates which provided similar results. We anticipate that this will provide researchers and health officials with several tools with which to make estimates of population densities.

  9. Hydrology and Mosquito Population Dynamics around a Hydropower Reservoir in Africa

    NASA Astrophysics Data System (ADS)

    Endo, N.; Eltahir, E. A.

    2013-12-01

    Malaria is associated with dams because their reservoirs provide mosquitoes, the vector of malaria, with permanent breeding sites. The risk of contracting malaria is likely to be enhanced following the increasing trend of hydropower dam construction to satisfy the expanding energy needs in developing countries. A close examination of its adverse health impacts is critical in the design, construction, and operation phases. We will present results of extensive field studies in 2012 and 2013 around the Koka Reservoir, Ethiopia. The results uncover the importance of reservoir management especially after the rainy seasons. Furthermore, we show the capability of a newly modified hydrology, entomology and malaria transmission simulator, HYDREMATS (Bomblies et al, 2008), and its potential as a tool for evaluating environmental management strategies to control malaria. HYDREMATS was developed to represent how the hydrology in nearby villages is impacted by the reservoir system, and the role of different types of vector ecologies associated with different Anopheles mosquito species. The hydrology component of HYDREMATS simulates three different mosquito breeding habitats: rain-fed pools, groundwater pools, and shoreline water. The entomology component simulates the life cycles of An. funestus and An. arabiensis, the two main vectors around the reservoir. The model was calibrated over the 2012-2013 period. The impact of reservoir water level management on the mosquito population is explored based on numerical model simulations and field experiments.

  10. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan.

    PubMed

    Rasheed, S B; Boots, M; Frantz, A C; Butlin, R K

    2013-12-01

    Eleven microsatellite markers were used to determine the genetic population structure and spread of Aedes aegypti (Stegomyia aegypti) (Diptera: Culicidae) in Pakistan using mosquitoes collected from 13 different cities. There is a single genetic cluster of Ae. aegypti in Pakistan with a pattern of isolation by distance within the population. The low level of isolation by distance suggests the long-range passive dispersal of this mosquito, which may be facilitated by the tyre trade in Pakistan. A decrease in genetic diversity from south to north suggests a recent spread of this mosquito from Karachi. A strong negative correlation between genetic distance and the quality of road connections shows that populations in cities connected by better road networks are less differentiated, which suggests the human-aided passive dispersal of Ae. aegypti in Pakistan. Dispersal on a large spatial scale may facilitate the strategy of introducing transgenic Ae. aegypti or intracellular bacteria such as Wolbachia to control the spread of dengue disease in Pakistan, but it also emphasizes the need for simple measures to control container breeding sites.

  11. Facilitating Wolbachia introductions into mosquito populations through insecticide-resistance selection

    PubMed Central

    Hoffmann, Ary A.; Turelli, Michael

    2013-01-01

    Wolbachia infections are being introduced into mosquito vectors of human diseases following the discovery that they can block transmission of disease agents. This requires mosquitoes infected with the disease-blocking Wolbachia to successfully invade populations lacking the infection. While this process is facilitated by features of Wolbachia, particularly their ability to cause cytoplasmic incompatibility, blocking Wolbachia may produce deleterious effects, such as reduced host viability or fecundity, that inhibit successful local introductions and subsequent spatial spread. Here, we outline an approach to facilitate the introduction and spread of Wolbachia infections by coupling Wolbachia introduction to resistance to specific classes of insecticides. The approach takes advantage of very high maternal transmission fidelity of Wolbachia infections in mosquitoes, complete incompatibility between infected males and uninfected females, the widespread occurrence of insecticide resistance, and the widespread use of chemical control in disease-endemic countries. This approach is easily integrated into many existing control strategies, provides population suppression during release and might be used to introduce Wolbachia infections even with high and seasonally dependent deleterious effects, such as the wMelPop infection introduced into Aedes aegypti for dengue control. However, possible benefits will need to be weighed against concerns associated with the introduction of resistance alleles. PMID:23576788

  12. Interplay of population genetics and dynamics in the genetic control of mosquitoes

    PubMed Central

    Alphey, Nina; Bonsall, Michael B.

    2014-01-01

    Some proposed genetics-based vector control methods aim to suppress or eliminate a mosquito population in a similar manner to the sterile insect technique. One approach under development in Anopheles mosquitoes uses homing endonuclease genes (HEGs)—selfish genetic elements (inherited at greater than Mendelian rate) that can spread rapidly through a population even if they reduce fitness. HEGs have potential to drive introduced traits through a population without large-scale sustained releases. The population genetics of HEG-based systems has been established using discrete-time mathematical models. However, several ecologically important aspects remain unexplored. We formulate a new continuous-time (overlapping generations) combined population dynamic and genetic model and apply it to a HEG that targets and knocks out a gene that is important for survival. We explore the effects of density dependence ranging from undercompensating to overcompensating larval competition, occurring before or after HEG fitness effects, and consider differences in competitive effect between genotypes (wild-type, heterozygotes and HEG homozygotes). We show that population outcomes—elimination, suppression or loss of the HEG—depend crucially on the interaction between these ecological aspects and genetics, and explain how the HEG fitness properties, the homing rate (drive) and the insect's life-history parameters influence those outcomes. PMID:24522781

  13. Mathematical model of temephos resistance in Aedes aegypti mosquito population

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.; Supriatna, A. K.

    2014-03-01

    Aedes aegypti is the main vector of dengue disease in many tropical and sub-tropical countries. Dengue became major public concern in these countries due to the unavailability of vaccine or drugs for dengue disease in the market. Hence, the only way to control the spread of DF and DHF is by controlling the vectors carrying the disease, for instance with fumigation, temephos or genetic manipulation. Many previous studies conclude that Aedes aegypti may develop resistance to many kind of insecticide, including temephos. Mathematical model for transmission of temephos resistance in Aedes aegypti population is discussed in this paper. Nontrivial equilibrium point of the system and the corresponding existence are shown analytically. The model analysis have shown epidemiological trends condition that permits the coexistence of nontrivial equilibrium is given analytically. Numerical results are given to show parameter sensitivity and some cases of worsening effect values for illustrating possible conditions in the field.

  14. Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations.

    PubMed

    van den Hurk, Andrew F; Hall-Mendelin, Sonja; Townsend, Michael; Kurucz, Nina; Edwards, Jim; Ehlers, Gerhard; Rodwell, Chris; Moore, Frederick A; McMahon, Jamie L; Northill, Judith A; Simmons, Russell J; Cortis, Giles; Melville, Lorna; Whelan, Peter I; Ritchie, Scott A

    2014-01-01

    Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses.

  15. Morphological and genetic diversity studies among populations of tea mosquito bug, Helopeltis theivora from Assam, India.

    PubMed

    Bhau, Brijmohan Singh; Mech, Jiten; Borthakur, Sangita; Bhuyan, Mantu; Bhattacharyya, Pranab Ram

    2014-12-01

    Multilocus DNA fingerprinting and morphometry were compared to evaluate genetic diversity of tea mosquito bug, Helopeltis theivora Waterhouse (Hemiptera: Miridae). Eighty-one female individuals representing 27 populations of H. theivora from tea plantations of different regions of Assam, India were collected and evaluated. Observation of 12 characters i.e. body length, antennae length, head width, stylet length, thorax width, forewing length, forewing width, hind wing length, hind wing width and length of foreleg, middle leg, hind leg revealed distinct pattern in different population of H. theivora. On the basis of morphological traits, six different types of population groups have been identified. Genetic analysis produced a total number of 262 bands, of which 221 (84.35 %) were polymorphic. The number of bands produced per primer varied from 2 to 17. The dendrogram derived from UPGMA cluster analysis indicates three clusters containing 24 populations at 63 % of similarity while three populations viz. H23, H19 and H14 excluded from the major cluster and come out as a discrete cluster. The cluster 1 includes populations from 9 different districts of Assam, cluster 2 again included 5 populations, cluster 3 constitute 3 populations and cluster 4 again consist of 3 populations. Both marker (morphological and molecular) systems indicated that genetic variability within populations examined was significantly high. Appropriate quality and quantity of chemical pesticides used in pest control programmes is a fundamental goal in the tea industry. It is supported by the knowledge of patterns of population connectivity and historical demography.

  16. Mosquito-Producing Containers, Spatial Distribution, and Relationship between Aedes aegypti Population Indices on the Southern Boundary of its Distribution in South America (Salto, Uruguay)

    PubMed Central

    Basso, César; Caffera, Ruben M.; García da Rosa, Elsa; Lairihoy, Rosario; González, Cristina; Norbis, Walter; Roche, Ingrid

    2012-01-01

    A study was conducted in the city of Salto, Uruguay, to identify mosquito-producing containers, the spatial distribution of mosquitoes and the relationship between the different population indices of Aedes aegypti. On each of 312 premises visited, water-filled containers and immature Ae. aegypti mosquitoes were identified. The containers were counted and classified into six categories. Pupae per person and Stegomyia indices were calculated. Pupae per person were represented spatially. The number of each type of container and number of mosquitoes in each were analyzed and compared, and their spatial distribution was analyzed. No significant differences in the number of the different types of containers with mosquitoes or in the number of mosquitoes in each were found. The distribution of the containers with mosquito was random and the distribution of mosquitoes by type of container was aggregated or highly aggregated. PMID:23128295

  17. Simulation Modelling of Population Dynamics of Mosquito Vectors for Rift Valley Fever Virus in a Disease Epidemic Setting

    PubMed Central

    Mweya, Clement N.; Holst, Niels; Mboera, Leonard E. G.; Kimera, Sharadhuli I.

    2014-01-01

    Background Rift Valley Fever (RVF) is weather dependent arboviral infection of livestock and humans. Population dynamics of mosquito vectors is associated with disease epidemics. In our study, we use daily temperature and rainfall as model inputs to simulate dynamics of mosquito vectors population in relation to disease epidemics. Methods/Findings Time-varying distributed delays (TVDD) and multi-way functional response equations were implemented to simulate mosquito vectors and hosts developmental stages and to establish interactions between stages and phases of mosquito vectors in relation to vertebrate hosts for infection introduction in compartmental phases. An open-source modelling platforms, Universal Simulator and Qt integrated development environment were used to develop models in C++ programming language. Developed models include source codes for mosquito fecundity, host fecundity, water level, mosquito infection, host infection, interactions, and egg time. Extensible Markup Language (XML) files were used as recipes to integrate source codes in Qt creator with Universal Simulator plug-in. We observed that Floodwater Aedines and Culicine population continued to fluctuate with temperature and water level over simulation period while controlled by availability of host for blood feeding. Infection in the system was introduced by floodwater Aedines. Culicines pick infection from infected host once to amplify disease epidemic. Simulated mosquito population show sudden unusual increase between December 1997 and January 1998 a similar period when RVF outbreak occurred in Ngorongoro district. Conclusion/Significance Findings presented here provide new opportunities for weather-driven RVF epidemic simulation modelling. This is an ideal approach for understanding disease transmission dynamics towards epidemics prediction, prevention and control. This approach can be used as an alternative source for generation of calibrated RVF epidemics data in different settings

  18. Natural Selection in Large Populations

    NASA Astrophysics Data System (ADS)

    Desai, Michael

    2011-03-01

    I will discuss theoretical and experimental approaches to the evolutionary dynamics and population genetics of natural selection in large populations. In these populations, many mutations are often present simultaneously, and because recombination is limited, selection cannot act on them all independently. Rather, it can only affect whole combinations of mutations linked together on the same chromosome. Methods common in theoretical population genetics have been of limited utility in analyzing this coupling between the fates of different mutations. In the past few years it has become increasingly clear that this is a crucial gap in our understanding, as sequence data has begun to show that selection appears to act pervasively on many linked sites in a wide range of populations, including viruses, microbes, Drosophila, and humans. I will describe approaches that combine analytical tools drawn from statistical physics and dynamical systems with traditional methods in theoretical population genetics to address this problem, and describe how experiments in budding yeast can help us directly observe these evolutionary dynamics.

  19. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito.

    PubMed

    Medley, Kim A; Jenkins, David G; Hoffman, Eric A

    2015-01-01

    Human-aided transport is responsible for many contemporary species introductions, yet the contribution of human-aided transport to dispersal within non-native regions is less clear. Understanding dispersal dynamics for invasive species can streamline mitigation efforts by targeting routes that contribute disproportionally to spread. Because of its limited natural dispersal ability, rapid spread of the Asian tiger mosquito (Aedes albopictus) has been attributed to human-aided transport, but until now, the relative roles of human-aided and natural movement have not been rigorously evaluated. Here, we use landscape genetics and information-theoretic model selection to evaluate 52 models representing 9240 pairwise dispersal paths among sites across the US range for Ae. albopictus and show that recent gene flow reflects a combination of natural and human-aided dispersal. Highways and water availability facilitate dispersal at a broad spatial scale, but gene flow is hindered by forests at the current distributional limit (range edge) and by agriculture among sites within the mosquito's native climatic niche (range core). Our results show that highways are important to genetic structure between range-edge and range-core pairs, suggesting a role for human-aided mosquito transport to the range edge. In contrast, natural dispersal is dominant at smaller spatial scales, reflecting a shifting dominance to natural movement two decades after introduction. These conclusions highlight the importance of (i) early intervention for species introductions, particularly those with readily dispersed dormant stages and short generation times, and (ii) strict monitoring of commercial shipments for transported immature stages of Ae. albopictus, particularly towards the northern edge of the US range.

  20. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities

    PubMed Central

    Yee, Donald A.; Abuzeineh, Alisa A.; Ezeakacha, Nnaemeka F.; Schelble, Stephanie S.; Glasgow, William C.; Flanagan, Stephen D.; Skiff, Jeffrey J.; Reeves, Ashton; Kuehn, Kevin

    2015-01-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813

  1. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities.

    PubMed

    Yee, Donald A; Abuzeineh, Alisa A; Ezeakacha, Nnaemeka F; Schelble, Stephanie S; Glasgow, William C; Flanagan, Stephen D; Skiff, Jeffrey J; Reeves, Ashton; Kuehn, Kevin

    2015-05-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813

  2. Detection, monitoring, and evaluation of spatio-temporal change in mosquito populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    USDA-ARS scientists seek to implement a sampling and global information technology based system that can be used for mosquito detection and trap deployment, to estimate mosquito species composition and distribution in space and time, and for targeting and evaluation of mosquito controls. Knowledge ...

  3. Established Population of the Invasive Mosquito Species Aedes albopictus in Romania, 2012-14.

    PubMed

    Prioteasa, Liviu F; Dinu, Sorin; Fălcuţă, Elena; Ceianu, Cornelia S

    2015-06-01

    During an entomological investigation carried out in Bucharest and surroundings in fall of 2012, 45 adult mosquitoes (38 females and 7 males) of Aedes albopictus were collected in a neighborhood from the southern area of the city. The morphological identification of the species was further confirmed by sequencing 2 mitochondrial DNA markers: the cytochrome c oxidase subunit I and NADH dehydrogenase subunit 5 genes. Aedes albopictus was collected again in 2013 in the same area from July until October. During late summer the species was found also in another location in the city, downtown Bucharest. Larvae were found in water barrels and other types of household containers, as well as in rain catch basins. In 2014, following a nuisance complaint of a Bucharest inhabitant, the entomological investigation found aggressive Ae. albopictus adults on his property that harbored many mosquito larvae in container-type breeding habitats. These findings are the 1st records of this invasive species and of its breeding population in Romania, and show maintenance of the species over 2 winter seasons. Surveillance of the species outside the area of the capital city was not performed, therefore it is not known whether Ae. albopictus has been introduced in other regions of the country. The presence of Ae. albopictus has been reported every year (2012-14) to competent public health authorities, stressing on the importance of surveillance and of implementation of control measures.

  4. Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations.

    PubMed

    Valerio, Laura; North, Ace; Collins, C Matilda; Mumford, John D; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q

    2016-01-01

    The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks. PMID:27669312

  5. Antipathogen genes and the replacement of disease-vectoring mosquito populations: a model-based evaluation.

    PubMed

    Robert, Michael A; Okamoto, Kenichi W; Gould, Fred; Lloyd, Alun L

    2014-12-01

    Recently, genetic strategies aimed at controlling populations of disease-vectoring mosquitoes have received considerable attention as alternatives to traditional measures. Theoretical studies have shown that female-killing (FK), antipathogen (AP), and reduce and replace (R&R) strategies can each decrease the number competent vectors. In this study, we utilize a mathematical model to evaluate impacts on competent Aedes aegypti populations of FK, AP, and R&R releases as well as hybrid strategies that result from combinations of these three approaches. We show that while the ordering of efficacy of these strategies depends upon population life history parameters, sex ratio of releases, and switch time in combination strategies, AP-only and R&R/AP releases typically lead to the greatest long-term reduction in competent vectors. R&R-only releases are often less effective at long-term reduction of competent vectors than AP-only releases or R&R/AP releases. Furthermore, the reduction in competent vectors caused by AP-only releases is easier to maintain than that caused by FK-only or R&R-only releases even when the AP gene confers a fitness cost. We discuss the roles that density dependence and inclusion of females play in the order of efficacy of the strategies. We anticipate that our results will provide added impetus to continue developing AP strategies.

  6. Comparison of Model Predictions and Laboratory Observations of Transgene Frequencies in Continuously-Breeding Mosquito Populations.

    PubMed

    Valerio, Laura; North, Ace; Collins, C Matilda; Mumford, John D; Facchinelli, Luca; Spaccapelo, Roberta; Benedict, Mark Q

    2016-01-01

    The persistence of transgenes in the environment is a consideration in risk assessments of transgenic organisms. Combining mathematical models that predict the frequency of transgenes and experimental demonstrations can validate the model predictions, or can detect significant biological deviations that were neither apparent nor included as model parameters. In order to assess the correlation between predictions and observations, models were constructed to estimate the frequency of a transgene causing male sexual sterility in simulated populations of a malaria mosquito Anopheles gambiae that were seeded with transgenic females at various proportions. Concurrently, overlapping-generation laboratory populations similar to those being modeled were initialized with various starting transgene proportions, and the subsequent proportions of transgenic individuals in populations were determined weekly until the transgene disappeared. The specific transgene being tested contained a homing endonuclease gene expressed in testes, I-PpoI, that cleaves the ribosomal DNA and results in complete male sexual sterility with no effect on female fertility. The transgene was observed to disappear more rapidly than the model predicted in all cases. The period before ovipositions that contained no transgenic progeny ranged from as little as three weeks after cage initiation to as long as 11 weeks.

  7. [Mosquito allergy].

    PubMed

    Haas, H; Tran, A

    2014-08-01

    Althought serious illnesses can be transmitted by mosquitoes, the most frequent manifestations are due to the contact with saliva of mosquitoes during the blood meal. Culex and Aedes are meeting in countries with moderate climates. Clinical signs vary according to the immunoallergical response, from simple pruritic wheals to immediate and/or delayed allergic reactions. Some reactions can provoke confusion with an infectious cellulitis and an inappropriate antibiotherapy. The natural history of insect bite reactions in an individual tends to progress through 5 stages until immunizing tolerance settles down. Skin prick testing or Serum specific IgE of whole body extracts are lacking sensibility and specificity. Actually, they must be reserved for the most invalidating or severe cases. The recombinant allergens of the saliva of mosquitoes should allow to improve diagnosis and to envisage immunotherapy.

  8. Mathematical model in controlling dengue transmission with sterile mosquito strategies

    NASA Astrophysics Data System (ADS)

    Aldila, D.; Nuraini, N.; Soewono, E.

    2015-09-01

    In this article, we propose a mathematical model for controlling dengue disease transmission with sterile mosquito techniques (SIT). Sterile male introduced from lab in to habitat to compete with wild male mosquito for mating with female mosquito. Our aim is to displace gradually the natural mosquito from the habitat. Mathematical model analysis for steady states and the basic reproductive ratio are performed analytically. Numerical simulation are shown in some different scenarios. We find that SIT intervention is potential to controlling dengue spread among humans population

  9. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    PubMed Central

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  10. Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes.

    PubMed

    Ewing, D A; Cobbold, C A; Purse, B V; Nunn, M A; White, S M

    2016-07-01

    Mosquito-borne diseases cause substantial mortality and morbidity worldwide. These impacts are widely predicted to increase as temperatures warm and extreme precipitation events become more frequent, since mosquito biology and disease ecology are strongly linked to environmental conditions. However, direct evidence linking environmental change to changes in mosquito-borne disease is rare, and the ecological mechanisms that may underpin such changes are poorly understood. Environmental drivers, such as temperature, can have non-linear, opposing impacts on the demographic rates of different mosquito life cycle stages. As such, model frameworks that can deal with fluctuations in temperature explicitly are required to predict seasonal mosquito abundance, on which the intensity and persistence of disease transmission under different environmental scenarios depends. We present a novel, temperature-dependent, delay-differential equation model, which incorporates diapause and the differential effects of temperature on the duration and mortality of each life stage and demonstrates the sensitivity of seasonal abundance patterns to inter- and intra-annual changes in temperature. Likely changes in seasonal abundance and exposure to mosquitoes under projected changes in UK temperatures are presented, showing an increase in peak vector abundance with warming that potentially increases the risk of disease outbreaks. PMID:27084359

  11. Outbreak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: Culicidae).

    PubMed

    Thavara, Usavadee; Tawatsin, Apiwat; Pengsakul, Theerakamol; Bhakdeenuan, Payu; Chanama, Sumalee; Anantapreecha, Surapee; Molito, Chusak; Chompoosri, Jakkrawarn; Thammapalo, Suwich; Sawanpanyalert, Pathom; Siriyasatien, Padet

    2009-09-01

    We investigated chikungunya fever outbreak in the southern part of Thailand. Human plasma specimens obtained from suspected patients and adult wild-caught mosquitoes were detected for chikungunya virus employing reverse transcriptase-polymerase chain reaction technique. Chikungunya virus was detected in about half of the blood specimens whereas a range of 5.5 to 100% relative infection rate was found in both sexes of the vector mosquitoes, Aedes aegypti (L.) and Ae. albopictus Skuse. The infection rate in Ae. albopictus was higher than in Ae. aegypti, with relative infection rate in male of both species being higher than in female. The appearance of chikungunya virus in adult male mosquitoes of both species reveals a role of transovarial transmission of the virus in field population of the mosquito vectors. These findings have provided further understanding of the relationship among mosquito vectors, chikungunya virus and epidemiology of chikungunya fever in Thailand.

  12. Populations, Natural Selection, and Applied Organizational Science.

    ERIC Educational Resources Information Center

    McKelvey, Bill; Aldrich, Howard

    1983-01-01

    Deficiencies in existing models in organizational science may be remedied by applying the population approach, with its concepts of taxonomy, classification, evolution, and population ecology; and natural selection theory, with its principles of variation, natural selection, heredity, and struggle for existence, to the idea of organizational forms…

  13. Impact of dryland salinity on population dynamics of vector mosquitoes (Diptera: Culicidae) of Ross River virus in inland areas of southwestern Western Australia.

    PubMed

    Jardine, A; Lindsay, M D A; Johansen, C A; Cook, A; Weinstein, P

    2008-11-01

    Clearing of native vegetation for agriculture since European settlement has left 1.047 million ha of southwestern Australia affected by a severe form of environmental degradation called dryland salinity, characterized by secondary soil salinization and waterlogging. This area may expand by a further 1.7-3.4 million ha if current trends continue. Detailed investigations of seasonal of adult and larval mosquito population dynamics were undertaken in the region to test the hypothesis that the development of dryland salinity and waterlogging in inland southwestern Australia has led to a succession of mosquito species and increased Ross River virus (family Togaviridae, genus Alphavirus, RRV) transmission risk. Aedes (Ochlerotatus) camptorhynchus (Thomson) made up >90% of adult mosquito collections in saline regions. Nonmetric multidimensional scaling and generalized estimating equations modeling demonstrated that it was strongly associated with increasing severity of dryland salinity. This article describes the first detailed investigation of the mosquito fauna of inland southwestern Australia, and it is the first description of the influence of secondary soil salinity on mosquito population dynamics. Despite the dominant presence of Ae. camptorhynchus, RRV disease incidence is not currently a significant population health priority in areas affected by dryland salinity. Potential limiting factors include local climatic impacts on the seasonal mosquito population dynamics, vertebrate host distribution and feeding behavior of Ae. camptorhynchus, and the scarce and uneven distribution of the human population in the region.

  14. Genebanking seeds from natural populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional storage protocols have been developed to preserve genetic diversity of seeds of crops in genebanks. These same principles have been applied to preserve seeds from wild populations. While most principles for conventional storage protocols are applicable to a broad range of wild species...

  15. Combining Hydrology and Mosquito Population Models to Identify the Drivers of Rift Valley Fever Emergence in Semi-Arid Regions of West Africa

    PubMed Central

    Soti, Valérie; Tran, Annelise; Degenne, Pascal; Chevalier, Véronique; Lo Seen, Danny; Thiongane, Yaya; Diallo, Mawlouth; Guégan, Jean-François; Fontenille, Didier

    2012-01-01

    Background Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. Methodology/Principal Findings A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. Conclusion/Significance Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the

  16. Ecological immunology of mosquito-malaria interactions.

    PubMed

    Tripet, Frédéric; Aboagye-Antwi, Fred; Hurd, Hilary

    2008-05-01

    More than a century after the discovery of the complex life cycle of its causative agent, malaria remains a major health problem. Understanding mosquito-malaria interactions could lead to breakthroughs in malaria control. Novel strategies, such as the design of transgenic mosquitoes refractory to Plasmodium, or design of human vaccines emulating mosquito resistance to the parasite, require extensive knowledge of processes involved in immune responses and of microevolutionary mechanisms that create and maintain variation in immune responses in wild vector populations. The recent realization of how intimately and specifically mosquitoes and Plasmodium co-evolve in Nature is driving vector molecular biologists and evolutionary ecologists to move closer to the natural setting under the common umbrella of 'Ecological immunology'.

  17. The Impact of Wolbachia on Virus Infection in Mosquitoes

    PubMed Central

    Johnson, Karyn N.

    2015-01-01

    Mosquito-borne viruses such as dengue, West Nile and chikungunya viruses cause significant morbidity and mortality in human populations. Since current methods are not sufficient to control disease occurrence, novel methods to control transmission of arboviruses would be beneficial. Recent studies have shown that virus infection and transmission in insects can be impeded by co-infection with the bacterium Wolbachia pipientis. Wolbachia is a maternally inherited endosymbiont that is commonly found in insects, including a number of mosquito vector species. In Drosophila, Wolbachia mediates antiviral protection against a broad range of RNA viruses. This discovery pointed to a potential strategy to interfere with mosquito transmission of arboviruses by artificially infecting mosquitoes with Wolbachia. This review outlines research on the prevalence of Wolbachia in mosquito vector species and the impact of antiviral effects in both naturally and artificially Wolbachia-infected mosquitoes. PMID:26556361

  18. Natural vertical transmission of ndumu virus in Culex pipiens (Diptera: Culicidae) mosquitoes collected as larvae.

    PubMed

    Lutomiah, Joel; Ongus, Juliette; Linthicum, Kenneth J; Sang, Rosemary

    2014-09-01

    Ndumu virus (NDUV) is a member of the family Togaviridae and genus Alphavirus. In Kenya, the virus has been isolated from a range of mosquito species but has not been associated with human or animal morbidity. Little is know about the transmission dynamics or vertebrate reservoirs of this virus. NDUV was isolated from two pools of female Culex pipiens mosquitoes, IJR37 (n = 18) and IJR73 (n = 3), which were collected as larvae on 15 April 2013 from two dambos near the village of Marey, Ijara District, Garissa County, Kenya, and reared to adults and identified to species. These results represent the first field evidence of vertical transmission of NDUV among mosquitoes.

  19. Wolbachia infections in natural Anopheles populations affect egg laying and negatively correlate with Plasmodium development

    PubMed Central

    Shaw, W. Robert; Marcenac, Perrine; Childs, Lauren M.; Buckee, Caroline O.; Baldini, Francesco; Sawadogo, Simon P.; Dabiré, Roch K.; Diabaté, Abdoulaye; Catteruccia, Flaminia

    2016-01-01

    The maternally inherited alpha-proteobacterium Wolbachia has been proposed as a tool to block transmission of devastating mosquito-borne infectious diseases like dengue and malaria. Here we study the reproductive manipulations induced by a recently identified Wolbachia strain that stably infects natural mosquito populations of a major malaria vector, Anopheles coluzzii, in Burkina Faso. We determine that these infections significantly accelerate egg laying but do not induce cytoplasmic incompatibility or sex-ratio distortion, two parasitic reproductive phenotypes that facilitate the spread of other Wolbachia strains within insect hosts. Analysis of 221 blood-fed A. coluzzii females collected from houses shows a negative correlation between the presence of Plasmodium parasites and Wolbachia infection. A mathematical model incorporating these results predicts that infection with these endosymbionts may reduce malaria prevalence in human populations. These data suggest that Wolbachia may be an important player in malaria transmission dynamics in Sub-Saharan Africa. PMID:27243367

  20. Mode of action for natural products isolated from essential oils of two trees is different from available mosquito adulticides.

    PubMed

    McAllister, Janet C; Adams, Mary F

    2010-11-01

    Insecticidal properties of natural products may present alternatives to the use of synthetic molecule pesticides that are of diminishing effectiveness due to resistance. Three compounds, thymoquinone, nootkatone, and carvacrol, components of Alaska yellow cedar, Chamaecyyparis nootkatensis (D. Don) Spach, and incense cedar, Calocedrus decurrens (Torr.), essential oils, have been shown to have biological activity against a variety of mosquito and tick species. Although these components act as both repellents and insecticides, how they function in either capacity is unknown. Their use as mosquito control insecticides would be greatly increased if their mode of action is not the same as that of currently used commercial products. This study compared the lethal dosages for nootkatone, carvacrol, and thymoquinone by using colony strains of Anopheles gambiae Giles with known mutations at three different target sites. The altered target sites evaluated were the sodium channel para-locus mutation (L1014 F KDR) that confers permethrin resistance, the ACE-1 gene that confers organophosphate and carbamate resistance, and a gamma-aminobutyric acid receptor mutation of the Rdl locus conferring dieldrin resistance. Significant increases in lethal dose were not observed in any of the mosquito strains for any of the compounds tested compared with the doses required of chemicals with known modes of action at the mutated sites. Although the mode of action was not determined, this screening study indicates that none of these compounds interact at the target sites represented in the test mosquito strains. These compounds represent a different mode of action than existing chemicals currently used in mosquito control. PMID:21175062

  1. (Genetic structure of natural populations)

    SciTech Connect

    Not Available

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs.

  2. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania

    PubMed Central

    Opiyo, Mercy A.; Hamer, Gabriel L.; Lwetoijera, Dickson W.; Auckland, Lisa D.; Majambere, Silas; Okumu, Fredros O.

    2016-01-01

    Background Marking wild mosquitoes is important for understanding their ecology, behaviours and role in disease transmission. Traditional insect marking techniques include using fluorescent dyes, protein labels, radioactive labels and tags, but such techniques have various limitations; notably low marker retention and inability to mark wild mosquitoes at source. Stable isotopes are gaining wide spread use for non-invasive marking of arthropods, permitting greater understanding of mosquito dispersal and responses to interventions. We describe here a simple technique for marking naturally-breeding malaria and dengue vectors using stable isotopes of nitrogen (15N) and carbon (13C), and describe potential field applications. Methods We created man-made aquatic mosquito habitats and added either 15N-labelled potassium nitrate or 13C-labelled glucose, leaving non-adulterated habitats as controls. We then allowed wild mosquitoes to lay eggs in these habitats and monitored their development in situ. Pupae were collected promptly as they appeared and kept in netting cages. Emergent adults (in pools of ~4 mosquitoes/pool) and individually stored pupae were desiccated and analysed using Isotope Ratio Mass Spectrometry (IRMS). Findings Anopheles gambiae s.l and Aedes spp. from enriched 13C and enriched 15N larval habitats had significantly higher isotopic levels than controls (P = 0.005), and both isotopes produced sufficient distinction between marked and unmarked mosquitoes. Mean δ15N for enriched females and males were 275.6±65.1 and 248.0±54.6, while mean δ15N in controls were 2.1±0.1 and 3.9±1.7 respectively. Similarly, mean δ13C for enriched females and males were 36.08±5.28 and 38.5±6.86, compared to -4.3±0.2 and -7.9±3.6 in controls respectively. Mean δ15N and δ13C was significantly higher in any pool containing at least one enriched mosquito compared to pools with all unenriched mosquitoes, P<0.001. In all cases, there were variations in standardized

  3. Genetic diversity and population genetics of mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America.

    PubMed

    Pfeiler, Edward; Flores-López, Carlos A; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented.

  4. Genetic Diversity and Population Genetics of Mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America

    PubMed Central

    Pfeiler, Edward; Flores-López, Carlos A.; Mada-Vélez, Jesús Gerardo; Escalante-Verdugo, Juan; Markow, Therese A.

    2013-01-01

    The population genetics and phylogenetic relationships of Culex mosquitoes inhabiting the Sonoran Desert region of North America were studied using mitochondrial DNA and microsatellite molecular markers. Phylogenetic analyses of mitochondrial cytochrome c oxidase subunit I (COI) from mosquitoes collected over a wide geographic area, including the Baja California peninsula, and mainland localities in southern Arizona, USA and Sonora, Mexico, showed several well-supported partitions corresponding to Cx. quinquefasciatus, Cx. tarsalis, and two unidentified species, Culex sp. 1 and sp. 2. Culex quinquefasciatus was found at all localities and was the most abundant species collected. Culex tarsalis was collected only at Tucson, Arizona and Guaymas, Sonora. The two unidentified species of Culex were most abundant at Navojoa in southern Sonora. Haplotype and nucleotide diversities in the COI gene segment were substantially lower in Cx. quinquefasciatus compared with the other three species. Analysis of molecular variance revealed little structure among seven populations of Cx. quinquefasciatus, whereas significant structure was found between the two populations of Cx. tarsalis. Evidence for an historical population expansion beginning in the Pleistocene was found for Cx. tarsalis. Possible explanations for the large differences in genetic diversity between Cx. quinquefasciatus and the other species of Culex are presented. PMID:24302868

  5. Climate-population analysis of potential mosquito vectors of emerging arbovirus disease threats to the US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in ...

  6. French invasive Asian tiger mosquito populations harbor reduced bacterial microbiota and genetic diversity compared to Vietnamese autochthonous relatives

    PubMed Central

    Minard, G.; Tran, F. H.; Van, Van Tran; Goubert, C.; Bellet, C.; Lambert, G.; Kim, Khanh Ly Huynh; Thuy, Trang Huynh Thi; Mavingui, P.; Valiente Moro, C.

    2015-01-01

    The Asian tiger mosquito Aedes albopictus is one of the most significant pathogen vectors of the twenty-first century. Originating from Asia, it has invaded a wide range of eco-climatic regions worldwide. The insect-associated microbiota is now recognized to play a significant role in host biology. While genetic diversity bottlenecks are known to result from biological invasions, the resulting shifts in host-associated microbiota diversity has not been thoroughly investigated. To address this subject, we compared four autochthonous Ae. albopictus populations in Vietnam, the native area of Ae. albopictus, and three populations recently introduced to Metropolitan France, with the aim of documenting whether these populations display differences in host genotype and bacterial microbiota. Population-level genetic diversity (microsatellite markers and COI haplotype) and bacterial diversity (16S rDNA metabarcoding) were compared between field-caught mosquitoes. Bacterial microbiota from the whole insect bodies were largely dominated by Wolbachia pipientis. Targeted analysis of the gut microbiota revealed a greater bacterial diversity in which a fraction was common between French and Vietnamese populations. The genus Dysgonomonas was the most prevalent and abundant across all studied populations. Overall genetic diversities of both hosts and bacterial microbiota were significantly reduced in recently established populations of France compared to the autochthonous populations of Vietnam. These results open up many important avenues of investigation in order to link the process of geographical invasion to shifts in commensal and symbiotic microbiome communities, as such shifts may have dramatic impacts on the biology and/or vector competence of invading hematophagous insects. PMID:26441903

  7. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics

    PubMed Central

    2015-01-01

    Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific

  8. Plant extracts as potential mosquito larvicides

    PubMed Central

    Ghosh, Anupam; Chowdhury, Nandita; Chandra, Goutam

    2012-01-01

    Mosquitoes act as a vector for most of the life threatening diseases like malaria, yellow fever, dengue fever, chikungunya ferver, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management (IMM), emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain and adverse effects on environmental quality and non target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are non-toxic, easily available at affordable prices, biodegradable and show broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on phytochemical sources and mosquitocidal activity, their mechanism of action on target population, variation of their larvicidal activity according to mosquito species, instar specificity, polarity of solvents used during extraction, nature of active ingredient and promising advances made in biological control of mosquitoes by plant derived secondary metabolites have been reviewed. PMID:22771587

  9. Differential sensitivity to Bacillus thuringiensis var. israelensis and temephos in field mosquito populations of Ochlerotatus cataphylla (Diptera: Culicidae): toward resistance?

    PubMed

    Boyer, Sébastien; Tilquin, Mathieu; Ravanel, Patrick

    2007-01-01

    In the present study, four populations of the same field mosquito species, Ochlerotatus cataphylla, were sampled over the Rh6ne-Alpes region (France), and their respective sensitivity to the organophosphate temephos and the bacterio-insecticide Bacillus thuringiensis var. israelensis (Bti) was measured. The results obtained in toxicological tests showed significant differences in the larval sensitivities of the four populations for both insecticides. These differences appeared to be related to the activity of the three main families of detoxifying enzymes: Cytochrome P450 monooxygenases, glutathione-S-transferases (GSTs), and esterases. All three enzyme families were significantly overexpressed in the less susceptible larval population, and after multiple regressions, GSTs and esterases came out as the most explicative variables of the larval sensitivity. Considering these results and the chemical history of the sites in terms of insecticide treatments, the hypothesis of cross-effects of insecticides leading to resistance acquisition to Bti in field organisms emerges.

  10. Fine-scale population genetic structure of a wildlife disease vector: The southern house mosquito on the island of Hawaii

    USGS Publications Warehouse

    Keyghobadi, N.; LaPointe, D.; Fleischer, R.C.; Fonseca, D.M.

    2006-01-01

    The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector. ?? 2006 The Authors.

  11. Natural vertical transmission of Ndumu virus in Culex pipiens (Diptera; Culicidae) mosquitoes collected as larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ndumu virus (NDUV) is a member of the Family: Togaviridae and Genus: Alphavirus. In Kenya the virus has been isolated from a range of mosquito species but has not been associated with human or animal morbidity. Little is know about the transmission dynamics or vertebrate reservoirs of this virus. We...

  12. Genomic Approaches with Natural Fish Populations

    PubMed Central

    Oleksiak, M. F.

    2011-01-01

    Natural populations versus inbred stocks provide a much richer resource for identifying the effects of nucleotide substitutions because natural populations have greater polymorphism. Additionally, natural populations offer an advantage over most common research organisms because they are subject to natural selection, and analyses of these adaptations can be used to identify biologically important changes. Among fishes, these analyses are enhanced by having a wide diversity of species (> 28,000 species, more than any other group of vertebrates) living in a huge range of environments (from below freezing to > 46° C, in fresh water to salinities > 40 ppt.). Moreover, fishes exhibit many different life history and reproductive strategies and have many different phenotypes and social structures. While fishes provide numerous advantages over other vertebrate models, there is still a dearth of available genomic tools for fishes. Fish make up approximately half of all known vertebrate species, yet less than 0.2% of fish species have significant genomic resources. Nonetheless, genomic approaches with fishes have provided some of the first measures of individual variation in gene expression and insights in to environmental and ecological adaptations. Thus, genomic approaches with natural fish populations have the potential to revolutionize fundamental studies of diverse fish species that offer myriad ecological and evolutionary questions. PMID:20409163

  13. [Natural forming causes of China population distribution].

    PubMed

    Fang, Yu; Ouyang, Zhi-Yun; Zheng, Hua; Xiao, Yi; Niu, Jun-Feng; Chen, Sheng-Bin; Lu, Fei

    2012-12-01

    The diverse natural environment in China causes the spatial heterogeneity of China population distribution. It is essential to understand the interrelations between the population distribution pattern and natural environment to enhance the understanding of the man-land relationship and the realization of the sustainable management for the population, resources, and environment. This paper analyzed the China population distribution by adopting the index of population density (PD) in combining with spatial statistic method and Lorenz curve, and discussed the effects of the natural factors on the population distribution and the interrelations between the population distribution and 16 indices including average annual precipitation (AAP), average annual temperature (AAT), average annual sunshine duration (AASD), precipitation variation (PV), temperature variation (TV), sunshine duration variation (SDV), relative humidity (RH), aridity index (AI), warmth index ( WI), > or = 5 degrees C annual accumulated temperature (AACT), average elevation (AE), relative height difference (RHD), surface roughness (SR), water system density (WSD), net primary productivity (NPP), and shortest distance to seashore (SDTS). There existed an obvious aggregation phenomenon in the population distribution in China. The PD was high in east China, medium in central China, and low in west China, presenting an obvious positive spatial association. The PD was significantly positively correlated with WSD, AAT, AAP, NPP, AACT, PV, RH, and WI, and significantly negatively correlated with RHD, AE, SDV, SR, and SDTS. The climate factors (AAT, WI, PV, and NPP), topography factors (SR and RHD), and water system factor (WSD) together determined the basic pattern of the population distribution in China. It was suggested that the monitoring of the eco-environment in the east China of high population density should be strengthened to avoid the eco-environmental degradation due to the expanding population, and

  14. Population dynamics of some Pakistan mosquitoes: changes in adult relative abundance over time and space.

    PubMed

    Reisen, W K; Milby, M M

    1986-02-01

    Time series and spatial changes in the relative abundance of 14 mosquito species were described from weekly or biweekly collections at nine localities in Punjab province, Pakistan, from January 1976 to June 1980. Comparisons between indoor aspirator catches and outdoor mechanical sweeper collections enabled mosquito resting habits to be classified as: (1) endophilic (Anopheles culicifacies, An. fluviatilis, An. stephensi, An. subpictus); (2) partially exophilic (An. annularis, An. pulcherrimus, An. nigerrimus, Culex bitaeniorhynchus, Cx, pseudovishnui, Cx, quinquefasciatus, Cx. tritaeniorhynchus), or exophilic (Cx. fuscocephala, Aedes caspius, Mansonia uniformis). Temporal abundance patterns were grouped by seasonality, overwintering strategies and the magnitude of fluctuation. Seasonal patterns were: (1) unimodal-spring (Cx. quinquefasciatus, Ae. capius); (2) unimodal-monsoon (An. nigerrimus, An. subpictus, Cx. bitaeniorhynchus, Cx. fuscocephala); (3) bimodal-spring dominant (An. annularis, An. culcifacies, An. stephensi), and (4) bimodal-monsoon/post-monsoon dominant (An. fluviatilis, An. pulcherrimus, Cx. pseudovishnui, Cx. tritaeniorhynchus, Ma. uniformis). Mosquito overwintering strategies included: (1) adults with slowed reproductive activity (An. annularis, An. culicifacies, An. fluviatilis, An. pulcherrimus, An. stephensi, Cx. quinquefasciatus); (2) females with interrupted reproductive activity (An. nigerrimus, Cx. fuscocephala, Cx. pseudovishnui, Cx. tritaeniorhynchus); (3) immature stages (Ae. caspius, Ma. uniformis) and (4) annual extinction and re-introduction (An. subpictus). The magnitude of seasonal change was classified by the number of standard deviations from the overall mean exhibited by the annual maxima or minima: (1) stationary, less than 1 standard deviation (An. culicifacies, An. fluviatilis, Cx. bitaeniorhynchus, Ae. caspius), (2) fluctuating moderately, one to two standard deviations (An. annularis, An. nigerrimus, An. pulcherrimus, An

  15. Invasion of Wolbachia at the residential block level is associated with local abundance of Stegomyia aegypti, yellow fever mosquito, populations and property attributes.

    PubMed

    Hoffmann, A A; Goundar, A A; Long, S A; Johnson, P H; Ritchie, S A

    2014-08-01

    Wolbachia can suppress dengue and control mosquito populations and this depends on the successful invasion of Wolbachia-infected mosquitoes into local populations. Ovitrap data collected during the recent invasion of wMel-infected Stegomyia aegypti (Diptera: Culicidae) (Linnaeus) into Gordonvale near Cairns, Australia, were used to identify variables that help predict the success of localized invasion. Based on the variance in Wolbachia frequencies across Gordonvale as well as at another release site at Yorkeys Knob in comparison to simulations, it was estimated that on average 2-4 females contributed eggs to an ovitrap. By collating ovitrap data from two collection periods at the start of the release from residential blocks, it was found that uninfected mosquitoes had a patchy distribution across the release site. Residential blocks with relatively high uninfected mosquito numbers were less easily invaded by Wolbachia than blocks with low numbers. The numbers of uninfected mosquitoes in ovitraps were negatively correlated with the proportion of brick houses in a residential block, whereas local Wolbachia frequencies were correlated positively with this variable as well as negatively with the amount of shading in a yard and availability of breeding sites. These findings point to proxy measures for predicting the ease of localized invasion of Wolbachia. PMID:25171611

  16. Insecticide resistance status, esterase activity, and electromorphs from mosquito populations of Culex quinquefasciatus Say (Diptera: Culicidae), in Houston (Harris County), Texas.

    PubMed

    Pietrantonio, P V; Gibson, G; Nawrocki, S; Carrier, F; Knight, W P

    2000-06-01

    Culex quinquefasciatus Say is a vector of St. Louis encephalitis (SLE) in Texas. This disease is endemic and prevalent in the Houston area. Disease prevention through mosquito control is mainly targeted against adults by application of a resmethrin-piperonyl butoxide formulation (Scourge). Immature mosquitoes were collected from eight areas in Harris County during 1998. The susceptibility status of these populations to Scourge, malathion, and resmethrin, the latter alone or with an esterase inhibitor as a synergist, was determined using a bottle assay with females. The population structure was investigated by electrophoretic analysis of esterases and their activity. Individual females were also analyzed for esterase activity by plate assay and for isoenzyme pattern by native PAGE. Bioassays indicated high levels of resistance to malathion in all areas. In addition, the effectiveness of Scourge in mosquitoes from area 51 deteriorated throughout the season. A localized, distinctive esterase pattern and activity level was observed in mosquitoes from different areas. Overall, the frequency of esterases Est alpha 2 (A2)/Est beta 2 (B2) was higher than that of Est beta 1 (B1). Altogether, these results indicate the onset of a fragile situation for mosquito control that should be further analyzed to effectively maintain the SLE prevention program for Harris County.

  17. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle.

    PubMed

    Hodges, Theresa K; Athrey, Giridhar; Deitz, Kevin C; Overgaard, Hans J; Matias, Abrahan; Caccone, Adalgisa; Slotman, Michel A

    2013-12-01

    On Bioko Island, Equatorial Guinea, indoor residual spraying (IRS) has been part of the Bioko Island Malaria Control Project since early 2004. Despite success in reducing childhood infections, areas of high transmission remain on the island. We therefore examined fluctuations in the effective population size (N e ) of the malaria vector Anopheles gambiae in an area of persistent high transmission over two spray rounds. We analyzed data for 13 microsatellite loci from 791 An. gambiae specimens collected at six time points in 2009 and 2010 and reconstructed the demographic history of the population during this period using approximate Bayesian computation (ABC). Our analysis shows that IRS rounds have a large impact on N e , reducing it by 65%-92% from prespray round N e . More importantly, our analysis shows that after 3-5 months, the An. gambiae population rebounded by 2818% compared shortly following the spray round. Our study underscores the importance of adequate spray round frequency to provide continuous suppression of mosquito populations and that increased spray round frequency should substantially improve the efficacy of IRS campaigns. It also demonstrates the ability of ABC to reconstruct a detailed demographic history across only a few tens of generations in a large population.

  18. Large fluctuations in the effective population size of the malaria mosquito Anopheles gambiae s.s. during vector control cycle

    PubMed Central

    Hodges, Theresa K; Athrey, Giridhar; Deitz, Kevin C; Overgaard, Hans J; Matias, Abrahan; Caccone, Adalgisa; Slotman, Michel A

    2013-01-01

    On Bioko Island, Equatorial Guinea, indoor residual spraying (IRS) has been part of the Bioko Island Malaria Control Project since early 2004. Despite success in reducing childhood infections, areas of high transmission remain on the island. We therefore examined fluctuations in the effective population size (Ne) of the malaria vector Anopheles gambiae in an area of persistent high transmission over two spray rounds. We analyzed data for 13 microsatellite loci from 791 An. gambiae specimens collected at six time points in 2009 and 2010 and reconstructed the demographic history of the population during this period using approximate Bayesian computation (ABC). Our analysis shows that IRS rounds have a large impact on Ne, reducing it by 65%–92% from prespray round Ne. More importantly, our analysis shows that after 3–5 months, the An. gambiae population rebounded by 2818% compared shortly following the spray round. Our study underscores the importance of adequate spray round frequency to provide continuous suppression of mosquito populations and that increased spray round frequency should substantially improve the efficacy of IRS campaigns. It also demonstrates the ability of ABC to reconstruct a detailed demographic history across only a few tens of generations in a large population. PMID:24478799

  19. Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    PubMed Central

    2009-01-01

    Background The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife. Methods Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites. Results In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families. Conclusion Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes. PMID:19664282

  20. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France.

    PubMed

    Ezanno, P; Aubry-Kientz, M; Arnoux, S; Cailly, P; L'Ambert, G; Toty, C; Balenghien, T; Tran, A

    2015-06-01

    An accurate understanding and prediction of mosquito population dynamics are needed to identify areas where there is a high risk of mosquito-borne disease spread and persistence. Simulation tools are relevant for supporting decision-makers in the surveillance of vector populations, as models of vector population dynamics provide predictions of the greatest risk periods for vector abundance, which can be particularly helpful in areas with a highly variable environment. We present a generic weather-driven model of mosquito population dynamics, which was applied to one species of each of the genera Anopheles, Culex, and Aedes, located in the same area and thus affected by similar weather conditions. The predicted population dynamics of Anopheles hyrcanus, Culex pipiens, and Aedes caspius were not similar. An. hyrcanus was abundant in late summer. Cx. pipiens was less abundant but throughout the summer. The abundance of both species showed a single large peak with few variations between years. The population dynamics of Ae. caspius showed large intra- and inter-annual variations due to pulsed egg hatching. Predictions of the model were compared to longitudinal data on host-seeking adult females. Data were previously obtained using CDC-light traps baited with carbon dioxide dry ice in 2005 at two sites (Marais du Viguerat and Tour Carbonnière) in a favourable temperate wetland of southern France (Camargue). The observed and predicted periods of maximal abundance for An. hyrcanus and Cx. pipiens tallied very well. Pearson's coefficients for these two species were over 75% for both species. The model also reproduced the major trends in the intra-annual fluctuations of Ae. caspius population dynamics, with peaks occurring in early summer and following the autumn rainfall events. Few individuals of this species were trapped so the comparison of predicted and observed dynamics was not relevant. A global sensitivity analysis of the species-specific models enabled us to

  1. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France.

    PubMed

    Ezanno, P; Aubry-Kientz, M; Arnoux, S; Cailly, P; L'Ambert, G; Toty, C; Balenghien, T; Tran, A

    2015-06-01

    An accurate understanding and prediction of mosquito population dynamics are needed to identify areas where there is a high risk of mosquito-borne disease spread and persistence. Simulation tools are relevant for supporting decision-makers in the surveillance of vector populations, as models of vector population dynamics provide predictions of the greatest risk periods for vector abundance, which can be particularly helpful in areas with a highly variable environment. We present a generic weather-driven model of mosquito population dynamics, which was applied to one species of each of the genera Anopheles, Culex, and Aedes, located in the same area and thus affected by similar weather conditions. The predicted population dynamics of Anopheles hyrcanus, Culex pipiens, and Aedes caspius were not similar. An. hyrcanus was abundant in late summer. Cx. pipiens was less abundant but throughout the summer. The abundance of both species showed a single large peak with few variations between years. The population dynamics of Ae. caspius showed large intra- and inter-annual variations due to pulsed egg hatching. Predictions of the model were compared to longitudinal data on host-seeking adult females. Data were previously obtained using CDC-light traps baited with carbon dioxide dry ice in 2005 at two sites (Marais du Viguerat and Tour Carbonnière) in a favourable temperate wetland of southern France (Camargue). The observed and predicted periods of maximal abundance for An. hyrcanus and Cx. pipiens tallied very well. Pearson's coefficients for these two species were over 75% for both species. The model also reproduced the major trends in the intra-annual fluctuations of Ae. caspius population dynamics, with peaks occurring in early summer and following the autumn rainfall events. Few individuals of this species were trapped so the comparison of predicted and observed dynamics was not relevant. A global sensitivity analysis of the species-specific models enabled us to

  2. Evidence of natural Wolbachia infections in field populations of Anopheles gambiae

    PubMed Central

    Baldini, Francesco; Segata, Nicola; Pompon, Julien; Marcenac, Perrine; Robert Shaw, W.; Dabiré, Roch K.; Diabaté, Abdoulaye; Levashina, Elena A.; Catteruccia, Flaminia

    2014-01-01

    Wolbachia are maternally transmitted intracellular bacteria that invade insect populations by manipulating their reproduction and immunity and thus limiting the spread of numerous human pathogens. Experimental Wolbachia infections can reduce Plasmodium numbers in Anopheles mosquitoes in the laboratory, however, natural Wolbachia infections in field anophelines have never been reported. Here we show evidence of Wolbachia infections in Anopheles gambiae in Burkina Faso, West Africa. Sequencing of the 16S rRNA gene identified Wolbachia sequences in both female and male germlines across two seasons, and determined that these sequences are vertically transmitted from mother to offspring. Whole-genome sequencing of positive samples suggests that the genetic material identified in An. gambiae belongs to a novel Wolbachia strain, related to but distinct from strains infecting other arthropods. The evidence of Wolbachia infections in natural Anopheles populations promotes further investigations on the possible use of natural Wolbachia–Anopheles associations to limit malaria transmission. PMID:24905191

  3. [Cytogenetic Analysis of the Species Composition and Inversion Structure of Populations of Malarial Mosquitoes in the Astrakhan Region].

    PubMed

    Perevozkin, V P; Bondarchuk, S S; Minich, A S

    2015-08-01

    A cytogenetic analysis of Anopheles mosquitoes in the Astrakhan region was carried out. Three species of Anopheles were identified. An. messeae lives everywhere and prevails in all of the areas of research, An. hyrcanus is found in the southwest of the region, and An. maculipennis in the northern part of the region. The populations of An. messeae show a high level of inversion polymorphism for the sex chromosome and the third autosome. A clear clinal trend of an increase in chromosomal rearrangements XL1, 3R1, and 3L1 and a decrease in the frequency of evolutionary source alternatives was revealed in laraval hemipopulations of the species from south to north. PMID:26601492

  4. An automated GIS/remotely sensed early warning system to detect elevated populations of vectors of Rift Valley fever, a mosquito-borne emerging virus threat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito transmitted infectious diseases, like eastern equine encephalitis (EEE), Rift Valley fever (RVF), and West Nile virus (WNV), pose an international threat to animal and human health. An introduction of RVF into the U.S. would severely impact wild ungulate populations and the beef and dairy ...

  5. Hybridization, natural selection, and evolution of reproductive isolation: a 25-years survey of an artificial sympatric area between two mosquito sibling species of the Aedes mariae complex.

    PubMed

    Urbanelli, Sandra; Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Pieraccini, Giuseppe; Romoli, Riccardo; Crasta, Graziano; Nascetti, Giuseppe

    2014-10-01

    Natural selection can act against maladaptive hybridization between co-occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.

  6. Genetic Variations in Bionomics of Culex quinquefasciatus (Diptera: Culicidae) Mosquito Population in Minna, North Central Nigeria.

    PubMed

    Ukubuiwe, Azubuike C; Olayemi, Israel K; Jibrin, Aisha I

    2016-01-01

    The need to have an improved knowledge on the bioecology of Culex quinquefasciatus, a prerequisite in the development of cost-effective control strategies, has informed the present preliminary investigation to put in better perspective variations that exist in the egg rafts of the species. Freshly laid egg rafts were collected and incubated at ambient temperature in well-labeled plastic trays. The results showed overall inconsistency in all indices monitored for the egg rafts. Generally, survivorship was high for the species. All immature stage and adult parameters measured varied significantly among the egg rafts and between/within sexes of the species. Therefore, this study suggests the presence of inherent variation in the bionomics of egg rafts of C. quinquefasciatus, probably influenced by the environment and hence underscores the need for additional studies to further elucidate the roles of genetics and environment in vectorial competence of the species, in order to develop robust sustainable mosquito vector control protocols.

  7. Genetic Variations in Bionomics of Culex quinquefasciatus (Diptera: Culicidae) Mosquito Population in Minna, North Central Nigeria

    PubMed Central

    Ukubuiwe, Azubuike C.; Olayemi, Israel K.; Jibrin, Aisha I.

    2016-01-01

    The need to have an improved knowledge on the bioecology of Culex quinquefasciatus, a prerequisite in the development of cost-effective control strategies, has informed the present preliminary investigation to put in better perspective variations that exist in the egg rafts of the species. Freshly laid egg rafts were collected and incubated at ambient temperature in well-labeled plastic trays. The results showed overall inconsistency in all indices monitored for the egg rafts. Generally, survivorship was high for the species. All immature stage and adult parameters measured varied significantly among the egg rafts and between/within sexes of the species. Therefore, this study suggests the presence of inherent variation in the bionomics of egg rafts of C. quinquefasciatus, probably influenced by the environment and hence underscores the need for additional studies to further elucidate the roles of genetics and environment in vectorial competence of the species, in order to develop robust sustainable mosquito vector control protocols. PMID:27013900

  8. A case of hypersensitivity to mosquito bites without peripheral natural killer cell lymphocytosis in a 6-year-old Korean boy.

    PubMed

    Seon, Han-Su; Roh, Ji-Hyeon; Lee, Seung-Ho; Kang, Eun-Kyeong

    2013-01-01

    Hypersensitivity to mosquito bites (HMB) is a rare disease characterized by intense skin reactions such as bulla and necrotic ulcerations at bite sites, accompanied by general symptoms such as high-grade fever and malaise occurred after mosquito bites. It has been suggested that HMB is associated with chronic Epstein-Barr virus (EBV) infection and natural killer (NK) cell leukemia/lymphoma. We describe here a Korean child who presented with 3-yr history of HMB without natural killer cell lymphocytosis. He has been ill for 6 yr with HMB. Close observation and examination for the development of lymphoproliferative status or hematologic malignant disorders is needed.

  9. More than one rabbit out of the hat: Radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations.

    PubMed

    Bourtzis, Kostas; Lees, Rosemary Susan; Hendrichs, Jorge; Vreysen, Marc J B

    2016-05-01

    Mosquitoes (Diptera: Culicidae) and tsetse flies (Diptera: Glossinidae) are bloodsucking vectors of human and animal pathogens. Mosquito-borne diseases (malaria, filariasis, dengue, zika, and chikungunya) cause severe mortality and morbidity annually, and tsetse fly-borne diseases (African trypanosomes causing sleeping sickness in humans and nagana in livestock) cost Sub-Saharan Africa an estimated US$ 4750 million annually. Current reliance on insecticides for vector control is unsustainable: due to increasing insecticide resistance and growing concerns about health and environmental impacts of chemical control there is a growing need for novel, effective and safe biologically-based methods that are more sustainable. The integration of the sterile insect technique has proven successful to manage crop pests and disease vectors, particularly tsetse flies, and is likely to prove effective against mosquito vectors, particularly once sex-separation methods are improved. Transgenic and symbiont-based approaches are in development, and more advanced in (particularly Aedes) mosquitoes than in tsetse flies; however, issues around stability, sustainability and biosecurity have to be addressed, especially when considering population replacement approaches. Regulatory issues and those relating to intellectual property and economic cost of application must also be overcome. Standardised methods to assess insect quality are required to compare and predict efficacy of the different approaches. Different combinations of these three approaches could be integrated to maximise their benefits, and all have the potential to be used in tsetse and mosquito area-wide integrated pest management programmes.

  10. Adult survivorship of the dengue mosquito Aedes aegypti varies seasonally in central Vietnam.

    PubMed

    Hugo, Leon E; Jeffery, Jason A L; Trewin, Brendan J; Wockner, Leesa F; Nguyen, Thi Yen; Nguyen, Hoang Le; Nghia, Le Trung; Hine, Emma; Ryan, Peter A; Kay, Brian H

    2014-02-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle.

  11. Adult Survivorship of the Dengue Mosquito Aedes aegypti Varies Seasonally in Central Vietnam

    PubMed Central

    Hugo, Leon E.; Jeffery, Jason A. L.; Trewin, Brendan J.; Wockner, Leesa F.; Thi Yen, Nguyen; Le, Nguyen Hoang; Nghia, Le Trung; Hine, Emma; Ryan, Peter A.; Kay, Brian H.

    2014-01-01

    The survival characteristics of the mosquito Aedes aegypti affect transmission rates of dengue because transmission requires infected mosquitoes to survive long enough for the virus to infect the salivary glands. Mosquito survival is assumed to be high in tropical, dengue endemic, countries like Vietnam. However, the survival rates of wild populations of mosquitoes are seldom measured due the difficulty of predicting mosquito age. Hon Mieu Island in central Vietnam is the site of a pilot release of Ae. aegypti infected with a strain of Wolbachia pipientis bacteria (wMelPop) that induces virus interference and mosquito life-shortening. We used the most accurate mosquito age grading approach, transcriptional profiling, to establish the survival patterns of the mosquito population from the population age structure. Furthermore, estimations were validated on mosquitoes released into a large semi-field environment consisting of an enclosed house, garden and yard to incorporate natural environmental variability. Mosquito survival was highest during the dry/cool (January-April) and dry/hot (May-August) seasons, when 92 and 64% of Hon Mieu mosquitoes had survived to an age that they were able to transmit dengue (12 d), respectively. This was reduced to 29% during the wet/cool season from September to December. The presence of Ae. aegypti older than 12 d during each season is likely to facilitate the observed continuity of dengue transmission in the region. We provide season specific Ae. aegypti survival models for improved dengue epidemiology and evaluation of mosquito control strategies that aim to reduce mosquito survival to break the dengue transmission cycle. PMID:24551251

  12. Can transgenic mosquitoes afford the fitness cost?

    PubMed

    Lambrechts, Louis; Koella, Jacob C; Boëte, Christophe

    2008-01-01

    In a recent study, SM1-transgenic Anopheles stephensi, which are resistant partially to Plasmodium berghei, had higher fitness than non-transgenic mosquitoes when they were maintained on Plasmodium-infected blood. This result should be interpreted cautiously with respect to malaria control using transgenic mosquitoes because, despite the evolutionary advantage conferred by the transgene, a concomitant cost prevents it from invading the entire population. Indeed, for the spread of a resistance transgene in a natural situation, the transgene's fitness cost and the efficacy of the gene drive will be more crucial than any evolutionary advantage.

  13. Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis

    PubMed Central

    Londono-Renteria, Berlin; Cardenas, Jenny C.; Troupin, Andrea; Colpitts, Tonya M.

    2016-01-01

    Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regard to infectious disease, particularly during immune responses to vector-borne diseases, such as malaria, filariasis, or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings. PMID:27746778

  14. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  15. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    PubMed

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

  16. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi

    PubMed Central

    Gantz, Valentino M.; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M.; Bier, Ethan; James, Anthony A.

    2015-01-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  17. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.

    PubMed

    Chandramohan, Balamurugan; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Chandirasekar, Ramachandran; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Aziz, Al Thabiani; Syuhei, Ban; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Wei, Hui; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies. PMID:26573518

  18. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.

    PubMed

    Chandramohan, Balamurugan; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Chandirasekar, Ramachandran; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Aziz, Al Thabiani; Syuhei, Ban; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Wei, Hui; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.

  19. The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy.

    PubMed

    Marini, Giovanni; Poletti, Piero; Giacobini, Mario; Pugliese, Andrea; Merler, Stefano; Rosà, Roberto

    2016-01-01

    Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density-dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance. PMID:27105065

  20. The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy

    PubMed Central

    Giacobini, Mario; Pugliese, Andrea; Merler, Stefano; Rosà, Roberto

    2016-01-01

    Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance. PMID:27105065

  1. Genetic Control Of Malaria Mosquitoes.

    PubMed

    McLean, Kyle Jarrod; Jacobs-Lorena, Marcelo

    2016-03-01

    Experiments demonstrating the feasibility of genetically modifying mosquito vectors to impair their ability to transmit the malaria parasite have been known for well over a decade. However, means to spread resistance or population control genes into wild mosquito populations remains an unsolved challenge. Two recent reports give hope that CRISPR technology may allow such challenge to be overcome. PMID:26809567

  2. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    PubMed Central

    2012-01-01

    Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a

  3. Darwin's finches: population variation and natural selection.

    PubMed Central

    Grant, P R; Grant, B R; Smith, J N; Abbott, I J; Abbott, L K

    1976-01-01

    Van Valen's model, which relates morphological variation to ecological variation in an adaptive scheme, was investigated with individually marked and measured Darwin's finches on two adjacent Galápagos islands, Santa Cruz and Daphne Major. Results show that environmental heterogeneity is correlated with large continuous, morphological variation: variation in bill dimensions of Geospiza fortis is greater on Santa Cruz than on Daphne, as is environmental heterogeneity. Within populations of this species, different phenotypes distribute themselves in different habitat patches, select foods of different sizes and hardness, and exploit them with efficiencies that are phenotype- (bill size) dependent. These data constitute indirect evidence that natural selection has a controlling influence over the level of phenotypic variation exhibited by a population. Further evidence is that phenotypes did not survive equally well during the study period; on Daphne island G. fortis was apparently subjected to directional selection on bill tip length and G. scandens to normalizing selection on body weight and bill depth. Other factors which may have contributed to the establishment of a difference in variation between Santa Cruz and Daphne populations are the founder effect, genetic drift, and assortative mating. Annual climatic unpredictability is considered a source of environmental heterogeneity which, through its effect upon food supply, favors large morphological variation. It is predicted that species of large individual size are more influenced by this than are small species, and consequently exhibit greater size-corrected variation. The prediction is tested with data from six Geospiza species, and found to be correct. PMID:1061123

  4. Male Mosquitoes as Vehicles for Insecticide

    PubMed Central

    Mains, James W.; Brelsfoard, Corey L.; Dobson, Stephen L.

    2015-01-01

    , including exploration of the approach with additional medically important mosquito species. The novelty and importance of this approach is an ability to safely achieve auto-dissemination at levels of intensity that may not be possible with an auto-dissemination approach that is based on indigenous females. Specifically, artificially-reared males can be released and sustained at any density required, so that the potential for impact is limited only by the practical logistics of mosquito rearing and release, rather than natural population densities and the self-limiting impact of an intervention upon them. PMID:25590626

  5. Genetics of Mosquito Vector Competence

    PubMed Central

    Beerntsen, Brenda T.; James, Anthony A.; Christensen, Bruce M.

    2000-01-01

    Mosquito-borne diseases are responsible for significant human morbidity and mortality throughout the world. Efforts to control mosquito-borne diseases have been impeded, in part, by the development of drug-resistant parasites, insecticide-resistant mosquitoes, and environmental concerns over the application of insecticides. Therefore, there is a need to develop novel disease control strategies that can complement or replace existing control methods. One such strategy is to generate pathogen-resistant mosquitoes from those that are susceptible. To this end, efforts have focused on isolating and characterizing genes that influence mosquito vector competence. It has been known for over 70 years that there is a genetic basis for the susceptibility of mosquitoes to parasites, but until the advent of powerful molecular biological tools and protocols, it was difficult to assess the interactions of pathogens with their host tissues within the mosquito at a molecular level. Moreover, it has been only recently that the molecular mechanisms responsible for pathogen destruction, such as melanotic encapsulation and immune peptide production, have been investigated. The molecular characterization of genes that influence vector competence is becoming routine, and with the development of the Sindbis virus transducing system, potential antipathogen genes now can be introduced into the mosquito and their effect on parasite development can be assessed in vivo. With the recent successes in the field of mosquito germ line transformation, it seems likely that the generation of a pathogen-resistant mosquito population from a susceptible population soon will become a reality. PMID:10704476

  6. Evidence for the copepods Acanthocyclops robustus and Mesocyclops edax as competent intermediate hosts for Coelomomyces punctatus during an epizootic in a larval population of the mosquito Anopheles quadrimaculatus.

    PubMed

    Apperson, C S; Federici, B A; Stewart, W; Tarver, F R

    1992-11-01

    Field and laboratory experiments were conducted during an epizootic of Coelomomyces punctatus (Chytridiomycetes: Blastocladiales) in a population of the mosquito Anopheles quadrimaculatus in a North Carolina farm pond to examine the interactions of several potential copepod hosts with the mosquito and fungus. The diel vertical migratory behavior of the copepod species Acanthocyclops robustus, Eucyclops serrulatus, Macrocyclops albidus, and Mesocyclops edax were monitored in relation to infection rates in sentinel mosquito larvae. Mosquito infection occurred primarily around dusk, the same period during which A. robustus and E. serrulatus were most abundant near the surface of the pond. However, exposure of A. robustus, E. serrulatus, M. albidus, M. edax, Microcyclops varicans, and Paracyclops poppei to fungal meiospores in the laboratory showed that only A. robustus and M. edax were competent intermediate hosts for C. punctatus. Laboratory studies of the diel periodicity of gametangial dehiscence in A. robustus and M. edax infected with C. punctatus revealed that gamete release and zygote formation also occurred around dusk. The combined results of the laboratory and field studies on copepod abundance, susceptibility to infection, and periodicity of gametangial dehiscence suggest that A. robustus was the principal intermediate host for C. punctatus during the epizootic, though it is probable that M. edax also contributed importantly to the overall rate of larval infection.

  7. Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus.

    PubMed

    Facchinelli, L; Valerio, L; Pombi, M; Reiter, P; Costantini, C; Della Torre, A

    2007-06-01

    Collection methods currently used for large-scale sampling of adult Stegomyia mosquitoes (Diptera: Culicidae) present several operational limitations, which constitute major drawbacks to the epidemiological surveillance of arboviruses, the evaluation of the impact of control strategies, and the surveillance of the spreading of allochthonous species into non-endemic regions. Here, we describe a new sticky trap designed to capture adult container-breeding mosquitoes and to monitor their population dynamics. We tested the sampling properties of the sticky trap in Rome, Italy, where Aedes (Stegomyia) albopictus is common. The results of our observations, and the comparison between sticky trap catches and catches made with the standard oviposition trap, are presented. The sticky trap collected significantly larger numbers of Ae. albopictus females than any other Culicidae species representing >90% of the total catches. A maximum of 83 An. albopictus females was collected in a single week. A high correlation (Pearson correlation coefficient r= 0.96) was found between the number of females and the number of eggs collected by the traps. The functional relationship between the number of eggs and the number of adult females was assessed by major axis regression fitted to log(1 +x)-transformed trap counts as y= 0.065 + 1.695x. Trap samples significantly departed from a random distribution; Taylor's power law was fitted to the trap samples to quantify the degree of aggregation in the catches, returning the equations s(2)= 2.401 m(1.325) for the sticky trap and s(2)= 13.068 m(1.441) for the ovitrap, with s(2) and m denoting the weekly catch variance and mean, respectively, indicating that eggs were significantly more aggregated than mosquitoes (P < 0.0001). Taylor's power law parameters were used to estimate the minimum number of sample units necessary to obtain sample estimates with a fixed degree of precision and sensitivity. For the range of densities encountered in our

  8. Determinants of the population growth of the West Nile virus mosquito vector Culex pipiens in a repeatedly affected area in Italy

    PubMed Central

    2014-01-01

    Background The recent spread of West Nile Virus in temperate countries has raised concern. Predicting the likelihood of transmission is crucial to ascertain the threat to Public and Veterinary Health. However, accurate models of West Nile Virus (WNV) expansion in Europe may be hampered by limited understanding of the population dynamics of their primary mosquito vectors and their response to environmental changes. Methods We used data collected in north-eastern Italy (2009–2011) to analyze the determinants of the population growth rate of the primary WNV vector Culex pipiens. A series of alternative growth models were fitted to longitudinal data on mosquito abundance to evaluate the strength of evidence for regulation by intrinsic density-dependent and/or extrinsic environmental factors. Model-averaging algorithms were then used to estimate the relative importance of intrinsic and extrinsic variables in describing the variations of per-capita growth rates. Results Results indicate a much greater contribution of density-dependence in regulating vector population growth rates than of any environmental factor on its own. Analysis of an average model of Cx. pipiens growth revealed that the most significant predictors of their population dynamics was the length of daylight, estimated population size and temperature conditions in the 15 day period prior to sampling. Other extrinsic variables (including measures of precipitation, number of rainy days, and humidity) had only a minor influence on Cx. pipiens growth rates. Conclusions These results indicate the need to incorporate density dependence in combination with key environmental factors for robust prediction of Cx. pipiens population expansion and WNV transmission risk. We hypothesize that detailed analysis of the determinants of mosquito vector growth rate as conducted here can help identify when and where an increase in vector population size and associated WNV transmission risk should be expected. PMID:24428887

  9. [Mosquito allergy].

    PubMed

    Brummer-Korvenkontio, Henrikki; Reunala, Timo

    2013-01-01

    Virtually all Finns are sensitized to mosquito bites already during childhood. Skin reactions caused by mosquito bites vary from rapidly appearing urticarial wheals to persistent itching papules. Allergic shock is fortunately extremely rare. The symptoms are strongest in early summer. Immediate symptoms result from proteins that get into the skin along with mosquito saliva and induce the production of IgE class antibodies by the body. The originating mechanism of delayed symptoms is unclear. Both immediate and delayed symptoms of mosquito allergy can be relieved with antihistamine drugs.

  10. Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea

    PubMed Central

    2013-01-01

    Background In Plasmodium, the high level of genetic diversity and the interactions established by co-infecting parasite populations within the same host may be a source of selection on pathogen virulence and drug resistance. As different patterns have already been described in humans and mosquitoes, parasite diversity and population structure should be studied in both hosts to properly assess their effects on infection and transmission dynamics. This study aimed to characterize the circulating populations of Plasmodium spp and Plasmodium falciparum from a combined set of human blood and mosquito samples gathered in mainland Equatorial Guinea. Further, the origin and evolution of anti-malarial resistance in this area, where malaria remains a major public health problem were traced. Methods Plasmodium species infecting humans and mosquitoes were identified by nested-PCR of chelex-extracted DNA from dried blood spot samples and mosquitoes. Analysis of Pfmsp2 gene, anti-malarial-resistance associated genes, Pfdhps, Pfdhfr, Pfcrt and Pfmdr1, neutral microsatellites (STR) loci and Pfdhfr and Pfdhps flanking STR was undertaken to evaluate P. falciparum diversity. Results Prevalence of infection remains high in mainland Equatorial Guinea. No differences in parasite formula or significant genetic differentiation were seen in the parasite populations in both human and mosquito samples. Point mutations in all genes associated with anti-malarial resistance were highly prevalent. A high prevalence was observed for the Pfdhfr triple mutant in particular, associated with pyrimethamine resistance. Analysis of Pfdhps and Pfdhfr flanking STR revealed a decrease in the genetic diversity. This finding along with multiple independent introductions of Pfdhps mutant haplotypes suggest a soft selective sweep and an increased differentiation at Pfdhfr flanking microsatellites hints a model of positive directional selection for this gene. Conclusions Chloroquine is no longer recommended for

  11. Mosquito Defense Strategies against Viral Infection.

    PubMed

    Cheng, Gong; Liu, Yang; Wang, Penghua; Xiao, Xiaoping

    2016-03-01

    Mosquito-borne viral diseases are a major concern of global health and result in significant economic losses in many countries. As natural vectors, mosquitoes are very permissive to and allow systemic and persistent arbovirus infection. Intriguingly, persistent viral propagation in mosquito tissues neither results in dramatic pathological sequelae nor impairs the vectorial behavior or lifespan, indicating that mosquitoes have evolved mechanisms to tolerate persistent infection and developed efficient antiviral strategies to restrict viral replication to nonpathogenic levels. Here we provide an overview of recent progress in understanding mosquito antiviral immunity and advances in the strategies by which mosquitoes control viral infection in specific tissues.

  12. Gene drive systems in mosquitoes: rules of the road.

    PubMed

    James, Anthony A

    2005-02-01

    Population replacement strategies for controlling transmission of mosquito-borne diseases call for the introgression of antipathogen effector genes into vector populations. It is anticipated that these genes, if present at high enough frequencies, will impede transmission of the target pathogens and result in reduced human morbidity and mortality. Recent laboratory successes in the development of virus- and protozoan-resistant mosquito strains make urgent research of gene drive systems capable of moving effector genes into wild populations. A systematic approach to developing safe and effective gene drive systems that includes defining the requirements of the system, identifying naturally occurring or synthetic genetic mechanisms for gene spread upon which drive systems can be based and the successful adaptation of a mechanism to a drive system, should mitigate concerns about using genetically engineered mosquitoes for disease control.

  13. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence.

    PubMed

    Bolling, Bethany G; Vasilakis, Nikos; Guzman, Hilda; Widen, Steven G; Wood, Thomas G; Popov, Vsevolod L; Thangamani, Saravanan; Tesh, Robert B

    2015-02-01

    Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.

  14. Population dynamics of anthropophilic mosquitoes during the northeast monsoon season in the malaria epidemic zone of Sri Lanka.

    PubMed

    Ramasamy, M S; Kulasekera, R; Srikrishnaraj, K A; Ramasamy, R

    1994-07-01

    Mosquito-borne diseases are a major health problem in Sri Lanka. Human biting mosquitoes were collected during the night (18.00-06.00 hours) at Nikawehera village, in the malaria endemic intermediate rainfall zone of the country. Collections were made at monthly intervals in the period October 1991 to April 1992, which included the main rainy season due to the northeast monsoon (October-January). Thirteen Anopheles, eleven Culex, three Aedes, three Mansonia and one Armigeres species were identified, including known vectors of malaria, Bancroftian filariasis, Japanese encephalitis and dengue fever. Mosquito human-biting rates were highest in December. The main malaria vector Anopheles culicifacies showed peak biting between 18.00 and 23.00 hours whereas the predominant culicines Culex fuscocephala and Cx quinquefasciatus preferred to bite after midnight. In 1991-92 the prevalence of some species of anophelines at Nikawehera differed markedly from that observed in 1990-91 and the possible reasons are discussed.

  15. Crowdsourcing Science to Promote Human Health: New Tools to Promote Sampling of Mosquito Populations by Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Jaroensutasinee, M.; Jaroensutasinee, K.; Sparrow, E. B.; Costosa, J. I.; Medina, J.; Randolph, G.

    2015-12-01

    GLOBE in Thailand and GLOBE in Africa independently developed citizen science protocols for collecting and analyzing mosquito larvae. These protocols have been piloted in several workshops and implemented in schools. Data collected have been used for several secondary, undergraduate and graduate student research studies. Over this past year, 2015, these protocols have been synthesized into one protocol that will be made available to the world-wide community through the GLOBE website (www.globe.gov). This new protocol is designed to be flexible in the mosquito species that can be collected and the types of environments sampled (e.g., containers in and around the house, ponds, irrigation ditches in a rice paddy field). Plans are underway to enable web-based data entry and mobile apps for data collection and submission. Once everything is finalized, a GLOBE field campaign will be initiated for citizen scientists to collect meaningful data on where different types of mosquito larvae are found and how the abundance and distribution is changing seasonally. To assist in the standardization of data collection and quality control, training slides are being developed and will be made available in early 2016. This will enable a wider participation of citizen scientists to participate in this effort to collect mosquito data by making it easier to become part of the GLOBE community. As with mosquito larvae, training slides are being created for hydrosphere, biosphere, atmosphere, and pedosphere GLOBE measurement protocols. The development of the mosquito protocol and the training slides are in direct response to the GLOBE community's desire to increase citizen science participation beyond primary and secondary schools, in observing and measuring environmental change.

  16. A Longitudinal Analysis of Mosquito Net Ownership and Use in an Indigenous Batwa Population after a Targeted Distribution.

    PubMed

    Clark, Sierra; Berrang-Ford, Lea; Lwasa, Shuaib; Namanya, Didacus; Twesigomwe, Sabastian; Kulkarni, Manisha

    2016-01-01

    Major efforts for malaria prevention programs have gone into scaling up ownership and use of insecticidal mosquito nets, particularly in sub-Saharan Africa where the malaria burden is high. Socioeconomic inequities in access to long lasting insecticidal nets (LLINs) are reduced with free distributions of nets. However, the relationship between social factors and retention of nets after a free distribution has been less studied, particularly using a longitudinal approach. Our research aimed to estimate the ownership and use of LLINs, and examine the determinants of LLIN retention, within an Indigenous Batwa population after a free LLIN distribution. Two LLINs were given free of charge to each Batwa household in Kanungu District, Uganda in November 2012. Surveyors collected data on LLIN ownership and use through six cross-sectional surveys pre- and post-distribution. Household retention, within household access, and individual use of LLINs were assessed over an 18-month period. Socioeconomic determinants of household retention of LLINs post-distribution were modelled longitudinally using logistic regression with random effects. Direct house-to-house distribution of free LLINs did not result in sustainable increases in the ownership and use of LLINs. Three months post-distribution, only 73% of households owned at least one LLIN and this period also saw the greatest reduction in ownership compared to other study periods. Eighteen-months post distribution, only a third of households still owned a LLIN. Self-reported age-specific use of LLINs was generally higher for children under five, declined for children aged 6-12, and was highest for older adults aged over 35. In the model, household wealth was a significant predictor of LLIN retention, controlling for time and other variables. This research highlights on-going socioeconomic inequities in access to malaria prevention measures among the Batwa in southwestern Uganda, even after free distribution of LLINs, and

  17. A Longitudinal Analysis of Mosquito Net Ownership and Use in an Indigenous Batwa Population after a Targeted Distribution

    PubMed Central

    Clark, Sierra; Berrang-Ford, Lea; Lwasa, Shuaib; Namanya, Didacus; Twesigomwe, Sabastian; Kulkarni, Manisha

    2016-01-01

    Major efforts for malaria prevention programs have gone into scaling up ownership and use of insecticidal mosquito nets, particularly in sub-Saharan Africa where the malaria burden is high. Socioeconomic inequities in access to long lasting insecticidal nets (LLINs) are reduced with free distributions of nets. However, the relationship between social factors and retention of nets after a free distribution has been less studied, particularly using a longitudinal approach. Our research aimed to estimate the ownership and use of LLINs, and examine the determinants of LLIN retention, within an Indigenous Batwa population after a free LLIN distribution. Two LLINs were given free of charge to each Batwa household in Kanungu District, Uganda in November 2012. Surveyors collected data on LLIN ownership and use through six cross-sectional surveys pre- and post-distribution. Household retention, within household access, and individual use of LLINs were assessed over an 18-month period. Socioeconomic determinants of household retention of LLINs post-distribution were modelled longitudinally using logistic regression with random effects. Direct house-to-house distribution of free LLINs did not result in sustainable increases in the ownership and use of LLINs. Three months post-distribution, only 73% of households owned at least one LLIN and this period also saw the greatest reduction in ownership compared to other study periods. Eighteen-months post distribution, only a third of households still owned a LLIN. Self-reported age-specific use of LLINs was generally higher for children under five, declined for children aged 6–12, and was highest for older adults aged over 35. In the model, household wealth was a significant predictor of LLIN retention, controlling for time and other variables. This research highlights on-going socioeconomic inequities in access to malaria prevention measures among the Batwa in southwestern Uganda, even after free distribution of LLINs, and

  18. A portable approach for the surveillance of dengue virus-infected mosquitoes.

    PubMed

    Muller, David A; Frentiu, Francesca D; Rojas, Alejandra; Moreira, Luciano A; O'Neill, Scott L; Young, Paul R

    2012-07-01

    Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses. PMID:22575689

  19. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes

    PubMed Central

    Nguyen, Nguyet Minh; Thi Hue Kien, Duong; Tuan, Trung Vu; Quyen, Nguyen Than Ha; Tran, Chau N. B.; Vo Thi, Long; Thi, Dui Le; Nguyen, Hoa Lan; Farrar, Jeremy J.; Holmes, Edward C.; Rabaa, Maia A.; Bryant, Juliet E.; Nguyen, Truong Thanh; Nguyen, Huong Thi Cam; Nguyen, Lan Thi Hong; Pham, Mai Phuong; Nguyen, Hung The; Luong, Tai Thi Hue; Wills, Bridget; Nguyen, Chau Van Vinh; Wolbers, Marcel; Simmons, Cameron P.

    2013-01-01

    Dengue is the most prevalent arboviral disease of humans. The host and virus variables associated with dengue virus (DENV) transmission from symptomatic dengue cases (n = 208) to Aedes aegypti mosquitoes during 407 independent exposure events was defined. The 50% mosquito infectious dose for each of DENV-1–4 ranged from 6.29 to 7.52 log10 RNA copies/mL of plasma. Increasing day of illness, declining viremia, and rising antibody titers were independently associated with reduced risk of DENV transmission. High early DENV plasma viremia levels in patients were a marker of the duration of human infectiousness, and blood meals containing high concentrations of DENV were positively associated with the prevalence of infectious mosquitoes 14 d after blood feeding. Ambulatory dengue cases had lower viremia levels compared with hospitalized dengue cases but nonetheless at levels predicted to be infectious to mosquitoes. These data define serotype-specific viremia levels that vaccines or drugs must inhibit to prevent DENV transmission. PMID:23674683

  20. Temporal and spatial habitat preferences and biotic interactions between mosquito larvae and antagonistic crustaceans in the field.

    PubMed

    Kroeger, Iris; Liess, Matthias; Duquesne, Sabine

    2014-06-01

    Investigations on natural antagonists of mosquito larvae found that micro-crustaceans (e.g., Cladocera) control mosquito populations under experimental conditions. However, their relevance for mosquito control under field situations remains widely unclear because important information about habitat preferences and time of occurrence of crustaceans and mosquito larvae are still missing. In order to fill this knowledge gap, a field study was undertaken in different wetland areas of Saxony, Germany, in different habitats (i.e., grassland, forest, and reed-covered wetlands). We found negative interactions between larvae of Ae. vexans and predatory Cyclopoida (Crustacean: Copepoda), which both were dominant during the first two weeks of hydroperiod, at ponds located at grassland habitats. Larvae of Cx. pipiens were spatially associated with competing Cladocera, but they colonized ponds more rapidly. Populations of Cladocera established from the third week of hydroperiod and prevented Cx. pipiens colonization thereafter. Ostracoda were highly abundant during the whole hydroperiod, but their presence was restricted to habitats of reed-covered wetland at one geographical area. Mosquito larvae hardly occurred at those ponds. In general, we found that ponds at the reed-covered wetlands provided better conditions for the initial development of crustaceans and hence, mosquito larval colonization was strongly inhibited. Grassland habitat, in contrast, favored early development of mosquito larvae. This study showed that micro-crustaceans are relevant for mosquito management but their impact on mosquito larvae varies between species and depends on environmental conditions.

  1. Wolbachia and cytoplasmic incompatibility in mosquitoes.

    PubMed

    Sinkins, Steven P

    2004-07-01

    Wolbachia are maternally inherited bacteria that induce cytoplasmic incompatibility in mosquitoes, and are able to use these patterns of sterility to spread themselves through populations. For this reason they have been proposed as a gene drive system for mosquito genetic replacement, as well as for the reduction of population size or for modulating population age structure in order to reduce disease transmission. Here, recent progress in the study of mosquito Wolbachia is reviewed. We now have much more comprehensive estimates of the parameters that can affect the spread of Wolbachia through natural populations from low starting frequencies, and for waves of spread to be maintained in the face of partial barriers to gene flow. In Aedes albopictus these dynamics are extremely favourable, with very high maternal transmission fidelity and levels of incompatibility recorded. Correspondence between measurements taken in the lab and field is much better than in the Drosophila simulans model system. Important research goals are also discussed, including Wolbachia transformation, interspecific transfer and the elucidation of the mechanisms of incompatibility and rescue; all will be aided by a wealth of new Wolbachia genome information.

  2. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation to the chemistry of locally occurring oil, natural gas, and brine

    USGS Publications Warehouse

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water. Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report. The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago

  3. Mosquito genomics: progress and challenges.

    PubMed

    Severson, David W; Behura, Susanta K

    2012-01-01

    The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.

  4. Mosquitoes, models, and dengue.

    PubMed

    Lifson, A R

    1996-05-01

    In the last 10 years dengue has spread markedly through Latin America and the Caribbean (Dominican Republic, Jamaica, Barbados, Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Ecuador, Colombia, Venezuela, and Brazil). The mosquito Aedes aegypti has taken advantage of increased urbanization and crowding to transmit the dengue virus. The mosquito infests tires, cans, and water jars near dwellings. The female mosquito practices multiple, interrupted feeding. Thus, mosquito infesting and feeding practices facilitate dengue transmission in crowded conditions. Factors contributing to the spread of dengue include numbers of infected and susceptible human hosts, strain of dengue virus, size of mosquito population, feeding habits, time from infection to ability to transmit virus for both vector and host, likelihood of virus transmission from human to mosquito to human, and temperature (which affects vector distribution, size, feeding habits, and extrinsic incubation period). Public health models may use simulation models to help them plan or evaluate the potential impact of different intervention strategies and/or of environmental changes (e.g., global warming). Other factors contributing to the dengue epidemic are international travel, urbanization, population growth, crowding, poverty, a weakened public health infrastructure, and limited support for sustained disease control programs. Molecular epidemiology by nucleic acid sequence analysis is another sophisticated technique used to study infectious diseases. It showed that dengue type 3 isolated from Panama and Nicaragua in 1994 was identical to that responsible for the major dengue hemorrhagic fever epidemics in Sri Lanka and India in the 1980s. Public health officials must remember three priorities relevant to dengue and other emerging infections: the need to strengthen surveillance efforts, dedicated and sustained involvement in prevention and control needs at the local level, and a strong

  5. Factors influencing stakeholders attitudes toward genetically modified aedes mosquito.

    PubMed

    Amin, Latifah; Hashim, Hasrizul

    2015-06-01

    Dengue fever is a debilitating and infectious disease that could be life-threatening. It is caused by the dengue virus which affects millions of people in the tropical area. Currently, there is no cure for the disease as there is no vaccine available. Thus, prevention of the vector population using conventional methods is by far the main strategy but has been found ineffective. A genetically modified (GM) mosquito is among the favoured alternatives to curb dengue fever in Malaysia. Past studies have shown that development and diffusion of gene technology products depends heavily upon public acceptance. The purpose of this study is to identify the relevant factors influencing stakeholders' attitudes toward the GM Aedes mosquito and to analyse the relationships between all the factors using the structural equation model. A survey was carried out on 509 respondents from various stakeholder groups in the Klang Valley region of Malaysia. Results of the survey have confirmed that public perception towards complex issues such as gene technology should be seen as a multi-faceted process. The perceived benefit-perceived risk balance is very important in determining the most predominant predictor of attitudes toward a GM mosquito. In this study the stakeholders perceived the benefit of the GM mosquito as outweighing its risk, translating perceived benefit as the most important direct predictor of attitudes toward the GM mosquito. Trust in key players has a direct influence on attitudes toward the GM mosquito while moral concern exhibited an indirect influence through perceived benefits. Other factors such as attitudes toward technology and nature were also indirect predictors of attitudes toward the GM mosquito while religiosity and engagement did not exhibited any significant roles. The research findings serve as a useful database to understand public acceptance and the social construct of public attitudes towards the GM mosquito to combat dengue. PMID:24906652

  6. Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum

    PubMed Central

    2010-01-01

    Background The control of most vectors of malaria is threatened by the spread of insecticide resistance. One factor that has been hitherto largely overlooked is the potential effects of insecticide resistance on the ability of mosquitoes to transmit malaria: are insecticide-resistant mosquitoes as good vectors of Plasmodium as susceptible ones? The drastic physiological changes that accompany the evolution of insecticide resistance may indeed alter the ability of vectors to transmit diseases, a possibility that, if confirmed, could have major epidemiological consequences. Methods Using a novel experimental system consisting of the avian malaria parasite (Plasmodium relictum) and its natural vector (the mosquito Culex pipiens), two of the most common mechanisms of insecticide resistance (esterase overproduction and acetylcholinesterase modification) were investigated for their effect on mosquito infection rate and parasite burden. For this purpose two types of experiments were carried out using (i) insecticide-resistant and susceptible laboratory isogenic lines of Cx. pipiens and (ii) wild Cx. pipiens collected from a population where insecticide resistant and susceptible mosquitoes coexist in sympatry. Results The isogenic line and wild-caught mosquito experiments were highly consistent in showing no effect of either esterase overproduction or of acetylcholinesterase modification on either the infection rate or on the oocyst burden of mosquitoes. The only determinant of these traits was blood meal size, which was similar across the different insecticide resistant categories in both experiments. Conclusions Insecticide resistance was found to have no effect on Plasmodium development within the mosquito. This is the first time this question has been addressed using a natural mosquito-Plasmodium combination, while taking care to standardize the genetic background against which the insecticide resistance genes operate. Infection rate and oocyst burden are but two of

  7. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    SciTech Connect

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-12-31

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

  8. Emergency Mosquito Control on a Selected Area in Eastern North Carolina After Hurricane Irene

    PubMed Central

    Harris, Jonathan W; Richards, Stephanie L; Anderson, Alice

    2014-01-01

    Natural disasters such as hurricanes may contribute to mosquito abundance and, consequently, arbovirus transmission risk. In 2011, flooding from Hurricane Irene in eastern North Carolina (NC) resulted in increased mosquito populations that hindered recovery efforts. Budget shortfalls in NC have reduced the functionality of long-term mosquito surveillance and control programs; hence, many counties rely on the Federal Emergency Management Agency for post-disaster mosquito control. This pilot study examines mosquito abundance pre- and post-aerial insecticide spraying at eight study sites in Washington and Tyrrell Counties in rural eastern NC after Hurricane Irene. Percent change was calculated and compared for traps in areas that received aerial pesticide application and those that did not. Traps in spray zones show decreases in mosquito abundance when compared to control traps (treatment: −52.93%; control: 3.55%), although no significant differences (P = 0.286) were found in mosquito abundance between groups. Implications of reactive rather than proactive mosquito control responses are discussed. PMID:25574141

  9. Emergency mosquito control on a selected area in eastern north Carolina after hurricane irene.

    PubMed

    Harris, Jonathan W; Richards, Stephanie L; Anderson, Alice

    2014-01-01

    Natural disasters such as hurricanes may contribute to mosquito abundance and, consequently, arbovirus transmission risk. In 2011, flooding from Hurricane Irene in eastern North Carolina (NC) resulted in increased mosquito populations that hindered recovery efforts. Budget shortfalls in NC have reduced the functionality of long-term mosquito surveillance and control programs; hence, many counties rely on the Federal Emergency Management Agency for post-disaster mosquito control. This pilot study examines mosquito abundance pre- and post-aerial insecticide spraying at eight study sites in Washington and Tyrrell Counties in rural eastern NC after Hurricane Irene. Percent change was calculated and compared for traps in areas that received aerial pesticide application and those that did not. Traps in spray zones show decreases in mosquito abundance when compared to control traps (treatment: -52.93%; control: 3.55%), although no significant differences (P = 0.286) were found in mosquito abundance between groups. Implications of reactive rather than proactive mosquito control responses are discussed.

  10. Population genomics of natural and experimental populations of guppies (Poecilia reticulata).

    PubMed

    Fraser, Bonnie A; Künstner, Axel; Reznick, David N; Dreyer, Christine; Weigel, Detlef

    2015-01-01

    Convergent evolution represents one of the best lines of evidence for adaptation, but few cases of phenotypic convergence are understood at the genetic level. Guppies inhabiting the Northern Mountain Range of Trinidad provide a classic example of phenotypic convergent evolution, where adaptation to low or high predation environments has been found for a variety of traits. A major advantage of this system is the possibility of long-term experimental studies in nature, including transplantation from high to low predation sites. We used genome scans of guppies from three natural high and low predation populations and from two experimentally established populations and their sources to examine whether phenotypic convergent evolution leaves footprints at the genome level. We used population-genetic modelling approaches to reconstruct the demographic history and migration among sampled populations. Naturally colonized low predation populations had signatures of increased effective population size since colonization, while introduction populations had signatures of decreased effective population size. Only a small number of regions across the genome had signatures of selection in all natural populations. However, the two experimental populations shared many genomic regions under apparent selection, more than expected by chance. This overlap coupled with a population decrease since introduction provides evidence for convergent selection occurring in the two introduced populations. The lack of genetic convergence in the natural populations suggests that convergent evolution is lacking in these populations or that the effects of selection become difficult to detect after a long-time period.

  11. Population genomics of natural and experimental populations of guppies (Poecilia reticulata).

    PubMed

    Fraser, Bonnie A; Künstner, Axel; Reznick, David N; Dreyer, Christine; Weigel, Detlef

    2015-01-01

    Convergent evolution represents one of the best lines of evidence for adaptation, but few cases of phenotypic convergence are understood at the genetic level. Guppies inhabiting the Northern Mountain Range of Trinidad provide a classic example of phenotypic convergent evolution, where adaptation to low or high predation environments has been found for a variety of traits. A major advantage of this system is the possibility of long-term experimental studies in nature, including transplantation from high to low predation sites. We used genome scans of guppies from three natural high and low predation populations and from two experimentally established populations and their sources to examine whether phenotypic convergent evolution leaves footprints at the genome level. We used population-genetic modelling approaches to reconstruct the demographic history and migration among sampled populations. Naturally colonized low predation populations had signatures of increased effective population size since colonization, while introduction populations had signatures of decreased effective population size. Only a small number of regions across the genome had signatures of selection in all natural populations. However, the two experimental populations shared many genomic regions under apparent selection, more than expected by chance. This overlap coupled with a population decrease since introduction provides evidence for convergent selection occurring in the two introduced populations. The lack of genetic convergence in the natural populations suggests that convergent evolution is lacking in these populations or that the effects of selection become difficult to detect after a long-time period. PMID:25444454

  12. Effects of Cohabitation on the Population Performance and Survivorship of the Invasive Mosquito Aedes albopictus and the Resident Mosquito Aedes notoscriptus (Diptera: Culicidae) in Australia.

    PubMed

    Nicholson, J; Ritchie, S A; Russell, R C; Webb, C E; Cook, A; Zalucki, M P; Williams, C R; Ward, P; van den Hurk, A F

    2015-05-01

    The presence of Aedes albopictus (Skuse) in the Torres Strait of northern Australia increases the potential for colonization and establishment on the mainland. However, there is a possibility that native species that occupy the same habitats may influence the population performance of Ae. albopictus, potentially affecting the establishment of this species in Australia. Cohabitation experiments were performed with the endemic Aedes notoscriptus (Skuse), which has been found occupying the same larval habitats as Ae. albopictus in the Torres Strait and is the most widespread container-inhabiting Aedes species in Australia. The influence of environmental factors and cohabitation between the two species was examined using different climates, food resource levels, food resource types, and species densities. Survivorship proportions and a population performance index (λ') were calculated and compared. The consequences of increased Ae. notoscriptus densities were reduced survivorship and λ' for Ae. albopictus. Despite this, the mean λ' of Ae. albopictus and Ae. notoscriptus was consistently ≥ 1.06, indicating both species could increase under all conditions, potentially due to increasing conspecific densities negatively affecting Ae. notoscriptus. The outcomes from this study suggest that the preexisting presence of Ae. notoscriptus may not prevent the establishment of Ae. albopictus in Australia.

  13. Natural Product Studies of U. S. Endangered Plants: Volatile Fraction of Lindera melissifolia (lauraceae) repels Mosquitoes and Ticks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The number of endangered plant species in the United States is significant yet studies aimed towards utilizing these plants are limited. Ticks and mosquitoes are hematophagous vectors for significant pathogenic diseases and key measures to lower their associated morbidity rates include the use of p...

  14. Genomics of Natural Populations of Staphylococcus aureus.

    PubMed

    Fitzgerald, J Ross; Holden, Matthew T G

    2016-09-01

    Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.

  15. Genomics of Natural Populations of Staphylococcus aureus.

    PubMed

    Fitzgerald, J Ross; Holden, Matthew T G

    2016-09-01

    Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research. PMID:27482738

  16. Traps and trapping techniques for adult mosquito control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview is presented of the recent advancements in research activities conducted to evaluate mosquito traps, insecticide-impregnated targets baited with combinations of attractants, and strategies for using mass trapping techniques for adult mosquito population management. Technologies that use...

  17. An Analysis of Diet Quality, How It Controls Fatty Acid Profiles, Isotope Signatures and Stoichiometry in the Malaria Mosquito Anopheles arabiensis

    PubMed Central

    Hood-Nowotny, Rebecca; Schwarzinger, Bettina; Schwarzinger, Clemens; Soliban, Sharon; Madakacherry, Odessa; Aigner, Martina; Watzka, Margarete; Gilles, Jeremie

    2012-01-01

    Background Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a “production” orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats. Methodology/Principal Findings Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA) profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size. Conclusions/Significance Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet controlled teneral

  18. Determining the spatial autocorrelation of dengue vector populations: influences of mosquito sampling method, covariables, and vector control.

    PubMed

    Azil, Aishah H; Bruce, David; Williams, Craig R

    2014-06-01

    We investigated spatial autocorrelation of female Aedes aegypti L. mosquito abundance from BG-Sentinel trap and sticky ovitrap collections in Cairns, north Queensland, Australia. BG-Sentinel trap collections in 2010 show a significant spatial autocorrelation across the study site and over a smaller spatial extent, while sticky ovitrap collections only indicate a non-significant, weak spatial autocorrelation. The BG-Sentinel trap collections were suitable for spatial interpolation using ordinary kriging and cokriging techniques. The uses of Premise Condition Index and potential breeding container data have helped improve our prediction of vector abundance. Semiovariograms and prediction maps indicate that the spatial autocorrelation of mosquito abundance determined by BG-Sentinel traps extends farther compared to sticky ovitrap collections. Based on our data, fewer BG-Sentinel traps are required to represent vector abundance at a series of houses compared to sticky ovitraps. A lack of spatial structure was observed following vector control treatment in the area. This finding has implications for the design and costs of dengue vector surveillance programs. PMID:24820568

  19. Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka.

    PubMed Central

    Karunaratne, S. H.; Hemingway, J.

    2001-01-01

    OBJECTIVE: To determine the levels of malathion resistance and prevalence of the malathion carboxylesterase mechanism among mosquitoes in Sri Lanka. METHODS: Bioassays were carried out using WHO-recommended methods on samples of the following Sri Lankan mosquito vectors: Culex quinquefasciatus, C. tritaeniorhynchus, C gelidus, Anopheles culicifacies B, A. subpictus, Aedes aegypti and A. albopictus. FINDINGS Malathion-specific carboxylesterase mechanisms were found in A. culicifaies and A. subpictus, both giving high rates of insecticide metabolism. In contrast, malathion resistance in C. quinquefasciatus and C. tritaeniorhynchus is linked to broad-spectrum resistance to organophosphorus compounds due to elevated levels of esterases that sequester malaoxon, but are unable to metabolize malathion. CONCLUSIONS: Resistance among the Anophelesspp. must have occurred as a direct result of antimalarial activities, since malathion use in Sri Lanka is limited to public health treatments. In contrast, resistance among Culex spp. has resulted from large-scale use of the organophosphorus insecticide group as larvicides for filariasis control and on rice paddy, where C tritaeniorhynchus predominantly breeds, for agricultural purposes. PMID:11731814

  20. Converting Mosquito Surveillance to Arbovirus Surveillance with Honey-Baited Nucleic Acid Preservation Cards.

    PubMed

    Flies, Emily J; Toi, Cheryl; Weinstein, Philip; Doggett, Stephen L; Williams, Craig R

    2015-07-01

    Spatially and temporally accurate information about infectious mosquito distribution allows for pre-emptive public health interventions that can reduce the burden of mosquito-borne infections on human populations. However, the labile nature of arboviruses, the low prevalence of infection in mosquitoes, the expensive labor costs for mosquito identification and sorting, and the specialized equipment required for arbovirus testing can obstruct arbovirus surveillance efforts. The recently developed techniques of testing mosquito expectorate using honey-baited nucleic acid preservation cards or sugar bait stations allows a sensitive method of testing for infectious, rather than infected, mosquito vectors. Here we report the results from the first large-scale incorporation of honey-baited cards into an existing mosquito surveillance program. During 4 months of the peak virus season (January-April, 2014) for a total of 577 trap nights, we set CO2-baited encephalitis vector survey (EVS) light traps at 88 locations in South Australia. The collection container for the EVS trap was modified to allow for the placement of a honey-baited nucleic acid preservation card (FTA™ card) inside. After collection, mosquitoes were maintained in a humid environment and allowed access to the cards for 1 week. Cards were then analyzed for common endemic Australian arboviruses using a nested RT-PCR. Eighteen virus detections, including 11 Ross River virus, four Barmah Forest virus, and three Stratford virus (not previously reported from South Australia) were obtained. Our findings suggest that adding FTA cards to an existing mosquito surveillance program is a rapid and efficient way of detecting infectious mosquitoes with high spatial resolution.

  1. Isotope fractionation by natural populations of sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Canfield, D. E.

    2001-04-01

    Isotope fractionation during sulfate reduction was explored for natural populations of sulfate-reducing bacteria. High fractionations of 30‰ to 40‰ were produced when the natural population metabolized with indigenous organic substrate at environmental temperatures of 15°C to 25°C. Fractionations were unaffected by changes in sulfate concentration between 2 mM and 28 mM. After the natural substrate was exhausted, the sulfate-reducing bacterial population metabolized, in turn, with acetate, ethanol, and lactate. The high fractionations encountered with natural substrate were only reproduced when the amended substrate was supplied at concentrations limiting the activity of the sulfate-reducing population. Higher, nonlimiting concentrations of amended substrate produced lower fractionations of 16‰ to 21% at 25°C. The natural sulfate-reducing population, therefore, probably experienced substrate limitation while utilizing the natural substrate. At the low temperature of 5°C fractionations with amended substrate ranged from 8‰ to 14‰ and were lower than expected based on the normal relationship between rates of sulfate reduction and the extent of isotope fractionation. The processes likely acting to control the magnitude of isotope fractionation are discussed.

  2. Genetic variation in natural populations of Populus tremuloide

    SciTech Connect

    Cheliak, W.M.

    1980-01-01

    Vegetative reproduction results in a mosaic of clones throughout the extensive natural range of this species. An electrophoretic survey of 26 loci in 222 trees from seven natural populations in Alberta demonstrated great variability. Average observed population heterozygosity was 0.52 with an average of 2.3 alleles per locus; 84% of the loci were polymorphic. A model (for a finite population with neutral alleles) was developed to investigate the effects of partial vegetative reproduction on the amount of variation in a population. Results of the survey conformed to those predicted by the model for a population with a rate of sexual establishment greater than 1/N, where N is the population size. The model states that under these conditions, vegetative reproduction has no effect on the population. Therefore, the high level of observed variation is not an artifact of the mode of natural reproduction. These results support conclusions about high population variability based on phenotypic measurements and also suggest a genetic basis for this variation, rather than simply phenotypic plasticity.

  3. Decapitation improves detection of Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera: Culicidae) mosquitoes by the polymerase chain reaction.

    PubMed

    Beckmann, J F; Fallon, A M

    2012-09-01

    Polymerase chain reaction (PCR) is often used to detect microorganisms, pathogens, or both, including the reproductive parasite Wolbachia pipientis (Rickettsiales: Anaplasmataceae), in mosquitoes. Natural populations of Culex pipiens L. (Diptera: Culicidae) mosquitoes are infected with one or more strains of W. pipientis, and crosses between mosquitoes harboring different Wolbachia strains provide one of the best-known examples of cytoplasmic incompatibililty (CI). When we used PCR to monitor Wolbachia in the Buckeye strain of Culex pipiens, and in a Wolbachia-cured sister colony obtained by tetracycline treatment, we noted false negative PCR reactions with DNA samples from infected mosquitoes; these results were inconsistent with direct microscopic observation of Wolbachia-like particles in gonads dissected from mosquitoes in the same population. Assays with diluted template often improved detection of positive samples, suggesting that DNA prepared from whole mosquitoes contained an inhibitor of the PCR reaction. We reconciled discrepancies between PCR and microscopy by systematic measurement of the PCR reaction in the presence of an internal standard. Mosquito decapitation before DNA extraction restored the reliability of the PCR reaction, allowing accurate determination of Wolbachia infection status in infected and tetracycline-cured mosquito populations, consistent with microscopic examination. Using PCR primers based on the Tr1 gene, we confirmed that the Wolbachia infection in the Buckeye strain of Culex pipiens belongs to the genotype designated wPip1. Finally, to explore more widely the distribution of PCR inhibitors, we demonstrated that DNA isolated from the cricket, Acheta domesticus (L.); the beetle, Tenebrio molitor L.; the honey bee, Apis mellifera L.; and the mosquito, Anopheles punctipennis Say also contained PCR inhibitors. These results underscore the importance of measuring the presence of inhibitors in PCR templates by using a known positive

  4. Healthy nature healthy people: 'contact with nature' as an upstream health promotion intervention for populations.

    PubMed

    Maller, Cecily; Townsend, Mardie; Pryor, Anita; Brown, Peter; St Leger, Lawrence

    2006-03-01

    Whilst urban-dwelling individuals who seek out parks and gardens appear to intuitively understand the personal health and well-being benefits arising from 'contact with nature', public health strategies are yet to maximize the untapped resource nature provides, including the benefits of nature contact as an upstream health promotion intervention for populations. This paper presents a summary of empirical, theoretical and anecdotal evidence drawn from a literature review of the human health benefits of contact with nature. Initial findings indicate that nature plays a vital role in human health and well-being, and that parks and nature reserves play a significant role by providing access to nature for individuals. Implications suggest contact with nature may provide an effective population-wide strategy in prevention of mental ill health, with potential application for sub-populations, communities and individuals at higher risk of ill health. Recommendations include further investigation of 'contact with nature' in population health, and examination of the benefits of nature-based interventions. To maximize use of 'contact with nature' in the health promotion of populations, collaborative strategies between researchers and primary health, social services, urban planning and environmental management sectors are required. This approach offers not only an augmentation of existing health promotion and prevention activities, but provides the basis for a socio-ecological approach to public health that incorporates environmental sustainability.

  5. Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths

    PubMed Central

    Werblow, Antje; Klimpel, Sven; Bolius, Sarah; Dorresteijn, Adriaan W. C.; Sauer, Jan; Melaun, Christian

    2014-01-01

    Nowadays a number of endemic mosquito species are known to possess vector abilities for various diseases, as e.g. the sibling species Culex pipiens and Culex torrentium. Due to their morphological similarity, ecology, distribution and vector abilities, knowledge about these species' population structure is essential. Culicidae from 25 different sampling sites were collected from March till October 2012. All analyses were performed with aligned cox1 sequences with a total length of 658 bp. Population structure as well as distribution patterns of both species were analysed using molecular methods and different statistical tests like distance based redundancy analysis (dbDRA), analysis of molecular variances (AMOVA) or McDonald & Kreitman test and Tajima's D. Within both species, we could show a genetic variability among the cox1 fragment. The construction of haplotype networks revealed one dominating haplotype for Cx. pipiens, widely distributed within Germany and a more homogeneous pattern for Cx. torrentium. The low genetic differences within Cx. pipiens could be a result of an infection with Wolbachia which can induce a sweep through populations by passively taking the also maternally inherited mtDNA through the population, thereby reducing the mitochondrial diversity as an outcome of reproductive incompatibility. Pairwise population genetic differentiation (FST) ranged significantly from moderate to very great between populations of Cx. pipiens and Cx. torrentium. Analyses of molecular variances revealed for both species that the main genetic variability exists within the populations (Cx. pipiens [88.38%]; Cx. torrentium [66.54%]). Based on a distance based redundancy analysis geographical origin explained a small but significant part of the species' genetic variation. Overall, the results confirm that Cx. pipiens and Cx. torrentium underlie different factors regarding their mitochondrial differentiation, which could be a result of endosymbiosis, dispersal

  6. Comparative studies of senescence in natural populations of guppies.

    PubMed

    Bryant, Michael J; Reznick, David

    2004-01-01

    Investigators have rarely sought evidence for senescence in natural populations because it is assumed that relatively few individuals will survive long enough in the wild to exhibit the intrinsic increase in mortality with age expected from senescent individuals. Nevertheless, senescence has been documented in some natural populations, mostly in birds and mammals. Here we report on a comparative study of senescence in two natural populations of guppies (Poecilia reticulata). We document senescence as an age-specific increase in mortality rate, with use of mark-recapture studies and implementation of program MARK for analysis of such observations. Extrinsic mortality was controlled for by choosing populations that experience low rates of predation because they coexist with only a single piscine predator (Rivulus hartii). These populations differ in their evolutionary history because one was native to such a site whereas the other was introduced to a site that previously contained no guppies. The source of the introduced guppies was a high-predation population downstream below a barrier waterfall. Theory predicts that the guppies derived from a high-predation locality should experience senescence at an earlier age than the native low-predation population; however, the historical differences among these populations are also confounded with everything else that differs among the two localities. We found that females from a natural low-predation population have delayed senescence compared with the recently established population and hence that the differences among localities in senescence conform to theoretical predictions. The males from natural low-predation environments also had lower overall mortality rates, but contrary to predictions, the pattern of senescence for males did not differ between populations. The difference between the sexes is potentially attributable to two factors that lower the statistical power for distinguishing differences in the age

  7. Population Genetics of Two Key Mosquito Vectors of Rift Valley Fever Virus Reveals New Insights into the Changing Disease Outbreak Patterns in Kenya

    PubMed Central

    Tchouassi, David P.; Bastos, Armanda D. S.; Sole, Catherine L.; Diallo, Mawlouth; Lutomiah, Joel; Mutisya, James; Mulwa, Francis; Borgemeister, Christian; Sang, Rosemary; Torto, Baldwyn

    2014-01-01

    Rift Valley fever (RVF) outbreaks in Kenya have increased in frequency and range to include northeastern Kenya where viruses are increasingly being isolated from known (Aedes mcintoshi) and newly-associated (Ae. ochraceus) vectors. The factors contributing to these changing outbreak patterns are unclear and the population genetic structure of key vectors and/or specific virus-vector associations, in particular, are under-studied. By conducting mitochondrial and nuclear DNA analyses on >220 Kenyan specimens of Ae. mcintoshi and Ae. ochraceus, we uncovered high levels of vector complexity which may partly explain the disease outbreak pattern. Results indicate that Ae. mcintoshi consists of a species complex with one of the member species being unique to the newly-established RVF outbreak-prone northeastern region of Kenya, whereas Ae. ochraceus is a homogeneous population that appears to be undergoing expansion. Characterization of specimens from a RVF-prone site in Senegal, where Ae. ochraceus is a primary vector, revealed direct genetic links between the two Ae. ochraceus populations from both countries. Our data strongly suggest that unlike Ae. mcintoshi, Ae. ochraceus appears to be a relatively recent, single 'introduction' into Kenya. These results, together with increasing isolations from this vector, indicate that Ae. ochraceus will likely be of greater epidemiological importance in future RVF outbreaks in Kenya. Furthermore, the overall vector complexity calls into question the feasibility of mosquito population control approaches reliant on genetic modification. PMID:25474018

  8. Spatial model for transmission of mosquito-borne diseases

    NASA Astrophysics Data System (ADS)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2015-05-01

    In this paper, a generic model which takes into account spatial heterogeneity for the dynamics of mosquito-borne diseases is proposed. The dissemination of the disease is described by a system of reaction-diffusion partial differential equations. Host human and vector mosquito populations are divided into susceptible and infectious classes. Diffusion is considered to occur in all classes of both populations. Susceptible humans are infected when bitten by infectious mosquitoes. Susceptible mosquitoes bite infectious humans and become infected. The biting rate of mosquitoes is considered to be density dependent on the total human population in different locations. The system is solved numerically and results are shown.

  9. Habitat heterogeneity favors asexual reproduction in natural populations of grassthrips.

    PubMed

    Lavanchy, Guillaume; Strehler, Marie; Llanos Roman, Maria Noemi; Lessard-Therrien, Malie; Humbert, Jean-Yves; Dumas, Zoé; Jalvingh, Kirsten; Ghali, Karim; Fontcuberta García-Cuenca, Amaranta; Zijlstra, Bart; Arlettaz, Raphaël; Schwander, Tanja

    2016-08-01

    Explaining the overwhelming success of sex among eukaryotes is difficult given the obvious costs of sex relative to asexuality. Different studies have shown that sex can provide benefits in spatially heterogeneous environments under specific conditions, but whether spatial heterogeneity commonly contributes to the maintenance of sex in natural populations remains unknown. We experimentally manipulated habitat heterogeneity for sexual and asexual thrips lineages in natural populations and under seminatural mesocosm conditions by varying the number of hostplants available to these herbivorous insects. Asexual lineages rapidly replaced the sexual ones, independently of the level of habitat heterogeneity in mesocosms. In natural populations, the success of sexual thrips decreased with increasing habitat heterogeneity, with sexual thrips apparently only persisting in certain types of hostplant communities. Our results illustrate how genetic diversity-based mechanisms can favor asexuality instead of sex when sexual lineages co-occur with genetically variable asexual lineages. PMID:27346066

  10. Habitat heterogeneity favors asexual reproduction in natural populations of grassthrips.

    PubMed

    Lavanchy, Guillaume; Strehler, Marie; Llanos Roman, Maria Noemi; Lessard-Therrien, Malie; Humbert, Jean-Yves; Dumas, Zoé; Jalvingh, Kirsten; Ghali, Karim; Fontcuberta García-Cuenca, Amaranta; Zijlstra, Bart; Arlettaz, Raphaël; Schwander, Tanja

    2016-08-01

    Explaining the overwhelming success of sex among eukaryotes is difficult given the obvious costs of sex relative to asexuality. Different studies have shown that sex can provide benefits in spatially heterogeneous environments under specific conditions, but whether spatial heterogeneity commonly contributes to the maintenance of sex in natural populations remains unknown. We experimentally manipulated habitat heterogeneity for sexual and asexual thrips lineages in natural populations and under seminatural mesocosm conditions by varying the number of hostplants available to these herbivorous insects. Asexual lineages rapidly replaced the sexual ones, independently of the level of habitat heterogeneity in mesocosms. In natural populations, the success of sexual thrips decreased with increasing habitat heterogeneity, with sexual thrips apparently only persisting in certain types of hostplant communities. Our results illustrate how genetic diversity-based mechanisms can favor asexuality instead of sex when sexual lineages co-occur with genetically variable asexual lineages.

  11. Experimental Assessment of the Impacts of Northern Long-Eared Bats on Ovipositing Culex (Diptera: Culicidae) Mosquitoes

    PubMed Central

    Reiskind, Michael H.; Wund, Matthew A.

    2013-01-01

    The importance of predation as a mortality factor in adult mosquitoes has received only limited attention in the scientific literature. Despite the lack of consensus among researchers as to whether bats are important predators of mosquitoes, there have been no attempts to directly document the effect of bats on mosquito populations or behavior. We conducted an enclosure experiment to test the hypothesis that bats reduce the local abundance of ovipositing female mosquitoes by examining whether the northern long-eared bat (Myotis septentrionalis Trouessart) had an effect on Culex spp. (Diptera: Culicidae) oviposition, using naturally occurring mosquitoes, either through direct predation or trait mediated effects on mosquito behavior. We found a signiÞcant, 32% reduction in egg-laying activity associated with bat predation. Artificial oviposition habitats directly outside bat enclosures experienced no reduction in oviposition; we attributed the observed reduction in egg-laying activity to direct predation on ovipositing females by bats and not changes in mosquito behavior. In addition, we noted a decrease in the number of larval mosquitoes in enclosures exposed to bat predation. These results suggest the impact of aerial predators on pathogen transmission may be large, and warrants further scientific investigation. PMID:19769034

  12. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.

    PubMed

    Op De Beeck, Lin; Janssens, Lizanne; Stoks, Robby

    2016-03-01

    The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated

  13. Spatio-temporal Modeling of Mosquito Distribution

    NASA Astrophysics Data System (ADS)

    Dumont, Y.; Dufourd, C.

    2011-11-01

    We consider a quasilinear parabolic system to model mosquito displacement. In order to use efficiently vector control tools, like insecticides, and mechanical control, it is necessary to provide density estimates of mosquito populations, taking into account the environment and entomological knowledges. After a brief introduction to mosquito dispersal modeling, we present some theoretical results. Then, considering a compartmental approach, we get a quasilinear system of PDEs. Using the time splitting approach and appropriate numerical methods for each operator, we construct a reliable numerical scheme. Considering vector control scenarii, we show that the environment can have a strong influence on mosquito distribution and in the efficiency of vector control tools.

  14. Natural product studies of U.S. endangered plants: Volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks

    PubMed Central

    Oh, Joonseok; Bowling, John J.; Carroll, John F.; Demirci, Betul; Başer, K. Hüsnü Can; Leininger, Theodor D.; Bernier, Ulrich R.; Hamann, Mark T.

    2014-01-01

    The number of endangered plant species in the U.S. is significant, yet studies aimed towards utilizing these plants are limited. Ticks and mosquitoes are vectors of significant pathogenic diseases of humans. Repellents are critical means of personal protection against biting arthropods and disease transmission. The essential oil and solvent extracts from Lindera melissifolia (Walt.) Blume (Lauraceae) (pondberry) drupes were gathered and analyzed by GC and GC–MS. The essential oil obtained from this endangered plant showed a significant dose dependent repellency of ticks and a moderate mosquito repellent effect while the subsequent hexanes extract was completely ineffective. Fractional freezing enriched the tick repellent components of the essential oil. Several known tick repellent components were recognized by the GC–MS comparison of the resulting fractions and β-caryophyllene, α-humulene, germacrene D and β-elemene warrant evaluations for tick repellency. Identifying pondberry as a potential renewable source for a broad spectrum repellent supports efforts to conserve similar U.S. endangered or threatened plant species. PMID:22704653

  15. Natural product studies of U.S. endangered plants: volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks.

    PubMed

    Oh, Joonseok; Bowling, John J; Carroll, John F; Demirci, Betul; Başer, K Hüsnü Can; Leininger, Theodor D; Bernier, Ulrich R; Hamann, Mark T

    2012-08-01

    The number of endangered plant species in the U.S. is significant, yet studies aimed towards utilizing these plants are limited. Ticks and mosquitoes are vectors of significant pathogenic diseases of humans. Repellents are critical means of personal protection against biting arthropods and disease transmission. The essential oil and solvent extracts from Lindera melissifolia (Walt.) Blume (Lauraceae) (pondberry) drupes were gathered and analyzed by GC and GC-MS. The essential oil obtained from this endangered plant showed a significant dose dependent repellency of ticks and a moderate mosquito repellent effect while the subsequent hexanes extract was completely ineffective. Fractional freezing enriched the tick repellent components of the essential oil. Several known tick repellent components were recognized by the GC-MS comparison of the resulting fractions and β-caryophyllene, α-humulene, germacrene D and β-elemene warrant evaluations for tick repellency. Identifying pondberry as a potential renewable source for a broad spectrum repellent supports efforts to conserve similar U.S. endangered or threatened plant species. PMID:22704653

  16. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  17. Entomopathogenic fungi for mosquito control: A review

    PubMed Central

    Scholte, Ernst-Jan; Knols, Bart G.J.; Samson, Robert A.; Takken, Willem

    2004-01-01

    Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

  18. Opportunity for natural selection among the Indian populations.

    PubMed

    Reddy, B M; Chopra, V P

    1990-11-01

    A critical review of data on opportunity for natural selection among the Indian populations has been made. These data on 96 populations were analysed according to regional, habitat, and socioeconomic backgrounds. The trends observed on the basis of these Indian data have been compared with worldwide data and data from industrialized nations. As in the industrialized nations, a gradual decrease in I(m) and I(t) is observed with improving socioeconomic and technological status in the Indian populations. The Indian situation is similar to that of the first phase in the modern demographic transition among the industrialized nations.

  19. A naturally occurring mutation within the probe-binding region compromises a molecular-based West Nile virus surveillance assay for mosquito pools (Diptera: Culicidae).

    PubMed

    Brault, Aaron C; Fang, Ying; Dannen, Maureen; Anishchenko, Michael; Reisen, William K

    2012-07-01

    A naturally occurring mutation was detected within the probe binding region targeting the envelope gene sequence of West Nile virus used in real-time polymerase chain reaction assays to test mosquito pools and other samples. A single C-->T transition 6nt from the 5' end of the 16mer in the envelope gene probe-binding region at genomic position 1,194 reduced assay sensitivity. The mutation first was detected in 2009 and persisted at a low prevalence into 2011. The mutation caused a 0.4% false negative error rate during 2011. These data emphasized the importance of confirmational testing and redundancy in surveillance systems relying on highly specific nucleic acid detection platforms.

  20. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands.

    PubMed

    Roiz, David; Ruiz, Santiago; Soriguer, Ramon; Figuerola, Jordi

    2015-01-01

    Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations

  1. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands

    PubMed Central

    Roiz, David; Ruiz, Santiago; Soriguer, Ramon; Figuerola, Jordi

    2015-01-01

    Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations

  2. Landscape Effects on the Presence, Abundance and Diversity of Mosquitoes in Mediterranean Wetlands.

    PubMed

    Roiz, David; Ruiz, Santiago; Soriguer, Ramon; Figuerola, Jordi

    2015-01-01

    Environment determines the distribution of mosquito-borne diseases in that it influences the vector-host-pathogen transmission cycle, including vector distribution, abundance and diversity. In this study, we analyse the relationship between environmental variables estimated by remote sensing and the spatial distribution (presence, abundance and diversity) of seven mosquito species vectors of West Nile and other pathogens (Usutu, avian malaria and dirofilariasis) in the Doñana Natural Park, Spain. Traps were distributed over an area of 54,984 ha divided into six ecological units: marshland, sand dunes, scrubland, ricefields, crops and fishponds. We collected mosquitoes once a month from up to 112 locations using BG-Sentinel traps baited with BG-lure and CO2 during March-November 2010. Hydroperiod, NDVI and Inundation surface were estimated at several resolution scales (100, 250, 500, 1000 and 2000 metres) from corrected and normalized Landsat Images. We sampled 972,346 female mosquitoes, the most abundant species being Culex theileri, Ochlerotatus caspius, Culex modestus, Culex perexiguus, Culex pipiens, Anopheles atroparvus and Ochlerotatus detritus. Our results suggest that: (1) hydroperiod, inundation surface and NDVI are strongly related to the spatial distribution of mosquitoes; (2) the spatial scales used to measure these variables affected quantification of these relationships, the larger scale being more informative; (3) these relationships are species-specific; (4) hydroperiod is negatively related to mosquito presence and richness; (5) Culex abundance is positively related to hydroperiod; (6) NDVI is positively related to mosquito diversity, presence and abundance, except in the case of the two salt marsh species (Oc. caspius and Oc. detritus); and (7) inundation surfaces positively condition the abundance and richness of most species except the salt marsh mosquitoes. Remote sensing data provided reliable information for monitoring mosquito populations

  3. The Hidden Complexity of Mendelian Traits across Natural Yeast Populations.

    PubMed

    Hou, Jing; Sigwalt, Anastasie; Fournier, Téo; Pflieger, David; Peter, Jackson; de Montigny, Jacky; Dunham, Maitreya J; Schacherer, Joseph

    2016-07-26

    Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel's law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, confounding phenotypic predictability even for simple Mendelian traits. PMID:27396326

  4. DNA methylation: A source of random variation in natural populations.

    PubMed

    Massicotte, Rachel; Whitelaw, Emma; Angers, Bernard

    2011-04-01

    Epigenetic processes (e.g., DNA methylation) have been proposed as potentially important evolutionary mechanisms. However, before drawing conclusions about their evolutionary relevance, we need to evaluate the independence of epigenetic variation from genetic variation, as well as the extent of methylation polymorphism in nature. We evaluated these in natural populations of a clonal fish, Chrosomus eos-neogaeus, for which genetically identical individuals may be found in distinct environments. A genomic survey confirms the genetic uniformity of individuals, whereas a substantial level of inter-individual variation results in DNA methylation. Survey of the methylation status of the CpG dinucleotides of a fragment of a retrotransposon confirmed a marked difference in epiallelic composition among tissues, as well as among individuals. This study provides further evidence of epigenetic variation in the absence of genetic variation and demonstrates that this process can be a source of random variation in natural populations. PMID:21266851

  5. RELATIVE ABUNDANCE AND SPECIES COMPOSITION OF MOSQUITO POPULATIONS (DIPTERA:CULICIDAE) IN A LA CROSSE VIRUS- ENDEMIC AREA IN WESTERN NORTH CAROLINA

    EPA Science Inventory

    Container surveys were conducted in 5 communities on the Cherokee Indian Reservation, an area of western North Carolina endemic for transmission of La Crosse (LAC) virus, to determine the potential for peridomestic mosquito breeding, the relative abundance of mosquito species, an...

  6. New and Common Haplotypes Shape Genetic Diversity in Asian Tiger Mosquito Populations from Costa Rica and Panamá.

    PubMed

    Futami, K; Valderrama, A; Baldi, M; Minakawa, N; Marín Rodríguez, R; Chaves, L F

    2015-04-01

    The Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), is a vector of several human pathogens. Ae. albopictus is also an invasive species that, over recent years, has expanded its range out of its native Asia. Ae. albopictus was suspected to be present in Central America since the 1990s, and its presence was confirmed by most Central American nations by 2010. Recently, this species has been regularly found, yet in low numbers, in limited areas of Panamá and Costa Rica (CR). Here, we report that short sequences (∼558 bp) of the mitochondrial cytochrome oxidase subunit 1 (COI) and NADH dehydrogenase subunit 5 genes of Ae. albopictus, had no haplotype diversity. Instead, there was a common haplotype for each gene in both CR and Panamá. In contrast, a long COI sequence (∼1,390 bp) revealed that haplotype diversity (±SD) was relatively high in CR (0.72±0.04) when compared with Panamá (0.33±0.13), below the global estimate for reported samples (0.89±0.01). The long COI sequence allowed us to identify seven (five new) haplotypes in CR and two (one new) in Panamá. A haplotype network for the long COI gene sequence showed that samples from CR and Panamá belong to a single large group. The long COI gene sequences suggest that haplotypes in Panamá and CR, although similar to each other, had a significant geographic differentiation (Kst=1.33; P<0.001). Thus, most of our results suggest a recent range expansion in CR and Panamá. PMID:26470188

  7. Mosquitoes (Diptera: Culicidae) of metropolitan Hamburg, Germany.

    PubMed

    Krüger, A; Börstler, J; Badusche, M; Lühken, R; Garms, R; Tannich, E

    2014-08-01

    In Europe, mosquito-related public health concerns are growing due to the increasing spread of invasive mosquito species and the recent emergence of mosquito-borne arboviruses. A vital backbone in the assessment of these issues is detailed knowledge of the mosquito fauna, i.e. regional mosquito inventories. It was therefore decided to intensify nationwide investigations on the occurrence and distribution of mosquitoes in Germany in order to update old records and to detect possible faunal changes. This paper is focussing on a densely populated metropolitan region, the federal state of Hamburg and its adjacent environs, taking two historical baseline inventories into consideration, spanning almost 100 years of mosquito research in Hamburg. In the period between 2010 and 2014, more than 10,000 juvenile, neonate and adult mosquito specimens were sampled and trapped at 105 sites in Hamburg and its environs, of which about 60% have been identified to species level, resulting in a total of 33 recorded species. Of these, Anopheles algeriensis, Culex modestus, Ochlerotatus caspius, Ochlerotatus nigrinus and Ochlerotatus sticticus are new to the area. The most common species in Hamburg are Culex pipiens/torrentium and Ochlerotatus annulipes/cantans. In contrast, two previously common species, Anopheles atroparvus and Ochlerotatus excrucians, were not detected. Despite substantial environmental changes due to reconstruction, urbanisation and renaturation in the Hamburg metropolitan region in recent decades, there has been remarkably little change within the mosquito fauna during the last century. PMID:24870250

  8. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  9. Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and Its Phylogenetic Congruence

    PubMed Central

    Karami, Mohsen; Moosa-Kazemi, Seyed Hassan; Oshaghi, Mohammad Ali; Vatandoost, Hasan; Sedaghat, Mohammad Mehdi; Rajabnia, Ramazan; Hosseini, Mostafa; Maleki-Ravasan, Naseh; Yahyapour, Yousef; Ferdosi-Shahandashti, Elaheh

    2016-01-01

    Background: Wolbachia are common intracellular bacteria that infect different groups of arthropods including mosquitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI). Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases. Methods: Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these endosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene. Results: Wolbachia DNA were found in 227 (87.3%) out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phylogenetic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world. Conclusion: It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evolutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population reproductive incompatibility pattern and its usefulness as a bio-agent control measure. PMID:27308293

  10. Mosquito and Blackfly Category Manual.

    ERIC Educational Resources Information Center

    Bowman, James S.; And Others

    This manual provides information needed to meet the standards for pesticide applicator certification. Section one is concerned with the morphology, life cycle and breeding areas of mosquitoes and the diseases resulting from their presence. The second section covers similar categories in relation to the black fly population. Calculation methods and…

  11. Natural selection and infectious disease in human populations

    PubMed Central

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  12. Natural ionizing radiation exposure of the Spanish population.

    PubMed

    García-Talavera, M; Matarranz, J L; Martínez, M; Salas, R; Ramos, L

    2007-01-01

    This study investigates the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 1.6 mSv, taking into account contributions from cosmic radiation (18%), terrestrial gamma radiation (30%), radon and thoron inhalation (34%) and ingestion (18%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors were derived from the MARNA (natural gamma radiation map of Spain); indoor exposure was obtained multiplying the corresponding outdoor value by an experimentally calculated conversion factor. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion, data from a detailed study on consumption habits in Spain and average radioactivity values from UNSCEAR have been considered. The variability in the exposures among individuals in the population has been explicitly taken into account in the assessment.

  13. Promising new tools to fight Aedes mosquitoes.

    PubMed

    2016-08-01

    Two new tools for suppressing Aedes aegypti mosquito populations have been recommended for pilot testing. Carefully designed trials will be needed to see whether they actually reduce disease as well. Andréia Azevedo Soares reports. PMID:27516632

  14. Natural and sexual selection in a monogamous historical human population.

    PubMed

    Courtiol, Alexandre; Pettay, Jenni E; Jokela, Markus; Rotkirch, Anna; Lummaa, Virpi

    2012-05-22

    Whether and how human populations exposed to the agricultural revolution are still affected by Darwinian selection remains controversial among social scientists, biologists, and the general public. Although methods of studying selection in natural populations are well established, our understanding of selection in humans has been limited by the availability of suitable datasets. Here, we present a study comparing the maximum strengths of natural and sexual selection in humans that includes the effects of sex and wealth on different episodes of selection. Our dataset was compiled from church records of preindustrial Finnish populations characterized by socially imposed monogamy, and it contains a complete distribution of survival, mating, and reproductive success for 5,923 individuals born 1760-1849. Individual differences in early survival and fertility (natural selection) were responsible for most variation in fitness, even among wealthier individuals. Variance in mating success explained most of the higher variance in reproductive success in males compared with females, but mating success also influenced reproductive success in females, allowing for sexual selection to operate in both sexes. The detected opportunity for selection is in line with measurements for other species but higher than most previous reports for human samples. This disparity results from biological, demographic, economic, and social differences across populations as well as from failures by most previous studies to account for variation in fitness introduced by nonreproductive individuals. Our results emphasize that the demographic, cultural, and technological changes of the last 10,000 y did not preclude the potential for natural and sexual selection in our species.

  15. Investigating the genetics of Bti resistance using mRNA tag sequencing: application on laboratory strains and natural populations of the dengue vector Aedes aegypti

    PubMed Central

    Paris, Margot; Marcombe, Sebastien; Coissac, Eric; Corbel, Vincent; David, Jean-Philippe; Després, Laurence

    2013-01-01

    Mosquito control is often the main method used to reduce mosquito-transmitted diseases. In order to investigate the genetic basis of resistance to the bio-insecticide Bacillus thuringiensis subsp. israelensis (Bti), we used information on polymorphism obtained from cDNA tag sequences from pooled larvae of laboratory Bti-resistant and susceptible Aedes aegypti mosquito strains to identify and analyse 1520 single nucleotide polymorphisms (SNPs). Of the 372 SNPs tested, 99.2% were validated using DNA Illumina GoldenGate® array, with a strong correlation between the allelic frequencies inferred from the pooled and individual data (r = 0.85). A total of 11 genomic regions and five candidate genes were detected using a genome scan approach. One of these candidate genes showed significant departures from neutrality in the resistant strain at sequence level. Six natural populations from Martinique Island were sequenced for the 372 tested SNPs with a high transferability (87%), and association mapping analyses detected 14 loci associated with Bti resistance, including one located in a putative receptor for Cry11 toxins. Three of these loci were also significantly differentiated between the laboratory strains, suggesting that most of the genes associated with resistance might differ between the two environments. It also suggests that common selected regions might harbour key genes for Bti resistance. PMID:24187584

  16. Naturally cytotoxic tonsillar leukocytes: phenotypic characterization of the effector population.

    PubMed

    Christmas, S E; Allan, G; Moore, M

    1985-07-01

    Human palatine tonsil sections were examined to investigate the distribution of cells bearing the cell surface markers of peripheral blood natural killer (PB-NK) cells. Leu-7+ (HNK-1+) cells were localized predominantly in lymphoid follicles, whereas OKM1-, Mac-1-, and Mo2-labelled cells were found in the epithelial and subepithelial regions and epithelial crypts. OKT10+ cells showed a variable distribution, being found in follicles and interfollicular or subepithelial regions. No. B73.1+ cells could be identified in tonsil sections. Leu-7+ cells appeared not to be responsible for tonsillar natural cytotoxicity, since Leu-7 (HNK-1) antibody- and complement-mediated lysis under conditions that markedly reduced PB-NK activity failed to abolish cytotoxicity, and positive selection by means of the FACS IV gave no enrichment of activity. Similarly, cells labelled with the antibodies B73.1, Leu-11b, OKT8, OKT10, and TDR 31.1 (anti-major histocompatibility complex class II framework determinant) were not enriched with regard to NK activity either. However, positive selection with OKM1, Mac-1, or Mo2 showed that cells bearing these markers were responsible for essentially all tonsillar NK activity. No large granular lymphocytes were identified in such populations enriched for NK activity. The observation that PB-NK cells labelled faintly with Mo2 weakens the argument that a non-adherent mononuclear phagocyte population was responsible for the activity. These data therefore support the existence of heterogeneity within naturally cytotoxic cell populations.

  17. Mosquito Consumption by Insectivorous Bats: Does Size Matter?

    PubMed Central

    Gonsalves, Leroy; Bicknell, Brian; Law, Brad; Webb, Cameron; Monamy, Vaughan

    2013-01-01

    Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito

  18. Antimicrobial activity of mosquito cecropin peptides against Francisella.

    PubMed

    Kaushal, Akanksha; Gupta, Kajal; Shah, Ruhee; van Hoek, Monique L

    2016-10-01

    Francisella tularensis is the cause of the zoonotic disease tularemia. In Sweden and Scandinavia, epidemiological studies have implicated mosquitoes as a vector. Prior research has demonstrated the presence of Francisella DNA in infected mosquitoes but has not shown definitive transmission of tularemia from a mosquito to a mammalian host. We hypothesized that antimicrobial peptides, an important component of the innate immune system of higher organisms, may play a role in mosquito host-defense to Francisella. We established that Francisella sp. are susceptible to two cecropin antimicrobial peptides derived from the mosquito Aedes albopictus as well as Culex pipiens. We also demonstrated induced expression of Aedes albopictus antimicrobial peptide genes by Francisella infection C6/36 mosquito cell line. We demonstrate that mosquito antimicrobial peptides act against Francisella by disrupting the cellular membrane of the bacteria. Thus, it is possible that antimicrobial peptides may play a role in the inability of mosquitoes to establish an effective natural transmission of tularemia. PMID:27235883

  19. What is "natural"?: Yellowstone elk population? A case study

    USGS Publications Warehouse

    Keigley, R.B.; Wagner, F.H.

    2000-01-01

    Ecology analyzes the structure and function of ecosystems at all points along the continuum of human disturbance, from so-called pristine forests to urban backyards. Undisturbed systems provide reference points at one end of the spectrum, and nature reserves and parks are highly valued because they can provide unique examples of such ecosystems. Unfortunately the concept of “natural” or pristine is not that easy to define. Indeed, although ecologists have considered pre-Columbian, western-hemisphere ecosystems to have been largely unaltered by human action, and have termed their state “natural” or “pristine,” evidence from archaeology challenges this view. U.S. and Canadian national parks are charged with preserving the “natural,” and thus need to be able to understand and manage for the “natural.” A pivotal “natural” question in Yellowstone National Park management is the size of the northern-range, wintering elk population at Park establishment in 1872, argued both to have been small and large. Integrating and quantifying several sources of evidence provides a consistent picture of a low population (ca. 5,000–6,000), largely migrating out of the northern range in winter, with little vegetation impact. If we accept this conclusion about what is natural for the Yellowstone ecosystem, then it dramatically alters how we view management alternatives for the Park, which currently supports a northern wintering herd of up to ˜ 25,000 elk.

  20. Mosquito odorant receptor for DEET and methyl jasmonate.

    PubMed

    Xu, Pingxi; Choo, Young-Moo; De La Rosa, Alyssa; Leal, Walter S

    2014-11-18

    Insect repellents are important prophylactic tools for travelers and populations living in endemic areas of malaria, dengue, encephalitis, and other vector-borne diseases. DEET (N,N-diethyl-3-methylbenzamide) is a 6-decade-old synthetic repellent, which is still considered the gold standard of mosquito repellents. Mosquitoes use their sense of smell to detect DEET, but there are currently two hypotheses regarding its mode of action: activation of ionotropic receptor IR40a vs. odorant receptor(s). Here, we demonstrate that DEET, picaridin, insect repellent 3535, and p-menthan-3,8-diol activate the odorant receptor CquiOR136 of the southern house mosquito, Culex quinquefasciatus. Electrophysiological and behavioral assays showed that CquiIR40a knockdown had no significant effect on DEET detection and repellency. By contrast, reduction of CquiOR136 transcript levels led to a significant decrease in electroantennographic responses to DEET and a complete lack of repellency. Thus, direct activation of an odorant receptor, not an ionotropic receptor, is necessary for DEET reception and repellency in Culex mosquitoes. Interestingly, methyl jasmonate, a repellent derived from the nonvolatile jasmonic acid in the signaling pathway of plant defenses, elicited robust responses in CquiOR136•CquiOrco-expressing Xenopus oocytes, thus suggesting a possible link between natural products with long insect-plant evolutionary history and synthetic repellents. PMID:25349401

  1. Mosquito odorant receptor for DEET and methyl jasmonate

    PubMed Central

    Xu, Pingxi; Choo, Young-Moo; De La Rosa, Alyssa; Leal, Walter S.

    2014-01-01

    Insect repellents are important prophylactic tools for travelers and populations living in endemic areas of malaria, dengue, encephalitis, and other vector-borne diseases. DEET (N,N-diethyl-3-methylbenzamide) is a 6-decade-old synthetic repellent, which is still considered the gold standard of mosquito repellents. Mosquitoes use their sense of smell to detect DEET, but there are currently two hypotheses regarding its mode of action: activation of ionotropic receptor IR40a vs. odorant receptor(s). Here, we demonstrate that DEET, picaridin, insect repellent 3535, and p-menthan-3,8-diol activate the odorant receptor CquiOR136 of the southern house mosquito, Culex quinquefasciatus. Electrophysiological and behavioral assays showed that CquiIR40a knockdown had no significant effect on DEET detection and repellency. By contrast, reduction of CquiOR136 transcript levels led to a significant decrease in electroantennographic responses to DEET and a complete lack of repellency. Thus, direct activation of an odorant receptor, not an ionotropic receptor, is necessary for DEET reception and repellency in Culex mosquitoes. Interestingly, methyl jasmonate, a repellent derived from the nonvolatile jasmonic acid in the signaling pathway of plant defenses, elicited robust responses in CquiOR136•CquiOrco-expressing Xenopus oocytes, thus suggesting a possible link between natural products with long insect–plant evolutionary history and synthetic repellents. PMID:25349401

  2. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia

    PubMed Central

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-01-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models. PMID:27074252

  3. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia.

    PubMed

    Pérez-Castro, Rosalía; Castellanos, Jaime E; Olano, Víctor A; Matiz, María Inés; Jaramillo, Juan F; Vargas, Sandra L; Sarmiento, Diana M; Stenström, Thor Axel; Overgaard, Hans J

    2016-04-01

    The Aedes aegypti vector for dengue virus (DENV) has been reported in urban and periurban areas. The information about DENV circulation in mosquitoes in Colombian rural areas is limited, so we aimed to evaluate the presence of DENV in Ae. aegypti females caught in rural locations of two Colombian municipalities, Anapoima and La Mesa. Mosquitoes from 497 rural households in 44 different rural settlements were collected. Pools of about 20 Ae. aegypti females were processed for DENV serotype detection. DENV in mosquitoes was detected in 74% of the analysed settlements with a pool positivity rate of 62%. The estimated individual mosquito infection rate was 4.12% and the minimum infection rate was 33.3/1,000 mosquitoes. All four serotypes were detected; the most frequent being DENV-2 (50%) and DENV-1 (35%). Two-three serotypes were detected simultaneously in separate pools. This is the first report on the co-occurrence of natural DENV infection of mosquitoes in Colombian rural areas. The findings are important for understanding dengue transmission and planning control strategies. A potential latent virus reservoir in rural areas could spill over to urban areas during population movements. Detecting DENV in wild-caught adult mosquitoes should be included in the development of dengue epidemic forecasting models.

  4. History of Aedes mosquitoes in Hawaii.

    PubMed

    Winchester, Jonathan C; Kapan, Durrell D

    2013-06-01

    As a geographically isolated island chain with no native mosquitoes, Hawaii is a model for examining the mechanisms behind insect vector invasions and their subsequent interactions with each other and with human populations. The yellow fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Ae. albopictus, have been responsible for epidemics of dengue in Hawaii. As one of the world's earliest locations to be invaded by both species, Hawaii's history is particularly relevant because both species are currently invading new areas worldwide and are implicated in outbreaks of emergent or reemergent pathogens such as dengue, chikungunya, and yellow fever. Here we analyze the historical records of mosquito introductions in order to understand the factors that have led to the current distribution of these 2 mosquitoes in the Hawaiian Islands.

  5. Mosquito age and susceptibility to insecticides.

    PubMed

    Rajatileka, Shavanthi; Burhani, Joseph; Ranson, Hilary

    2011-05-01

    Insecticides play a crucial role in controlling the transmission of mosquito-borne diseases and the development and spread of insecticide resistance is a major threat to sustainable control. Guidelines developed by the WHO to monitor for insecticide resistance recommend using 1-3 day old, non blood fed female mosquitoes. This standardisation facilitates comparison between different tests, which is important when monitoring for spatial or longitudinal variations in resistance in the field. However, mosquitoes of this age cannot transmit human pathogens. In order to transmit disease, the mosquito must live long enough to pick up the pathogen via a blood meal, survive the extrinsic incubation period and then pass on the pathogen during a subsequent blood meal. Previous studies have reported declines in insecticide resistance with mosquito age. If widely applicable this would have important implications for predictions of the impact of resistance that are based on results from WHO bioassays. This study investigated the impact of senescence and blood feeding on insecticide induced mortality in six different mosquito populations and found higher mortality after insecticide exposure in older mosquitoes in three populations of Aedes aegypti and two Anopheles gambiae populations. Age dependent changes in the expression of a known insecticide detoxification gene, GSTe2, and in the frequency of a target site mutation (kdr 1014F) were investigated in an attempt to explain the results. PMID:21353689

  6. Comparison of mosquito (Diptera: Culicidae) populations by wetland type and year in the lower river Dalälven region, Central Sweden.

    PubMed

    Schäfer, M L; Lundström, J O; Petersson, E

    2008-06-01

    We studied adult mosquito assemblages in six wetlands, representing three types (wet meadow, alder swamp, and bog), in the lower part of the River Dalälven in Central Sweden during three consecutive years (2000-2002) and evaluated the influence of wetland type and year. Mosquito abundance differed significantly between years but not between wetland types. Mosquito species richness showed no significant variation between years or wetland types. Cluster analysis based on percentage of similarity resulted in three clusters, with high similarity between all wetlands in 2000. Ordination analysis showed that mosquito assemblages were mainly correlated with wetland type and water level increase in the previous month. Hydrological conditions varied between the years and between the wetland types, and our collections also included a year (2000) with extreme flood situations. The floodwater mosquito species Ochlerotatus sticticus was the predominant species with a strong influence on the whole study due to its long-range dispersal ability. The entire region suffered from enormous numbers of Oc. sticticus in 2000. The data from this study provided the basis for the initiation of a mosquito control project in the region.

  7. Natural disturbance reduces disease risk in endangered rainforest frog populations.

    PubMed

    Roznik, Elizabeth A; Sapsford, Sarah J; Pike, David A; Schwarzkopf, Lin; Alford, Ross A

    2015-01-01

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11-28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence. PMID:26294048

  8. Tropical amphibian populations experience higher disease risk in natural habitats

    PubMed Central

    Becker, C. Guilherme; Zamudio, Kelly R.

    2011-01-01

    Habitat loss and disease are main drivers of global amphibian declines, yet the interaction between them remains largely unexplored. Here we show that paradoxically, habitat loss is negatively associated with occurrence, prevalence, and infection intensity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in amphibian populations in the tropics. At a large spatial scale, increased habitat loss predicted lower disease risk in amphibian populations across Costa Rica and eastern Australia, even after jointly considering the effect of potential biotic and abiotic correlates. Lower host-species richness and suboptimal microclimates for Bd in disturbed habitats are potential mechanisms underlying this pattern. Furthermore, we found that anthropogenic deforestation practices biased to lowlands and natural vegetation remaining in inaccessible highlands explain increased Bd occurrence at higher elevations. At a smaller spatial scale, holding constant elevation, latitude, and macroclimate, we also found a negative relationship between habitat loss, and both Bd prevalence and infection intensity in frog populations in two landscapes of the Brazilian Atlantic Forest. Our results indicate that amphibians will be disproportionately affected by emerging diseases in pristine environments, and that, paradoxically, disturbed habitats may act as shelters from disease, but only for the very few species that can tolerate deforestation. Thus, tropical amphibian faunas are threatened both by destruction of natural habitats as well as increased disease in pristine forests. To curb further extinctions and develop effective mitigation and restoration programs we must look to interactions between habitat loss and disease, the two main factors at the root of global amphibian declines. PMID:21628560

  9. Natural disturbance reduces disease risk in endangered rainforest frog populations

    PubMed Central

    Roznik, Elizabeth A.; Sapsford, Sarah J.; Pike, David A.; Schwarzkopf, Lin; Alford, Ross A.

    2015-01-01

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11–28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence. PMID:26294048

  10. Tropical amphibian populations experience higher disease risk in natural habitats.

    PubMed

    Becker, C Guilherme; Zamudio, Kelly R

    2011-06-14

    Habitat loss and disease are main drivers of global amphibian declines, yet the interaction between them remains largely unexplored. Here we show that paradoxically, habitat loss is negatively associated with occurrence, prevalence, and infection intensity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in amphibian populations in the tropics. At a large spatial scale, increased habitat loss predicted lower disease risk in amphibian populations across Costa Rica and eastern Australia, even after jointly considering the effect of potential biotic and abiotic correlates. Lower host-species richness and suboptimal microclimates for Bd in disturbed habitats are potential mechanisms underlying this pattern. Furthermore, we found that anthropogenic deforestation practices biased to lowlands and natural vegetation remaining in inaccessible highlands explain increased Bd occurrence at higher elevations. At a smaller spatial scale, holding constant elevation, latitude, and macroclimate, we also found a negative relationship between habitat loss, and both Bd prevalence and infection intensity in frog populations in two landscapes of the Brazilian Atlantic Forest. Our results indicate that amphibians will be disproportionately affected by emerging diseases in pristine environments, and that, paradoxically, disturbed habitats may act as shelters from disease, but only for the very few species that can tolerate deforestation. Thus, tropical amphibian faunas are threatened both by destruction of natural habitats as well as increased disease in pristine forests. To curb further extinctions and develop effective mitigation and restoration programs we must look to interactions between habitat loss and disease, the two main factors at the root of global amphibian declines.

  11. Natural disturbance reduces disease risk in endangered rainforest frog populations.

    PubMed

    Roznik, Elizabeth A; Sapsford, Sarah J; Pike, David A; Schwarzkopf, Lin; Alford, Ross A

    2015-08-21

    Natural disturbances can drive disease dynamics in animal populations by altering the microclimates experienced by hosts and their pathogens. Many pathogens are highly sensitive to temperature and moisture, and therefore small changes in habitat structure can alter the microclimate in ways that increase or decrease infection prevalence and intensity in host populations. Here we show that a reduction of rainforest canopy cover caused by a severe tropical cyclone decreased the risk of endangered rainforest frogs (Litoria rheocola) becoming infected by a fungal pathogen (Batrachochytrium dendrobatidis). Reductions in canopy cover increased the temperatures and rates of evaporative water loss in frog microhabitats, which reduced B. dendrobatidis infection risk in frogs by an average of 11-28% in cyclone-damaged areas, relative to unaffected areas. Natural disturbances to the rainforest canopy can therefore provide an immediate benefit to frogs by altering the microclimate in ways that reduce infection risk. This could increase host survival and reduce the probability of epidemic disease outbreaks. For amphibian populations under immediate threat from this pathogen, targeted manipulation of canopy cover could increase the availability of warmer, drier microclimates and therefore tip the balance from host extinction to coexistence.

  12. Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years?

    PubMed

    Kim, K S; Tsuda, Y

    2012-11-01

    The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector-borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector-borne pathogens. Avian Plasmodium parasites are multihost mosquito-borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)-based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and C. pipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study. PMID:23036191

  13. Avian Plasmodium lineages found in spot surveys of mosquitoes from 2007 to 2010 at Sakata wetland, Japan: do dominant lineages persist for multiple years?

    PubMed

    Kim, K S; Tsuda, Y

    2012-11-01

    The ecology and geographical distribution of disease vectors are major determinants of spatial and temporal variations in the transmission dynamics of vector-borne pathogens. However, there are limited studies on the ecology of vectors that contribute to the natural transmission of most vector-borne pathogens. Avian Plasmodium parasites are multihost mosquito-borne pathogens transmitted by multiple mosquito species, which might regulate the diversity and persistence of these parasites. From 2007 to 2010, we conducted entomological surveys at Sakata wetland in central Japan, to investigate temporal variation in mosquito occurrence and prevalence of avian Plasmodium lineages in the mosquito populations. A polymerase chain reaction (PCR)-based method was used to detect Plasmodium parasites and identify the blood sources of mosquitoes. Culex inatomii and C. pipiens pallens represented 60.0% and 34.8% of 11 mosquito species collected, respectively. Our results showed that the two dominant mosquito species most likely serve as principal vectors of avian Plasmodium parasites during June, which coincides with the breeding season of bird species nesting in the wetland reed beds. Fourteen animal species were identified as blood sources of mosquitoes, with the oriental reed warbler (Acrocephalus orientalis) being the commonest blood source. Although there was significant temporal variation in the occurrence of mosquitoes and prevalence of Plasmodium lineages in the mosquitoes, the dominant Plasmodium lineages shared by the two dominant mosquito species were consistently found at the same time during transmission seasons. Because vector competence cannot be confirmed solely by PCR approaches, experimental demonstration is required to provide definitive evidence of transmission suggested in this study.

  14. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: II. Impact on populations of the mosquito Aedes aegypti.

    PubMed

    Rapley, L P; Johnson, P H; Williams, C R; Silcock, R M; Larkman, M; Long, S A; Russell, R C; Ritchie, S A

    2009-12-01

    numbers of young females may have confounded the measurement of changes in populations of older females in these studies. This is an important issue, with implications for assessing delayed action control measures, such as LOs and parasites/pathogens that aim to change mosquito age structure. Finally, the high public acceptability of SLOs and BLOs, coupled with significant impacts on female Ae. aegypti populations in two of the three interventions reported here, suggest that mass trapping with SLOs and BLOs can be an effective component of a dengue control strategy. PMID:19941596

  15. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections.

    PubMed

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-05-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  16. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: population structuring and multiple infections

    PubMed Central

    Augustinos, Antonios A; Asimakopoulou, Anastasia K; Moraiti, Cleopatra A; Mavragani-Tsipidou, Penelope; Papadopoulos, Nikolaos T; Bourtzis, Kostas

    2014-01-01

    Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological-predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA-, MLST- and wsp-based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors. PMID:24963388

  17. USING POPULATION GENOMICS TO DETECT SELECTION IN NATURAL POPULATIONS: KEY CONCEPTS AND METHODOLOGICAL CONSIDERATIONS

    PubMed Central

    Hohenlohe, Paul A.; Phillips, Patrick C.; Cresko, William A.

    2010-01-01

    Natural selection shapes patterns of genetic variation among individuals, populations, and species, and it does so differentially across genomes. The field of population genomics provides a comprehensive genome-scale view of the action of selection, even beyond traditional model organisms. However, even with nearly complete genomic sequence information, our ability to detect the signature of selection on specific genomic regions depends on choosing experimental and analytical tools appropriate to the biological situation. For example, processes that occur at different timescales, such as sorting of standing genetic variation, mutation-selection balance, or fixed interspecific divergence, have different consequences for genomic patterns of variation. Inappropriate experimental or analytical approaches may fail to detect even strong selection or falsely identify a signature of selection. Here we outline the conceptual framework of population genomics, relate genomic patterns of variation to evolutionary processes, and identify major biological factors to be considered in studies of selection. As data-gathering technology continues to advance, our ability to understand selection in natural populations will be limited more by conceptual and analytical weaknesses than by the amount of molecular data. Our aim is to bring critical biological considerations to the fore in population genomics research and to spur the development and application of analytical tools appropriate to diverse biological systems. PMID:21218185

  18. Genetic variation in natural honeybee populations, Apis mellifera capensis

    NASA Astrophysics Data System (ADS)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  19. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  20. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes

    PubMed Central

    Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A.; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L.

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011 – 0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission. PMID:26135160

  1. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes.

    PubMed

    Carvalho, Danilo O; McKemey, Andrew R; Garziera, Luiza; Lacroix, Renaud; Donnelly, Christl A; Alphey, Luke; Malavasi, Aldo; Capurro, Margareth L

    2015-01-01

    The increasing burden of dengue, and the relative failure of traditional vector control programs highlight the need to develop new control methods. SIT using self-limiting genetic technology is one such promising method. A self-limiting strain of Aedes aegypti, OX513A, has already reached the stage of field evaluation. Sustained releases of OX513A Ae. aegypti males led to 80% suppression of a target wild Ae. aegypti population in the Cayman Islands in 2010. Here we describe sustained series of field releases of OX513A Ae. aegypti males in a suburb of Juazeiro, Bahia, Brazil. This study spanned over a year and reduced the local Ae. aegypti population by 95% (95% CI: 92.2%-97.5%) based on adult trap data and 81% (95% CI: 74.9-85.2%) based on ovitrap indices compared to the adjacent no-release control area. The mating competitiveness of the released males (0.031; 95% CI: 0.025-0.036) was similar to that estimated in the Cayman trials (0.059; 95% CI: 0.011-0.210), indicating that environmental and target-strain differences had little impact on the mating success of the OX513A males. We conclude that sustained release of OX513A males may be an effective and widely useful method for suppression of the key dengue vector Ae. aegypti. The observed level of suppression would likely be sufficient to prevent dengue epidemics in the locality tested and other areas with similar or lower transmission.

  2. Mosquito, adult (image)

    MedlinePlus

    This illustration shows an adult southern house mosquito. This mosquito feeds on blood and is the carrier of many diseases, such as encephalitis, West Nile, dengue fever, yellow fever, and others. ( ...

  3. Mosquito, egg raft (image)

    MedlinePlus

    Mosquitoes of the Culex species lay their eggs in the form of egg rafts that float in ... feed on micro-organisms before developing into flying mosquitoes. (Image courtesy of the Centers for Disease Control ...

  4. Tidal circulation alteration for salt marsh mosquito control

    NASA Astrophysics Data System (ADS)

    Resh, Vincent H.; Balling, Steven S.

    1983-01-01

    Mosquito control ditches designed to increase tidal circulation are widely used as a physical control alternative to insecticidal applications The impact of such ditching on Pacific Coast marshlands was largely unknown before this five-year study of impact in two types of San Francisco Bay salt marshes, a Salicornia virginica (pickleweed) monoculure and a mixed vegetation marsh Results of our studies suggest that ditches cause less environmental disturbance than insecticidal applications The article describes the following environmental consequences of ditching for mosquito control: increased tidal flushing of soils occurs adjacent to ditches compared with that in the open marsh, thereby reducing ground water and soil surface salinities and water table height; primary productivity of S. virginica, as determined by both the harvest method and infrared photographic analysis, is higher directly adjacent to ditches than in the open marsh, distribution of selected arthropod populations is similar at ditches and natural channels, although arthropod community response differs seasonally; aquatic invertebrate biomass is similar within ditched and natural ponds, but diversity is lower in ditched habitats, ditching increases fish diversity and density by improving fish access from tidal channels; ditches provide additional salt marsh song sparrow habitat, although ditches are less preferred than natural channels or sloughs. Management criteria can be used to design ditches that provide effective mosquito control and reduced environmental impact

  5. Individual experience affects host choice in malaria vector mosquitoes

    PubMed Central

    2014-01-01

    Background Despite epidemiological importance, few studies have explored whether individual experience and learning could affect the vertebrate host choice of mosquito disease vectors. Here, we investigated whether a first successful blood meal can modulate mosquito preference during a second blood meal. Methods In no-choice situations, females of the mosquito Anopheles coluzzii, one of the primary African malaria vectors, were first allowed to feed on either human, rabbit or guinea pig. Four days later in dual-choice situations, the same mosquitoes were allowed to choose between the two uncommon hosts, rabbit and guinea pig, as a source of blood. ELISA assays were then used to determine which host mosquitoes fed on. Results Our results indicate that, overall, mosquitoes preferred to feed on rabbit over guinea pig and that the nature of the first blood meal had a significant impact on the mosquito host choice during the second blood meal. Compared to mosquitoes that previously fed on guinea pigs or humans, mosquitoes that fed on rabbits were less likely to choose this host species during a second exposition. The decreased preference for rabbit was observed four days after mosquitoes were first exposed to this host, suggesting that the effect lasts at least the duration of a gonotrophic cycle. Furthermore, this effect was observed after only one successful blood meal. Fitness measurements on mosquitoes fed on the three different vertebrate hosts showed that the origin of the blood meal affected mosquito longevity but not fecundity. In particular, human-fed mosquitoes lived longer than guinea pig-fed or rabbit-fed mosquitoes. Conclusions Our study demonstrates that individual experience affects host choice in this mosquito species and might have strong repercussions on biting patterns in natural conditions and hence on malaria transmission. PMID:24885668

  6. Design and Testing of Novel Lethal Ovitrap to Reduce Populations of Aedes Mosquitoes: Community-Based Participatory Research between Industry, Academia and Communities in Peru and Thailand

    PubMed Central

    Yukich, Josh; Soonthorndhada, Amara; Giron, Maziel; Apperson, Charles S.; Ponnusamy, Loganathan; Schal, Coby; Morrison, Amy C.; Keating, Joseph; Wesson, Dawn M.

    2016-01-01

    Background Dengue virus (and Chikungunya and Zika viruses) is transmitted by Aedes aegypti and Aedes albopictus mosquitoes and causes considerable human morbidity and mortality. As there is currently no vaccine or chemoprophylaxis to protect people from dengue virus infection, vector control is the only viable option for disease prevention. The purpose of this paper is to illustrate the design and placement process for an attractive lethal ovitrap to reduce vector populations and to describe lessons learned in the development of the trap. Methods This study was conducted in 2010 in Iquitos, Peru and Lopburi Province, Thailand and used an iterative community-based participatory approach to adjust design specifications of the trap, based on community members’ perceptions and feedback, entomological findings in the lab, and design and research team observations. Multiple focus group discussions (FGD) were held over a 6 month period, stratified by age, sex and motherhood status, to inform the design process. Trap testing transitioned from the lab to within households. Results Through an iterative process of working with specifications from the research team, findings from the laboratory testing, and feedback from FGD, the design team narrowed trap design options from 22 to 6. Comments from the FGD centered on safety for children and pets interacting with traps, durability, maintenance issues, and aesthetics. Testing in the laboratory involved releasing groups of 50 gravid Ae. aegypti in walk-in rooms and assessing what percentage were caught in traps of different colors, with different trap cover sizes, and placed under lighter or darker locations. Two final trap models were mocked up and tested in homes for a week; one model was the top choice in both Iquitos and Lopburi. Discussion The community-based participatory process was essential for the development of novel traps that provided effective vector control, but also met the needs and concerns of community

  7. The genetic consequences of selection in natural populations.

    PubMed

    Thurman, Timothy J; Barrett, Rowan D H

    2016-04-01

    The selection coefficient, s, quantifies the strength of selection acting on a genetic variant. Despite this parameter's central importance to population genetic models, until recently we have known relatively little about the value of s in natural populations. With the development of molecular genetic techniques in the late 20th century and the sequencing technologies that followed, biologists are now able to identify genetic variants and directly relate them to organismal fitness. We reviewed the literature for published estimates of natural selection acting at the genetic level and found over 3000 estimates of selection coefficients from 79 studies. Selection coefficients were roughly exponentially distributed, suggesting that the impact of selection at the genetic level is generally weak but can occasionally be quite strong. We used both nonparametric statistics and formal random-effects meta-analysis to determine how selection varies across biological and methodological categories. Selection was stronger when measured over shorter timescales, with the mean magnitude of s greatest for studies that measured selection within a single generation. Our analyses found conflicting trends when considering how selection varies with the genetic scale (e.g., SNPs or haplotypes) at which it is measured, suggesting a need for further research. Besides these quantitative conclusions, we highlight key issues in the calculation, interpretation, and reporting of selection coefficients and provide recommendations for future research.

  8. Homogeneity of Powassan virus populations in naturally infected Ixodes scapularis

    SciTech Connect

    Brackney, Doug E.; Brown, Ivy K.; Nofchissey, Robert A.; Fitzpatrick, Kelly A.; Ebel, Gregory D.

    2010-07-05

    Powassan virus (POWV, Flaviviridae: Flavivirus) is the sole North American member of the tick-borne encephalitis complex and consists of two distinct lineages that are maintained in ecologically discrete enzootic transmission cycles. The underlying genetic mechanisms that lead to niche partitioning in arboviruses are poorly understood. Therefore, intra- and interhost genetic diversity was analyzed to determine if POWV exists as a quasispecies in nature and quantify selective pressures within and between hosts. In contrast to previous reports for West Nile virus (WNV), significant intrahost genetic diversity was not observed. However, pN (0.238) and d{sub N}/d{sub S} ratios (0.092) for interhost diversity were similar to those of WNV. Combined, these data suggest that purifying selection and/or population bottlenecks constrain quasispecies diversity within ticks. These same selective and stochastic mechanisms appear to drive minor sequence changes between ticks. Moreover, Powassan virus populations seem not to be structured as quasispecies in naturally infected adult deer ticks.

  9. Population thinking and natural selection in dual-inheritance theory.

    PubMed

    Houkes, Wybo

    2012-05-01

    A deflationary perspective on theories of cultural evolution, in particular dual-inheritance theory, has recently been proposed by Lewens. On this 'pop-culture' analysis, dual-inheritance theorists apply population thinking to cultural phenomena, without claiming that cultural items evolve by natural selection. This paper argues against this pop-culture analysis of dual-inheritance theory. First, it focuses on recent dual-inheritance models of specific patterns of cultural change. These models exemplify population thinking without a commitment to natural selection of cultural items. There are grounds, however, for doubting the added explanatory value of the models in their disciplinary context-and thus grounds for engaging in other potentially explanatory projects based on dual-inheritance theory. One such project is suggested by advocates of the theory. Some of the motivational narratives that they offer can be interpreted as setting up an adaptationist project with regard to cumulative change in cultural items. We develop this interpretation here. On it, dual-inheritance theory features two interrelated selection processes, one on the level of genetically inherited learning mechanisms, another on the level of the cultural items transmitted through these mechanisms. This interpretation identifies a need for further modelling efforts, but also offers scope for enhancing the explanatory power of dual-inheritance theory.

  10. A new larval tray and rack system for improved mosquito mass rearing.

    PubMed

    Balestrino, F; Benedict, M Q; Gilles, J R L

    2012-05-01

    The requirement for efficient mosquito mass rearing technology has been one of the major obstacles preventing the large scale application of the Sterile Insect Technique against mosquitoes. At the Food and Agriculture Organization/International Atomic Energy Agency (FAO/ IAEA) Insect Pest Control Laboratories we developed a larval rearing unit based on the use of a stainless steel rack that operates 50 thermoformed ABS plastic trays and is expected to be able to successfully rear 140,000-175,000 Anopheles arabiensis (Patton) adult mosquitoes per rack. The mechanized rearing unit is simple to handle, maintains minimal water temperature variation and negligible water evaporation and allows normal larval development. The mosquito mass-rearing tray was designed to provide a large surface area of shallow water that would closely mimic natural breeding sites. The trays stack into a dedicated rack structure and filling and draining were easily performed. The close stacking of the trays in the rack and the possibility to tightly line up several racks makes this rearing unit a valid solution for maximal use of the space thus reducing construction, heating, and cooling costs. The low amount of labor required to operate the system also reduces labor costs that represent one of the main expenditures in any mass rearing facility operation. Preliminary experiments performed on Aedes albopictus (Skuse) also confirm the possibility of successfully extending the use of this technology to other mosquito species. Our larval rearing unit could enhance any mosquito control strategy in which large-scale releases of mosquitoes are needed to suppress or replace natural populations. PMID:22679867

  11. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi.

    PubMed

    Chandler, James Angus; Liu, Rachel M; Bennett, Shannon N

    2015-01-01

    Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host.

  12. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi

    PubMed Central

    Chandler, James Angus; Liu, Rachel M.; Bennett, Shannon N.

    2015-01-01

    Mosquitoes, most often recognized for the microbial agents of disease they may carry, harbor diverse microbial communities that include viruses, bacteria, and fungi, collectively called the microbiota. The composition of the microbiota can directly and indirectly affect disease transmission through microbial interactions that could be revealed by its characterization in natural populations of mosquitoes. Furthermore, the use of shotgun metagenomic sequencing (SMS) approaches could allow the discovery of unknown members of the microbiota. In this study, we use RNA SMS to characterize the microbiota of seven individual mosquitoes (species include Culex pipiens, Culiseta incidens, and Ochlerotatus sierrensis) collected from a variety of habitats in California, USA. Sequencing was performed on the Illumina HiSeq platform and the resulting sequences were quality-checked and assembled into contigs using the A5 pipeline. Sequences related to single stranded RNA viruses of the Bunyaviridae and Rhabdoviridae were uncovered, along with an unclassified genus of double-stranded RNA viruses. Phylogenetic analysis finds that in all three cases, the closest relatives of the identified viral sequences are other mosquito-associated viruses, suggesting widespread host-group specificity among disparate viral taxa. Interestingly, we identified a Narnavirus of fungi, also reported elsewhere in mosquitoes, that potentially demonstrates a nested host-parasite association between virus, fungi, and mosquito. Sequences related to 8 bacterial families and 13 fungal families were found across the seven samples. Bacillus and Escherichia/Shigella were identified in all samples and Wolbachia was identified in all Cx. pipiens samples, while no single fungal genus was found in more than two samples. This study exemplifies the utility of RNA SMS in the characterization of the natural microbiota of mosquitoes and, in particular, the value of identifying all microbes associated with a specific host

  13. A new larval tray and rack system for improved mosquito mass rearing.

    PubMed

    Balestrino, F; Benedict, M Q; Gilles, J R L

    2012-05-01

    The requirement for efficient mosquito mass rearing technology has been one of the major obstacles preventing the large scale application of the Sterile Insect Technique against mosquitoes. At the Food and Agriculture Organization/International Atomic Energy Agency (FAO/ IAEA) Insect Pest Control Laboratories we developed a larval rearing unit based on the use of a stainless steel rack that operates 50 thermoformed ABS plastic trays and is expected to be able to successfully rear 140,000-175,000 Anopheles arabiensis (Patton) adult mosquitoes per rack. The mechanized rearing unit is simple to handle, maintains minimal water temperature variation and negligible water evaporation and allows normal larval development. The mosquito mass-rearing tray was designed to provide a large surface area of shallow water that would closely mimic natural breeding sites. The trays stack into a dedicated rack structure and filling and draining were easily performed. The close stacking of the trays in the rack and the possibility to tightly line up several racks makes this rearing unit a valid solution for maximal use of the space thus reducing construction, heating, and cooling costs. The low amount of labor required to operate the system also reduces labor costs that represent one of the main expenditures in any mass rearing facility operation. Preliminary experiments performed on Aedes albopictus (Skuse) also confirm the possibility of successfully extending the use of this technology to other mosquito species. Our larval rearing unit could enhance any mosquito control strategy in which large-scale releases of mosquitoes are needed to suppress or replace natural populations.

  14. Mosquito management: Ecological approaches

    NASA Astrophysics Data System (ADS)

    Garcia, R.

    1983-01-01

    This article discusses organism use for management of mosquitoes included are considerations of the introduction and/or manipulation of plants, animals, and microorganisms into breeding habitats in which they act to make conditions less suitable for mosquito production. The importance of foresight and careful planning is stressed with regard to developing mosquito management strategies

  15. MAN, MOSQUITOES AND MICROBES.

    ERIC Educational Resources Information Center

    SCHOONOVER, ROBERT A.

    THE CONTROL OF MOSQUITOES IS A MATTER OF INCREASING CONCERN IN THE STATE OF FLORIDA. A BRIEF DESCRIPTION OF THE LIFE CYCLE, VARIOUS SPECIES, CONTROL, AND DESCRIPTION OF DISEASES TRANSMITTED BY THE MOSQUITO WAS PRESENTED. THE ARTICLE CONCLUDED THAT MOSQUITO CONTROL IS NOT ONLY A HEALTH PROBLEM, BUT ALSO A MATTER OF IMPROVED ECONOMICS IN RELATION TO…

  16. Effect of Gamma radiation on microbial population of natural casings

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Fraqueza, M. J.

    1998-06-01

    The high microbial load of fresh and dry natural casings increases the risk of meat product contamination with pathogenic microorganisms, agents of foodborn diseases. The aim of this work is to evaluate the killing effect of gamma radiation of the resident microbial population of pork and beef casings, to improve their hygiene and safety. Portions of fresh pork (small intestines and colon) and dry beef casings were irradiated in a Cobalt 60 source with with absorbed doses of 1,2,5 and 10 kGy. The D 10 values of total aerobic microorganisms in the pork casings were 1.65 kGy for colon and 1.54 kGy for small intestine. The D 10 value found in beef dry casings (small intestine) was 10.17 kGy. Radurization with 5 kGy was able to reduce, at least, 6 logs the coliform bacteria in pork casings. The killing effect over faecal Streptococci was 4 logs for pork fresh casings and 2 logs for beef dry casings. Gamma radiation with 5 kGy proved to be a convenient method to reduce substantially the microbial population of pork fresh casings. Otherwise, the microbial population of beef dry casings still resisted to 10 kGy.

  17. Dispersal of Adult Culex Mosquitoes in an Urban West Nile Virus Hotspot: A Mark-Capture Study Incorporating Stable Isotope Enrichment of Natural Larval Habitats

    PubMed Central

    Hamer, Gabriel L.; Anderson, Tavis K.; Donovan, Danielle J.; Brawn, Jeffrey D.; Krebs, Bethany L.; Gardner, Allison M.; Ruiz, Marilyn O.; Brown, William M.; Kitron, Uriel D.; Newman, Christina M.; Goldberg, Tony L.; Walker, Edward D.

    2014-01-01

    Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems. PMID:24676212

  18. Approaches to passive mosquito surveillance in the EU.

    PubMed

    Kampen, Helge; Medlock, Jolyon M; Vaux, Alexander G C; Koenraadt, Constantianus J M; van Vliet, Arnold J H; Bartumeus, Frederic; Oltra, Aitana; Sousa, Carla A; Chouin, Sébastien; Werner, Doreen

    2015-01-08

    The recent emergence in Europe of invasive mosquitoes and mosquito-borne disease associated with both invasive and native mosquito species has prompted intensified mosquito vector research in most European countries. Central to the efforts are mosquito monitoring and surveillance activities in order to assess the current species occurrence, distribution and, when possible, abundance, in order to permit the early detection of invasive species and the spread of competent vectors. As active mosquito collection, e.g. by trapping adults, dipping preimaginal developmental stages or ovitrapping, is usually cost-, time- and labour-intensive and can cover only small parts of a country, passive data collection approaches are gradually being integrated into monitoring programmes. Thus, scientists in several EU member states have recently initiated programmes for mosquito data collection and analysis that make use of sources other than targeted mosquito collection. While some of them extract mosquito distribution data from zoological databases established in other contexts, community-based approaches built upon the recognition, reporting, collection and submission of mosquito specimens by citizens are becoming more and more popular and increasingly support scientific research. Based on such reports and submissions, new populations, extended or new distribution areas and temporal activity patterns of invasive and native mosquito species were found. In all cases, extensive media work and communication with the participating individuals or groups was fundamental for success. The presented projects demonstrate that passive approaches are powerful tools to survey the mosquito fauna in order to supplement active mosquito surveillance strategies and render them more focused. Their ability to continuously produce biological data permits the early recognition of changes in the mosquito fauna that may have an impact on biting nuisance and the risk of pathogen transmission associated

  19. Mosquitoes and the Environment in Nile Delta Villages with Previous Rift Valley Fever Activity.

    PubMed

    Zayed, Abdelbaset B; Britch, Seth C; Soliman, Mohamed I; Linthicum, Kenneth J

    2015-06-01

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from 3 key governorates before and after 2012 seasonal flooding. We found that environmental effects varied among species, life stages, pre- and postflood groupings, and geographic populations of the same species, and that mosquito community composition could change after flooding. Our study provides preliminary data for modeling mosquitoes and mosquito-borne diseases in the Nile Delta region.

  20. Mosquitoes and the Environment in Nile Delta Villages with Previous Rift Valley Fever Activity.

    PubMed

    Zayed, Abdelbaset B; Britch, Seth C; Soliman, Mohamed I; Linthicum, Kenneth J

    2015-06-01

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from 3 key governorates before and after 2012 seasonal flooding. We found that environmental effects varied among species, life stages, pre- and postflood groupings, and geographic populations of the same species, and that mosquito community composition could change after flooding. Our study provides preliminary data for modeling mosquitoes and mosquito-borne diseases in the Nile Delta region. PMID:26181689

  1. Sustaining salmonid populations: A caring understanding of naturalness of taxa

    USGS Publications Warehouse

    Nielsen, J.L.; Regier, H.A.

    2004-01-01

    Species of the family of Salmonidae occur naturally in Northern Hemisphere waters that remain clear and cool to cold in summer. For purposes of reproduction, salmonids generally behaviorally respond to the currents of streams and lakes in recently glaciated areas. For feeding and maturation, many larger species migrate into existing systems of large lakes, seas, and oceans. The subfamilies include Salmoninae, Coregoninae, and Thymallinae. In many locales and regions of the hemisphere, numerous species of these subfamilies evolved and self-organized into species flocks or taxocenes of bewildering complexity. For example, any individual species may play different or unique ecological roles in different taxocenes. The northern Pacific and Atlantic Ocean ecosystems, with their seas and tributaries, each contained a metacomplex of such taxocenes that, in their natural state some centuries ago, resembled each other but differed in many ways. Humans have valued all species of this family for subsistence, ceremonial, naturalist, gustatory, angling, and commercial reasons for centuries. Modern progressive humans (MPHs), whose industrial and commercial enterprises have gradually spread over this hemisphere in recent time, now affect aquatic ecosystems at all scales from local to global. These human effects mingle in complex ways that together induce uniquely natural salmonid taxocenes to disintegrate with the loss of species, including those groups least tolerant to human manipulations, but extending more recently to those taxa more adapted to anthropogenic change. As we leave the modern era, dominated by MPHs, will we find ways to live sustainably with salmonid taxocenes that still exhibit self-organizational integrity, or will only individual, isolated populations of salmonid species, derived from those most tolerant of MPHs, survive? To achieve future sustainability of salmonids, we suggest implementation of a search for intuitive knowledge based on faith in the wisdom of

  2. Hybrid dysgenesis determinants in a natural Drosophila population from Altai

    SciTech Connect

    Kozhemyakina, T.A.; Furman, D.P.

    1995-09-01

    Localization of mobile elements P and hobo in the genomes of isofemale Drosophila lines obtained from a natural population from Biisk (Altai) was analyzed by in situ hybridization. The average copy number per genome was 27.1 for P and 22.0 for hobo. The highest number of P and hobo copies was recorded in the 3R and 21 chromosomes, respectively. The X chromosome contained the lowest number of hobo copies. For P, this relationship was not shown. Both transposons had preferential localization sites, or {open_quotes}hot spots,{close_quotes} which partly coincided with intercalary heterochromatin regions. Correlation analysis of P and hobo copy number showed independent distribution of these hybrid dysgenesis determinants. The 1A site, which is thought to be associated with the P cytotype expression, was not labelled in any line. 40 refs., 1 fig., 5 tabs.

  3. Natural cytotoxicity of haemopoietic cell populations against murine lymphoid tumours.

    PubMed Central

    Burton, R. C.; Grail, D.; Warner, N. L.

    1978-01-01

    Homozygous nude and normal mice of 3 strains, BALB/c, CBA and C57BL, were used as sources of nucleated haemopoietic "natural killer" (NK) cells. These killer cells could lyse a wide range of syngeneic and allogeneic lymphoid tumour cell lines in vitro, and it was found that cell suspensions from nude mice were always significantly more active than those from normal mice, and that the most active effector population was a polymorph-enriched peritoneal-exudate cell suspension. Eosinophils did not appear to be involved in the phenomenon, and mononuclear peritoneal-exudate cell suspensions were actually highly inhibitory. Three non-lymphoid tumours, a carcinoma, a fibrosarcoma and a mastocytoma, were totally resistant to in vitro lysis. Although all susceptible tumour cell lines were C-type virus-associated, not all of these tumours were killed by all strain sources of spleen cells, indicating a specificity of killing. PMID:656308

  4. Chemotaxis by natural populations of coral reef bacteria.

    PubMed

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  5. Polyclonality of Concurrent Natural Populations of Alteromonas macleodii

    PubMed Central

    Gonzaga, Aitor; Martin-Cuadrado, Ana-Belen; López-Pérez, Mario; Megumi Mizuno, Carolina; García-Heredia, Inmaculada; Kimes, Nikole E.; Lopez-García, Purificación; Moreira, David; Ussery, David; Zaballos, Mila; Ghai, Rohit; Rodriguez-Valera, Francisco

    2012-01-01

    We have analyzed a natural population of the marine bacterium, Alteromonas macleodii, from a single sample of seawater to evaluate the genomic diversity present. We performed full genome sequencing of four isolates and 161 metagenomic fosmid clones, all of which were assigned to A. macleodii by sequence similarity. Out of the four strain genomes, A. macleodii deep ecotype (AltDE1) represented a different genome, whereas AltDE2 and AltDE3 were identical to the previously described AltDE. Although the core genome (∼80%) had an average nucleotide identity of 98.51%, both AltDE and AltDE1 contained flexible genomic islands (fGIs), that is, genomic islands present in both genomes in the same genomic context but having different gene content. Some of the fGIs encode cell surface receptors known to be phage recognition targets, such as the O-chain of the lipopolysaccharide, whereas others have genes involved in physiological traits (e.g., nutrient transport, degradation, and metal resistance) denoting microniche specialization. The presence in metagenomic fosmids of genomic fragments differing from the sequenced strain genomes, together with the presence of new fGIs, indicates that there are at least two more A. macleodii clones present. The availability of three or more sequences overlapping the same genomic region also allowed us to estimate the frequency and distribution of recombination events among these different clones, indicating that these clustered near the genomic islands. The results indicate that this natural A. macleodii population has multiple clones with a potential for different phage susceptibility and exploitation of resources, within a seemingly unstructured habitat. PMID:23212172

  6. Engineered mosquitoes to fight mosquito borne diseases: not a merely technical issue

    PubMed Central

    Favia, Guido

    2015-01-01

    Malaria, dengue and other mosquito-borne diseases pose dramatic problems of public health, particularly in tropical and sub-tropical countries. Historically, vector control has been one of the most successfully strategies to eradicate some mosquito-borne diseases, as witnessed by malaria eradication in Mediterranean regions such as Italy and Greece. Vector control through insecticides has been used worldwide; unfortunately, it is losing effectiveness due to spread of resistances. Control of mosquito-borne diseases through field-releases of genetically engineered mosquitoes is an innovative and now feasible approach. Genetically modified mosquitoes have already been released into the wild in some regions, and protocols for this release are on hand in others. Local authorities are vigilant that transgenic insects in the field are safe for human and animal populations, and the public engagement in every control program is assuming a central role. PMID:25495663

  7. A rationale to design longer lasting mosquito repellents.

    PubMed

    Iovinella, Immacolata; Pelosi, Paolo; Conti, Barbara

    2014-05-01

    Mosquito repellents represent a cleaner and safer alternative for population control and reduce the diseases they carry in large areas of the world. Recently, research has been focused on repellents of natural origins, both crude essential oils and their main constituents. We have observed that, although a large number of compounds can be efficiently used as mosquito repellents, their efficacy is never higher than those of commercial products DEET and Icaridin. Reasoning that probably specific and exceptionally active repellents might not exist, we focused our research on products that could provide longer protection times with respect to current commercial formulations while being used at lower concentrations. Based on the structure of menthone, a moderate natural repellent, we designed and synthesised some cyclic ketals that, because of their reduced volatility, could be effective for longer periods. In particular, a 1% solution of one of such derivatives can still reduce mosquito bites by 90% after 2 h, while DEET provides the same performance only for 15 min, when used at the same concentration. The approach we illustrate can be applied to other compounds and other systems and offers the additional advantage that derivatives of reduced volatility are also endowed with weaker odours. PMID:24599300

  8. A rationale to design longer lasting mosquito repellents.

    PubMed

    Iovinella, Immacolata; Pelosi, Paolo; Conti, Barbara

    2014-05-01

    Mosquito repellents represent a cleaner and safer alternative for population control and reduce the diseases they carry in large areas of the world. Recently, research has been focused on repellents of natural origins, both crude essential oils and their main constituents. We have observed that, although a large number of compounds can be efficiently used as mosquito repellents, their efficacy is never higher than those of commercial products DEET and Icaridin. Reasoning that probably specific and exceptionally active repellents might not exist, we focused our research on products that could provide longer protection times with respect to current commercial formulations while being used at lower concentrations. Based on the structure of menthone, a moderate natural repellent, we designed and synthesised some cyclic ketals that, because of their reduced volatility, could be effective for longer periods. In particular, a 1% solution of one of such derivatives can still reduce mosquito bites by 90% after 2 h, while DEET provides the same performance only for 15 min, when used at the same concentration. The approach we illustrate can be applied to other compounds and other systems and offers the additional advantage that derivatives of reduced volatility are also endowed with weaker odours.

  9. The probability of genetic parallelism and convergence in natural populations.

    PubMed

    Conte, Gina L; Arnegard, Matthew E; Peichel, Catherine L; Schluter, Dolph

    2012-12-22

    Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1-0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.

  10. Annual Cycle of Planktothrix agardhii (Gom.) Anagn. &Kom. Nature Population

    NASA Astrophysics Data System (ADS)

    Poulíková, Aloisie; Haler, Petr; Kitner, Miloslav

    2004-07-01

    Changes in abundance, biovolume and morphology of Planktothrix agardhii in a natural population were followed over one year period in shallow fishpond Bílá Lhota (Central Moravia, Czech Republic). The selected environmental parameters (pH, oxygen, temperature, conductivity, nutrients, light) were measured at the surface and at the bottom of the fishpond, together with the Planktothrix abundances and filament morphology - filament length, width, shape, aerotopes (gas vacuoles) formation. The annual cycle of P. agardhii in this hypertrophic fishpond starts in March with the germination of hormogonia and the growth of overwintered filaments. The filament length quickly increases to a maximum length in April. The following summer period can be characterized by filament shortening and by changes in the aerotopes shape. On the other hand the abundance and biomass of P. agardhii is increasing until the maximum in August. Further shortening of filaments, loss of aerotopes and hormogoniae formation is typical for the autumn (October) with the average temperature of 9.4 °C. The population overwinters near the pond bottom in the form of hormogonia (60%) and filaments (40%). (

  11. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-01

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  12. Comparative estimates of density and species diversity in adult mosquito populations landing on a human subject and captured using light and suction traps.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative responses of 21 species of mosquitoes to light traps (LT) and suction traps (ST) and captured using the human landing collection method (HL) varied in accordance with collection technique but data analyses for most species revealed significant interaction between collection method and th...

  13. Hey! A Mosquito Bit Me!

    MedlinePlus

    ... Here's Help White House Lunch Recipes Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...

  14. Paratransgenesis: a promising new strategy for mosquito vector control.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  15. Paratransgenesis: a promising new strategy for mosquito vector control.

    PubMed

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-06-24

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  16. Mosquito repellents based on a natural chromene analogue with longer duration of action than N,N-diethyl-meta-toluamide (DEET).

    PubMed

    Meepagala, Kumudini M; Bernier, Ulrich R; Burandt, Charles; Duke, Stephen O

    2013-10-01

    Mosquito repellents play a major role in reducing bites and therefore mitigating transmission of mosquito-borne diseases. There is concern by some about the reported neurotoxic effects of the popular repellent DEET. Also, a product with longer effective activity after application is needed. This paper describes the synthesis and repellent activity of (2,2 dimethyl-2H-chromen-5-yl)methanol, a derivative of chromene amide that is a compound from the plant Amyris texana . This compound is more potent and provides longer duration of protection than DEET against Aedes aegypti (L.), the primary vector that transmits pathogens causing yellow and dengue fevers in humans. PMID:24006960

  17. Disruption of dengue virus transmission by mosquitoes

    PubMed Central

    Franz, Alexander W.E.; Balaraman, Velmurugan; Fraser, Malcolm J.

    2015-01-01

    Current control efforts for mosquito-borne arboviruses focus on mosquito control involving insecticide applications, which are becoming increasingly ineffective and unsustainable in urban areas. Mosquito population replacement is an alternative arbovirus control concept aiming at replacing virus-competent vector populations with laboratory-engineered incompetent vectors. A prerequisite for this strategy is the design of robust anti-pathogen effectors that can ultimately be genetically driven through a wild-type population. Several anti-pathogen effector concepts have been developed that target the RNA genomes of arboviruses such as dengue virus in a highly sequence-specific manner. Design principles are based on long inverted-repeat RNA triggered RNA interference, catalytic hammerhead ribozymes, and trans-splicing Group I Introns that are able to induce apoptosis in virus-infected cells following splicing with target viral RNA. PMID:26120563

  18. Multiple dengue virus types harbored by individual mosquitoes.

    PubMed

    Angel, Bennet; Angel, Annette; Joshi, Vinod

    2015-10-01

    The existing knowledge on pathogenesis and aetiology of DHF establishes that Dengue Hemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS) are caused by two subsequent infections of two different serotypes of dengue affecting a common human population with a time gap. Present studies have been undertaken on 212 laboratory reared infected individual mosquitoes from larvae collected from 31 dengue endemic towns of Rajasthan, India. Type specific DEN viruses were detected from individual mosquitoes employing RT-PCR. In 78.7% of 212 infected individual mosquitoes studied, vertically transmitted multiple DENV types were observed. We report for the first time that single mosquitoes contain multiple dengue virus types.

  19. Dissecting vectorial capacity for mosquito-borne viruses.

    PubMed

    Kramer, Laura D; Ciota, Alexander T

    2015-12-01

    The inter-relationship between mosquitoes and the viruses they transmit is complex. While previously understood barriers to infection and transmission remain valid, additional factors have been uncovered that suggest an 'arms race' between mosquito and virus. These include the mosquito microbiota and interplay between mosquito and viral genetics. Following an infectious blood meal, the mosquito mounts an immune and transcriptional response, leading to altered expression of multiple genes. These complex interactions, specific to vector and virus genotypes, combine with external influences, particularly temperature, to determine vector competence. The mosquito's response to the infecting agent may have consequences in terms of longevity, feeding behavior and/or fecundity. These factors, together with population density and the frequency of host contact determine vectorial capacity.

  20. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana.

    PubMed

    Unlu, Isik; Kramer, Wayne L; Roy, Alma F; Foil, Lane D

    2010-07-01

    Since 2001, alligator farms in the United States have sustained substantial economic losses because of West Nile virus (WNV) outbreaks in American alligators (Alligator mississippiensis). Once an initial infection is introduced into captive alligators, WNV can spread among animals by contaminative transmission. Some outbreaks have been linked to feeding on infected meat or the introduction of infected hatchlings, but the initial source of WNV infection has been uncertain in other outbreaks. We conducted a study to identify species composition and presence of WNV in mosquito populations associated with alligator farms in Louisiana. A second objective of this study was to identify the origin of mosquito blood meals collected at commercial alligator farms. Mosquitoes were collected from 2004 to 2006, using Centers for Disease Control light traps, gravid traps, backpack aspirators, and resting boxes. We collected a total of 58,975 mosquitoes representing 24 species. WNV was detected in 41 pools of females from 11 mosquito species: Anopheles crucians, Anopheles quadrimaculatus, Coquillettidia perturbans, Culex coronator, Culex erraticus, Culex nigripalpus, Culex quinquefasciatus, Mansonia titillans, Aedes sollicitans, Psorophora columbiae, and Uranotaenia lowii. The blood meal origins of 213 field-collected mosquitoes were identified based on cytochrome B sequence identity. Alligator blood was detected in 21 mosquitoes representing six species of mosquitoes, including Cx. quinquefasciatus and Cx. nigripalpus. Our results showed that mosquitoes of species that are known to be competent vectors of WNV fed regularly on captive alligators. Therefore, mosquitoes probably are important in the role of transmission of WNV at alligator farms.

  1. Methionine: a new biopesticide for use in mosquito management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito larvicides are an effective means of source reduction, controlling the population size so that the number of adult females that are present to bite and potentially spread pathogenic organisms is decreased. Currently utilized mosquito larvicides include insect growth regulators, organophosph...

  2. Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes.

    PubMed

    Op De Beeck, Lin; Janssens, Lizanne; Stoks, Robby

    2016-03-01

    The control of vector mosquitoes is one of the biggest challenges facing humankind with the use of chemical pesticides often leading to environmental impact and the evolution of resistance. Although to a lesser extent, this also holds for Bacillus thuringiensis israelensis (Bti), the most widely used biological pesticide to control mosquito populations. This raises the need for the development of integrated pest management strategies that allow the reduction of Bti concentrations without loss of the mosquito control efficiency. To this end, we tested in a laboratory experiment the combined effects of larval exposure to a sublethal Bti concentration and predation risk cues on life history and physiology of larval and adult Culex pipiens mosquitoes. Besides natural predator kairomones and prey alarm cues, we also tested synthetic kairomones of Notonecta predators. Neither Bti nor predation risk cues affected mortality, yet when both stressors were combined mortality increased on average by 133% compared to the treatment with only predation risk cues. This synergistic interaction was also present when Bti was combined with synthetic kairomones. This was further reflected in changes of the composite index of population performance, which suggested lowered per capita growth rates in mosquitoes exposed to Bti but only when Bti was combined with synthetic kairomones. Furthermore, predation risk cues shortened larval development time, reduced mass at metamorphosis in males, and had an immunosuppressive effect in larval and adult mosquitoes which may affect the mosquito vector competence. We provide the first demonstration that synthetic kairomones may generate similar effects on prey as natural kairomones. The identified immunosuppressive effect of synthetic kairomones and the novel lethal synergism type between a biological pesticide and synthetic predator kairomones provide an important proof of principle illustrating the potential of this combination for integrated

  3. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  4. How Mosquitoes Detect People

    MedlinePlus

    ... mosquito-borne diseases are endemic,” Ray says. — by Carol Torgan, Ph.D. Related Links Targeting the Mosquito's ... Assistant Editors: Vicki Contie, Tianna Hicklin, Ph.D., Carol Torgan, Ph.D. NIH Research Matters is a ...

  5. EFFECTS OF CHEMICAL CONTAMINANTS ON GENETIC DIVERSITY IN NATURAL POPULATIONS: IMPLICATIONS FOR BIOMONITORING AND ECOTOXICOLOGY

    EPA Science Inventory

    The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, onl...

  6. Mosquito (Diptera: Culicidae) surveillance for arboviruses in an area endemic for West Nile (Lineage Rabensburg) and Tahyna viruses in Central Europe.

    PubMed

    Hubálek, Z; Rudolf, I; Bakonyi, T; Kazdová, K; Halouzka, J; Sebesta, O; Sikutová, S; Juricová, Z; Nowotny, N

    2010-05-01

    Six viral isolates were obtained from 23,243 female mosquitoes (examined in 513 pools) belonging to 16 species and collected along the lower reaches of the Dyje River in South Moravia (Czech Republic, central Europe) during 2006-2008: five isolates of Orthobunyavirus Tahyna (TAHV, California group, family Bunyaviridae: three isolations from Aedes vexans (Meigen), one from Ae. sticticus (Meigen), one from Culex modestus Ficalbi); and one isolation of Flavivirus West Nile (WNV, Japanese encephalitis group, family Flaviviridae)-strain Rabensburg (proposed lineage 3 of WNV) from Ae. rossicus (Dolbeshkin et al). All viral isolates were recovered from mosquitoes collected in 2006 (15,882 mosquitoes examined), while no virus was isolated from mosquitoes trapped in 2007 and 2008, when 1,555 and 5,806 mosquitoes were examined, respectively. The population density of local mosquitoes was very low in 2007 and 2008 because of warm and dry summer including a considerably low water table, compared with environmental conditions favorable for mosquito development in 2006. The virus isolation procedure was based on intracerebral inoculation of newborn mice. In parallel, more than one-third of the samples (183 pools consisting of 8,470 individual mosquitoes) were also examined by inoculating Vero cell cultures in Leighton tubes. However, the latter method detected only three of the six virus isolates (including WNV-Rabensburg). Ae. rossicus is a new potential vector for WNV-Rabensburg. This species feeds mostly on mammals including man; this raises the question whether this virus lineage is not adapted to an alternative mosquito-mammal cycle in the South-Moravian natural focus.

  7. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    PubMed

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.

  8. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    PubMed

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations. PMID:27450526

  9. Mosquitoes of Guam and the Northern Marianas: distribution, checklists, and notes on mosquito-borne pathogens.

    PubMed

    Rueda, Leopoldo M; Pecor, James E; Reeves, Will K; Wolf, Stephen P; Nunn, Peter V; Rabago, Rosanna Y; Gutierrez, Teresa L; Debboun, Mustapha

    2011-01-01

    This report includes the distribution records and updated checklists of the mosquitoes known to occur in Guam and nearby selected islands (ie, Saipan, Tinian, Rota), based on our field collections from various localities during 2010, published reports, and accessioned specimens deposited in the US National Museum of Natural History, Smithsonian Institution, Washington, DC. The status of common and potential mosquito vectors and their borne-pathogens are also noted.

  10. Mosquito immunity against arboviruses.

    PubMed

    Sim, Shuzhen; Jupatanakul, Natapong; Dimopoulos, George

    2014-11-19

    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector.

  11. Resources, Environment, and Population: The Nature of Future Limits. Population Bulletin, Vol. 34, No. 3, August 1979.

    ERIC Educational Resources Information Center

    Ridker, Ronald G.; Cecelski, Elizabeth W.

    To determine the current status and possible trends in the balance between global population growth and natural resources, the bulletin examines demands presented by population and economic growth at various periods throughout history. Periods examined are the recent past, the present to the year 2025, and the long term. Factors focused upon…

  12. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  13. Effects of rice straw and water management on riceland mosquitoes.

    PubMed

    Lawler, Sharon P; Dritz, Deborah A

    2006-09-01

    Rice fields are important sources of mosquitoes in many regions, and rice (Oryza spp.) growing practices can affect mosquito populations. Rice straw incorporation and winter flooding have become common methods to prepare seedbeds, largely replacing burning of straw. These methods increase nutrients during the growing season. We sampled mosquito larvae during 1999-2001 in 16 0.72-ha plots where straw was either burned or incorporated into soil after the previous growing season; these treatments were crossed with either winter flooding or no winter flooding. In 2000, all fields were drained mid-season for an application of herbicide, and then they were reflooded. Mosquitoes responded positively to straw incorporation and winter flooding, especially in combination. The mid-season reflood in year 2 was associated with an order of magnitude increase in Culex tarsalis Coquillett larvae. Results confirm that rice straw and water management can strongly influence mosquito populations. PMID:17017215

  14. Population size and the nature of genetic load in Gentianella germanica.

    PubMed

    Paland, Susanne; Schmid, Bernhard

    2003-10-01

    Theory predicts a significant relationship between the size of a population and the magnitude and composition of its genetic load, but few natural populations have been investigated. We examined the magnitude of genetic load due to recessive deleterious alleles (GL) both segregating and fixed within Gentianella germanica populations of varying size by selfing and reciprocally crossing plants within and between natural populations according to a partial diallel design and by comparing the performance of the experimental progeny in a common-garden experiment. The results show that GL for total fitness in small populations (fewer than 200 plants) was mainly due to fixed recessive deleterious alleles, whereas GL for total fitness in larger populations (more than 200 plants) appeared to be mainly due to segregating deleterious recessive alleles. The total fitness of selfed plants increased with decreasing population size, indicating some purging of deleterious alleles associated with declining population sizes. The magnitudes of GL due to fixed deleterious alleles in small populations and segregating deleterious alleles in large populations, however, were overall similar, suggesting that purging selection was an insignificant force when compared to genetic drift in determining the magnitude of GL in small natural populations in this species. The results of this study highlight the importance of population size in determining the dynamics of genetic loads of natural populations and are overall in line with a large body of theoretical work indicating that small populations may face higher extinction risks due to the fixation and accumulation of deleterious alleles of small effect.

  15. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing.

    PubMed

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-09-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations.

  16. Identifying genomic changes associated with insecticide resistance in the dengue mosquito Aedes aegypti by deep targeted sequencing

    PubMed Central

    Faucon, Frederic; Dusfour, Isabelle; Gaude, Thierry; Navratil, Vincent; Boyer, Frederic; Chandre, Fabrice; Sirisopa, Patcharawan; Thanispong, Kanutcharee; Juntarajumnong, Waraporn; Poupardin, Rodolphe; Chareonviriyaphap, Theeraphap; Girod, Romain; Corbel, Vincent; Reynaud, Stephane; David, Jean-Philippe

    2015-01-01

    The capacity of mosquitoes to resist insecticides threatens the control of diseases such as dengue and malaria. Until alternative control tools are implemented, characterizing resistance mechanisms is crucial for managing resistance in natural populations. Insecticide biodegradation by detoxification enzymes is a common resistance mechanism; however, the genomic changes underlying this mechanism have rarely been identified, precluding individual resistance genotyping. In particular, the role of copy number variations (CNVs) and polymorphisms of detoxification enzymes have never been investigated at the genome level, although they can represent robust markers of metabolic resistance. In this context, we combined target enrichment with high-throughput sequencing for conducting the first comprehensive screening of gene amplifications and polymorphisms associated with insecticide resistance in mosquitoes. More than 760 candidate genes were captured and deep sequenced in several populations of the dengue mosquito Ae. aegypti displaying distinct genetic backgrounds and contrasted resistance levels to the insecticide deltamethrin. CNV analysis identified 41 gene amplifications associated with resistance, most affecting cytochrome P450s overtranscribed in resistant populations. Polymorphism analysis detected more than 30,000 variants and strong selection footprints in specific genomic regions. Combining Bayesian and allele frequency filtering approaches identified 55 nonsynonymous variants strongly associated with resistance. Both CNVs and polymorphisms were conserved within regions but differed across continents, confirming that genomic changes underlying metabolic resistance to insecticides are not universal. By identifying novel DNA markers of insecticide resistance, this study opens the way for tracking down metabolic changes developed by mosquitoes to resist insecticides within and among populations. PMID:26206155

  17. Detection of arboviruses and other micro-organisms in experimentally infected mosquitoes using massively parallel sequencing.

    PubMed

    Hall-Mendelin, Sonja; Allcock, Richard; Kresoje, Nina; van den Hurk, Andrew F; Warrilow, David

    2013-01-01

    Human disease incidence attributed to arbovirus infection is increasing throughout the world, with effective control interventions limited by issues of sustainability, insecticide resistance and the lack of effective vaccines. Several promising control strategies are currently under development, such as the release of mosquitoes trans-infected with virus-blocking Wolbachia bacteria. Implementation of any control program is dependent on effective virus surveillance and a thorough understanding of virus-vector interactions. Massively parallel sequencing has enormous potential for providing comprehensive genomic information that can be used to assess many aspects of arbovirus ecology, as well as to evaluate novel control strategies. To demonstrate proof-of-principle, we analyzed Aedes aegypti or Aedes albopictus experimentally infected with dengue, yellow fever or chikungunya viruses. Random amplification was used to prepare sufficient template for sequencing on the Personal Genome Machine. Viral sequences were present in all infected mosquitoes. In addition, in most cases, we were also able to identify the mosquito species and mosquito micro-organisms, including the bacterial endosymbiont Wolbachia. Importantly, naturally occurring Wolbachia strains could be differentiated from strains that had been trans-infected into the mosquito. The method allowed us to assemble near full-length viral genomes and detect other micro-organisms without prior sequence knowledge, in a single reaction. This is a step toward the application of massively parallel sequencing as an arbovirus surveillance tool. It has the potential to provide insight into virus transmission dynamics, and has applicability to the post-release monitoring of Wolbachia in mosquito populations.

  18. Factors affecting levels of genetic diversity in natural populations.

    PubMed Central

    Amos, W; Harwood, J

    1998-01-01

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  19. Factors affecting levels of genetic diversity in natural populations.

    PubMed

    Amos, W; Harwood, J

    1998-02-28

    Genetic variability is the clay of evolution, providing the base material on which adaptation and speciation depend. It is often assumed that most interspecific differences in variability are due primarily to population size effects, with bottlenecked populations carrying less variability than those of stable size. However, we show that population bottlenecks are unlikely to be the only factor, even in classic case studies such as the northern elephant seal and the cheetah, where genetic polymorphism is virtually absent. Instead, we suggest that the low levels of variability observed in endangered populations are more likely to result from a combination of publication biases, which tend to inflate the level of variability which is considered 'normal', and inbreeding effects, which may hasten loss of variability due to drift. To account for species with large population sizes but low variability we advance three hypotheses. First, it is known that certain metapopulation structures can result in effective population sizes far below the census size. Second, there is increasing evidence that heterozygous sites mutate more frequently than equivalent homozygous sites, plausibly because mismatch repair between homologous chromosomes during meiosis provides extra opportunities to mutate. Such a mechanism would undermine the simple relationship between heterozygosity and effective population size. Third, the fact that related species that differ greatly in variability implies that large amounts of variability can be gained or lost rapidly. We argue that such cases are best explained by rapid loss through a genome-wide selective sweep, and suggest a mechanism by which this could come about, based on forced changes to a control gene inducing coevolution in the genes it controls. Our model, based on meiotic drive in mammals, but easily extended to other systems, would tend to facilitate population isolation by generating molecular incompatabilities. Circumstances can even be

  20. Efficacy of aerial spray applications using fuselage booms on Air Force C-130H aircraft against mosquitoes and biting midges.

    PubMed

    Breidenbaugh, Mark S; Haagsma, Karl A; Wojcik, George M; De Szalay, Ferenc A

    2009-12-01

    The effectiveness of a novel fuselage boom configuration was tested with flat-fan nozzles on U.S. Air Force C-130H aircraft to create ultra-low volume sprays to control mosquitoes (Culicidae) and biting midges (Ceratopogonidae). The mortality of mosquitoes and biting midges in bioassay cages and natural populations, using the organophosphate adulticide, naled, was measured. Mosquitoes in bioassay cages had 100% mortality at 639 m downwind in all single-pass spray trials, and most trials had >90% mortality up to 1491 m downwind. Mosquito mortality was negatively correlated with distance from the spray release point (r2 = 0.38, P < 0.001). The volume median diam of droplets collected was 44 tm at 213 m and decreased to 11 microm at 2130 m downwind of the release point. Droplet density decreased from an average of 18.4 drops/cm2 at 213 m to 2 drops/cm2 at 2130 m. Droplet densities of 10-18 droplets/cm2 were recorded at sampling stations with high mosquito mortality rates (>90%). In wide-area operational applications, numbers of mosquitoes from natural populations 1 wk postspray were 83% (range 55%-95%), lower than prespray numbers (P < 0.05). Biting midge numbers were reduced by 86% (range 53%-97%) on average (P = 0.051) after 7 days. The results of these field trials indicate that the fuselage boom configuration on C-130H aircraft are an effective method to conduct large-scale aerial sprays during military operations and public health emergencies. PMID:20099594

  1. Epistasis in natural populations of a predominantly selfing plant

    PubMed Central

    Volis, S; Shulgina, I; Zaretsky, M; Koren, O

    2011-01-01

    Populations of predominantly selfing plant species often show spatial genetic structure but little is known whether epistatic gene interactions are spatially structured. To detect a possible epistatic effect and a spatial scale at which it operates, we created artificial crosses between plants spanning a range of fixed distances from 1 to 400 m in three populations of wild barley. The self-pollinated and crossed progeny (F1) and two generations of segregated progeny (F2 and F3) were tested in experimentally simulated population environments for relative performance (RP). The measured fitness traits included number of seeds, total seed weight and seed germination. For any of these traits, there was no association between RP of F1, F2 and F3 plants and either pairwise kinship coefficients or crossing distance. In contrast, in all three populations, we found lower seed viability of outcrossed as compared with self-pollinated genotypes in the first generation of segregation. However, in the F3 generation this outbreeding effect disappeared in the two populations and greatly decreased in the third population. For seed production, heterosis in F1 and outbreeding depression in F2 were observed only in the population with unusually high number of heterozygotes. Our findings support the view that in selfing species a spatial mosaic of various locally abundant genotypes represents not randomly fixed combinations of alleles but the co-adapted gene complexes that were sieved by selection, while heterozygotes are characteristic for the transient phase of this process, when segregation and purging of maladaptive genotypes have not yet occurred. PMID:20551977

  2. Generalized population models and the nature of genetic drift.

    PubMed

    Der, Ricky; Epstein, Charles L; Plotkin, Joshua B

    2011-09-01

    The Wright-Fisher model of allele dynamics forms the basis for most theoretical and applied research in population genetics. Our understanding of genetic drift, and its role in suppressing the deterministic forces of Darwinian selection has relied on the specific form of sampling inherent to the Wright-Fisher model and its diffusion limit. Here we introduce and analyze a broad class of forward-time population models that share the same mean and variance as the Wright-Fisher model, but may otherwise differ. The proposed class unifies and further generalizes a number of population-genetic processes of recent interest, including the Λ and Cannings processes. Even though these models all have the same variance effective population size, they encode a rich diversity of alternative forms of genetic drift, with significant consequences for allele dynamics. We characterize in detail the behavior of standard population-genetic quantities across this family of generalized models. Some quantities, such as heterozygosity, remain unchanged; but others, such as neutral absorption times and fixation probabilities under selection, deviate by orders of magnitude from the Wright-Fisher model. We show that generalized population models can produce startling phenomena that differ qualitatively from classical behavior - such as assured fixation of a new mutant despite the presence of genetic drift. We derive the forward-time continuum limits of the generalized processes, analogous to Kimura's diffusion limit of the Wright-Fisher process, and we discuss their relationships to the Kingman and non-Kingman coalescents. Finally, we demonstrate that some non-diffusive, generalized models are more likely, in certain respects, than the Wright-Fisher model itself, given empirical data from Drosophila populations.

  3. Ecology and evolution of pathogens in natural populations of Lepidoptera.

    PubMed

    Myers, Judith H; Cory, Jenny S

    2016-01-01

    Pathogens are ubiquitous in insect populations and yet few studies examine their dynamics and impacts on host populations. We discuss four lepidopteran systems and explore their contributions to disease ecology and evolution. More specifically, we elucidate the role of pathogens in insect population dynamics. For three species, western tent caterpillars, African armyworm and introduced populations of gypsy moth, infection by nucleopolyhedrovirus (NPV) clearly regulates host populations or reduces their outbreaks. Transmission of NPV is largely horizontal although low levels of vertical transmission occur, and high levels of covert infection in some cases suggest that the virus can persist in a nonsymptomatic form. The prevalence of a mostly vertically transmitted protozoan parasite, Ophryocystis elektroscirrha, in monarch butterflies is intimately related to their migratory behaviour that culls highly infected individuals. Virulence and transmission are positively related among genotypes of this parasite. These systems clearly demonstrate that the interactions between insects and pathogens are highly context dependent. Not only is the outcome a consequence of changes in density and genetic diversity: environmental factors, particularly diet, can have strong impacts on virulence, transmission and host resistance or tolerance. What maintains the high level of host and pathogen diversity in these systems, however, remains a question. PMID:27087850

  4. Toxicity of vegetable tannins on crustacea associated with alpine mosquito breeding sites.

    PubMed

    Pautou, M P; Rey, D; David, J P; Meyran, J C

    2000-11-01

    The impact of tannins from the environmental vegetation naturally polluting Alpine mosquito breeding sites was experimentally investigated by studying the toxicity of tannic acid, a natural hydrolyzable tannin, on the nontarget crustacean fauna associated with culicine populations. Bioassays indicate that exposure to tannic acid at concentrations from 0.06 to 2.0 mM is more deleterious to Chydorus sphaericus, Diaptomus castor, and Eucypris fuscata, than to Daphnia pulex, Acanthocyclops robustus, and Eucypris virens. Histopathological investigations after treatment with tannic acid at concentrations from 0.125 to 0.500 mM reveal sequential degenerative patterns of the midgut epithelium depending on the taxon, duration of the treatment, and concentrations assayed. These differential toxic effects on Crustacea are compared with those previously observed in larval Diptera, in order to evaluate the plant tannins as potentially useful products in integrated mosquito management programs.

  5. Crossing over does occur in males of Drosophila ananassae from natural populations.

    PubMed

    Goñi, Beatriz; Matsuda, Muneo; Yamamoto, Masa-Toshi; Vilela, Carlos R; Tobari, Yoshiko N

    2012-07-01

    Spontaneous crossing over in males of Drosophila ananassae has been well demonstrated using F(1) individuals from crosses between marker stocks and wild type strains. However, the question of its occurrence in males from natural populations remained open. Here we present the cytological evidence that crossing over does occur in males of D. ananassae from two Brazilian populations, sampled nearly 21 years apart, and in two recently sampled populations, one from Indonesia and one from Okinawa, Japan. Cytological analysis of meiosis in males collected from nature and in sons of females from the same population inseminated in nature revealed the presence of chiasmata, inversion chiasmata, and isosite chromosome breakages in the diplotene cells in all sampled populations. These data demonstrate that reciprocal and nonreciprocal exchanges and chromosome breakages, previously reported as related events of male crossing over, do occur at variable frequencies among males from natural populations.

  6. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    PubMed

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  7. A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field.

    PubMed

    Angarita-Jaimes, N C; Parker, J E A; Abe, M; Mashauri, F; Martine, J; Towers, C E; McCall, P J; Towers, D P

    2016-04-01

    Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 × 1.2 × 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields.

  8. A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field

    PubMed Central

    Abe, M.; Mashauri, F.; Martine, J.

    2016-01-01

    Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 × 1.2 × 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields. PMID:27075002

  9. Body Size and Wing Shape Measurements as Quality Indicators of Aedes aegypti Mosquitoes Destined for Field Release

    PubMed Central

    Yeap, Heng Lin; Endersby, Nancy M.; Johnson, Petrina H.; Ritchie, Scott A.; Hoffmann, Ary A.

    2013-01-01

    There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly Wolbachia-infected Aedes aegypti for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape. We tested to determine if size, wing/thorax ratio, and wing shape are associated with field fitness of Wolbachia-infected Ae. aegypti. Compared with field-collected mosquitoes, released mosquitoes were larger in size, with lower size variance and different wing shape but similar in wing-thorax ratio and its associated variance. These differences were largely attributed to nutrition and to a minor extent to wMel Wolbachia infection. Survival potential of released female mosquitoes was similar to those from the field. Females at oviposition sites tended to be larger than those randomly collected from BG-Sentinel traps. Rearing conditions should thus aim for large size without affecting wing/thorax ratios. PMID:23716403

  10. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    PubMed

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.

  11. A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies

    PubMed Central

    Kumar, R. Barani; Shanmugapriya, B.; Thiyagesan, K.; Kumar, S. Raj; Xavier, Suresh M.

    2010-01-01

    Background: Sterol is a very vital compound for most of the insects and mosquitoes to complete their life cycle. Unfortunately mosquitoes cannot synthesize the sterol, it depends on mammals for the same. Mosquitoes take the sterol from the plant decays during their larval stage in the form of phytosterol, which is then converted to cholesterol for further growth and reproduction. This conversion occurs with the help of the sterol carrier protein 2(SCP2). Methods: Mosquito populations are controlled by plant-based inhibitors, which inhibit sterol carrier protein (SCPI-Sterol carrier protein inhibitor) activity. In this article, we explain the methods of inhibiting Aedes aegypti SCP2 by insilico methods including natural inhibitor selection and filtrations by virtual screening and interaction studies. Results: In this study protein-ligand interactions were carried out with various phytochemicals, as a result of virtual screening Alpha-mangostin and Panthenol were found to be good analogs, and were allowed to dock with the mosquito cholesterol carrier protein AeSCP-2. Conclusion: Computational selections of SCPIs are highly reliable and novel methods for discovering new and more effective compounds to control mosquitoes. PMID:21808576

  12. Integrated vector management guidelines for adult mosquitoes.

    PubMed

    Boyce, Kenneth W; Brown, David A

    2003-12-01

    A written document was developed to clarify the District's adult mosquito-management tactics to other interested individuals and agencies. The program described consists of 7 discrete components: 1) initiation criteria, 2) treatment area delineation, 3) agricultural and land-use practices, 4) meteorological conditions, 5) continuance criteria, 6) termination criteria, and 7) factors influencing implementation. The guidelines were adopted as policy by the District's Board of Trustees in 1998 and have been implemented in each of the last 5 years. The adult mosquito population is monitored with 6 Mosquito Magnets traps strategically located in the rice culture areas. Samples are collected daily and laboratory technicians notify the Adulticide/Airplane Coordinator of collection results before 1:00 p.m. PMID:14710754

  13. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae

    PubMed Central

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.; Will, Jessica L.; Gasch, Audrey P.

    2015-01-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations. PMID:25953281

  14. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    PubMed

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations. PMID:25953281

  15. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control

    PubMed Central

    2013-01-01

    Background A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the occurrence and abundance of mosquito larvae in Southwest Ethiopia. Methods In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling sites were characterized based on physical, chemical and biological attributes. The predictive performance of decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (κ) and the determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the relation between key environmental and biological parameters and the abundance of mosquito larvae. Results The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%, and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance and diversity of natural predators and competitors suppressing the mosquito population densities. Conclusions The findings of this study suggest that targeting smaller human-made aquatic habitats could result in effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via drainage

  16. Determinants of Arbovirus Vertical Transmission in Mosquitoes

    PubMed Central

    Lequime, Sebastian; Paul, Richard E.; Lambrechts, Louis

    2016-01-01

    Vertical transmission (VT) and horizontal transmission (HT) of pathogens refer to parental and non-parental chains of host-to-host transmission. Combining HT with VT enlarges considerably the range of ecological conditions in which a pathogen can persist, but the factors governing the relative frequency of each transmission mode are poorly understood for pathogens with mixed-mode transmission. Elucidating these factors is particularly important for understanding the epidemiology of arthropod-borne viruses (arboviruses) of public health significance. Arboviruses are primarily maintained by HT between arthropod vectors and vertebrate hosts in nature, but are occasionally transmitted vertically in the vector population from an infected female to her offspring, which is a proposed maintenance mechanism during adverse conditions for HT. Here, we review over a century of published primary literature on natural and experimental VT, which we previously assembled into large databases, to identify biological factors associated with the efficiency of arbovirus VT in mosquito vectors. Using a robust statistical framework, we highlight a suite of environmental, taxonomic, and physiological predictors of arbovirus VT. These novel insights contribute to refine our understanding of strategies employed by arboviruses to persist in the environment and cause substantial public health concern. They also provide hypotheses on the biological processes underlying the relative VT frequency for pathogens with mixed-mode transmission that can be tested empirically. PMID:27171170

  17. Determinants of Arbovirus Vertical Transmission in Mosquitoes.

    PubMed

    Lequime, Sebastian; Paul, Richard E; Lambrechts, Louis

    2016-05-01

    Vertical transmission (VT) and horizontal transmission (HT) of pathogens refer to parental and non-parental chains of host-to-host transmission. Combining HT with VT enlarges considerably the range of ecological conditions in which a pathogen can persist, but the factors governing the relative frequency of each transmission mode are poorly understood for pathogens with mixed-mode transmission. Elucidating these factors is particularly important for understanding the epidemiology of arthropod-borne viruses (arboviruses) of public health significance. Arboviruses are primarily maintained by HT between arthropod vectors and vertebrate hosts in nature, but are occasionally transmitted vertically in the vector population from an infected female to her offspring, which is a proposed maintenance mechanism during adverse conditions for HT. Here, we review over a century of published primary literature on natural and experimental VT, which we previously assembled into large databases, to identify biological factors associated with the efficiency of arbovirus VT in mosquito vectors. Using a robust statistical framework, we highlight a suite of environmental, taxonomic, and physiological predictors of arbovirus VT. These novel insights contribute to refine our understanding of strategies employed by arboviruses to persist in the environment and cause substantial public health concern. They also provide hypotheses on the biological processes underlying the relative VT frequency for pathogens with mixed-mode transmission that can be tested empirically.

  18. Natural variations in the geomagnetically trapped electron population

    NASA Technical Reports Server (NTRS)

    Vampola, A. L.

    1972-01-01

    Temporal variations in the trapped natural electron flux intensities and energy spectra are discussed and demonstrated using recent satellite data. These data are intended to acquaint the space systems engineer with the types of natural variations that may be encountered during a mission and to augment the models of the electron environment currently being used in space system design and orbit selection. An understanding of the temporal variations which may be encountered should prove helpful. Some of the variations demonstrated here which are not widely known include: (1) addition of very energetic electrons to the outer zone during moderate magnetic storms: (2) addition of energetic electrons to the inner zone during major magnetic storms; (3) inversions in the outer zone electron energy spectrum during the decay phase of a storm injection event and (4) occasional formation of multiple maxima in the flux vs altitude profile of moderately energetic electrons.

  19. Human to Mosquito Transmission of Dengue Viruses

    PubMed Central

    Carrington, Lauren B.; Simmons, Cameron P.

    2014-01-01

    The successful transmission of dengue virus from a human host to a mosquito vector requires a complex set of factors to align. It is becoming increasingly important to improve our understanding of the parameters that shape the human to mosquito component of the transmission cycle so that vaccines and therapeutic antivirals can be fully evaluated and epidemiological models refined. Here we describe these factors, and discuss the biological and environmental impacts and demographic changes that are influencing these dynamics. Specifically, we examine features of the human infection required for the mosquito to acquire the virus via natural blood feeding, as well as the biological and environmental factors that influence a mosquito’s susceptibility to infection, up to the point that they are capable of transmitting the virus to a new host. PMID:24987394

  20. Natural odor ligands for olfactory receptor neurons of the female mosquito Aedes aegypti: use of gas chromatography-linked single sensillum recordings.

    PubMed

    Ghaninia, Majid; Larsson, Mattias; Hansson, Bill S; Ignell, Rickard

    2008-09-01

    Female Aedes aegypti are vectors of dengue and yellow fever. Odor volatiles are the predominant cues that drive the host-seeking behavior of Ae. aegypti. Odorant molecules are detected and discriminated by olfactory receptor neurons (ORNs) housed in sensory hairs, sensilla, located on the antennae and maxillary palps. In a previous study, we used odor volatiles that are behaviorally and/or electrophysiologically active for Ae. aegypti and other mosquito species to show that antennal ORNs of female Ae. aegypti are divided into functionally different classes. In the present study, we have, for the first time, conducted gas chromatography-coupled single sensillum recordings (GC-SSR) from antennal trichoid and intermediate sensilla of female Ae. aegypti in order to screen for additional putative host attractants and repellents. We used headspace collections from biologically relevant sources, such as different human body parts (including feet, trunk regions and armpit), as well as a plant species used as a mosquito repellent, Nepeta faassenii. We found that a number of ORN types strongly responded to one or more of the biological extracts. GC-SSR recordings revealed several active components, which were subsequently identified through GC-linked mass spectrometry (GC-MS). Electrophysiologically active volatiles from human skin included heptanal, octanal, nonanal and decanal.

  1. [Statistical materials. Part 2: natural population increase in the USSR].

    PubMed

    1985-01-01

    Selected vital statistics for the USSR for 1984 are presented. Data are included on birth, death, and natural increase rates, 1983-1984; the distribution of births, deaths, and marriages by month; birth order; age-specific birth rates by rural and urban areas; age-specific birth rates by union republics; distribution of marriages by age and sex; distribution of married couples by age of husband and wife; and divorces by length of marriage and age of husband and wife. PMID:12178824

  2. Recombination and genetic differentiation among natural populations of the ectomycorrhizal mushroom Tricholoma matsutake from southwestern China.

    PubMed

    Xu, Jianping; Sha, Tao; Li, Yan-Chun; Zhao, Zhi-Wei; Yang, Zhu L

    2008-03-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the natural populations of the target organisms. Tricholoma matsutake is an ectomycorrhizal mushroom that forms symbiotic associations with plants and plays an important ecological role in natural forest ecosystems in many parts of the world. It is also an economically very important gourmet mushroom. Because no artificial cultivation is available, natural populations of this species are under increasing threats, primarily from habitat disturbance and destruction. Despite its economical and ecological importance, little is known about its genetics and population biology. Here, using 14 polymerase chain reaction-restriction fragment length polymorphism markers, we analysed 154 strains from 17 geographical locations in southwestern China, a region where over 25% of the global T. matsutake harvest comes from. Our results revealed abundant genetic variation within individual populations. The analyses of gene and genotype frequencies within populations indicated that most loci did not deviate from Hardy-Weinberg equilibrium in most populations and that alleles among loci were in linkage equilibrium in the majority of the local populations. These results are consistent with the hypothesis that sexual reproduction and recombination play an important role in natural populations of this species. Our analyses indicated low but significant genetic differentiation among the geographical populations, with a significant positive correlation between genetic distance and geographical distance. We discuss the implications of our results to the ecology and resource management of this species.

  3. Population dose due to natural radiation in Hong Kong

    SciTech Connect

    Tso, M.Y.W.; Leung, J.K.C.

    2000-05-01

    In densely populated cities such as Hong Kong where people live and work in high-rise buildings that are all built with concrete, the indoor gamma dose rate and indoor radon concentration are not wide ranging. Indoor gamma dose rates (including cosmic rays) follow a normal distribution with an arithmetic mean of 0.22 {+-} 0.04 {micro}Gy h{sup {minus}1}, whereas indoor radon concentrations follow a log-normal distribution with geometric means of 48 {+-} 1 Bq m{sup {minus}3} and 90 {+-} 2 Bq m{sup {minus}3} for the two main categories of buildings: residential and non-residential. Since different occupations result in different occupancy in different categories of buildings, the annual total dose [indoor and outdoor radon effective dose + indoor and outdoor gamma absorbed dose (including cosmic ray)] to the population in Hong Kong was estimated based on the number of people for each occupation; the occupancy of each occupation; indoor radon concentration distribution and indoor gamma dose rate distribution for each category of buildings; outdoor radon concentration and gamma dose rate; and indoor and outdoor cosmic ray dose rates. The result shows that the annual doses for every occupation follow a log-normal distribution. This is expected since the total dose is dominated by radon effective dose, which has a log-normal distribution. The annual dose to the population of Hong Kong is characterized by a log-normal distribution with a geometric mean of 2.4 mSv and a geometric standard deviation of 1.3 mSv.

  4. Basophil activation by mosquito extracts in patients with hypersensitivity to mosquito bites.

    PubMed

    Sakakibara, Yasuhisa; Wada, Taizo; Muraoka, Masahiro; Matsuda, Yusuke; Toma, Tomoko; Yachie, Akihiro

    2015-08-01

    Hypersensitivity to mosquito bites (HMB) is a cutaneous disorder belonging to the group of Epstein-Barr virus (EBV)-associated T/natural killer (NK)-cell lymphoproliferative diseases, and is primarily mediated by EBV-infected NK cells. It is characterized by intense local skin reactions accompanied by general symptoms after mosquito bites, and infiltration of EBV-infected NK cells into the bite sites. However, the mechanisms underlying these reactions have not been fully examined. We recently described the activation of circulating basophils by mosquito extracts in vitro in a patient with HMB. To further investigate this finding, we studied four additional patients with HMB. All patients showed typical clinical features of HMB after mosquito bites and they had NK lymphocytosis and high peripheral blood EBV DNA loads. We found evidence of EBV infection in NK cells through in situ hybridization that detected EBV-encoded small RNA-1, and flow cytometry showed HLA-DR expression on almost all NK cells. Basophil activation tests with the extracts of epidemic mosquitoes Culex pipiens pallens and Aedes albopictus showed positive responses to one or both extracts in all samples from patients with HMB, suggesting the presence of mosquito antigen-specific IgE and its binding to basophils. In particular, the extract of Aedes albopictus was able to activate basophils in all available patient samples. These results indicate that basophils and/or mast cells activated by mosquito bites may be involved in initiation and development of severe skin reactions to mosquito bites in HMB.

  5. Population dynamics of a natural red deer population over 200 years detected via substantial changes of genetic variation.

    PubMed

    Hoffmann, Gunther Sebastian; Johannesen, Jes; Griebeler, Eva Maria

    2016-05-01

    Most large mammals have constantly been exposed to anthropogenic influence over decades or even centuries. Because of their long generation times and lack of sampling material, inferences of past population genetic dynamics, including anthropogenic impacts, have only relied on the analysis of the structure of extant populations. Here, we investigate for the first time the change in the genetic constitution of a natural red deer population over two centuries, using up to 200-year-old antlers (30 generations) stored in trophy collections. To the best of our knowledge, this is the oldest DNA source ever used for microsatellite population genetic analyses. We demonstrate that government policy and hunting laws may have strong impacts on populations that can lead to unexpectedly rapid changes in the genetic constitution of a large mammal population. A high ancestral individual polymorphism seen in an outbreeding population (1813-1861) was strongly reduced in descendants (1923-1940) during the mid-19th and early 20th century by genetic bottlenecks. Today (2011), individual polymorphism and variance among individuals is increasing in a constant-sized (managed) population. Differentiation was high among periods (F ST > ***); consequently, assignment tests assigned individuals to their own period with >85% probability. In contrast to the high variance observed at nuclear microsatellite loci, mtDNA (D-loop) was monomorphic through time, suggesting that male immigration dominates the genetic evolution in this population. PMID:27096075

  6. Metabolic variation in natural populations of wild yeast

    PubMed Central

    Samani, Pedram; Low-Decarie, Etienne; McKelvey, Kyra; Bell, Thomas; Burt, Austin; Koufopanou, Vassiliki; Landry, Christian R; Bell, Graham

    2015-01-01

    Ecological diversification depends on the extent of genetic variation and on the pattern of covariation with respect to ecological opportunities. We investigated the pattern of utilization of carbon substrates in wild populations of budding yeast Saccharomyces paradoxus. All isolates grew well on a core diet of about 10 substrates, and most were also able to grow on a much larger ancillary diet comprising most of the 190 substrates we tested. There was substantial genetic variation within each population for some substrates. We found geographical variation of substrate use at continental, regional, and local scales. Isolates from Europe and North America could be distinguished on the basis of the pattern of yield across substrates. Two geographical races at the North American sites also differed in the pattern of substrate utilization. Substrate utilization patterns were also geographically correlated at local spatial scales. Pairwise genetic correlations between substrates were predominantly positive, reflecting overall variation in metabolic performance, but there was a consistent negative correlation between categories of substrates in two cases: between the core diet and the ancillary diet, and between pentose and hexose sugars. Such negative correlations in the utilization of substrate from different categories may indicate either intrinsic physiological trade-offs for the uptake and utilization of substrates from different categories, or the accumulation of conditionally neutral mutations. Divergence in substrate use accompanies genetic divergence at all spatial scales in S. paradoxus and may contribute to race formation and speciation. PMID:25691993

  7. Directional versus Stabilizing Selection for Developmental Time in Natural and Laboratory Populations of Flour Beetles.

    PubMed

    Dawson, P S

    1975-08-01

    Artificial selection for fast development is successful in long-established laboratory populations of Tribolium, but not in strains recently derived from natural populations. It is shown that selection against fast development in dense, synchronized cultures operates through cannibalism of early pupae by larvae. Since standard husbandry procedures for laboratory strains involve the periodic creation of dense, synchronized cultures, it is suggested that these populations are subjected to stabilizing selection for intermediate developmental time. Natural populations, on the other hand, are probably subjected to directional selection for rapid development. PMID:17248688

  8. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  9. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    PubMed

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  10. Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system.

    PubMed

    Atkinson, Michael P; Su, Zheng; Alphey, Nina; Alphey, Luke S; Coleman, Paul G; Wein, Lawrence M

    2007-05-29

    Motivated by the failure of current methods to control dengue fever, we formulate a mathematical model to assess the impact on the spread of a mosquito-borne viral disease of a strategy that releases adult male insects homozygous for a dominant, repressible, lethal genetic trait. A dynamic model for the female adult mosquito population, which incorporates the competition for female mating between released mosquitoes and wild mosquitoes, density-dependent competition during the larval stage, and realization of the lethal trait either before or after the larval stage, is embedded into a susceptible-exposed-infectious-susceptible human-vector epidemic model for the spread of the disease. For the special case in which the number of released mosquitoes is maintained in a fixed proportion to the number of adult female mosquitoes at each point in time, we derive mathematical formulas for the disease eradication condition and the approximate number of released mosquitoes necessary for eradication. Numerical results using data for dengue fever suggest that the proportional policy outperforms a release policy in which the released mosquito population is held constant, and that eradication in approximately 1 year is feasible for affected human populations on the order of 10(5) to 10(6), although the logistical considerations are daunting. We also construct a policy that achieves an exponential decay in the female mosquito population; this policy releases approximately the same number of mosquitoes as the proportional policy but achieves eradication nearly twice as fast.

  11. Importance of mosquito "quasispecies" in selecting an epidemic arthropod-borne virus.

    PubMed

    Vazeille, Marie; Zouache, Karima; Vega-Rúa, Anubis; Thiberge, Jean-Michel; Caro, Valérie; Yébakima, André; Mousson, Laurence; Piorkowski, Géraldine; Dauga, Catherine; Vaney, Marie-Christine; Manni, Mosè; Gasperi, Giuliano; de Lamballerie, Xavier; Failloux, Anna-Bella

    2016-07-07

    Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion.

  12. Importance of mosquito “quasispecies” in selecting an epidemic arthropod-borne virus

    PubMed Central

    Vazeille, Marie; Zouache, Karima; Vega-Rúa, Anubis; Thiberge, Jean-Michel; Caro, Valérie; Yébakima, André; Mousson, Laurence; Piorkowski, Géraldine; Dauga, Catherine; Vaney, Marie-Christine; Manni, Mosè; Gasperi, Giuliano; de Lamballerie, Xavier; Failloux, Anna-Bella

    2016-01-01

    Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion. PMID:27383735

  13. Importance of mosquito "quasispecies" in selecting an epidemic arthropod-borne virus.

    PubMed

    Vazeille, Marie; Zouache, Karima; Vega-Rúa, Anubis; Thiberge, Jean-Michel; Caro, Valérie; Yébakima, André; Mousson, Laurence; Piorkowski, Géraldine; Dauga, Catherine; Vaney, Marie-Christine; Manni, Mosè; Gasperi, Giuliano; de Lamballerie, Xavier; Failloux, Anna-Bella

    2016-01-01

    Most arthropod-borne viruses (arboviruses), perpetuated by alternation between a vertebrate host and an insect vector, are likely to emerge through minor genetic changes enabling the virus to adapt to new hosts. In the past decade, chikungunya virus (CHIKV; Alphavirus, Togaviridae) has emerged on La Réunion Island following the selection of a unique substitution in the CHIKV E1 envelope glycoprotein (E1-A226V) of an East-Central-South African (ECSA) genotype conferring a higher transmission rate by the mosquito Aedes albopictus. Assumed to have occurred independently on at least four separate occasions, this evolutionary convergence was suspected to be responsible for CHIKV worldwide expansion. However, assumptions on CHIKV emergence were mainly based on viral genetic changes and the role of the mosquito population quasispecies remained unexplored. Here we show that the nature of the vector population is pivotal in selecting the epidemic CHIKV. We demonstrate using microsatellites mosquito genotyping that Ae. albopictus populations are genetically differentiated, contributing to explain their differential ability to select the E1-226V mutation. Aedes albopictus, newly introduced in Congo coinciding with the first CHIKV outbreak, was not able to select the substitution E1-A226V nor to preferentially transmit a CHIKV clone harboring the E1-226V as did Ae. albopictus from La Réunion. PMID:27383735

  14. Global warming, population growth, and natural resources for food production.

    PubMed

    Pimentel, D

    1991-01-01

    Destruction of forests and the considerable burning of fossil fuels is directly causing the level of carbon dioxide and other greenhouse gases including methane, carbon monoxide, and nitrous oxide in the atmosphere to rise. Population growth in the US and the world indirectly contributes to this global warming. This has led the majority of scientists interested in weather and climate to predict that the planet's temperature will increase from 1.5 to 4.5 degrees Celsius by 2050. These forecasted climactic changes will most likely strongly affect crop production. Specifically these scientists expect the potential changes in temperature, moisture, carbon dioxide, and pests to decrease food production in North America. The degree of changes hinges on each crop and its environmental needs. If farmers begin using improved agricultural technology, the fall in crop yields can be somewhat counterbalanced. Even without global warming, however, agriculture in North America must embrace sensible ecological resource management practices such as conserving soil, water, energy, and biological resources. These sustainable agricultural practices would serve agriculture, farmers, the environment, and society. Agriculturalists, farmers, and society are already interested in sustainable agriculture. Still scientists must conduct more research on the multiple effects of potential global climate change on many different crops under various environmental conditions and on new technologies that farmers might use in agricultural production. We must cut down our consumption of fossil fuel, reduce deforestation, erase poverty, and protect our soil, water, and biological resources. The most important action we need to take, however, is to check population growth. PMID:12344889

  15. Sampling of adult mosquito vectors with Mosquito Magnet Pro in Panaji, Goa, India.

    PubMed

    Korgaonkar, Nandini S; Kumar, Ashwani; Yadav, Rajpal S; Kabadi, Dipak; Dash, Aditya P

    2008-12-01

    For mosquito vector population monitoring, a new commercial trap, Mosquito Magnet Pro (MM-PRO), was tested for its usefulness in Goa, India. Anopheles stephensi was tested for the presence of Plasmodium sporozoite infection in the salivary glands. Using the MM-PRO 24 h a day for 34 days, 2,329 mosquitoes belonging to 16 species were collected. These included 6 species each of the genera Anopheles and Culex, 2 species of Aedes, and 1 each of Mansonia and Armigeres. Most (91%) of the mosquitoes caught were females. Among these the number and percentage of each species were Anopheles stephensi 59 (2.78%), Culex quinquefasciatus 1013 (47.78%), Culex vishnui 551 (26.0%), Mansonia uniformis 216 (10.19%), and Aedes albopictus 1 (0.04%). Of the 54 An. stephensi females tested for the presence of circumsporozoite protein (CSP) by an ELISA technique, 1 was found to be Plasmodium falciparum CSP positive. The MM-PRO device was found useful for mosquito population sampling in the urban setting of Goa. PMID:19181075

  16. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    PubMed Central

    2012-01-01

    Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures. PMID:22731941

  17. Effect of sampling method on the species composition and abundance of adult mosquitoes in a Florida swamp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Samples of the adult mosquito populations in a Florida swamp (Sumter Co.) were obtained using suction traps and portable CDC light traps (augmented with CO2) and the results compared with mosquitoes captured by mechanical aspirator when landing on a human subject. Sixteen mosquito species total wer...

  18. Enhancement of the Natural Earth Satellite Population Through Meteoroid Aerocapture

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.

    2014-01-01

    The vast majority of meteoroids either fall to the ground as meteorites or ablate completely in the atmosphere. However, large meteoroids have been observed to pass through the atmosphere and reenter space in a few instances. These atmosphere-grazing meteoroids have been characterized using ground-based observation and satellite-based infrared detection. As these methods become more sensitive, smaller atmospheregrazing meteoroids will likely be detected. In anticipation of this increased detection rate, we compute the frequency with which centimeter-sized meteoroids graze and exit Earth's atmosphere. We characterize the post-atmosphere orbital characteristics of these bodies and conduct numerical simulations of their orbital evolution under the perturbing influence of the Sun and Moon. We find that a small subset of aerocaptured meteoroids are perturbed away from immediate atmospheric reentry and become temporary natural Earth satellites.

  19. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  20. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  1. Opportunity for natural selection among five population groups of Manipur, North East India.

    PubMed

    Asghar, M; Meitei, S Y; Luxmi, Y; Achoubi, N; Meitei, K S; Murry, B; Sachdeva, M P; Saraswathy, K N

    2014-01-01

    Opportunity for natural selection among five population groups of Manipur in comparison with other North East Indian population has been studied. Crow's index as well as Johnston and Kensinger's index for natural selection were calculated based on differential fertility and mortality. The mortality component was found to be lower compared to fertility component in all the populations which may attribute to comparatively improved and easily accessible health care facilities. However, different selection pressures, artificial and natural, seem to be influencing the selection intensity through induced abortion and spontaneous abortion among the two non-tribal migrant groups: Bamon and Muslims, respectively. This study highlights the probable interaction of artificial and natural selection in determining the evolutionary fate of any population group.

  2. Nuclear power plants and natural populations of Mexican Drosophila.

    PubMed

    Levine, L; Olvera, O; Rockwell, R F; de la Rosa, M E; Guzmán, J

    1989-01-01

    With the worldwide proliferation of nuclear power plants has come the need to study the biological effects of the operation of the reactors on surrounding populations. We have begun a long-term study of the sibling species Drosophila melanogaster and D. simulans in the area of Laguna Verde in the state of Veracruz in Mexico. Laguna Verde, on the Gulf of Mexico about 75 km north of the city of Veracruz, is the location of the country's first nuclear power plant. This plant has not yet gone "on-line." The species have been collected from two sites, one of which is south of the reactor and is in the path of the prevailing north to south wind flow. The other collecting site is west of the plant. The species are being studied for the following: species frequency, desiccation resistance, vagility, proportion of larvae pupating, pupation height, and egg to adult survival after irradiation. To date we have noted both spatial and seasonal differences in a number of these characteristics. The information being gathered will serve as base-line data for monitoring the future operation of the nuclear power plant.

  3. Nuclear power plants and natural populations of Mexican Drosophila.

    PubMed

    Levine, L; Olvera, O; Rockwell, R F; de la Rosa, M E; Guzmán, J

    1989-01-01

    With the worldwide proliferation of nuclear power plants has come the need to study the biological effects of the operation of the reactors on surrounding populations. We have begun a long-term study of the sibling species Drosophila melanogaster and D. simulans in the area of Laguna Verde in the state of Veracruz in Mexico. Laguna Verde, on the Gulf of Mexico about 75 km north of the city of Veracruz, is the location of the country's first nuclear power plant. This plant has not yet gone "on-line." The species have been collected from two sites, one of which is south of the reactor and is in the path of the prevailing north to south wind flow. The other collecting site is west of the plant. The species are being studied for the following: species frequency, desiccation resistance, vagility, proportion of larvae pupating, pupation height, and egg to adult survival after irradiation. To date we have noted both spatial and seasonal differences in a number of these characteristics. The information being gathered will serve as base-line data for monitoring the future operation of the nuclear power plant. PMID:2591737

  4. Wolbachia Infection in a Natural Parasitoid Wasp Population

    PubMed Central

    Duplouy, Anne; Couchoux, Christelle; Hanski, Ilkka; van Nouhuys, Saskya

    2015-01-01

    The maternally transmitted bacterium Wolbachia pipientis is well known for spreading and persisting in insect populations through manipulation of the fitness of its host. Here, we identify three new Wolbachia pipientis strains, wHho, wHho2 and wHho3, infecting Hyposoter horticola, a specialist wasp parasitoid of the Glanville fritillary butterfly. The wHho strain (ST435) infects about 50% of the individuals in the Åland islands in Finland, with a different infection rate in the two mitochondrial (COI) haplotypes of the wasp. The vertical transmission rate of Wolbachia is imperfect, and lower in the haplotype with lower infection rate, suggesting a fitness trade-off. We found no association of the wHho infection with fecundity, longevity or dispersal ability of the parasitoid host. However, preliminary results convey spatial associations between Wolbachia infection, host mitochondrial haplotype and parasitism of H. horticola by its hyperparasitoid, Mesochorus cf. stigmaticus. We discuss the possibility that Wolbachia infection protects H. horticola against hyperparasitism. PMID:26244782

  5. Lassa Serology in Natural Populations of Rodents and Horizontal Transmission

    PubMed Central

    Becker-Ziaja, Beate; Koivogui, Lamine; Günther, Stephan

    2014-01-01

    Abstract Lassa virus causes hemorrhagic fever in West Africa. Previously, we demonstrated by PCR screening that only the multimammate mouse, Mastomys natalensis, hosts Lassa virus in Guinea. In the present study, we used the same specimen collection from 17 villages in Coastal, Upper, and Forest Guinea to investigate the Lassa virus serology in the rodent population. The aim was to determine the dynamics of antibody development in M. natalensis and to detect potential spillover infections in other rodent species. Immunoglobulin G (IgG) antibody screening was performed using the indirect immunofluorescence assay with the Guinean Lassa virus strain Bantou 289 as antigen. The overall seroprevalence was 8% (129/1551) with the following rodents testing positive: 109 M. natalensis, seven Mastomys erythroleucus, four Lemniscomys striatus, four Praomys daltoni, three Mus minutoides, and two Praomys rostratus. Nearly all of them (122/129) originated from Bantou, Tanganya, and Gbetaya, where Lassa virus is highly endemic in M. natalensis. The antibody seroprevalence in M. natalensis from this high-endemic area (27%; 108/396) depended on the village, habitat, host age, and host abundance. A main positive factor was age; the maximum seroprevalence reached 50% in older animals. Our data fit with a model implicating that most M. natalensis rodents become horizontally infected, clear the virus within a period significantly shorter than their life span, and develop antibodies. In addition, the detection of antibodies in other species trapped in the habitats of M. natalensis suggests spillover infections. PMID:25229705

  6. Are heritability and selection related to population size in nature? Meta-analysis and conservation implications.

    PubMed

    Wood, Jacquelyn L A; Yates, Matthew C; Fraser, Dylan J

    2016-06-01

    It is widely thought that small populations should have less additive genetic variance and respond less efficiently to natural selection than large populations. Across taxa, we meta-analytically quantified the relationship between adult census population size (N) and additive genetic variance (proxy: h (2)) and found no reduction in h (2) with decreasing N; surveyed populations ranged from four to one million individuals (1735 h (2) estimates, 146 populations, 83 species). In terms of adaptation, ecological conditions may systematically differ between populations of varying N; the magnitude of selection these populations experience may therefore also differ. We thus also meta-analytically tested whether selection changes with N and found little evidence for systematic differences in the strength, direction or form of selection with N across different trait types and taxa (7344 selection estimates, 172 populations, 80 species). Collectively, our results (i) indirectly suggest that genetic drift neither overwhelms selection more in small than in large natural populations, nor weakens adaptive potential/h (2) in small populations, and (ii) imply that natural populations of varying sizes experience a variety of environmental conditions, without consistently differing habitat quality at small N. However, we caution that the data are currently insufficient to determine whether some small populations may retain adaptive potential definitively. Further study is required into (i) selection and genetic variation in completely isolated populations of known N, under-represented taxonomic groups, and nongeneralist species, (ii) adaptive potential using multidimensional approaches and (iii) the nature of selective pressures for specific traits. PMID:27247616

  7. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens.

    PubMed

    Wilson, Benjamin A; Garud, Nandita R; Feder, Alison F; Assaf, Zoe J; Pennings, Pleuni S

    2016-01-01

    Drug resistance is a costly consequence of pathogen evolution and a major concern in public health. In this review, we show how population genetics can be used to study the evolution of drug resistance and also how drug resistance evolution is informative as an evolutionary model system. We highlight five examples from diverse organisms with particular focus on: (i) identifying drug resistance loci in the malaria parasite Plasmodium falciparum using the genomic signatures of selective sweeps, (ii) determining the role of epistasis in drug resistance evolution in influenza, (iii) quantifying the role of standing genetic variation in the evolution of drug resistance in HIV, (iv) using drug resistance mutations to study clonal interference dynamics in tuberculosis and (v) analysing the population structure of the core and accessory genome of Staphylococcus aureus to understand the spread of methicillin resistance. Throughout this review, we discuss the uses of sequence data and population genetic theory in studying the evolution of drug resistance.

  8. Sexuality in a natural population of bacteria--Bacillus subtilis challenges the clonal paradigm.

    PubMed

    Istock, C A; Duncan, K E; Ferguson, N; Zhou, X

    1992-08-01

    Reproduction by binary fission necessarily establishes a clonal genotypic structure in bacterial populations unless a high rate of genetic recombination opposes it. Several genetic properties were examined for a wild population of Bacillus subtilis in the Sonoran Desert of Arizona to assess the extent of recombination in a natural population. These properties included allozyme variation revealed by multilocus enzyme electrophoresis, phage and antibiotic resistance, and restriction fragment length polymorphism with Southern hybridization. Evidence of extensive genetic recombination was found along with evidence of modest clonal structure. Recombination must be frequent relative to binary fission in this population. This mixed population structure provides broader options for bacterial evolution than would a purely clonal structure.

  9. Adult hippocampal neurogenesis in natural populations of mammals.

    PubMed

    Amrein, Irmgard

    2015-05-01

    This review will discuss adult hippocampal neurogenesis in wild mammals of different taxa and outline similarities with and differences from laboratory animals. It begins with a review of evidence for hippocampal neurogenesis in various mammals, and shows the similar patterns of age-dependent decline in cell proliferation in wild and domesticated mammals. In contrast, the pool of immature neurons that originate from proliferative activity varies between species, implying a selective advantage for mammals that can make use of a large number of these functionally special neurons. Furthermore, rapid adaptation of hippocampal neurogenesis to experimental challenges appears to be a characteristic of laboratory rodents. Wild mammals show species-specific, rather stable hippocampal neurogenesis, which appears related to demands that characterize the niche exploited by a species rather than to acute events in the life of its members. Studies that investigate adult neurogenesis in wild mammals are not numerous, but the findings of neurogenesis under natural conditions can provide new insights, and thereby also address the question to which cognitive demands neurogenesis may respond during selection.

  10. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Zhang, Ying; Pun, Nicholas

    2013-06-01

    In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom. PMID:23000308

  11. Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.

    PubMed

    Xu, Jianping; Zhang, Ying; Pun, Nicholas

    2013-06-01

    In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom.

  12. Toxicity and bioaccumulation of fipronil in the nontarget arthropodan fauna associated with subalpine mosquito breeding sites.

    PubMed

    Chaton, P F; Ravanel, P; Tissut, M; Meyran, J C

    2002-05-01

    In order to examine ecological impact of fipronil use for larval culicine control in natural hydrosystems, toxicity and bioaccumulation of this new insecticide were analyzed on aquatic species representative of the nontarget arthropodan fauna (nonculicine larval Diptera: Chaoboridae, Chironomidae; planktonic Crustacea: Cladocera, Copepoda, Ostracoda) associated with target larval mosquito populations in the subalpine breeding sites. Standard toxicological bioassays using fipronil aqueous solutions from 1 to 2000 nM indicated different sensitivity levels among species. Insecticide bioaccumulation analyses, using [(14)C]fipronil solutions in simplified laboratory ecosystem, also indicated large differences among species. These differences may come from biological parameters characteristic of each species. Taking into account these nontarget effects of fipronil, a possible strategy of use of this insecticide for integrated mosquito control management was proposed, which is based upon selective dietary absorption of the insecticide by larval Culicidae.

  13. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  14. Human Needs and Nature's Balance: Population, Resources, and the Environment. A Population Learning Series.

    ERIC Educational Resources Information Center

    Crews, Kimberly A.

    One of the challenges that face humanity is how to manage resource and environmental endowments in a way that will guarantee continued survival and ensure the well-being of future generations. Those resources most important to human survival are food, water, and energy. When the population of the world reached 5 billion in 1987, approximately 87…

  15. Heritability of Two Morphological Characters within and among Natural Populations of Drosophila melanogaster

    PubMed Central

    Coyne, Jerry A.; Beecham, Edward

    1987-01-01

    Heritabilities of wing length and abdominal bristle number, as well as genetic correlations between these characters, were determined within and among populations of Drosophila melanogaster in nature. Substantial "natural" heritabilities were found when wild-caught flies from one population were compared to their laboratory-reared offspring. Natural heritabilities of bristle number approximated those derived from laboratory-raised parents and offspring, but wing length heritability was significantly lower in nature than in the laboratory. Among-population heritabilities, estimated by regressing population means of wild-caught flies against those of their laboratory-reared descendants, were close to 0.5. The genetic differentiation of populations was clinal with latitude, and was accompanied by significant geographic differences in the norms of reaction to temperature. These clines are similar to those reported on other continents and in other Drosophila species, and are almost certainly caused by natural selection. Genetic regressions between the characters reveal that the cline in bristle number may be a correlated response to geographic selection on wing length, but not vice versa. Our results indicate that there is a sizable genetic component to phenotypic variation within and among populations of D. melanogaster in nature. PMID:3123311

  16. Overcrowding and Population Growth: The Nature and Relevance of Animal Behavior.

    ERIC Educational Resources Information Center

    Stettner, Laurence J.

    This paper provides a descriptive overview of research on the consequences of overcrowding and the development of high population densities in animals, and speculates on the relevance of these studies for similar human phenomena. Three major foci are distinguished: (1) the effect of high population densities on animal behavior; (2) the nature of…

  17. The Role of Mosquitoes in the Diet of Adult Dragon and Damselflies (Odonata).

    PubMed

    Pfitzner, Wolf Peter; Beck, Matthias; Weitzel, Thomas; Becker, Norbert

    2015-06-01

    The flood plains of the Upper Rhine Valley provide excellent conditions for the proliferation of mosquitoes as well as for the development of dragon and damselflies. It could be assumed that mosquitoes belong to the diet of the Odonata and that the latter could be harmed by the reduction of the mosquito population with the purpose of diminishing the massive nuisance for the people living there. A total of 41 adult dragonflies and damselflies were examined by immunoblot for remnants of mosquitoes in their guts. A rabbit antiserum against Aedes vexans proteins was used for the immunoblot. Only 3 Aeshna cyanea and 1 Platycnemis pennipes could be shown to have fed on mosquitoes. In specimens of the genus Sympetrum no mosquitoes were detected. It seems very doubtful that mosquitoes are an essential part of the Odonata diet. PMID:26181697

  18. The Role of Mosquitoes in the Diet of Adult Dragon and Damselflies (Odonata).

    PubMed

    Pfitzner, Wolf Peter; Beck, Matthias; Weitzel, Thomas; Becker, Norbert

    2015-06-01

    The flood plains of the Upper Rhine Valley provide excellent conditions for the proliferation of mosquitoes as well as for the development of dragon and damselflies. It could be assumed that mosquitoes belong to the diet of the Odonata and that the latter could be harmed by the reduction of the mosquito population with the purpose of diminishing the massive nuisance for the people living there. A total of 41 adult dragonflies and damselflies were examined by immunoblot for remnants of mosquitoes in their guts. A rabbit antiserum against Aedes vexans proteins was used for the immunoblot. Only 3 Aeshna cyanea and 1 Platycnemis pennipes could be shown to have fed on mosquitoes. In specimens of the genus Sympetrum no mosquitoes were detected. It seems very doubtful that mosquitoes are an essential part of the Odonata diet.

  19. Mosquito larvicidal activity of botanical-based mosquito repellents.

    PubMed

    Zhu, Junwei; Zeng, Xiaopeng; O'Neal, Megan; Schultz, Gretchen; Tucker, Brad; Coats, Joel; Bartholomay, Lyric; Xue, Rui-De

    2008-03-01

    The larvicidal activity of 4 plant essential oils--innamon oil, lemon eucalyptus oil, sandalwood oil, and turmeric oil--previously reported as insect repellents was evaluated in the laboratory against 4th instars of Aedes albopictus, Ae. aegypti, and Culex pipiens. Sandalwood oil appeared to be the most effective of the larvicides, killing larvae of all 3 mosquito species in relatively short times. The values of LT50 and LT90 at the application dosage (0.2 mg/ml) were 1.06 +/- 0.11 and 3.24 +/- 0.14 h for Ae. aegypti, 1.82 +/- 0.06 and 3.33 +/- 0.48 h for Ae. albopictus, and 1.55 +/- 0.07 and 3.91 +/- 0.44 h for Cx. pipiens, respectively. Chemical compositions of these essential oils were also studied, and the lavicidal activity of their major ingredient compounds was compared with that of each of the essential oils. The acute toxicity of the 4 essential oils to fathead minnows was also evaluated. The safe use of these natural plant essential oils in future applications of mosquito control was discussed. PMID:18437833

  20. Pesticide-Free Device a Fatal Attraction for Mosquitoes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Are those pesky mosquitoes getting more entertainment out of your family picnic than you are? If the answer is yes, then it is time to reclaim your backyard with assistance from an unlikely partner. Nowadays, NASA is developing tools to track and predict the spread of the West Nile Virus on a global scale, but several years ago, the Space Agency carved out some time to collaborate with an outdoor products manufacturer in order to help control mosquito populations on a local level. The technology resulting from this union leveraged a space-age heat blanket to attract mosquitoes, which would then be eliminated without the use of harmful pesticides or chemicals. technical assistance from NASA and is an environmentally safe way to reduce the mosquito population.

  1. Flavivirus-mosquito interactions.

    PubMed

    Huang, Yan-Jang S; Higgs, Stephen; Horne, Kate McElroy; Vanlandingham, Dana L

    2014-11-01

    The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.

  2. Effects of landscape anthropization on mosquito community composition and abundance.

    PubMed

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-07-04

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.

  3. Effects of landscape anthropization on mosquito community composition and abundance

    PubMed Central

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-01-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control. PMID:27373794

  4. Effects of landscape anthropization on mosquito community composition and abundance

    NASA Astrophysics Data System (ADS)

    Ferraguti, Martina; Martínez-de La Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-07-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control.

  5. Effects of landscape anthropization on mosquito community composition and abundance.

    PubMed

    Ferraguti, Martina; Martínez-de la Puente, Josué; Roiz, David; Ruiz, Santiago; Soriguer, Ramón; Figuerola, Jordi

    2016-01-01

    Anthropogenic landscape transformation has an important effect on vector-borne pathogen transmission. However, the effects of urbanization on mosquito communities are still only poorly known. Here, we evaluate how land-use characteristics are related to the abundance and community composition of mosquitoes in an area with endemic circulation of numerous mosquito-borne pathogens. We collected 340 829 female mosquitoes belonging to 13 species at 45 localities spatially grouped in 15 trios formed by 1 urban, 1 rural and 1 natural area. Mosquito abundance and species richness were greater in natural and rural areas than in urban areas. Environmental factors including land use, vegetation and hydrological characteristics were related to mosquito abundance and community composition. Given the differing competences of each species in pathogen transmission, these results provide valuable information on the transmission potential of mosquito-borne pathogens that will be of great use in public and animal health management by allowing, for instance, the identification of the priority areas for pathogen surveillance and vector control. PMID:27373794

  6. A Low-Cost Microfluidic Chip for Rapid Genotyping of Malaria-Transmitting Mosquitoes

    PubMed Central

    Liu, Changchun; Mauk, Michael G.; Hart, Robert; Bonizzoni, Mariangela; Yan, Guiyun; Bau, Haim H.

    2012-01-01

    Background Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30–40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. Methodology/Principal Findings An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. Conclusions/Significance The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to track the geographical

  7. UV-acclimation responses in natural populations of cyanobacteria (Calothrix sp.).

    PubMed

    Dillon, Jesse G; Miller, Scott R; Castenholz, Richard W

    2003-06-01

    Phenotypic acclimation to changing conditions is typically thought to be beneficial to organisms in the environment. UV radiation is an important parameter affecting photosynthetic organisms in natural environments. We measured the response of photosynthetic carbon fixation in populations of cyanobacteria inhabiting a hot spring following acclimation to different UV treatments. These two very closely related populations of cyanobacteria, differing in their content of the extracellular UV-screening pigment scytonemin, were acclimated in situ under natural solar irradiance modified by filters that excluded both UVA/B, only UVB or transmitted both UVA/B. Cells from each preacclimation treatment were subsequently assayed for photosynthetic performance under all UV conditions (incubation treatment) giving a two-factor experimental design for each population. No acclimation filter treatment effects were observed even after two months under different acclimation treatments. This suggests that UV photoacclimation does not occur in either of these populations, regardless of the presence of scytonemin. By contrast, cells showed significant UV-inhibition during 1 h incubations under full sun. The population with high levels of scytonemin usually had lower rates of photosynthetic carbon fixation than the scytonemin-lacking population. However, the degree of UV inhibition, especially UVA inhibition, was higher for the cells without scytonemin pigment. These results suggest that closely related natural cyanobacterial populations respond differently to natural irradiance conditions and may be adopting different strategies of UV tolerance. PMID:12755714

  8. [Molecular genetic analysis of wild soybean (Glycine soja Sieb. & Zucc.) population structure in anthropogenic and natural landscapes of Primorskii krai].

    PubMed

    Nedoluzhko, A V; Tikhonov, A V; Dorokhov, D B

    2008-08-01

    The data are presented on genetic population structure of wild soybean growing in natural and anthropogenically disturbed landscapes of Primorskii krai of the Russian Federation. Comparative analysis showed that wild soybean populations exposed to anthropogenic influence exhibited lower genetic diversity than natural populations. Recommendations on conservation of the wild plant gene pools using comparative data on population genetic structures are made.

  9. Studies of linkage in populations. XIII. A unique cause of linkage disequilibrium in natural populations of Drosophila robusta.

    PubMed

    Levitan, M; Etges, W J

    1998-06-01

    Natural populations of Drosophila robusta are polymorphic for chromosomal gene arrangements in most of its range, the deciduous forests of North America east of the Rocky Mountains. Many of the gene arrangements are the result of paracentric inversions on both arms of the metacentric second chromosome. They are frequently in linkage disequilibrium, determined in many areas largely, or entirely, by differing frequencies of cis and trans forms of the double heterokaryotypes and their component linkage combinations. Presence and degree of linkage disequilibrium in these populations varies with locality and gender, with males from southern localities exhibiting the largest deviation from equilibrium. Analysis of the extensive karyotype data encompassing the entire species range collected over the past 50 years shows that natural selection is primarily responsible for maintaining these complex polymorphisms.

  10. Genetic structure of natural and restored shoalgrass Halodule wrightii populations in the NW Gulf of Mexico

    USGS Publications Warehouse

    Travis, S.E.; Sheridan, P.

    2006-01-01

    The decline of seagrass communities worldwide has sparked an urgent need for effective restoration strategies, which require a working knowledge of population genetic structure. Halodule wrighti is a common seagrass of the Caribbean region that is being restored to areas of the Gulf of Mexico, yet little is known of its population genetics. This study provides an assessment of individual, clonal and population effects on the genetic structure of 4 natural H. wrightii populations occupying 170 km of coastline in and around Galveston Bay, Texas, for comparison with 7 restored populations ranging in age from 2 to 7 yr. By using molecular markers, in the form of amplified fragment length polymorphisms (AFLPs), we found considerable variation in clonal richness at the population scale (from 0.54 to 0.82), with the restored populations occupying an intermediate to high position within this range. Replicate sampling within individual seagrass beds of 3 to 5m diameter generally revealed higher levels of clonal richness, elevated by 4 to 22% over that at the population scale, suggesting that seed recruitment is more important at the local scale than at distances of >10 m. Genetic diversity was 2 to 3 times less than that expected for a widespread, outcrossing species like H. wrightii, although a 170% increase in the frequency of variable markers relative to the mean for all other populations was noted for a volunteer population that had recruited from a mixture of donor materials planted at a nearby restoration site. Within the spatial extent of this study, natural populations adhered to a model of isolation-by-distance, whereas donor materials from these same natural populations were undergoing a rapid genetic convergence within a restored site where they had been planted together. ?? Inter-Research 2006.

  11. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae).

    PubMed

    Koenraadt, C J M; Harrington, L C

    2008-01-01

    We investigated the role of heavy rain on container-inhabiting mosquito (Diptera: Culicidae) populations, and how different species may have adapted to such conditions. Rains were created with a rain simulator calibrated to natural rain intensities in the habitats of two important vector species: Aedes aegypti (L.) from northern Thailand and Culex pipiens L. from New York state, USA. Immature stages of Ae. aegypti were able to resist the flushing effect of rain better than Cx. pipiens. This difference was most dramatic during the pupal stage. Fourth instars of Ae. aegypti were not affected by flushing when exposed for longer rain intervals (30 versus 60 min) or at a colder water temperature (24 versus 16 degrees C). In contrast, significantly more Cx. pipiens larvae flushed out with longer rain exposure. Warmer water temperatures also increased the proportion of Cx. pipiens flushed out, but mostly at the longest exposure time. Container position (tilted at a 7 degrees angle or level) did not affect proportions of fourth instars flushed out for both species. More accurate models of vector-borne diseases can be developed by incorporating the described effects of rain on container-breeding mosquito populations. Such models may provide more realistic assessments of disease risk and ensure optimal use of limited financial resources of mosquito control agencies.

  12. Mosquitoes meet microfluidics: High-throughput microfluidic tools for insect-parasite ecology in field conditions

    NASA Astrophysics Data System (ADS)

    Prakash, Manu; Mukundarajan, Haripriya

    2013-11-01

    A simple bite from an insect is the transmission mechanism for many deadly diseases worldwide--including malaria, yellow fever, west nile and dengue. Very little is known about how populations of numerous insect species and disease-causing parasites interact in their natural habitats due to a lack of measurement techniques. At present, vector surveillance techniques involve manual capture by using humans as live bait, which is hard to justify on ethical grounds. Individual mosquitoes are manually dissected to isolate salivary glands to detect sporozites. With typical vector infection rates being very low even in endemic areas, it is almost impossible to get an accurate picture of disease distribution, in both space and time. Here we present novel high-throughput microfluidic tools for vector surveillance, specifically mosquitoes. A two-dimensional high density array with baits provide an integrated platform for multiplex PCR for detection of both vector and parasite species. Combining techniques from engineering and field ecology, methods and tools developed here will enable high-throughput measurement of infection rates for a number of diseases in mosquito populations in field conditions. Pew Foundation.

  13. Public perception of mosquito annoyance measured by a survey and simultaneous mosquito sampling.

    PubMed

    Read, N R; Rooker, J R; Gathman, J P

    1994-03-01

    For randomly chosen residents of the Minneapolis-St. Paul, Minnesota, metropolitan area, survey responses, reported bites, and observed defensive behaviors (e.g., brushing, swatting) for a 5-min period in their yard were compared with simultaneous mosquito counts from a human-baited drop-net trap 6 m from the resident. When mosquitoes trapped, reported bites, or observed behaviors per 5 min were 3 or more, the majority of respondents described the mosquito levels as greater than "moderate" and anticipated reduced outdoor time and/or possible repellent use. At 25 or more mosquitoes trapped, 11 or more reported bites, or 16 or more observed behaviors per 5 min, response was "bad", with most people anticipating a major reduction in outdoor time (without repellent), "probably" or "definitely" planning to use repellent, and anticipating some outdoor time loss even if using repellent. Levels of less than 3 mosquitoes trapped per 5 min were related to moderate annoyance in 20-45% of the population. Individual response was highly variable, and the personal and environmental covariates measured did not account for more than half the variability.

  14. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    SciTech Connect

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMahon, Katherine D.; Malmstrom, Rex R.

    2014-06-18

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ‘ecotype model’ of diversification, but not previously observed in natural populations.

  15. Genome-wide Selective Sweeps in Natural Bacterial Populations Revealed by Time-series Metagenomics

    SciTech Connect

    Chan, Leong-Keat; Bendall, Matthew L.; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Foster, Brian; Kang, Dongwan; Tringe, Susannah G.; Bertilsson, Stefan; Moran, Mary Ann; Shade, Ashley; Newton, Ryan J.; Stevens, Sarah; McMcahon, Katherine D.; Mamlstrom, Rex R.

    2014-05-12

    Multiple evolutionary models have been proposed to explain the formation of genetically and ecologically distinct bacterial groups. Time-series metagenomics enables direct observation of evolutionary processes in natural populations, and if applied over a sufficiently long time frame, this approach could capture events such as gene-specific or genome-wide selective sweeps. Direct observations of either process could help resolve how distinct groups form in natural microbial assemblages. Here, from a three-year metagenomic study of a freshwater lake, we explore changes in single nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in populations of Chlorobiaceae and Methylophilaceae. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied considerably among closely related, co-occurring Methylophilaceae populations. SNP allele frequencies, as well as the relative abundance of certain genes, changed dramatically over time in each population. Interestingly, SNP diversity was purged at nearly every genome position in one of the Chlorobiaceae populations over the course of three years, while at the same time multiple genes either swept through or were swept from this population. These patterns were consistent with a genome-wide selective sweep, a process predicted by the ecotype model? of diversification, but not previously observed in natural populations.

  16. Reduction of mosquito biting-pressure: spatial repellents or mosquito traps? A field comparison of seven commercially available products in Israel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The personal protection capability of seven commercially available mosquito control devices (MCD) is compared under field conditions in Israel. Trials were performed in a high biting-pressure area inhabited by large populations of mosquito and biting midge species and using human volunteers for lan...

  17. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    PubMed

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.

  18. Mosquito proboscis: An elegant biomicroelectromechanical system

    NASA Astrophysics Data System (ADS)

    Kong, X. Q.; Wu, C. W.

    2010-07-01

    The mouthparts of female mosquitoes have evolved to form a special proboscis, a natural biomicroelectromechanical system (BMEMS), which is used for painlessly penetrating human skin and sucking blood. Scanning electron microscope observations show that the mosquito proboscis consists of a small bundle of long, tapering, and feeding stylets that are collectively called the fascicle, and a large scaly outer lower lip called the labium. During blood feeding, only the fascicle penetrates into the skin while the labium buckles back to remain on the surface of the skin. Here, we measured the dynamic force of penetration of the fascicle into human skin to reveal the mechanical principle underlying the painless process of penetration. High-speed video observations of movements associated with insertion of the fascicle indicate that the “smart” mosquito does not directly pierce its victim’s skin with the fascicle. Instead, it uses the two maxillas as variable frequency microsaws with nanosharp teeth to advance into the skin tissue. This elegant BMEMS enables the mosquito to insert its feeding fascicle into human skin using an exceedingly small force (average of 16.5μN ).

  19. Mosquito proboscis: an elegant biomicroelectromechanical system.

    PubMed

    Kong, X Q; Wu, C W

    2010-07-01

    The mouthparts of female mosquitoes have evolved to form a special proboscis, a natural biomicroelectromechanical system (BMEMS), which is used for painlessly penetrating human skin and sucking blood. Scanning electron microscope observations show that the mosquito proboscis consists of a small bundle of long, tapering, and feeding stylets that are collectively called the fascicle, and a large scaly outer lower lip called the labium. During blood feeding, only the fascicle penetrates into the skin while the labium buckles back to remain on the surface of the skin. Here, we measured the dynamic force of penetration of the fascicle into human skin to reveal the mechanical principle underlying the painless process of penetration. High-speed video observations of movements associated with insertion of the fascicle indicate that the "smart" mosquito does not directly pierce its victim's skin with the fascicle. Instead, it uses the two maxillas as variable frequency microsaws with nanosharp teeth to advance into the skin tissue. This elegant BMEMS enables the mosquito to insert its feeding fascicle into human skin using an exceedingly small force (average of 16.5 μN). PMID:20866651

  20. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, cichlidae).

    PubMed

    Agnèse, J F; Adépo-Gourène, B; Abban, E K; Fermon, Y

    1997-07-01

    We analysed the genetic differentiation among 17 natural populations of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) using allozymes and restriction fragment length polymorphism (RFLP) of mitochondrial DNA (mtDNA). The populations studied, from the River Senegal to Lake Tana and from Lake Manzalla to Lake Baringo, represent all subspecies which have been previously described. Sixteen variable nuclear loci showed that these populations can be clustered in three groups: (1) West African populations (Senegal, Niger, Volta and Chad drainages), (2) Ethiopian Rift Valley populations (Lakes Awasa, Ziway, Koka and the Awash River) and (3) Nile drainage (Manzalla, Cairo, Lake Edward) and Kenyan Rift Valley populations (Lakes Turkana, Baringo and River Suguta). Nine different mtDNA haplotypes were found in the RFLP analysis of a 1 kb portion of the D-loop region. The network obtained showed that there are three geographically distinct groups; all West African populations and O. aureus are clustered, the two Ethiopian Rift Valley populations are distinct and between these two groups are the Kenyan and Ugandan Rift Valley populations. Nile populations show affinities both with West African populations and with specimens from Lakes Tana and Turkana. Taxonomic and biogeographical implications of these results are discussed. PMID:9253615

  1. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, cichlidae).

    PubMed

    Agnèse, J F; Adépo-Gourène, B; Abban, E K; Fermon, Y

    1997-07-01

    We analysed the genetic differentiation among 17 natural populations of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) using allozymes and restriction fragment length polymorphism (RFLP) of mitochondrial DNA (mtDNA). The populations studied, from the River Senegal to Lake Tana and from Lake Manzalla to Lake Baringo, represent all subspecies which have been previously described. Sixteen variable nuclear loci showed that these populations can be clustered in three groups: (1) West African populations (Senegal, Niger, Volta and Chad drainages), (2) Ethiopian Rift Valley populations (Lakes Awasa, Ziway, Koka and the Awash River) and (3) Nile drainage (Manzalla, Cairo, Lake Edward) and Kenyan Rift Valley populations (Lakes Turkana, Baringo and River Suguta). Nine different mtDNA haplotypes were found in the RFLP analysis of a 1 kb portion of the D-loop region. The network obtained showed that there are three geographically distinct groups; all West African populations and O. aureus are clustered, the two Ethiopian Rift Valley populations are distinct and between these two groups are the Kenyan and Ugandan Rift Valley populations. Nile populations show affinities both with West African populations and with specimens from Lakes Tana and Turkana. Taxonomic and biogeographical implications of these results are discussed.

  2. Genetic diversity in three natural populations of Pitcairnia flammea (l.) John (Bromeliaceae) estimated by ISSR markers.

    PubMed

    Souza-Sobreira, F B; Souza, G B; Rosado, C C G; Miranda, F D; Soares, T C B; Gontijo, A B P L

    2015-01-01

    Bromeliads are greatly represented in the Atlantic Forest, although many species are threatened with extinction owing to habitat fragmentation and intense extraction for ornamental purposes. Therefore, it is necessary to conduct studies generating knowledge about genetic diversity and the distribution of this diversity among and within natural populations to establish conservation strategies. These studies can be performed with the use of molecular markers. Molecular markers are advantageous for studies of natural populations, for conservation programs, and to aid in properly classifying plant species. This study aimed to evaluate the genetic diversity among and within natural populations of Pitcairnia flammea, occurring in three fragments of the Atlantic Forest in the southern State of Espírito Santo through the use of inter-simple sequence repeat (ISSR) markers. DNA samples from 55 individuals were amplified with 18 ISSR primers, generating 180 bands, 159 of which were polymorphic. The Shannon genetic diversity index ranged from 0.348 to 0.465, with an average of 0.412. The Bayesian approach for the molecular data indicated the existence of two genetic groups. Analysis of molecular variance indicated the existence of 90.3% diversity within the population and 9.74% among populations. The amount of genetic differentiation of populations was moderate (0.0974), indicating that gene flow rates may be enough to counteract the effects of genetic drift. Greater genetic variability found in population B indicates that this area is an important source of genetic variability. PMID:26634557

  3. Genetic diversity in three natural populations of Pitcairnia flammea (l.) John (Bromeliaceae) estimated by ISSR markers.

    PubMed

    Souza-Sobreira, F B; Souza, G B; Rosado, C C G; Miranda, F D; Soares, T C B; Gontijo, A B P L

    2015-12-03

    Bromeliads are greatly represented in the Atlantic Forest, although many species are threatened with extinction owing to habitat fragmentation and intense extraction for ornamental purposes. Therefore, it is necessary to conduct studies generating knowledge about genetic diversity and the distribution of this diversity among and within natural populations to establish conservation strategies. These studies can be performed with the use of molecular markers. Molecular markers are advantageous for studies of natural populations, for conservation programs, and to aid in properly classifying plant species. This study aimed to evaluate the genetic diversity among and within natural populations of Pitcairnia flammea, occurring in three fragments of the Atlantic Forest in the southern State of Espírito Santo through the use of inter-simple sequence repeat (ISSR) markers. DNA samples from 55 individuals were amplified with 18 ISSR primers, generating 180 bands, 159 of which were polymorphic. The Shannon genetic diversity index ranged from 0.348 to 0.465, with an average of 0.412. The Bayesian approach for the molecular data indicated the existence of two genetic groups. Analysis of molecular variance indicated the existence of 90.3% diversity within the population and 9.74% among populations. The amount of genetic differentiation of populations was moderate (0.0974), indicating that gene flow rates may be enough to counteract the effects of genetic drift. Greater genetic variability found in population B indicates that this area is an important source of genetic variability.

  4. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general.

  5. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.

    PubMed

    Mao, Junwen; Lu, Ting

    2016-01-01

    Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428

  6. UV light and urban pollution: bad cocktail for mosquitoes?

    PubMed

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further

  7. Climate-based models for West Nile Culex mosquito vectors in the Northeastern US

    NASA Astrophysics Data System (ADS)

    Gong, Hongfei; Degaetano, Arthur T.; Harrington, Laura C.

    2011-05-01

    Climate-based models simulating Culex mosquito population abundance in the Northeastern US were developed. Two West Nile vector species, Culex pipiens and Culex restuans, were included in model simulations. The model was optimized by a parameter-space search within biological bounds. Mosquito population dynamics were driven by major environmental factors including temperature, rainfall, evaporation rate and photoperiod. The results show a strong correlation between the timing of early population increases (as early warning of West Nile virus risk) and decreases in late summer. Simulated abundance was highly correlated with actual mosquito capture in New Jersey light traps and validated with field data. This climate-based model simulates the population dynamics of both the adult and immature mosquito life stage of Culex arbovirus vectors in the Northeastern US. It is expected to have direct and practical application for mosquito control and West Nile prevention programs.

  8. Multiple mutations and mutation combinations in the sodium channel of permethrin resistant mosquitoes, Culex quinquefasciatus

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Lee; Reid, William R.; Xu, Qiang; Dong, Ke; Liu, Nannan

    2012-10-01

    A previous study identified 3 nonsynonymous and 6 synonymous mutations in the entire mosquito sodium channel of Culex quinquefasciatus, the prevalence of which were strongly correlated with levels of resistance and increased dramatically following insecticide selection. However, it is unclear whether this is unique to this specific resistant population or is a common mechanism in field mosquito populations in response to insecticide pressure. The current study therefore further characterized these mutations and their combinations in other field and permethrin selected Culex mosquitoes, finding that the co-existence of all 9 mutations was indeed correlated with the high levels of permethrin resistance in mosquitoes. Comparison of mutation combinations revealed several common mutation combinations presented across different field and permethrin selected populations in response to high levels of insecticide resistance, demonstrating that the co-existence of multiple mutations is a common event in response to insecticide resistance across different Cx. quinquefasciatus mosquito populations.

  9. Fog spontaneously folds mosquito wings

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew K.; Liu, Xing; Zhu, Ting; Hu, David L.

    2015-02-01

    The flexibility of insect wings confers aerodynamic benefits, but can also present a hazard if exposed to fog or dew. Fog can cause water to accumulate on wings, bending them into tight taco shapes and rendering them useless for flight. In this combined experimental and theoretical study, we use high-speed video to film the spontaneous folding of isolated mosquito wings due to the evaporation of a water drop. We predict shapes of the deformed wing using two-dimensional elastica theory, considering both surface tension and Laplace pressure. We also recommend fold-resistant geometries for the wings of flapping micro-aerial vehicles. Our work reveals the mechanism of insect wing folding and provides a framework for further study of capillarity-driven folding in both natural and biomimetic systems at small scales.

  10. Inversion polymorphism in two Serbian natural populations of Drosophila subobscura: analysis of long-term changes.

    PubMed

    Zivanovic, G; Arenas, C; Mestres, F

    2014-06-01

    To study whether inversions (or arrangements) by themselves or karyotypes are the main global warming adaptive target of natural selection, two Drosophila subobscura Serbian populations (Apatin and Petnica) were re-analyzed using different statistical approaches. Both populations were sampled in an approximately 15 years period: Apatin in 1994 and 2008 + 2009 and Petnica in 1995 and 2010. For all chromosomes, the four collections studied were in Hardy-Weinberg equilibrium. Thus, it seems that inversions (or arrangements) combined at random to constitute populations' karyotypes. However, there were differences in karyotypic frequencies along the years, although they were significant only for Apatin population. It is possible to conclude that inversions (or arrangements) are likely the target of natural selection, because they presented long-term changes, but combine at random to generate the corresponding karyotypic combinations. As a consequence, the frequencies of karyotypes also change along time.

  11. Marking adult mosquitoes using an aerially applied fluorescent pigment.

    PubMed

    Meek, C L; Broussard, B B; Andis, M D

    1987-09-01

    A water soluble, fluorescent pigment was aerially applied to caged Culex quinquefasciatus adults in a south Louisiana marshland pasture. Mosquitoes held in cages on 1 m stakes were greater than 90% marked. This number was significantly greater (P less than 0.01) than the number of marked mosquitoes held in cages that were placed in dense vegetation (greater than or equal to 0.5 m high) near the ground surface (70% marked). In a second aerial test with caged Aedes sollicitans in an open, grassy area of the marshland pasture, the pigment marked 100% of the adult mosquitoes held in cages 1 m above the ground and 98% of the caged mosquitoes on the ground surface. Greater than 96% of the adults collected from an emerging population of Ae. sollicitans within the test area were marked as well as 100% of wild caught deer fly adults, Chrysops flavidus complex, in the test area. PMID:2904958

  12. Vector competence of New Zealand mosquitoes for selected arboviruses.

    PubMed

    Kramer, Laura D; Chin, Pam; Cane, Rachel P; Kauffman, Elizabeth B; Mackereth, Graham

    2011-07-01

    New Zealand (NZ) historically has been free of arboviral activity with the exception of Whataroa virus (Togaviridae: Alphavirus), which is established in bird populations and is transmitted by local mosquitoes. This naive situation is threatened by global warming, invasive mosquitoes, and tourism. To determine the threat of selected medically important arboviruses to NZ, vector competence assays were conducted using field collected endemic and introduced mosquito species. Four alphaviruses (Togaviridae): Barmah Forest virus, Chikungunya virus, Ross River virus, and Sindbis virus, and five flaviviruses (Flaviviridae): Dengue virus 2, Japanese encephalitis virus, Murray Valley encephalitis virus, West Nile virus, and Yellow fever virus were evaluated. Results indicate some NZ mosquito species are highly competent vectors of selected arboviruses, particularly alphaviruses, and may pose a threat were one of these arboviruses introduced at a time when the vector was prevalent and the climatic conditions favorable for virus transmission.

  13. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii

    PubMed Central

    Bradshaw, W E; Emerson, K J; Holzapfel, C M

    2012-01-01

    The genetic relationship between the daily circadian clock and the seasonal photoperiodic timer remains a subject of intense controversy. In Wyeomyia smithii, the critical photoperiod (an overt expression of the photoperiodic timer) evolves independently of the rhythmic response to the Nanda–Hamner protocol (an overt expression of the daily circadian clock) over a wide geographical range in North America. Herein, we focus on these two processes within a single local population in which there is a negative genetic correlation between them. We show that antagonistic selection against this genetic correlation rapidly breaks it down and, in fact, reverses its sign, showing that the genetic correlation is due primarily to linkage and not to pleiotropy. This rapid reversal of the genetic correlation within a small, single population means that it is difficult to argue that circadian rhythmicity forms the necessary, causal basis for the adaptive divergence of photoperiodic time measurement within populations or for the evolution of photoperiodic time measurement among populations over a broad geographical gradient of seasonal selection. PMID:22072069

  14. Nature appropriation and associations with population health in Canada's largest cities.

    PubMed

    Rainham, Daniel; Cantwell, Rory; Jason, Timothy

    2013-04-01

    Earth is a finite system with a limited supply of resources. As the human population grows, so does the appropriation of Earth's natural capital, thereby exacerbating environmental concerns such as biodiversity loss, increased pollution, deforestation and global warming. Such concerns will negatively impact human health although it is widely believed that improving socio-economic circumstances will help to ameliorate environmental impacts and improve health outcomes. However, this belief does not explicitly acknowledge the fact that improvements in socio-economic position are reliant on increased inputs from nature. Gains in population health, particularly through economic means, are disconnected from the appropriation of nature to create wealth so that health gains become unsustainable. The current study investigated the sustainability of human population health in Canada with regard to resource consumption or "ecological footprints" (i.e., the resources required to sustain a given population). Ecological footprints of the 20 largest Canadian cities, along with several important determinants of health such as income and education, were statistically compared with corresponding indicators of human population health outcomes. A significant positive relationship was found between ecological footprints and life expectancy, as well as a significant negative relationship between ecological footprints and the prevalence of high blood pressure. Results suggest that increased appropriation of nature is linked to improved health outcomes. To prevent environmental degradation from excessive appropriation of natural resources will require the development of health promotion strategies that are de-coupled from ever-increasing and unsustainable resource use. Efforts to promote population health should focus on health benefits achieved from a lifestyle based on significantly reduced consumption of natural resources.

  15. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems.

    PubMed

    Mallinger, Rachel E; Hogg, David B; Gratton, Claudio

    2011-02-01

    Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.

  16. Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity

    PubMed Central

    Le Coupanec, Alain; Babin, Divya; Fiette, Laurence; Jouvion, Grégory; Ave, Patrick; Misse, Dorothee; Bouloy, Michèle; Choumet, Valerie

    2013-01-01

    Background Rift Valley fever (RVF) is a severe mosquito-borne disease affecting humans and domestic ruminants. Mosquito saliva contains compounds that counteract the hemostatic, inflammatory, and immune responses of the host. Modulation of these defensive responses may facilitate virus infection. Indeed, Aedes mosquito saliva played a crucial role in the vector's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The role of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated. Objective Using a murine model, we explored the potential for mosquitoes to impact the course of RVF disease by determining whether differences in pathogenesis occurred in the presence or absence of mosquito saliva and salivary gland extract. Methods C57BL/6NRJ male mice were infected with the ZH548 strain of RVFV via intraperitoneal or intradermal route, or via bites from RVFV-exposed mosquitoes. The virus titers in mosquitoes and mouse organs were determined by plaque assays. Findings After intraperitoneal injection, RVFV infection primarily resulted in liver damage. In contrast, RVFV infection via intradermal injection caused both liver and neurological symptoms and this route best mimicked the natural infection by mosquitoes. Co-injections of RVFV with salivary gland extract or saliva via intradermal route increased the mortality rates of mice, as well as the virus titers measured in several organs and in the blood. Furthermore, the blood cell counts of infected mice were altered compared to those of uninfected mice. Interpretation Different routes of infection determine the pattern in which the virus spreads and the organs it targets. Aedes saliva significantly increases the pathogenicity of RVFV. PMID:23785528

  17. Assortative mating and the maintenance of population structure in a natural hybrid zone.

    PubMed

    Culumber, Zachary W; Ochoa, Olivia M; Rosenthal, Gil G

    2014-08-01

    Understanding the factors that give rise to natural hybrid zones and govern their dynamics and structure is important to predicting the evolutionary consequences of hybridization. Here we use a combination of multigenerational population genetic data, mating patterns from a natural population, behavioral assays, and mark-recapture data within clinal hybrid zones of the genus Xiphophorus to test the role of assortative mating in maintaining population structure and the potential for ongoing genetic exchange between heterospecifics. Our data demonstrate that population structure is temporally robust and driven largely by assortative mating stemming from precopulatory isolation between pure species. Furthermore, mark-recapture data revealed that rates of migration within the same stream reach are far below the level needed to support population structure. In contrast to many empirical studies of natural hybrid zones, there appeared to be no hybrid male dysfunction or discrimination against hybrid males by pure parental females, and hybrid females mated and associated with pure species and hybrid males at random. Despite strong isolation between pure parentals, hybrids therefore can act as a conduit for genetic exchange between heterospecifics, which has been shown to increase the tempo of evolutionary change. Additionally, our findings highlight the complexity of natural hybrid zone dynamics, demonstrating that sexual and ecological selection together can give rise to patterns that do not fit classical models of hybrid zone evolution.

  18. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

    PubMed Central

    Bendall, Matthew L; Stevens, Sarah LR; Chan, Leong-Keat; Malfatti, Stephanie; Schwientek, Patrick; Tremblay, Julien; Schackwitz, Wendy; Martin, Joel; Pati, Amrita; Bushnell, Brian; Froula, Jeff; Kang, Dongwan; Tringe, Susannah G; Bertilsson, Stefan; Moran, Mary A; Shade, Ashley; Newton, Ryan J; McMahon, Katherine D; Malmstrom, Rex R

    2016-01-01

    Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by >1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model' of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment. PMID:26744812

  19. Wolbachia Induces Density-Dependent Inhibition to Dengue Virus in Mosquito Cells

    PubMed Central

    Lu, Peng; Bian, Guowu; Pan, Xiaoling; Xi, Zhiyong

    2012-01-01

    Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23) and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections. PMID:22848774

  20. Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics.

    PubMed

    Charlesworth, Brian; Charlesworth, Deborah; Coyne, Jerry A; Langley, Charles H

    2016-08-01

    The 1966 GENETICS papers by John Hubby and Richard Lewontin were a landmark in the study of genome-wide levels of variability. They used the technique of gel electrophoresis of enzymes and proteins to study variation in natural populations of Drosophila pseudoobscura, at a set of loci that had been chosen purely for technical convenience, without prior knowledge of their levels of variability. Together with the independent study of human populations by Harry Harris, this seminal study provided the first relatively unbiased picture of the extent of genetic variability in protein sequences within populations, revealing that many genes had surprisingly high levels of diversity. These papers stimulated a large research program that found similarly high electrophoretic variability in many different species and led to statistical tools for interpreting the data in terms of population genetics processes such as genetic drift, balancing and purifying selection, and the effects of selection on linked variants. The current use of whole-genome sequences in studies of variation is the direct descendant of this pioneering work. PMID:27516612

  1. [Statistical materials. Part 4: natural increase of population in the USSR].

    PubMed

    1984-01-01

    Data are presented on the natural increase of the population in the USSR. Data for 1982-1983 are included on birth, death, and natural increase rates; births, deaths, and marriages by month; age-specific birth rates by urban or rural area and by Union Republic; deaths due to circulatory disease or cancer; marriage by age; and divorces by marriage duration and age of husband and wife. PMID:12178819

  2. [Population, distribution and food composition of wolves (Canis lupus) at Saihanwula Nature Reserve, Inner Mongolia].

    PubMed

    Chen, Jiu-Yi; Zhang, Li-Jia; Wang, An-Meng; Bater; Nasendelger; Yuan, Li; Bao, Wei-Dong

    2011-04-01

    To provide initial value for population restoration and management of wolves (Canis lupus) in the wild, line transect survey and fecal analysis method were used to study the population ecology of wolf at Saihanwula National Nature Reserve, Inner Mongolia. The results revealed that the population number was at least seven within the reserve and population density was 4.18+/-2.88 individual per 100 km2. The wolf population was mainly distributed in Shengshan and Qinyunshan core areas; active sites appeared mostly along mountain ridges, roads and valleys at Shengshan and mountain ridges at Qinyunshan. Hare (Lepus capensis) and plants occurred frequently in the food composition of wolf scats. Food types varied between years but not seasons (Winter-Spring and Summer-Autumn).

  3. Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli

    PubMed Central

    Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.

    2010-01-01

    Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356

  4. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    PubMed

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-01-01

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe. PMID:27323193

  5. Mosquito Lagoon environmental resources inventory

    NASA Technical Reports Server (NTRS)

    Provancha, Jane A.; Hall, Carlton R.; Oddy, Donna M.

    1992-01-01

    This document provides a synopsis of biotic and abiotic data collected in the Mosquito Lagoon area in relation to water quality. A holistic ecological approach was used in this review to allow for summaries of climate, land use, vegetation, geohydrology, water quality, fishes, sea turtles, wading birds, marine mammals, invertebrates, shellfish, and mosquito control. The document includes a bibliographic database list of 157 citations that have references to the Mosquito Lagoon, many of which were utilized in development of the text.

  6. Genetic diversity and genetic structure of different types of natural populations in Osmanthus fragrans Lour. and the relationships with sex ratio, population structure, and geographic isolation.

    PubMed

    Hu, Shaoqing; Wu, Shuai; Wang, Yiguang; Zhao, Hongbo; Zhang, Yuanyan

    2014-01-01

    Osmanthus fragrans Lour., an evergreen small tree, has the rare sexual system of androdioecy (coexistence of males and hermaphrodites), once with wide-spread natural distribution in the areas of the South Yangzi river basin. However, due to excessive human utilization, natural distribution became fragmented and the number and size of natural populations reduced sharply. With four different types of natural populations from the same region as research object, we aim to provide a comparative analysis on the relationships among genetic diversity, sexual system, population structure and size, and geographic isolation by ISSR. In genetic parameters of N e , H e , and I, the LQGC population had the highest value and the LQZGQ population had the lowest value. These indicated that LQGC population showed the highest genetic diversity, followed by QDH and JN population, and LQZGQ population exhibited the lowest genetic diversity. Genetic diversity in populations is closely related to population structure, reproduction mode, and sex ratio. However, there seems to be no obvious correlation between genetic diversity and population size. The results of AMOVA showed that genetic variations mostly occurred within populations. It indicates that no significant genetic differentiation among populations occurs, and geographic isolation has no significant effect on genetic diversity. PMID:25436228

  7. Differential effects of weather and natural enemies on coexisting aphid populations.

    PubMed

    Alyokhin, Andrei; Drummond, Francis A; Sewell, Gary; Storch, Richard H

    2011-06-01

    Study of mechanisms responsible for regulating populations of living organisms is essential for a better comprehension of the structure of biological communities and evolutionary forces in nature. Aphids (Hemiptera: Sternorrhyncha) comprise a large and economically important group of phytophagous insects distributed worldwide. Previous studies determined that density-dependent mechanisms play an important role in regulating their populations. However, only a few of those studies identified specific factors responsible for the observed regulation. Time series data used in this study originated from the untreated control plots that were a part of potato (Solanum tuberosum L.) insecticide trials in northern Maine from 1971 to 2004. The data set contained information on population densities of three potato-colonizing aphid species (buckthorn aphid, Aphis nasturtii; potato aphid, Macrosiphum euphorbiae; and green peach aphid, Myzus persicae) and their natural enemies. We used path analysis to explore effects of weather and natural enemies on the intrinsic growth rates of aphid populations. Weather factors considered in our analyses contributed to the regulation of aphid populations, either directly or through natural enemies. However, direct weather effects were in most cases detectable only at P ≤ 0.10. Potato aphids were negatively affected by both fungal disease and predators, although buckthorn aphids were negatively affected by predators only. Parasitoids did not have a noticeable effect on the growth of any of the three aphid species. Growth of green peach aphid populations was negatively influenced by interspecific interactions with the other two aphid species. Differential population regulation mechanisms detected in the current study might at least partially explain coexistence of three ecologically similar aphid species sharing the same host plant.

  8. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies.

    PubMed

    Pugh, Jonathan

    2016-09-01

    Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context.

  9. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies.

    PubMed

    Pugh, Jonathan

    2016-09-01

    Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context. PMID:27118691

  10. Worthy of their name: how floods drive outbreaks of two major floodwater mosquitoes (Diptera: Culicidae).

    PubMed

    Berec, Ludĕk; Gelbic, Ivan; Sebesta, Oldrich

    2014-01-01

    An understanding of how climate variables drive seasonal dynamics of mosquito populations is critical to mitigating negative impacts of potential outbreaks, including both nuisance effects and risk of mosquito-borne infectious disease. Here, we identify climate variables most affecting seasonal dynamics of two major floodwater mosquitoes, Aedes vexans (Meigen, 1830) and Aedes sticticus (Meigen, 1838) (Diptera: Culicidae), along the lower courses of the Dyje River, at the border between the Czech Republic and Austria. Monthly trap counts of both floodwater mosquitoes varied both across sites and years. Despite this variability, both models used to fit the observed data at all sites (and especially that for Ae. sticticus) and site-specific models fitted the observed data quite well. The most important climate variables we identified-temperature and especially flooding-were driving seasonal dynamics of both Aedes species. We suggest that flooding determines seasonal peaks in the monthly mosquito trap counts while temperature modulates seasonality in these counts. Hence, floodwater mosquitoes indeed appear worthy of their name. Moreover, the climate variables we considered for modeling were able reasonably to predict mosquito trap counts in the month ahead. Our study can help in planning flood management; timely notification of people, given that these mosquitoes are a real nuisance in this region; public health policy management to mitigate risk from such mosquito-borne diseases as that caused in humans by the Tahyna virus; and anticipating negative consequences of climate change, which are expected only to worsen unless floods, or the mosquitoes themselves, are satisfactorily managed.

  11. Natural enemies act faster than endophytic fungi in population control of cereal aphids.

    PubMed

    Härri, Simone A; Krauss, Jochen; Müller, Christine B

    2008-05-01

    1. Fast-growing populations of phytophagous insects can be limited by the presence of natural enemies and by alkaloids that are produced by symbiotic associations of many temperate grass species with endophytic fungi. It is unclear if and how acquired plant defences derived from endophytic fungi interact with natural enemies to affect phytophagous insect populations. 2. To assess the relative importance of endophytic fungi compared to that of natural enemies on the population dynamics of phytophagous insects, we carried out a fully factorial field experiment, in which the presence of natural enemies and the presence of endophytic fungi were manipulated simultaneously. Target colonies of aphids were monitored for 8 weeks starting from their natural appearance in the field to the end of the aphid season. 3. We show that on Lolium perenne increased natural enemy densities reduced the individual numbers of two common cereal aphids, Rhopalosiphum padi and Metopolophium festucae. 4. The presence of the endophytic fungi Neotyphodium lolii reduced the number of M. festucae but did not affect the number of R. padi. The reduction in R. padi numbers by predators and parasitoids was not influenced by the presence of endophytes. For adult M. festucae, however, the negative effects of natural enemies were significant only in the absence of endophytes. 5. Over the duration of the experiment, the effect of natural enemies on aphid colony growth was much stronger than the effect of the endophytic fungi N. lolii, presumably because predator and parasitoid action on aphid colonies is much faster than any effects of endophytes. 6. Our results demonstrate that with simultaneous action of acquired endosymbionts and natural enemies, both factors can control aphid colony growth but they generally act independently of each other.

  12. Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana

    PubMed Central

    Oakley, C G; Ågren, J; Schemske, D W

    2015-01-01

    Understanding the causes and architecture of genetic differentiation between natural populations is of central importance in evolutionary biology. Crosses between natural populations can result in heterosis if recessive or nearly recessive deleterious mutations have become fixed within populations because of genetic drift. Divergence between populations can also result in outbreeding depression because of genetic incompatibilities. The net fitness consequences of between-population crosses will be a balance between heterosis and outbreeding depression. We estimated the magnitude of heterosis and outbreeding depression in the highly selfing model plant Arabidopsis thaliana, by crossing replicate line pairs from two sets of natural populations (C↔R, B↔S) separated by similar geographic distances (Italy↔Sweden). We examined the contribution of different modes of gene action to overall differences in estimates of lifetime fitness and fitness components using joint scaling tests with parental, reciprocal F1 and F2, and backcross lines. One of these population pairs (C↔R) was previously demonstrated to be locally adapted, but locally maladaptive quantitative trait loci were also found, suggesting a role for genetic drift in shaping adaptive variation. We found markedly different genetic architectures for fitness and fitness components in the two sets of populations. In one (C↔R), there were consistently positive effects of dominance, indicating the masking of recessive or nearly recessive deleterious mutations that had become fixed by genetic drift. The other set (B↔S) exhibited outbreeding depression because of negative dominance effects. Additional studies are needed to explore the molecular genetic basis of heterosis and outbreeding depression, and how their magnitudes vary across environments. PMID:26059971

  13. The Influence of Natural Barriers in Shaping the Genetic Structure of Maharashtra Populations

    PubMed Central

    Crivellaro, Federica; Tamang, Rakesh; Upadhyay, Shashank; Sharma, Varun Kumar; Reddy, Alla G.; Walimbe, S. R.; Chaubey, Gyaneshwer; Kivisild, Toomas; Singh, Lalji

    2010-01-01

    Background The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level. Methodology/Principal Findings To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a. Conclusions/Significance Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations. PMID:21187967

  14. Spatial autocorrelation of West Nile virus vector mosquito abundance in a seasonally wet suburban environment

    NASA Astrophysics Data System (ADS)

    Trawinski, P. R.; Mackay, D. S.

    2009-03-01

    The objective of this study is to quantify and model spatial dependence in mosquito vector populations and develop predictions for unsampled locations using geostatistics. Mosquito control program trap sites are often located too far apart to detect spatial dependence but the results show that integration of spatial data over time for Cx. pipiens-restuans and according to meteorological conditions for Ae. vexans enables spatial analysis of sparse sample data. This study shows that mosquito abundance is spatially correlated and that spatial dependence differs between Cx. pipiens-restuans and Ae. vexans mosquitoes.

  15. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2016-01-01

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd. We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. PMID:27009220

  16. Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission

    PubMed Central

    Fansiri, Thanyalak; Pongsiri, Arissara; Thaisomboonsuk, Butsaya; Klungthong, Chonticha; Richardson, Jason H.; Ponlawat, Alongkot; Jarman, Richard G.; Scott, Thomas W.

    2012-01-01

    Dengue viruses (DENV) are characterized by extensive genetic diversity and can be organized in multiple, genetically distinct lineages that arise and die out on a regular basis in regions where dengue is endemic. A fundamental question for understanding DENV evolution is the relative extent to which stochastic processes (genetic drift) and natural selection acting on fitness differences among lineages contribute to lineage diversity and turnover. Here, we used a set of recently collected and archived low-passage DENV-1 isolates from Thailand to examine the role of mosquito vector-virus interactions in DENV evolution. By comparing the ability of 23 viruses isolated on different dates between 1985 and 2009 to be transmitted by a present-day Aedes aegypti population from Thailand, we found that a major clade replacement event in the mid-1990s was associated with virus isolates exhibiting increased titers in the vector's hemocoel, which is predicted to result in a higher probability of transmission. This finding is consistent with the hypothesis that selection for enhanced transmission by mosquitoes is a possible mechanism underlying major DENV clade replacement events. There was significant variation in transmission potential among isolates within each clade, indicating that in addition to vector-driven selection, other evolutionary forces act to maintain viral genetic diversity. We conclude that occasional adaptive processes involving the mosquito vector can drive major DENV lineage replacement events. PMID:22130539

  17. Control of experimental Triatoma infestans populations: effect of pour-on cypermethrin applied to chickens under natural conditions in the Argentinean Chaco region.

    PubMed

    Amelotti, I; Catalá, S S; Gorla, D E

    2014-06-01

    Among peridomestic structures, chicken coops are sites of major importance for the domestic ecology of Triatoma infestans (Hemiptera: Reduviidae). The aim of this study was to evaluate in an experimental context the effects of a cypermethrin pour-on formulation applied to chickens on blood intake, moulting and mortality in T. infestans, under the natural climatic conditions of a region endemic for Chagas' disease. Experimental chicken huts were made of bricks and covered with plastic mosquito nets. Ninety fourth-instar nymphs were maintained in each hut. The study used a completely random design in which chickens in the experimental group were treated with a cypermethrin pour-on formulation. Five replicates (= huts) of the experimental and control groups were conducted. The number of live T. infestans, blood intake and moults to fifth-instar stage were recorded at 1, 5, 20, 35 and 45 days after the application of cypermethrin. Cumulative mortality was higher in nymphs exposed to treated chickens (> 71%) than in control nymphs (< 50%) (P < 0.01). Blood intake and moulting rate were lower in nymphs fed on treated chickens than in control nymphs (P < 0.05). Pour-on cypermethrin was able to cause significant mortality, although it did not eliminate the experimental population of T. infestans.

  18. How mosquitoes fly in the rain

    NASA Astrophysics Data System (ADS)

    Dickerson, Andrew; Shankles, Peter; Madhavan, Nihar; Hu, David

    2011-11-01

    Mosquitoes thrive during rainfall and high humidity. If raindrops are 50 times heavier than mosquitoes, how do mosquitoes fly in the rain? In this combined experimental and theoretical study, we measure the impact force between a falling drop and a free-flying mosquito. High-speed videography of mosquitoes and custom-built mimics reveals a mosquito's low inertia renders it impervious to falling drops. Drops do not splash on mosquitoes, but simply push past them allowing a mosquito to continue on its flight path undeterred. We rationalize the force imparted using scaling relations based on the time of rebound between a falling drop and a free body of significantly less mass.

  19. [The susceptibility of different animal species to synanthropic and natural populations of Trichinella].

    PubMed

    Artemenko, Iu G; Artemenko, L P

    1997-01-01

    Pigs have been found to be highly susceptible to the synanthropic (domestic) population of Trichinella [correction of Trachina] and weakly susceptible to the natural (native) one. Fur-bearing animals (polar foxes and foxes) are more susceptible to the natural population of Trichinella [correction of Trachina], but minks are equally sensible to the two variants of T. spiralis. In the host's body, synanthropic Trichinella [correction of Trachinas] form capsules of lemon-like, less frequently, oval shape, but the native population do round capsules. There is larval adaptation when Trichinella [correction of Trachina] larvae enter the nonspecific host's body after their prepassage through the organism of domestic carnivorous animals (cats, dogs). The pig is successfully infected with T. spiralis nativa via the cat or dog; the infection rate is approximately close to that observed during control infection of pigs with synanthropic Trichinella [correction of Trachina]. PMID:9182187

  20. Evolution of heat shock protein expression in a natural population of Daphnia magna.

    PubMed

    Pauwels, Kevin; Stoks, Robby; Decaestecker, Ellen; De Meester, Luc

    2007-11-01

    Populations often face changes in environmental conditions in a relatively short timescale, which may lead to microevolution of traits to cope with these changing selective pressures. Here, we demonstrate microevolution of a physiological trait in a natural population of the water flea Daphnia magna. Levels of the stress protein Hsp60 showed genetic variation, indicating in situ evolutionary potential, and the levels increased through time. The observed microevolutionary increase did not fit the historically documented changes in fish predation pressure in this pond, but it paralleled an increase in the load of infective stages of epibionts through time. In line with this, the locally most abundant epibiont caused an induction of Hsp60. Because stress proteins show evolutionary potential and protect organisms against a wide array of environmental factors, microevolution of stress proteins in natural populations is likely to be common. PMID:17926301

  1. Clinical categories of exaggerated skin reactions to mosquito bites and their pathophysiology.

    PubMed

    Tatsuno, Kazuki; Fujiyama, Toshiharu; Matsuoka, Hiroyuki; Shimauchi, Takatoshi; Ito, Taisuke; Tokura, Yoshiki

    2016-06-01

    Mosquito bites are skin irritating reactions, which usually resolve spontaneously without intensive medical care. However, in certain situations, mosquito bites may form a more vicious reaction, sometimes accompanying fever and systemic symptoms. In such cases, the presence of rare hematological disorders, abnormalities in eosinophils and/or association with Epstein-Barr virus (EBV) may underlie. Importantly, hypersensitivity to mosquito bites (HMB), which is characterized by necrotic skin reactions to mosquito bites with various systemic symptoms, is often observed in association with EBV infection and natural killer (NK) cell lymphoproliferative disorder. Exaggerated skin reaction to mosquito bites is also seen in Wells' syndrome. While strong Th2-skewing immune dysregulation is apparent in the patients, they also show robust CD4(+) T cell proliferation in response to mosquito salivary gland extracts, indicating close association between Wells' syndrome and mosquito bites. Similar skin reaction to mosquito bites is also noticed in certain types of B cell neoplasm, although the role of B cells in this peculiar reaction to mosquito bites is yet to be elucidated. In this review, we will discuss the current knowledge of exaggerated reaction toward mosquito bites seen in conjunction with these unique hematological disorders, and examine the scientific studies and observations reported in previous literatures to organize our current understanding of the pathogenesis of this distinct disorder.

  2. Using natural experiments to evaluate population health interventions: new Medical Research Council guidance.

    PubMed

    Craig, Peter; Cooper, Cyrus; Gunnell, David; Haw, Sally; Lawson, Kenny; Macintyre, Sally; Ogilvie, David; Petticrew, Mark; Reeves, Barney; Sutton, Matt; Thompson, Simon

    2012-12-01

    Natural experimental studies are often recommended as a way of understanding the health impact of policies and other large scale interventions. Although they have certain advantages over planned experiments, and may be the only option when it is impossible to manipulate exposure to the intervention, natural experimental studies are more susceptible to bias. This paper introduces new guidance from the Medical Research Council to help researchers and users, funders and publishers of research evidence make the best use of natural experimental approaches to evaluating population health interventions. The guidance emphasises that natural experiments can provide convincing evidence of impact even when effects are small or take time to appear. However, a good understanding is needed of the process determining exposure to the intervention, and careful choice and combination of methods, testing of assumptions and transparent reporting is vital. More could be learnt from natural experiments in future as experience of promising but lesser used methods accumulates.

  3. Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology.

    PubMed

    Bickham, J W; Sandhu, S; Hebert, P D; Chikhi, L; Athwal, R

    2000-07-01

    The conservation of genetic diversity has emerged as one of the central issues in conservation biology. Although researchers in the areas of evolutionary biology, population management, and conservation biology routinely investigate genetic variability in natural populations, only a handful of studies have addressed the effects of chemical contamination on population genetics. Chemical contamination can cause population reduction by the effects of somatic and heritable mutations, as well as non-genetic modes of toxicity. Stochastic processes in small populations, increased mutation load, and the phenomenon of mutational meltdown are compounding factors that cause reduced fitness and accelerate the process of population extirpation. Although the original damage caused by chemical contaminants is at the molecular level, there are emergent effects at the level of populations, such as the loss of genetic diversity, that are not predictable based solely on knowledge of the mechanism of toxicity of the chemical contaminants. Therefore, the study of evolutionary toxicology, which encompasses the population-genetic effects of environmental contaminants, should be an important focus of ecotoxicology. This paper reviews the issues surrounding the genetic effects of pollution, summarizes the technical approaches that can be used to address these issues, and provides examples of studies that have addressed some of them.

  4. Using a near-infrared spectrometer to estimate the age of Anopheles mosquitoes exposed to pyrethroids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the accuracy of using near-infrared spectroscopy (NIRS) to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as ,7 or $7 d ol...

  5. Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura.

    PubMed Central

    García-Martínez, J; Castro, J A; Ramón, M; Latorre, A; Moya, A

    1998-01-01

    The evolution of Drosophila subobscura mitochondrial DNA has been studied in experimental populations, founded with flies from a natural population from Esporles (Majorca, Balearic Islands, Spain). This population, like other European ones, is characterized by the presence of two very common (>96%) mitochondrial haplotypes (called I and II) and rare and endemic haplotypes that appear at very low frequencies. There is no statistical evidence of positive Darwinian selection acting on the mitochondrial DNA variants according to Tajima's neutrality test. Two experimental populations, with one replicate each, were established with flies having a heterogeneous nuclear genetic background, which was representative of the composition of the natural population. Both populations were started with the two most frequent mitochondrial haplotypes, but at different initial frequencies. After 13 to 16 generations, haplotype II reached fixation in three cages and its frequency was 0.89 by generation 25 in the fourth cage. Random drift can be rejected as the force responsible for the observed changes in haplotype frequencies. There is not only statistical evidence of a linear trend favoring a mtDNA (haploid) fitness effect, but also of a significant nonlinear deviation that could be due to a nuclear component. PMID:9649527

  6. Monitoring malaria vector control interventions: effectiveness of five different adult mosquito sampling methods.

    PubMed

    Onyango, Shirley A; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M; Kokwaro, Elizabeth; King, Charles H; Mutuku, Francis M

    2013-09-01

    Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods--light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps--in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed.

  7. Crustacean biodiversity as an important factor for mosquito larval control.

    PubMed

    Kroeger, Iris; Duquesne, Sabine; Liess, Matthias

    2013-12-01

    Newly established ponds, which are highly dynamic systems with changing levels of biological interactions among species, are common larval mosquito habitats. We investigated the impact of crustacean abundance and taxa diversity on mosquito oviposition and larval development. The effects of the biological larvicide Bacillus thuringiensis israelensis (Bti) on mosquito larvae were monitored according to fluctuations in crustacean communities. Populations of the mosquito Culex pipiens colonized artificial ponds that contained crustacean communities at different time points of colonization by crustaceans: 1) 'no colonization' (no crustaceans), 2) 'simultaneous colonization' by crustaceans and mosquitoes, and 3) 'head-start colonization' by crustaceans (preceding colonization by mosquitoes). All types of ponds were treated with three concentrations of Bti (10, 100, or 1,000 µg/liter). Colonization of all ponds by Cx. pipiens (in terms of oviposition, larval abundance, and larval development) decreased significantly with increasing diversity of crustacean taxa. The total abundance of crustaceans had a minor effect on colonization by Cx. pipiens. The presence of crustaceans increased the sensitivity of Cx. pipiens larvae to Bti treatment by a factor of 10 and delayed the time of recolonization. This effect of Bti was relevant in the short term. In the long term, the presence of Cx. pipiens was determined by crustacean biodiversity.

  8. [Relating briefly the natural resources and the population problems of China].

    PubMed

    Lian, Y

    1983-01-29

    Problems in population, manifested primarily as either "over" or "under" population, are ultimately related to the development of natural resources. Land is the most basic of natural resources. China's land mass is largely mountainous, with 56% of its more than 2000 counties, 1/3 of its population, 40% of its cultivated land and a majority of its forests, situated in mountainous regions. The quality and the distribution of the various kinds of land are complex and uneven. Although China is rich in forests, grazing, and arable land compared to the rest of the world, its 1 billion population makes the land a limited resource. The limitations of the land are also seen in soil erosion, soil that is increasingly turning into sand, and deforestation. Water resources are not considered scarce, yet compared to the rest of the world, it is limited. Its distribution is very uneven, with more water in the east and west, and less in the north and south. In the southwest mountainous border regions, for instance, water is abundant, but the population and arable land there is such that the demand for water is low. Moreover, droughts and heavy precipitation make the annual water supply unpredicatable. The demand for water becomes increasingly greater as agricultural production develops further, the population increases and as the cities continue to expand. living matter as a resource includes all the animal and plant life that is necessary for livelihood, but only forests and grasslands are discussed here. China's forests, if their use is not abused, can serve as a continuous supply for manufactured products. But its distribution is uneven and sparse. Population control will be ineffective if the forests are not replenished and developed. Grasslands are the primary source for animal products. The natural grasslands, found mainly in the north and west, are not as productive as that of other nations due to the nature of China's topography, the vagaries of climate, and deterioration

  9. National Mosquito (Diptera: Culicidae) Survey in The Netherlands 2010-2013.

    PubMed

    Ibañez-Justicia, A; Stroo, A; Dik, M; Beeuwkes, J; Scholte, E J

    2015-03-01

    From 2010 onwards, a nationwide mosquito monitoring scheme has been conducted in The Netherlands with the aim of gaining crucial information about mosquito (Diptera: Culicidae) species composition, geographical distributions, biodiversity, and habitat preferences. The results of this study are based on 778 randomly sampled mosquito locations. These are divided into three main habitat types: urban, rural-agricultural, and natural areas. Twenty-seven mosquito species were found: 26 indigenous and 1 exotic, Aedes japonicus japonicus (Theobald, 1901). The preliminary results are presented here, with details of their species distribution and seasonality. Monitoring the temporal and spatial distribution of mosquitoes is an essential step in the risk analysis of emerging mosquito-borne diseases.

  10. National Mosquito (Diptera: Culicidae) Survey in The Netherlands 2010-2013.

    PubMed

    Ibañez-Justicia, A; Stroo, A; Dik, M; Beeuwkes, J; Scholte, E J

    2015-03-01

    From 2010 onwards, a nationwide mosquito monitoring scheme has been conducted in The Netherlands with the aim of gaining crucial information about mosquito (Diptera: Culicidae) species composition, geographical distributions, biodiversity, and habitat preferences. The results of this study are based on 778 randomly sampled mosquito locations. These are divided into three main habitat types: urban, rural-agricultural, and natural areas. Twenty-seven mosquito species were found: 26 indigenous and 1 exotic, Aedes japonicus japonicus (Theobald, 1901). The preliminary results are presented here, with details of their species distribution and seasonality. Monitoring the temporal and spatial distribution of mosquitoes is an essential step in the risk analysis of emerging mosquito-borne diseases. PMID:26336303

  11. Reduced fitness in progeny from old parents in a natural population

    PubMed Central

    Schroeder, Julia; Nakagawa, Shinichi; Rees, Mark; Mannarelli, Maria-Elena; Burke, Terry

    2015-01-01

    A nongenetic, transgenerational effect of parental age on offspring fitness has been described in many taxa in the laboratory. Such a transgenerational fitness effect will have important influences on population dynamics, population age structure, and the evolution of aging and lifespan. However, effects of parental age on offspring lifetime fitness have never been demonstrated in a natural population. We show that parental age has sex-specific negative effects on lifetime fitness, using data from a pedigreed insular population of wild house sparrows. Birds whose parents were older produced fewer recruits annually than birds with younger parents, and the reduced number of recruits translated into a lifetime fitness difference. Using a long-term cross-fostering experiment, we demonstrate that this parental age effect is unlikely to be the result of changes in the environment but that it potentially is epigenetically inherited. Our study reveals the hidden consequences of late-life reproduction that persist into the next generation. PMID:25775600

  12. [Population trends and behavioral observations of wintering common cranes (Grus grus) in Yancheng Nature Reserve].

    PubMed

    Li, Zhong-Qiu; Wang, Zhi; Ge, Chen

    2013-10-01

    To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family. PMID:24115655

  13. Sheep skin odor improves trap captures of mosquito vectors of Rift Valley fever.

    PubMed

    Tchouassi, David P; Sang, Rosemary; Sole, Catherine L; Bastos, Armanda D S; Mithoefer, Klaus; Torto, Baldwyn

    2012-01-01

    In recent years, the East African region has seen an increase in arboviral diseases transmitted by blood-feeding arthropods. Effective surveillance to monitor and reduce incidence of these infections requires the use of appropriate vector sampling tools. Here, trapped skin volatiles on fur from sheep, a known preferred host of mosquito vectors of Rift Valley fever virus (RVFV), were used with a standard CDC light trap to improve catches of mosquito vectors. We tested the standard CDC light trap alone (L), and baited with (a) CO(2) (LC), (b) animal volatiles (LF), and (c) CO(2) plus animal volatiles (LCF) in two highly endemic areas for RVF in Kenya (Marigat and Ijara districts) from March-June and September-December 2010. The incidence rate ratios (IRR) that mosquito species chose traps baited with treatments (LCF, LC and LF) instead of the control (L) were estimated. Marigat was dominated by secondary vectors and host-seeking mosquitoes were 3-4 times more likely to enter LC and LCF traps [IRR = 3.1 and IRR = 3.8 respectively] than the L only trap. The LCF trap captured a greater number of mosquitoes than the LC trap (IRR = 1.23) although the difference was not significant. Analogous results were observed at Ijara, where species were dominated by key primary and primary RVFV vectors, with 1.6-, 6.5-, and 8.5-fold increases in trap captures recorded in LF, LC and LCF baited traps respectively, relative to the control. These catches all differed significantly from those trapped in L only. Further, there was a significant increase in trap captures in LCF compared to LC (IRR = 1.63). Mosquito species composition and trap counts differed between the RVF sites. However, within each site, catches differed in abundance only and no species preferences were noted in the different baited-traps. Identifying the attractive components present in these natural odors should lead to development of an effective odor-bait trapping system for population density

  14. Relative importance of natural disturbances and habitat degradation on snail kite population dynamics

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Cattau, Christopher E.; Oli, M.K.

    2008-01-01

    Natural disturbances and habitat degradation are major factors influencing the dynamics and persistence of many wildlife populations, yet few large-scale studies have explored the relative influence of these factors on the dynamics and persistence of animal populations. We used longterm demographic data and matrix population models to examine the potential effects of habitat degradation and natural disturbances on the dynamics of the endangered snail kite Rostrhamus sociabilis in Florida, USA. We found that estimates of stochastic population growth rate were low (0.90). Population growth rate (??) during the first half or our study period (1992 to 1998) was substantially greater than during the second half (1999 to 2005). These 2 periods were characterized by contrasting hydrological conditions. Although ?? was most sensitive to changes in adult survival, the analysis of life table response experiments revealed that a reduction in fertility of kites accounted for >80% of the observed decline in population growth rate. We examined the possibility that the reduction in ?? was caused by (1) habitat degradation due to management, (2) an increase in frequency of moderate drying events in recent years, and (3) both habitat degradation and an increase in frequency of moderate drying events. Our results suggest that both factors could potentially contribute to a large decrease in population growth rate. Our study highlights the importance of simultaneously considering short- and long-term effects of disturbances when modeling population dynamics. Indeed, focusing exclusively on one type of effect may be misleading to both our understanding of the ecological dynamics of the system and to management. The relevance of our results to management is heightened because the snail kite has been selected as a key performance measure of one of the most ambitious ecosystem restoration projects ever undertaken. ?? Inter-Research 2008.

  15. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field.

    PubMed

    Jaenson, Thomas G T; Garboui, Samira; Palsson, Katinka

    2006-07-01

    MyggA Natural (Bioglan, Lund, Sweden) is a commercially available repellent against blood-feeding arthropods. It contains 30% of lemon-scented eucalyptus, Corymbia citriodora (Hook.) K. D. Hill & L. A. S. Johnson (Myrtaceae), oil with a minimum of 50% p-menthane-3,8-diol. MyggA Natural also contains small amounts of the essential oils of lavender, Lavandula angustifolia Mill. (Lamiaceae), and geranium, Pelargonium graveolens L'Her. (Geraniaceae). In laboratory bioassays, MyggA Natural and C. citriodora oil exhibited 100% repellency against host-seeking nymphs of Ixodes ricinus (L.) (Acari: Ixodidae). Lavender oil and geranium oil, when diluted to 1% in 1,2-propanediol, had weak repellent activities on I. ricinus nymphs, but when diluted to 30% in 1,2-propanediol had 100% repellencies. 1,2-Propanediol (100%) had no significant repellent activity in comparison with that of the control. In field tests in tick-infested areas in central Sweden, tick repellency of MyggA Natural and C. citriodora oil was tested by the blanket-dragging technique for 4 d during a 6-d period. The repellencies (74 and 85%, respectively) on day 1 are similar (89%) to that of blankets treated in a similar manner with 19% diethyl-methyl-benzamide, based on previous work. Repellencies declined significantly from day 1 to day 6 (74 to 45% for MyggA Natural; 85 to 42% for C. citriodora oil). PMID:16892632

  16. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  17. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies

    PubMed Central

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E.; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

    2012-01-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  18. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil.

  19. De Havilland F-8 Mosquito

    NASA Technical Reports Server (NTRS)

    1945-01-01

    De Havilland F-8 Mosquito: This de Havilland F-8 Mosquito was flown at Langley by NACA pilot Bill Gray during longitudinal stability and control studies of the aircraft. This fast twin engine design was noteworthy for its wooden construction and its versatility.

  20. De Havilland F-8 Mosquito

    NASA Technical Reports Server (NTRS)

    1944-01-01

    De Havilland F-8 Mosquito: Not a Royal Air Force de Havilland DH-98, but an Air Force de Havilland F-8 Mosquito. A pair of these Canadian built, U. S. Army Air Force procured aircraft were flown at Langley. The Americans used these aircraft as photo-reconnaissance and meteorological aircraft.

  1. Current and potential impacts of mosquitoes and the pathogens they vector in the Pacific region

    USGS Publications Warehouse

    LaPointe, Dennis

    2007-01-01

    Mosquitoes and the pathogens they transmit are ubiquitous throughout most of the temperate and tropical regions of the world. The natural and pre-European distribution and diversity of mosquitoes and mosquito-borne diseases throughout much of the Pacific region, however, depicts a depauperate and relatively benign fauna reinforcing the dream of “paradise regained”. In the central and South Pacific few mosquito species were able to colonize the remotest islands and atolls. Native mosquitoes are limited to a few far-ranging species and island endemics are typically restricted to the genera of Aedes and Culex. Only lymphatic filariasis appears to have been present as an endemic mosquito-borne disease before European contact. In nearby Australia, however, some 242 species of mosquitoes are known to occur and more than 70 arboviruses have been identified (Mackenzie 1999). In this regard Australia is more similar to the rest of the tropic and subtropical world than the smaller islands of Oceania. In our ever-shrinking world of global commerce, military activity and travel, the nature of mosquito-borne disease in the Pacific was bound to change. This paper is a brief summary of introduced mosquitoes in the Pacific and their potential impacts on human and wildlife health.

  2. Inversion polymorphism and extra bristles in Indian natural populations of Drosophila ananassae: joint variation.

    PubMed

    Das, A; Mohanty, S; Parida, B B

    1994-10-01

    Five Indian natural populations of Drosophila ananassae were analysed for chromosome inversions and the presence of individuals with extra scutellar bristles in the F1 progeny of isofemale lines initiated from naturally impregnated females. Three commonly occurring inversions were found in these populations with varying frequencies as was the number of individuals with extra bristles (e.b.). Female individuals were more often found to carry extra scutellar bristles than were males. This result reveals that polygenic loci responsible for the determination of e.b. are widespread in Indian natural populations of D. ananassae. A significant positive correlation between the inversion frequency and the number of individuals with e.b. was detected in the isofemale lines of all the five populations. The 2L inversion, alpha, was found to be closely associated with individuals with the e.b. phenotype. The observed results are compared with earlier results obtained for D. melanogaster. The association of the alpha inversion with the e.b. phenotype is discussed in relation to chromosomal evolution in the melanogaster species group.

  3. Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction

    PubMed Central

    Unckless, Robert L.; Messer, Philipp W.; Connallon, Tim; Clark, Andrew G.

    2015-01-01

    The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called mutagenic chain reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the near equivalence of this system to other gene drive models and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium may exist that is usually unstable. In this case, introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. We obtain estimates of fixation and invasion probabilities for the appropriate scenarios. Finally, we discuss how polymorphism in natural populations may introduce sources of natural resistance to MCR invasion. These modeling results have important implications for application of MCR in natural populations. PMID:26232409

  4. Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction.

    PubMed

    Unckless, Robert L; Messer, Philipp W; Connallon, Tim; Clark, Andrew G

    2015-10-01

    The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called mutagenic chain reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the near equivalence of this system to other gene drive models and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium may exist that is usually unstable. In this case, introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. We obtain estimates of fixation and invasion probabilities for the appropriate scenarios. Finally, we discuss how polymorphism in natural populations may introduce sources of natural resistance to MCR invasion. These modeling results have important implications for application of MCR in natural populations.

  5. Population genetic structure of native versus naturalized sympatric shrub willows (Salix; Salicaceae).

    PubMed

    Lin, Juan; Gibbs, James P; Smart, Lawrence B

    2009-04-01

    Vegetative propagation of an introduced species can contribute significantly to its ability to spread and become naturalized, potentially in competition with native species. This study focused on the naturalization of a willow shrub, Salix purpurea, which was introduced to the United States from Europe and is commonly sympatric with the native shrub willow, S. eriocephala. Both species are capable of vegetative and sexual reproduction, but little is known about their relative frequency, nor the impact of clonal propagation on population-level genetic diversity. We analyzed genotypes at several microsatellite loci in 993 individuals belonging to 30 subpopulations of S. eriocephala and 28 subpopulations of S. purpurea in areas of sympatry across three watersheds to compare their genetic diversity and genetic structure. Our results revealed six subpopulations of S. purpurea containing plants with identical multilocus genotypes, while clonal individuals were rare among S. eriocephala populations. These species are dioecious with relatively high levels of heterozygosity, but S. eriocephala had much higher allelic diversity and genotypic diversity than did S. purpurea. These results strongly suggest that vegetative propagation has contributed to the naturalization of S. purpurea and has resulted in higher levels of genetic differentiation among S. purpurea populations than among native S. eriocephala populations.

  6. Modeling the Manipulation of Natural Populations by the Mutagenic Chain Reaction.

    PubMed

    Unckless, Robert L; Messer, Philipp W; Connallon, Tim; Clark, Andrew G

    2015-10-01

    The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called mutagenic chain reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the near equivalence of this system to other gene drive models and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium may exist that is usually unstable. In this case, introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. We obtain estimates of fixation and invasion probabilities for the appropriate scenarios. Finally, we discuss how polymorphism in natural populations may introduce sources of natural resistance to MCR invasion. These modeling results have important implications for application of MCR in natural populations. PMID:26232409

  7. Cytogenetic Analysis of an SD Chromosome from a Natural Population of DROSOPHILA MELANOGASTER

    PubMed Central

    Trippa, G.; Loverre, A.; Cicchetti, R.

    1980-01-01

    The discovery and the cytogenetic characterization of a new SD (Segregation Distorter) chromosome 2 from a natural population in Ranna (Sicily, Italy), SDRa, are reported. The main features of this chromosome are as follows: (a) it contains an SdRa gene with a moderate degree of segregation distortion (k = 0.72), (b) a recessive female sterile gene, fs(2)TLM, responsible for modifications of the morphology and structure of the tests and ovaries is located at 89.7, (c) SDRa/SDRa males and females are viable but sterile, the females due to homozygosis of fs(2)TLM and the males because of homozygosis of a region containing the Sd locus, and (d) SDi/SDj combinations are fertile, thus suggesting that the different Sd factors found in natural populations constitute a multiple allelic series.—These data may indicate that each population containing SD chromosomes has evolved its own genetic architecture for the complex SD system, with specific modifiers and perhaps different Sd genes. The possibility of reconstructing the evolutionary pattern of the SDRa chromosome in the natural Ranna population after the model of Charlesworth and Hartl (1978) and Crow (1979) is considered. PMID:17249043

  8. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  9. Genetic adaptation to metal stress by natural populations of Daphnia longispina.

    PubMed

    Lopes, Isabel; Baird, Donald J; Ribeiro, Rui

    2006-02-01

    Loss of genetic diversity in natural populations as a result of chemical contamination has been reported in some studies. Here, four field populations of Daphnia longispina, two from sites historically impacted by acid mine drainage (AMD) and two from reference sites, were used to address four objectives: (1) identify differences in sensitivity between the stressed and reference populations; (2) distinguish between the components responsible for those differences (environmental influence vs genetic determination); (3) determine if genetically determined responses of reference and stressed populations converge from lethal to sublethal levels of contamination; and (4) evaluate losses of variability in genetically determined resistance by the stressed populations. Lethal and sublethal assays were carried out by exposing nonacclimated and acclimated neonates to AMD-contaminated waters and to copper dissolved in an artificial medium. Results indicate that both nonacclimated and acclimated individuals from the stressed populations are significantly less sensitive to AMD-contaminated waters than those from the reference populations, at both lethal and sublethal levels. The hypothesis of a convergence from lethal to sublethal responses was confirmed.

  10. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes

    PubMed Central

    Dieme, Constentin; Bechah, Yassina; Socolovschi, Cristina; Audoly, Gilles; Berenger, Jean-Michel; Faye, Ousmane; Raoult, Didier; Parola, Philippe

    2015-01-01

    A growing number of recent reports have implicated Rickettsia felis as a human pathogen, paralleling the increasing detection of R. felis in arthropod hosts across the globe, primarily in fleas. Here Anopheles gambiae mosquitoes, the primary malarial vectors in sub-Saharan Africa, were fed with either blood meal infected with R. felis or infected cellular media administered in membrane feeding systems. In addition, a group of mosquitoes was fed on R. felis-infected BALB/c mice. The acquisition and persistence of R. felis in mosquitoes was demonstrated by quantitative PCR detection of the bacteria up to day 15 postinfection. R. felis was detected in mosquito feces up to day 14. Furthermore, R. felis was visualized by immunofluorescence in salivary glands, in and around the gut, and in the ovaries, although no vertical transmission was observed. R. felis was also found in the cotton used for sucrose feeding after the mosquitoes were fed infected blood. Natural bites from R. felis-infected An. gambiae were able to cause transient rickettsemias in mice, indicating that this mosquito species has the potential to be a vector of R. felis infection. This is particularly important given the recent report of high prevalence of R. felis infection in patients with “fever of unknown origin” in malaria-endemic areas. PMID:26056256

  11. Kinship between parents reduces offspring fitness in a natural population of Rhododendron brachycarpum

    PubMed Central

    Hirao, Akira S.

    2010-01-01

    Background and Aims A reduction in offspring fitness resulting from mating between neighbours is interpreted as biparental inbreeding depression. However, little is known about the relationship between the parents' genetic relatedness and biparental inbreeding depression in their progeny in natural populations. This study assesses the effect of kinship between parents on the fitness of their progeny and the extent of spatial genetic structure in a natural population of Rhododendron brachycarpum. Methods Kinship coefficients between 11 858 pairs of plants among a natural population of 154 R. brachycarpum plants were estimated a priori using six microsatellite markers. Plants were genotyped, and pairs were selected from among 60 plants to vary the kinship from full-sib to unrelated. After a hand-pollination experiment among the 60 plants, offspring fitness was measured at the stages of seed maturation (i.e. ripening) under natural conditions, and seed germination and seedling survival under greenhouse conditions. In addition, spatial autocorrelation was used to assess the population's genetic structure. Key Results Offspring fitness decreased significantly with increasing kinship between parents. However, the magnitude and timing of this effect differed among the life-cycle stages. Measures of inbreeding depression were 0·891 at seed maturation, 0·122 (but not significant) at seed germination and 0·506 at seedling survival. The local population spatial structure was significant, and the physical distance between parents mediated the level of inbreeding between them. Conclusions The level of inbreeding between individuals determines offspring fitness in R. brachycarpum, especially during seed maturation. Genetic relatedness between parents caused inbreeding depression in their progeny. Therefore, biparental inbreeding contributes little to reproduction and instead acts as a selection force that promotes outcrossing, as offspring of more distant (less related

  12. Fast Risk Assessment Software For Natural Hazard Phenomena Using Georeference Population And Infrastructure Data Bases

    NASA Astrophysics Data System (ADS)

    Marrero, J. M.; Pastor Paz, J. E.; Erazo, C.; Marrero, M.; Aguilar, J.; Yepes, H. A.; Estrella, C. M.; Mothes, P. A.

    2015-12-01

    Disaster Risk Reduction (DRR) requires an integrated multi-hazard assessment approach towards natural hazard mitigation. In the case of volcanic risk, long term hazard maps are generally developed on a basis of the most probable scenarios (likelihood of occurrence) or worst cases. However, in the short-term, expected scenarios may vary substantially depending on the monitoring data or new knowledge. In this context, the time required to obtain and process data is critical for optimum decision making. Availability of up-to-date volcanic scenarios is as crucial as it is to have this data accompanied by efficient estimations of their impact among populations and infrastructure. To address this impact estimation during volcanic crises, or other natural hazards, a web interface has been developed to execute an ANSI C application. This application allows one to compute - in a matter of seconds - the demographic and infrastructure impact that any natural hazard may cause employing an overlay-layer approach. The web interface is tailored to users involved in the volcanic crises management of Cotopaxi volcano (Ecuador). The population data base and the cartographic basis used are of public domain, published by the National Office of Statistics of Ecuador (INEC, by its Spanish acronym). To run the application and obtain results the user is expected to upload a raster file containing information related to the volcanic hazard or any other natural hazard, and determine categories to group population or infrastructure potentially affected. The results are displayed in a user-friendly report.

  13. Factors influencing Nosema bombi infections in natural populations of Bombus terrestris (Hymenoptera: Apidae).

    PubMed

    Huth-Schwarz, Anett; Settele, Josef; Moritz, Robin F A; Kraus, F Bernhard

    2012-05-01

    Bumblebees are of profound ecological importance because of the pollination services they provide in natural and agricultural ecosystems. Any decline of these pollinators is therefore of great concern for ecosystem functioning. Increased parasite pressures have been discussed as a major factor for the loss of pollinators. One of the main parasites of bumblebees is Nosema bombi, an intracellular microsporidian parasite with considerable impact on the vitality of the host. Here we study the effect of host colony density and host genetic variability on N. bombi infections in natural populations of the bumblebee Bombus terrestris. We sampled males and workers from six B. terrestris populations located in an agricultural landscape in Middle Sweden to determine the prevalence and degree of N. bombi infections. All individuals were genotyped with five microsatellite markers to infer the colony densities in the sampled populations and the genetic variability of the host population. We confirmed that genetic variability and sex significantly correlate with the degree of infection with N. bombi. Males and workers with lower genetic variability had significantly higher infection levels than average. Also colony density had a significant impact on the degree of infection, with high density populations having higher infected individuals.

  14. Footprints of divergent selection in natural populations of Castanopsis fargesii (Fagaceae).

    PubMed

    Li, C; Sun, Y; Huang, H W; Cannon, C H

    2014-12-01

    Given predicted rapid climate change, an understanding of how environmental factors affect genetic diversity in natural populations is important. Future selection pressures are inherently unpredictable, so forest management policies should maintain both overall diversity and identify genetic markers associated with the environmental factors expected to change most rapidly, like temperature and rainfall. In this study, we genotyped 648 individuals in 28 populations of Castanopsis fargesii (Fagaceae) using 32 expressed sequence tag (EST)-derived microsatellite markers. After removing six loci that departed from Hardy-Weinberg equilibrium, we measured genetic variation, population structure and identified candidate loci putatively under selection by temperature and precipitation. We found that C. fargesii populations possessed high genetic diversity and moderate differentiation among them, indicating predominant outcrossing and few restrictions to gene flow. These patterns reduce the possible impact of stochastic effects or the influence of genetic isolation. Clear footprints of divergent selection at four loci were discovered. Frequencies of five alleles at these loci were strongly correlated with environmental factors, particularly extremes in precipitation. These alleles varied from being near fixation at one end of the gradient to being completely absent at the other. Our study species is an important forest tree in the subtropical regions of China and could have a major role in future management and reforestation plans. Our results demonstrate that the gene flow is widespread and abundant in natural populations, maintaining high diversity, while diversifying selection is acting on specific genomic regions.

  15. Footprints of divergent selection in natural populations of Castanopsis fargesii (Fagaceae).

    PubMed

    Li, C; Sun, Y; Huang, H W; Cannon, C H

    2014-12-01

    Given predicted rapid climate change, an understanding of how environmental factors affect genetic diversity in natural populations is important. Future selection pressures are inherently unpredictable, so forest management policies should maintain both overall diversity and identify genetic markers associated with the environmental factors expected to change most rapidly, like temperature and rainfall. In this study, we genotyped 648 individuals in 28 populations of Castanopsis fargesii (Fagaceae) using 32 expressed sequence tag (EST)-derived microsatellite markers. After removing six loci that departed from Hardy-Weinberg equilibrium, we measured genetic variation, population structure and identified candidate loci putatively under selection by temperature and precipitation. We found that C. fargesii populations possessed high genetic diversity and moderate differentiation among them, indicating predominant outcrossing and few restrictions to gene flow. These patterns reduce the possible impact of stochastic effects or the influence of genetic isolation. Clear footprints of divergent selection at four loci were discovered. Frequencies of five alleles at these loci were strongly correlated with environmental factors, particularly extremes in precipitation. These alleles varied from being near fixation at one end of the gradient to being completely absent at the other. Our study species is an important forest tree in the subtropical regions of China and could have a major role in future management and reforestation plans. Our results demonstrate that the gene flow is widespread and abundant in natural populations, maintaining high diversity, while diversifying selection is acting on specific genomic regions. PMID:24984608

  16. Interplay between insecticide-treated bed-nets and mosquito demography: implications for malaria control.

    PubMed

    Ngonghala, Calistus N; Mohammed-Awel, Jemal; Zhao, Ruijun; Prosper, Olivia

    2016-05-21

    Although malaria prevalence has witnessed a significant reduction within the past decade, malaria still constitutes a major health and economic problem, especially to low-income countries. Insecticide-treated nets (ITNs) remain one of the primary measures for preventing the malignant disease. Unfortunately, the success of ITN campaigns is hampered by improper use and natural decay in ITN-efficacy over time. Many models aimed at studying malaria transmission and control fail to account for this decay, as well as mosquito demography and feeding preferences exhibited by mosquitoes towards humans. Omitting these factors can misrepresent disease risk, while understanding their effects on malaria dynamics can inform control policy. We present a model for malaria dynamics that incorporates these factors, and a systematic analysis, including stability and sensitivity analyses of the model under different conditions. The model with constant ITN-efficacy exhibits a backward bifurcation emphasizing the need for sustained control measures until the basic reproduction number, R0, drops below a critical value at which control is feasible. The infectious and partially immune human populations and R0 are highly sensitive to the probability that a mosquito feeds successfully on a human, ITN coverage and the maximum biting rate of mosquitoes, irrespective of whether ITN-efficacy is constant or declines over time. This implies that ITNs play an important role in disease control. When ITN-efficacy wanes over time, we identify disease risks and corresponding ITN coverage, as well as feeding preference levels for which the disease can be controlled or eradicated. Our study leads to important insights that could assist in the design and implementation of better malaria control strategies. We conclude that ITNs that can retain their effectiveness for longer periods will be more appropriate in the fight against malaria and that making more ITNs available to highly endemic regions is

  17. Temporal behaviour profiles of Mus musculus in nature are affected by population activity.

    PubMed

    Robbers, Yuri; Koster, Eva A S; Krijbolder, Doortje I; Ruijs, Amanda; van Berloo, Sander; Meijer, Johanna H

    2015-02-01

    Animals have circadian clocks that govern their activity pattern, resulting in 24h rhythms in physiology and behaviour. Under laboratory conditions, light is the major external signal that affects temporal patterns in behaviour, and Mus musculus is strictly nocturnal in its behaviour. In the present study we questioned whether under natural conditions, environmental factors other than light affect the temporal profile of mice. In order to test this, we investigated the activity patterns of free-ranging M. musculus in a natural habitat, using sensors and a camera integrated into a recording unit that the mice could freely enter and leave. Our data show that mice have seasonal fluctuations in activity duration (6.7±0.82 h in summer, 11.3±1.80 h in winter). Furthermore, although primarily nocturnal, wild mice also exhibit daytime activity from spring until late autumn. A multivariate analysis revealed that the major factor correlating with increased daytime activity was population activity, defined as the number of visits to the recording site. Day length had a small but significant effect. Further analysis revealed that the relative population activity (compared to the past couple of days) is a better predictor of daytime activity than absolute population activity. Light intensity and temperature did not have a significant effect on daytime activity. The amount of variance explained by external factors is 51.9%, leaving surprisingly little unexplained variance that might be attributed to the internal clock. Our data further indicate that mice determine population activity by comparing a given night with the preceding 2-7 nights, a time frame suggesting a role for olfactory cues. We conclude that relative population activity is a major factor controlling the temporal activity patterns of M. musculus in an unrestricted natural population.

  18. Comparison of carbohydrate sources in yeast-fermentation CO2 generators for mosquito surveillance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito surveillance in remote areas with limited access to canisters of CO2 or dry ice will benefit from an effective alternative CO2 source, such as the natural production of CO2 from yeast fermentation of several carbohydrate sources. In this study, we document the differences in mosquito and n...

  19. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-01-01

    The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector

  20. Impacts of the creation, expansion and management of English wetlands on mosquito presence and abundance - developing strategies for future disease mitigation.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-03-03

    The incidence of mosquito-borne diseases is increasing in Europe, partly due to the incursion of a number of invasive species known to be vectors of dengue and chikungunya viruses, but also due to the involvement of native species in the transmission of West Nile virus and malaria. For some of these pathogens, there is a risk of the re-emergence of vector-borne diseases that were once widespread in Europe, but declined partly due to large-scale land-drainage projects. Some mosquito species exploit container habitats as breeding sites in urban areas; an adaptation to human-made micro-habitats resulting from increased urbanisation. However, many species thrive in natural wetland ecosystems. Owing to the impacts of climate change there is an urgent need for environmental adaptation, such as the creation of new wetlands to mitigate coastal and inland flooding. In some cases, these initiatives can be coupled with environmental change strategies to protect a range of endangered flora and fauna species by enhancing and extending wetland landscapes, which may by driven by European legislation, particularly in urban areas. This paper reviews field studies conducted in England to assess the impact of newly created wetlands on mosquito colonisation in a) coastal, b) urban and c) arable reversion habitats. It also considers the impact of wetland management on mosquito populations and explores the implications of various water and vegetation management options on the range of British mosquito species. Understanding the impact of wetland creation and management strategies on mosquito prevalence and the potential risk of increasing the levels of nuisance or disease vector species will be crucial in informing health and well-being risk assessments, guiding targeted control, and anticipating the social effects of extreme weather and climate change. Although new wetlands will certainly extend aquatic habitats for mosquitoes, not all species will become a major nuisance or a vector

  1. Natural hazard risk perception of Italian population: case studies along national territory.

    NASA Astrophysics Data System (ADS)

    Gravina, Teresita; Tupputi Schinosa, Francesca De Luca; Zuddas, Isabella; Preto, Mattia; Marengo, Angelo; Esposito, Alessandro; Figliozzi, Emanuele; Rapinatore, Matteo

    2015-04-01

    Risk perception is judgment that people make about the characteristics and severity of risks, in last few years risk perception studies focused on provide cognitive elements to communication experts responsible in order to design citizenship information and awareness appropriate strategies. Several authors in order to determine natural hazards risk (Seismic, landslides, cyclones, flood, Volcanic) perception used questionnaires as tool for providing reliable quantitative data and permitting comparison the results with those of similar surveys. In Italy, risk perception studies based on surveys, were also carried out in order to investigate on national importance Natural risk, in particular on Somma-Vesuvio and Phlegrean Fields volcanic Risks, but lacked risk perception studies on local situation distributed on whole national territory. National importance natural hazard were frequently reported by national mass media and there were debate about emergencies civil protection plans, otherwise could be difficult to obtain information on bonded and regional nature natural hazard which were diffuses along National territory. In fact, Italian peninsula was a younger geological area subjected to endogenous phenomena (volcanoes, earthquake) and exogenous phenomena which determine land evolution and natural hazard (landslide, coastal erosion, hydrogeological instability, sinkhole) for population. For this reason we decided to investigate on natural risks perception in different Italian place were natural hazard were taken place but not reported from mass media, as were only local relevant or historical event. We carried out surveys in different Italian place interested by different types of natural Hazard (landslide, coastal erosion, hydrogeological instability, sinkhole, volcanic phenomena and earthquake) and compared results, in order to understand population perception level, awareness and civil protection exercises preparation. Our findings support that risks

  2. Disrupted patterns of behavior in natural populations as an index of ecotoxicity.

    PubMed Central

    Peakall, D B

    1996-01-01

    This paper examines behavioral changes in natural populations of wildlife associated with pollution. Although some changes such as lack of nest attentiveness and decreased nest defense have been noted, the results have not been consistent and have been difficult to relate to specific pollutants. Experimental studies involving lead, mercury, and organochlorine and organophosphate insecticides are described. Although changes in behavior have been observed, they are generally more difficult to quantify and are less reproducible than biochemical changes. To date, there is no clear evidence in wildlife that behavioral changes caused by pollutants are a serious threat to populations. PMID:9182040

  3. British Container Breeding Mosquitoes: The Impact of Urbanisation and Climate Change on Community Composition and Phenology

    PubMed Central

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  4. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology.

    PubMed

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  5. Parameters of Mosquito-Enhanced West Nile Virus Infection

    PubMed Central

    Moser, Lindsey A.; Lim, Pei-Yin; Styer, Linda M.; Kramer, Laura D.

    2015-01-01

    ABSTRACT The arthropod-borne West Nile virus (WNV) emerged in New York State in 1999 and quickly spread throughout the United States. Transmission is maintained in an enzootic cycle in which infected mosquitoes transmit the virus to susceptible hosts during probing and feeding. Arthropod-derived components within the viral inoculum are increasingly acknowledged to play a role in infection of vertebrate hosts. We previously showed that Culex tarsalis mosquito saliva and salivary gland extract (SGE) enhance the in vivo replication of WNV. Here, we characterized the effective dose, timing, and proximity of saliva and SGE administration necessary for enhancement of WNV viremia using a mouse model. Mosquito saliva and SGE enhanced viremia in a dose-dependent manner, and a single mosquito bite or as little as 0.01 μg of SGE was effective at enhancing viremia, suggesting a potent active salivary factor. Viremia was enhanced when SGE was injected in the same location as virus inoculation from 24 h before virus inoculation through 12 h after virus inoculation. These results were confirmed with mosquito saliva deposited by uninfected mosquitoes. When salivary treatment and virus inoculation were spatially separated, viremia was not enhanced. In summary, the effects of mosquito saliva and SGE were potent, long lasting, and localized, and these studies have implications for virus transmission in nature, where vertebrate hosts are fed upon by both infected and uninfected mosquitoes over time. Furthermore, our model provides a robust system to identify the salivary factor(s) responsible for enhancement of WNV replication. IMPORTANCE Mosquito-borne viruses are a significant class of agents causing emerging infectious diseases. WNV has caused over 18,000 cases of neuroinvasive disease in the United States since its emergence. We have shown that Culex tarsalis mosquito saliva and SGE enhance the replication of WNV. We now demonstrate that saliva and SGE have potent, long

  6. Synthesis of (-)-callicarpenal a natural arthropod-repellent terpenoid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Callicarpenal, a natural terpenoid extracted from American beautyberry (Callicarpa americana), has shown significant repellent activity against mosquitoes, ticks and imported fire ants. Here we report an efficient synthetic approach to this natural product. We also present results of the mosquito ...

  7. Interplay between Endophyte Prevalence, Effects and Transmission: Insights from a Natural Grass Population

    PubMed Central

    Gibert, Anaïs; Magda, Danièle; Hazard, Laurent

    2015-01-01

    Two main mechanisms are thought to affect the prevalence of endophyte-grass symbiosis in host populations: the mode of endophyte transmission, and the fitness differential between symbiotic and non-symbiotic plants. These mechanisms have mostly been studied in synthetic grass populations. If we are to improve our understanding of the ecological and evolutionary dynamics of such symbioses, we now need to determine the combinations of mechanisms actually operating in the wild, in populations shaped by evolutionary history. We used a demographic population modeling approach to identify the mechanisms operating in a natural stand of an intermediate population (i.e. 50% of plants symbiotic) of the native grass Festuca eskia. We recorded demographic data in the wild over a period of three years, with manipulation of the soil resources for half the population. We developed two stage-structured matrix population models. The first model concerned either symbiotic or non-symbiotic plants. The second model included both symbiotic and non-symbiotic plants and took endophyte transmission rates into account. According to our models, symbiotic had a significantly higher population growth rate than non-symbiotic plants, and endophyte prevalence was about 58%. Endophyte transmission rates were about 0.67 or 0.87, depending on the growth stage considered. In the presence of nutrient supplementation, population growth rates were still significantly higher for symbiotic than for non-symbiotic plants, but endophyte prevalence fell to 0%. At vertical transmission rates below 0.10–0.20, no symbiosis was observed. Our models showed that a positive benefit of the endophyte and vertical transmission rates of about 0.6 could lead to the coexistence of symbiotic and non-symbiotic F. eskia plants. The positive effect of the symbiont on host is not systematically associated with high transmission rates of the symbiont over short time scales, in particular following an environmental change

  8. Regional distribution of longevity population and chemical characteristics of natural water in Xinjiang, China.

    PubMed

    Liu, Yong-Lin; Luo, Kun-Li; Lin, Xiao-Xu; Gao, Xing; Ni, Run-Xiang; Wang, Shao-Bin; Tian, Xing-Lei

    2014-03-01

    Xinjiang Province, China is recognized for the longevity of its inhabitants. To study the temporal and spatial variation of longevity region and chemical characteristics of natural water of longevity region in Xinjiang, three population censuses on county-level and 51 natural water samples from Hotan Prefecture, Xinjiang were collected and analyzed. 103 natural water samples were collected from the public papers. Population statistics on county-level showed that the number of centenarians per 100,000 inhabitants (OC) in Southern Xinjiang was 7.4(year 1990), 4.9(year 2000) and 2.1 times (year 2010) more than that of Northern Xinjiang, respectively. And distribution of the longevity index (LI%), centenarity index (CI%) and number of centenarians per 10,000 over 65 year-old subjects (UC) on county-level decreased from south to north. Natural water in Northern Xinjiang was mainly fresh soft water, and it was mainly fresh hard water and brackish hard water in Southern Xinjiang. Water quality of natural water in Northern Xinjiang was superior compare to that of Southern Xinjiang, while number of centenarians 65 year-old & over per 10,000 subjects in Northern Xinjiang were less than that of Southern Xinjiang before 2010. The research indicates that keeping on drinking water with high total hardness (TH) and Mg/Ca ratio might be good for the health.

  9. Natural variation in gene expression between wild and weedy populations of Helianthus annuus.

    PubMed

    Lai, Zhao; Kane, Nolan C; Zou, Yi; Rieseberg, Loren H

    2008-08-01

    The molecular genetic changes underlying the transformation of wild plants into agricultural weeds are poorly understood. Here we use a sunflower cDNA microarray to detect variation in gene expression between two wild (non-weedy) Helianthus annuus populations from Utah and Kansas and four weedy H. annuus populations collected from agricultural fields in Utah, Kansas, Indiana, and California. When grown in a common growth chamber environment, populations differed substantially in their gene expression patterns, indicating extensive genetic differentiation. Overall, 165 uni-genes, representing approximately 5% of total genes on the array, showed significant differential expression in one or more weedy populations when compared to both wild populations. This subset of genes is enriched for abiotic/biotic stimulus and stress response proteins, which may underlie niche transitions from the natural sites to agricultural fields for H. annuus. However, only a small proportion of the differentially expressed genes overlapped in multiple wild vs. weedy comparisons, indicating that most of the observed expression changes are due to local adaptation or neutral processes, as opposed to parallel genotypic adaptation to agricultural fields. These results are consistent with an earlier phylogeographic study suggesting that weedy sunflowers have evolved multiple times in different regions of the United States and further indicate that the evolution of weedy sunflowers has been accompanied by substantial gene expression divergence in different weedy populations.

  10. Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters.

    PubMed

    Lemire, Astrid; Goudenège, David; Versigny, Typhaine; Petton, Bruno; Calteau, Alexandra; Labreuche, Yannick; Le Roux, Frédérique

    2015-07-01

    Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality.

  11. Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters

    PubMed Central

    Lemire, Astrid; Goudenège, David; Versigny, Typhaine; Petton, Bruno; Calteau, Alexandra; Labreuche, Yannick; Le Roux, Frédérique

    2015-01-01

    Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality. PMID:25489729

  12. Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters.

    PubMed

    Lemire, Astrid; Goudenège, David; Versigny, Typhaine; Petton, Bruno; Calteau, Alexandra; Labreuche, Yannick; Le Roux, Frédérique

    2015-07-01

    Disease in oysters has been steadily rising over the past decade, threatening the long-term survival of commercial and natural stocks. Our understanding and management of such diseases are of critical importance as aquaculture is an important aspect of dealing with the approaching worldwide food shortage. Although some bacteria of the Vibrio genus isolated from diseased oysters have been demonstrated to be pathogenic by experimental infection, direct causality has not been established. Little is known about the dynamics of how the bacterial population hosted by oysters changes during disease progression. Combining experimental ecology, a high-throughput infection assay and genome sequencing, we show that the onset of disease in oysters is associated with progressive replacement of diverse benign colonizers by members of a phylogenetically coherent virulent population. Although the virulent population is genetically diverse, all members of that population can cause disease. Comparative genomics across virulent and nonvirulent populations identified candidate virulence factors that were clustered in population-specific genomic regions. Genetic analyses revealed that one gene for a candidate virulent factor, a putative outer membrane protein, is necessary for infection of oysters. Finally, analyses of oyster mortality following experimental infection suggest that disease onset can be facilitated by the presence of nonvirulent strains. This is a new form of polymicrobial disease, in which nonpathogenic strains contribute to increase mortality. PMID:25489729

  13. Enzyme Variability in the DROSOPHILA WILLISTONI Group. IV. Genic Variation in Natural Populations of DROSOPHILA WILLISTONI

    PubMed Central

    Ayala, Francisco J.; Powell, Jeffrey R.; Tracey, Martin L.; Mourão, Celso A.; Pérez-Salas, Santiago

    1972-01-01

    We describe allelic variation at 28 gene loci in natural populations of D. willistoni. Seventy samples were studied from localities extending from Mexico and Florida, through Central America, the West Indies, and tropical South America, down to South Brazil. At least several hundred, and often several thousand, genomes were sampled for each locus. We have discovered a great deal of genetic variation. On the average, 58% loci are polymorphic in a given population. (A locus is considered polymorphic when the frequency of the most common allele is no greater than 0.95). An individual fly is heterozygous, on the average, at 18.4% loci.—Concerning the pattern of the variation, the most remarkable finding is the similarity of the configuration of allelic frequencies from locality to locality throughout the distribution of the species. Our observations support the conclusion that balancing natural selection is the major factor responsible for the considerable genetic variation observed in D. willistoni. PMID:5013890

  14. Mosquitoes: A Resource Book for the Classroom.

    ERIC Educational Resources Information Center

    Gillmor, Mary S.; And Others

    This booklet was written for anyone interested in growing mosquitoes and experimenting with them. There are three major sections: (1) rationale for studying mosquitoes, (2) raising mosquitoes, and (3) some scientific findings. The first section describes basic information about mosquitoes. The second section includes information about materials,…

  15. Modeled response of the West Nile virus vector Culex quinquefasciatus to changing climate using the dynamic mosquito simulation model

    NASA Astrophysics Data System (ADS)

    Morin, Cory W.; Comrie, Andrew C.

    2010-09-01

    Climate can strongly influence the population dynamics of disease vectors and is consequently a key component of disease ecology. Future climate change and variability may alter the location and seasonality of many disease vectors, possibly increasing the risk of disease transmission to humans. The mosquito species Culex quinquefasciatus is a concern across the southern United States because of its role as a West Nile virus vector and its affinity for urban environments. Using established relationships between atmospheric variables (temperature and precipitation) and mosquito development, we have created the Dynamic Mosquito Simulation Model (DyMSiM) to simulate Cx. quinquefasciatus population dynamics. The model is driven with climate data and validated against mosquito count data from Pasco County, Florida and Coachella Valley, California. Using 1-week and 2-week filters, mosquito trap data are reproduced well by the model ( P < 0.0001). Dry environments in southern California produce different mosquito population trends than moist locations in Florida. Florida and California mosquito populations are generally temperature-limited in winter. In California, locations are water-limited through much of the year. Using future climate projection data generated by the National Center for Atmospheric Research CCSM3 general circulation model, we applied temperature and precipitation offsets to the climate data at each location to evaluate mosquito population sensitivity to possible future climate conditions. We found that temperature and precipitation shifts act interdependently to cause remarkable changes in modeled mosquito population dynamics. Impacts include a summer population decline from drying in California due to loss of immature mosquito habitats, and in Florida a decrease in late-season mosquito populations due to drier late summer conditions.

  16. West Nile Virus in Mosquitoes of Iranian Wetlands.

    PubMed

    Bagheri, Masoomeh; Terenius, Olle; Oshaghi, Mohammad Ali; Motazakker, Morteza; Asgari, Sassan; Dabiri, Farrokh; Vatandoost, Hassan; Mohammadi Bavani, Mulood; Chavshin, Ali Reza

    2015-12-01

    The West Nile virus (WNV) transmission cycle includes a wide range of migratory wetland birds as reservoirs, mosquitoes as biological vectors, and equines and humans as dead-end hosts. Despite the presence of potential vector species, there is no information about the existence of WNV in mosquito vectors in Iran. The Iranian West Azerbaijan Province is located in the northwestern part of Iran and has borders with Turkey, Iraq, Armenia, and the Republic of Azerbaijan. The current study was conducted to identify the wetland mosquitoes of the West Azerbaijan Province and their infection with WNV. In this study, 2143 specimens were collected, comprising 1541 adults and 602 larvae. Six species belonging to four genera were collected and identified: Anopheles maculipennis sensu lato (s.l.), Culex (Cx.) hortensis, Cx. pipiens s.l., Cx. theileri, Culiseta longiareolata, and Aedes (Ae.) (Ochlerotatus) caspius. In total, 45 pools of mosquitoes were examined. Two of the adult pools collected from the same location showed the presence of WNV in Ae. (Och.) caspius, from Sangar, Makoo County, as confirmed by PCR and sequencing. Due to the discovery of WNV in the mosquito population of the region, and the presence of wetlands and significant populations of migratory birds, the health sector should carefully monitor the factors involved in the cycle of this disease. PMID:26565610

  17. Spatial Heterogeneity, Host Movement and Mosquito-Borne Disease Transmission

    PubMed Central

    Acevedo, Miguel A.; Prosper, Olivia; Lopiano, Kenneth; Ruktanonchai, Nick; Caughlin, T. Trevor; Martcheva, Maia; Osenberg, Craig W.; Smith, David L.

    2015-01-01

    Mosquito-borne diseases are a global health priority disproportionately affecting low-income populations in tropical and sub-tropical countries. These pathogens live in mosquitoes and hosts that interact in spatially heterogeneous environments where hosts move between regions of varying transmission intensity. Although there is increasing interest in the implications of spatial processes for mosquito-borne disease dynamics, most of our understanding derives from models that assume spatially homogeneous transmission. Spatial variation in contact rates can influence transmission and the risk of epidemics, yet the interaction between spatial heterogeneity and movement of hosts remains relatively unexplored. Here we explore, analytically and through numerical simulations, how human mobility connects spatially heterogeneous mosquito populations, thereby influencing disease persistence (determined by the basic reproduction number R0), prevalence and their relationship. We show that, when local transmission rates are highly heterogeneous, R0 declines asymptotically as human mobility increases, but infection prevalence peaks at low to intermediate rates of movement and decreases asymptotically after this peak. Movement can reduce heterogeneity in exposure to mosquito biting. As a result, if biting intensity is high but uneven, infection prevalence increases with mobility despite reductions in R0. This increase in prevalence decreases with further increase in mobility because individuals do not spend enough time in high transmission patches, hence decreasing the number of new infections and overall prevalence. These results provide a better basis for understanding the interplay between spatial transmission heterogeneity and human mobility, and their combined influence on prevalence and R0. PMID:26030769

  18. A critical review of ultralow-volume aerosols of insecticide applied with vehicle-mounted generators for adult mosquito control.

    PubMed

    Mount, G A

    1998-09-01

    , temperature, and atmospheric stability and turbulence. 7) Maximum effective swaths are obtained with aerosols in the optimum VMD range during favorable meteorological conditions in open to moderately open terrain. The insecticide dosage must be increased in proportion to increased swath to maintain the same level of mosquito control. 8) Dispersal speed within a range of 2.5-20 mph is not a factor affecting efficacy if insecticide rate and optimum droplet size are maintained. 9) The results of caged mosquito assays are comparable with reductions in free-flying natural populations. 10) The field efficacies of mosquito adulticides applied as ULV ground aerosols are predictable from the results of laboratory wind-tunnel tests. 11) Results of field tests in open to moderately open terrain during favorable meteorological conditions indicated that ULV insecticidal aerosol application rates producing 90% or more control of Anopheles, Culex, and Psorophora spp. are below or approximately equal to maximum United States Environmental Protection Agency label rates. Against some Aedes spp., some pyrethroid insecticides must be synergized to produce 90% control at label rates. 12) Results of field tests in residential areas with moderate to dense vegetation and in citrus groves or other densely wooded areas showed that insecticide rates of ULV ground aerosols must be increased 2-3-fold to obtain 90% or more control of adult mosquitoes. However, the maximum rates on some insecticide labels would have to be increased to allow higher application rates. 13) Applications of ULV ground aerosols of insecticide in accordance with label directions following sunset do not pose a serious threat to humans, nontarget beneficial animals, or automotive paints. 14) Some aerosol generators operated at high RPM levels exceed the OSHA 8-h hearing hazard criteria of 90 dBA and may require hearing protectors for operators. PMID:9813829

  19. Wolbachia, Sodalis and trypanosome co-infections in natural populations of Glossina austeni and Glossina pallidipes

    PubMed Central

    2013-01-01

    Background Tsetse flies harbor at least three bacterial symbionts: Wigglesworthia glossinidia, Wolbachia pipientis and Sodalis glossinidius. Wigglesworthia and Sodalis reside in the gut in close association with trypanosomes and may influence establishment and development of midgut parasite infections. Wolbachia has been shown to induce reproductive effects in infected tsetse. This study was conducted to determine the prevalence of these endosymbionts in natural populations of G. austeni and G. pallidipes and to assess the degree of concurrent infections with trypanosomes. Methods Fly samples analyzed originated from Kenyan coastal forests (trapped in 2009–2011) and South African G. austeni collected in 2008. The age structure was estimated by standard methods. G. austeni (n=298) and G. pallidipes (n= 302) were analyzed for infection with Wolbachia and Sodalis using PCR. Trypanosome infection was determined either by microscopic examination of dissected organs or by PCR amplification. Results Overall we observed that G. pallidipes females had a longer lifespan (70 d) than G. austeni (54 d) in natural populations. Wolbachia infections were present in all G. austeni flies analysed, while in contrast, this symbiont was absent from G. pallidipes. The density of Wolbachia infections in the Kenyan G. austeni population was higher than that observed in South African flies. The infection prevalence of Sodalis ranged from 3.7% in G. austeni to about 16% in G. pallidipes. Microscopic examination of midguts revealed an overall trypanosome infection prevalence of 6% (n = 235) and 5% (n = 552), while evaluation with ITS1 primers indicated a prevalence of about 13% (n = 296) and 10% (n = 302) in G. austeni and G. pallidipes, respectively. The majority of infections (46%) were with T. congolense. Co-infection with all three organisms was observed at 1% and 3.3% in G. austeni and G. pallidipes, respectively. Eleven out of the thirteen (85%) co-infected flies

  20. Antiserum to Nitrogenase Generated from an Amplified DNA Fragment from Natural Populations of Trichodesmium spp

    PubMed Central

    Zehr, Jonathan P.; Limberger, Ronald J.; Ohki, Kaori; Fujita, Yoshihiko

    1990-01-01

    A fragment of the nifH gene was amplified from natural populations of Trichodesmium spp. and cloned into a maltose-binding protein (MBP) expression vector. The peptide product of the amplified 359-bp fragment of nifH was cleaved from the fusion protein, purified, and used to generate a specific antibody to the Fe protein of nitrogenase. The antiserum recognized the MBP-nitrogenase fusion protein and the cleaved nif peptide product but not MBP. The antibody cross-reacted with nitrogenase from natural populations of Trichodesmium spp. from the Caribbean Sea and with a cultured isolate from the Kuroshio waters (Trichodesmium sp. strain NIBB1067). The same nifH fragment was amplified, cloned, and sequenced from Trichodesmium sp. strain NIBB1067 and was found to be 98% identical at both the protein and DNA levels to nifH from the Caribbean populations. Three of the six nucleotide differences between the Trichodesmium sp. strain NIBB1067 and the Trichodesmium spp. nifH sequence had also been found in a second sequence from the natural populations, indicating either that there is more than one strain of Trichodesmium sp. in natural assemblages or that there are multiple copies of nifH in the genome. This DNA fragment, which is easily amplified with the polymerase chain reaction, may provide a good indicator of species relatedness without requiring extensive cloning or sequencing. Furthermore, the use of the polymerase chain reaction in combination with a MBP protein fusion vector provides a rapid method for production of highly specific sera, starting with a small amount of DNA. Images PMID:16348356

  1. Chemosensory Cues for Mosquito Oviposition Site Selection.

    PubMed

    Afify, Ali; Galizia, C Giovanni

    2015-03-01

    Gravid mosquitoes use chemosensory (olfactory, gustatory, or both) cues to select oviposition sites suitable for their offspring. In nature, these cues originate from plant infusions, microbes, mosquito immature stages, and predators. While attractants and stimulants are cues that could show the availability of food (plant infusions and microbes) and suitable conditions (the presence of conspecifics), repellents and deterrents show the risk of predation, infection with pathogens, or strong competition. Many studies have addressed the question of which substances can act as positive or negative cues in different mosquito species, with sometimes apparently contradicting results. These studies often differ in species, substance concentration, and other experimental details, making it difficult to compare the results. In this review, we compiled the available information for a wide range of species and substances, with particular attention to cues originating from larval food, immature stages, predators, and to synthetic compounds. We note that the effect of many substances differs between species, and that many substances have been tested in few species only, revealing that the information is scattered across species, substances, and experimental conditions. PMID:26336295

  2. Temporal abundance of Aedes aegypti in Manaus, Brazil, measured by two trap types for adult mosquitoes

    PubMed Central

    Degener, Carolin Marlen; de Ázara, Tatiana Mingote Ferreira; Roque, Rosemary Aparecida; Codeço, Cláudia Torres; Nobre, Aline Araújo; Ohly, Jörg Johannes; Geier, Martin; Eiras, Álvaro Eduardo

    2014-01-01

    A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus. PMID:25494470

  3. [Characteristics of Natural Selection in Populations of Nodule Bacteria (Rhizobium leguminosarum) Interacting With Different Host Plants].

    PubMed

    Andronov, E E; Igolkina, A A; Kimeklis, A K; Vorobyov, N I; Provorov, N A

    2015-10-01

    Using high throughput sequencing of the nodA gene, we studied the population dynamics of Rhizobium leguminosarum (bv. viciae, bv. trifolii) in rhizospheric and nodular subpopulations associated with the leguminous plants representing different cross-inoculation groups (Vicia sativa, Lathyrus pratensis of the vetch/vetchling/pea group and Trifolium hybridum of the clover group). The "rhizosphere-nodules" transitions result in either an increase or decrease in the frequencies of 10 of the 23 operational taxonomic units (OTUs) (which were identified with 95% similarity) depending on the symbiotic specificity and phylogenetic positions of OTUs. Statistical and bioinformatical analysis of the population structures suggest that the type of natural selection responsible for these changes may be diversifying at the whole-population level and frequency-dependent at the OTU-specific level, ensuring the divergent evolution of rhizobia interacting with different host species. PMID:27169225

  4. Evolutionary genetics in wild primates: combining genetic approaches with field studies of natural populations

    PubMed Central

    Tung, Jenny; Alberts, Susan C; Wray, Gregory A

    2010-01-01

    Ecological and evolutionary studies of wild primates hold important keys to understanding both the shared characteristics of primate biology and the genetic and phenotypic differences that make specific lineages, including our own, unique. Although complementary genetic research on nonhuman primates has long been of interest, recent technological and methodological advances now enable functional and population genetic studies in an unprecedented manner. In the past several years, novel genetic data sets have revealed new information about the demographic history of primate populations and the genetics of adaptively important traits. In combination with the rich history of behavioral, ecological, and physiological work on natural primate populations, genetic approaches promise to provide a compelling picture of primate evolution in the past and in the present day. PMID:20580115

  5. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila.

    PubMed

    Weeks, Andrew R; Turelli, Michael; Harcombe, William R; Reynolds, K Tracy; Hoffmann, Ary A

    2007-05-01

    Wolbachia are maternally inherited bacteria that commonly spread through host populations by causing cytoplasmic incompatibility, often expressed as reduced egg hatch when uninfected females mate with infected males. Infected females are frequently less fecund as a consequence of Wolbachia infection. However, theory predicts that because of maternal transmission, these "parasites" will tend to evolve towards a more mutualistic association with their hosts. Drosophila simulans in California provided the classic case of a Wolbachia infection spreading in nature. Cytoplasmic incompatibility allowed the infection to spread through individual populations within a few years and from southern to northern Calif