Sample records for naturally occurring isotopes

  1. URBAN STORMWATER TRACING WITH THE NATURALLY OCCURRING DEUTERIUM ISOTOPE

    EPA Science Inventory

    Measurements of the naturally-occurring deuterium isotope assist the tracing of water components during wet-weather flows in an urban watershed. A transect of installations in the vadose and saturated zones was completed in the vicinity of a small stream and storm sewer. High-r...

  2. The Role of Naturally Occurring Stable Isotopes in Mass Spectrometry, Part II: The Instrumentation

    PubMed Central

    Bluck, Les; Volmer, Dietrich A.

    2013-01-01

    In the second instalment of this tutorial, the authors explain the instrumentation for measuring naturally occurring stable isotopes, specifically the magnetic sector mass spectrometer. This type of instrument remains unrivalled in its performance for isotope ratio mass spectrometry (IRMS) and the reader is reminded of its operation and its technical advantages for isotope measurements. PMID:23772101

  3. Evaluated nuclear data files for the naturally-occurring isotopes of cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, J.; Smith, A.B.; Meadows, J.W.

    1993-06-01

    Comprehensive neutronic evaluated data files for the naturally-occurring isotopes of cadmium are deduced from experimental data and nuclear models, and presented in the ENDF/B-VI formats. Particular attention is given to those processes relevant to fuel-cycle and fission-product applications. Comparisons are made with prior evaluations of the cadmium isotopes, and discrepancies and consistencies cited. Some of the discrepancies are very large 9.9 as much as 100%), and the differences have the potential for a pronounced impact on applications usage. The present files are comprehensive, including may important processes that are not represented in the contemporary ENDF/B-VI system. Recommendations are made formore » future measurements where appropriate.« less

  4. Naturally Occurring Radioactive Materials (NORM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, P.

    1997-02-01

    This paper discusses the broad problems presented by Naturally Occuring Radioactive Materials (NORM). Technologically Enhanced naturally occuring radioactive material includes any radionuclides whose physical, chemical, radiological properties or radionuclide concentration have been altered from their natural state. With regard to NORM in particular, radioactive contamination is radioactive material in an undesired location. This is a concern in a range of industries: petroleum; uranium mining; phosphorus and phosphates; fertilizers; fossil fuels; forestry products; water treatment; metal mining and processing; geothermal energy. The author discusses in more detail the problem in the petroleum industry, including the isotopes of concern, the hazards theymore » present, the contamination which they cause, ways to dispose of contaminated materials, and regulatory issues. He points out there are three key programs to reduce legal exposure and problems due to these contaminants: waste minimization; NORM assesment (surveys); NORM compliance (training).« less

  5. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents

    USGS Publications Warehouse

    Coplen, T.B.; Hopple, J.A.; Böhlke, J.K.; Peiser, H.S.; Rieder, S.E.; Krouse, H.R.; Rosman, K.J.R.; Ding, T.; Vocke, R.D.; Revesz, K.M.; Lamberty, A.; Taylor, P.; De Bievre, P.

    2002-01-01

    laboratories comparable. The minimum and maximum concentrations of a selected isotope in naturally occurring terrestrial materials for selected chemical elements reviewed in this report are given below: Isotope Minimum mole fraction Maximum mole fraction -------------------------------------------------------------------------------- 2H 0 .000 0255 0 .000 1838 7Li 0 .9227 0 .9278 11B 0 .7961 0 .8107 13C 0 .009 629 0 .011 466 15N 0 .003 462 0 .004 210 18O 0 .001 875 0 .002 218 26Mg 0 .1099 0 .1103 30Si 0 .030 816 0 .031 023 34S 0 .0398 0 .0473 37Cl 0 .240 77 0 .243 56 44Ca 0 .020 82 0 .020 92 53Cr 0 .095 01 0 .095 53 56Fe 0 .917 42 0 .917 60 65Cu 0 .3066 0 .3102 205Tl 0 .704 72 0 .705 06 The numerical values above have uncertainties that depend upon the uncertainties of the determinations of the absolute isotope-abundance variations of reference materials of the elements. Because reference materials used for absolute isotope-abundance measurements have not been included in relative isotope abundance investigations of zinc, selenium, molybdenum, palladium, and tellurium, ranges in isotopic composition are not listed for these elements, although such ranges may be measurable with state-of-the-art mass spectrometry. This report is available at the url: http://pubs.water.usgs.gov/wri014222.

  6. Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Andrew; Bohlke, J. K.; Gu, Baohua

    Perchlorate (ClO4-) has been detected over an expansive area in groundwater and soils in the southwestern United States. Because of its wide distribution, much of the ClO4- is presumed to be from natural sources, primarily atmospheric deposition and accumulation. The objective of this study was to evaluate the range of the isotopic composition of natural ClO4- indigenous to the southwestern U.S. Stable isotope ratios of Cl and O were determined for ClO4- collected from numerous sources, including: groundwater from several locations in the southern high plains (SHP) of Texas and New Mexico and the middle Rio Grande Basin in Newmore » Mexico, vadose zone soil from the SHP, and surface NO3--rich caliches from four locations in Death Valley, CA. The data suggest that natural ClO4- in the southwestern U.S. has at least two distinctive isotope signatures that differ both from each other and from those previously reported for natural ClO4- from the Atacama Desert of Chile and all anthropogenic ClO4- sources tested to date. The ClO4- in four caliche samples collected in Death Valley has high 17O values (8.6 to 18.4 ), similar to those described for ClO4- from the Atacama, and suggesting atmospheric formation via reaction with ozone (O3). However, the Death Valley samples have 37Cl values (-3.1 to -0.8 ) and 18O values (+2.9 to +26.1 ), that are appreciably higher than Atacama perchlorate ( 37Cl; -14.3 to -10.2 and 18O; (-10.5 to -2.2 , respectively). In contrast, samples from 8 locations in West Texas and New Mexico were characterized by only a slight elevation in 17O (0.3 to 1.3 ), suggesting either that this material is not primarily generated with O3 as a reactant or that the ClO4- has been consistently altered post-deposition by one or more processes that caused isotopic exchange of O. The 37Cl values in the SHP perchlorate (+ 3.4 to + 5.1 ) were consistently higher than for the Atacama or Death Valley salts, while the 18O values (+ 0.5 to + 4.8 ) overlapped

  7. Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States

    USGS Publications Warehouse

    Jackson, W. Andrew; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Sturchio, Neil C.

    2010-01-01

    Perchlorate (ClO4−) has been detected widely in groundwater and soils of the southwestern United States. Much of this ClO4− appears to be natural, and it may have accumulated largely through wet and dry atmospheric deposition. This study evaluates the isotopic composition of natural ClO4− indigenous to the southwestern U.S. Stable isotope ratios were measured in ClO4− (δ18O, Δ17O, δ37Cl) and associated NO3− (δ18O, Δ17O, δ15N) in groundwater from the southern High Plains (SHP) of Texas and New Mexico and the Middle Rio Grande Basin (MRGB) in New Mexico, from unsaturated subsoil in the SHP, and from NO3−-rich surface caliche deposits near Death Valley, California. The data indicate natural ClO4− in the southwestern U.S. has a wide range of isotopic compositions that are distinct from those reported previously for natural ClO4− from the Atacama Desert of Chile as well as all known synthetic ClO4−. ClO4− in Death Valley caliche has a range of high Δ17O values (+8.6 to +18.4 ‰), overlapping and extending the Atacama range, indicating at least partial atmospheric formation via reaction with ozone (O3). However, the Death Valley δ37Cl values (−3.1 to −0.8 ‰) and δ18O values (+2.9 to +26.1‰) are higher than those of Atacama ClO4−. In contrast, ClO4− from western Texas and New Mexico has much lower Δ17O (+0.3 to +1.3‰), with relatively high δ37Cl (+3.4 to +5.1 ‰) and δ18O (+0.5 to +4.8 ‰), indicating either that this material was not primarily generated with O3 as a reactant or that the ClO4− was affected by postdepositional O isotope exchange. High Δ17O values in ClO4− (Atacama and Death Valley) are associated with high Δ17O values in NO3−, indicating that both compounds preserve characteristics of O3-related atmospheric production in hyper-arid settings, whereas both compounds have low Δ17O values in less arid settings. Although Δ17O variations in terrestrial NO3− can be attributed to mixing of atmospheric

  8. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  9. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. © 2015 Wiley Periodicals, Inc.

  10. Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes

    NASA Astrophysics Data System (ADS)

    Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad

    2017-04-01

    confirm a small fraction of younger (< 5 years) water. Low concentrations of sulfur-35 suggest very small contributions of same-year snowmelt or precipitation. Results from two contrasting years (severe drought in 2015 and near-normal conditions in 2016) illustrate travel time responses to hydrological conditions and further characterize the catchment properties. Combined analysis of three cosmogenic tracers provides a unique insight into the functioning of the catchment and constrains the volume of subsurface water storage. Short-lived naturally occurring radioactive isotopes sulfur-35 and sodium-22 are especially useful for vulnerability assessment of springs and karst systems where a contribution of very young water is expected. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-717377

  11. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  12. Oxygen and nitrogen isotope effects duing nitrification and denitrification occuring in Midwesern soils

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Wilkens, B.; Sanchez, A. V.; Yount, J.

    2017-12-01

    The processes of nitrification and denitrification are key steps in the biogeochemical cycling of N and are a main control on ecosystem productivity. These processes are ephemeral and often difficult to assess across wide spatial and temporal scales. Natural abundance stable isotopes are a way of potentially assessing these two processes across multiple scales. We have conducted incubation experiments to assess the N and O isotope effects occurring during denitrification in soils typical of the Midwestern United States. Nitrification was examined by incubating soils amended with ammonium (with a known δ15N) mixed with H2O and O2 that had different δ18O values and then measured the δ15N and δ18O of the product nitrate. The fraction of nitrate oxygen arising from H2O and O2 was determined along with the N and O kinetic isotope effect (KIE). For denitrification, nitrate with a known δ15N, δ17O, and δ18O, was incubated in anaerobic soils from 12-48 hours. The residual nitrate was analyzed for isotope change and the KIE for O and N as well as exchange with H2O was determined. These data can be useful for interpreting nitrate isotopes in agricultural fields as a way off assessing nitrification and denitrification is agricultural ecosystems such as the IML-CZO.

  13. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  14. The geochemistry of naturally occurring methane and saline groundwater in an area of unconventional shale gas development

    NASA Astrophysics Data System (ADS)

    Harkness, Jennifer S.; Darrah, Thomas H.; Warner, Nathaniel R.; Whyte, Colin J.; Moore, Myles T.; Millot, Romain; Kloppmann, Wolfram; Jackson, Robert B.; Vengosh, Avner

    2017-07-01

    Since naturally occurring methane and saline groundwater are nearly ubiquitous in many sedimentary basins, delineating the effects of anthropogenic contamination sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study investigates the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing and in relation to various geospatial parameters in an area of shale gas development in northwestern West Virginia, United States. To our knowledge, we are the first to report a broadly integrated study of various geochemical techniques designed to distinguish natural from anthropogenic sources of natural gas and salt contaminants both before and after drilling. These measurements include inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (helium, neon, argon) in 105 drinking-water wells, with repeat testing in 33 of the wells (total samples = 145). In a subset of wells (n = 20), we investigated the variations in water quality before and after the installation of nearby (<1 km) shale-gas wells. Methane occurred above 1 ccSTP/L in 37% of the groundwater samples and in 79% of the samples with elevated salinity (chloride > 50 mg/L). The integrated geochemical data indicate that the saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. These observations were consistent with the lack of changes in water quality observed in drinking-water wells following the installation of nearby shale-gas wells. In contrast to groundwater

  15. Unravelling a 'miner's myth' that environmental contamination in mining towns is naturally occurring.

    PubMed

    Kristensen, Louise Jane; Taylor, Mark Patrick

    2016-08-01

    Australia has a long history of metal mining and smelting. Extraction and processing have resulted in elevated levels of toxic metals surrounding mining operations, which have adverse health effects, particularly to children. Resource companies, government agencies and employees often construct 'myths' to down play potential exposure risks and responsibility arising from operating emissions. Typical statements include: contaminants are naturally occurring, the wind blows emissions away from residential areas, contaminants are not bioavailable, or the problem is a legacy issue and not related to current operations. Evidence from mining and smelting towns shows that such 'myths' are exactly that. In mining towns, the default and primary defence against contamination is that elevated metals in adjacent urban environments are from the erosion and weathering of the ore bodies over millennia-hence 'naturally occurring'. Not only is this a difficult argument to unravel from an evidence-based perspective, but also it causes confusion and delays remediation work, hindering efforts to reduce harmful exposures to children. An example of this situation is from Broken Hill, New South Wales, home to one of the world's largest lead-zinc-silver ore body, which has been mined continuously for over 130 years. Environmental metal concentration and lead isotopic data from soil samples collected from across Broken Hill are used to establish the nature and timing of lead contamination. We use multiple lines of evidence to unravel a 'miner's myth' by evaluating current soil metal concentrations and lead isotopic compositions, geological data, historical environmental assessments and old photographic evidence to assess the impacts from early smelting along with mining to the surface soils in the city.

  16. Baseline Geochemistry of Natural Occurring Methane and Saline Groundwater in an Area of Unconventional Shale Gas Development Through Time

    NASA Astrophysics Data System (ADS)

    Harkness, J.; Darrah, T.; Warner, N. R.; Whyte, C. J.; Moore, M. T.; Millot, R.; Kloppmann, W.; Jackson, R. B.; Vengosh, A.

    2017-12-01

    Naturally occurring methane is nearly ubiquitous in most sedimentary basins and delineating the effects of anthropogenic contamination sources from geogenic sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study employs a broadly integrated study of various geochemical techniques to investigate the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing.This approache combines inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (He, Ne, Ar) to apportion natural and anthropogenic sources of natural gas and salt contaminants both before and after drilling. Methane above 1 ccSTP/L in groundwater samples awas strongly associated with elevated salinity (chloride >50 mg/L).The geochemical and isotopic analysis indicate saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. The chemistry and gas compostion of both saline and fresh groundwater wells did not change following the installation of nearby shale-gas wells.The results of this study emphasize the value of baseline characterization of water quality in areas of fossil fuel exploration. Overall this study presents a comprehensive geochemical framework that can be used as a template for assessing the sources of elevated hydrocarbons and salts to water resources in areas potentially impacted by oil and gas development.

  17. Naturally occurring hazardous materials.

    DOT National Transportation Integrated Search

    2011-12-01

    The study of naturally occurring hazardous materials (NOHMs) was conceived as a proactive response to assure that the Oregon : Department of Transportation (ODOT) maintenance and construction activities take the presence of NOHMs into account. The la...

  18. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  19. BIODEGRADATION - MONITORED NATURAL ATTENUATION (MNA) FOR OXYGENATES: HOW IT EVOLVED, WHY IT OCCURS AND STABLE ISOTOPES

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  20. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate

    PubMed Central

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO−3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO−3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO−3-use mechanisms. The concentration and natural isotopes of tissue NO−3 can offer insights into the plant NO−3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO−3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO−3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO−3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO−3 in plants, and discuss the implications of NO−3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO−3 and plant ecophysiological functions in interspecific and intra-plant NO−3 variations. We introduce N and O isotope systematics of NO−3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ18O and Δ17O); and isotope mass-balance calculations to constrain sources and reduction of NO−3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ18O-NO−3 variation, and summarize the uncertainties in using tissue NO−3 parameters to interpret plant NO−3 utilization

  1. Nitrate dynamics in natural plants: insights based on the concentration and natural isotope abundances of tissue nitrate.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Liu, Cong-Qiang

    2014-01-01

    The dynamics of nitrate (NO(-) 3), a major nitrogen (N) source for natural plants, has been studied mostly through experimental N addition, enzymatic assay, isotope labeling, and genetic expression. However, artificial N supply may not reasonably reflect the N strategies in natural plants because NO(-) 3 uptake and reduction may vary with external N availability. Due to abrupt application and short operation time, field N addition, and isotopic labeling hinder the elucidation of in situ NO(-) 3-use mechanisms. The concentration and natural isotopes of tissue NO(-) 3 can offer insights into the plant NO(-) 3 sources and dynamics in a natural context. Furthermore, they facilitate the exploration of plant NO(-) 3 utilization and its interaction with N pollution and ecosystem N cycles without disturbing the N pools. The present study was conducted to review the application of the denitrifier method for concentration and isotope analyses of NO(-) 3 in plants. Moreover, this study highlights the utility and advantages of these parameters in interpreting NO(-) 3 sources and dynamics in natural plants. We summarize the major sources and reduction processes of NO(-) 3 in plants, and discuss the implications of NO(-) 3 concentration in plant tissues based on existing data. Particular emphasis was laid on the regulation of soil NO(-) 3 and plant ecophysiological functions in interspecific and intra-plant NO(-) 3 variations. We introduce N and O isotope systematics of NO(-) 3 in plants and discuss the principles and feasibilities of using isotopic enrichment and fractionation factors; the correlation between concentration and isotopes (N and O isotopes: δ(18)O and Δ(17)O); and isotope mass-balance calculations to constrain sources and reduction of NO(-) 3 in possible scenarios for natural plants are deliberated. Finally, we offer a preliminary framework of intraplant δ(18)O-NO(-) 3 variation, and summarize the uncertainties in using tissue NO(-) 3 parameters to interpret

  2. Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling

    NASA Astrophysics Data System (ADS)

    Gallagher, Kerry; Elliott, Tim

    2009-02-01

    High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.

  3. Natural Ca Isotope Composition of Urine as a Rapid Measure of Bone Mineral Balance

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Gordon, G. W.; Morgan, J.; Romaniello, S. J.; Smith, S. M.; Anbar, A. D.

    2011-12-01

    Naturally occurring stable Ca isotope variations in urine are emerging as a powerful tool to detect changes in bone mineral balance. Bone formation depletes soft tissue of light Ca isotopes while bone resorption releases isotopically light Ca into soft tissue. Previously published work found that variations in Ca isotope composition could be detected at 4 weeks of bed rest in a 90-day bed rest study (data collected at 4, 8 and 12 weeks). A new 30-day bed rest study involved 12 patients on a controlled diet, monitored for 7 days prior to bed rest and 7 days post bed rest. Samples of urine, blood and food were collected throughout the study. Four times daily blood samples and per void urine samples were collected to monitor diurnal or high frequency variations. An improved chemical purification protocol, followed by measurement using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) allowed accurate and precise determinations of mass-dependent Ca isotope variations in these biological samples to better than ±0.2% (δ44/42Ca) on <25 μg of Ca. Results from this new study show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density by X-ray measurements occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker. Bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged over this period. Ca isotopes can in principle be used to quantify net changes in bone mass. Using a mass-balance model, our results indicate an average loss of 0.62 ± 0.16 % in bone mass over the course of this 30-day study. This is consistent with the rate of bone loss in longer-term studies as seen by X-ray measurements. This Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  4. Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

    PubMed

    Tea, Illa; Tcherkez, Guillaume

    2017-01-01

    The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.

  5. ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS

    EPA Science Inventory

    The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...

  6. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  7. Stable isotope fractionation of selenium by natural microbial consortia

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Herbel, M.J.; Bullen, T.D.

    2003-01-01

    The mobility and bioavailability of Se depend on its redox state, and reduction of Se oxyanions to less mobile, reduced species controls transport of this potentially toxic element in the environment. Stable isotope fractionation of Se is currently being developed as an indicator of Se immobilization through reduction. In this study, Se isotope fractionation resulting from reduction of Se(VI) and Se(IV) oxyanions by natural microbial consortia was measured in sediment slurry experiments under nearly natural conditions, with no substrate added. Experiments were conducted with a wide range of initial Se concentrations and with sediment and water from three locations with contrasting environmental settings. The products of Se(VI) and Se(IV) reduction were enriched in the lighter isotopes relative to the reactants. Shifts of -2.60/00 to -3.10/00 and -5.50/00 to -5.70/00, respectively, were observed in the 80Se/76Se ratio. These isotopic fractionations did not depend significantly on initial Se concentrations, which were varied from 22 μg/l to 8 mg/l, or on geochemical differences among the sediments. These results provide estimates of Se isotope fractionation in organic-rich wetland environments but may not be appropriate for substrate-poor aquifers and marine sediments.

  8. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  9. Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco).

    PubMed

    Galindo, C; Mougin, L; Fakhi, S; Nourreddine, A; Lamghari, A; Hannache, H

    2007-01-01

    Attention has been focused recently on the use of Moroccan black oil shale as the raw material for production of a new type of adsorbent and its application to U and Th removal from contaminated wastewaters. The purpose of the present work is to provide a better understanding of the composition and structure of this shale and to determine its natural content in uranium and thorium. A black shale collected from Timahdit (Morocco) was analyzed by powder X-ray diffraction and SEM techniques. It was found that calcite, dolomite, quartz and clays constitute the main composition of the inorganic matrix. Pyrite crystals are also present. A selective leaching procedure, followed by radiochemical purification and alpha-counting, was performed to assess the distribution of naturally occurring radionuclides. Leaching results indicate that 238U, 235U, 234U, 232Th, 230Th and 228Th have multiple modes of occurrence in the shale. U is interpreted to have been concentrated under anaerobic conditions. An integrated isotopic approach showed the preferential mobilization of uranium carried by humic acids to carbonate and apatite phases. Th is partitioned between silicate minerals and pyrite.

  10. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone

    NASA Astrophysics Data System (ADS)

    Bishop, Philip K.; Lloyd, John W.

    1990-12-01

    Over 150 groundwater samples from the Lincolnshire Limestone have been analysed for pH, major ions and δ 13C ratios. Where possible, field E h and iodide concentrations were measured and methane concentrations were determined for 12 samples. Stable isotope ratios were determined for soil and rock carbonate samples. A system of zonation allows the division of hydrogeochemical processes occurring in the aquifer. The use of hydrochemical and isotope data in modelling exercises enables the re-evaluation and possible enhancement of the understanding of hydrogeochemical processes. The carbonate chemistry of outcrop groundwaters is explained by calcite saturation being achieved under open-system conditions in the soil zone. δ 13C ratios in the range - 15.99 to - 10.57‰ may be generated from a stoichiometric reaction with possible additional partial and/or simultaneous exchange with soil CO 2 or carbonate. The isotopic composition of soil carbonate shows the effects of precipitation from soil waters. The incongruent dissolution of primary depositional limestone carbonate results in increasing magnesium and strontium concentrations and increasing δ 13C ratios for the groundwaters with flow down the hydraulic gradient. As a result of incongruent dissolution, secondary calcite may be precipitated onto fissure surfaces. Significant nitrate and sulphate reduction in non-saline groundwaters is not supported by the results of hydrochemical and isotope modelling exercises. However, sulphate reduction and methane fermentation may be affecting the isotopic and chemical compositions of saline groundwaters. Sodium-calcium ion exchange leads to limited calcite dissolution deep in the aquifer, but the evolution of these groundwaters is confused by the uncertain effects of oxidation of organic carbon and mixing with a saline end-member solution.

  11. Mass fractionation processes of transition metal isotopes

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  12. Mass transfer and carbon isotope evolution in natural water systems

    USGS Publications Warehouse

    Wigley, T.M.L.; Plummer, Niel; Pearson, F.J.

    1978-01-01

    This paper presents a theoretical treatment of the evolution of the carbon isotopes C13 and C14 in natural waters and in precipitates which derive from such waters. The effects of an arbitrary number of sources (such as dissolution of carbonate minerals and oxidation of organic material) and sinks (such as mineral precipitation, CO2 degassing and production of methane), and of equilibrium fractionation between solid, gas and aqueous phases are considered. The results are expressed as equations relating changes in isotopic composition to changes in conventional carbonate chemistry. One implication of the equations is that the isotopic composition of an aqueous phase may approach a limiting value whenever there are simultaneous inputs and outputs of carbonate. In order to unambiguously interpret isotopic data from carbonate precipitates and identify reactants and products in reacting natural waters, it is essential that isotopic changes are determined chiefly by reactant and product stoichiometry, independent of reaction path. We demonstrate that this is so by means of quantitative examples. The evolution equations are applied to: 1. (1) carbon-14 dating of groundwaters; 2. (2) interpretation of the isotopic composition of carbonate precipitates, carbonate cements and diagenetically altered carbonates; and 3. (3) the identification of chemical reaction stoichiometry. These applications are illustrated by examples which show the variation of ??C13 in solutions and in precipitates formed under a variety of conditions involving incongruent dissolution, CO2 degassing, methane production and mineral precipitation. ?? 1978.

  13. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  14. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  15. APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS

    EPA Science Inventory

    Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...

  16. Synthesis of Naturally Occurring Tropones and Tropolones

    PubMed Central

    Liu, Na; Song, Wangze; Schienebeck, Casi M.; Zhang, Min; Tang, Weiping

    2014-01-01

    Tropones and tropolones are an important class of seven-membered non-benzenoid aromatic compounds. They can be prepared directly by oxidation of seven-membered rings. They can also be derived from cyclization or cycloaddition of appropriate precursors followed by elimination or rearrangement. This review discusses the types of naturally occurring tropones and tropolones and outlines important methods developed for the synthesis of tropone and tropolone natural products. PMID:25400298

  17. Naturally Occurring Radon and 120(h) transfers

    EPA Pesticide Factsheets

    This page contains a discussion regarding how the presence of naturally occurring radon on closing military bases affects the United States' ability to transfer parcels under §120(h) (3) and §120(h) (4).

  18. The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.

    2004-12-01

    Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding

  19. Characterizing sources and natural attenuation of nitrate contamination in the Baix Ter aquifer system (NE Spain) using a multi-isotope approach.

    PubMed

    Puig, Roger; Soler, Albert; Widory, David; Mas-Pla, Josep; Domènech, Cristina; Otero, Neus

    2017-02-15

    Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterize the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain. δ 2 H and δ 18 O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO 3 - is not homogeneously distributed and presents a large range of concentrations, from no NO 3 - to up to 480mgL -1 . δ 15 N and δ 18 O of dissolved NO 3 - identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes (δ 11 B) and δ 34 S and δ 18 O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones. δ 34 S and δ 18 O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of δ 13 C HCO3 that was buffered by the entanglement of other processes and sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Stable isotopes of nitrate reflect natural attenuation of propellant residues on military training ranges.

    PubMed

    Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Smirnoff, Anna; Ampleman, Guy; Thiboutot, Sonia

    2013-08-06

    Nitroglycerin (NG) and nitrocellulose (NC) are constituents of double-base propellants used notably for firing antitank ammunitions. Nitroglycerin was detected in soil and water samples from the unsaturated zone (pore water) at an active antitank firing position, where the presence of high nitrate (NO3(-)) concentrations suggests that natural attenuation of NG is occurring. However, concentrations alone cannot assess if NG is the source of NO3(-), nor can they determine which degradation processes are involved. To address this issue, isotopic ratios (δ(15)N, δ(18)O) were measured for NO3(-) produced from NG and NC through various controlled degradation processes and compared with ratios measured in field pore water samples. Results indicate that propellant combustion and degradation mediated by soil organic carbon produced the observed NO3(-) in pore water at this site. Moreover, isotopic results are presented for NO3(-) produced through photolysis of propellant constituents, which could be a dominant process at other sites. The isotopic data presented here constitute novel information regarding a source of NO3(-) that was practically not documented before and a basis to study the contamination by energetic materials in different contexts.

  1. Naturally Occurring Food Toxins

    PubMed Central

    Dolan, Laurie C.; Matulka, Ray A.; Burdock, George A.

    2010-01-01

    Although many foods contain toxins as a naturally-occurring constituent or, are formed as the result of handling or processing, the incidence of adverse reactions to food is relatively low. The low incidence of adverse effects is the result of some pragmatic solutions by the US Food and Drug Administration (FDA) and other regulatory agencies through the creative use of specifications, action levels, tolerances, warning labels and prohibitions. Manufacturers have also played a role by setting limits on certain substances and developing mitigation procedures for process-induced toxins. Regardless of measures taken by regulators and food producers to protect consumers from natural food toxins, consumption of small levels of these materials is unavoidable. Although the risk for toxicity due to consumption of food toxins is fairly low, there is always the possibility of toxicity due to contamination, overconsumption, allergy or an unpredictable idiosyncratic response. The purpose of this review is to provide a toxicological and regulatory overview of some of the toxins present in some commonly consumed foods, and where possible, discuss the steps that have been taken to reduce consumer exposure, many of which are possible because of the unique process of food regulation in the United States. PMID:22069686

  2. Naturally occurring tumours in the basal metazoan Hydra.

    PubMed

    Domazet-Lošo, Tomislav; Klimovich, Alexander; Anokhin, Boris; Anton-Erxleben, Friederike; Hamm, Mailin J; Lange, Christina; Bosch, Thomas C G

    2014-06-24

    The molecular nature of tumours is well studied in vertebrates, although their evolutionary origin remains unknown. In particular, there is no evidence for naturally occurring tumours in pre-bilaterian animals, such as sponges and cnidarians. This is somewhat surprising given that recent computational studies have predicted that most metazoans might be prone to develop tumours. Here we provide first evidence for naturally occurring tumours in two species of Hydra. Histological, cellular and molecular data reveal that these tumours are transplantable and might originate by differentiation arrest of female gametes. Growth of tumour cells is independent from the cellular environment. Tumour-bearing polyps have significantly reduced fitness. In addition, Hydra tumours show a greatly altered transcriptome that mimics expression shifts in vertebrate cancers. Therefore, this study shows that spontaneous tumours have deep evolutionary roots and that early branching animals may be informative in revealing the fundamental mechanisms of tumorigenesis.

  3. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  4. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  5. The characteristics of gas hydrates occurring in natural environment

    NASA Astrophysics Data System (ADS)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  6. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  7. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies.

    PubMed

    Fischer, Anko; Manefield, Mike; Bombach, Petra

    2016-10-01

    Stable isotope tools are increasingly applied for in-depth evaluation of biodegradation of organic pollutants at contaminated field sites. They can be divided into three methods i) determination of changes in natural abundance of stable isotopes using compound-specific stable isotope analysis (CSIA), ii) detection of incorporation of stable-isotope label from a stable-isotope labelled target compound into degradation and/or mineralisation products and iii) determination of stable-isotope label incorporation into biomarkers using stable isotope probing (SIP). Stable isotope tools have been applied as key monitoring tools for multiple-line-of-evidence-approaches (MLEA) for sensitive evaluation of pollutant biodegradation. This review highlights the application of CSIA, SIP and MLEA including stable isotope tools for assessing natural and stimulated biodegradation of organic pollutants in field studies dealing with soil and groundwater contaminations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  9. Naturally occurring 32Si and low-background silicon dark matter detectors

    DOE PAGES

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...

    2018-02-10

    Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  10. Naturally occurring 32Si and low-background silicon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.

    2018-05-01

    The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.

  11. Naturally occurring 32 Si and low-background silicon dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary

    The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less

  12. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  13. Locally Grown, Natural Ingredients? The Isotope Ratio Can Reveal a Lot!

    PubMed

    Rossier, Joël S; Maury, Valérie; Pfammatter, Elmar

    2016-01-01

    This communication gives an overview of selected isotope analyses applied to food authenticity assessment. Different isotope ratio detection technologies such as isotope ratio mass spectrometry (IRMS) and cavity ring down spectroscopy (CRDS) are briefly described. It will be explained how δ(18)O of water contained in fruits and vegetables can be used to assess their country of production. It will be explained why asparagus grown in Valais, in the centre of the Alps carries much less heavy water than asparagus grown closer to the sea coast. On the other hand, the use of δ(13)C can reveal whether a product is natural or adulterated. Applications including honey or sparkling wine adulteration detection will be briefly presented.

  14. Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust)

    USGS Publications Warehouse

    Johnson, T.M.; Bullen, T.D.

    2003-01-01

    We have determined the extent of Se isotope fractionation induced by reduction of selenate by sulfate interlayered green rust (GRSO4), a Fe(II)-Fe(III) hydroxide-sulfate. This compound is known to reduce selenate to Se(0), and it is the only naturally relevant abiotic selenate reduction pathway documented to date. Se reduction reactions, when they occur in nature, greatly reduce Se mobility and bioavailability. Se stable isotope analysis shows promise as an indicator of Se reduction, and Se isotope fractionation by various Se reactions must be known in order to refine this tool. We measured the increase in the 80Se/76Se ratio of dissolved selenate as lighter isotopes were preferentially consumed during reduction by GRSO4. Six different experiments that used GRSO4 made by two methods, with varying solution compositions and pH, yielded identical isotopic fractionations. Regression of all the data yielded an instantaneous isotope fractionation of 7.36 ?? 0.24???. Selenate reduction by GRSO4 induces much greater isotopic fractionation than does bacterial selenate reduction. If selenate reduction by GRSO4 occurs in nature, it may be identifiable on the basis of its relatively large isotopic fractionation. ?? 2003 Elsevier Science Ltd.

  15. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  16. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  17. The relation between isotopic composition of argon and carbon in natural gases

    NASA Technical Reports Server (NTRS)

    Gavrilov, Y. Y.; Zhurov, Y. A.; Teplinskiy, G. I.

    1977-01-01

    The methods and results of determination of the argon and carbon isotope compositions of hydrocarbon gases of Mezozoic complexes of Western Siberia are presented. Based on the Ar-36, Ar-40, C-12, C-13 content of the various deposits and on the presumed mechanisms of entry of these isotopes into the deposits, it is concluded that formation of natural gas in some deposits included vertical migration from a lower complex.

  18. Accidental Predissociation: A Special Case of Photo-Induced Isotope Fractionation Effect and Possible Occurrence in Nature

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Thiemens, M. H.

    2009-12-01

    Photo-Induced Isotope Fractionation Effects (PHIFE) are known to produce isotopic frac-tionation in some photo-dissociating molecules (1-2). The PHIFE formalism is based on the Born-Oppenheimer approximation and the Reflection Principle. The isotopic fractionation arises principally from the spectral shift induced by the small difference in zero point energy between isotopologues and the contraction of the wave function due to isotopic substitution, consequently, the associated isotopic fractionations depends on the reduced mass of the isotopically substi-tuted species. The PHIFE formalism is only applicable to the molecules which undergo direct photo-dissociation that possess continuous absorption spectra. Simple molecules (N2, O2, CO) however do not follow a direct dissociation pathway and dissociate through an indirect process termed predissociation, which occurs when the molecule is excited to a quasi-bound state energetically above the dissociation continuum. The PHIFE formalism is not applicable when the absorption spectra are discrete. The assumption that the lightest isotopologues are preferentially predissociated is only valid for restricted predissociation cases. There is a special case of predissociation known as ‘accidental predissociation’ (3), which takes place through an intermediate bound state in two steps (i) leakage to an intermediate bound state (coupled through spin orbit interaction) and, (ii) predissociation to a third quasi-bound state from the intermediate state. Line broadening at an accidental predissociation is a function of the magnitude of coupling matrix elements and the linewidths are strongly influenced by isotopic substitution (4). An anomalous isotopic effect in accidental predissociation was spectroscopically observed in CO (5), N2 (4) and BeH (6). We measured the isotopic fractionation for the first time in two accidental predissociating states of CO through VUV photodissociation using the 9.0.2 beamline at ALS (7-8). In

  19. The Frequency, Nature, and Effects of Naturally Occurring Appearance-Focused Social Comparisons

    ERIC Educational Resources Information Center

    Leahey, Tricia M.; Crowther, Janis H.; Mickelson, Kristin D.

    2007-01-01

    This research examined the effects of naturally occurring appearance-focused social comparisons on women's affect, body satisfaction, and weight-related cognitions. During their daily activities, women reporting body dissatisfaction (n = 53) and women reporting body satisfaction (n = 34) recorded their reactions to comparison information.…

  20. Naturally occurring fatty acids: Source, chemistry, and uses

    USDA-ARS?s Scientific Manuscript database

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  1. Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland

    USGS Publications Warehouse

    Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1998-01-01

    Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic

  2. Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status.

    PubMed

    Petzke, Klaus J; Fuller, Benjamin T; Metges, Cornelia C

    2010-09-01

    We review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Although the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. Stable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.

  3. EasyDelta: A spreadsheet for kinetic modeling of the stable carbon isotope composition of natural gases

    NASA Astrophysics Data System (ADS)

    Zou, Yan-Rong; Wang, Lianyuan; Shuai, Yanhua; Peng, Ping'an

    2005-08-01

    A new kinetic model and an Excel © spreadsheet program for modeling the stable carbon isotope composition of natural gases is provided in this paper. The model and spreadsheet could be used to describe and predict the variances in stable carbon isotope of natural gases under both experimental and geological conditions with heating temperature or geological time. It is a user-friendly convenient tool for the modeling of isotope variation with time under experimental and geological conditions. The spreadsheet, based on experimental data, requires the input of the kinetic parameters of gaseous hydrocarbons generation. Some assumptions are made in this model: the conventional (non-isotope species) kinetic parameters represent the light isotope species; the initial isotopic value is the same for all parallel chemical reaction of gaseous hydrocarbons generation for simplicity, the re-exponential factor ratio, 13A/ 12A, is a constant, and both heavy and light isotope species have similar activation energy distribution. These assumptions are common in modeling of isotope ratios. The spreadsheet is used for searching the best kinetic parameters of the heavy isotope species to reach the minimum errors compared with experimental data, and then extrapolating isotopic changes to the thermal history of sedimentary basins. A short calculation example on the variation in δ13C values of methane is provided in this paper to show application to geological conditions.

  4. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  5. Triple Oxygen and Clumped Isotopes in Synthetic and Natural Carbonates: Implications for Paleoclimate and Paleohydrology Studies

    NASA Astrophysics Data System (ADS)

    Laskar, A. H.; Rangarajan, R.; Liang, M. C.

    2016-12-01

    Conventional oxygen isotope (δ18O) has widely been used for paleoclimate studies. However, multiple influencing factors such as temperature, precipitation and kinetic effects during carbonate precipitation complicate the interpretation of δ18O data sometimes. Triple oxygen isotope (Δ17O) in carbonates could be sensitive to kinetic effect occur during its precipitation in water. Carbonates may also record the Δ17O signature of the parent waters, providing a basis in the natural carbonates for identifying kinetic processes such as rapid degassing at lower relative humidity inside a cave during speleothem deposition. Clumped isotopes (Δ47) in carbonates give the formation temperatures of the carbonates if precipitated under isotopic equilibrium. The first goal of the study is to explore the applicability of Δ17O for paleohydrolocial studies. The second is to reconstruct paleotemperature with suitable natural carbonates using Δ47values. This is a rare paleoclimate study utilizing two sophisticated new tools. CO2 produced from carbonates by acid digestion was used for both Δ47 and Δ17O analysis. Purified CO2 samples were directly introduced into the Mass spectrometer (MAT 253) for clumped isotope analysis [1] and CO2-O2 exchange method in presence of platinum for Δ17O analysis [2,3]. We measured Δ47 and Δ17O values in synthetic carbonates precipitated at different temperatures (10-90 oC) and Δ17O values in the water from which the carbonate precipitated. We observed consistent Δ47 values in the carbonates while Δ17O were found to vary. Probably a proper slope (between δ18O and δ17O) selection for carbonates would give consistent results. We also measured Δ47 and Δ17O in modern and well dated speleothems from Chinese and Indian caves to study the paleohydrology and paleotemperature. Δ47 and Δ17O were also measured in modern natural carbonate depositions such as corals, foraminifer and marbles to explore their potentials for paleoclimate studies

  6. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  7. A naturally occurring, noncanonical GTP aptamer made of simple tandem repeats

    PubMed Central

    Curtis, Edward A; Liu, David R

    2014-01-01

    Recently, we used in vitro selection to identify a new class of naturally occurring GTP aptamer called the G motif. Here we report the discovery and characterization of a second class of naturally occurring GTP aptamer, the “CA motif.” The primary sequence of this aptamer is unusual in that it consists entirely of tandem repeats of CA-rich motifs as short as three nucleotides. Several active variants of the CA motif aptamer lack the ability to form consecutive Watson-Crick base pairs in any register, while others consist of repeats containing only cytidine and adenosine residues, indicating that noncanonical interactions play important roles in its structure. The circular dichroism spectrum of the CA motif aptamer is distinct from that of A-form RNA and other major classes of nucleic acid structures. Bioinformatic searches indicate that the CA motif is absent from most archaeal and bacterial genomes, but occurs in at least 70 percent of approximately 400 eukaryotic genomes examined. These searches also uncovered several phylogenetically conserved examples of the CA motif in rodent (mouse and rat) genomes. Together, these results reveal the existence of a second class of naturally occurring GTP aptamer whose sequence requirements, like that of the G motif, are not consistent with those of a canonical secondary structure. They also indicate a new and unexpected potential biochemical activity of certain naturally occurring tandem repeats. PMID:24824832

  8. Stable isotope compositions of gases and vegetation near naturally burning coal

    USGS Publications Warehouse

    Gleason, J.D.; Kyser, T.K.

    1984-01-01

    Our measurements of stable isotope compositions of CO2 issuing from vents produced by naturally burning coal indicate that the coal is oxidized through a kinetic process in which groundwater is the oxidizing agent. The CO2 produced by the oxidation of the coal is extremely depleted in 13C relative to normal atmospheric CO2. The change in the ??13C value of atmospheric CO2 near the vents resulting from the burning coal was not recorded in tree rings from red cedars, but the ??13C values of some C3 and C4 type plants collected from within the area were greatly affected. Our results indicate that the ??13C values of some species of plants may be sensitive indicators of changes in the carbon isotopic composition of atmospheric CO2. ?? 1984 Nature Publishing Group.

  9. Natural calcium isotopic composition of urine as a marker of bone mineral balance.

    PubMed

    Skulan, Joseph; Bullen, Thomas; Anbar, Ariel D; Puzas, J Edward; Shackelford, Linda; LeBlanc, Adrian; Smith, Scott M

    2007-06-01

    We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Calcium isotopic compositions are expressed as delta(44)Ca, or the difference in parts per thousand between the (44)Ca/(40)Ca of a sample and the (44)Ca/(40)Ca of a standard reference material. delta(44)Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Urine delta(44)Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, t-test). Results were consistent with the model and with biochemical and bone mineral density data. Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool.

  10. Comparative Toxicology of Libby Amphibole and Naturally Occurring Asbestos

    EPA Science Inventory

    Summary sentence: Comparative toxicology of Libby amphibole (LA) and site-specific naturally occurring asbestos (NOA) provides new insights on physical properties influencing health effects and mechanisms of asbestos-induced inflammation, fibrosis, and tumorigenesis.Introduction/...

  11. Hemostatic abnormalities in dogs with naturally occurring heatstroke.

    PubMed

    Bruchim, Yaron; Kelmer, Efrat; Cohen, Adar; Codner, Carolina; Segev, Gilad; Aroch, Itamar

    2017-05-01

    To investigate hemostatic analyte abnormalities and their association with mortality in dogs with naturally occurring heatstroke. Prospective observational study. University teaching hospital. Thirty client-owned dogs with naturally occurring heatstroke. None. Citrated and EDTA blood samples were collected at presentation and at 4, 12, 24, 36, and 48 hours postpresentation (PP). Hemostatic tests performed included platelet count, prothrombin and activated partial thromboplastin times (PT and aPTT, respectively), antithrombin activity (ATA), total protein C activity (tPCA), fibrinogen, and D-dimer concentrations. The overall survival rate was 60% (18/30 dogs). Older age, higher heart rate and rectal temperature at presentation, and time from onset of clinical signs to presentation were significantly associated with mortality. Hemostatic analytes at presentation were not associated with mortality. Prolonged PT and aPTT at 12-24 hours PP, lower tPCA at 12 hours PP, and hypofibrinogenemia at 24 hours PP were significantly (P < 0.05) associated with mortality. Increased D-dimer concentration and low ATA were common at all time points, but were not associated with mortality. The frequency of disseminated intravascular coagulation (DIC) increased in nonsurvivors throughout hospitalization, but the development of DIC was not associated with mortality. The number of abnormal coagulation disturbances during the first 24 hours was significantly higher in nonsurvivors (P = 0.04). Hemostatic derangements are common in dogs with naturally occurring heatstroke. Alterations in PT, aPTT, tPCA, and fibrinogen concentrations appear to be associated with the outcome at 12-24 hours PP, exemplifying the need for serial measurement of multiple laboratory hemostatic tests during hospitalization, even when within reference interval on presentation. The development of DIC, as defined in this cohort, was not associated with mortality; however, nonsurvivors had significantly more coagulation

  12. Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth

    PubMed Central

    Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803

  13. Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: evidence for autotrophic growth in natural populations

    NASA Technical Reports Server (NTRS)

    Madigan, M. T.; Takigiku, R.; Lee, R. G.; Gest, H.; Hayes, J. M.

    1989-01-01

    Purple phototrophic bacteria of the genus Chromatium can grow as either photoautotrophs or photoheterotrophs. To determine the growth mode of the thermophilic Chromatium species, Chromatium tepidum, under in situ conditions, we have examined the carbon isotope fractionation patterns in laboratory cultures of this organism and in mats of C. tepidum which develop in sulfide thermal springs in Yellowstone National Park. Isotopic analysis (13C/12C) of total carbon, carotenoid pigments, and bacteriochlorophyll from photoautotrophically grown cultures of C. tepidum yielded 13C fractionation factors near -20%. Cells of C. tepidum grown on excess acetate, wherein synthesis of the Calvin cycle enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase ribulose bisphosphate carboxylase) was greatly repressed, were isotopically heavier, fractionation factors of ca. -7% being observed. Fractionation factors determined by isotopic analyses of cells and pigment fractions of natural populations of C. tepidum growing in three different sulfide thermal springs in Yellowstone National Park were approximately -20%, indicating that this purple sulfur bacterium grows as a photoautotroph in nature.

  14. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    DOE PAGES

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; ...

    2018-02-19

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  15. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob

    We present that the chemical response of the Precambrian oceans to rising atmospheric O 2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shiftmore » in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS 2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the ‘Great Oxidation Event’ around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in

  16. Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue

    NASA Astrophysics Data System (ADS)

    Rolison, John M.; Stirling, Claudine H.; Middag, Rob; Gault-Ringold, Melanie; George, Ejin; Rijkenberg, Micha J. A.

    2018-04-01

    The chemical response of the Precambrian oceans to rising atmospheric O2 levels remains controversial. The iron isotope signature of sedimentary pyrite is widely used to trace the microbial and redox states of the ocean, yet the iron isotope fractionation accompanying pyrite formation in nature is difficult to constrain due to the complexity of the pyrite formation process, difficulties in translating the iron isotope systematics of experimental studies to natural settings, and insufficient iron isotope datasets for natural euxinic (i.e. anoxic and sulfidic) marine basins where pyrite formation occurs. Herein we demonstrate, that a large, permil-level shift in the isotope composition of dissolved iron occurs in the Black Sea euxinic water column during syngenetic pyrite formation. Specifically, iron removal to syngenetic pyrite gives rise to an iron isotope fractionation factor between Fe(II) and FeS2 of 2.75 permil (‰), the largest yet reported for reactions under natural conditions that do not involve iron redox chemistry. These iron isotope systematics offer the potential to generate permil-level shifts in the sedimentary pyrite iron isotope record due to partial drawdown of the oceanic iron inventory. The implication is that the iron stable isotope signatures of sedimentary pyrites may record fundamental regime shifts between pyrite formation under sulfur-limited conditions and pyrite formation under iron-limited conditions. To this end, the iron isotope signatures of sedimentary pyrite may best represent the extent of euxinia in the past global ocean, rather than its oxygenation state. On this basis, the reinterpreted sedimentary pyrite Fe isotope record suggests a fundamental shift towards more sulfidic oceanic conditions coincident with the 'Great Oxidation Event' around 2.3 billion years ago. Importantly, this does not require the chemical state of the ocean to shift from mainly de-oxygenated to predominantly oxygenated in parallel with the permanent rise

  17. Technologically enhanced naturally occurring radioactive materials.

    PubMed

    Vearrier, David; Curtis, John A; Greenberg, Michael I

    2009-05-01

    Naturally occurring radioactive materials (NORM) are ubiquitous throughout the earth's crust. Human manipulation of NORM for economic ends, such as mining, ore processing, fossil fuel extraction, and commercial aviation, may lead to what is known as "technologically enhanced naturally occurring radioactive materials," often called TENORM. The existence of TENORM results in an increased risk for human exposure to radioactivity. Workers in TENORM-producing industries may be occupationally exposed to ionizing radiation. TENORM industries may release significant amounts of radioactive material into the environment resulting in the potential for widespread exposure to ionizing radiation. These industries include mining, phosphate processing, metal ore processing, heavy mineral sand processing, titanium pigment production, fossil fuel extraction and combustion, manufacture of building materials, thorium compounds, aviation, and scrap metal processing. A search of the PubMed database ( www.pubmed.com ) and Ovid Medline database ( ovidsp.tx.ovid.com ) was performed using a variety of search terms including NORM, TENORM, and occupational radiation exposure. A total of 133 articles were identified, retrieved, and reviewed. Seventy-three peer-reviewed articles were chosen to be cited in this review. A number of studies have evaluated the extent of ionizing radiation exposure both among workers and the general public due to TENORM. Quantification of radiation exposure is limited because of modeling constraints. In some occupational settings, an increased risk of cancer has been reported and postulated to be secondary to exposure to TENORM, though these reports have not been validated using toxicological principles. NORM and TENORM have the potential to cause important human health effects. It is important that these adverse health effects are evaluated using the basic principles of toxicology, including the magnitude and type of exposure, as well as threshold and dose response.

  18. Stable-isotope fingerprints of biological agents as forensic tools.

    PubMed

    Horita, Juske; Vass, Arpad A

    2003-01-01

    Naturally occurring stable isotopes of light elements in chemical and biological agents may possess unique "stable-isotope fingerprints" depending on their sources and manufacturing processes. To test this hypothesis, two strains of bacteria (Bacillus globigii and Erwinia agglomerans) were grown under controlled laboratory conditions. We observed that cultured bacteria cells faithfully inherited the isotopic composition (hydrogen, carbon, and nitrogen) of media waters and substrates in predictable manners in terms of bacterial metabolism and that even bacterial cells of the same strain, which grew in media water and substrates of different isotopic compositions, have readily distinguishable isotopic signatures. These "stable-isotopic fingerprints" of chemical and biological agents can be used as forensic tools in the event of biochemical terrorist attacks.

  19. Se Isotopes as groundwater redox indicators: Detecting natural attenuation of Se at an in situ recovery U mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anirban, Basu; Schilling, Kathrin; Brown, Shaun T.

    One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. Here in this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradientmore » wells have elevated Se(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ 82SeVI of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ 82Se with decreasing Se(VI) conforms to a Rayleigh type distillation model with an ε of $-$2.25‰ ± 0.61‰, suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Moreover, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites.« less

  20. Se Isotopes as groundwater redox indicators: Detecting natural attenuation of Se at an in situ recovery U mine

    DOE PAGES

    Anirban, Basu; Schilling, Kathrin; Brown, Shaun T.; ...

    2016-08-22

    One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. Here in this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradientmore » wells have elevated Se(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ 82SeVI of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ 82Se with decreasing Se(VI) conforms to a Rayleigh type distillation model with an ε of $-$2.25‰ ± 0.61‰, suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Moreover, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites.« less

  1. Regulation of naturally occurring radioactive materials in Australia.

    PubMed

    Jeffries, Cameron; Akber, Riaz; Johnston, Andrew; Cassels, Brad

    2011-07-01

    In order to promote uniformity between jurisdictions, the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) has developed the National Directory for Radiation Protection, which is a regulatory framework that all Australian governments have agreed to adopt. There is a large and diverse range of industries involved in mining or mineral processing, and the production of fossil fuels in Australia. Enhanced levels of naturally occurring radionuclides can be associated with mineral extraction and processing, other industries (e.g. metal recycling) and some products (e.g. plasterboard). ARPANSA, in conjunction with industry and State regulators, has undertaken a review and assessment of naturally occurring radioactive material (NORM) management in Australian industries. This review has resulted in guidance on the management of NORM that will be included in the National Directory for Radiation Protection. The first NORM safety guide provides the framework for NORM management and addresses specific NORM issues in oil and gas production, bauxite, aluminium and phosphate industries. Over time further guidance material for other NORM-related industries will be developed. This presentation will provide an overview of the regulatory approach to managing NORM industries in Australia.

  2. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  3. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  4. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  5. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  6. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015

  7. Biodegradation – Monitored Natural Attenuation (MNA) for Oxygenates: How it Evolved, why it Occurs and Using Stable Carbon Isotopes to Predict Plume Behavior

    EPA Science Inventory

    The organisms that degrade MtBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  8. Synthetic muscle promoters: activities exceeding naturally occurring regulatory sequences

    NASA Technical Reports Server (NTRS)

    Li, X.; Eastman, E. M.; Schwartz, R. J.; Draghia-Akli, R.

    1999-01-01

    Relatively low levels of expression from naturally occurring promoters have limited the use of muscle as a gene therapy target. Myogenic restricted gene promoters display complex organization usually involving combinations of several myogenic regulatory elements. By random assembly of E-box, MEF-2, TEF-1, and SRE sites into synthetic promoter recombinant libraries, and screening of hundreds of individual clones for transcriptional activity in vitro and in vivo, several artificial promoters were isolated whose transcriptional potencies greatly exceed those of natural myogenic and viral gene promoters.

  9. Comparisons of the skeletal locations of putative plutonium-induced osteosarcomas in humans with those in beagle dogs and with naturally occurring tumors in both species.

    PubMed

    Miller, Scott C; Lloyd, Ray D; Bruenger, Fred W; Krahenbuhl, Melinda P; Polig, Erich; Romanov, Sergey A

    2003-11-01

    Osteosarcomas occur from exposures to bone-seeking, alpha-particle-emitting isotopes, particularly plutonium. The skeletal distribution of putative 239Pu-induced osteosarcomas reported in Mayak Metallurgical and Radiochemical Plutonium Plant workers is compared with those observed in canine studies, and these are compared with distributions of naturally occurring osteosarcomas in both species. In the Mayak workers, 29% and 71% of the osteosarcomas were in the peripheral and central skeleton, respectively, with the spine having the most tumors (36%). An almost identical distribution of plutonium-induced osteosarcomas was reported for dogs injected with 239Pu as young adults. This distribution of osteosarcomas is quite different from the distributions of naturally occurring osteosarcomas for both species. In the Cooperative Osteosarcoma Study Group in humans (1,736 osteosarcomas from all ages), over 91% of the tumors occurred in the peripheral skeleton. In the Mayo Clinic group of older individuals (>40 years old), over 60% of the osteosarcomas appeared in the peripheral skeleton. The distribution of naturally occurring osteosarcomas in the canine is similar to that in the adult human. The similarities of the distributions of plutonium-associated osteosarcomas in the Mayak workers with those found in experimental studies suggest that many of the reported osteosarcomas may have been associated with plutonium exposures. These results also support the experimental paradigm that plutonium osteosarcomas have a preference for well vascularized cancellous bone sites. These sites have a greater initial deposition of plutonium, but also greater turnover due to elevated bone remodeling rates.

  10. Formation and migration of Natural Gases: gas composition and isotopes as monitors between source, reservoir and seep

    NASA Astrophysics Data System (ADS)

    Schoell, M.; Etiope, G.

    2015-12-01

    Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.

  11. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms

    NASA Astrophysics Data System (ADS)

    Sessa, Jocelyn Anne; Larina, Ekaterina; Knoll, Katja; Garb, Matthew; Cochran, J. Kirk; Huber, Brian T.; MacLeod, Kenneth G.; Landman, Neil H.

    2015-12-01

    Ammonites are among the best-known fossils of the Phanerozoic, yet their habitat is poorly understood. Three common ammonite families (Baculitidae, Scaphitidae, and Sphenodiscidae) co-occur with well-preserved planktonic and benthic organisms at the type locality of the upper Maastrichtian Owl Creek Formation, offering an excellent opportunity to constrain their depth habitats through isotopic comparisons among taxa. Based on sedimentary evidence and the micro- and macrofauna at this site, we infer that the 9-m-thick sequence was deposited at a paleodepth of 70-150 m. Taxa present throughout the sequence include a diverse assemblage of ammonites, bivalves, and gastropods, abundant benthic foraminifera, and rare planktonic foraminifera. No stratigraphic trends are observed in the isotopic data of any taxon, and thus all of the data from each taxon are considered as replicates. Oxygen isotope-based temperature estimates from the baculites and scaphites overlap with those of the benthos and are distinct from those of the plankton. In contrast, sphenodiscid temperature estimates span a range that includes estimates of the planktonic foraminifera and of the warmer half of the benthic values. These results suggest baculites and scaphites lived close to the seafloor, whereas sphenodiscids sometimes inhabited the upper water column and/or lived closer to shore. In fact, the rarity and poorer preservation of the sphenodiscids relative to the baculites and scaphites suggests that the sphenodiscid shells may have only reached the Owl Creek locality by drifting seaward after death.

  12. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels.more » This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.« less

  13. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes

    NASA Astrophysics Data System (ADS)

    Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.

    2015-10-01

    Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (δ56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate δ56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate δ56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated

  14. Evidence of isotopic fractionation of natural uranium in cultured human cells

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  15. Evidence of isotopic fractionation of natural uranium in cultured human cells

    PubMed Central

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-01-01

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes. PMID:27872304

  16. Evidence of isotopic fractionation of natural uranium in cultured human cells.

    PubMed

    Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole

    2016-12-06

    The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235 U isotope with regard to 238 U. Efforts were made to develop and then validate a procedure for highly accurate n( 238 U)/n( 235 U) determinations in microsamples of cells. We found that intracellular U is enriched in 235 U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO 2 2+ ) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.

  17. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  18. Novel and non-traditional use of stable isotope tracers to study metal bioavailability from natural particles

    USGS Publications Warehouse

    Croteau, Marie-Noële; Cain, Daniel J.; Fuller, Christopher C.

    2013-01-01

    We devised a novel tracing approach that involves enriching test organisms with a stable metal isotope of low natural abundance prior to characterizing metal bioavailability from natural inorganic particles. In addition to circumventing uncertainties associated with labeling natural particles and distinguishing background metals, the proposed "reverse labeling" technique overcomes many drawbacks inherent to using radioisotope tracers. Specifically, we chronically exposed freshwater snails (Lymnaea stagnalis) to synthetic water spiked with Cu that was 99.4% 65Cu to increase the relative abundance of 65Cu in the snail’s tissues from 32% to >80%. The isotopically enriched snails were then exposed to benthic algae mixed with Cu-bearing Fe–Al particles collected from the Animas River (Colorado), an acid mine drainage impacted river. We used 63Cu to trace Cu uptake from the natural particles and inferred their bioavailability from calculation of Cu assimilation into tissues. Cu assimilation from these particles was 44%, indicating that 44% of the particulate Cu was absorbed by the invertebrate. This demonstrates that inorganic particulate Cu can be bioavailable. The reverse labeling approach shows great potential in various scientific areas such as environmental contamination and nutrition for addressing questions involving uptake of an element that naturally has multiple isotopes.

  19. Kinetic stable Cr isotopic fractionation between aqueous Cr(III)-Cl-H2O complexes at 25 °C: Implications for Cr(III) mobility and isotopic variations in modern and ancient natural systems

    NASA Astrophysics Data System (ADS)

    Babechuk, Michael G.; Kleinhanns, Ilka C.; Reitter, Elmar; Schoenberg, Ronny

    2018-02-01

    The stable Cr isotope fractionation preserved in natural substances has been attributed predominantly to Cr(III)-Cr(VI) redox transformations. However, non-redox reaction pathways (e.g., ligand-promoted dissolution, ligand exchange, adsorption of Cr(III)) are liable to contribute to isotopic fractionation in natural systems given that soluble Cr(III)-ligands have been directly documented or modeled in several marine, continental, and hydrothermal environments. This study isolates the stable Cr isotope fractionation accompanying Cl-H2O ligand exchange during the transformation of three aqueous species in the Cr(III)-Cl-H2O system, [CrCl2(H2O)4]+aq (abr. CrCl2+ or S1), [CrCl(H2O)5]2+aq (abr. CrCl2+ or S2), and [Cr(H2O)6]3+aq (abr. Cr3+ or S3), at low pH (≤2). In dilute HCl (0.01 to 1 M), Cr3+ is the kinetically favoured species and transformation of CrCl2+ to CrCl2+ to Cr3+ via 2 steps of dechlorination/hydrolyzation begins immediately upon dissolution of a Cr(III)-Cl solid. Individual species are separated with cation exchange chromatography at different stages of transformation and inter- and intra-species (across an elution peak of one species) isotopic fractionation of up to 1 and 2‰ (δ53/52Cr), respectively, is documented. Comparison of peak elution characteristics with Cr-Cl-H-O isotopologue mass abundances suggests mass-dependent sorting of isotopologues alone cannot explain intra-species fractionation, supporting a previously published proposal that preferential adsorption of light Cr isotopes on the resin is driven by vibrational energy effects. The transformation of CrCl2+ to CrCl2+ is faster than CrCl2+ to Cr3+ and the rates of both transformations increase with solution pH. Preferential reaction of light Cr(III) isotopes into product species occurs during each transformation, consistent with closed-system, kinetic fractionation during Cl-H2O ligand exchange. Inter-species fractionation is assessed using time-series experiments beginning from the

  20. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA

    Treesearch

    Ricardo Sanchez-Murillo; Erin S. Brooks; William J. Elliot; Jan Boll

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of ä2H = 7.42·ä18O + 0.88 (n = 316; r2 = 0.97...

  1. Bioassay of naturally occurring allelochemicals for phytotoxicity.

    PubMed

    Leather, G R; Einhellig, F A

    1988-10-01

    The bioassay has been one of the most widely used tests to demonstrate allelopathic activity. Often, claims that a particular plant species inhibits the growth of another are based entirely on the seed germination response to solvent extracts of the suspected allelopathic plant; few of these tests are of value in demonstrating allelopathy under natural conditions. The veracity of the bioassay for evaluating naturally occurring compounds for phytotoxicity depends upon the physiological and biochemical response capacity of the bioassay organism and the mechanism(s) of action of the allelochemicals. The possibility that more than one allelochemical, acting in concert at very low concentrations, may be responsible for an observed allelopathic effect makes it imperative that bioassays be extremely sensitive to chemical growth perturbation agents. Among the many measures of phytotoxicity of allelochemicals, the inhibition (or stimulation) of seed germination, radicle elongation, and/or seedling growth have been the parameters of choice for most investigations. Few of these assays have been selected with the view towards the possible mechanism of the allelopathic effect.

  2. Isotope Mixes, Corresponding Nuclear Properties and Reactor Design Implications of Naturally Occurring Lead Sources

    DTIC Science & Technology

    2013-06-01

    39  Table 8.  Required enrichment for criticality ...keff ~ 1)-1. ...............................................44  Table 9.  Required enrichment for criticality (keff ~ 1)-2...45  Table 10.  Required enrichment for SSTAR based model reactor to achieve criticality using various natural lead concentrations

  3. Stable Isotope Analysis of Water Indicates that Mixing Occurs between Mobile and Tightly-Bound Soil Water

    NASA Astrophysics Data System (ADS)

    Vargas, A. I.; Schaffer, B.; Yuhong, L.; Sternberg, L. O.

    2016-12-01

    Stable oxygen (δ18O) and hydrogen (δ2H) isotope composition of precipitation, soil and plants have been studied over the years to understand the mechanism of soil water movement and the depth of plant water uptake in the soil water profile. Recent studies have suggested that in soil during the wet season, tightly bound water does not mix with mobile water but is retained in the soil until the dry season when it is taken up by plants via the force of transpiration. To test this, we sampled δ18O and δ2H in plant stems as a proxy for wet season mobile water and dry season bound water in two types of soils to determine if mixing occurs between mobile and tightly bound soil water. Plastic pots were filled with clay or very gravelly loam soil and a Persea americana tree was planted in each pot. Soil in each pot was first saturated with tap water to fully label the bound water with the isotopic identity of tap water and then fully saturated with either tap water (T) or isotopically-enriched pool water (P) and covered with white polyethylene to prevent evaporation. After saturating the soil, δ18O and δ2H of water draining from each pot were similar to those of water added to each pot for both the T and P treatments. For each treatment, δ18O and δ2H in plant stems were sampled 2-3 days after soil was initially saturated (simulated wet season; soil tension < 0.10 kPa) representing the mobile water and again 7-9 days after soil was saturated representing the bound water (simulated dry season; soil tension > 80.0 kPa). During the "dry season", there was a significant difference between T and P treatments for δ18O and δ2H in plant stems, indicating that bound water accessed by plants in the P treatment did not retain the tap water label and mixing occurred between mobile and bound water in the soil. Comparing P-T in the wet season with P-T in the dry season indicated that as much as 95% of water freely exchanged between the mobile and bound components of the soil

  4. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Long-Term Toxicity of Naturally Occurring Asbestos in Male Fischer 344 Rats

    EPA Science Inventory

    Naturally occurring asbestos (NOA) fibers are found in geologic deposits that may be disturbed by mining, earthworks, or natural processes, resulting in adverse health risks to exposed individuals. The toxicities of Libby amphibole and NOA samples including Sumas Mountain chrysot...

  6. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale.

    PubMed

    Nelson, Andrew W; Eitrheim, Eric S; Knight, Andrew W; May, Dustin; Mehrhoff, Marinea A; Shannon, Robert; Litman, Robert; Burnett, William C; Forbes, Tori Z; Schultz, Michael K

    2015-07-01

    The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of "produced fluids" generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element-radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides.

  7. Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics

    PubMed Central

    Chen, Jason S.; Edmonds, David J.; Estrada, Anthony A.

    2009-01-01

    Lead-in Ever since the world-shaping discovery of penicillin, nature’s molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for anti-infective agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug development stories, the overwhelming majority of which have their origins in nature. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies for future developments in the field. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on the total synthesis, analog design, and biological evaluation of molecules with novel mechanisms of action. PMID:19130444

  8. Survival of nature's rarest isotope {sup 180}Ta under stellar conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, P.; Kaeppeler, F.; Gallino, R.

    2007-01-15

    The nucleosynthesis of nature's rarest isotope {sup 180}Ta depends sensitively on the temperature of the astrophysical environment because of depopulation of the long-living isomeric state via intermediate states to the short-living ground state by thermal photons. Reaction rates for this transition have been measured in the laboratory. These ground state rates underestimate the stellar rates dramatically because under stellar conditions intermediate states are mainly populated by excitations from thermally excited states in {sup 180m}Ta. Full thermalization of {sup 180}Ta is already achieved for typical s-process temperatures around kT=25 keV. Consequently, for the survival of {sup 180}Ta in the s-process fastmore » convective mixing is required which has to transport freshly synthesized {sup 180}Ta to cooler regions. In supernova explosions {sup 180}Ta is synthesized by photon- or neutrino-induced reactions at temperatures above T{sub 9}=1 in thermal equilibrium; independent of the production mechanism, freeze-out from thermal equilibrium occurs at kT{approx_equal}40 keV, and only 35{+-}4% of the synthesized {sup 180}Ta survive in the isomeric state.« less

  9. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In

  10. 13C and 15N natural isotope abundance reflects breast cancer cell metabolism

    NASA Astrophysics Data System (ADS)

    Tea, Illa; Martineau, Estelle; Antheaume, Ingrid; Lalande, Julie; Mauve, Caroline; Gilard, Francoise; Barillé-Nion, Sophie; Blackburn, Anneke C.; Tcherkez, Guillaume

    2016-09-01

    Breast cancer is the most common cancer in women worldwide. Despite the information provided by anatomopathological assessment and molecular markers (such as receptor expression ER, PR, HER2), breast cancer therapies and prognostics depend on the metabolic properties of tumor cells. However, metabolomics have not provided a robust and congruent biomarker yet, likely because individual metabolite contents are insufficient to encapsulate all of the alterations in metabolic fluxes. Here, we took advantage of natural 13C and 15N isotope abundance to show there are isotopic differences between healthy and cancer biopsy tissues or between healthy and malignant cultured cell lines. Isotope mass balance further suggests that these differences are mostly related to lipid metabolism, anaplerosis and urea cycle, three pathways known to be impacted in malignant cells. Our results demonstrate that the isotope signature is a good descriptor of metabolism since it integrates modifications in C partitioning and N excretion altogether. Our present study is thus a starting point to possible clinical applications such as patient screening and biopsy characterization in every cancer that is associated with metabolic changes.

  11. Uranium disequilibrium in groundwater: An isotope dilution approach in hydrologic investigations

    USGS Publications Warehouse

    Osmond, J.K.; Rydell, H.S.; Kaufman, M.I.

    1968-01-01

    The distribution and environmental disequilibrium patterns of naturally occurring uranium isotopes (U234 and U238) in waters of the Floridan aquifer suggest that variations in the ratios of isotopic activity and concentrations can be used quantitatively to evaluate mixing proportions of waters from differing sources. Uranium is probably unique in its potential for this approach, which seems to have general usefulness in hydrologic investigations.

  12. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites.

    PubMed

    Naseri-Nosar, Mahdi; Ziora, Zyta Maria

    2018-06-01

    Wound dressings are designed to support the wound bed and protect it from the factors that may delay or impede its healing such as contaminations and moisture-loss, thereby facilitating and accelerating the healing process. The materials used to prepare wound dressings include natural and synthetic polymers, as well as their combinations, in the forms of films, sponges and hydrogels. Polysaccharides are naturally-occurring polymers that have been extensively used as wound dressing materials. Homopolysaccharides are a class of polysaccharides consist of only one type of monosaccharide. The current review intends to overview the studies in which wound dressings from naturally-occurring polymers, based on homopolysaccharides, were prepared and evaluated. Homopolysaccharides such as cellulose, chitosan, chitin, pullulan, starch and β-glucan were considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  14. Elemental, stable isotopic and biochemical characterization of soil organic matter alteration across a natural peatland gradient

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.

    2010-12-01

    Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and

  15. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.

    PubMed

    Rango, Tewodros; Vengosh, Avner; Dwyer, Gary; Bianchini, Gianluca

    2013-10-01

    This study investigates the mechanisms of arsenic (As) and other naturally occurring contaminants (F(-), U, V, B, and Mo) mobilization from Quaternary sedimentary aquifers of the Main Ethiopian Rift (MER) and their enrichment in the local groundwater. The study is based on systematic measurements of major and trace elements as well as stable oxygen and hydrogen isotopes in groundwater, coupled with geochemical and mineralogical analyses of the aquifer rocks. The Rift Valley aquifer is composed of rhyolitic volcanics and Quaternary lacustrine sediments. X-ray fluorescence (XRF) results revealed that MER rhyolites (ash, tuff, pumice and ignimbrite) and sediments contain on average 72 wt. % and 65 wt. % SiO2, respectively. Petrographic studies of the rhyolites indicate predominance of volcanic glass, sanidine, pyroxene, Fe-oxides and plagioclase. The As content in the lacustrine sediments (mean = 6.6 mg/kg) was higher than that of the rhyolites (mean: 2.5 mg/kg). The lacustrine aquifers of the Ziway-Shala basin in the northern part of MER were identified as high As risk zones, where mean As concentration in groundwater was 22.4 ± 33.5 (range of 0.60-190 μg/L) and 54% of samples had As above the WHO drinking water guideline value of 10 μg/L. Field As speciation measurements showed that most of the groundwater samples contain predominantly (~80%) arsenate-As(V) over arsenite-As(III) species. The As speciation together with field data of redox potential (mean Eh = +73 ± 65 mV) and dissolved-O2 (6.6 ± 2.2 mg/L) suggest that the aquifer is predominantly oxidative. Water-rock interactions, including the dissolution of volcanic glass produces groundwater with near-neutral to alkaline pH (range 6.9-8.9), predominance of Na-HCO3 ions, and high concentration of SiO2 (mean: 85.8 ± 11.3 mg/L). The groundwater data show high positive correlation of As with Na, HCO3, U, B, V, and Mo (R(2) > 0.5; p < 0.001). Chemical modeling of the groundwater indicates that Fe-oxides and

  16. The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward

    2005-06-01

    Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.

  17. Uranium isotopes in groundwater occurring at Amazonas State, Brazil.

    PubMed

    da Silva, Márcio Luiz; Bonotto, Daniel Marcos

    2015-03-01

    This paper reports the behavior of the dissolved U-isotopes (238)U and (234)U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and (234)U/(238)U activity ratio (AR) data, 0.01-1.4µgL(-1) and 1.0-3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW-NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Source tracing of natural organic matter bound mercury in boreal forest runoff with mercury stable isotopes.

    PubMed

    Jiskra, Martin; Wiederhold, Jan G; Skyllberg, Ulf; Kronberg, Rose-Marie; Kretzschmar, Ruben

    2017-10-18

    Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ 199 Hg and Δ 200 Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg 0 ) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg 0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the

  19. Methane-producing bacteria - Natural fractionations of the stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Games, L. M.; Hayes, J. M.; Gunsalus, R. P.

    1978-01-01

    Procedures for determining the C-13/C-12 fractionation factors for methane-producing bacteria are described, and the fractionation factors (CO2/CH4) for the reduction of CO2 to CH4 by pure cultures are 1.045 for Methanosarcina barkeri at 40 C, 1.061 for Methanobacterium strain M.o.H. at 40 C, and 1.025 for Methanobacterium thermoautotrophicum at 65 C. The data are consistent with the field determinations if fractionation by acetate dissimilation approximates fractionations observed in natural environments. In other words, the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2H/CH3) approximating the observed CO2/CH4 fractionation.

  20. The influence of kinetics on the oxygen isotope composition of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Nielsen, Laura C.; Ryerson, Frederick J.; DePaolo, Donald J.

    2013-08-01

    Paleotemperature reconstructions rely on knowledge of the equilibrium separation of oxygen isotopes between aqueous solution and calcium carbonate. Although oxygen isotope separation is expected on theoretical grounds, the temperature-dependence remains uncertain because other factors, such as slow exchange of isotopes between dissolved CO2-species and water, can obscure the temperature signal. This is problematic for crystal growth experiments on laboratory timescales and for interpreting the oxygen isotope composition of crystals formed in natural settings. We present results from experiments in which inorganic calcite is precipitated in the presence of 0.25 μM dissolved bovine carbonic anhydrase (CA). The presence of dissolved CA accelerates oxygen isotope equilibration between the dissolved carbon species CO2, H2CO3, HCO3-, CO32- and water, thereby eliminating this source of isotopic disequilibrium during calcite growth. The experimental results allow us to isolate, for the first time, kinetic oxygen isotope effects occurring at the calcite-water interface. We present a framework of ion-by-ion growth of calcite that reconciles our new measurements with measurements of natural cave calcites that are the best candidate for having precipitated under near-equilibrium conditions. Our findings suggest that isotopic equilibrium between calcite and water is unlikely to have been established in laboratory experiments or in many natural settings. The use of CA in carbonate precipitation experiments offers new opportunities to refine oxygen isotope-based geothermometers and to interrogate environmental variables other than temperature that influence calcite growth rates.

  1. Isotopic composition and neutronics of the Okelobondo natural reactor

    NASA Astrophysics Data System (ADS)

    Palenik, Christopher Samuel

    The Oklo-Okelobondo and Bangombe uranium deposits, in Gabon, Africa host Earth's only known natural nuclear fission reactors. These 2 billion year old reactors represent a unique opportunity to study used nuclear fuel over geologic periods of time. The reactors in these deposits have been studied as a means by which to constrain the source term of fission product concentrations produced during reactor operation. The source term depends on the neutronic parameters, which include reactor operation duration, neutron flux and the neutron energy spectrum. Reactor operation has been modeled using a point-source computer simulation (Oak Ridge Isotope Generation and Depletion, ORIGEN, code) for a light water reactor. Model results have been constrained using secondary ionization mass spectroscopy (SIMS) isotopic measurements of the fission products Nd and Te, as well as U in uraninite from samples collected in the Okelobondo reactor zone. Based upon the constraints on the operating conditions, the pre-reactor concentrations of Nd (150 ppm +/- 75 ppm) and Te (<1 ppm) in uraninite were estimated. Related to the burnup measured in Okelobondo samples (0.7 to 13.8 GWd/MTU), the final fission product inventories of Nd (90 to 1200 ppm) and Te (10 to 110 ppm) were calculated. By the same means, the ranges of all other fission products and actinides produced during reactor operation were calculated as a function of burnup. These results provide a source term against which the present elemental and decay abundances at the fission reactor can be compared. Furthermore, they provide new insights into the extent to which a "fossil" nuclear reactor can be characterized on the basis of its isotopic signatures. In addition, results from the study of two other natural systems related to the radionuclide and fission product transport are included. A detailed mineralogical characterization of the uranyl mineralogy at the Bangombe uranium deposit in Gabon, Africa was completed to improve

  2. Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review.

    PubMed

    Doyi, Israel; Essumang, David Kofi; Dampare, Samuel; Glover, Eric Tetteh

    Radiation is part of the natural environment: it is estimated that approximately 80 % of all human exposure comes from naturally occurring or background radiation. Certain extractive industries such as mining and oil logging have the potential to increase the risk of radiation exposure to the environment and humans by concentrating the quantities of naturally occurring radiation beyond normal background levels (Azeri-Chirag-Gunashli 2004).

  3. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    PubMed

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  4. Subject Reaction to Human-Caused and Naturally-Occurring Radioactive Threat.

    ERIC Educational Resources Information Center

    Belford, Susan; Gibbs, Margaret

    While research has shown that people are adversely psychologically affected by knowledge that their communities have been toxically contaminated, it has been suggested that those who see a disaster as naturally occurring tend to be less adversely affected than those who see a disaster as caused by human acts. To examine this issue, questionnaires…

  5. Naturally occurring stable isotopes reflect changes in protein turnover and growth in gilthead sea bream (Sparus aurata) juveniles under different dietary protein levels.

    PubMed

    Martin-Perez, Miguel; Fernandez-Borras, Jaume; Ibarz, Antoni; Felip, Olga; Fontanillas, Ramon; Gutierrez, Joaquim; Blasco, Josefina

    2013-09-18

    Ideal nutritional conditions are crucial to sustainable aquaculture due to economic and environmental issues. Here we apply stable isotope analysis as an indicator of fish growth and feeding balance, to define the optimum diet for efficient growing conditions. Juveniles of gilthead sea bream were fed with six isoenergetic diets differing in protein to lipid proportion (from 41/26 to 57/20). As protein intake increased, δ¹⁵N and Δδ¹⁵N of muscle and Δδ¹⁵N and Δδ¹³C of its protein fraction decreased, indicating lower protein turnover and higher protein deposition in muscle. This is reflected in the inverse relationship found between Δδ¹⁵N and growth rate, although no differences were observed in either parameter beyond the protein/lipid proportion 47/23. Principal component analysis (PCA) also signaled 47/23 diet as the pivotal point with the highest growing efficiency, with isotopic parameters having the highest discrimination load. Thus, muscle isotope composition, especially ¹⁵N, can be used to evaluate nutritional status in farmed fish.

  6. Automated isotope identification algorithm using artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair

    There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less

  7. Automated isotope identification algorithm using artificial neural networks

    DOE PAGES

    Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair

    2017-04-12

    There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less

  8. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  9. Compound-Specific Stable Carbon Isotope Analysis of Low-Concentration Complex Hydrocarbon Mixtures from Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Plummer, R. E.; Pohlman, J. W.; Coffin, R. B.

    2005-12-01

    A system has been developed to measure the stable carbon isotope (δ13C) composition of dissolved methane, ethane, and propane from natural sediment samples with headspace concentrations as low as 1 ppm using a modified Thermo Electron Trace gas chromatograph (GC) connected to a Finnigan Delta Plus XP isotope ratio mass spectrometer (IRMS). A cryofocusing inlet was connected to the GC which allows 0.02- to 15.0-ml injections into a 10-ml min-1 He carrier stream. Analytes from the variable-volume injection are focused into a small section of fused silica capillary, which is either empty or packed with Poraplot-Q, depending on the analyte(s) of interest. The analytes are then rapidly desorbed (100°C) onto the GC column (1.8 ml min-1), where they undergo separation, combustion and IRMS detection. The sensitivity of the IRMS was improved by the addition of high resistivity amplifiers so that measurements can be obtained with as little as 7-ng of carbon. The analytical precision (2σ) is less than 0.5‰ for methane analysis and less than 1‰ for ethane and propane analyses. The gases are standardized by tank CO2 which has been referenced to the NIST RM 8560 natural gas standard. The samples require no pretreatment, and can be analyzed rapidly (20 samples/day) and with minimal instrument training. Using this system, we have obtained complete stable carbon isotope ethane profiles from sediment cores from microbial and thermogenic gas hydrate regions on the Northern Cascadia Margin. We were able to differentiate the relative thermal and microbial contributions of the gases; and furthermore, we obtained clear evidence for ethanogenesis and ethane oxidation at depths similar to those where methanogenesis and anaerobic methane oxidation (AOM), respectively, occurred. This system will be utilized to analyze headspace and hydrate gas samples from IODP Leg 311. These data will allow us to fully characterize the thermogenic contributions and trace hydrocarbon biogeochemical

  10. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    NASA Astrophysics Data System (ADS)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  11. Stable carbon and sulfur isotopes as records of the early biosphere

    NASA Technical Reports Server (NTRS)

    Desmarais, David J.

    1989-01-01

    The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.

  12. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOEpatents

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.; Moran, James J.; Newburn, Matthew K.; Blake, Thomas A.

    2016-03-29

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The method also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  13. Capillary absorption spectrometer and process for isotopic analysis of small samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, M. Lizabeth; Kelly, James F.; Sams, Robert L.

    A capillary absorption spectrometer and process are described that provide highly sensitive and accurate stable absorption measurements of analytes in a sample gas that may include isotopologues of carbon and oxygen obtained from gas and biological samples. It further provides isotopic images of microbial communities that allow tracking of nutrients at the single cell level. It further targets naturally occurring variations in carbon and oxygen isotopes that avoids need for expensive isotopically labeled mixtures which allows study of samples taken from the field without modification. The process also permits sampling in vivo permitting real-time ambient studies of microbial communities.

  14. Thermoradiation inactivation of naturally occurring organisms in soil

    NASA Technical Reports Server (NTRS)

    Reynolds, M. C.; Lindell, K. F.; David, T. J.

    1973-01-01

    Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization.

  15. Isotopic Discrimination During Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to

  16. Fundamental studies in isotope chemistry. Progress report, 1 August 1982-1 August 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bigeleisen, J.

    1983-01-01

    Interest in a search for superheavy elements present in nature as a remnant of the big bang or through continuous production by cosmic rays has prompted us to study the isotope chemistry of superheavy elements. Calculations of the fractionation factors of superheavy elements of masses 10, 100, 1000, and in the form of isotopes of hydrogen, carbon, selenium and uranium against the light naturally occurring isotope of the element show that the superheavy isotope, even of infinite mass, will not be sufficiently fractionated in single stage natural processes to obscure its chemistry. Calculations have been made of the elementary separationmore » factors of superheavy isotopes of carbon and oxygen by fractional distillation of CO at 80/sup 0/K. The fractionation factors are discussed in terms of a model for liquid CO in good agreement with experimental data on /sup 13/C/sup 16/O and /sup 12/C/sup 18/O. Calculations for very heavy isotopic forms of CO reveal for the first time the coupling effect between translation and internal vibration in the liquid. It is shown that a 1ow temperature distillation plant, such as the Los Alamos COLA plant, has a significant potential for enrichment of superheavy isotopes of carbon. The maximum enrichment factor is 10/sup 55/.« less

  17. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  18. Oxygen and chlorine isotopic fractionation during perchlorate biodegradation: Laboratory results and implications for forensics and natural attenuation studies

    USGS Publications Warehouse

    Sturchio, N.C.; Böhlke, J.K.; Beloso, Abelardo D.; Streger, S.H.; Heraty, L.J.; Hatzinger, P.B.

    2007-01-01

    Perchlorate is a widespread environmental contaminant having both anthropogenic and natural sources. Stable isotope ratios of O and Cl in a given sample of perchlorate may be used to distinguish its source(s). Isotopic ratios may also be useful for identifying the extent of biodegradation of perchlorate, which is critical for assessing natural attenuation of this contaminant in groundwater. For this approach to be useful, however, the kinetic isotopic fractionations of O and Cl during perchlorate biodegradation must first be determined as a function of environmental variables such as temperature and bacterial species. A laboratory study was performed in which the O and Cl isotope ratios of perchlorate were monitored as a function of degradation by two separate bacterial strains (Azospira suillum JPLRND and Dechlorospirillum sp. FBR2) at both 10??C and 22??C with acetate as the electron donor. Perchlorate was completely reduced by both strains within 280 h at 22??C and 615 h at 10??C. Measured values of isotopic fractionation factors were ??18O = -36.6 to -29.0??? and ??37Cl = -14.5 to -11.5???, and these showed no apparent systematic variation with either temperature or bacterial strain. An experiment using 18O-enriched water (??18O = +198???) gave results indistinguishable from those observed in the isotopically normal water (??18O = -8.1???) used in the other experiments, indicating negligible isotope exchange between perchlorate and water during biodegradation. The fractionation factor ratio ??18O/??37Cl was nearly invariant in all experiments at 2.50 ?? 0.04. These data indicate that isotope ratio analysis will be useful for documenting perchlorate biodegradation in soils and groundwater. The establishment of a microbial fractionation factor ratio (??18O/??37Cl) also has significant implications for forensic studies. ?? 2007 American Chemical Society.

  19. Determination of naturally occurring radionuclides in soil samples of Ayranci, Turkey

    NASA Astrophysics Data System (ADS)

    Agar, Osman; Eke, Canel; Boztosun, Ismail; Emin Korkmaz, M.

    2015-04-01

    The specific activity, radiation hazard index and the annual effective dose of the naturally occurring radioactive elements (238U, 232Th and 40K) were determined in soil samples collected from 12 different locations in Ayranci region by using a NaI(Tl) gamma-ray spectrometer. The measured activity concentrations of the natural radionuclides in studied soil samples were compared with the corresponding results of different countries and the internationally reported values. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  20. Production and Evaluation of 236gNp and Reference Materials for Naturally Occurring Radioactive Materials

    NASA Astrophysics Data System (ADS)

    Larijani, Cyrus Kouroush

    This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which

  1. Hydrologic and environmental controls on uranium-series and strontium isotope ratios in a natural weathering environment

    NASA Astrophysics Data System (ADS)

    White, A. M.; Ma, L.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    In a remote, volcanic headwater catchment of the Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM, stable water isotopes and solute chemistry have shown that snowmelt infiltrates and is stored before later discharging into springs and streams via subsurface flowpaths that vary seasonally. Therefore, water-rock reactions are also expected to change with season as hydrologic flowpaths transport water, gases and solutes through different biogeochemical conditions, rock types and fracture networks. Uranium-series isotopes have been shown to be a novel tracer of water-rock reactions and source water contributions while strontium isotopes are frequently used as indicators of chemical weathering and bedrock geology. This study combines both isotopes to understand how U and Sr isotope signatures evolve through the Critical Zone (CZ). More specifically, this work examines the relationship between seasonality, water transit time (WTT), and U-series and Sr isotopes in stream and spring waters from three catchments within the JRB-CZO, as well as lithology, rock type and CZ structure in solid phase cores. Samples from ten springs with known WTTs were analyzed for U and Sr isotopes to determine the effect of WTT on the isotopic composition of natural waters. Results suggest that WTT alone cannot explain the variability of U and Sr isotopes in JRB-CZO springs. Stream samples were also collected across two water years to establish how seasonality controls surface water isotopic composition. U and Sr isotope values vary with season, consistent with a previous study from the La Jara catchment; however, this study revealed that these changes do not show a systematic pattern among the three catchments suggesting that differences in the mineralogy and structure of the deep CZ in individual catchments, and partitioning of water along deep vs surficial and fracture vs matrix flow paths, likely also control isotopic variability. The distribution of U-series and Sr isotopes in

  2. Tracing thallium contamination in soils using isotopes

    NASA Astrophysics Data System (ADS)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Trubač, Jakub; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Penížek, Vít; Zádorová, Tereza; Pavlů, Lenka; Holubík, Ondřej; Drábek, Ondřej; Němeček, Karel; Houška, Jakub; Ash, Christopher

    2017-04-01

    We report the thallium (Tl) isotope record in moderately contaminated soils, which have been historically affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ɛ205Tl -1) naturally occurs. The results show a positive linear relationship (R2 = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ɛ205Tl 0), followed by fly ash (ɛ205Tl between -2.5 and -2.8) and volatile Tl fractions (ɛ205Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistribution, we demonstrate that Tl contamination can be traced in soils, and propose that the isotope data represent a possible tool to aid our understanding of post-depositional Tl dynamics in surface environments for the future. This research was supported by the Czech Science Foundation (grant no. 14-01866S and 17-03211S).

  3. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  4. Factors Affecting Comparative Resistance of Naturally Occurring and Subcultured Pseudomonas aeruginosa to Disinfectants

    PubMed Central

    Carson, L. A.; Favero, M. S.; Bond, W. W.; Petersen, N. J.

    1972-01-01

    A strain of Pseudomonas aeruginosa was isolated in pure culture from the reservoir of a hospital mist therapy unit by an extinction-dilution technique; its natural distilled water environment was used as a growth and maintenance medium. After a single subculture on Trypticase soy agar, the strain showed a marked decrease in resistance to inactivation by acetic acid, glutaraldehyde, chlorine dioxide, and a quaternary ammonium compound when compared with naturally occurring cells grown in mist therapy unit water. The following factors were observed to affect the relative resistances of naturally occurring and subcultured cells of the P. aeruginosa strain: (i) temperature at which the cultures were incubated prior to exposure to disinfectants, (ii) growth phase of the cultures at the time of exposure to disinfectants, (iii) nature of the suspending menstruum for disinfectants, and (iv) exposure to fluorescent light during incubation of inocula prior to testing. The applied significance of these findings may alter the present concepts of disinfectant testing as well as routine control procedures in the hospital environment. PMID:4624209

  5. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment

    NASA Astrophysics Data System (ADS)

    Schmitt, Anne-Désirée; Galer, Stephen J. G.; Abouchami, Wafa

    2009-01-01

    We report a survey of natural mass-dependent cadmium isotope fractionation measured by thermal ionization mass spectrometry using a double-spike technique (DS-TIMS). Over sixty samples of natural terrestrial Cd from diverse environments, including MORB, OIB, continental loess, hydrogenic and hydrothermal ferromanganese deposits, and sphalerites (both oceanic and from major continental ore deposits) were analysed. Our results are expressed in terms of ɛ 112/110Cd, which are deviations in 112Cd/ 110Cd from our in-house JMC Cd standard in parts per 10 4. The total ɛ 112/110Cd variation is relatively small, with a range of only 5 ɛ-units, and is one-to-two orders of magnitude smaller than that previously found in meteorites. The MORB, OIB and loess ɛ 112/110Cd values are similar and provide a good estimate for the bulk silicate Earth (BSE) value which is - 0.95 ± 0.12 relative to our Cd standard (ɛ 112/110Cd = + 0.16 relative to Münster JMC Cd). Taken together, these data suggest little Cd isotope fractionation takes place during crust-mantle segregation. Cd isotopic compositions of continental sphalerite (ZnS) deposits worldwide and high-temperature oceanic hydrothermal sulphides show remarkably similar ɛ 112/110Cd values, consistent with our estimate for the BSE. In contrast, mid-temperature oceanic sulphides from a single extinct hydrothermal chimney display over 4 ɛ-units variation — along with the most negative values. These variations are most probably caused by precipitation/redissolution of sulphide phases en route within the hydrothermal system. The ɛ 112/110Cd variability found in worldwide marine Fe-Mn deposits reflects the seawater Cd isotope signal upon precipitation from ambient seawater. A decrease in ɛ 112/110Cd is observed in passing from shallow-water Fe-Mn deposits to those from deeper waters (> 2000 m depth). This shift is explained by biological fractionation related to the uptake of dissolved seawater Cd by phytoplankton in the upper

  6. Sensitivity, child regulatory processes, and naturally occurring declines in antisocial behavior across childhood.

    PubMed

    Buck, Katharine Ann

    2014-12-01

    Despite considerable research on why antisocial behavior develops and interventions that reduce it, aspects of everyday family processes that may promote naturally occurring declines in antisocial behavior or that may result from such declines in most children without intervention are poorly understood. The current study explored family processes that may enable children to replace antisocial tendencies and the effects that declines in antisocial behavior may have on parenting and child regulatory processes. Longitudinal data from 1,022 children (54 months-6th grade) from the NICHD Study of Early Child Care and Youth Development were examined. Findings demonstrated that naturally occurring declines in antisocial behavior both predicted and were predicted by maternal sensitivity, emotion regulation, and social skills. These declines predicted but were not predicted by declines in hostile attributions. The data revealed multiple indirect paths, which highlight the complex nature of these variables across development.

  7. Recent developments in the use of isotope ratio mass spectrometry in sports drug testing.

    PubMed

    Piper, Thomas; Emery, Caroline; Saugy, Martial

    2011-08-01

    According to the annual report of the World Anti-Doping Agency, steroids are the most frequently detected class of doping agents. Detecting the misuse of endogenously occurring steroids, i.e. steroids such as testosterone that are produced naturally by humans, is one of the most challenging issues in doping control analysis. The established thresholds for urinary concentrations or concentration ratios such as the testosterone/epitestosterone quotient are sometimes inconclusive owing to the large biological variation in these parameters.For more than 15 years, doping control laboratories focused on the carbon isotope ratios of endogenous steroids to distinguish between naturally elevated steroid profile parameters and illicit administration of steroids. A variety of different methods has been developed throughout the last decade and the number of different steroids under investigation by isotope ratio mass spectrometry has recently grown considerably. Besides norandrosterone, boldenone was found to occur endogenously in rare cases and the misuse of corticosteroids or epitestosterone can now be detected with the aid of carbon isotope ratios as well. In addition, steroids excreted as sulfoconjugates were investigated, and the first results regarding hydrogen isotope ratios recently became available.All of these will be presented in detail within this review together with some considerations on validation issues and on identification of parameters influencing steroidal isotope ratios in urine.

  8. Natural abundance N stable isotopes in plants and soils as an indicator of N deposition hotspots in urban environments

    NASA Astrophysics Data System (ADS)

    Trammell, T. L.

    2017-12-01

    The natural abundance of stable isotopes in plants and soils has been utilized to understand ecological phenomenon. Foliar δ15N is an integrator of soil δ15N, atmospheric N sources, and fractionation processes that occur during plant N uptake, plant N assimilation, and mycorrhizal associations. The amount of reactive N in the environment has greatly increased due to human activities, and urban ecosystems experience excess N deposition that can have cascading effects on plants and soils. Foliar δ15N has been shown to increase with increasing N deposition and nitrification rates suggesting increased foliar δ15N occurs with greater N inputs as a result of accelerated soil N cycling. Thus, foliar δ15N can be an indication of soil N availability for plant uptake and soil N cycling rates, since high N availability results in increased soil N cycling and subsequent loss of 14N. Limited research has utilized foliar and soil δ15N in urban forests to assess the importance of plant uptake of atmospheric N deposition and to gain insight about ecosystem processes. Previous investigations found foliar δ15N of mature trees in urban forests is not only related to elevated pollutant-derived N deposition, but also to soil N availability and soil N cycling rates. Similarly, enriched foliar δ15N of urban saplings was attributed to soil characteristics that indicated higher nitrification, thus, greater nitrate leaching and low N retention in the urban soils. These studies demonstrate the need for measuring the δ15N of various plant and soil N sources while simultaneously measuring soil N processes (e.g., net nitrification rates) in order to use natural abundance δ15N of plants and soils to assess N sources and cycling in urban forests. A conceptual framework that illustrates biogenic and anthropogenic controls on nitrogen isotope composition in urban plants and soils will be presented along with foliar and soil δ15N from urban forests across several cities as a proof of

  9. Evaluation of naturally occurring radioactivity across the State of Kuwait using high-resolution gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Bajoga, A. D.; Alazemi, N.; Shams, H.; Regan, P. H.; Bradley, D. A.

    2017-08-01

    A study of natural radioactivity from 90 different soil samples from the state of Kuwait has been carried out to ascertain the NORM concentration values across the country. The calculated activity concentrations were determined from: (i) the decays of the 226Ra, 214Pb and 214Bi members of the 4n+2 decay chain headed by 238U and; (ii) the 228Ac, 212Pb and 208Tl members of the 4n chain headed by 232Th. The study also included evaluations for the 235U decay chain with the 186 keV doublet transition used together with the measured 4n+2 activity concentration values to determine the 235U/238U isotopic ratios for each sample. The values for the arithmetic mean activity concentrations for 90 separate locations across Kuwait as determined in the current work were 17.2, 14.1, and 368 Bq/kg, with standard deviations of 5.2, 3.7 and 90 Bq/kg for the 238U, 232Th and 40K activity concentrations respectively. Measured isotope ratios for 235U/238U give an arithmetic mean value for all of the samples of 0.045±0.003, consistent with that expected for natural uranium. These results indicate no evidence for a radiologically significant dispersion of additional depleted uranium across the entire State of Kuwait from the 1991 Gulf War.

  10. Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides.

    PubMed

    Dinarello, C A; Krueger, J M

    1986-10-01

    Like bacterial lipopolysaccharides (endotoxins), synthetic muramyl peptides (MPs) are thought to exert many of their biological effects by inducing the production of various mediators from host cells. Both synthetic muramyl dipeptide (MDP) and naturally occurring sleep factor (SF), which contains an MP structure, stimulate human monocytes to produce interleukin 1 (IL 1). IL 1 is a family of unique polypeptides that mediate a variety of host defense functions and possess several biological properties, many of which are shared with MPs. Endotoxins are potent inducers of IL 1, but polymyxin B, which blocks endotoxin's biological activities, has no effect on MP-induced IL 1 production. SF purified from human urine and SF isolated from the peritoneal fluid of patients undergoing chronic ambulatory peritoneal dialysis (CAPD) induce IL 1 when incubated with human mononuclear cells in vitro. SF from urine or CAPD fluid induces IL 1 production in the picrogram per milliliter range whereas synthetic MDP requires microgram per milliliter concentrations. Thus, both synthetic and naturally occurring MPs exert their biological effects, in part, by inducing IL 1.

  11. Development of high through-put Sr isotope analysis for monitoring reservoir integrity for CO{sub 2} storage.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Andy; Jain, Jinesh; Stewart, Brian

    2012-01-01

    Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.

  12. Sundew adhesive: a naturally occurring hydrogel

    PubMed Central

    Huang, Yujian; Wang, Yongzhong; Sun, Leming; Agrawal, Richa; Zhang, Mingjun

    2015-01-01

    Bioadhesives have drawn increasing interest in recent years, owing to their eco-friendly, biocompatible and biodegradable nature. As a typical bioadhesive, sticky exudate observed on the stalked glands of sundew plants aids in the capture of insects and this viscoelastic adhesive has triggered extensive interests in revealing the implied adhesion mechanisms. Despite the significant progress that has been made, the structural traits of the sundew adhesive, especially the morphological characteristics in nanoscale, which may give rise to the viscous and elastic properties of this mucilage, remain unclear. Here, we show that the sundew adhesive is a naturally occurring hydrogel, consisting of nano-network architectures assembled with polysaccharides. The assembly process of the polysaccharides in this hydrogel is proposed to be driven by electrostatic interactions mediated with divalent cations. Negatively charged nanoparticles, with an average diameter of 231.9 ± 14.8 nm, are also obtained from this hydrogel and these nanoparticles are presumed to exert vital roles in the assembly of the nano-networks. Further characterization via atomic force microscopy indicates that the stretching deformation of the sundew adhesive is associated with the flexibility of its fibrous architectures. It is also observed that the adhesion strength of the sundew adhesive is susceptible to low temperatures. Both elasticity and adhesion strength of the sundew adhesive reduce in response to lowering the ambient temperature. The feasibility of applying sundew adhesive for tissue engineering is subsequently explored in this study. Results show that the fibrous scaffolds obtained from sundew adhesive are capable of increasing the adhesion of multiple types of cells, including fibroblast cells and smooth muscle cells, a property that results from the enhanced adsorption of serum proteins. In addition, in light of the weak cytotoxic activity exhibited by these scaffolds towards a variety of

  13. Uranium Isotope Fractionation during Oxidation of Dissolved U(iv) and Synthetic Solid UO2

    NASA Astrophysics Data System (ADS)

    Wang, X.; Johnson, T. M.; Lundstrom, C. C.

    2013-12-01

    U isotopes (238U/235U) show promise as a tool for environmental monitoring of U contamination as well as a proxy for paleo-redox conditions. However, the isotopic fractionation mechanisms of U are still poorly understood. In groundwater systems, U(VI), a mobile contaminant, can be reduced to immobile U(IV) and thus remediated. Previous work shows that 238U/235U of the remaining U(VI) changes with the extent of reduction. Therefore, U(VI) isotope composition in groundwater can potentially be used to detect and perhaps quantify the extent of reduction. However, knowing if isotopic fractionation occurs during U(IV) oxidation is equally important. First, the reduced U(IV) (either solid or as dissolved organic complexes) potentially can be reoxidized to U(VI). If isotope fractionation occurs during oxidation, it would complicate the use of U isotope composition as a monitoring technique. Further, in natural weathering processes, U(IV) minerals are oxidized to form dissolved U(VI), which is carried to rivers and eventually to the ocean and deposited in marine sediments. The weathering cycle is thus sensitive to redox conditions, meaning the sedimentary U isotope record may serve as a paleoredox indicator, provided U isotope fractionation during oxidation and reduction are well known. We conducted experiments oxidizing 2 different U(IV) species by O2 and measuring isotopic fractionation factors. In one experiment, dissolved U(IV) in 0.1 N HCl (pH 1) was oxidized by entrained air. As oxidation proceeds at pH 1, the remaining dissolved U(IV) becomes progressively enriched in 238U in a linear trend, while the product U(VI) paralleled, but was offset to 1.0‰ lighter in 238U/235U. This linear progression of both remaining reactant and product suggests equilibrium fractionation during oxidation of dissolved U(IV) by O2. A second experiment oxidized synthetic, solid UO2 (in 20 mM NaHCO3, pH 7) with entrained air. The oxidative fractionation is very weak in this case with

  14. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C

    NASA Astrophysics Data System (ADS)

    Deng, Yuying; Li, Yingzhou; Li, Long

    2018-04-01

    Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.

  15. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  16. Prevalence of lymphoplasmacytic synovitis in dogs with naturally occurring cranial cruciate ligament rupture.

    PubMed

    Erne, Jay B; Goring, Robert L; Kennedy, Fidelma A; Schoenborn, William C

    2009-08-15

    To determine the prevalence of lymphoplasmacytic synovitis (LPS) in dogs with naturally occurring cranial cruciate ligament (CCL) rupture and compare clinical, radiographic, cytologic, and histologic findings in dogs with and without LPS. Cross-sectional study. 110 dogs with naturally occurring CCL rupture. Histologic examination of synovial biopsy specimens obtained at the time of surgical treatment was used to identify dogs with LPS. Clinical, radiographic, cytologic, and histologic findings were compared between dogs with and without LPS. 56 (51%) dogs had histologic evidence of LPS. There were no significant differences in age, body weight, duration of lameness, severity of lameness, severity of radiographic signs of degenerative joint disease, extent of CCL rupture (partial vs complete), or gross appearance of the medial meniscus between dogs with and without LPS. Mean tibial plateau angle was significantly lower in dogs with LPS than in dogs without LPS, and dogs with LPS were significantly more likely to have neutrophils in their synovial fluid. Lymphocytes were seen in synovial fluid from a single dog with LPS. Results suggested that LPS was common in dogs with naturally occurring CCL rupture. However, only minor clinical, radiographic, cytologic, and histologic differences were identified between dogs with and without LPS.

  17. Isotopic analysis of uranium in natural waters by alpha spectrometry

    USGS Publications Warehouse

    Edwards, K.W.

    1968-01-01

    A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.

  18. Mass fractionation of noble gases in synthetic methane hydrate: Implications for naturally occurring gas hydrate dissociation

    USGS Publications Warehouse

    Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.

    2013-01-01

    As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.

  19. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates.

    PubMed

    Skulan, J; DePaolo, D J

    1999-11-23

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the (44)Ca/(40)Ca isotopic ratio, the total range of variation observed is 5.5 per thousand, and as much as 4 per thousand variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

  20. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    PubMed Central

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  1. In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, L. A.

    2008-12-01

    hyperfine coupling influence radical recombination and thus reaction kinetics. There is experimental evidence that this can occur during the inhibiting activity of methylmercury on creatine kinase. Here the enzyme provides the free radicals. Previously, reports of chemical mass- independent fractionation of isotopes in nature have involved gas phase reactions and largely explained by photolysis. It now seems that isotopic MIF can occur during metabolic processes as well.

  2. Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA.

    PubMed

    Sánchez-Murillo, Ricardo; Brooks, Erin S; Elliot, William J; Boll, Jan

    2015-01-01

    This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ(2)H = 7.42·δ(18)O + 0.88 (n = 316; r(2) = 0.97). Isotope compositions exhibited a strong temperature-dependent seasonality. Despite this seasonal variation, the stream δ(18)O variation was small. A significant regression (τ = 0.11D(-1.09); r(2) = 0.83) between baseflow MTTs and the damping ratio was found. Baseflow MTTs ranged from 0.4 to 0.6 years (human-altered), 0.7 to 1.7 years (mining-altered), and 0.7 to 3.2 years (forested). Greater MTTs were represented by more homogenous aqueous chemistry whereas smaller MTTs resulted in more dynamic compositions. The isotope and geochemical data presented provide a baseline for future hydrological modelling in the inland PNW.

  3. Chondroprotection using naturally occurring mineral supplementation formula in degenerative osteoarthritis of the knees.

    PubMed

    Bansal, Himanshu; Bansal, Anupama; Agrawal, Diwaker; Singh, Dhananjay; Deb, Kaushik

    2014-01-01

    To evaluate the therapeutic and safety efficacy of a naturally occurring mineral supplementation in the treatment of symptomatic knee osteoarthritis (OA). A prospective, single centre, study of 50 patients aged 50 years and above with painful and radiological Osteoarthritis of knees was carried out for one year. Patients received 40 drops of naturally occurring commercially available mineral supplement concentrate mineral drops purportedly derived from the Great Salt Lake in Utah. Efficacy was objectively confirmed by evaluating changes in the thickness of articular cartilage, joint space width, synovial fluid analysis and subjectively by changes in WOMAC scores and 6 Minute pain-free Walking Distance. The composite WOMAC scores were significantly improved by 17.2 points from a mean of 52 at baseline by year end. 18 (41%) patients showed improvement of more than 100 feet for the pain free distance covered during a 6 minute walk at one year follow-up. Ultrasonologicaly, at one year cartilage thickness improved by at least 0.01 mm in 9 (21%) patients. Though radiologicallynone of patient showed increase in joint space it was noticed that only 2(4.6%) patients had decline of joint space width of more than 0.5 mm. Average cell count reduced to 205/microlitre from a value of 520/microlitre at the start of study suggesting that the mineral supplement used had structural efficacy. Clinically relevant, statistically significant symptomatic and statistically insignificant structural improvement occurred over 1 year period in patients receiving the naturally occurring mineral supplement. The protection of the joint cartilages from progressive degeneration during osteoarthritis by these supplements indicates towards a chondrocyte regenerative potential of this supplement. Such regeneration may occur through activation of tissue specific adult chondrocyte precursors or stem cells.

  4. Natural thorium isotopes in marine sediment core off Labuan port

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafidz, B. Y.; Asnor, A. S.; Terence, R. C.

    2014-02-12

    Sediment core was collected from Labuan port and analyzed to determine the radioactivity of thorium (Th) isotopes. The objectives of this study are to determine the possible sources of Th isotopes at Labuan port and estimates the sedimentation rate based on {sup 228}Th/{sup 232}Th model. The results suggest the {sup 230}Th and {sup 232}Th might be originated from terrestrial sedimentary rock while {sup 228}Th originated by authigenic origin. High ratio value of {sup 230}Th/{sup 232}Th detected at the top surface sediment indicates the increasing of {sup 230}Th at the recent years which might be contributed from the anthropogenic sources. Themore » sedimentation rate of core sediment from Labuan Port was successfully estimated by using {sup 228}Th/{sup 232}Th model. The result show high sedimentation rate with 4.67 cm/year indicates rapid deposition occurred at this study area due to the high physical activity at the Labuan port. By assume the constant sedimentation rate at this area; we estimated the age of 142 cm core sediment obtained from Labuan port is 32 years started from 1981 to 2012. This chronology will be used in forthcoming research to investigate the historical profile of anthropogenic activities affecting the Labuan port.« less

  5. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  6. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  7. Characterization of calcium isotopes in natural and synthetic barite

    USGS Publications Warehouse

    Griffith, E.M.; Schauble, E.A.; Bullen, T.D.; Paytan, A.

    2008-01-01

    The mineral barite (BaSO4) accommodates calcium in its crystal lattice, providing an archive of Ca-isotopes in the highly stable sulfate mineral. Holocene marine (pelagic) barite samples from the major ocean basins are isotopically indistinguishable from each other (??44/40Ca = -2.01 ?? 0.15???) but are different from hydrothermal and cold seep barite samples (??44/40Ca = -4.13 to -2.72???). Laboratory precipitated (synthetic) barite samples are more depleted in the heavy Ca-isotopes than pelagic marine barite and span a range of Ca-isotope compositions, ??44/40Ca = -3.42 to -2.40???. Temperature, saturation state, a Ba2 + / a SO42 -, and aCa2+/aBa2+ each influence the fractionation of Ca-isotopes in synthetic barite; however, the fractionation in marine barite samples is not strongly related to any measured environmental parameter. First-principles lattice dynamical modeling predicts that at equilibrium Ca-substituted barite will have much lower 44Ca/40Ca than calcite, by -9??? at 0 ??C and -8??? at 25 ??C. Based on this model, none of the measured barite samples appear to be in isotopic equilibrium with their parent solutions, although as predicted they do record lower ??44/40Ca values than seawater and calcite. Kinetic fractionation processes therefore most likely control the extent of isotopic fractionation exhibited in barite. Potential fractionation mechanisms include factors influencing Ca2+ substitution for Ba2+ in barite (e.g. ionic strength and trace element concentration of the solution, competing complexation reactions, precipitation or growth rate, temperature, pressure, and saturation state) as well as nucleation and crystal growth rates. These factors should be considered when investigating controls on isotopic fractionation of Ca2+ and other elements in inorganic and biogenic minerals. ?? 2008 Elsevier Ltd.

  8. [Naturally occurring reassortants of infectious bursal disease virus - A review].

    PubMed

    Qi, Xiaole; Gao, Li; Wang, Xiaomei

    2016-05-04

    Infectious bursal disease virus (IBDV) is an important representative of Birnaviridae, which causes infectious bursal disease (IBD), one important immuno-suppressive and fatal disease threatening the poultry husbandry. The naturally occurring reassortants of IBDV induced new risks to disease prevention and control. Here, we reviewed the main types of the genome segments reassortants and intragenic recombination, the inherent mechanism and the biological significances were analyzed, which would give us new insights into the virus genetic evolution research and the disease control strategy.

  9. Discovering Psychological Principles by Mining Naturally Occurring Data Sets.

    PubMed

    Goldstone, Robert L; Lupyan, Gary

    2016-07-01

    The very expertise with which psychologists wield their tools for achieving laboratory control may have had the unwelcome effect of blinding psychologists to the possibilities of discovering principles of behavior without conducting experiments. When creatively interrogated, a diverse range of large, real-world data sets provides powerful diagnostic tools for revealing principles of human judgment, perception, categorization, decision-making, language use, inference, problem solving, and representation. Examples of these data sets include patterns of website links, dictionaries, logs of group interactions, collections of images and image tags, text corpora, history of financial transactions, trends in twitter tag usage and propagation, patents, consumer product sales, performance in high-stakes sporting events, dialect maps, and scientific citations. The goal of this issue is to present some exemplary case studies of mining naturally existing data sets to reveal important principles and phenomena in cognitive science, and to discuss some of the underlying issues involved with conducting traditional experiments, analyses of naturally occurring data, computational modeling, and the synthesis of all three methods. Copyright © 2016 Cognitive Science Society, Inc.

  10. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  11. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.

    PubMed

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  12. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries

    NASA Astrophysics Data System (ADS)

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  13. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    NASA Astrophysics Data System (ADS)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  14. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  15. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.

    PubMed

    Kleifeld, Oded; Doucet, Alain; Prudova, Anna; auf dem Keller, Ulrich; Gioia, Magda; Kizhakkedathu, Jayachandran N; Overall, Christopher M

    2011-09-22

    Analysis of the sequence and nature of protein N termini has many applications. Defining the termini of proteins for proteome annotation in the Human Proteome Project is of increasing importance. Terminomics analysis of protease cleavage sites in degradomics for substrate discovery is a key new application. Here we describe the step-by-step procedures for performing terminal amine isotopic labeling of substrates (TAILS), a 2- to 3-d (depending on method of labeling) high-throughput method to identify and distinguish protease-generated neo-N termini from mature protein N termini with all natural modifications with high confidence. TAILS uses negative selection to enrich for all N-terminal peptides and uses primary amine labeling-based quantification as the discriminating factor. Labeling is versatile and suited to many applications, including biochemical and cell culture analyses in vitro; in vivo analyses using tissue samples from animal and human sources can also be readily performed. At the protein level, N-terminal and lysine amines are blocked by dimethylation (formaldehyde/sodium cyanoborohydride) and isotopically labeled by incorporating heavy and light dimethylation reagents or stable isotope labeling with amino acids in cell culture labels. Alternatively, easy multiplex sample analysis can be achieved using amine blocking and labeling with isobaric tags for relative and absolute quantification, also known as iTRAQ. After tryptic digestion, N-terminal peptide separation is achieved using a high-molecular-weight dendritic polyglycerol aldehyde polymer that binds internal tryptic and C-terminal peptides that now have N-terminal alpha amines. The unbound naturally blocked (acetylation, cyclization, methylation and so on) or labeled mature N-terminal and neo-N-terminal peptides are recovered by ultrafiltration and analyzed by tandem mass spectrometry (MS/MS). Hierarchical substrate winnowing discriminates substrates from the background proteolysis products and

  16. Alaska, Naturally Occurring Asbestos: Experiences, Policy and 2012 Limitation of Liability Legislation

    NASA Astrophysics Data System (ADS)

    Hargesheimer, J.; Perkins, R.

    2012-12-01

    Naturally Occurring Asbestos (NOA) occurs in mineral deposits in Alaska. There are many regions in Alaska that have minerals in surface rocks that may contain asbestos and asbestos has been discovered in many locations in Alaska. Gravel is constantly in demand for heavy construction projects, but some remote localities in Alaska do not have gravel sources that are NOA-free. Determining if NOA can be safely used in heavy construction materials and what can or should be done with NOA materials that are already in place are complex questions. Answers will depend on the amount and type of asbestos mineral, how it is handled in processing, and how it is maintained - all subject to regulation and control of operations. The State of Alaska recently enacted legislation (HB 258) providing, among other things, "… immunity for the state and for landowners, extractors, suppliers, transporters, and contractors for certain actions or claims arising in connection with the use of gravel or aggregate material containing naturally occurring asbestos in certain areas." Implementation of the law and interim regulations and guidance should enable use of NOA for heavy construction materials in Alaska, but as with any new law, it will take some time to understand its full scope and effect.

  17. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal

  18. Effects of fire on naturally occurring blue oak (Quercus douglasii) saplings

    Treesearch

    Tedmund J. Swiecki; Elizabeth Bernhardt

    2002-01-01

    We studied the survival and regrowth of naturally-occurring blue oak saplings burned in a September 1996 arson fire in Vacaville, California. The saplings (pre-fire height 33-353 cm) were burned in a rapid, low-moderate intensity fire. Of 67 blue oak saplings surveyed, 4 failed to resprout after the fire and 2 more died within the following 5 years (9 percent mortality...

  19. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  20. Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria

    USGS Publications Warehouse

    Miller, L.G.; Kalin, Robert M.; McCauley, S.E.; Hamilton, John T.G.; Harper, D.B.; Millet, D.B.; Oremland, R.S.; Goldstein, Allen H.

    2001-01-01

    The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as ???70???) shifts in ??13C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70???) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole Cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C1-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.

  1. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal

    PubMed Central

    Chakraborty, S.; Sinha, N.; Chattopadhyay, R.; Sengupta, S.; Mohan, P. M.; Datye, A.

    2016-01-01

    Isotopic analysis of precipitation over the Andaman Island, Bay of Bengal was carried out for the year 2012 and 2013 in order to study the atmospheric controls on rainwater isotopic variations. The oxygen and hydrogen isotopic compositions are typical of the tropical marine sites but show significant variations depending on the ocean-atmosphere conditions; maximum depletion was observed during the tropical cyclones. The isotopic composition of rainwater seems to be controlled by the dynamical nature of the moisture rather than the individual rain events. Precipitation isotopes undergo systematic depletions in response to the organized convection occurring over a large area and are modulated by the integrated effect of convective activities. Precipitation isotopes appear to be linked with the monsoon intraseasonal variability in addition to synoptic scale fluctuations. During the early to mid monsoon the amount effect arose primarily due to rain re-evaporation but in the later phase it was driven by moisture convergence rather than evaporation. Amount effect had distinct characteristics in these two years, which appeared to be modulated by the intraseasonal variability of monsoon. It is shown that the variable nature of amount effect limits our ability to reconstruct the past-monsoon rainfall variability on annual to sub-annual time scale. PMID:26806683

  2. Biopolyester-based systems containing naturally occurring compounds with enhanced thermo-oxidative stability.

    PubMed

    Arrigo, Rossella; Morici, Elisabetta; Dintcheva, Nadka Tzankova

    2016-11-02

    This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/natural compound systems, performed by spectrometric and thermal analyses, indicated that all stabilizers considered were able to exert a remarkable antioxidant action against thermo-oxidative phenomena. All natural compounds considered are thus proposed as ecofriendly stabilizers, to get fully bio-based polymer systems with enhanced thermo-oxidative stability, suitable for biomedical applications.

  3. Assessing natural attenuation potential at a uranium (U) in situ recovery site (Rosita, TX, USA) using multiple redox-sensitive isotope systems

    NASA Astrophysics Data System (ADS)

    Basu, A.; Brown, S. T.; Christensen, J. N.; DePaolo, D. J.; Reimus, P. W.; Heikoop, J. M.; Simmons, A. M.; House, B.; Schilling, K.; Johnson, T. M.; Pelizza, M.

    2013-12-01

    The In Situ Recovery (ISR) U mining operation at Rosita, TX, USA, involved oxidative dissolution of U from roll front U deposits. This process mobilized U along with other characteristic elements (e.g., Se) from the roll fronts in their soluble and toxic oxidized forms (e.g., U(VI), Se(VI)). The dissolved U(VI) in groundwater poses significant ecological risk due to its chemical toxicity and must be restored below the existing regulatory limit to minimize the environmental impact of ISR mining. However, the undisturbed sediments downgradient to the roll front deposits are expected to remain reduced. Naturally occurring Fe-minerals (e.g., FeS, siderite, magnetite) and microorganisms in the sediments downgradient to ISR activity can reduce dissolved U(VI) to less toxic and insoluble U(IV) and promote natural attenuation. The reduction of oxyanions of U or Se induces measurable isotopic fractionation that can be used to monitor the natural attenuation by downgradient sediments. Here, we used multiple redox-sensitive isotope systems (U, Se, and S) to detect reducing conditions and natural attenuation of U(VI) at the ISR site. We collected groundwater samples from 26 wells located in the ore body, upgradient and downgradient to the ore body. The δ238U values measured in groundwater samples from 23 wells range from 0.48‰ to -1.66‰ (×0.12‰). A preliminary investigation of 6 groundwater samples shows a variation of δ82Se values from -1.44‰ to 5.24‰ (×0.15‰). The δ34SO4 measurements in groundwater vary from 11.8‰ to -19.9‰. The reduction of Se(VI) and SO42- fractionates the lighter isotopes (i.e., 32S and 76Se) in the reduced product phase rendering the remaining reactants in the groundwater enriched in heavier isotopes. Therefore, the high δ82Se and δ34SO4 values may suggest reduction of Se(VI) and SO42-, respectively. The highest δ238U values are observed in the wells located in the ore body or upgradient to the ore body whereas the downgradient

  4. Applications of isotopes to tracing sources of solutes and water in shallow systems

    USGS Publications Warehouse

    Kendall, Carol; Krabbenhoft, David P.

    1995-01-01

    New awareness of the potential danger to water supplies posed by the use of agricultural chemicals has focused attention on the nature of groundwater recharge and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. A better understanding of hydrologic flowpaths and solute sources is required to determine the potential impact of sources of contamination on water supplies, to develop management practices for preserving water quality, and to develop remediation plans for sites that are already contaminated. In many cases, environmental isotopes can be employed as 'surgical tools' for answering very specific questions about water and solute sources. Isotopic data can often provide more accurate information about the system than hydrologic measurements or complicated hydrologic models. This note focuses on practical and cost-effective examples of how naturally-occurring isotopes can be used to track water and solutes as they move through shallow systems.

  5. DECIPHERING NATURALLY-OCCURRING PB CONTAMINATION IMPACTING DRINKING WATER WELLS: SHAKER VILLAGE CATCHMENT, MAINE.

    EPA Science Inventory

    Trace Pb concentrations in groundwater within glacial deposits across Maine fluctuate considerably. Deciphering the distribution and sources of naturally occurring Pb in groundwater with only the use of conventional anomaly identification techniques presents a challenge. In a rep...

  6. Chlorine Isotopic Composition of Perchlorate in Human Urine as a Means of Distinguishing Among Natural and Synthetic Exposure Sources

    PubMed Central

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentín-Blasini, Liza; Blount, Benjamin C.; Ferreccio, Catterina; Steinmaus, Craig M.; Sturchio, Neil C.

    2015-01-01

    Perchlorate (ClO4−) is a ubiquitous environmental contaminant with high human exposure potential; it has both natural and man-made sources in the environment. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the southwestern USA [δ37Cl = +4.1 ± 1.0 ‰; 36Cl/Cl = 1811 (± 136) × 10−15], and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile [δ37Cl = −11.0 ± 1.0 ‰; 36Cl/Cl = 254 (± 40) × 10−15]. Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways. PMID:25805252

  7. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms.

    PubMed

    Wan, Yi; Jones, Paul D; Wiseman, Steve; Chang, Hong; Chorney, Dave; Kannan, Kurunthachalam; Zhang, Kun; Hu, Jian-Ying; Khim, Jong Seong; Tanabe, Shinsuke; Lam, Michael H W; Giesy, John P

    2010-08-15

    An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.

  8. Finding the traces of behavioral and cognitive processes in big data and naturally occurring datasets.

    PubMed

    Paxton, Alexandra; Griffiths, Thomas L

    2017-10-01

    Today, people generate and store more data than ever before as they interact with both real and virtual environments. These digital traces of behavior and cognition offer cognitive scientists and psychologists an unprecedented opportunity to test theories outside the laboratory. Despite general excitement about big data and naturally occurring datasets among researchers, three "gaps" stand in the way of their wider adoption in theory-driven research: the imagination gap, the skills gap, and the culture gap. We outline an approach to bridging these three gaps while respecting our responsibilities to the public as participants in and consumers of the resulting research. To that end, we introduce Data on the Mind ( http://www.dataonthemind.org ), a community-focused initiative aimed at meeting the unprecedented challenges and opportunities of theory-driven research with big data and naturally occurring datasets. We argue that big data and naturally occurring datasets are most powerfully used to supplement-not supplant-traditional experimental paradigms in order to understand human behavior and cognition, and we highlight emerging ethical issues related to the collection, sharing, and use of these powerful datasets.

  9. Antimony isotopic composition in river waters affected by ancient mining activity.

    PubMed

    Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise

    2015-11-01

    In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States.

    PubMed

    Harkness, Jennifer S; Darrah, Thomas H; Moore, Myles T; Whyte, Colin J; Mathewson, Paul D; Cook, Tyson; Vengosh, Avner

    2017-11-07

    Molybdenum (Mo) is an essential trace nutrient but has negative health effects at high concentrations. Groundwater typically has low Mo (<2 μg/L), and elevated levels are associated with anthropogenic contamination, although geogenic sources have also been reported. Coal combustion residues (CCRs) are enriched in Mo, and thus present a potential anthropogenic contamination source. Here, we use diagnostic geochemical tracers combined with groundwater residence time indicators to investigate the sources of Mo in drinking-water wells from shallow aquifers in a region of widespread CCR disposal in southeastern Wisconsin. Samples from drinking-water wells were collected in areas near and away from known CCR disposal sites, and analyzed for Mo and inorganic geochemistry indicators, including boron and strontium isotope ratios, along with groundwater tritium-helium and radiogenic 4 He in-growth age-dating techniques. Mo concentrations ranged from <1 to 149 μg/L. Concentrations exceeding the U.S. Environmental Protection Agency health advisory of 40 μg/L were found in deeper, older groundwater (mean residence time >300 y). The B (δ 11 B = 22.9 ± 3.5‰) and Sr ( 87 Sr/ 86 Sr = 0.70923 ± 0.00024) isotope ratios were not consistent with the expected isotope fingerprints of CCRs, but rather mimic the compositions of local lithologies. The isotope signatures combined with mean groundwater residence times of more than 300 years for groundwater with high Mo concentrations support a geogenic source of Mo to the groundwater, rather than CCR-induced contamination. This study demonstrates the utility of a multi-isotope approach to distinguish between fossil fuel-related and natural sources of groundwater contamination.

  11. The evolution of standards for naturally occurring fluorides: an example of scientific due process.

    PubMed Central

    Clark, N; Corbin, S

    1983-01-01

    In three quarters of a century of observation and research, the effects of fluoride on dental caries and on general bodily health have been well documented. An expanding data base has allowed a firming up of the guidance and standards for appropriate and safe levels of naturally occurring fluorides for human consumption. Over time, through specific recommendations, the maximum fluoride concentrations deemed appropriate have been altered, but by a process of considered adjustment. Although the Public Health Service has been responsible for the formalization of many of the recommended standards, those recommendations have been based on research from many fronts. In the most recent reconsideration of the standards for natural fluoride, the most exhaustive and thoroughly documented review to date was done, incorporating review by representatives from State, Federal, and private programs. Although the specific example of the development of standards for natural fluoride is used, it should be illustrative of similar processes that are constantly underway in regard to substances and factors with a potential impact on the public's health. Expansion of the data base through research and scientific inquiry will lay the foundation for future reconsideration of the standards for naturally occurring fluorides. PMID:6828638

  12. Is it necessary to raise awareness about technologically enhanced naturally occurring radioactive materials?

    PubMed

    Michalik, Bogusław

    2009-10-01

    Since radiation risks are usually considered to be related to nuclear energy, the majority of research on radiation protection has focused on artificial radionuclides in radioactive wastes, spent nuclear fuel or global fallout caused by A-bomb tests and nuclear power plant failures. Far less attention has been paid to the radiation risk caused by exposure to ionizing radiation originating from natural radioactivity enhanced due to human activity, despite the fact that technologically enhanced naturally occurring radioactive materials are common in many branches of the non-nuclear industry. They differ significantly from "classical" nuclear materials and usually look like other industrial waste. The derived radiation risk is usually associated with risk caused by other pollutants and can not be controlled by applying rules designed for pure radioactive waste. Existing data have pointed out a strong need to take into account the non-nuclear industry where materials containing enhanced natural radioactivity occur as a special case of radiation risk and enclose them in the frame of the formal control. But up to now there are no reasonable and clear regulations in this matter. As a result, the non-nuclear industries of concern are not aware of problems connected with natural radioactivity or they would expect negative consequences in the case of implementing radiation protection measures. The modification of widely comprehended environmental legislation with requirements taken from radiation protection seems to be the first step to solve this problem and raise awareness about enhanced natural radioactivity for all stakeholders of concern.

  13. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  14. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Protein retention assessment of four levels of poultry by-product substitution of fishmeal in rainbow trout (Oncorhynchus mykiss) diets using stable isotopes of nitrogen (δ15N) as natural tracers.

    PubMed

    Badillo, Daniel; Herzka, Sharon Z; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ(15)N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources.

  16. Protein Retention Assessment of Four Levels of Poultry By-Product Substitution of Fishmeal in Rainbow Trout (Oncorhynchus mykiss) Diets Using Stable Isotopes of Nitrogen (δ15N) as Natural Tracers

    PubMed Central

    Badillo, Daniel; Herzka, Sharon Z.; Viana, Maria Teresa

    2014-01-01

    This is second part from an experiment where the nitrogen retention of poultry by-product meal (PBM) compared to fishmeal (FM) was evaluated using traditional indices. Here a quantitative method using stable isotope ratios of nitrogen (δ15N values) as natural tracers of nitrogen incorporation into fish biomass is assessed. Juvenile rainbow trout (Oncorhynchus mykiss) were fed for 80 days on isotopically distinct diets in which 0, 33, 66 and 100% of FM as main protein source was replaced by PBM. The diets were isonitrogenous, isolipidic and similar in gross energy content. Fish in all treatments reached isotopic equilibrium by the end of the experiment. Two-source isotope mixing models that incorporated the isotopic composition of FM and PBM as well as that of formulated feeds, empirically derived trophic discrimination factors and the isotopic composition of fish that had reached isotopic equilibrium to the diets were used to obtain a quantitative estimate of the retention of each source of nitrogen. Fish fed the diets with 33 and 66% replacement of FM by PBM retained poultry by-product meal roughly in proportion to its level of inclusion in the diets, whereas no differences were detected in the protein efficiency ratio. Coupled with the similar biomass gain of fishes fed the different diets, our results support the inclusion of PBM as replacement for fishmeal in aquaculture feeds. A re-feeding experiment in which all fish were fed a diet of 100% FM for 28 days indicated isotopic turnover occurred very fast, providing further support for the potential of isotopic ratios as tracers of the retention of specific protein sources into fish tissues. Stable isotope analysis is a useful tool for studies that seek to obtain quantitative estimates of the retention of different protein sources. PMID:25226392

  17. Carbon and nitrogen biogeochemistry in the ocean: A study using stable isotope natural abundance

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Desmarais, David J.

    1985-01-01

    Determining the biogeochemical pathways traveled by carbon and nitrogen in the ocean is fundamental to the understanding of how the ocean participates in the cycling of these elements within the biosphere. Because biological production, metabolism, and respiration can significantly alter the natural abundance of C-13 and N-15, these abundances can provide important information about the nature of these biological processes and their variability in the marine environment. The research initially seeks to characterize the spatial and temporal patterns of stable isotope abundances in organic matter, and to relate these abundances to C and N biogeochemical processes within selected areas of the northeastern Pacific Ocean.

  18. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  19. Natural and anthropogenic variations in the N cycle - A perspective provided by nitrogen isotopes in trees near oil-sand developments

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2011-12-01

    Nitrogen stable isotopes of tree-ring series have been recently used to detect past air pollution effects on forests in the contexts of point sources, highways or peri-urban regions. Here, we want to assess their potential to understand changes in soil processes and reveal perturbations of the N cycle. Our approach involves combining tree-ring N, C and O stable isotope series with statistical modelling to distinguish the responses of trees due to natural (climatic) conditions from the ones potentially caused by emissions from the Athabasca oil-sand developments where truck fleets, oil upgraders, desulphurization and hydrogen plants, boilers, heaters and turbines have been active since 1967. Three white spruce trees [Picea glauca (Moench)] 165 years or older, were selected in a well drained brunisolic site, at 55 km from the heart of the development operations (white and black spruce trees from other sites are currently being investigated). Their growth rings were dated and separated at a time resolution of 1 or 2 years for the 1880-2009 period. The average oxygen isotope ratios of cellulose do not show long-term anomalies and reflect climatic conditions. The average C isotope ratios of cellulose covering the 1880-1965 period show short-term variations mostly explained by local climatic conditions, whereas the 1966-1995 series presents similar short-term variations superimposed on a long-term isotopic increase significantly departing from the oxygen isotope curve. Most importantly, the nitrogen isotope series of treated wood shows an average decrease of 1.0% during the 1970-2009 period. The statistical links between the variations of the regional drought index and the isotopic C and N responses during the pre-operation period allows to develop predictive climatic models. When we apply these models to predict the natural isotopic behaviour of the recent period, the measured isotopic trends of the operation period depart from the modelled curves. In contrast, using

  20. Carbon Isotope Biogeochemistry of Methane from Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.

    1993-01-01

    The isotopic composition of naturally occurring methane was used to constrain the tropospheric budget of that radiatively active gas. Numerous studies have shown that the isotopic composition is not constant, even for a specific source, and may vary temporally and spatially. The objective was to develop a process-level model that reproduced the seasonal variations in the C-13/C-12 composition of methane observed at the coastal site, Cape Lookout Bight, NC. Details of the mass balance are provided. Experiments and models designed to determine what factors incluence C-13/C-12 ratio of dissolved CO2 are reported. All the factors described were combined in a model that faithfully reproduces the seasonal C-13/C-12 variations observed at Cape Lookout. The model is described.

  1. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  2. Cerium and Neodymium Isotope Fractionation in Geochemical Samples

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ishibashi, T.

    2014-12-01

    The study of naturally occurring isotopic variations of rare earth elements (REE) has a potentially significant influence in geochemical research fields with other traditional studies of REE. One of the key features of REE are their chemical similarities and gradual changes of ionic radius, which may make the isotopic variation of REE a potential tool to understand the mechanisms of isotopic fractionation in nature. Among the REE, geochemical and physicochemical features of Ce could be anomalous, because Ce could be present as the tetravalent (+IV) state as well as the common trivalent (+III) state of other REE. Since the oxidation state of Ce can change by reflecting the redox conditions of the environment, the measured differences in the degree of isotopic fractionation between Ce and other REE can provide unique information about the redox conditions. In this study, we developed a new analytical method to determine the mass-dependent isotopic fractionations of Ce and Nd in geochemical samples. The reproducibility of the isotopic ratio measurements on 142Ce/140Ce, 146Nd/144Nd and 148Nd/144Nd were 0.08‰ (2SD, n=25), 0.06‰ (2SD, n=39) and 0.12‰ (2SD, n=39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five geochemical reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ142Ce and δ146Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by physicochemical processes

  3. Silicon Isotopic Measurements in Desolvated Samples by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Cardinal, D.; Alleman, L.; Ziegler, K.; de Jong, J.; Andre, L.

    2002-12-01

    Silicon, the most ubiquitous rock-forming element presents also a key role in biological processes. In particular, its biogeochemical cycle constitutes one of the most challenging issues in recent years due to its close relationship with the carbon cycle in marine environments (Tréguer et al., 1995; Ragueneau et al., 2000). The most recent silicon isotopic investigations on various natural samples have highlighted the great potential of this (palaeo)-proxy for oceanographers (De La Rocha et al., 1997, 1998). Better understanding the silicon isotope fractionation due to various biogeochemical processes can be achieved by facilitating its measurements through MC-ICPMS technique (De La Rocha et al., 2002; Alleman et al., 2002). In this regard we have developed an original method to analyze silicon isotopes under dry plasma conditions. We demonstrate that coupling a Nu Plasma MC-ICP-MS with a Cetac Aridus desolvator allows the rapid acquisition of natural silicon isotope abundances with high sensitivity and accuracy. To adequately correct for the mass fractionation occurring at the interface between the plasma source and the mass spectrometer line, we combine external normalization using Mg as a dopant with standard-sample bracketing using NBS-28 as the reference. With the desolvating nebulization system, the measurement of 28Si and 29Si isotopes is not hampered by significant interferences. δ29Si values are obtained with an accuracy and repeatability better than 0.1 \\permil. The accuracy has been successfully calibrated against the laser fluorination line technique (De La Rocha et al., 1996; Alleman et al., 2002). We could demonstrate that the isotopic fractionation that might occur in the plasma or the desolvator was adequately corrected by combining Mg isotopes and the sample-standard bracketing procedure. Moreover, the preservation of the Si isotopic signatures of the samples is validated by the different chemical sample treatments required by these two

  4. Natural variations in the rhenium isotopic composition of meteorites

    NASA Astrophysics Data System (ADS)

    Liu, R.; Hu, L.; Humayun, M.

    2017-03-01

    Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC-ICP-MS, and obtained the first precise δ187Re values ( ±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by 0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic-ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre-GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume-dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass-dependent fractionation is elusive. The magnitude of a nucleosynthetic s-process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.

  5. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  6. Phytohormonal basis for the plant growth promoting action of naturally occurring biostimulators.

    PubMed

    Kurepin, Leonid V; Zaman, Mohammad; Pharis, Richard P

    2014-07-01

    There is increasing interest in the use of naturally occurring 'biostimulators' for enhancing the growth of agricultural and horticultural crops. Bacteria, fungi and protozoa, as well as marine algae-based seaweed extracts, can produce or contain biostimulators. The activity of biostimulators to promote plant growth is often attributed to their ability to directly or indirectly provide mineral nutrients (mostly N, but also P, S and other macro- and micro-nutrients) to plants. Alternatively, biostimulators are postulated to increase the plant's ability to assimilate these mineral nutrients, often in return for photo-assimilates (as occurs with certain bacteria and fungi associations). Although optimal growth of plants depends on the availability of adequate mineral nutritients, that growth (and also development, including reproduction) is also regulated by plant hormones (phytohormones), including gibberellins, auxins and cytokinins. This review describes and discusses the evidence that the presence or application of biostimulators also increases plant growth directly via phytohormone action and also influences the plant's ability to control its own hormone biosynthesis and homeostasis. Finally, it discusses the need for a better understanding of the role(s) that are played by the naturally occurring biostimulators associated with the plant in the crop field. It is suggested that better understanding will allow for optimal crop yield returns, since disruptions of phytohormone homeostasis in plant organs and tissues can yield either beneficial or sub-optimal outcomes. © 2013 Society of Chemical Industry.

  7. Investigating chloroperoxidase-catalyzed formation of chloroform from humic substances using stable chlorine isotope analysis.

    PubMed

    Breider, Florian; Hunkeler, Daniel

    2014-01-01

    Chloroperoxidase (CPO) is suspected to play an important role in the biosynthesis of natural chloroform. The aims of the present study are to evaluate the variability of the δ(37)Cl value of naturally produced chloroform and to better understand the reaction steps that control the chlorine isotope signature of chloroform. The isotope analyses have shown that the chlorination of the humic substances (HS) in the presence of high H3O(+) and Cl(-) concentrations induces a large apparent kinetic isotope effect (AKIE = 1.010-1.018) likely associated with the transfer of chlorine between two heavy atoms, whereas in the presence of low H3O(+) and Cl(-) concentrations, the formation of chloroform induces a smaller AKIE (1.005-1.006) likely associated with the formation of an HOCl-ferriprotoporphyrin IX intermediate. As the concentration of H3O(+) and Cl(-) in soils are generally at submillimolar levels, the formation of the HOCl-ferriprotoporphyrin IX intermediate is likely rate-limiting in a terrestrial environment. Given that the δ(37)Cl values of naturally occurring chloride tend to range between -1 and +1‰, the δ(37)Cl value of natural chloroform should vary between -5‰ and -8‰. As the median δ(37)Cl value of industrial chloroform is -3.0‰, the present study suggests that chlorine isotopic composition of chloroform might be used to discriminate industrial and natural sources in the environment.

  8. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  9. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  10. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  11. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  12. Comparative genome and evolutionary analysis of naturally occurring Beilong virus in brown and black rats.

    PubMed

    Woo, Patrick C Y; Wong, Annette Y P; Wong, Beatrice H L; Lam, Carol S F; Fan, Rachel Y Y; Lau, Susanna K P; Yuen, Kwok-Yung

    2016-11-01

    Recently, we reported the presence of Beilong virus in spleen and kidney samples of brown rats and black rats, suggesting that these rodents could be natural reservoirs of Beilong virus. In this study, four genomes of Beilong virus from brown rats and black rats were sequenced. Similar to the Beilong virus genome sequenced from kidney mesangial cell line culture, those of J-virus from house mouse and Tailam virus from Sikkim rats, these four genomes from naturally occurring Beilong virus also contain the eight genes (3'-N-P/V/C-M-F-SH-TM-G-L-5'). In these four genomes, the attachment glycoprotein encoded by the G gene consists of 1046 amino acids; but for the original Beilong virus genome sequenced from kidney mesangial cell line, the G CDS was predicted to be prematurely terminated at position 2205 (TGG→TAG), resulting in a 734-amino-acid truncated G protein. This phenomenon of a lack of nonsense mutation in naturally occurring Beilong viruses was confirmed by sequencing this region of 15 additional rodent samples. Phylogenetic analyses showed that the cell line and naturally occurring Beilong viruses were closely clustered, without separation into subgroups. In addition, these viruses were further clustered with J-virus and Tailam virus, with high bootstrap supports of >90%, forming a distinct group in Paramyxoviridae. Brown rats and black rats are natural reservoirs of Beilong virus. Our results also supports that the recently proposed genus, Jeilongvirus, should encompass Beilong virus, J-virus and Tailam virus as members. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative(1)H-NMR.

    PubMed

    Le, Phuong-Mai; Ding, Jianfu; Leek, Donald M; Mester, Zoltan; Robertson, Gilles; Windust, Anthony; Meija, Juris

    2016-10-01

    In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative(1)H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x((13)C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.

  14. Fractionation of mercury isotopes by photo-oxidation in aquatic systems

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Bergquist, B. A.; Blum, J. D.

    2009-12-01

    Mercury is a globally distributed pollutant that bioaccumulates in aquatic food webs, even in remote locations. The recent discovery of both large mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) has made the promise of tracing this neurotoxin through the environment by using its isotopes very exciting. So far, the only process demonstrated experimentally to produce large MIF for Hg (similar in magnitude to the MIF observed in natural samples such as fish) is photochemical reduction (Bergquist and Blum, 2007). During photo-reduction, MIF of the odd isotopes was observed with the odd isotopes (199Hg, 201Hg) being preferentially enriched in the aqueous phase. Bergquist and Blum, 2007, suggested that the cause of MIF was the magnetic isotope effect (MIE), which is purely a kinetic phenomenon involving radical pair intermediates. Radical pairs with odd isotopes, which have non-zero nuclear spin and magnetic moments, can undergo spin conversion faster than radical pairs with non-magnetic even isotopes. This allows the odd and even isotopes to be preferentially enriched in different reaction products. MIE is a complex phenomenon that is dependent on several factors including hyperfine coupling, life-time of the radical pair, coupling strength of the radical pair, spin-orbital coupling, diffusion factors, and the solvent cage (space) in which the reaction occurs. Only under rare circumstances will all the factors be suitable for the expression of MIE in natural reactions. The goal of this study was to conduct aqueous photo-oxidation reactions to investigate whether this redox pathway expresses MIF (in the form of MIE) similar to the photo-reduction pathway. In natural systems, net photo-reduction of Hg (II) species results in the release of Hg(0) vapor to the atmosphere. However this net photo-reduction is a combination of both photo-reduction and photo-oxidation. In their experiments, Bergquist and Blum 2007, only investigated the aqueous photo

  15. A Computational Framework for High-Throughput Isotopic Natural Abundance Correction of Omics-Level Ultra-High Resolution FT-MS Datasets

    PubMed Central

    Carreer, William J.; Flight, Robert M.; Moseley, Hunter N. B.

    2013-01-01

    New metabolomics applications of ultra-high resolution and accuracy mass spectrometry can provide thousands of detectable isotopologues, with the number of potentially detectable isotopologues increasing exponentially with the number of stable isotopes used in newer isotope tracing methods like stable isotope-resolved metabolomics (SIRM) experiments. This huge increase in usable data requires software capable of correcting the large number of isotopologue peaks resulting from SIRM experiments in a timely manner. We describe the design of a new algorithm and software system capable of handling these high volumes of data, while including quality control methods for maintaining data quality. We validate this new algorithm against a previous single isotope correction algorithm in a two-step cross-validation. Next, we demonstrate the algorithm and correct for the effects of natural abundance for both 13C and 15N isotopes on a set of raw isotopologue intensities of UDP-N-acetyl-D-glucosamine derived from a 13C/15N-tracing experiment. Finally, we demonstrate the algorithm on a full omics-level dataset. PMID:24404440

  16. ICP-MS for isotope ratio measurement

    USDA-ARS?s Scientific Manuscript database

    The use of stable isotopes in mineral nutrition research has become a fundamental aspect of conducting this research. A gradual transition has occurred, now virtually complete, from radioactive isotope studies to those using stable isotopes. Although primarily used in human research, mineral stable ...

  17. The Determination of the Natural Abundance of the Isotopes of Chlorine: An Introductory Experiment in Mass Spectrometry.

    ERIC Educational Resources Information Center

    O'Malley, Rebecca M.

    1982-01-01

    Describes a laboratory experiment which introduces basic principles and experimental techniques of mass spectrometry for fourth year undergraduate (B.Sc.) students. Laboratory procedures, background information, and discussion of results are provided for the experiment in which the natural isotopic abundance of chlorine is determined. (Author/JN)

  18. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  19. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  20. Characterization of a new candidate isotopic reference material for natural Pb using primary measurement method.

    PubMed

    Nonose, Naoko; Suzuki, Toshihiro; Shin, Ki-Cheol; Miura, Tsutomu; Hioki, Akiharu

    2017-06-29

    A lead isotopic standard solution with natural abundance has been developed by applying a mixture of a solution of enriched 208 Pb and a solution of enriched 204 Pb ( 208 Pb- 204 Pb double spike solution) as bracketing method. The amount-of-substance ratio of 208 Pb: 204 Pb in this solution is accurately measured by applying EDTA titrimetry, which is one of the primary measurement methods, to each enriched Pb isotope solution. Also metal impurities affecting EDTA titration and minor lead isotopes contained in each enriched Pb isotope solution are quantified by ICP-SF-MS. The amount-of-substance ratio of 208 Pb: 204 Pb in the 208 Pb- 204 Pb double spike solution is 0.961959 ± 0.000056 (combined standard uncertainty; k = 1). Both the measurement of lead isotope ratios in a candidate isotopic standard solution and the correction of mass discrimination in MC-ICP-MS are carried out by coupling of a bracketing method with the 208 Pb- 204 Pb double spike solution and a thallium internal addition method, where thallium solution is added to the standard and the sample. The measured lead isotope ratios and their expanded uncertainties (k = 2) in the candidate isotopic standard solution are 18.0900 ± 0.0046 for 206 Pb: 204 Pb, 15.6278 ± 0.0036 for 207 Pb: 204 Pb, 38.0626 ± 0.0089 for 208 Pb: 204 Pb, 2.104406 ± 0.00013 for 208 Pb: 206 Pb, and 0.863888 ± 0.000036 for 207 Pb: 206 Pb. The expanded uncertainties are about one half of the stated uncertainty for NIST SRM 981, for 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, or one eighth, for 208 Pb: 206 Pb and 207 Pb: 206 Pb, The combined uncertainty consists of the uncertainties due to lead isotope ratio measurements and the remaining time-drift effect of mass discrimination in MC-ICP-MS, which is not removed by the coupled correction method. In the measurement of 208 Pb: 204 Pb, 207 Pb: 204 Pb and 206 Pb: 204 Pb, the latter contribution is two or three times larger than the former. When the coupling of

  1. Grafted self-assembled monolayers derived from naturally occurring phenolic lipids.

    PubMed

    Pillot, J-P; Birot, M; Tran, T T T; Dao, T M; Belin, C; Desbat, B; Lazare, S

    2005-04-12

    Self-assembled monolayers grafted onto silicon surfaces were obtained from the hydrosilylation products by trialcoxysilanes of naturally occurring phenolic lipid allyl ethers. The as-obtained materials were characterized by various physical and physicochemical methods. Thus, contact angles of water drops showed that they possess very high hydrophobicity. Their excellent regularity was corroborated by AFM microscopy. The frequencies of the stretching CH2 infrared modes indicate the presence of alkyl chains mainly in the trans/trans conformation. Additionally, optical ellipsometry and quartz microbalance measurements enabled us to estimate the thickness of the films. The results, as a whole, are in good agreement with the formation of densely packed monolayers.

  2. Iron Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Kehm, K.; Alexander, C. M.; Hauri, E. H.

    2001-12-01

    The recent identification of naturally occurring isotopic mass fractionation of the transition met-als on the Earth has prompted a search for similar variability in meteorites. Studies of Cu, Zn, and Fe, for example, have revealed per-mil level and larger mass fractionations between different bulk meteorites. Such variations can result from temperature-sensitive isotope exchange reactions and kinetic processes, and therefore may reflect conditions in the solar nebula and on meteorite parent bodies. Recent advances in ICP-MS have permitted isotope studies of transition metals and other elements with similarly small isotopic mass dispersions. Among the transition metals, Fe is perhaps the most difficult to analyze by ICP-MS because plasma sources are copious producers of argide molecules that interfere with the measurement of iron isotopes. However, the stable isotope behavior of Fe is of special interest because it is a non-refractory major element in meteorites, present in a variety of mineral associations and redox states. Considerable effort has gone into overcoming the inherent analytical difficulties of measuring Fe using ICP-MS. We recently reported on a technique that achieves argide reduction by operating the plasma source in so-called 'cold' mode. In this presentation, we report results from this ongoing work. To date, analyses of nine different meteorites, and eight individual Tieschitz (H3) chondrules have been completed, along with a number of measurements of the Hawaiian basalt sample Kil1919. All of the bulk meteorite compositions, which include both chondrites and irons, have identical 56Fe/54Fe to within ~ 0.14 per mil (2 sigma), and are indistinguishable from the composition of the terrestrial basalt. The Tieschitz chondrules, on the other hand, tend to have isotopically light compositions. This could reflect formation from fractionated starting material. Alternatively, Fe condensation, under non-equilibrium conditions can enrich light isotopes

  3. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    USGS Publications Warehouse

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that

  4. Forecasting seizures in dogs with naturally occurring epilepsy.

    PubMed

    Howbert, J Jeffry; Patterson, Edward E; Stead, S Matt; Brinkmann, Ben; Vasoli, Vincent; Crepeau, Daniel; Vite, Charles H; Sturges, Beverly; Ruedebusch, Vanessa; Mavoori, Jaideep; Leyde, Kent; Sheffield, W Douglas; Litt, Brian; Worrell, Gregory A

    2014-01-01

    Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low-gamma (30-70 Hz), and high-gamma (70-180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring.

  5. Evaluation and source attribution of freshwater contributions to Kinvarra Bay, Ireland, using (222)Rn, EC and stable isotopes as natural indicators.

    PubMed

    Schubert, Michael; Knoeller, Kay; Rocha, Carlos; Einsiedl, Florian

    2015-03-01

    Freshwater discharge into the coastal sea is of general interest for two reasons: (i) It acts as vehicle for the transport of contaminants or nutrients into the ocean, and (ii) it indicates the loss of significant volumes of freshwater that might be needed for irrigation or drinking water supply. Due to the large-scale and long-term nature of the related hydrological processes, locating and quantitatively assessing freshwater discharge into the sea require naturally occurring tracers that allow fast, inexpensive and straightforward detection. In several studies, the standard water parameters electrical conductivity (EC) and pH have proven their suitability in this regard. However, while distribution patterns of EC and pH in the coastal sea indicate freshwater discharge in general, a separation between discharging surface water and submarine groundwater discharge (SGD) is not possible with these alone. The naturally occurring radionuclide radon-222 has been shown to be useful in the quantification of SGD and its distinction from surface runoff. This study aimed to evaluate and compare the informative value of the three parameters-EC, pH and radon concentration-in detecting and quantifying SGD by carrying out a case study in a bay located in western Ireland. The results reveal that radon activity is the most sensitive parameter for detecting SGD. However, only the combined evaluation of radon, EC and pH allows a quantitative allocation of groundwater and surface water contributions to the overall freshwater discharge into the sea. This conclusion is independently supported by stable isotope data measured on selected samples.

  6. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado and Utah using mobile stable isotope (13CH4) analysis

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm

    2013-04-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These

  7. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  8. Preclinical characterization of naturally occurring polyketide cyclophilin inhibitors from the sanglifehrin family.

    PubMed

    Gregory, Matthew A; Bobardt, Michael; Obeid, Susan; Chatterji, Udayan; Coates, Nigel J; Foster, Teresa; Gallay, Philippe; Leyssen, Pieter; Moss, Steven J; Neyts, Johan; Nur-e-Alam, Mohammad; Paeshuyse, Jan; Piraee, Mahmood; Suthar, Dipen; Warneck, Tony; Zhang, Ming-Qiang; Wilkinson, Barrie

    2011-05-01

    Cyclophilin inhibitors currently in clinical trials for hepatitis C virus (HCV) are all analogues of cyclosporine (CsA). Sanglifehrins are a group of naturally occurring cyclophilin binding polyketides that are structurally distinct from the cyclosporines and are produced by a microorganism amenable to biosynthetic engineering for lead optimization and large-scale production by fermentation. Preclinical characterization of the potential utility of this class of compounds for the treatment of HCV revealed that the natural sanglifehrins A to D are all more potent than CsA at disrupting formation of the NS5A-CypA, -CypB, and -CypD complexes and at inhibition of CypA, CypB, and CypD isomerase activity. In particular, sanglifehrin B (SfB) was 30- to 50-fold more potent at inhibiting the isomerase activity of all Cyps tested than CsA and was also shown to be a more potent inhibitor of the 1b subgenomic replicon (50% effective concentrations [EC50s] of 0.070 μM and 0.16 μM in Huh 5-2 and Huh 9-13 cells, respectively). Physicochemical and mouse pharmacokinetic analyses revealed low oral bioavailability (F<4%) and low solubility (<25 μM), although the half-lives (t1/2) of SfA and SfB in mouse blood after intravenous (i.v.) dosing were long (t1/2>5 h). These data demonstrate that naturally occurring sanglifehrins are suitable lead compounds for the development of novel analogues that are less immunosuppressive and that have improved metabolism and pharmacokinetic properties.

  9. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    PubMed Central

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  10. Uranium Bio-accumulation and Cycling as revealed by Uranium Isotopes in Naturally Reduced Sediments from the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate

    2016-04-01

    Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by

  11. Management of Naturally Occurring Radioactive Materials (NORM) in Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baweja, Anar S.; Tracy, Bliss L.

    2008-08-07

    In Canada, nuclear and radiological regulatory responsibilities are shared between the provinces/territories and the federal government. The Canadian Nuclear Safety Commission (CNSC) regulates nuclear fuel cycle materials and man-made radionuclides under the Nuclear Safety and Control Act (2000). The provinces and territories regulate NORM arising from industrial activities, not involving the nuclear fuel cycle materials. Present guideline--Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)--was published in 2000 in order to bring uniformity to the management of NORM-related procedures to provide adequate radiation protection for workers and the general public. The basic premise of these guidelines is thatmore » the NORM-related activities should not be posing any greater hazard than those activities regulated under the Nuclear Safety and Control Act; these concepts are described in this paper.« less

  12. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons

    USGS Publications Warehouse

    Des Marais, D.J.; Donchin, J.H.; Nehring, N.L.; Truesdell, A.H.

    1981-01-01

    Previous interest in light hydrocarbons from geothermal systems has focused principally on the origin of the methane1 and the estimation of subsurface temperatures from the carbon isotopic content of coexisting methane and carbon dioxide1-3. Higher molecular weight hydrocarbons were first reported in gases from Yellowstone National Park4, and have since been found to occur commonly in geothermal emanations in the western United States5. Isotopic measurements of individual geothermal hydrocarbons are now reported which help to explain the origin of these hydrocarbons. The thermal decomposition of sedimentary or groundwater organic matter is a principal source of hydrocarbons in four geothermal areas in western North America. ?? 1981 Nature Publishing Group.

  13. Mass Dependent and Mass Independent Fractionation of Hg Isotopes and Estimation of Photochemical Loss of Hg in Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; Blum, J. D.

    2007-12-01

    Mercury is a globally distributed and highly toxic pollutant, the mobility and bioaccumulation of which is dependent on its redox cycling. Hg isotope analysis is an important new tool for identifying Hg sources and tracking Hg transformations in the environment. Most natural samples analyzed for Hg isotopes display mass-dependent isotope fractionation (MDF), but a small body of data suggests that some natural samples also display mass- independent isotope fractionation (MIF) of the odd Hg isotopes. Here we document MIF of Hg isotopes during an important natural process, constrain the potential mechanism of isotope fractionation, and apply the MIF observed in natural samples to quantify the photochemical reduction of Hg species in the environment. Reduction of Hg species to Hg0 vapor is an important pathway for removal of Hg from aqueous systems into the atmosphere and occurs by abiotic and biotic mechanisms. In laboratory experiments, we find that photochemical reduction Hg species by natural sunlight leads to large MIF of the odd isotopes. Also, the relationship between MIF for the two odd isotopes of Hg is significantly different for different photo-reduction pathways. In contrast, both biological reduction (Kritee et al., 2006) and dark abiotic organically-mediated reduction follow MDF. Natural samples from aquatic ecosystems preserve both MDF and MIF. In fish, MDF increases with the size and Hg concentration of fish suggesting MDF may be useful in understanding Hg bioaccumulation. Fish also display a large range in MIF (4‰), and the relationship between the MIF of the two odd isotopes in fish has a similar slope to the slope found for photo-reduction of CH3Hg+. Since fish bioaccumulate CH3Hg+, fish may be recording the extent to which CH3Hg+ is lost via photochemical reduction in an aquatic ecosystem. Fish populations from different locations have different MIF values, but mostly display similar MIF within a given locale. This suggests that MIF is preserved

  14. Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: The Domizio-Flegreo Littoral (Italy) case study

    USGS Publications Warehouse

    Grezzi, G.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    The isotopic signature of geogenic and anthropogenic materials, in combination with concentration data for pollutants, can help trace the origin and the extent of contamination in the environment. This approach is particularly effective if naturally occurring and anthropogenically introduced metals have different isotopic ratios. Lead isotope analysis on soils from 7 profiles (1. m depth) and on groundwaters from 8 wells have been used to determine the impact of human activities on the surface environment of Domizio-Flegreo Littoral. Result obtained show that in sub-rural areas the isotopic composition of the samples collected along the soil profiles of Domizio-Flegreo Littoral is likely mostly controlled by the nature of the parent geologic material (natural) while in more urbanized areas (Giugliano) Pb isotopic composition in superficial soils is mostly influenced by anthropic sources such as motor vehicles. Lead isotopic ratios in groundwaters also show that the use of pesticides and, probably, the influence of aerosols and the presence of illegal waste disposal can influence water quality. ?? 2010 Elsevier B.V.

  15. Concentrations of the naturally occurring radionucleides Pb-210, Po-210, and Ra-226 in aquatic fauna

    NASA Technical Reports Server (NTRS)

    Holtzman, R. B.

    1969-01-01

    Study reveals naturally occurring radionuclides are ubiquitous and contribute a substantial fraction of the natural radiation dose to humans and various biota. Measurements may be useful in ecological and other biological problems such as tracing food chains of animals and study of the metabolism of these elements.

  16. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion

    NASA Astrophysics Data System (ADS)

    Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian

    2014-09-01

    The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.

  17. Stable Isotope Systematics of Martian Perchlorate

    NASA Astrophysics Data System (ADS)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  18. The size-isotopic evolution connection among layered mafic instrusions: Clues from a Sr-Nd isotopic study of a small complex

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Pin, Christian; Duthou, Jean-Louis; Platevoet, Bernard

    1994-05-01

    Several theoretical and experimental works have focused on the processes occuring in continental mafic magma chambers. In contrast, systematic isotopic studies of natural remnants of these latter remain scarce, although they can give fundamental constraints for theoretical studies. This is especially true if different layered complex with contrasting characteristics (e.g., different size) are compared. For this reason, we present the results of a Sr-Nd isotopic profile across a small layered mafic intrusion of Permian age exposed near Fozzano (SW Corsica). In the main zone of the layered section, decreasing Sr-87/Sr(sub i)-86 and increasing Nd-143/Nd(sub i)-144 are observed from less evolved (bottom) to more evolved (top) rocks. This peculiar pattern precludes assimilation and fractional crystallization (AFC) as a dominant mechanism in the petrogenesis of this body. Instead, we interpret this trend as reflecting the dilution of an early stage contaminated magma by several reinjections of fresh basalt in the chamber. In agreement with mineralogical and structural data, every cyclic unit is interpreted as a new magmatic input. On the basis of rough refill and fractional crystallization (RFC) calculations, the average volume for each reinjection is estimated to have been about 0.04 cu km. The cumulative volume of these injections would amount to about 75% of the total volume of the layered complex. This implies that reinjections were accompanied by an important increase of the volume of the chamber or by magma withdrawal by surface eruptions. The RFC mechanism documented within this small layered body constrasts with the isotopic pattern observed between several intrusions at the regional scale in SW Corsica, and within large continental mafic magma chambers elsewhere. In these cases the isotopic evolution is dominated by AFC processes, and there is no clear isotopic evidence for reinjections, unless major influx of fresh magma occurred. It is suggested that there is

  19. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    PubMed

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  20. Fractionation of silver isotopes in native silver explained by redox reactions

    NASA Astrophysics Data System (ADS)

    Mathur, Ryan; Arribas, Antonio; Megaw, Peter; Wilson, Marc; Stroup, Steven; Meyer-Arrivillaga, Danilo; Arribas, Isabel

    2018-03-01

    Scant data exist on the silver isotope composition of native silver specimens because of the relative newness of the technique. This study increases the published dataset by an order of magnitude and presents 80 silver new isotope analyses from native silver originating from a diverse set of worldwide deposits (8 deposit types, 33 mining districts in five continents). The measured isotopic range (defined as δ109Ag/107Ag in per mil units compared to NIST 978 Ag isotope standard) is +2.1 to -0.86‰ (2σ errors less than 0.015); with no apparent systematic correlations to date with deposit type or even within districts. Importantly, the data centering on 0‰ all come from high temperature hypogene/primary deposits whereas flanking and overlapping data represent secondary supergene deposits. To investigate the causes for the more fractionated values, several laboratory experiments involving oxidation of silver from natural specimens of Ag-rich sulfides and precipitation and adsorption of silver onto reagent grade MnO2 and FeOOH were conducted. Simple leach experiments demonstrate little Ag isotope fractionation occurred through oxidation of Ag from native Ag (Δsolution-native109Ag = 0.12‰). In contrast, significant fractionation occurred through precipitation of native Ag onto MnO2 (up to Δsolution-MnO2109Ag = 0.68‰, or 0.3amu). Adsorption of silver onto the MnO2 and FeOOH did not produce as large fractionation as precipitation (mean value of Δsolution-MnO2109Ag = 0.10‰). The most likely cause for the isotopic variations seen relates to redox effects such as the reduction of silver from Ag (I) to Ag° that occurs during precipitation onto the mineral surface. Since many Ag deposits have halos dominated by MnO2 and FeOOH phases, potential may exist for the silver isotope composition of ores and surrounding geochemical haloes to be used to better understand ore genesis and potential exploration applications. Aside from the Mn oxides, surface fluid silver

  1. Forecasting Seizures in Dogs with Naturally Occurring Epilepsy

    PubMed Central

    Stead, S. Matt; Brinkmann, Ben; Vasoli, Vincent; Crepeau, Daniel; Vite, Charles H.; Sturges, Beverly; Ruedebusch, Vanessa; Mavoori, Jaideep; Leyde, Kent; Sheffield, W. Douglas; Litt, Brian; Worrell, Gregory A.

    2014-01-01

    Seizure forecasting has the potential to create new therapeutic strategies for epilepsy, such as providing patient warnings and delivering preemptive therapy. Progress on seizure forecasting, however, has been hindered by lack of sufficient data to rigorously evaluate the hypothesis that seizures are preceded by physiological changes, and are not simply random events. We investigated seizure forecasting in three dogs with naturally occurring focal epilepsy implanted with a device recording continuous intracranial EEG (iEEG). The iEEG spectral power in six frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), low-gamma (30–70 Hz), and high-gamma (70–180 Hz), were used as features. Logistic regression classifiers were trained to discriminate labeled pre-ictal and inter-ictal data segments using combinations of the band spectral power features. Performance was assessed on separate test data sets via 10-fold cross-validation. A total of 125 spontaneous seizures were detected in continuous iEEG recordings spanning 6.5 to 15 months from 3 dogs. When considering all seizures, the seizure forecasting algorithm performed significantly better than a Poisson-model chance predictor constrained to have the same time in warning for all 3 dogs over a range of total warning times. Seizure clusters were observed in all 3 dogs, and when the effect of seizure clusters was decreased by considering the subset of seizures separated by at least 4 hours, the forecasting performance remained better than chance for a subset of algorithm parameters. These results demonstrate that seizures in canine epilepsy are not randomly occurring events, and highlight the feasibility of long-term seizure forecasting using iEEG monitoring. PMID:24416133

  2. Development of new method of δ13C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C 1 -C 4 ) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C 5 -C 14 ) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ 13 C signatures determined by SPME-GC/IRMS were in good agreement with the known δ 13 C values of C 5 -C 14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ 13 C values for C 5 -C 14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas. Published by Elsevier B.V.

  3. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural sources versus human pollution

    NASA Astrophysics Data System (ADS)

    Kreitler, Charles W.; Browning, Lawrence A.

    1983-02-01

    Results of nitrogen-isotope analyses of nitrate in the waters of the Cretaceous Edwards aquifer in Texas, U.S.A., indicate that the source of the nitrate is naturally-occurring nitrogen compounds in the recharge streams. In contrast, nitrogen isotopes of nitrate in the fresh waters of the Pleistocene Ironshore Formation on Grand Cayman Island, West Indies, indicate that human wastes are the source of the nitrate. The Cretaceous Edwards Limestone is a prolific aquifer that produces principally from fracture porosity along the Balcones Fault Zone. Recharge is primarily by streams crossing the fault zone. Rainfall is ˜ 70 cm yr. -1, and the water table is generally deeper than 30 m below land surface. The δ15 N of 73 samples of nitrate from Edwards waters ranged from + 1.9 to + 10‰ with an average of + 6.2‰. This δ15 N range is within the range of nitrate in surface water in the recharge streams ( δ 15N range = + 1 to + 8.3‰ ) and within the range of nitrate in surface water from the Colorado River, Texas, ( δ 15N range = + 1 to + 11‰ ). No sample was found to be enriched in 15N, which would suggest the presence of nitrate from animal waste ( δ 15N range = + 10 to + 22‰ ). The Ironshore Formation contains a small freshwater lens that is recharged entirely by percolation through the soil. Average rainfall is 165 cm yr. -1, and the water table is within 3 m of land surface. The δ15 N of four nitrate samples from water samples of the Ironshore Formation ranged from + 18 to + 23.9‰, which indicates a cesspool/septictank source of the nitrate. Limestone aquifers in humid environments that are recharged by percolation through the soil appear to be more susceptible to contamination by septic tanks than are aquifers in subhumid environments that feature thick unsaturated sections and are recharged by streams.

  4. The Origin of Dark Inclusions in Allende: New Evidence from Lithium Isotopes

    NASA Technical Reports Server (NTRS)

    Sephton, Mark A.; James, Rachael H.; Zolensky, Michael E.

    2006-01-01

    Aqueous and thermal processing of primordial material occurred prior to and during planet formation in the early solar system. A record of how solid materials were altered at this time is present in the carbonaceous chondrites, which are naturally delivered fragments of primitive asteroids. It has been proposed that some materials, such as the clasts termed dark inclusions found in type III chondrites, suggest a sequence of aqueous and thermal events. Lithium isotopes (Li-6 and Li-7) can reveal the role of liquid water in dark inclusion history. During aqueous alteration, Li-7 passes preferentially into solution leaving Li-6 behind in the solid phase and, consequently, any relatively extended periods of interaction with Li-7-rich fluids would have left the dark inclusions enriched in the heavier isotope when compared to the meteorite as a whole. Our analyses of lithium isotopes in Allende and its dark inclusions reveal marked isotopic homogeneity and no evidence of greater levels of aqueous alteration in dark inclusion history.

  5. Cognitive dysfunction in naturally occurring canine idiopathic epilepsy.

    PubMed

    Packer, Rowena M A; McGreevy, Paul D; Salvin, Hannah E; Valenzuela, Michael J; Chaplin, Chloe M; Volk, Holger A

    2018-01-01

    Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ≥50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments.

  6. Cognitive dysfunction in naturally occurring canine idiopathic epilepsy

    PubMed Central

    McGreevy, Paul D.; Salvin, Hannah E.; Valenzuela, Michael J.; Chaplin, Chloe M.; Volk, Holger A.

    2018-01-01

    Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ≥50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments. PMID:29420639

  7. Pyrolysis-gas chromatography-isotope ratio mass spectrometry for monitoring natural additives in polylactic acid active food packages.

    PubMed

    Llana-Ruíz-Cabello, M; Pichardo, S; Jiménez-Morillo, N T; González-Vila, F J; Guillamón, E; Bermúdez, J M; Aucejo, S; Camean, A M; González-Pérez, J A

    2017-11-24

    Compound-specific isotope analysis (CSIA) usually requires preparative steps (pretreatments, extraction, derivatization) to get amenable chromatographic analytes from bulk geological, biological or synthetic materials. Analytical pyrolysis (Py-GC/MS) can help to overcome such sample manipulation. This communication describe the results obtained by hyphenating analytical pyrolysis (Py-GC) with carbon isotope-ratio mass spectrometry (IRMS) for the analysis of a polylactic acid (PLA) a based bio-plastic extruded with variable quantities of a natural plant extract or oregano essential oil. The chemical structural information of pyrolysates was first determined by conventional analytical pyrolysis and the measure of δ 13 C in specific compounds was done by coupling a pyrolysis unit to a gas chromatograph connected to a continuous flow IRMS unit (Py-GC-C-IRMS). Using this Py-CSIA device it was possible to trace natural additives with depleted δ 13 C values produced by C3 photosystem vegetation (cymene: -26.7‰±2.52; terpinene: -27.1‰±0.13 and carvacrol: -27.5‰±1.80 from oregano and two unknown structures: -23.3‰±3.32 and -24.4‰±1.70 and butyl valerate: -24.1‰±3.55 from Allium spp.), within the naturally isotopically enriched bio-plastic backbone derived from corn (C4 vegetation) starch (cyclopentanones: -14.2‰±2.11; lactide enantiomers: -9.2‰±1.56 and larger polymeric units: -17.2‰±1.71). This is the first application of Py-CSIA to characterize a bio-plastic and is shown as a promising tool to study such materials, providing not only a fingerprinting, but also valuable information about the origin of the materials, allowing the traceability of additives and minimizing sample preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Revealing the structural nature of the Cd isotopes

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Diaz Varela, A.; Green, K. L.; Jamieson, D. S.; Jigmeddorj, B.; Wood, J. L.; Yates, S. W.

    2015-10-01

    The even-even Cd isotopes have provided fertile ground for the investigation of collectivity in nuclei. Soon after the development of the Bohr model, the stable Cd isotopes were identified as nearly harmonic vibrators based on their excitation energy patterns. The measurements of enhanced B (E 2) values appeared to support this interpretation. Shape co-existing rotational-like intruder bands were discovered, and mixing between the configurations was invoked to explain the deviation of the decay pattern of multiphonon vibrational states. Very recently, a detailed analysis of the low-lying levels of 110Cd combining results of the (n ,n' γ) reaction and high-statistics β decay, provided strong evidence that the mixing between configurations is weak, except for the ground-state band and ``Kπ =0+ '' intruder band. The analysis of the levels in 110Cd has now been extended to 3 MeV, and combined with data for 112Cd and previous Coulomb excitation data for 114Cd, enables a detailed map of the E 2 collectivity in these nuclei, demanding a complete re-interpretation of the structure of the stable Cd isotopes.

  9. Isotopica: a tool for the calculation and viewing of complex isotopic envelopes.

    PubMed

    Fernandez-de-Cossio, Jorge; Gonzalez, Luis Javier; Satomi, Yoshinori; Betancourt, Lazaro; Ramos, Yassel; Huerta, Vivian; Amaro, Abel; Besada, Vladimir; Padron, Gabriel; Minamino, Naoto; Takao, Toshifumi

    2004-07-01

    The web application Isotopica has been developed as an aid to the interpretation of ions that contain naturally occurring isotopes in a mass spectrum. It allows the calculation of mass values and isotopic distributions based on molecular formulas, peptides/proteins, DNA/RNA, carbohydrate sequences or combinations thereof. In addition, Isotopica takes modifications of the input molecule into consideration using a simple and flexible language as a straightforward extension of the molecular formula syntax. This function is especially useful for biomolecules, which are often subjected to additional modifications other than normal constituents, such as the frequently occurring post-translational modification in proteins. The isotopic distribution of any molecule thus defined can be calculated by considering full widths at half maximum or mass resolution. The combined envelope of several overlapping isotopic distributions of a mixture of molecules can be determined after specifying each molecule's relative abundance. The results can be displayed graphically on a local PC using the Isotopica viewer, a standalone application that is downloadable from the sites below, as a complement to the client browser. The m/z and intensity values can also be obtained in the form of a plain ASCII text file. The software has proved to be useful for peptide mass fingerprinting and validating an observed isotopic ion distribution with reference to the theoretical one, even from a multi-component sample. The web server can be accessed at http://bioinformatica.cigb.edu.cu/isotopica and http://coco.protein.osaka-u.ac.jp/isotopica [correction].

  10. Naturally occurring reverse tilt domains in a high-pretilt alignment nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ruiting; Atherton, Timothy J.; Zhu, Minhua; Petschek, Rolfe G.; Rosenblatt, Charles

    2007-08-01

    A cell whose substrates were coated with the polyamic acid SE1211 (Nissan Chemical Industries) and baked at high temperatures was filled with a nematic liquid crystal in the isotropic phase. On cooling into the nematic phase, naturally occurring and temporally and thermally robust reverse tilt domains separated by thin filamentlike walls were observed. The properties of these structures are reported.

  11. The prevalence and pathogenesis of naturally-occurring Haemonchus longistipes infection in Sudanese camels.

    PubMed

    Arzoun, I H; Hussein, H S; Hussein, M F

    1984-04-01

    Camel haemonchosis is prevalent in the Sudan, especially during the rainy season, with a decrease in prevalence in the dry season possibly due to delayed maturation of the worms. The naturally occurring disease in Sudanese camels is characterized by emaciation, anaemia, oedema of the lower parts of the limbs, eosinophilia, hypoproteinaemia, hypoalbuminaemia, hyperglobulinaemia and eosinophilia, as well as elevated blood urea concentrations.

  12. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  13. Production cross sections of deuteron-induced reactions on natural palladium for Ag isotopes

    NASA Astrophysics Data System (ADS)

    Ukon, Naoyuki; Aikawa, Masayuki; Komori, Yukiko; Haba, Hiromitsu

    2018-07-01

    Activation cross sections for deuteron-induced reactions on natural palladium were measured up to 24 MeV using the stacked-foil method and the high resolution gamma-ray spectroscopy. The production cross sections of 103Ag, the parent of a medical radioactive isotope 103Pd, were obtained. We found that our result is in good agreement with the previous data up to 20.3 MeV, and obtained new data at higher energies. In addition, the production cross sections of 104g+mAg, 105Ag, 106mAg, 110mAg and 111Ag were presented.

  14. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  15. Changes in hydrogen isotope ratios in sequential plumage stages: an implication for the creation of isotope-base maps for tracking migratory birds.

    PubMed

    Duxbury, J M; Holroyd, G L; Muehlenbachs, K

    2003-09-01

    Accurate reference maps are important in the use of stable-isotopes to track the movements of migratory birds. Reference maps created by the analysis of samples collected from young at the nest site are more accurate than simply referring to naturally occurring patterns of hydrogen isotope ratios created by precipitation cycles. Ratios of hydrogen isotopes in the nutrients incorporated early in the development of young birds can be derived from endogenous, maternal sources. Base-maps should be created with the analysis of tissue samples from hatchlings after local the isotopic signature of exogenous nutrients is dominant. Migratory species such as Peregrine Falcons are known to use endogenous sources in the creation of their eggs, therefore knowledge of what plumage stage best represents the local hydrogen ratios would assist in the planning of nest visits. We conducted diet manipulation experiments involving Japanese Quail and Peregrine Falcons to determine the plumage stage when hydrogen isotope ratios were indicative of a switch in their food source. The natal down of both the quail and falcons reflected the diet of breeding adult females. The hydrogen isotope ratios of a new food source were dominant in the juvenile down of the young falcons, although a further shift was detected in the final juvenile plumage. The juvenile plumage is grown during weeks 3-4 after hatch on Peregrine Falcons. Nest visits for the purpose of collecting feathers for isotope-base-map creation should be made around 4 weeks after the presumed hatch of the young falcons.

  16. Franckeite as a naturally occurring van der Waals heterostructure

    PubMed Central

    Molina-Mendoza, Aday J.; Giovanelli, Emerson; Paz, Wendel S.; Niño, Miguel Angel; Island, Joshua O.; Evangeli, Charalambos; Aballe, Lucía; Foerster, Michael; van der Zant, Herre S. J.; Rubio-Bollinger, Gabino; Agraït, Nicolás; Palacios, J. J.; Pérez, Emilio M.; Castellanos-Gomez, Andres

    2017-01-01

    The fabrication of van der Waals heterostructures, artificial materials assembled by individual stacking of 2D layers, is among the most promising directions in 2D materials research. Until now, the most widespread approach to stack 2D layers relies on deterministic placement methods, which are cumbersome and tend to suffer from poor control over the lattice orientations and the presence of unwanted interlayer adsorbates. Here, we present a different approach to fabricate ultrathin heterostructures by exfoliation of bulk franckeite which is a naturally occurring and air stable van der Waals heterostructure (composed of alternating SnS2-like and PbS-like layers stacked on top of each other). Presenting both an attractive narrow bandgap (<0.7 eV) and p-type doping, we find that the material can be exfoliated both mechanically and chemically down to few-layer thicknesses. We present extensive theoretical and experimental characterizations of the material's electronic properties and crystal structure, and explore applications for near-infrared photodetectors. PMID:28194037

  17. THEORETICAL AND EXPERIMENTAL ASPECTS OF ISOTOPIC FRACTIONATION.

    USGS Publications Warehouse

    O'Neil, James R.

    1986-01-01

    Essential to the interpretation of natural variations of light stable isotope ratios is knowledge of the magnitude and temperature dependence of isotopic fractionation factors between the common minerals and fluids. These fractionation factors are obtained in three ways: (1) Semi-empirical calculations using spectroscopic data and the methods of statistical mechanics. (2) Laboratory calibration studies. (3) Measurements of natural samples whose formation conditions are well-known or highly constrained. In this chapter methods (1) and (2) are evaluated and a review is given of the present state of knowledge of the theory of isotopic fractionation and the fraction that influence the isotopic properties of minerals.

  18. AcuteToxicological Responses of Fischer Rats to Naturally Occurring Asbestos Samples from the United States and Canada

    EPA Science Inventory

    The potential public health issues related to exposure to natural asbestos deposits (commonly termed naturally occurring asbestos, NO A) has gained the regulatory and media spotlight in recent years. Arguably the most well known example is Libby, Montana, the site of the largest ...

  19. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  20. Activity disequilibrium between 234U and 238U isotopes in natural environment.

    PubMed

    Boryło, Alicja; Skwarzec, Bogdan

    The aim of this work was to calculate the values of the 234 U/ 238 U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wiślinka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in the southern Baltic Sea ecosystem are the sedimentation of suspended material and the vertical diffusion from the sediments into the bottom water. Considerable values of the 234 U/ 238 U are characterized for the Vistula and Oder Rivers and its tributaries. The values of the 234 U/ 238 U activity ratio in different tissues and organs of the Baltic organisms, sea birds and wild deer are varied. Such a large variation value of obtained activity ratios indicates different behavior of uranium isotopes in the tissues and organisms of sea birds and wild animals. This value shows that uranium isotopes can be disposed at a slower or faster rate. The values of the 234 U/ 238 U activity ratio in the analyzed plants, soils and mosses collected in the vicinity of phosphogypsum dumps in Wiślinka are close to one and indicate the phosphogypsum origin of the analyzed nuclides. Uranium isotopes 234 U and 238 U are not present in radioactive equilibrium in the aquatic environment, which indicates that their activities are not equal. The inverse relationship is observed in the terrestrial environment, where the value of the of the 234 U/ 238 U activity ratio really oscillates around unity.

  1. Synthesis and Characterization of Arsenolipids: Naturally Occurring Arsenic Compounds in Fish and Algae

    PubMed Central

    2014-01-01

    Arsenic-containing lipids (arsenolipids) are natural products present in fish and algae. Because these compounds occur in foods, there is considerable interest in their human toxicology. We report the synthesis and characterization of seven arsenic-containing lipids, including six natural products. The compounds comprise dimethylarsinyl groups attached to saturated long-chain hydrocarbons (three compounds), saturated long-chain fatty acids (two compounds), and monounsaturated long chain fatty acids (two compounds). The arsenic group was introduced through sodium dimethylarsenide or bis(dimethylarsenic) oxide. The latter route provided higher and more reproducible yields, and consequently, this pathway was followed to synthesize six of the seven compounds. Mass spectral properties are described to assist in the identification of these compounds in natural samples. The pure synthesized arsenolipids will be used for in vitro experiments with human cells to test their uptake, biotransformation, and possible toxic effects. PMID:24683287

  2. Tellurium Stable Isotopes as a Paleoredox Proxy

    NASA Astrophysics Data System (ADS)

    Wasserman, N.; Johnson, T. M.

    2017-12-01

    Despite arguments for variably-oxygenated shallow waters and anoxic deep marine waters, which delayed animal development until the Neoproterozoic Oxidation Event, the magnitude of atmospheric oxygen during the Proterozoic is still uncertain [1]. The evidence for low pO2 (<0.1-1% PAL) is based on geochemical and isotopic proxies, which track the mobilization of Fe and Mn on the continents. For example, large chromium isotope shifts occur at the Neoproterozoic Oxidation Event due to the initiation of Cr redox cycling, but this proxy is insensitive to fluctuations in the lower-pO2 conditions at other times during the Proterozoic. Tellurium, a metalloid with a lower threshold to oxidation, may be sensitive to pO2 shifts in a lower range. In the reduced forms, Te(-II) and Te(0), the element is insoluble and immobile. However, in the more oxidized phases, Te(IV) and Te(VI), Te can form soluble oxyanions (though it tends to adsorb to Fe-oxyhydroxides and clays) [2]. Te stable isotopes have been shown to fractionate during abiotic or biologic reduction of Te(VI) or Te(IV) to elemental Te(0) [3, 4]. Utilizing hydride generation MC-ICP-MS, we are able to obtain high precision (2σ 0.04‰) measurements of δ128Te/125Te for natural samples containing < 10 ng of Te. A suite of Phanerozoic and Proterozoic ironstones show significant variation in δ128Te/125Te (<0.5‰), suggesting that the Te redox cycle was active during the Proterozoic. Future directions will include Te isotope measurements of Precambrian paleosols to determine natural isotope variation before the Great Oxidation Event and experiments to determine fractionation during adsorption to Fe-oxyhydroxides. [1] Planavsky et al. (2014) Science 346 (6209), pp. 635-638 [2] Qin et al. (2017) Environmental Science and Technology 51 (11), pp 6027-6035 [3] Baesman et al. (2007) Applied Environmental Microbiology 73 (7), pp 2135-2143 [4] Smithers and Krause (1968) Canadian Journal of Chemistry 46(4): pp 583-591

  3. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  4. Isotopic tracing of perchlorate in the environment

    USGS Publications Warehouse

    Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark

    2012-01-01

    Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.

  5. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    PubMed

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  6. Epigenetic Variation in Mangrove Plants Occurring in Contrasting Natural Environment

    PubMed Central

    Lira-Medeiros, Catarina Fonseca; Parisod, Christian; Fernandes, Ricardo Avancini; Mata, Camila Souza; Cardoso, Monica Aires; Ferreira, Paulo Cavalcanti Gomes

    2010-01-01

    Background Epigenetic modifications, such as cytosine methylation, are inherited in plant species and may occur in response to biotic or abiotic stress, affecting gene expression without changing genome sequence. Laguncularia racemosa, a mangrove species, occurs in naturally contrasting habitats where it is subjected daily to salinity and nutrient variations leading to morphological differences. This work aims at unraveling how CpG-methylation variation is distributed among individuals from two nearby habitats, at a riverside (RS) or near a salt marsh (SM), with different environmental pressures and how this variation is correlated with the observed morphological variation. Principal Findings Significant differences were observed in morphological traits such as tree height, tree diameter, leaf width and leaf area between plants from RS and SM locations, resulting in smaller plants and smaller leaf size in SM plants. Methyl-Sensitive Amplified Polymorphism (MSAP) was used to assess genetic and epigenetic (CpG-methylation) variation in L. racemosa genomes from these populations. SM plants were hypomethylated (14.6% of loci had methylated samples) in comparison to RS (32.1% of loci had methylated samples). Within-population diversity was significantly greater for epigenetic than genetic data in both locations, but SM also had less epigenetic diversity than RS. Frequency-based (GST) and multivariate (βST) methods that estimate population structure showed significantly greater differentiation among locations for epigenetic than genetic data. Co-Inertia analysis, exploring jointly the genetic and epigenetic data, showed that individuals with similar genetic profiles presented divergent epigenetic profiles that were characteristic of the population in a particular environment, suggesting that CpG-methylation changes may be associated with environmental heterogeneity. Conclusions In spite of significant morphological dissimilarities, individuals of L. racemosa from salt

  7. Chromium Stable Isotope Fractionation - An Indicator of Hexavalent Chromium Reduction.

    NASA Astrophysics Data System (ADS)

    Ellis, A.; Johnson, T. M.; Bullen, T. D.

    2001-12-01

    Chromium is a common anthropogenic contaminant in surface water and ground water, and is also of interest in oceanography. It is redox-active; the two common valences in natural waters are Cr(VI), which is highly soluble and toxic, and Cr(III), which is relatively insoluble. Redox reactions thus control Cr mobility in aqueous solutions, and reduction of Cr(VI) to Cr(III) is the most important reaction controlling attenuation of Cr in groundwater. Our results show that Cr(VI) reduction favors the lighter isotopes and leads to enrichment of heavier isotopes in the remaining Cr(VI). Cr isotope measurements thus show great promise as indicators of Cr(VI) reduction. We report here the first measurements of the magnitude of Cr isotope fractionation during Cr(VI) reduction and variations in δ 53Cr values obtained from three contaminated sites. Experiments were conducted to measure Cr isotope fractionation during Cr(VI) reduction by suspensions of magnetite and unamended sediments from a local pond, Urbana, IL and San Francisco Estuary near Martinez, CA. Suspensions were incubated anaerobically with constant shaking, and complete Cr(VI) reduction occurred within a few days. Cr(VI) from intermediate time points in the experiments was purified via ion exchange and 53Cr/52Cr ratios were measured via TIMS with a double isotope spike. The instantaneous per mil fractionation, ɛ , was calculated assuming a Rayleigh fractionation model. The ɛ for Cr(VI) reduction on magnetite surfaces yielded a fractionation of -3.5 ‰ . The ɛ values for the pond and estuary sediments were -3.5 ‰ and -3.3 ‰ respectively. The size of this Cr isotope fractionation is encouraging, as current precision is 0.2 \\permil. δ 53Cr values in dissolved Cr(VI) from three contaminated sites range from 1.1 ‰ to 5.8 ‰ , suggesting that Cr(VI) reduction has occurred and has induced isotopic fractionation in these settings. δ 53Cr values measured from Cr(VI) in plating baths show little or no

  8. Lead isotope profiling in dairy calves.

    PubMed

    Buchweitz, John; McClure-Brinton, Kimberly; Zyskowski, Justin; Stensen, Lauren; Lehner, Andreas

    2015-03-01

    Lead (Pb) is a common cause of heavy metal poisonings in cattle. Sources of Pb on farms include crankcase oil, machinery grease, batteries, plumbing, and paint chips. Consequently, consumption of Pb from these sources may negatively impact animal health and Pb may be inadvertently introduced into the food supply. Therefore, the scope of poisoning incidents must be clearly assessed and sources of intoxication identified and strategies to mitigate exposure evaluated and implemented to prevent future exposures. Stable isotope analysis by inductively-coupled plasma mass spectrometry (ICP-MS) has proven itself of value in forensic investigations. We report on the extension of Pb stable isotope analysis to bovine tissues and profile comparisons with paint chips and soils collected from an affected dairy farm to elucidate the primary source. Pb occurs naturally as four stable isotopes: (204)Pb, (206)Pb, (207)Pb, and (208)Pb. Herein a case is reported to illustrate the use of (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios to link environmental sources of exposure with tissues from a poisoned animal. Chemical Pb profiling provides a valuable tool for field investigative approaches to Pb poisoning in production agriculture and is applicable to subclinical exposures. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    PubMed

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  10. California Dept. of Toxic Substances Control (DTSC) Update of the Schools Naturally Occurring Asbestos Guidance

    NASA Astrophysics Data System (ADS)

    Malinowski, M.

    2012-12-01

    Prior to acquisition and/or construction of prospective school sites, the California Education Code mandates that school districts complete environmental assessments and cleanups for prospective new or expanding school sites in order to qualify for state funding. If prospective school sites are determined to have environmental contamination from hazardous materials, including naturally occurring hazardous materials such as naturally occurring asbestos (NOA), where there may be unacceptable potential health risks, the school sites must be properly mitigated prior to occupancy for protection of human health and the environment. NOA is of special concern for schools, because children who are exposed to asbestos may be at increased risk of developing asbestos-related diseases over time. In order to protect human health, the Department of Toxic Substances Control's (DTSC) goals at school sites are to: 1) identify the presence of NOA in school site soils using exposure-reducing soil thresholds; 2) manage potential NOA exposures using mitigation measures to reduce generation of airborne asbestos fibers from soils on school sites; and 3) ensure long-term monitoring and protection of mitigation measures via Operations & Maintenance activities. DTSC is currently in the process of revising its Interim Guidance Naturally Occurring Asbestos (NOA) at School Sites - September 2004. The revisions include: 1) updating the guidance to consider incremental sampling for use at NOA sites in consultation with DTSC's project manager and technical staff, and 2) documenting a tiered approach to addressing high and low activity areas on a school.

  11. Naturally occurring mastitis disrupts developmental competence of bovine oocytes.

    PubMed

    Roth, Z; Dvir, A; Kalo, D; Lavon, Y; Krifucks, O; Wolfenson, D; Leitner, G

    2013-10-01

    We examined the effects of naturally occurring mastitis on bovine oocyte developmental competence in vitro. Specifically, we investigated the effects of intramammary infection on the ovarian pool of oocytes (i.e., follicle-enclosed oocytes) and their ability to undergo in vitro maturation, fertilization, and further development to the blastocyst stage. Culled Holstein cows (n=50) from 9 commercial dairy farms in Israel were allotted to 3 groups according to somatic cell count (SCC) records of the last 3 monthly milk tests as well as of quarter samples collected before slaughter: (1) low SCC (n=7), (2) medium SCC (n=16), or (3) high SCC (n=27). Means of SCC values differed among low-, medium-, and high-SCC groups: 148,000, 311,000 and 1,813,000 cell/mL milk, respectively. Milk yield and days in milk did not differ among the 3 groups. Bacterial isolates included coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, or no bacteria found. Ovaries were collected at the abattoir and brought to the laboratory. Cumulus oocyte complexes were recovered separately from each cow and subjected individually to in vitro maturation and fertilization, followed by 8d in culture. The number of aspirated oocytes did not differ among groups, with a range of 17 to 21 oocytes per cow. The proportion of oocytes that cleaved into 2- to 4-cell-stage embryos (86.1 ± 3.4%) did not differ among groups. In contrast, mean percentages of embryos developed to the blastocyst stage on d 7 and 8 after fertilization were less in both medium- and-high SCC groups than in the low-SCC group (5.6 ± 2.3 and 4.1 ± 1.8 vs. 18.1 ± 4.6%, respectively). Additional analysis indicated that cleavage and blastocyst-formation rates did not differ among the bacterial types in the low-, medium-, and high-SCC groups. These are the first results to demonstrate that naturally occurring mastitis disrupts the developmental competence of the ovarian pool of oocytes, (i.e., oocytes at the

  12. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation to the chemistry of locally occurring oil, natural gas, and brine

    USGS Publications Warehouse

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water.Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report.The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago

  13. Preparation of metagenomic libraries from naturally occurring marine viruses.

    PubMed

    Solonenko, Sergei A; Sullivan, Matthew B

    2013-01-01

    Microbes are now well recognized as major drivers of the biogeochemical cycling that fuels the Earth, and their viruses (phages) are known to be abundant and important in microbial mortality, horizontal gene transfer, and modulating microbial metabolic output. Investigation of environmental phages has been frustrated by an inability to culture the vast majority of naturally occurring diversity coupled with the lack of robust, quantitative, culture-independent methods for studying this uncultured majority. However, for double-stranded DNA phages, a quantitative viral metagenomic sample-to-sequence workflow now exists. Here, we review these advances with special emphasis on the technical details of preparing DNA sequencing libraries for metagenomic sequencing from environmentally relevant low-input DNA samples. Library preparation steps broadly involve manipulating the sample DNA by fragmentation, end repair and adaptor ligation, size fractionation, and amplification. One critical area of future research and development is parallel advances for alternate nucleic acid types such as single-stranded DNA and RNA viruses that are also abundant in nature. Combinations of recent advances in fragmentation (e.g., acoustic shearing and tagmentation), ligation reactions (adaptor-to-template ratio reference table availability), size fractionation (non-gel-sizing), and amplification (linear amplification for deep sequencing and linker amplification protocols) enhance our ability to generate quantitatively representative metagenomic datasets from low-input DNA samples. Such datasets are already providing new insights into the role of viruses in marine systems and will continue to do so as new environments are explored and synergies and paradigms emerge from large-scale comparative analyses. © 2013 Elsevier Inc. All rights reserved.

  14. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical

  15. Coper Isotope Fractionation in Porphyry Copper Deposits: A Controlled Experiment

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Mathur, R.; Uhrie, J. L.; Hiskey, B.

    2001-12-01

    Previous studies have shown that copper is fractionated in the environment. However, the mechanisms for isotope fractionation and the role of organic and inorganic processes in the fractionation are not well understood. Here we used the well controlled experiments used by Phelps Dodge Corporation aimed at leaching copper from their ore deposits to constrain the mechanism of copper isotope fractionation in natural systems. The isotope data were collected on a Micromass Isoprobe. High temperature copper sulfides from ore deposits in Chile and Arizona yield delta 65Cu near 0 permil. The reproducibility of the data is better that 0.1 permil. Controlled experiments consisting of large columns of rocks were fed solutions containing bacteria such as Thiobacillus ferroxidans and Leptospirrilium ferroxidan. Solutions fom the columns were sampled for sixty days and analyzed for copper concentrations, oxidation potential, ferrous/ferric ratios and pH. The results indicate that the bacterially aided dissolution of copper fractionated copper. Preliminary experiments of copper dissolution not using bacteria show no isotope fractionation The original rock in the experiment has a delta 65Cu of -2.1. The first solutions that were collected from the columns had a delta 65Cu of -5.0 per mil. The liquid changed its isotopic composition from -50 to -10 during the sixty days of sampling. The greatest shift in the isotope ratios occurred the first 30 days when the copper recovered was less than 40% and the ferrous/ferric ratios were somewhat constant. At approximately 35 days after the start of the experiments, the copper recovery increases the ferrousferric ratio decreased and the copper isotope ratio of the fluids remained fairly constant. The data suggest that the bacteria are required to effectively fractionate copper isotopes in natural systems and that the mechanisms of bacterial aided copper dissolution may include a direct dissolution of the sulfides by the bacteria. Experiments

  16. Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF

    DOE PAGES

    Lindsay, Lucas R.

    2016-11-08

    Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems ( 6LiH, 7Li 2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less

  17. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  18. Interactions between natural-occurring landscape conditions and land use influencing the abundance of riverine smallmouth bass, micropterus dolomieu

    USGS Publications Warehouse

    Brewer, S.K.; Rabeni, C.F.

    2011-01-01

    This study examined how interactions between natural landscape features and land use influenced the abundance of smallmouth bass, Micropterus dolomieu, in Missouri, USA, streams. Stream segments were placed into one of four groups based on natural-occurring watershed characteristics (soil texture and soil permeability) predicted to relate to smallmouth bass abundance. Within each group, stream segments were assigned forest (n = 3), pasture (n = 3), or urban (n = 3) designations based on the percentages of land use within each watershed. Analyses of variance indicated smallmouth bass densities differed between land use and natural conditions. Decision tree models indicated abundance was highest in forested stream segments and lowest in urban stream segments, regardless of group designation. Land use explained the most variation in decision tree models, but in-channel features of temperature, flow, and sediment also contributed significantly. These results are unique and indicate the importance of natural-occurring watershed conditions in defining the potential of populations and how finer-scale filters interact with land use to further alter population potential. Smallmouth bass has differing vulnerabilities to land-use attributes, and the better the natural watershed conditions are for population success, the more resilient these populations will be when land conversion occurs.

  19. Preclinical Characterization of Naturally Occurring Polyketide Cyclophilin Inhibitors from the Sanglifehrin Family▿†

    PubMed Central

    Gregory, Matthew A.; Bobardt, Michael; Obeid, Susan; Chatterji, Udayan; Coates, Nigel J.; Foster, Teresa; Gallay, Philippe; Leyssen, Pieter; Moss, Steven J.; Neyts, Johan; Nur-e-Alam, Mohammad; Paeshuyse, Jan; Piraee, Mahmood; Suthar, Dipen; Warneck, Tony; Zhang, Ming-Qiang; Wilkinson, Barrie

    2011-01-01

    Cyclophilin inhibitors currently in clinical trials for hepatitis C virus (HCV) are all analogues of cyclosporine (CsA). Sanglifehrins are a group of naturally occurring cyclophilin binding polyketides that are structurally distinct from the cyclosporines and are produced by a microorganism amenable to biosynthetic engineering for lead optimization and large-scale production by fermentation. Preclinical characterization of the potential utility of this class of compounds for the treatment of HCV revealed that the natural sanglifehrins A to D are all more potent than CsA at disrupting formation of the NS5A-CypA, -CypB, and -CypD complexes and at inhibition of CypA, CypB, and CypD isomerase activity. In particular, sanglifehrin B (SfB) was 30- to 50-fold more potent at inhibiting the isomerase activity of all Cyps tested than CsA and was also shown to be a more potent inhibitor of the 1b subgenomic replicon (50% effective concentrations [EC50s] of 0.070 μM and 0.16 μM in Huh 5-2 and Huh 9-13 cells, respectively). Physicochemical and mouse pharmacokinetic analyses revealed low oral bioavailability (F < 4%) and low solubility (<25 μM), although the half-lives (t1/2) of SfA and SfB in mouse blood after intravenous (i.v.) dosing were long (t1/2 > 5 h). These data demonstrate that naturally occurring sanglifehrins are suitable lead compounds for the development of novel analogues that are less immunosuppressive and that have improved metabolism and pharmacokinetic properties. PMID:21383094

  20. Sulfur Isotope Analysis of Minerals and Fluids in a Natural CO2 Reservoir, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Chen, F.; Kampman, N.; Bickle, M. J.; Busch, A.; Turchyn, A. V.

    2013-12-01

    Predicting the security of geological CO2 storage sites requires an understanding of the geochemical behavior of the stored CO2, especially of fluid-rock reactions in reservoirs, caprocks and fault zones. Factors that may influence geochemical behavior include co-injection of sulfur gases along with the CO2, either in acid-gas disposal or as contaminants in CO2 storage sites, and microbial activity, such as bacterial sulfate reduction. The latter may play an important role in buffering the redox chemistry of subsurface fluids, which could affect toxic trace metal mobilization and transport in acidic CO2-rich fluids. These processes involving sulfur are poorly understood. Natural CO2-reservoirs provide natural laboratories, where the flow and reactions of the CO2-charged fluids and the activity of microbial communities are integrated over sufficient time-scales to aid prediction of long-term CO2 storage. This study reports on sulfur isotope analyses of sulfate and sulfide minerals in rock core and in CO2-charged fluids collected from a stacked sequence of natural CO2 reservoirs at Green River, Utah. Scientific drilling adjacent to a CO2-degassing normal fault to a depth of 325m retrieved core and fluid samples from two CO2 reservoirs in the Entrada and Navajo Sandstones and from the intervening Carmel Formation caprock. Fluid samples were collected from CO2-charged springs that discharge through the faults. Sulfur exists as sulfate in the fluids, as sedimentary gypsum beds in the Carmel Formation, as remobilized gypsum veins within a fault damage zone in the Carmel Fm. and in the Entrada Sandstone, and as disseminated pyrite and pyrite-mineralized open fractures throughout the cored interval. We use the stable sulfur (δ34S) and oxygen (δ18OSO4) isotopes of the sulfate, gypsum, and pyrite to understand the source of sulfur in the reservoir as well as the timing of gypsum vein and pyrite formation. The hydration water of the gypsum is also reported to explore the

  1. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ˜1500 AD to present

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.; Brenner, Mark; Tucker, Jaimie L.

    2009-06-01

    Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into "natural" and "anthropogenic" groups using concentration trends from the bottom to the top of the core. The "natural" group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the "New World" did not affect their geochemical cycles. The "anthropogenic" group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the "anthropogenic" metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the "anthropogenic" metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V

  2. Changes in host-mycorrhiza relationships revealed by stable isotopes after naturally-induced thinning of the stand: case study on Tuber aestivum.

    NASA Astrophysics Data System (ADS)

    Gavrichkova, Olga; Lauteri, Marco; Ciolfi, Marco; Chiocchini, Francesca; Paris, Pierluigi; Pisanelli, Andrea; Portarena, Silvia; Brugnoli, Enrico

    2016-04-01

    Terrestrial plants overcome nutrients and water limitations by forming mutualistic associations with mycorrhizal fungi. Fungi, in return, take advantage from the carbohydrates supplied by the host. Some mycorrhizal fruit bodies, like that of Tuber spp., have a peculiar gastronomic value with many efforts being undertaken to predict and enhance their productivity. However, many issues of truffle-producing mycorrhizal ecology are still poorly understood, in particular optimal conditions favoring fruit formation, potential host plants and host-mycorrhiza relationships. In this study, we tested the applicability of stable isotope measurements under natural abundance to identify the plants which likely host the mycorrhiza of Tuber aestivum and to characterize host-mycorrhizal nutrient, water and carbohydrate exchange under plant natural growing conditions and with the change of the forest cover after naturally occurred thinning. For these purposes, sampling of the fruit bodies of T. aestivum was performed during the growing season 2011 in a mixed broadleaved-coniferous forest in central Italy (initially the site was a manmade pine plantation). Nine truffle-producing parcels were identified with five being composed of the original Pinus pinaster -dominated vegetation and four in which pine was replaced by broadleaf species after both wind-induced thinning and natural dieback of pine trees. Seasonal variation of δ13C, δ15N and δ18O were analyzed in the fungal material, in the surrounding soil and in the plant material of the potential host species (xylem water in the trunk, branches and leaves, recently assimilated carbohydrates in phloem and leaves). The results showed a possibility of the identification of the mycorrhizal host species applying isotope analyses, with mycorrhiza receiving most part of the carbohydrates from the pine in pine-dominated parcels. Interestingly, in thinned parcels, the truffle bodies maintained isotope composition similar to bodies gathered

  3. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition.

    PubMed

    Potapov, Anton M; Tiunov, Alexei V; Scheu, Stefan

    2018-06-19

    Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13 C as compared to plant litter. This 'detrital shift' likely reflects preferential uptake of 13 C-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15 N and 13 C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15 N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13 C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non

  4. Hydrochemical and isotopic effects associated with petroleum fuel biodegradation pathways in a chalk aquifer.

    PubMed

    Spence, Michael J; Bottrell, Simon H; Thornton, Steven F; Richnow, Hans H; Spence, Keith H

    2005-09-01

    Hydrochemical data, compound specific carbon isotope analysis and isotopic enrichment trends in dissolved hydrocarbons and residual electron acceptors have been used to deduce BTEX and MTBE degradation pathways in a fractured chalk aquifer. BTEX compounds are mineralised sequentially within specific redox environments, with changes in electron acceptor utilisation being defined by the exhaustion of specific BTEX components. A zone of oxygen and nitrate exhaustion extends approximately 100 m downstream from the plume source, with residual sulphate, toluene, ethylbenzene and xylene. Within this zone complete removal of the TEX components occurs by bacterial sulphate reduction, with sulphur and oxygen isotopic enrichment of residual sulphate (epsilon(s) = -14.4 per thousand to -16.0 per thousand). Towards the plume margins and at greater distance along the plume flow path nitrate concentrations increase with delta15N values of up to +40 per thousand indicating extensive denitrification. Benzene and MTBE persist into the denitrification zone, with carbon isotope enrichment of benzene indicating biodegradation along the flow path. A Rayleigh kinetic isotope enrichment model for 13C-enrichment of residual benzene gives an apparent epsilon value of -0.66 per thousand. MTBE shows no significant isotopic enrichment (delta13C = -29.3 per thousand to -30.7 per thousand) and is isotopically similar to a refinery sample (delta13C = -30.1 per thousand). No significant isotopic variation in dissolved MTBE implies that either the magnitude of any biodegradation-induced isotopic fractionation is small, or that relatively little degradation has taken place in the presence of BTEX hydrocarbons. It is possible, however, that MTBE degradation occurs under aerobic conditions in the absence of BTEX since no groundwater samples were taken with co-existing MTBE and oxygen. Low benzene delta13C values are correlated with high sulphate delta34S, indicating that little benzene degradation has

  5. Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease*

    PubMed Central

    Good, David M.; Zürbig, Petra; Argilés, Àngel; Bauer, Hartwig W.; Behrens, Georg; Coon, Joshua J.; Dakna, Mohammed; Decramer, Stéphane; Delles, Christian; Dominiczak, Anna F.; Ehrich, Jochen H. H.; Eitner, Frank; Fliser, Danilo; Frommberger, Moritz; Ganser, Arnold; Girolami, Mark A.; Golovko, Igor; Gwinner, Wilfried; Haubitz, Marion; Herget-Rosenthal, Stefan; Jankowski, Joachim; Jahn, Holger; Jerums, George; Julian, Bruce A.; Kellmann, Markus; Kliem, Volker; Kolch, Walter; Krolewski, Andrzej S.; Luppi, Mario; Massy, Ziad; Melter, Michael; Neusüss, Christian; Novak, Jan; Peter, Karlheinz; Rossing, Kasper; Rupprecht, Harald; Schanstra, Joost P.; Schiffer, Eric; Stolzenburg, Jens-Uwe; Tarnow, Lise; Theodorescu, Dan; Thongboonkerd, Visith; Vanholder, Raymond; Weissinger, Eva M.; Mischak, Harald; Schmitt-Kopplin, Philippe

    2010-01-01

    Because of its availability, ease of collection, and correlation with physiology and pathology, urine is an attractive source for clinical proteomics/peptidomics. However, the lack of comparable data sets from large cohorts has greatly hindered the development of clinical proteomics. Here, we report the establishment of a reproducible, high resolution method for peptidome analysis of naturally occurring human urinary peptides and proteins, ranging from 800 to 17,000 Da, using samples from 3,600 individuals analyzed by capillary electrophoresis coupled to MS. All processed data were deposited in an Structured Query Language (SQL) database. This database currently contains 5,010 relevant unique urinary peptides that serve as a pool of potential classifiers for diagnosis and monitoring of various diseases. As an example, by using this source of information, we were able to define urinary peptide biomarkers for chronic kidney diseases, allowing diagnosis of these diseases with high accuracy. Application of the chronic kidney disease-specific biomarker set to an independent test cohort in the subsequent replication phase resulted in 85.5% sensitivity and 100% specificity. These results indicate the potential usefulness of capillary electrophoresis coupled to MS for clinical applications in the analysis of naturally occurring urinary peptides. PMID:20616184

  6. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance.

    PubMed

    Martin, Lesley-Ann; Ribas, Ricardo; Simigdala, Nikiana; Schuster, Eugene; Pancholi, Sunil; Tenev, Tencho; Gellert, Pascal; Buluwela, Laki; Harrod, Alison; Thornhill, Allan; Nikitorowicz-Buniak, Joanna; Bhamra, Amandeep; Turgeon, Marc-Olivier; Poulogiannis, George; Gao, Qiong; Martins, Vera; Hills, Margaret; Garcia-Murillas, Isaac; Fribbens, Charlotte; Patani, Neill; Li, Zheqi; Sikora, Matthew J; Turner, Nicholas; Zwart, Wilbert; Oesterreich, Steffi; Carroll, Jason; Ali, Simak; Dowsett, Mitch

    2017-11-30

    Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.

  7. Naturally occurring radionuclides in the ground water of southeastern Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2000-01-01

    Naturally occurring radionuclides in the ground water of southeastern Pennsylvania may pose a health hazard to some residents, especially those drinking water from wells drilled in the Chickies Quartzite. Water from 46 percent of wells sampled in the Chickies Quartzite and 7 percent of wells sampled in other geologic formations exceeded the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for total radium. Radon-222 may pose a health problem for homeowners by contributing to indoor air radon-222 levels. The radon-222 activity of water from 89 percent of sampled wells exceeded 300 pCi/L (picocuries per liter), the proposed USEPA MCL, and water from 16 percent of sampled wells exceeded 4,000 pCi/L. Uranium does not appear to be present in elevated concentrations in ground water in southeastern Pennsylvania.

  8. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  9. Stable Isotope Analysis of Chlorate

    NASA Astrophysics Data System (ADS)

    Brundrett, M.; Jackson, W. A.; Sturchio, N. C.; Bohlke, J. K.; Hatzinger, P.

    2016-12-01

    Studies have confirmed the presence of chlorate (ClO3-) throughout terrestrial and extraterrestrial systems generally in excess of perchlorate (ClO4-) [1, 2]. ClO3- occurrence, production, and post depositional transformation has significant implications to our understanding of atmospheric Cl cycling and potential biogeochemical reactions on Earth and Mars. The isotopic composition of oxyanions can be used to evaluate their production mechanisms and post-depositional alteration [3, 4]. However, no information is available on the natural isotopic composition of ClO3-. The objective of this study was to develop a method to measure the stable isotope composition (δ18O, δ17O and δ37Cl) of ClO3- and to determine the isotopic composition of ClO3- in natural desert salt accumulations that have been studied previously for NO3- and ClO4- isotopic composition. The process of ClO3- purification and analysis of δ18O, δ 17O and δ37Cl is problematic but has recently been resolved by adapting previously published methods for ClO4-. Competitive anions (e.g. NO3-, Cl-, ClO4-, and SO4-2) are removed through a series of processes including biological reduction, solid phase extraction, and anion or cation exchange. Initial results for control samples treated with the above method have a maximum variation of ± 2 ‰. These methods are being applied to representative samples to determine if various sources of natural and synthetic ClO3- have distinctive isotopic compositions, as reported previously for ClO4- [3, 4]. Establishing the range of isotopic composition of natural ClO3- also could provide information about atmospheric ClO3- production mechanisms and post-depositional processing, with implications for the atmospheric chemistry of oxychlorine compounds and the global biogeochemical cycling of Cl. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Bao and Gu (2004) ES&T 38, 5073-5077.

  10. Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine

    USGS Publications Warehouse

    Stelten, Mark E.; Cooper, Kari M.; Vazquez, Jorge A.; Reid, Mary R.; Barfod, Gry H.; Wimpenny, Josh; Yin, Qing-Zhu

    2013-01-01

    The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.

  11. Interpreting the Marine Calcium Isotope Record: Influence of Reef Builders

    NASA Astrophysics Data System (ADS)

    Boehm, F.; Eisenhauer, A.; Farkas, J.; Kiessling, W.; Veizer, J.; Wallmann, K.

    2008-12-01

    The calcium isotopic composition of seawater as recorded in brachiopod shells varied substantially during the Paleozoic (Farkas et al. 2007, Geochim. Cosmochim. Acta, 71, 5117-5134). The most prominent feature of the record is an excursion to higher 44Ca/40Ca values that started during the Early Carboniferous and lasted until the Permian. The shift occurred shortly after the transition from a calcite-sea to an aragonite-sea (Sandberg 1983, Nature 305, 19-22; Stanley and Hardie 1998, Pal3, 144, 3-19). It therefore has been interpreted to reflect a change in the average calcium isotope fractionation of carbonates produced in the oceans. Aragonite is depleted by about 0.6 permil in 44Ca/40Ca compared to calcite (Gussone et al. 2005, Geochim. Cosmochim. Acta, 69, 4485-4494). Consequently a transient shift from calcite dominated to an aragonite dominated calcium carbonate sedimentation could have caused the observed 0.5 permil isotope shift. We compare the marine calcium isotope record with a new compilation of the Phanerozoic trends in the skeletal mineralogy of marine invertebrates (Kiessling et al. 2008, Nature Geoscience, 1, 527-530). The compilation is based on data collected in the PaleoReef database and the Paleobiology Database, which include information on Phanerozoic reef complexes and taxonomic collection data of Phanerozoic biota, respectively. We find a strong positive correlation between the calcium isotope ratios and the abundance of aragonitic reef builders from the Silurian until the Permian at a sample resolution of about 10 million years. The two records, however, diverge in the Triassic, when reefs were dominated by aragonite but the calcium isotope values remained at a relatively low level. We also find a good correlation between calcium isotopes and the proportion of aragonite in the general record of Phanerozoic biota. However, in this case the records start to diverge already in the latest Carboniferous. The observations suggest that the

  12. ICT: isotope correction toolbox.

    PubMed

    Jungreuthmayer, Christian; Neubauer, Stefan; Mairinger, Teresa; Zanghellini, Jürgen; Hann, Stephan

    2016-01-01

    Isotope tracer experiments are an invaluable technique to analyze and study the metabolism of biological systems. However, isotope labeling experiments are often affected by naturally abundant isotopes especially in cases where mass spectrometric methods make use of derivatization. The correction of these additive interferences--in particular for complex isotopic systems--is numerically challenging and still an emerging field of research. When positional information is generated via collision-induced dissociation, even more complex calculations for isotopic interference correction are necessary. So far, no freely available tools can handle tandem mass spectrometry data. We present isotope correction toolbox, a program that corrects tandem mass isotopomer data from tandem mass spectrometry experiments. Isotope correction toolbox is written in the multi-platform programming language Perl and, therefore, can be used on all commonly available computer platforms. Source code and documentation can be freely obtained under the Artistic License or the GNU General Public License from: https://github.com/jungreuc/isotope_correction_toolbox/ {christian.jungreuthmayer@boku.ac.at,juergen.zanghellini@boku.ac.at} Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system

    PubMed Central

    Karlson, Agnes M. L.; Gorokhova, Elena; Elmgren, Ragnar

    2015-01-01

    Successful establishment of invasive species is often related to the existence of vacant niches. Competition occurs when invaders use the same limiting resources as members of the recipient community, which will be reflected in some overlap of their trophic niches. The concept of isotopic niche has been used to study trophic niche partitioning among species. Here, we present a two-year field study comparing isotopic niches of the deposit-feeding community in a naturally species-poor system. The isotopic niche analyses showed no overlap between a recent polychaete invader and any of the native species suggesting that it has occupied a vacant niche. Its narrow isotopic niche suggests specialized feeding, however, the high δ15N values compared to natives are most likely due to isotope fractionation effects related to nitrogen recycling and a mismatch between biological stoichiometry of the polychaete and the sediment nitrogen content. Notably, highly overlapping isotopic niches were inferred for the native species, which is surprising in a food-limited system. Therefore, our results demonstrate that invaders may broaden the community trophic diversity and enhance resource utilization, but also raise questions about the congruence between trophic and isotopic niche concepts and call for careful examination of assumptions underlying isotopic niche interpretation. PMID:25988260

  14. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

    PubMed Central

    Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373

  15. Nature of the impactor at the K/T boundary: clues from Os, W and Cr isotopes.

    NASA Astrophysics Data System (ADS)

    Quitté, G.; Robin, E.; Capmas, F.; Levasseur, S.; Rocchia, R.; Birck, J. L.; Allègre, C. J.

    2003-04-01

    We measured the isotope composition of Os, W and Cr in K/T boundary sediments of three marine sites (Stevns Klint, Caravaca and Bidart) to determine the nature of the bolid that impacted the Earth 65 Myrs ago. We also analysed Ni-rich cosmic spinels, because they are thought to keep the signature of the impactor. The low REE content in spinels precludes indeed the hypothesis of a mixing with more than 10% of terrestrial material. The Os and W enrichment at the K/T boundary could be explained by a scavenging of chalcophile elements at the time of sulfide precipitation. The 187Os/186Os ratio of the K/T sediments is higher than the ratio of any kind of meteorites. On top of a possible mixing with surrounding sediments, we suggest that the boundary contained more Re in the past (lost since that time by alteration and oxidation) and that the Os isotope ratio is in fact disturbed. On each of the three sites, the boundary itself does not present any tungsten isotopic anomaly. The most likely interpretation is that the extraterrestrial material is diluted enough into the sediments so that the isotopic signature has been erased. Spinels show a small deficit of (0.34±0.9) ɛ in 182W. The large error bar precludes any clear conclusion whether or not a meteoritic signature is really present. If the spinels really carry an extraterrestrial signature as expected, their W composition is in favour of an ordinary chondrite. All K/T samples (sediments and spinels) are apparently depleted in 53Cr by about 0.5 ɛ (after renormalization of 54Cr to the terrestrial value) whereas ordinary chondrites display an excess of about 0.5 ɛ. Among meteorites, only carbonaceous chondrites present a negative value for the 53Cr/52Cr ratio relative to the terrestrial value. As more than 90% of the Cr present in spinels is of extraterrestrial origin, the Cr isotopes unambiguously show that the K/T impactor was a carbonaceous chondrite. These isotopic results also confirm the extraterrestrial origin

  16. Rate dependent fractionation of sulfur isotopes in through-flowing systems

    NASA Astrophysics Data System (ADS)

    Giannetta, M.; Sanford, R. A.; Druhan, J. L.

    2017-12-01

    The fidelity of reactive transport models in quantifying microbial activity in the subsurface is often improved through the use stable isotopes. However, the accuracy of current predictions for microbially mediated isotope fractionations within open through-flowing systems typically depends on nutrient availability. This disparity arises from the common application of a single `effective' fractionation factor assigned to a given system, despite extensive evidence for variability in the fractionation factor between eutrophic environments and many naturally occurring, nutrient-limited environments. Here, we demonstrate a reactive transport model with the capacity to simulate a variable fractionation factor over a range of microbially mediated reduction rates and constrain the model with experimental data for nutrient limited conditions. Two coupled isotope-specific Monod rate laws for 32S and 34S, constructed to quantify microbial sulfate reduction and predict associated S isotope partitioning, were parameterized using a series of batch reactor experiments designed to minimize microbial growth. In the current study, we implement these parameterized isotope-specific rate laws within an open, through-flowing system to predict variable fractionation with distance as a function of sulfate reduction rate. These predictions are tested through a supporting laboratory experiment consisting of a flow-through column packed with homogenous porous media inoculated with the same species of sulfate reducing bacteria used in the previous batch reactors, Desulfovibrio vulgaris. The collective results of batch reactor and flow-through column experiments support a significant improvement for S isotope predictions in isotope-sensitive multi-component reactive transport models through treatment of rate-dependent fractionation. Such an update to the model will better equip reactive transport software for isotope informed characterization of microbial activity within energy and nutrient

  17. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies.

    PubMed

    Sommer, Breann C; Dhawan, Deepika; Ratliff, Timothy L; Knapp, Deborah W

    2018-04-26

    The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans.

  18. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  19. A study of the dry heat resistance of naturally occurring organisms widely dispersed on a surface

    NASA Technical Reports Server (NTRS)

    Garst, D. M.; Lindell, K. F.

    1971-01-01

    Although Bacillus subtilis var. niger is the standard test organism for NASA planetary quarantine sterilization studies, it was found that some naturally occurring soil organisms are more heat resistant. The separation of these organisms from soil particles is described. Experiments are discussed which were designed to show that the heat resistance is a natural characteristic of the organisms, rather than a condition induced by the clumping effect of agglomerated particles and organisms.

  20. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  1. Strontium isotope fractionation during strontianite (SrCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Harrison, Anna L.; Eisenhauer, Anton; Dietzel, Martin

    2017-12-01

    In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 0.01 M NaCl solutions wherein the pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - δ88/86Srfluid = -0.05 ± 0.01‰. On the other hand, during strontianite precipitation, an enrichment of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid and fluid is calculated to be 0.99985 ± 0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. The obtained results further support that under chemical equilibrium conditions between solid and fluid a continuous exchange of isotopes occurs until the system approaches isotopic equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite crystal, but extends to ∼7-8 unit cells below the crystal surface. The behavior of Sr isotopes in this study is in excellent agreement with the concept of dynamic equilibrium and it suggests that the time needed for achievement of chemical equilibrium is generally shorter compared to that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an isotopic change may still occur close to thermodynamic equilibrium, despite no observable change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be considered in order to use Sr

  2. Thermal resistance of naturally occurring airborne bacterial spores. [Viking spacecraft dry heat decontamination simulation

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Bergstrom, S. L.; Peeler, J. T.; Oxborrow, G. S.

    1978-01-01

    Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 C. The 30-h cycle differs from the 5- and 15-h cycles at 125 C. Thus, the heating cycle can be reduced if a small fraction (about 0.001 to 0.0001) of very resistant spores can be tolerated.

  3. INCORPORATING CONCENTRATION DEPENDENCE IN STABLE ISOTOPE MIXING MODELS

    EPA Science Inventory

    Stable isotopes are often used as natural labels to quantify the contributions of multiple sources to a mixture. For example, C and N isotopic signatures can be used to determine the fraction of three food sources in a consumer's diet. The standard dual isotope, three source li...

  4. Acute Toxicological Responses of Fischer Rats to Naturally Occurring Asbestos from theUnited States and Canada

    EPA Science Inventory

    This study was designed to provide understanding of the toxicity of naturally occurring asbestos (NOA) including Libby amphibole (LA), Sumas Mountain chrysotile (SM), EI Dorado Hills tremolite (ED) and Ontario actinolite/ferroactinolite cleavage fragments (ON). Ratrespirable fra...

  5. Naturally Occurring Fish Poisons from Plants

    ERIC Educational Resources Information Center

    Cannon, Jonathan G.; Burton, Robert A.; Wood, Steven G.; Owen, Noel L.

    2004-01-01

    The fish poisons derived from plants used throughout the world, not only as piscicides but also for a range of other uses, including insecticident and in folk medicines, is presented. The aim of this review is to provide a useful background for students interested in natural products.

  6. Naturally occurring flavonoids against human norovirus surrogates.

    PubMed

    Su, Xiaowei; D'Souza, Doris H

    2013-06-01

    Naturally occurring plant-derived flavonoids are reported to have antibacterial, antiviral, and pharmacological activities. The objectives of this study were to determine the antiviral effects of four flavonoids (myricetin, L-epicatechin, tangeretin, and naringenin) on the infectivity of food borne norovirus surrogates after 2 h at 37 °C. The lab-culturable surrogates, feline calicivirus (FCV-F9) at titers of ~7 log₁₀ PFU/ml (high titer) or ~5 log₁₀ PFU/ml (low titer) and murine norovirus (MNV-1) at ~5 log₁₀ PFU/ml, were mixed with equal volumes of myricetin, L-epicatechin, tangeretin, or naringenin at concentrations of 0.5 or 1 mM, and incubated for 2 h at 37 °C. Treatments of viruses were neutralized in cell culture medium containing 10 % heat-inactivated fetal bovine serum, serially diluted, and plaque assayed. Each treatment was replicated thrice and assayed in duplicate. FCV-F9 (low titer) was not found to be reduced by tangeretin or naringenin, but was reduced to undetectable levels by myricetin at both concentrations. Low titer FCV-F9 was also decreased by 1.40 log₁₀ PFU/ml with L-epicatechin at 0.5 mM. FCV-F9 at high titers was decreased by 3.17 and 0.72 log₁₀ PFU/ml with myricetin and L-epicatechin at 0.5 mM, and 1.73 log10 PFU/ml with myricetin at 0.25 mM, respectively. However, MNV-1 showed no significant inactivation by the four tested treatments. The antiviral effects of the tested flavonoids are dependent on the virus type, titer, and dose. Further research will focus on understanding the antiviral mechanism of myricetin and L-epicatechin.

  7. Naturally occurring radioactive materials (NORM): a matter of wide societal implication.

    PubMed

    Pescatore, C; Menon, S

    2000-12-01

    Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.

  8. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    PubMed

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. What Are Naturally Occurring School Lotteries and How Do We Identify Them? Reflections on Methodology

    ERIC Educational Resources Information Center

    Unterman, Rebecca

    2018-01-01

    This post is one in a series highlighting MDRC's methodological work. In the past decade, rapid growth in the number of charter schools and school district choice systems has provided education researchers with exciting opportunities to use naturally occurring pockets of randomization to rigorously study the effects of policy-relevant education…

  11. Oxygen and carbon isotope disequilibria in Galapagos corals: isotopic thermometry and calcification physiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnaughey, T.A.

    1986-01-01

    Biological carbonate skeletons are built largely from carbon dioxide, which reacts to form carbonate ion within thin extracellular solutions. The light isotopes of carbon and oxygen react faster than the heavy isotopes, depleting the resulting carbonate ions in /sup 13/C and /sup 18/O. Calcium carbonate precipitation occurs sufficiently fast that the skeleton remains out of isotopic equilibrium with surrounding fluids. This explanation for isotopic disequilibrium in biological carbonates was partially simulated in vitro, producing results similar to those seen in non-photosynthetic corals. Photosynthetic corals have higher /sup 13/C//sup 12/C ratios due to the preferential removal of /sup 12/C (as organicmore » carbon) from the reservoir of dissolved inorganic carbon. The oxygen isotopic variations in corals can be used to reconstruct past sea surface temperatures to an accuracy of about 0.5/sup 0/C. The carbon isotopic content of photosynthetic corals provides an indication of cloudiness. Using isotopic data from Galapagos corals, it was possible to construct proxy histories of the El Nino phenomenon. The physiology of skeletogenesis appears to be surprisingly similar in calcium carbonate, calcium phosphate, and silica precipitating systems.« less

  12. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  13. Naturally occurring ω-Hydroxyacids.

    PubMed

    Wertz, P W

    2018-02-01

    ω-Hydroxyacids are fatty acids bearing a hydroxyl group on the terminal carbon. They are found in mammals and higher plants and are often involved in providing a permeability barrier, the primary purpose of which is to reduce water loss. Some ω-hydroxyacid derivatives may be involved in waterproofing and signalling. The purpose of this review was to survey the known natural sources of ω-hydroxyacids. ω-Hydroxyacids are produced by two different P450-dependent mechanisms. The longer (30-34 carbons) ω-hydroxyacids are produced by chain extension from palmitic acid until the chain extends across the membrane in which the extension is taking place, and then the terminal carbon is hydroxylated. Shorter fatty acids can be hydroxylated directly to produce C16 and C18 ω-hydroxyacids found in plants and 20-eicosatetraenoic acid (20-HETE) by a different P450. The C16 and C18 ω-hydroxyacids are components of polymers in plants. The long-chain ω-hydroxyacids are found in epidermal sphingolipids, in giant-ring lactones from the sebum of members of the equidae, as a component of meibum and in carnauba wax and wool wax. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. On the progressive enrichment of the oxygen isotopic composition of water along a leaf.

    PubMed

    Farquhar, G. D.; Gan, K. S.

    2003-06-01

    A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.

  15. Measurement of natural and 137Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    NASA Astrophysics Data System (ADS)

    Öksüz, I.; Güray, R. T.; Özkan, N.; Yalçin, C.; Ergül, H. A.; Aksan, S.

    2016-03-01

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring 238U, 232Th and 40K isotopes and also that of an artificial isotope 137Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of 238U and 232Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the 40K are higher than the average worldwide value. A small amount of 137Cs contamination, which might be caused by the Chernobyl accident, was also detected.

  16. Multi-isotope tracing of CO2 leakage and water-rock interaction in a natural CCS analogue.

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Gemeni, Vasiliki; Lions, Julie; Koukouzas, Nikolaos; Humez, Pauline; Vasilatos, Charalampos; Millot, Romain; Pauwels, Hélène

    2015-04-01

    Natural analogues of CO2 accumulation and, potentially, leakage, provide a highly valuable opportunity to study (1) geochemical processes within a CO2-reservoir and the overlying aquifers or aquicludes, i.e. gas-water-rock interactions, (2) geology and tightness of reservoirs over geological timescales, (3) potential or real leakage pathways, (3) impact of leakage on shallow groundwater resources quality, and (4) direct and indirect geochemical indicators of gas leakage (Lions et al., 2014, Humez et al., 2014). The Florina Basin in NW Macedonia, Greece, contains a deep CO2-rich aquifer within a graben structure. The graben filling consists of highly heterogeneous Neogene clastic sediments constituted by components from the adjacent massifs including carbonates, schists, gneiss as well as some ultramafic volcanic rocks. Clay layers are observed that isolate hydraulically the deep, partly artesian aquifer. Organic matter, in form of lignite accumulations, is abundant in the Neogene series. The underlying bedrocks are metamorphic carbonates and silicate rocks. The origin of the CO2 accumulation is controversial (deep, partially mantle-derived D'Allessandro et al., 2008 or resulting from thermal decomposition of carbonates, Hatziyannis and Arvanitis, 2011). Groundwaters have been sampled from springs and borewells over 3 years at different depths. First results on major, minor and trace elements give evidence of water-rock interaction, mainly with carbonates but also with ultramafic components but do not indicate that CO2-seepage is the principal driver of those processes (Gemeni et al., submitted). Here we present isotope data on a selection of groundwaters (δ2H , δ18O, δ13CTDIC, 87Sr/86Sr, δ11B, δ7Li). Stable isotopes of water indicate paleo-recharge for some of the groundwaters, limited exchange with gaseous CO2 and, in one case, possibly thermal exchange processes with silicates. Sr isotope ratios vary between marine ratios and radiogenic values indicating

  17. Photonuclear Production of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Weinandt, Nick

    2011-10-01

    Every year, more than 20 million people in the United States receive a nuclear medicine procedure. Many of the isotopes needed for these procedures are under-produced. Suppliers of the isotopes are usually located outside the United States, which presents a problem when the desired isotopes have short half-lives. Linear accelerators were investigated as a possible method of meeting isotope demand. Linear accelerators are cheaper, safer, and have lower decommissioning costs compared to nuclear reactors. By using (γ,p) reactions, the desired isotope can be separated from the target material due to the different chemical nature of each isotope. Isotopes investigated were Cu-67, In-111, and Lu-111. Using the results the photon flux Monte Carlo simulations, the expected activity of isotopes can be calculated. After samples were irradiated, a high purity germanium detector and signal processing apparatus were used to count the samples. The activity at the time of irradiation stop was then calculated. The uses of medical isotopes will also be presented. Thanks to Idaho State University, the Idaho Accelerator Center, and the National Science Foundation for supporting the research.

  18. Characterization of a naturally occurring recombinant isolate of Grapevine fanleaf virus.

    PubMed

    Vigne, E; Demangeat, G; Komar, V; Fuchs, M

    2005-11-01

    The naturally occurring Grapevine fanleaf virus (GFLV) recombinant isolate A17b was recovered from its grapevine host by sap inoculation and serial passages onto Gomphrena globosa, a pseudo local lesion herbaceous host, and Chenopodium quinoa, a systemic herbaceous host, to characterize some of its biological properties. Sequence analysis of the CP gene, in which a recombinational event was previously detected, demonstrated the genetic stability of recombinant isolate A17b over a 5-year period in its natural host as well as in C. quinoa. Also, recombinant isolate A17b was graft transmissible, as shown by an in vitro heterologous approach, and transmitted by the nematode Xiphinema index as readily as nonrecombinant GFLV isolates. Furthermore, despite a lower pathogenicity on Chenopodium amaranticolor, recombinant isolate A17b had a similar host range and induced similar symptoms in type and severity to nonrecombinant GFLV isolates. Interestingly, the use of infectious chimeric RNA2 transcripts in combination to RNA1 transcripts of GFLV strain F13 suggested no implication of the recombination event in the CP gene of isolate A17b in the reduced pathogenicity on C. amaranticolor. Altogether, recombinant isolate A17b had similar biological properties to GFLV nonrecombinant isolates.

  19. Naturally-Occurring Canine Invasive Urothelial Carcinoma: A Model for Emerging Therapies

    PubMed Central

    Sommer, Breann C.; Dhawan, Deepika; Ratliff, Timothy L.; Knapp, Deborah W.

    2018-01-01

    The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials. The animal model(s) should possess key features that dictate success or failure of cancer drugs in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal, basal). While it may not be possible to create these collective features in experimental models, these features are present in naturally-occurring InvUC in pet dogs. Naturally occurring canine InvUC closely mimics muscle-invasive bladder cancer in humans in regards to cellular and molecular features, molecular subtypes, biological behavior (sites and frequency of metastasis), and response to therapy. Clinical treatment trials in pet dogs with InvUC are considered a win-win scenario; the individual dog benefits from effective treatment, the results are expected to help other dogs, and the findings are expected to translate to better treatment outcomes in humans. This review will provide an overview of canine InvUC, the similarities to the human condition, and the potential for dogs with InvUC to serve as a model to predict the outcomes of targeted therapy and immunotherapy in humans. PMID:29732386

  20. Primary Data on U/Pb-Isotope Ages and Lu/Hf-Isotope Geochemical Systematization of Detrital Zircons from the Lopatinskii Formation (Vendian-Cambrian Transition Levels) and the Tectonic Nature of Teya-Chapa Depression (Northeastern Yenisei Ridge)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. B.; Priyatkina, N. S.; Rud'ko, S. V.; Shatsillo, A. V.; Collins, W. J.; Romanyuk, T. V.

    2018-03-01

    The main results are presented on U/Pb-isotope dating of 100 detrital zircons and, selectively, on the Lu/Hf-isotope system of 43 grains from sandstones of the Lopatinskii formation (the lower stratigraphic level of the Chingasan group). Ages from 896 ± 51 to 2925 ± 38 Ma were obtained with a pronounced maximum of 1890 Ma in the curve of probability density, along with ɛHf estimates from +8.4 to-15.1, which allow one to throw doubt upon the molasse nature of the Lopatinskii formation.

  1. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    NASA Astrophysics Data System (ADS)

    Baker, C. W.

    1984-06-01

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  2. Occupational exposure due to naturally occurring radionuclide material in granite quarry industry.

    PubMed

    Ademola, J A

    2012-02-01

    The potential occupational exposure in granite quarry industry due to the presence of naturally occurring radioactive material (NORM) has been investigated. The activity concentrations of (40)K, (226)Ra and (232)Th were determined using gamma-ray spectroscopy method. The annual effective dose of workers through different exposure pathways was determined by model calculations. The total annual effective dose varied from 21.48 to 33.69 μSv y(-1). Inhalation dose contributes the highest to the total effective dose. The results obtained were much lower than the intervention exemption levels (1.0 mSv y(-1)) given in the International Commission on Radiological Protection Publication 82.

  3. Rapid Stable Isotope Turnover of Larval Fish in a Lake Superior Coastal Wetland: Implications for Diet and Life History Studies

    EPA Science Inventory

    Trophic linkages of larval fish in Lake Superior coastal wetlands, rivers and embayments can be identified using naturally occurring differences in the stable isotope ratios of nitrogen (15N:14N, ?15N) and carbon (13C:12C, ?13C). We sampled pelagic fish larvae weekly during sprin...

  4. Canine osteosarcoma: a naturally occurring disease to inform pediatric oncology.

    PubMed

    Fenger, Joelle M; London, Cheryl A; Kisseberth, William C

    2014-01-01

    Osteosarcoma (OSA) is the most common form of malignant bone cancer in children and dogs, although the disease occurs in dogs approximately 10 times more frequently than in people. Multidrug chemotherapy and aggressive surgical techniques have improved survival; however, new therapies for OSA are critical, as little improvement in survival times has been achieved in either dogs or people over the past 15 years, even with significant efforts directed at the incorporation of novel therapeutic approaches. Both clinical and molecular evidence suggests that human and canine OSA share many key features, including tumor location, presence of microscopic metastatic disease at diagnosis, development of chemotherapy-resistant metastases, and altered expression/activation of several proteins (e.g. Met, ezrin, phosphatase and tensin homolog, signal transducer and activator of transcription 3), and p53 mutations, among others. Additionally, canine and pediatric OSA exhibit overlapping transcriptional profiles and shared DNA copy number aberrations, supporting the notion that these diseases are similar at the molecular level. This review will discuss the similarities between pediatric and canine OSA with regard to histology, biologic behavior, and molecular genetic alterations that indicate canine OSA is a relevant, spontaneous, large animal model of the pediatric disease and outline how the study of naturally occurring OSA in dogs will offer additional insights into the biology and future treatment of this disease in both children and dogs. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Stable Isotopic Constraints on Abiogenic Hydrocarbon gas Contributions to Thermogenic Natural gas Resources in the Northern Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Burruss, R. C.; Laughrey, C. D.

    2006-05-01

    The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the

  6. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    NASA Astrophysics Data System (ADS)

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-08-01

    Rhenium-osmium (Re-Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re-Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re-Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re-Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma - all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re-Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a,b; Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re-Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This

  7. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-01-01

    Rhenium–osmium (Re–Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re–Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re–Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re–Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma – all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re–Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a, Selby and Creaser, 2005b and Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re–Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer

  8. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  9. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm , A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2.

  10. Forest Fires as a Possible Source of Isotopically Light Marine Fe Aerosols

    NASA Astrophysics Data System (ADS)

    Tegler, L. A.; Sherry, A. M.; Romaniello, S. J.; Anbar, A. D.

    2016-12-01

    Iron (Fe) is an important limiting micronutrient for primary productivity in many high-nutrient, low-chlorophyll (HNLC) regions of the ocean. These marine systems receive a significant fraction of their Fe from atmospheric deposition, which is thought to be dominated by mineral dust with an Fe isotopic composition at or above 0‰. However, Mead et al. (2013) observed isotopically light Fe in marine aerosols smaller than 2.5 μm, which is difficult to reconcile with known sources of marine aerosols. Based on previous experimental work, we hypothesize that biomass burning is the source of isotopically light Fe in atmospheric particles and suggest that biomass burning might represent an underappreciated source of Fe to marine ecosystems. While Guelke et al (2007) demonstrated that Fe in agricultural plants is isotopically light, few studies have examined the Fe isotope composition of naturally occurring forests likely to be a significant source of Fe during forest fires. To address this question, we measured the isotopic composition of Ponderosa pine growing in northern Arizona. Ponderosa pine is one the most common forest types in the western US and thus representative of an important North American fire region. Pine needles were chosen because they are susceptible to complete combustion during biomass burning events. To determine the Fe isotopic composition of pine trees, pine needles were sampled at various tree heights. We found that these samples had δ56Fe values between -1.5 and 0‰, indicating that pine needles can be isotopically light compared to local grasses and soil. These results support the hypothesis that biomass burning may contribute isotopically light Fe to marine aerosols.

  11. Interaction of flavonoids, the naturally occurring antioxidants with different media: A UV-visible spectroscopic study

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Shah, S. W. H.; Hasan, Aurangzeb; Sakhawat Shah, S.

    2010-04-01

    Quantitative parameters for interaction of flavonoids—the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, Kc. Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities.

  12. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  13. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    NASA Astrophysics Data System (ADS)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  14. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    PubMed

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, <20%) but above a threshold of 1%. Resistance variants (<1%) were observed at most sites associated with DAA resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  15. Isotopic Survey of Lake Davis and the Local Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek andmore » rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.« less

  16. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl

  17. Naturally Occurring Asbestos in the Southern Nevada Region: Potential for Human Exposure

    NASA Astrophysics Data System (ADS)

    Buck, B. J.; Metcalf, R. V.; Berry, D.; McLaurin, B.; Kent, D.; Januch, J.; Goossens, D.

    2015-12-01

    Naturally occurring fibrous actinolite, winchite, magnesioriebeckite, richterite, magnesiohornblende, and erionite have been found in rock, soil, and dust in southern Nevada and northwestern Arizona. The areas containing naturally occurring asbestos (NOA) include urban areas (e.g. Boulder City) and rural areas where people routinely enjoy outdoor activities including horseback riding, running, hiking, bicycling, and off-road-vehicle (ORV) recreation. A recent study showing mesothelioma in young people and women suggests some form of environmental exposure. Rock, soil, dust and clothing were analyzed using scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS); additional rock samples were analyzed using wavelength dispersive electron probe microanalysis (EPMA); additional soil samples were analyzed using PLM (polarizing light microscopy) and TEM (transmission electron microscopy) using the Fluidized Bed Asbestos Segregator preparation method. Winds have transported and mixed the Ca-amphiboles, which are primarily from Nevada, with the Na-amphiboles that are primarily from northwestern Arizona. Erionite, which has not previously been reported in this area, was a common soil component found in 5 of 6 samples. The erionite source has not yet been determined. Winds have transported the amphibole and erionite particles into the Nellis Dunes Recreation Area - an ORV recreation area located 35 km north of Boulder City that otherwise would not be geologically predicted to contain fibrous amphiboles. In Boulder City, wind directions are primarily bimodal N-NE and S-SW with the strongest winds in the spring coming from the S-SW. The arid climate in this part of the Mojave Desert greatly increases the potential for wind erosion and human exposures. These results suggest that the entire Las Vegas Basin has, at times, received these particles through wind transport. Because the most likely human exposure pathway is through inhalation of dust, the Las Vegas

  18. Naturally occurring menopause in cynomolgus monkeys: changes in hormone, lipid, and carbohydrate measures with hormonal status.

    PubMed

    Kavanagh, Kylie; Koudy Williams, J; Wagner, Janice D

    2005-08-01

    Naturally occurring post-menopausal (PM) female cynomolgus monkeys (Macaca fascicularis) were identified. Their sex hormone profile was characterized and compared with younger pre-menopausal females before and after ovariectomy (OVX). PM females had lower estrogens and increased follicle-stimulating hormone (FSH) concentrations. Two PM females had diabetes mellitus and elevated androgens (androstenodione and dihydroepiandrosterone sulfate). Non-diabetic PM females were given parenteral E(2) which normalized FSH, and caused improvements in body weight, plasma lipids and lipoprotein cholesterol. Androgens remained lower with E(2) treatment. OVX induced comparable increases in FSH seen with the PM monkeys, however they had lower body weights, and had higher estrone and androstenodione concentrations. Natural menopause occurs in cynomolgus monkeys and hormone changes with OVX are similar however, differences in sex hormones that can relate to body mass and age may be important. E(2) treatment restored estrogen levels and induced improvements in the lipid profile of PM females.

  19. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    PubMed

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  20. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    PubMed Central

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in

  1. Transgenerational isotopic marking of carp Cyprinus carpio, L. using a 86Sr /84Sr double spike

    NASA Astrophysics Data System (ADS)

    Zitek, Andreas; Cervicek, Magdalena; Irrgeher, Johanna; Horsky, Monika; Kletzl, Manfred; Weismann, Thomas; Prohaska, Thomas

    2013-04-01

    Transgenerational isotopic marking has been recognized recently as an effective tool for mass marking and tracking of individual fish to their original source. Compared to other conventional marking techniques, transgenerational marking offers several advantages. Most importantly, it is possible to mark all offspring of one individual female without the necessity of handling eggs or larval fish. Furthermore it is possible to vary the concentrations of individual isotopes to obtain specific marks for individual female fish. An enriched isotopic spike solution is usually applied to gravid female spawners by injection into the body cavity for transgenerational marking. The isotope is then incorporated into the central otolith region of the offspring which is known to be built up by maternally derived material. Within this study transgenerational marking of a typical cyprinid fish species, Cyprinus carpio, L., was tested using a 86Sr /84Sr double spike. Buffered solutions with different isotopic composition and concentrations were administered to 4 female individuals by intraperitoneal injection 5 days before spawning, while one female was injected a blank solution. After spawning, otoliths (Lapilli) from juvenile fish were sampled at the age of about 5 months at fish sizes between 3 and 4 cm and analyzed for their isotopic composition by LA-ICPMS applying cross sectional line scans. Central otolith regions of the progeny showed a shift in the natural isotope ratios for the administered isotopes. Deconvolution of the blank corrected measurement data of the Sr isotopes was done to trace back the original spike ratio. The different spike ratios could be well distinguished reflecting the original composition of the spike solution. This study proved that it is possible to create batch-specific unique transgenerational marks in otolith cores by varying the concentrations of two naturally occurring Sr isotopes. This method has high potential to reduce the marking effort for

  2. Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK

    NASA Astrophysics Data System (ADS)

    Hiscock, K. M.; Dennis, P. F.; Saynor, P. R.; Thomas, M. O.

    1996-05-01

    In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ 18O and δ 2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l -1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50-60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ 18O less than -7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ 18O about -7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward

  3. A stable isotope model for combined source apportionment and degradation quantification of environmental pollutants

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van Breukelen, Boris

    2014-05-01

    Natural attenuation can represent a complementary or alternative approach to engineered remediation of polluted sites. In this context, compound specific stable isotope analysis (CSIA) has proven a useful tool, as it can provide evidence of natural attenuation and assess the extent of in-situ degradation based on changes in isotope ratios of pollutants. Moreover, CSIA can allow for source identification and apportionment, which might help to identify major emission sources in complex contamination scenarios. However, degradation and mixing processes in aquifers can lead to changes in isotopic compositions, such that their simultaneous occurrence might complicate combined source apportionment (SA) and assessment of the extent of degradation (ED). We developed a mathematical model (stable isotope sources and sinks model; SISS model) based on the linear stable isotope mixing model and the Rayleigh equation that allows for simultaneous SA and quantification of the ED in a scenario of two emission sources and degradation via one reaction pathway. It was shown that the SISS model with CSIA of at least two elements contained in the pollutant (e.g., C and H in benzene) allows for unequivocal SA even in the presence of degradation-induced isotope fractionation. In addition, the model enables precise quantification of the ED provided degradation follows instantaneous mixing of two sources. If mixing occurs after two sources have degraded separately, the model can still yield a conservative estimate of the overall extent of degradation. The SISS model was validated against virtual data from a two-dimensional reactive transport model. The model results for SA and ED were in good agreement with the simulation results. The application of the SISS model to field data of benzene contamination was, however, challenged by large uncertainties in measured isotope data. Nonetheless, the use of the SISS model provided a better insight into the interplay of mixing and degradation

  4. Interpreting terrestrial organic carbon isotope records across natural and anthropogenic pCO2 change

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.

    2014-12-01

    Changes in the net carbon isotope fractionation (Δδ13C) measured in organic carbon from terrestrial substrates results from changes in climate, plant community shifts, and pCO2 level, but separating out these effects in the geologic record can be difficult. Here we present a compilation of 614 Δδ13C measurements on bulk terrestrial organic matter (TOM) and fossil leaves from 23 distinct records within 19 published studies that span the last 30,000 years up to the industrial revolution. To this dataset we add 2735 Δδ13C measurements made on tree ring tissue from 51 records that extend from 1950 to 2010. These records together span the ~80 ppm rise in pCO2 from the Late Glacial to through the Holocene (190-270 ppm; fossil leaves and TOM), and the ~70 ppm rise observed across the last 60 years (310-380 ppm; tree-ring tissue). We find a 2.0‰ relative increase in Δδ13C value across Termination 1 (18,000-11,500 years BP) and a 1.0‰ increase in Δδ13C value recorded in tree rings between 1950 and 2010. We use our recently developed relationship between pCO2 and Δδ13C to show that both increases in Δδ13C value exactly match, in trend and absolute magnitude, the increase in Δδ13C value we predict from our equations in response to rising pCO2 levels. These results have significance for the interpretation of terrestrial organic isotope records spanning both natural and anthropogenic pCO2 changes; we contend that environmental reconstructions based on long-term terrestrial Δδ13C records cannot be accurately interpreted until the isotope data are adjusted for known changes in pCO2 concentration.

  5. Naturally occurring and added sugar in relation to macronutrient intake and food consumption: results from a population-based study in adults.

    PubMed

    Kaartinen, Niina E; Similä, Minna E; Kanerva, Noora; Valsta, Liisa M; Harald, Kennet; Männistö, Satu

    2017-01-01

    Associations between sugar intake and the remaining diet are poorly described in modern food environments. We aimed at exploring associations of high naturally occurring and added sugar intakes with sociodemographic characteristics, intake of macronutrients, fibre and selected food groups. Our data comprised 4842 Finnish adults aged 25-74 years, who participated in the population-based DIetary, Lifestyle and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) study. Diet was assessed by a validated 131-item FFQ. The food item disaggregation approach was used to estimate sucrose and fructose intakes from natural sources (naturally occurring sugar) and all other sources (added sugar). Sex-specific trends in macronutrient, fibre and food group intakes across sugar type quartiles were determined with general linear modelling adjusting for age, energy intake, leisure-time physical activity, smoking, education and BMI. Overall, results were similar across sexes. Young age was found to be a determinant of higher added sugar and lower naturally occurring sugar intakes ( P  < 0·0001). High added sugar intake was associated with low fibre intake ( P  < 0·0001) accompanied with lower fruit ( P < 0·0001 women; P  = 0·022 men) and vegetable consumption ( P  < 0·0001) and higher wheat consumption ( P  = 0·0003 women; P  < 0·0001 men). Opposite results were found for naturally occurring sugar. Butter consumption increased by 28-32 % ( P  < 0·0001) when shifting from the lowest to the highest added sugar intake quartile, while a decrease of 26-38 % ( P  < 0·0001) was found for naturally occurring sugar. Therefore, the associations of sugar types with dietary carbohydrate and fat quality seem opposing. Proper adjustments with dietary variables are needed when studying independent relationships between sugar and health.

  6. Biological activity of some naturally occurring resins, gums and pigments against in vitro LDL oxidation.

    PubMed

    Andrikopoulos, Nikolaos K; Kaliora, Andriana C; Assimopoulou, Andreana N; Papapeorgiou, Vassilios P

    2003-05-01

    Naturally occurring gums and resins with beneficial pharmaceutical and nutraceutical properties were tested for their possible protective effect against copper-induced LDL oxidation in vitro. Chiosmastic gum (CMG) (Pistacia lentiscus var. Chia resin) was the most effective in protecting human LDL from oxidation. The minimum and maximum doses for the saturation phenomena of inhibition of LDL oxidation were 2.5 mg and 50 mg CMG (75.3% and 99.9%, respectively). The methanol/water extract of CMG was the most effective compared with other solvent combinations. CMG when fractionated in order to determine a structure-activity relationship showed that the total mastic essential oil, collofonium-like residue and acidic fractions of CMG exhibited a high protective activity ranging from 65.0% to 77.8%. The other natural gums and resins (CMG resin 'liquid collection', P. terebinthus var. Chia resin, dammar resin, acacia gum, tragacanth gum, storax gum) also tested as above, showed 27.0%-78.8% of the maximum LDL protection. The other naturally occurring substances, i.e. triterpenes (amyrin, oleanolic acid, ursolic acid, lupeol, 18-a-glycyrrhetinic acid) and hydroxynaphthoquinones (naphthazarin, shikonin and alkannin) showed 53.5%-78.8% and 27.0%-64.1% LDL protective activity, respectively. The combination effects (68.7%-76.2% LDL protection) of ursolic-, oleanolic- and ursodeoxycholic- acids were almost equal to the effect (75.3%) of the CMG extract in comparable doses. Copyright 2003 John Wiley & Sons, Ltd.

  7. Monitoring Natural Occurring Asbestos in ophiolite sequences and derived soils: implication with human activities

    NASA Astrophysics Data System (ADS)

    Punturo, Rosalda; Bloise, Andrea; Cirrincione, Rosolino

    2016-04-01

    The present contribution focuses on soils that developed on serpentinite-metabasite bedrocks, which could potentially be rich in asbestos minerals and, as a consequence, have a negative impact on agricultural activity and on environmental quality. In order to investigate the natural occurrences of asbestos (NOA) on the surface of the soil formed from serpentinites and metabasite, we selected a study area located in Sila Piccola (Calabrian Peloritani Orogen, southern Italy), where previous studies highlighted the presence of asbestiform minerals within the large ophiolitic sequences that crop out (Punturo et al., 2015; Bloise et al., 2015). Agricultural soil samples have been collected mainly close to urban centres and characterized by using different analytical techniques such as X-ray powder diffraction (XRPD), transmission electron microscopy combined with energy dispersive spectrometry (TEM-EDS), thermogravimetry (TG) and differential scanning calorimetry (DSC) Results pointed out as all the collected soil samples contain serpentine minerals (e.g., chrysotile), asbestos amphiboles, clays, chlorite, muscovite, plagioclase and iron oxides in various amounts. Electron microscope images of the soils show that their contain a variety of aggregating agents such as organic matter and clay in which individual fibres of chrysotile and tremolite-actinolite are trapped. The investigation showed that both serpentinite and metabasite rocks act as a perennial source of contamination for the agriculture lands because of the high amount of tremolite-actinolite found in the studied soil samples developed on such lithotypes. Even if asbestiform minerals usually occur in aggregates which cannot be suspended in the air, agricultural activities such as plowing can destroy these soil aggregates with the creation of dust containing inhalable asbestos fibres that evolve into airborne increasing the exposure of population to them. Since the dispersion of fibres could be associated with

  8. Natural Isotopic Signatures of Variations in Body Nitrogen Fluxes: A Compartmental Model Analysis

    PubMed Central

    Poupin, Nathalie; Mariotti, François; Huneau, Jean-François; Hermier, Dominique; Fouillet, Hélène

    2014-01-01

    natural and interpretable isotopic biomarkers promises interesting applications in nutrition and health. PMID:25275306

  9. Characterization of Radium and Radon Isotopes in Hydraulic Fracturing Flowback Fluid and Gas from the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Bardsley, A.

    2015-12-01

    High volume hydraulic fracturing of unconventional deposits has expanded rapidly over the past decade in the US, with much attention focused on the Marcellus Shale gas reservoir in the northeastern US. We use naturally occurring radium isotopes and 222Rn to explore changes in formation characteristics as a result of hydraulic fracturing. Gas and produced waters were analyzed from time series samples collected soon after hydraulic fracturing at three Marcellus Shale well sites in the Appalachian Basin, USA. Analyses of δ18O, Cl- , and 226Ra in flowback fluid are consistent with two end member mixing between injected slick water and formation brine. All three tracers indicate that the ratio of injected water to formation brine declines with time across both time series. Cl- concentration (max ~1.5-2.2 M) and 226Ra activity (max ~165-250 Bq/Kg) in flowback fluid are comparable at all three sites. There are differences evident in the stable isotopic composition (δ18O & δD) of injected slick water across the three sites, but all appear to mix with formation brine of similar isotopic composition. On a plot of water isotopes, δ18O in formation brine-dominated fluid is enriched by ~3-4 permille relative to the Global Meteoric Water Line, indicating oxygen exchange with shale. The ratio of 223Ra/226Ra and 228Ra/226Ra in produced waters is quite low relative to shale samples analyzed. This indicates that most of the 226Ra in the formation brine must be sourced from shale weathering or dissolution rather than emanation due to alpha recoil from the rock surface. During the first week of flowback, ratios of short lived isotopes 223Ra and 224Ra to longer lived radium isotopes change modestly, suggesting rock surface area per unit of produced water volume did not change substantially. For one well, longer term gas samples were collected. The 222Rn/methane ratio in produced gas from this site declines with time and may represent a decrease in the brine to gas ratio in the

  10. Application of Stable Carbon Isotope Ratios to Recognize Natural Biodegradation of MTBE

    EPA Science Inventory

    The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  11. Protein Stable Isotope Fingerprinting (P-SIF): A New Tool to Understand Natural Isotopic Heterogeneity of Mixed Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Mohr, W.; Tang, T.; Sattin, S.; Bovee, R.

    2014-12-01

    Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the ratios of 13C/12C (values of δ13C) for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms, while (iii) not perturbing the system, i.e., not adding exogenous substrates or isotope labels. To accomplish this, we employ two-dimensional HPLC to resolve a sample containing ca. 5-10 mg of mixed proteins into 960-1440 fractions. Each fraction then is split in two aliquots: The first is digested with trypsin for peptide sequencing, while the second is measured in triplicate using an isotope-ratio mass spectrometer interfaced with a spooling wire microcombustion device. Data from pure cultures show that bacteria have a narrow distribution of protein δ13C values within individual taxa (±0.7-1.2‰, 1σ). This is moderately larger than the mean precision of the triplicate isotope measurements (±0.5‰, 1σ) and may reflect heterogeneous distribution of 13C among the amino acids. When cells from different species are mixed together prior to protein extraction and separation, the results can predict accurately (to within ±1σ) the δ13C values of the original taxa. The number of data points required for this endmember prediction is ≥20/taxon, yielding a theoretical resolution of ca. 10 taxonomic units/sample. Initial tests on environmental samples suggest the approach will be useful to determine the overall trophic breadth of mixed microbial ecosystems.

  12. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for

  13. SIMS Investigations on Growth and Sector Zoning in Natural Hydrothermal Quartz: Isotopic and Trace Element Analyses

    NASA Astrophysics Data System (ADS)

    May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.

    2014-12-01

    Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both

  14. Interaction of flavonoids, the naturally occurring antioxidants with different media: a UV-visible spectroscopic study.

    PubMed

    Naseem, Bushra; Shah, S W H; Hasan, Aurangzeb; Sakhawat Shah, S

    2010-04-01

    Quantitative parameters for interaction of flavonoids-the naturally occurring antioxidants, with solvents and surfactants are determined using UV-visible absorption spectroscopy. The availability of flavonoids; kaempferol, apigenin, kaempferide and rhamnetin in micelles of sodium dodecyl sulfate (SDS) is reflected in terms of partition coefficient, K(c). Thermodynamic calculations show that the process of transfer of flavonoid molecules to anionic micelles of SDS is energy efficient. A distortion in flavonoid's morphology occurs in case of kaempferol and apigenin in surfactant and water, exhibited in terms of a new band in the UV region of electronic spectra of these flavonoids. The partition coefficients of structurally related flavonoids are correlated with their antioxidant activities. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Critical Evaluation of Soil Pore Water Extraction Methods on a Natural Soil

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Pratt, Dyan; Breuer, Lutz; McDonnell, Jeffrey

    2017-04-01

    Soil pore water extraction is an important component in ecohydrological studies for the measurement of δ2H and δ18O. The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of commonly applied lab-based soil water extraction techniques on a natural soil: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and two types of cryogenic extraction systems. We applied these extraction methods to a natural summer-dry (gravimetric water contents ranging from 8% to 15%) glacio-lacustrine, moderately fine textured clayey soil; excavated in 10 cm sampling increments to a depth of 1 meter. Isotope results were analyzed via OA-ICOS and compared for each extraction technique that produced liquid water. From our previous intercomparison study among the same extraction techniques but with standard soils, we discovered that extraction methods are not comparable. We therefore tested the null hypothesis that all extraction techniques would be able to replicate the natural evaporation front in a comparable manner occurring in a summer-dry soil. Our results showed that the extraction technique utilized had a significant effect on the soil water isotopic composition. High pressure mechanical squeezing and vapor equilibration techniques produced similar results with similarly sloped evaporation lines. Due to the nature of soil properties and dryness, centrifugation was unsuccessful in obtaining pore water for isotopic analysis. Cryogenic extraction on both tested techniques produced similar results to each other on a similar sloping evaporation line, but dissimilar with depth.

  16. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines

    NASA Astrophysics Data System (ADS)

    Oeser, Martin; Dohmen, Ralf; Horn, Ingo; Schuth, Stephan; Weyer, Stefan

    2015-04-01

    In this study, we applied high-precision in situ Fe and Mg isotope analyses by femtosecond laser ablation (fs-LA) MC-ICP-MS on chemically zoned olivine xeno- and phenocrysts from intra-plate volcanic regions in order to investigate the magnitude of Fe and Mg isotope fractionation and its suitability to gain information on magma evolution. Our results show that chemical zoning (i.e., Mg#) in magmatic olivines is commonly associated with significant zoning in δ56Fe and δ26Mg (up to 1.7‰ and 0.7‰, respectively). We explored different cases of kinetic fractionation of Fe and Mg isotopes by modeling diffusion in the melt or olivine and simultaneous growth or dissolution. Combining the information of chemical and isotopic zoning in olivine allows to distinguish between various processes that may occur during magma evolution, namely diffusive Fe-Mg exchange between olivine and melt, rapid crystal growth, and Fe-Mg inter-diffusion simultaneous to crystal dissolution or growth. Chemical diffusion in olivine appears to be the dominant process that drives isotope fractionation in magmatic olivine. Simplified modeling of Fe and Mg diffusion is suitable to reproduce both the chemical and the isotopic zoning in most of the investigated olivines and, additionally, provides time information about magmatic processes. For the Massif Central (France), modeling of diffusive re-equilibration of mantle olivines in basanites revealed a short time span (<2 years) between the entrainment of a mantle xenolith in an intra-plate basaltic magma and the eruption of the magma. Furthermore, we determined high cooling rates (on the order of a few tens to hundreds of °C per year) for basanite samples from a single large outcrop in the Massif Central, which probably reflects the cooling of a massive lava flow after eruption. Results from the modeling of Fe and Mg isotope fractionation in olivine point to a systematic difference between βFe and βMg (i.e., βFe/βMg ≈ 2), implying that the

  17. web-based interactive data processing: application to stable isotope metrology.

    PubMed

    Verkouteren, R M; Lee, J N

    2001-08-01

    To address a fundamental need in stable isotope metrology, the National Institute of Standards and Technology (NIST) has established a web-based interactive data-processing system accessible through a common gateway interface (CGI) program on the internet site http://www. nist.gov/widps-co2. This is the first application of a web-based tool that improves the measurement traceability afforded by a series of NIST standard materials. Specifically, this tool promotes the proper usage of isotope reference materials (RMs) and improves the quality of reported data from extensive measurement networks. Through the International Atomic Energy Agency (IAEA), we have defined standard procedures for stable isotope measurement and data-processing, and have determined and applied consistent reference values for selected NIST and IAEA isotope RMs. Measurement data of samples and RMs are entered into specified fields on the web-based form. These data are submitted through the CGI program on a NIST Web server, where appropriate calculations are performed and results returned to the client. Several international laboratories have independently verified the accuracy of the procedures and algorithm for measurements of naturally occurring carbon-13 and oxygen-18 abundances and slightly enriched compositions up to approximately 150% relative to natural abundances. To conserve the use of the NIST RMs, users may determine value assignments for a secondary standard to be used in routine analysis. Users may also wish to validate proprietary algorithms embedded in their laboratory instrumentation, or specify the values of fundamental variables that are usually fixed in reduction algorithms to see the effect on the calculations. The results returned from the web-based tool are limited in quality only by the measurements themselves, and further value may be realized through the normalization function. When combined with stringent measurement protocols, two- to threefold improvements have been

  18. Does natural weathering change the stable isotope composition (²H, ¹³C, ¹⁵N, ¹⁸O and ³⁴S) of cattle hair?

    PubMed

    Auerswald, Karl; Rossmann, Andreas; Schäufele, Rudi; Schwertl, Michael; Monahan, Frank J; Schnyder, Hans

    2011-12-30

    Stable isotope analysis of hair has found applications in many fields of science because it provides a temporally resolved, fairly stable isotopic archive of mammalian individuals. We investigated whether this hair archive is modified by natural weathering while attached to a living animal. We analyzed the tail switch hairs of one suckler cow, sampled seven times over a period of four annual summer pasture-winter stall feeding cycles. We compared relative isotope ratios (δ²H, δ¹³C, δ¹⁵N, δ¹⁸O and δ³⁴S) of sections of hair that grew simultaneously but were exposed to natural weathering conditions over different periods of time. Natural wear caused a loss of mass of approx. 0.13% day⁻¹, with no apparent effect of environmental conditions. Changes in δ²H, δ¹³C, δ¹⁵N and δ¹⁸O were below the detection limit, indicating that hair is a reliable archive for the isotopes of these elements. In contrast, δ³⁴S values increased during the grazing period by about 1‰, with exposure to UV radiation appearing to have a major influence on this result. The δ³⁴S values decreased during the subsequent stall period, probably due to abrasion. Seasonal variation in δ³⁴S may indicate alternating environments that differ in their weathering conditions.

  19. Dog erythrocyte antigens (DEA) 1, 4, 7 and suspected naturally occurring anti-DEA 7 antibodies in Italian Corso dogs.

    PubMed

    Spada, E; Proverbio, D; Priolo, V; Ippolito, D; Baggiani, L; Perego, R; Pennisi, M G

    2017-04-01

    We sought to determine the prevalence of dog erythrocyte antigen (DEA) 1, 4 and 7 and naturally occurring anti-DEA7 antibodies in Italian Corso dogs. In addition, we correlated DEAs with different epidemiologic variables, compared the prevalence of DEAs against other canine populations and assessed the risk of sensitisation and transfusion reactions (TRs) following unmatched transfusion. Blood samples from 100 Corso dogs were evaluated for DEA 1, 4, 7 and naturally occurring anti-DEA 7 antibodies. Seventy-one percent of samples were DEA 1-negative, 100% tested DEA 4-positive, and 95% tested DEA 7-negative. Suspected anti-DEA7 antibodies were found in 32% dogs. The DEA 1 and 7-negative phenotypes were significantly more common than in most canine populations. When a previously tested Italian canine population was considered as blood donors for Corso dogs, the risk of DEA 1 sensitisation using DEA 1 untyped blood was 29%, and of acute haemolytic TRs after a second untyped DEA 1-incompatible transfusion was 8%. The potential for delayed TRs between DEA 7-negative Corso dogs with suspected naturally occurring anti-DEA 7 antibodies receiving untyped DEA 7-positive blood was 11%. Conversely, when Corso dogs were blood donors for the same population, the risk of DEA 1 sensitisation was 17% and the risk of an acute haemolytic TR after a second DEA 1-incompatible blood transfusion was 3%. Corso dogs can be suitable blood donors. Additional studies are needed to clarify whether the high prevalence of naturally occurring anti-DEA 7 antibodies in this breed could increase their risk of delayed TRs when they are blood recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nuclear field shift in natural environments

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Brennecka, Gregory A.; Nielsen, Sune G.

    2013-03-01

    The nuclear field shift (NFS) is an isotope shift in atomic energy levels caused by a combination of differences in nuclear size and shape and electron densities at the nucleus. The effect of NFS in isotope fractionation was theoretically established by Bigeleisen in 1996 [Bigeleisen J. (1996) J. Am. Chem. Soc. 118:3676-3680] and has been analytically measured in laboratory chemical exchange reactions. More recently, some isotopic variations of heavy elements (Hg, Tl, U) measured in natural systems as well as isotopic anomalies measured for lower-mass elements in meteorites have been attributed to the NFS effect. These isotopic variations open up new and exciting fields of investigations in Earth sciences. In this paper, we review the different natural systems in which NFS has been proposed to be the origin of isotopic variations.

  1. Quantification of isotopic turnover in agricultural systems

    NASA Astrophysics Data System (ADS)

    Braun, A.; Auerswald, K.; Schnyder, H.

    2012-04-01

    additional change in nutrition induces changes in physiology that are likely to bias the estimation of the isotopic turnover. We designed an experiment with lactating cows which were successively exposed to the diet's natural isotopic variation and a diet-switch. We examined whether the same turnover information can be obtained from the natural (uncontrolled, short-term) isotopic variation as from the diet-switch experiment. Statistical methods to retrieve the turnover characteristics comprised multi-pool compartmental modeling for the diet-switch experiment as well as correlation analysis to perform wiggle-matching and quantification of autocorrelation (geostatistics) for the analysis of the natural variation. All three methods yielded similar results but differed in their strengths and weaknesses that will be highlighted. Combining the strengths of the new methods can make this tool even more advantageous than diet-switch experiments in many cases. In particular, the new approach empowers studying isotope turnover under a wider range of keepings, wildlife conditions and species, yielding turnover estimates that are not biased by changes in nutrition.

  2. Measurement of natural and {sup 137}Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öksüz, İ., E-mail: ibrahim-ksz@yahoo.com; Güray, R. T., E-mail: tguray@kocaeli.edu.tr; Özkan, N., E-mail: nozkan@kocaeli.edu.tr

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring {sup 238}U, {sup 232}Th and {sup 40}K isotopes and also that of an artificial isotope {sup 137}Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of {sup 238}U and {sup 232}Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the {sup 40}K are higher than the average worldwide value. A small amount of {sup 137}Cs contamination, which might be caused by the Chernobylmore » accident, was also detected.« less

  3. All fats are not equal: Considerations when using fatty acid biomarkers in compound-specific stable isotope soil and sediment tracing

    NASA Astrophysics Data System (ADS)

    Reiffarth, Dominic; Petticrew, Ellen; Owens, Philip; Lobb, David

    2013-04-01

    The development of cost-effective, convenient and reliable methods for tracing sediment movement will help establish water security. The use of compound-specific stable isotopes (CSSIs) has seen limited, small-scale applications, often in watersheds exhibiting exotic and highly diverse vegetation types. The CSSI tracing technique relies on the detection and transport of naturally occurring organics of plant origin (biomarkers); the biomarkers of interest are produced by flora, deposited on the soil and potentially mobilized along with soil particles. In part, the uniqueness of a biomarker is dependent on its biological pathway. As a plant fixes CO2-its primary source of carbon for building larger organic molecules-discrimination against the heavier 13C isotope leads to an enrichment of 12C. The more complex the biological pathway the biomarker has been subjected to, the more discrimination and unique isotopic signature the biomarker exhibits. Successfully implementing CSSI tracing requires recognizing: (i) factors contributing to the natural variability of the isotopic signature (ii) the suitability of a biomarker and (iii) factors affecting sensitivity during analysis. Considering the relatively low input of suitable organic biomarkers into the soil and degree of signal dispersion, care must be taken to isolate and correctly identify biomarkers, particularly where vegetation types show low variability and where long-range transport occurs. Research is currently being conducted in the Horsefly River (British Columbia, Canada) and South Tobacco Creek (Manitoba, Canada) watersheds; the research seeks to address some of these concerns, particularly in a temperate climate where exotic vegetation types are not common and variability is expected to be low.

  4. Depleted and natural uranium: chemistry and toxicological effects.

    PubMed

    Craft, Elena; Abu-Qare, Aquel; Flaherty, Meghan; Garofolo, Melissa; Rincavage, Heather; Abou-Donia, Mohamed

    2004-01-01

    Depleted uranium (DU) is a by-product from the chemical enrichment of naturally occurring uranium. Natural uranium is comprised of three radioactive isotopes: (238)U, (235)U, and (234)U. This enrichment process reduces the radioactivity of DU to roughly 30% of that of natural uranium. Nonmilitary uses of DU include counterweights in airplanes, shields against radiation in medical radiotherapy units and transport of radioactive isotopes. DU has also been used during wartime in heavy tank armor, armor-piercing bullets, and missiles, due to its desirable chemical properties coupled with its decreased radioactivity. DU weapons are used unreservedly by the armed forces. Chemically and toxicologically, DU behaves similarly to natural uranium metal. Although the effects of DU on human health are not easily discerned, they may be produced by both its chemical and radiological properties. DU can be toxic to many bodily systems, as presented in this review. Most importantly, normal functioning of the kidney, brain, liver, and heart can be affected by DU exposure. Numerous other systems can also be affected by DU exposure, and these are also reviewed. Despite the prevalence of DU usage in many applications, limited data exist regarding the toxicological consequences on human health. This review focuses on the chemistry, pharmacokinetics, and toxicological effects of depleted and natural uranium on several systems in the mammalian body. A section on risk assessment concludes the review.

  5. Carbon and oxygen isotope fractionation in non-marine ostracods: results from a 'natural culture' environment

    NASA Astrophysics Data System (ADS)

    Keatings, K. W.; Heaton, T. H. E.; Holmes, J. A.

    2002-05-01

    Carbon and oxygen isotope analysis of ostracods living in the near-constant conditions of spring-fed ponds in southern England allowed accurate determination of the ostracod's calcite-water 13C/12C and 18O/16O fractionations. The 13C/12C fractionations of two species, Candona candida and Pseudocandona rostrata, correspond to values expected for isotopic equilibrium with the pond's dissolved inorganic carbon at the measured temperature (11°C) and pH (6.9), whilst those of a third species, Herpetocypris reptans, would represent equilibrium at a slightly higher pH (7.1). The 18O/16O fractionations confirm two previous studies in being larger, by up to 3‰, than those 'traditionally' regarded as representing equilibrium. When the measured fractionations are considered in the context of more recent work, however, they can be explained in terms of equilibrium if the process of calcite formation at the ostracod lamella occurs at a relatively low pH (≤7) irrespective of the pH of the surrounding water. The pH of calcite formation, and therefore the calcite-water 18O/16O fractionation, may be species and stage (adult versus juvenile) specific, and related to the rate of calcification.

  6. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm-1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ˜7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  7. Environmental Implications of Ediacaran C-isotopic Shifts

    NASA Astrophysics Data System (ADS)

    Kelly, A. E.; Rothman, D. H.; Love, G. D.; Grosjean, E.; Fike, D. A.; Zumberge, J. E.; Summons, R. E.

    2008-12-01

    Compound-specific carbon isotope analyses of biomarkers show a widespread reversal in isotopic patterns in the Ediacaran. We analyzed oils and/or rocks from Eastern Siberia, Oman and Australia and confirmed that, in sediments and oils older than ~550 Ma, n-alkanes are enriched in 13C relative to the acyclic isoprenoids pristane and phytane. In younger sediments, the n-alkanes are depleted compared to these isoprenoids with the possible exception of those deposited during Phanerozoic oceanic anoxic events.1 Pristane and phytane are considered to be derived from photosynthetic primary inputs and, based on established biosynthetic relationships of organisms that dominate the modern ocean, should be 13C- enriched relative to n-alkanes from the same source. Therefore, the presence of n-alkanes with anomalously enriched isotopic compositions before 550 Ma may signify a high relative abundance of bacterial heterotrophs that extensively recycled organic matter (Corg) in the water column.2 The switch from anomalous isotopic ordering to isoprenoid: n-alkyl biosynthetic relationships characteristic of the Phanerozoic is observed to take place in the Ediacaran. In Oman, this coincides with the termination of the Shuram Excursion when marine carbonates show very negative δ13C values with no corresponding shift in the isotopic composition of co-occurring Corg.3 This has been attributed to the oxidation of a large pool of Corg in the deep ocean3 with a corresponding fundamental change in C-cycle dynamics.4 Several hypotheses, many ultimately linked to release of molecular oxygen via enhanced Corg burial, have been proposed to explain these phenomena. They include the evolution of: bilaterian animals with guts that rapidly export organic matter to the ocean floor as fecal pellets, reducing the amount of heterotrophy in the water column,2 biomineralization, providing ballast for organic export,4 and algae with decay-resistant biopolymers.4 Alternatively, tectonism and the rifting

  8. Naturally occurring asbestos: a recurring public policy challenge.

    PubMed

    Lee, R J; Strohmeier, B R; Bunker, K L; Van Orden, D R

    2008-05-01

    The potential environmental hazards and associated public health issues related to exposure to respirable dusts from the vicinity of natural in-place asbestos deposits (commonly referred to as naturally occurring asbestos, NOA) have gained the regulatory and media spotlight in many areas around the United States, such as Libby, MT, Fairfax County, VA, and El Dorado Hills, CA, among others. NOA deposits may be present in a variety of geologic formations. It has been suggested that airborne asbestos may be released from NOA deposits, and absent appropriate engineering controls, may pose a potential health hazard if these rocks are crushed or exposed to natural weathering and erosion or to human activities that create dust. The issue that needs to be addressed at a policy level is the method of assessing exposures to elongated rock fragments ubiquitous in dust clouds in these same environments and the associated risk. Elongated rock fragments and single crystal minerals present in NOA have been construed by some as having attributes, including the health effects, of asbestos fibers. However, the Occupational Safety and Health Administration (OSHA), Mine Safety and Health Administration (MSHA), and the Consumer Products Safety Commission (CPSC) found that the scientific evidence did not support this assumption. As in many environmental fields of study, the evidence is often disputed. Regulatory policy is not uniform on the subject of rock fragments, even within single agencies. The core of the issue is whether the risk parameters associated with exposures to commercial asbestos can or should be applied to rock fragments meeting an arbitrary set of particle dimensions used for counting asbestos fibers. Inappropriate inclusion of particles or fragments results in dilution of risk and needless expenditure of resources. On the other hand, inappropriate exclusion of particles or fragments may result in increased and unnecessary risk. Some of the fastest growing counties in

  9. A naturally-occurring new lead-based halocuprate(I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Mark D.; Rumsey, Michael S.; Kleppe, Annette K.

    of the natural halocuprate(I) Pb{sub 2}Cu(OH){sub 2}I{sub 3} showing the chequerboard alternation of cubane-like [Pb{sub 4}(OH){sub 4}]{sup 4+} and non-polymerised [Cu{sub 2}I{sub 6}]{sup 4−} groups. Pb atoms are black spheres, oxygen atoms are red spheres, iodine atoms are mauve spheres and Cu{sub 2}I{sub 6} groups are shown as paired edge-sharing blue tetrahedra. Display Omitted - Highlights: • A naturally-occurring new inorganic halocuprate(I). • The first natural halocuprate(I). • New structure topology based upon [Pb{sub 4}(OH){sub 4}]{sup 4+} and [Cu{sub 2}I{sub 6}]{sup 4−} groups. • Comparison with synthetic halocuprates suggests tailoring of topology via halogen composition.« less

  10. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  11. Isotopic assessment of marine food consumption by natural-foraging chacma baboons on the Cape Peninsula, South Africa.

    PubMed

    Lewis, Matthew C; West, Adam G; O'Riain, M Justin

    2018-01-01

    Stable isotope analysis has been used to investigate consumption of marine resources in a variety of terrestrial mammals, including humans, but not yet in extant nonhuman primates. We sought to test the efficacy of stable isotope analysis as a tool for such studies by comparing isotope- and observation-based estimates of marine food consumption by a troop of noncommensal, free-ranging chacma baboons. We determined δ 13 C and δ 15 N values of baboon hair (n = 9) and fecal samples (n = 144), and principal food items (n = 362). These values were used as input for diet models, the outputs of which were compared to observation-based estimates of marine food consumption. Fecal δ 13 C values ranged from -29.3‰ to -25.6‰. δ 15 N values ranged from 0.9‰ to 6.3‰ and were positively correlated with a measure of marine foraging during the dietary integration period. Mean (± SD) δ 13 C values of adult male and female baboon hairs were -21.6‰ (± 0.1) and -21.8‰ (± 0.3) respectively, and corresponding δ 15 N values were 5.0‰ (± 0.3) and 3.9‰ (± 0.2). Models indicated that marine contributions were ≤10% of baboon diet within any season, and contributed ≤17% of dietary protein through the year. Model output and observational data were in agreement, both indicating that despite their abundance in the intertidal region, marine foods comprised only a small proportion of baboon diet. This suggests that stable isotope analysis is a viable tool for investigating marine food consumption by natural-foraging primates in temperate regions. © 2017 Wiley Periodicals, Inc.

  12. Site-specific equilibrium isotopic fractionation of oxygen, carbon and calcium in apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Paulatto, Lorenzo; Blanchard, Marc; Balan, Etienne

    2017-12-01

    The stable isotope composition of biogenic apatite is an important geochemical marker that can record environmental parameters and is widely used to infer past climates, biomineralization processes, dietary preferences and habitat of vertebrates. In this study, theoretical equilibrium isotopic fractionation of oxygen, carbon and calcium in hydroxyapatite and carbonate-bearing hydroxyapatite is investigated using first-principles methods based on density-functional theory and compared to the theoretical isotopic fractionation properties of calcite, CO2 and H2O. Considering the variability of apatite crystal-chemistry, special attention is given to specific contributions of crystal sites to isotopic fractionation. Significant internal fractionation is calculated for oxygen and carbon isotopes in CO3 between the different structural sites occupied by carbonate groups in apatite (typically 7‰ for both 18O/16O and 13C/12C fractionation at 37 °C). Compared with calcite-water oxygen isotope fractionation, occurrence of A-type substitution in apatite structure, in addition to the main B-type substitution, could explain the larger temperature dependence of oxygen isotope fractionation measured at low temperature between carbonate in apatite and water. Theoretical internal fractionation of oxygen isotopes between carbonate and phosphate in B-type carbonated apatite (∼8‰ at 37 °C) is consistent with experimental values obtained from modern and well-preserved fossil bio-apatites. Concerning calcium, theoretical results suggest a small fractionation between apatite and calcite (-0.17‰ at 37 °C). Internal fractionation reaching 0.8‰ at 37 °C occurs between the two Ca sites in hydroxyapatite. Furthermore, the Ca isotopic fractionation properties of apatite are affected by the occurrence of carbonate groups, which could contribute to the variability observed on natural samples. Owing to the complexity of apatite crystal-chemistry and in light of the theoretical

  13. Naturally occurring clay nanoparticles in Latosols of Brazil central region: detection and characterization

    NASA Astrophysics Data System (ADS)

    Dominika Dybowska, Agnieszka; Luciene Maltoni, Katia; Piella, Jordi; Najorka, Jens; Puntes, Victor; Valsami-Jones, Eugenia

    2015-04-01

    Stability and reactivity of minerals change as a particle size function, which makes mineral nanoparticles (defined here as <100 nm) fundamentally distinct from the larger size materials. Naturally occurring mineral nanoparticles contribute to many biogeochemical processes, however much remains to be learnt about these materials, their size dependent behavior and environmental significance. Advances in analytical, imaging and spectroscopic techniques made it now possible to study such particles; however we still have limited knowledge of their chemical, structural and morphological identity and reactivity, in particular in soils. The aim of this research was to characterize the naturally occurring nanoparticles in three soils from Brazil central region. The samples were collected in the A horizon, treated with H2O2 to remove organic material, dispersed in ultrasonic bath and wet sieved (53 µm) to remove the sand fraction. The clay fraction was collected by siphoning the supernatant, conditioned in 1000 ml cylinder, according to the Stock's law. This fraction was further processed by re-suspension in water, sonication and repeated centrifugation, to separate the fraction smaller than 100nm. This material, called here the soil "nanofraction", was analyzed using a range of techniques: 1) nanoparticle size/morphology and crystallinity with Transmission Electron Microscopy (TEM operateing in scanning (HAADF-STEM) and High Resolution (HRTEM) mode), 2) size distribution in water with Dynamic Light Scattering (DLS) and surface charge estimated from electrophoretic mobility measurements 3) crystal phase and crystallite size with X-ray Diffraction (XRD) 4) Chemical composition by quantitative analysis of elements (e.g., Si, Fe, Al, Ti) and their spatial distribution with HRTEM/EDS elemental mappings. The nanofraction had an average hydrodynamic particle diameter ranging from 83 to 92nm with a low polydispersity index of 0.13-0.17 and was found highly stable in aqueous

  14. Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wang, Dengjun; Jin, Yan; Jaisi, Deb P.

    2015-11-01

    The fate and transport of individual type of engineered nanoparticles (ENPs) in porous media have been studied intensively and the corresponding mechanisms controlling ENPs transport and deposition are well-documented. However, investigations regarding the mobility of ENPs in the concurrent presence of another mobile colloidal phase such as naturally occurring colloids (colloid-mediated transport of ENPs) are largely lacking. Here, we investigated the cotransport and retention of engineered hydroxyapatite nanoparticles (HANPs) with naturally occurring hematite colloids in water-saturated sand columns under environmentally relevant transport conditions, i.e., pH, ionic strength (IS), and flow rate. Particularly, phosphate oxygen isotope fractionation of HANPs during cotransport was explored at various ISs and flow rates to examine the mechanisms controlling the isotope fractionation of HANPs in abiotic transport processes (physical transport). During cotransport, greater mobility of both HANPs and hematite occurred at higher pHs and flow rates, but at lower ISs. Intriguingly, the mobility of both HANPs and hematite was substantially lower during cotransport than the individual transport of either, attributed primarily to greater homo- and hetero-aggregation when both particles are copresent in the suspension. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport for both particles evolved from blocking to ripening with time and from flat to hyperexponential with depth, respectively, in response to decreases in pH and flow rate, and increases in IS. The blocking BTCs and RPs that are flat or hyperexponential can be well-approximated by a one-site kinetic attachment model. Conversely, a ripening model that incorporates attractive particle-particle interaction has to be employed to capture the ripening BTCs that are impacted by particle aggregation during cotransport. A small phosphate oxygen isotope fractionation (≤ 1.8

  15. Molybdenum isotope fractionation during adsorption to organic matter

    USGS Publications Warehouse

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  16. Molybdenum isotope fractionation during adsorption to organic matter

    NASA Astrophysics Data System (ADS)

    King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.

    2018-02-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  17. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  18. Bacteremia and bacterial translocation in the naturally occurring canine gastric dilatation-volvulus patient.

    PubMed

    Winkler, Kevin P; Greenfield, Cathy L; Schaeffer, David J

    2003-01-01

    This prospective study was performed to determine the prevalence of bacteremia in the naturally occurring gastric dilatation-volvulus (GDV) patient, the possible relationship between bacteremia and survival, and whether bacteremia was a result of translocation from the stomach. Blood cultures were collected from each patient. Bacterial cultures were collected from the liver, mesenteric lymph node, and stomach. Forty-three percent of the GDV cases and 40% of the controls developed positive blood cultures. Gram-negative rods were the most frequently isolated organisms. Evidence of bacterial translocation from the stomach could not be demonstrated in GDV patients, and survival was not affected by the presence of bacteremia.

  19. Medicinal properties of alpha-santalol, a naturally occurring constituent of sandalwood oil: review.

    PubMed

    Bommareddy, Ajay; Brozena, Sarah; Steigerwalt, James; Landis, Terra; Hughes, Sarah; Mabry, Erica; Knopp, Aaron; VanWert, Adam L; Dwivedi, Chandradhar

    2017-11-13

    Alpha-santalol is a naturally occurring sesquiterpene that is derived from sandalwood oil. Its wide range of health benefits have been attributed to the modulation of various signalling pathways involved in the development of a particular disease. For example, the antitumour and cancer preventive properties of alpha-santalol have been shown to involve cell death induction through apoptosis and cell cycle arrest in various cancer models. A marked decrease in inflammatory markers have also been shown with alpha-santalol administration in skin tissue models. The current review is aimed at bringing the most recent advances of alpha-santalol against various disease-specific models and highlighting its associated mechanistic details.

  20. Following Carbon Isotopes from Methane to Molecules

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  1. Stable Nd isotope variations in the inner Solar System: The effect of sulfide during differentiation?

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.

    2017-12-01

    Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).

  2. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    PubMed

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  3. Oxygen isotopic ratios of primordial water in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Fujiya, Wataru

    2018-01-01

    In this work, I estimate the δ18 O and δ17 O values of primordial water in CM chondrites to be 55 ± 13 and 35 ± 9‰, respectively, based on whole-rock O and H data. Also, I found that the O and/or H data of Antarctic meteorites are biased, which is attributed to terrestrial weathering. This characteristic O isotopic ratio of water together with corresponding water abundances in CM chondrites are consistent with the origin of water as ice processed by photochemical reactions at the outer regions of the solar nebula, where mass-independent O isotopic fractionation and water destruction may have occurred. Another possible mechanism to produce the inferred O isotopic ratio of water would be O isotopic fractionation between water vapor and ice, which likely occurred near the condensation front of H2O (snow line) in the solar nebula. The inferred O isotopic ratio of water suggests that carbonate in CM chondrites formed at low temperatures of <150 °C. The O isotopic ratios of primordial water in chondrites other than CM chondrites are not well constrained.

  4. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  5. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  6. Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water

    USGS Publications Warehouse

    Balistrieri, L.S.; Borrok, D.M.; Wanty, R.B.; Ridley, W.I.

    2008-01-01

    Fractionation of Cu and Zn isotopes during adsorption onto amorphous ferric oxyhydroxide is examined in experimental mixtures of metal-rich acid rock drainage and relatively pure river water and during batch adsorption experiments using synthetic ferrihydrite. A diverse set of Cu- and Zn-bearing solutions was examined, including natural waters, complex synthetic acid rock drainage, and simple NaNO3 electrolyte. Metal adsorption data are combined with isotopic measurements of dissolved Cu (65Cu/63Cu) and Zn (66Zn/64Zn) in each of the experiments. Fractionation of Cu and Zn isotopes occurs during adsorption of the metal onto amorphous ferric oxyhydroxide. The adsorption data are modeled successfully using the diffuse double layer model in PHREEQC. The isotopic data are best described by a closed system, equilibrium exchange model. The fractionation factors (??soln-solid) are 0.99927 ?? 0.00008 for Cu and 0.99948 ?? 0.00004 for Zn or, alternately, the separation factors (??soln-solid) are -0.73 ?? 0.08??? for Cu and -0.52 ?? 0.04??? for Zn. These factors indicate that the heavier isotope preferentially adsorbs onto the oxyhydroxide surface, which is consistent with shorter metal-oxygen bonds and lower coordination number for the metal at the surface relative to the aqueous ion. Fractionation of Cu isotopes also is greater than that for Zn isotopes. Limited isotopic data for adsorption of Cu, Fe(II), and Zn onto amorphous ferric oxyhydroxide suggest that isotopic fractionation is related to the intrinsic equilibrium constants that define aqueous metal interactions with oxyhydroxide surface sites. Greater isotopic fractionation occurs with stronger metal binding by the oxyhydroxide with Cu > Zn > Fe(II).

  7. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  8. Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    PubMed

    Hofmann, D; Gehre, M; Jung, K

    2003-09-01

    In order to identify natural nitrogen isotope variations of biologically important amino acids four derivatization reactions (t-butylmethylsilylation, esterification with subsequent trifluoroacetylation, acetylation and pivaloylation) were tested with standard mixtures of 17 proteinogenic amino acids and plant (moss) samples using GC-C-IRMS. The possible fractionation of the nitrogen isotopes, caused for instance by the formation of multiple reaction products, was investigated. For biological samples, the esterification of the amino acids with subsequent trifluoroacetylation is recommended for nitrogen isotope ratio analysis. A sample preparation technique is described for the isotope ratio mass spectrometric analysis of amino acids from the non-protein (NPN) fraction of terrestrial moss. 14N/15N ratios from moss (Scleropodium spec.) samples from different anthropogenically polluted areas were studied with respect to ecotoxicologal bioindication.

  9. Effect of Naturally Occurring nif Reiterations on Symbiotic Effectiveness in Rhizobium phaseoli

    PubMed Central

    Romero, David; Singleton, Paul W.; Segovia, Lorenzo; Morett, Enrique; Bohlool, B. Ben; Palacios, Rafael; Dávila, Guillermo

    1988-01-01

    Most naturally occurring strains of Rhizobium phaseoli possess reiteration of the nif genes. Three regions contain nitrogenase structural genes in strain CFN42. Two of these regions (a and b) have copies of nifH, nifD, and nifK, whereas the third region (c) contains only nifH. Strains containing mutations in either nif region a or nif region b had significantly diminished symbiotic effectiveness compared with the wild-type strain on the basis of nodule mass, total nitrogenase activity per plant, nitrogenase specific activity, total nitrogen in the shoot, and percentage of nitrogen. A strain containing mutations in both nif region a and nif region b was totally ineffective. These data indicate that both nif region a and nif region b are needed for full symbiotic effectiveness in R. phaseoli. PMID:16347593

  10. Systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies

    DOEpatents

    Fliermans,; Carl, B [Augusta, GA

    2012-08-07

    Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.

  11. Sources of Radioactive Isotopes for Dirty Bombs

    NASA Astrophysics Data System (ADS)

    Lubenau, Joel

    2004-05-01

    From the security perspective, radioisotopes and radioactive sources are not created equal. Of the many radioisotopes used in industrial applications, medical treatments, and scientific research, only eight, when present in relatively large amounts in radioactive sources, pose high security risks primarily because of their prevalence and physical properties. These isotopes are americium-241, californium-252, cesium-137, cobalt-60, iridium-192, radium-226, plutonium-238, and strontium-90. Except for the naturally occurring radium-226, nuclear reactors produce the other seven in bulk commercial quantities. Half of these isotopes emit alpha radiation and would, thus, primarily pose internal threats to health; the others are mainly high-energy gamma emitters and would present both external and internal health hazards. Therefore, the response to a "dirty bomb" event depends on what type of radioisotope is chosen and how it is employed. While only a handful of major corporations produce the reactor-generated radioisotopes, they market these materials to thousands of smaller companies and users throughout the world. Improving the security of the high-risk radioactive sources will require, among other efforts, cooperation among source suppliers and regulatory agencies.

  12. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE PAGES

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias; ...

    2016-08-19

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  13. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia del Real, Pablo; Maher, Kate; Kluge, Tobias

    Here, magnesium carbonate minerals produced by reaction of H 2O–CO 2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including deposition of ore-grade, massive-vein cryptocrystalline magnesite; formation of hydrous magnesium carbonates in weathering environments; and metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO 2 into magnesium carbonates in these settings is difficult because the fluids are usually notmore » preserved.« less

  14. Naturally occurring levels of elements in fishes as determined by PIXE and XRF methods

    NASA Astrophysics Data System (ADS)

    Tallandini, L.; Giacobini, F.; Turchetto, M.; Galassini, S.; Liu, Q. X.; Shao, H. R.; Moschini, G.; Moro, R.; Gialanella, G.; Ghermandi, G.; Cecchi, R.; Injuk, J.; Valković, V.

    1989-04-01

    Naturally occurring levels of S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sb, Sr and Pb were measured in the gills, liver and muscles of fishes ( Zosterisessor ophiocephalus Pall) in the northwestern region of the Adriatic Sea. The overall performance of PIXE and XRF methods was tested by the analysis of standard reference materials. The mean concentration values for elements were calculated from the distribution of experimentally determined concentration values. The obtained data are discussed in the framework of metal metabolism and toxicology.

  15. Non-Reductive Strategies for U Sequestration: Natural Analogues and Practical Application

    NASA Astrophysics Data System (ADS)

    Maher, K.; Bethke, C. M.; Massey, M. S.

    2011-12-01

    A number of strategies have been proposed for the in situ remediation of U contaminated zones, including bioreduction, permeable reactive barriers, and incorporation into secondary phases such as phosphates. An alternative approach is to sequester U within amorphous Si phases such as opaline silica. We have investigated the isotopic and major element composition and structure of naturally occurring U-rich opaline silica in semi-arid soil environments across the western United States. These phases constitute a large natural reservoir of sequestered U. By combining these observations with geochemical considerations, we propose a remedial strategy for sequestering U in amorphous silica. The U-rich opal occurs as laminations, veins, and coatings on clasts in soils developed on a range of parent materials. U-rich opal deposits are also found as speleothems in caves, as silica-rich spring deposits, and as cavity fillings and hydrothermal veins in volcanic tuffs. Measurements of U, Th and Pb isotopes reveal the age of the opaline silica, demonstrating the long-term stability of U sequestration in open chemical environments. The isotopic data also suggest that opaline silica will retain the majority of the initial U over millions of years. U in naturally occurring opal generally ranges between 200 to 1000 ppm. In contrast, co-existing calcite contains less than 100 ppb U. From pore water chemistry, the distribution coefficient for U incorporation into opaline silica is approximately 20, whereas the coefficient for calcite is typically between 0.2 and 1. X-ray absorption spectroscopy investigations confirm that hexavalent U is incorporated in amorphous silica as the UO22+ ion. Coexisting Fe-oxides provide a further sink for sequestering UO22+ from the pore water. However, preliminary calculations suggest that incorporation of U into amorphous silica may be a dominant mechanism for isolating UO22+from groundwater over long time scales. Nature's mechanism for sequestering UO

  16. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    NASA Astrophysics Data System (ADS)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications

  17. Biodegradation of Chlorofluorocarbons in a Groundwater Plume using Compound Specific Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Phillips, E.; Manna, J.; Horst, A.; Gilevska, T.; Sherwood Lollar, B.; Mack, E. E.; Seger, E.; Lutz, E. J.; Norcoss, S.; Morgan, S. E.; West, K. A.; Dworatzek, S.; Webb, J.

    2017-12-01

    Compound specific isotope analysis (CSIA) measures isotope ratios of organic hydrocarbons to monitor intrinsic bioremediation processes that can transform contaminants in field settings. The fraction of original contaminant remaining can be determined using the measured isotope ratio of the contaminant by an experimentally determined fractionation factor. In this study, two separate biotransformation experiments were performed in the Stable Isotope Laboratory at the University of Toronto using CSIA. In these two experiments, a mixed culture derived from a contaminated site was amended with trichlorotrifluoroethane (CFC-113), or trichlorofluoromethane (CFC-11), respectively. The concentrations and carbon isotope ratios of CFC-113, or CFC-11 were analyzed to calculate the fractionation factor for the transformation of each compound. Subsequently, groundwater samples from 9 wells at a historically contaminated site were collected and analyzed. The experimentally determined fractionation factors were then used to evaluate the extent of transformation that had occurred at the field site. In the laboratory studies, significant carbon isotope fractionation was observed for both CFC-113 and CFC-11 as biotransformation proceeded. This significant fractionation is beneficial when evaluating biotransformation at field sites as it can be clearly differentiated from the effects of other physical processes such as transport, or volatilization. Although there was significant variation in the carbon isotope values of CFC-113 between different well locations at the field site, these variations may be due to differences in source carbon isotope signatures. For CFC-11, much more significant isotopic variation was observed within the same well and between wells, showing trends consistent with in situ biotransformation. Results from this study demonstrate that CSIA can be successfully applied to evaluate the extent of transformation of chlorofluorocarbons (CFCs) at contaminated field

  18. Characterization of naturally occurring radioactive materials in Libyan oil pipe scale using a germanium detector and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Habib, A. S.; Shutt, A. L.; Regan, P. H.; Matthews, M. C.; Alsulaiti, H.; Bradley, D. A.

    2014-02-01

    Radioactive scale formation in various oil production facilities is acknowledged to pose a potential significant health and environmental issue. The presence of such an issue in Libyan oil fields was recognized as early as 1998. The naturally occurring radioactive materials (NORM) involved in this matter are radium isotopes (226Ra and 228Ra) and their decay products, precipitating into scales formed on the surfaces of production equipment. A field trip to a number of onshore Libyan oil fields has indicated the existence of elevated levels of specific activity in a number of locations in some of the more mature oil fields. In this study, oil scale samples collected from different parts of Libya have been characterized using gamma spectroscopy through use of a well shielded HPGe spectrometer. To avoid potential alpha-bearing dust inhalation and in accord with safe working practices at this University, the samples, contained in plastic bags and existing in different geometries, are not permitted to be opened. MCNP, a Monte Carlo simulation code, is being used to simulate the spectrometer and the scale samples in order to obtain the system absolute efficiency and then to calculate sample specific activities. The samples are assumed to have uniform densities and homogeneously distributed activity. Present results are compared to two extreme situations that were assumed in a previous study: (i) with the entire activity concentrated at a point on the sample surface proximal to the detector, simulating the sample lowest activity, and; (ii) with the entire activity concentrated at a point on the sample surface distal to the detector, simulating the sample highest activity.

  19. Fractionation of metal stable isotopes by higher plants

    USGS Publications Warehouse

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  20. Preservation of carbonate clumped isotopes in sedimentary paleoclimate archives

    NASA Astrophysics Data System (ADS)

    Henkes, G. A.; Passey, B. H.; Grossman, E. L.; Shenton, B.; Perez-Huerta, A.

    2014-12-01

    Carbonate clumped isotope thermometry is increasingly used to reconstruct paleotemperatures of ancient terrestrial environments. One promising application is elucidating paleoelevation from carbonate archives such as paleosols, lacustrine marls, and fossil freshwater shells. Unlike conventional stable isotope approaches (e.g., mineral δ18O or δD), clumped isotope thermometry is independent of the isotopic composition of the precipitating waters and can therefore be used to reconstruct elevation by both the temperature-altitude relationship and the rainfall δ18O-altitude relationship. However, interpretation of clumped isotope data is not without its own complications. Like conventional stable isotopes, clumped isotope paleotemperatures can be effectively reset to warmer values by dissolution/reprecipitation-type diagenesis during sedimentary burial. It is also known that carbonate clumped isotope bonds (i.e., 13C-18O) are susceptible to 'reordering' in the solid mineral lattice at warmer burial temperatures, with laboratory studies of natural carbonates indicating activation of this phenomenon at temperatures as low as 100 °C over geologic timescales. A challenge in applying carbonate clumped isotope thermometry to natural samples is now evaluating terrestrial archives with respect to both types of alteration: 'open-system' alteration and 'closed-system' bond reordering. In this talk we will review our experimental efforts to constrain the kinetics of clumped isotope reordering, with relevance to low-temperature carbonates like fossil shells and early diagenetic minerals, and present new laboratory data that further inform our theoretical framework for the mechanism(s) of 13C-18O bond reordering. Together with traditional analytical and petrographic screening for recrystallization, empirical and laboratory studies of carbonate clumped isotope reordering represent the next steps in evaluating isotopic records of paleoclimate, paleobiology, and paleoelevation

  1. Exploring the Potential of Laser Ablation Carbon Isotope Analysis for Examining Ecology during the Ontogeny of Middle Pleistocene Hominins from Sima de los Huesos (Northern Spain).

    PubMed

    Garcia, Nuria; Feranec, Robert S; Passey, Benjamin H; Cerling, Thure E; Arsuaga, Juan Luis

    2015-01-01

    Laser ablation of tooth enamel was used to analyze stable carbon isotope compositions of teeth of hominins, red deer, and bears from middle Pleistocene sites in the Sierra de Atapuerca in northern Spain, to investigate the possibility that this technique could be used as an additional tool to identify periods of physiological change that are not detectable as changes in tooth morphology. Most of the specimens were found to have minimal intra-tooth variation in carbon isotopes (< 2.3‰), suggesting isotopically uniform diets through time and revealing no obvious periods of physiological change. However, one of the two sampled hominin teeth displayed a temporal carbon isotope shift (3.2‰) that was significantly greater than observed for co-occurring specimens. The δ13C value of this individual averaged about -16‰ early in life, and -13‰ later in life. This isotopic change occurred on the canine crown about 4.2 mm from the root, which corresponds to an approximate age of two to four years old in modern humans. Our dataset is perforce small owing to the precious nature of hominid teeth, but it demonstrates the potential utility of the intra-tooth isotope profile method for extracting ontogenetic histories of human ancestors.

  2. Exploring the Potential of Laser Ablation Carbon Isotope Analysis for Examining Ecology during the Ontogeny of Middle Pleistocene Hominins from Sima de los Huesos (Northern Spain)

    PubMed Central

    Garcia, Nuria; Feranec, Robert S.; Passey, Benjamin H.; Cerling, Thure E.; Arsuaga, Juan Luis

    2015-01-01

    Laser ablation of tooth enamel was used to analyze stable carbon isotope compositions of teeth of hominins, red deer, and bears from middle Pleistocene sites in the Sierra de Atapuerca in northern Spain, to investigate the possibility that this technique could be used as an additional tool to identify periods of physiological change that are not detectable as changes in tooth morphology. Most of the specimens were found to have minimal intra-tooth variation in carbon isotopes (< 2.3‰), suggesting isotopically uniform diets through time and revealing no obvious periods of physiological change. However, one of the two sampled hominin teeth displayed a temporal carbon isotope shift (3.2‰) that was significantly greater than observed for co-occurring specimens. The δ13C value of this individual averaged about -16‰ early in life, and -13‰ later in life. This isotopic change occurred on the canine crown about 4.2 mm from the root, which corresponds to an approximate age of two to four years old in modern humans. Our dataset is perforce small owing to the precious nature of hominid teeth, but it demonstrates the potential utility of the intra-tooth isotope profile method for extracting ontogenetic histories of human ancestors. PMID:26673156

  3. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    USGS Publications Warehouse

    Shuai, Yanhua; Douglas, Peter M.J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-01-01

    Multiply isotopically substituted molecules (‘clumped’ isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature–time conditions corresponding to ‘low,’ ‘mature,’ and ‘over-mature’ stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions (‘high’ to ‘over-mature’ stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where ‘secondary’ cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation

  4. Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints.

    PubMed

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick; Boutin, René

    2015-01-01

    Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on (87)Sr/(86)Sr, and δ(18)O and δ(2)H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The (87)Sr/(86)Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low (87)Sr/(86)Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low (87)Sr/(86)Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ(2)H shows

  5. Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinne; Verdoux, Patrick; Boutin, René

    2015-06-01

    Arsenic contamination of stream waters and groundwater is a real issue in Au-As mine environments. At the Salsigne Au-As mine, southern France, arsenic contamination persists after closure and remediation of the site. In this study, natural and anthropogenic arsenic inputs in surface water and groundwater are identified based on 87Sr/86Sr, and δ18O and δ2H isotopic composition of water. In the wet season, downstream of the remediated zone, the arsenic contents in stream water and alluvial aquifer groundwater are high, with values in the order of 36 μg/L and 40 μg/L respectively, while upstream natural background average concentrations are around 4 μg/L. Locally down-gradient of the reclaimed area, arsenic concentrations in stream water showed 2 peaks, one during an important rainy event (101 mm) in the wet season in May, and a longer one over the dry period, reaching 120 and 110 μg/L respectively. The temporal variations in arsenic content in stream water can be explained i) during the dry season, by release of arsenic stored in the alluvial sediments through increased contribution from base flow and decreased stream flow and ii) during major rainy events, by mobilization of arsenic associated with important surface runoff. The 87Sr/86Sr ratios associated with increasing arsenic content in stream waters downstream of the reclaimed area are significantly lower than that of the natural Sr inherited from Variscan formations. These low 87Sr/86Sr ratios are likely to be associated with the decontaminating water treatment processes, used in the past and still at present, where CaO, produced from marine limestone and therefore showing a low 87Sr/86Sr ratios, is used to precipitate Ca3(AsO4)2. The low Sr isotope signatures will then impact on the Sr isotope ratio of (1) the Ca-arsenate stored in tailing dams, (2) effluent currently produced by water treatment process and (3) groundwater draining from the overall site. Furthermore, Δ2H shows that the low 87Sr/86Sr

  6. The reduction and oxidation of ceria: A natural abundance triple oxygen isotope perspective

    NASA Astrophysics Data System (ADS)

    Hayles, Justin; Bao, Huiming

    2015-06-01

    Ceria (CeO2) is a heavily studied material in catalytic chemistry for use as an oxygen storage medium, oxygen partial pressure regulator, fuel additive, and for the production of syngas, among other applications. Ceria powders are readily reduced and lose structural oxygen when subjected to low pO2 and/or high temperature conditions. Such dis-stoichiometric ceria can then re-oxidize under higher pO2 and/or lower temperature by incorporating new oxygen into the previously formed oxygen site vacancies. Despite extensive studies on ceria, the mechanisms for oxygen adsorption-desorption, dissociation-association, and diffusion of oxygen species on ceria surface and within the crystal structure are not well known. We predict that a large kinetic oxygen isotope effect should accompany the release and incorporation of ceria oxygen. As the first attempt to determine the existence and the degree of the isotope effect, this study focuses on a set of simple room-temperature re-oxidation experiments that are also relevant to a laboratory procedure using ceria to measure the triple oxygen isotope composition of CO2. Triple-oxygen-isotope labeled ceria powders are heated at 700 °C and cooled under vacuum prior to exposure to air. By combining results from independent experimental sets with different initial oxygen isotope labels and using a combined mass-balance and triangulation approach, we have determined the isotope fractionation factors for both high temperature reduction in vacuum (⩽10-4 mbar) and room temperature re-oxidation in air. Results indicate that there is a 1.5‰ ± 0.8‰ increase in the δ18O value of ceria after being heated in vacuum at 700 °C for 1 h. When the vacuum is broken at room temperature, the previously heated ceria incorporates 3-19% of its final structural oxygen from air, with a δ18O value of 2.1-4.1+7.7 ‰ for the incorporated oxygen. The substantial incorporation of oxygen from air supports that oxygen mobility is high in vacancy

  7. Potential environmental and regulatory implications of naturally occurring radioactive materials (NORM).

    PubMed

    Paschoa, A S

    1998-03-01

    The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminum. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10(3) kBq/kg for 226Ra, and not much less for 228Ra. Unfortunately, thus far there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries.

  8. Stable Isotopes in Evaluation of Greenhouse Gas Emissions

    USDA-ARS?s Scientific Manuscript database

    Isotopes offer a unique way to have natural tracers present in the ecosystem to track produced greenhouse gases (GHG) through multiple scales. Isotopes are simply atoms of the same element (same number of protons) with differing number of neutrons. This differing number of neutrons leads to differen...

  9. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    PubMed

    Surendran, A; Siddiqui, Y; Ali, N S; Manickam, S

    2018-06-01

    Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (V max and K m ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds. © 2018 The Society for Applied Microbiology.

  10. Isotopic Characterization of Diamond Growth in Fluids

    NASA Astrophysics Data System (ADS)

    Bureau, Hélène; Remusat, Laurent; Esteve, Imène; Pinti, Daniele; Cartigny, Pierre

    2017-04-01

    Trapping inclusions in diamonds has been used as a diagnostic to constrain diamond growth media (e.g. Navon et al., 1994; Weiss et al., 2015) in the Earth's upper mantle. Experimental works now generate inclusion-bearing diamonds from seeds in mixtures of carbonates, graphite, and silicates in the presence of excess of pure water or saline fluids (H2O-NaCl) and investigate in more details the conditions of natural diamond growth (Bureau et al., 2012; 2016). Experiments were carried at conditions compatible with the Earth's geotherm between 6-7 GPa (1300-1675°C) in multi-anvil presses at the Bayerisches Geoinstitut, Bayreuth from a few hours two a few days. Results show that within the timescale of the experiments diamond growth occurs on seeds if water and alkali-bearing carbonates are present. We show that water promotes fast diamond growth, which is favorable to the formation of inclusions. Thin sections of a few diamond seeds containing exposed inclusions were prepared using a Focus Ion Beam (about 2 to 5 µm thickness). These sections were deposited on silicon wafers and gold coated for micron-scale determination of the delta 13C isotopic compositions using the NanoSIMS 50 installed at the Muséum National d'Histoire Naturelle, Paris. Carbon isotope measurement with NanoSIMS were calibrated against a natural Ia and a synthetic IIa diamond used for diamond anvil cells, whose compositions were determined by gas-source mass spectrometry at IPGP at 3.6±0.1‰ and -20.9±0.1‰, respectively (Pinti et al., 2016). All the starting materials used for the experiments were also characterized for their delta 13C by the same technique at GEOTOP, Montréal. The isotopic composition of the new diamond grown areas were measured close to the inclusions. They exhibit a different isotopic signature than that of the starting seeds (starting diamond composition: -29.6 to -30.4±1.4‰). The new diamond signatures are falling into the range of signatures of the starting

  11. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, Richard L.; Miller, Daniel N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large‐scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3−, N2, and sorbed NH4+; and in situ natural gradient 15NH4+tracer tests with numerical simulations of 15NH4+, 15NO3−, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3− and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH4+. The δ15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH4+‐consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  12. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.

    PubMed

    Berhanu, Tesfaye A; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S K; Johnson, Matthew S; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ((15)N, (17)O, and (18)O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ(15)N, δ(18)O, and Δ(17)O). From these measurements an average photolytic isotopic fractionation of (15)ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of (15)ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of (14)NO3 (-) and (15)NO3 (-) in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the

  13. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S. K.; Johnson, Matthew S.; Savarino, Joël

    2014-06-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO3- and 15NO3- in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well

  14. The isotopic imprint of fixed nitrogen elimination in the redox transition zone of Lake Lugano, Switzerland

    NASA Astrophysics Data System (ADS)

    Wenk, Christine; Blees, Jan; Niemann, Helge; Zopfi, Jakob; Schubert, Carsten J.; Veronesi, Mauro; Simona, Marco; Koba, Keisuke; Lehmann, Moritz F.

    2010-05-01

    Nitrogen (N) loading in lakes from natural and anthropogenic sources is partially mitigated by microbially mediated processes that take place in redox transition zones (RTZ) in the water column and in sediments. However, the role of lakes as a terrestrial sink of fixed N is still poorly constrained. Furthermore, modes of suboxic N2 (and N2O) production other than canonical denitrification (e.g. anaerobic ammonium oxidation, or anammox) have barely been investigated in lakes, and the microbial communities involved in N transformations in lacustrine RTZ are mostly unknown. The isotopic composition of dissolved nitrogen species can serve as a reliable indicator of N-transformations in aquatic environments. However, the successful application of N (and O) isotope measurements in natural systems requires a solid understanding of the various N-transformation-specific isotope effects. The deep, south-alpine Lake Lugano, with a permanent chemocline in its North Basin, is an excellent model system for a biogeochemically dynamic lake, in which to study N isotope ratio variations associated with fixed N elimination and regeneration processes. We present the first comprehensive dataset of hydrochemical parameters (including N2/Ar and dissolved N2O concentrations), natural abundance stable isotope ratios of dissolved inorganic nitrogen (DIN) compounds (nitrate, nitrite, ammonium, dinitrogen, nitrous oxide), and the isotopomeric composition of water column N2O for the North Basin of Lake Lugano. Isotopic data will be integrated with molecular microbiological phylogenetic analyses and results from incubation experiments with 15N-labeled N-substrates. Strong gradients in DIN concentrations, as well as in the N and O isotope (and isotopomeric) compositions of nitrate and N2O towards the redox-transition zone indicate nitrate reduction, occurring with a high community N-fractionation. The site preference of N2O isotopomers above the chemocline indicates that the N2O is not only

  15. Monitoring in situ biodegradation of benzene and toluene by stable carbon isotope fractionation.

    PubMed

    Vieth, Andrea; Kästner, Matthias; Schirmer, Mario; Weiss, Holger; Gödeke, Stefan; Meckenstock, Rainer U; Richnow, Hans H

    2005-01-01

    Intrinsic biodegradation of benzene and toluene in a heavily contaminated aquifer at the site of a former hydrogenation plant was investigated by means of isotope fractionation processes. The carbon isotope compositions of benzene and toluene were monitored in two campaigns within a time period of 12 months to assess the extent of the in situ biodegradation and the stability of the plume over time. The Rayleigh model, applied to calculate the extent of biodegradation and residual theoretical concentrations of toluene, showed that in situ biodegradation was a relevant attenuation process. The biodegradation rate constant for toluene was estimated to be k = 5.7+/-0.5 microM/d in the groundwater flow path downstream of the source area. The spatial distribution of the carbon isotope composition of benzene indicated that in situ biodegradation occurred at marginal zones of the plume where concentrations were lower than 30 mg/L. The vertical structure of the benzene plume provided evidence for in situ degradation processes at the upper and lower fringes of the plume. The results show that isotope fractionation can be used to quantify the extent of microbial in situ degradation in contaminated aquifers and to develop conceptual models for natural attenuation approaches.

  16. Naturally Occurring Cinnamic Acid Sugar Ester Derivatives.

    PubMed

    Tian, Yuxin; Liu, Weirui; Lu, Yi; Wang, Yan; Chen, Xiaoyi; Bai, Shaojuan; Zhao, Yicheng; He, Ting; Lao, Fengxue; Shang, Yinghui; Guo, Yu; She, Gaimei

    2016-10-24

    Cinnamic acid sugar ester derivatives (CASEDs) are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3',6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM), presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae . This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

  17. Computational Assessment of Naturally Occurring Neutron and Photon Background Radiation Produced by Extraterrestrial Sources

    DOE PAGES

    Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.

    2015-10-28

    In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained bymore » NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.« less

  18. The Marine Biogeochemistry of Zinc Isotopes

    DTIC Science & Technology

    2007-06-01

    hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of...variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 6 66Zn from 0.02 %o to +0.93 %o, and chimney minerals...drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by

  19. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    occurring first at the level of secondary roots, and second at the level of leaves. (2) No Ca isotope difference was observed neither between old and young organs, (except for H6 leaves), nor between the two growth stages (except for H6 roots). This suggest that the mechanisms controlling isotopic fractionations of Ca within common beans do not vary during growth, and that the nutrients stored in the cotyledons have only a minor effect on the Ca isotope fractionations of plants harvested after 10 days. (3) Strongest Ca isotope fractionations were observed at the nutritive solution/root interface. This implies that the mechanisms of light isotope enrichments in the plant are mainly due to transport processes taking place at this interface. (4) The non infinite L6 nutritive solution became enriched in 44Ca during the experiment compared to the infinite L6 nutritive solution and all the other solutions (L4, H4, and H6). This enrichment can be explained by Rayleigh fractionation or isotopic equilibrium. (5) Bean organs, from L4 and non infinite L6 experiment conditions, were enriched in 44Ca compared to stems and roots cultivated under H4, H6 and infinite L6 conditions. This might be due to the limited Ca in the nutritive solutions that cause smallest Ca isotope fractionations in the bean organs. All these results show that there is no simple correlation between Ca isotopic variations, Ca content and pH of the nutrient solution, and that physiological effects have also to be involved. They confirm the potential of the Ca isotopic system for tracing biological fractionations in natural ecosystems.

  20. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  1. Global distribution of naturally occurring marine hypoxia on continental margins

    NASA Astrophysics Data System (ADS)

    Helly, John J.; Levin, Lisa A.

    2004-09-01

    Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.

  2. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    NASA Astrophysics Data System (ADS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  3. [In vitro toxicity of naturally occurring silica nanoparticles in C1 coal in bronchial epithelial cells].

    PubMed

    Li, Guangjian; Huang, Yunchao; Liu, Yongjun; Guo, Lv; Zhou, Yongchun; Yang, Kun; Chen, Ying; Zhao, Guangqiang; Lei, Yujie

    2012-10-01

    China's Xuan Wei County in Yunnan Province have the world's highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring), control group (silica; industrial produced and crystalline silica) was detected by assay used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the reactive oxygen species (ROS), lactate dehydrogenase (LDH) were determined after 24 h-72 h exposed to these particles. ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace; ②Naturally occurring silica nanoparticles have irregular morphology

  4. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  5. Isotopic analysis of Bothrops atrox in Amazonian forest

    NASA Astrophysics Data System (ADS)

    Martinez, M. G.; Silva, A. M.; Chalkidis, H.; de Oliveira Júnior, R. C.; Camargo, P. B.

    2012-12-01

    The poisoning of snakes is considered a public health problem, especially in populations from rural areas of tropical and subtropical countries. In Brazil, the 26,000 snakebites, 90% are of the genus Bothrops, and Bothrops atrox species predominant in the Amazon region including all the Brazilian Amazon. Research shows that using stable isotopes, we can verify the isotopic composition of tissues of animals that depend mainly on food, water ingested and inhaled gases. For this study, samples taken from Bothrops atrox (B. atrox), in forest using pitfall traps and fall ("Pitt-fall traps with drift fence"). The analyzes were performed by mass spectrometry, where the analytical error is 0.3‰ for carbon and 0.5‰ to nitrogen. The results of the forest animals are significantly different from results of animal vivarium. The average values of the tissues and venoms of snakes of the forest for carbon-13 and nitrogen-15 are: δ13C = -24.68‰ and δ15N = 14.22‰ and mean values of tissue and poisons snakes vivarium (Instituto Butantan) to carbon-13 and nitrogen-15 are δ13C = -20.47‰ and δ15N = 8.36‰, with a significantly different due to different sources of food animals. Based on all results isotopic δ13C and δ15N, we can suggest that changes as the power of the serpent, (nature and captivity), changes occur in relation to diet and environment as the means of the isotopic data are quite distinct, showing that these changes can also cause metabolic changes in the body of the animal itself and the different periods of turnover of each tissue analyzed.

  6. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  7. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  8. Relationships of phytomacrofauna to surface area in naturally occurring macrophyte stands

    USGS Publications Warehouse

    Brown, Charles L.; Poe, Thomas P.; French, John R. P.; Schloesser, Donald W.

    1988-01-01

    Most studies of the relationships between freshwater macrophytes and phytomacrofauna, or the macroinvertebrates associated with the macrophytes, have been based on individual plant collections or samples from monotypic plant stands. We describe the phytomacrofauna assemblages within naturally occurring, taxonomically mixed stands, and consider how macrophyte surface area and plant morphology influenced phytomacrofauna diversity and abundance. Samples of submersed macrophytes and phytomacrofauna were collected April-November 1979 in Anchor Bay of Lake St. Clair. Only the portions of macrophytes within the water column and invertebrates from above the sediment were considered. Densities of phytomacrofauna were not consistently related to fluctuations in macrophyte surface area, indicating that the use of macrophyte structure by the invertebrates changed during the year. Both the abundance and species richness of the phytomacrofauna were strongly related to macrophyte species richness reflecting the response of the invertebrates to the structural heterogeneity in taxonomically mixed stands. Vertically heterogeneous stands with an understory of Chara and an overstory of vascular macrophytes, for example, were likely to contain more invertebrates than stands with only one macrophyte taxon.

  9. What should a radiation regulator do about naturally occurring radioactive material?

    PubMed

    Loy, J

    2015-06-01

    The standard regulatory framework of authorisation, review and assessment, inspection and enforcement, and regulation making is directed principally towards ensuring the regulatory control of planned exposure situations. Some mining and industrial activities involving exposures to naturally occurring radioactive material (NORM), such as uranium mining or the treatment and conditioning of NORM residues, may fit readily within this standard framework. In other cases, such as oil and gas exploration and production, the standard regulatory framework needs to be adjusted. For example, it is not sensible to require that an oil company seek a licence from the radiation regulator before drilling a well. The paper discusses other approaches that a regulator might take to assure protection and safety in such activities involving exposures to NORM, including the use of conditional exemptions from regulatory controls. It also suggests some areas where further guidance from the International Commission on Radiological Protection on application of the system of radiological protection to NORM would assist both regulators and operators. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Repair of naturally occurring mismatches can induce mutations in flanking DNA

    PubMed Central

    Chen, Jia; Miller, Brendan F; Furano, Anthony V

    2014-01-01

    ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change. DOI: http://dx.doi.org/10.7554/eLife.02001.001 PMID:24843013

  11. Anthropogenic and natural lead isotopes in Fe-hydroxides and Fe-sulphates in a watershed associated with arsenic-enriched groundwater, Maine, USA

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.

    2008-01-01

    A survey of the natural and anthropogenic sources of lead contributing to secondary minerals in sulphidic schists associated with arsenic-enriched groundwater in Coastal Maine shows that the most likely source is natural Pb, particularly from coexisting sulphide minerals. The secondary minerals also reflect notable contributions from anthropogenic Pb. The Pb isotopes establish pathways by which Pb, and by inference As, could have been transported from As-bearing minerals (arsenian pyrite, arsenopyrite, lollingite, orpiment, arsenic oxide and others), via sulphide oxidation or carbonation reactions into multiple generations of secondary minerals (goethite, hematite, jarosite, natrojarosite and others). Lead isotopic compositions of the sulphides and secondary minerals determined by thermal ionization mass spectrometry (n=53) range widely. Lead and As contents of the sulphides and secondary minerals overlap, and are generally positively correlated. Pyrite, the dominant sulphide in sulphidic schists associated with As-enriched groundwater in Coastal Maine, has values of 206Pb/204Pb from 18.186 to 18.391, 207Pb/204Pb from 15.617 to 15.657, 208Pb/204Pb from 38.052 to 38.210, 206Pb/207Pb from c. 1.1625 to 1.1760 and 208Pb/207Pb from c. 2.4276 to 2.4394. Mixtures of Fe-hydroxide and oxide minerals (predominantly goethite and hematite) and secondary Fe-sulphate minerals (jarosite, natrojarosite, rozenite and melanterite) in the sulphidic schists have overlapping but generally higher values of 206Pb/204Pb from 18.495 to 19.747 (one sample at 21.495), 207Pb/204Pb from 15.595 to 15.722 (one sample at 15.839), 208Pb/204Pb from 38.186 to 39.162,206Pb/207Pb from c.1.1860 to 1.2575 (one sample at 1.3855) and 208Pb/207Pb from c. 2.4441 to 2.4865 than the sulphides. Sulphides from Zn-Pb metal mines are somewhat less radiogenic than sulphides from the schists. Other sulphides (mostly pyrite) associated with pegmatites and granitic rocks are heterogeneous and more

  12. Effects of insoluble and soluble dietary fiber on glycemic control in dogs with naturally occurring insulin-dependent diabetes mellitus.

    PubMed

    Kimmel, S E; Michel, K E; Hess, R S; Ward, C R

    2000-04-01

    To evaluate the effects of diets differing in type and quantity of fiber on glycemic control in dogs with naturally occurring insulin-dependent diabetes mellitus. Prospective randomized crossover controlled trial. 7 dogs with well-regulated naturally occurring insulin-dependent diabetes mellitus. Dogs were fed 1 of 3 diets for 1 month each in 1 of 6 randomized diet sequences. Diets included a low-fiber diet (LF) and 2 high-fiber diets; 1 contained only insoluble fiber (HIF), and 1 contained soluble fiber in addition to insoluble fiber (HSF). Caloric intake was unchanged throughout the study. Glycemic control was assessed after each feeding trial by measuring serum fructosamine concentration and performing 5 serial measurements of blood glucose concentration every 2 hours after the morning feeding and insulin injection. Significant differences were not detected in body weight, required insulin dosage, or albumin concentration among dogs fed the HIF, HSF, and LF diets. Mean and maximum blood glucose concentrations and area under the blood glucose curve were significantly lower in dogs fed the HIF diet, compared with values in the same dogs fed the HSF or LF diet. Fructosamine concentration was significantly lower in dogs fed the HIF or HSF diet, compared with values in the same dogs fed the LF diet. In dogs with naturally occurring insulin-dependent diabetes mellitus, a dry, high insoluble-fiber diet may aid in glycemic control.

  13. Role of naturally occurring gas hydrates in sediment transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIver, R.D.

    1982-06-01

    Naturally occurring gas hydrates have the potential to store enormous volumes of both gas and water in semi-solid form in ocean-bottom sediments and then to release that gas and water when the hydrate's equilibrium condition are disturbed. Therefore, hydrates provide a potential mechanism for transporting large volumes of sediments. Under the combined low bottom-water temperatures and moderate hydrostatic pressures that exist over most of the continental slopes and all of the continental rises and abyssal plains, hydrocarbon gases at or near saturation in the interstitial waters of the near-bottom sediments will form hydrates. The gas can either be autochthonous, microbiallymore » produced gas, or allochthonous, catagenic gas from deeper sediments. Equilibrium conditions that stabilize hydrated sediments may be disturbed, for example, by continued sedimentation or by lowering of sea level. In either case, some of the solid gas-water matrix decomposes. Released gas and water volume exceeds the volume occupied by the hydrate, so the internal pressure rises - drastically if large volumes of hydrate are decomposed. Part of the once rigid sediment is converted to a gas- and water-rich, relatively low density mud. When the internal pressure, due to the presence of the compressed gas or to buoyancy, is sufficiently high, the overlying sediment may be lifted and/or breached, and the less dense, gas-cut mud may break through. Such hydrate-related phenomena can cause mud diapirs, mud volcanos, mud slides, or turbidite flows, depending on sediment configuration and bottom topography. 4 figures.« less

  14. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  15. Changes in Carbon Isotope Composition of Methyl Halides Resulting from Biological and Chemical Degradation

    NASA Astrophysics Data System (ADS)

    Baesman, S. M.; Miller, L. G.; Oremland, R. S.

    2003-12-01

    Methyl bromide (MeBr), methyl chloride (MeCl) and methyl iodide (MeI) are reactive trace gases that are produced and released to the atmosphere at the Earths surface. These methyl halides have the potential to influence ozone levels in the stratosphere. Current estimates of the relative contributions of natural and anthropogenic sources of these methyl halides are the subject of considerable debate. In addition, there is uncertainty in the magnitude of some of the largest sinks for these compounds. Hence, the atmospheric budgets of MeBr, MeCl and MeI, while uncertain at present, may be better constrained using stable isotope ratio (13C/12C) mass balances of sources and sinks. Our work has focused on characterizing the effects upon δ 13C values of methyl halides released after reactions which discriminate in favor of 12C during removal processes. Previously, we determined very large fractionations of carbon isotopes by pure cultures of soil bacteria. Further, we have documented large fractionations (kinetic isotope effects or KIEs) of methyl halides in live soils. In the case of MeBr and MeI, substantial fractionation also occurred in heat-killed soil, suggesting that chemical degradation resulted in a shift in the stable isotopic composition. At elevated concentrations, for instance during agricultural soil fumigations, the δ 13C value of MeBr or MeI released from soil can be determined by flux measurements or soil profiles. However, more information is needed regarding the processes responsible for isotope fractionation to be able to extrapolate to areas where the concentration is low or direct measurement is not otherwise possible. We report here on measurements of the fractionation of carbon isotopes in methyl halides during degradation by chemical processes that are likely to occur in soil or seawater. These processes include aqueous hydrolysis and halide exchange and the methylation of organic matter using humic acid as the model methyl acceptor. Results are

  16. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary

  17. Correcting speleothem oxygen isotopic variations for growth-rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence

    2015-04-01

    The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.

  18. Molecular Imprint of Exposure to Naturally Occurring Genetic Variants of Human Cytomegalovirus on the T cell Repertoire

    NASA Astrophysics Data System (ADS)

    Smith, Corey; Gras, Stephanie; Brennan, Rebekah M.; Bird, Nicola L.; Valkenburg, Sophie A.; Twist, Kelly-Anne; Burrows, Jacqueline M.; Miles, John J.; Chambers, Daniel; Bell, Scott; Campbell, Scott; Kedzierska, Katherine; Burrows, Scott R.; Rossjohn, Jamie; Khanna, Rajiv

    2014-02-01

    Exposure to naturally occurring variants of herpesviruses in clinical settings can have a dramatic impact on anti-viral immunity. Here we have evaluated the molecular imprint of variant peptide-MHC complexes on the T-cell repertoire during human cytomegalovirus (CMV) infection and demonstrate that primary co-infection with genetic variants of CMV was coincident with development of strain-specific T-cell immunity followed by emergence of cross-reactive virus-specific T-cells. Cross-reactive CMV-specific T cells exhibited a highly conserved public T cell repertoire, while T cells directed towards specific genetic variants displayed oligoclonal repertoires, unique to each individual. T cell recognition foot-print and pMHC-I structural analyses revealed that the cross-reactive T cells accommodate alterations in the pMHC complex with a broader foot-print focussing on the core of the peptide epitope. These findings provide novel molecular insight into how infection with naturally occurring genetic variants of persistent human herpesviruses imprints on the evolution of the anti-viral T-cell repertoire.

  19. Precise and accurate isotope ratio measurements by ICP-MS.

    PubMed

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  20. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer

    PubMed Central

    Ghaghada, Ketan B.; Sato, Amy F.; Starosolski, Zbigniew A.; Berg, John; Vail, David M.

    2016-01-01

    Objectives Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. Materials and Methods The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. Results Liposomal-I resulted in significant (p < 0.05) enhancement and uniform opacification of the vascular compartment. Non-renal, reticulo-endothelial systemic clearance of the contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. Conclusions The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small

  1. Computed Tomography Imaging of Solid Tumors Using a Liposomal-Iodine Contrast Agent in Companion Dogs with Naturally Occurring Cancer.

    PubMed

    Ghaghada, Ketan B; Sato, Amy F; Starosolski, Zbigniew A; Berg, John; Vail, David M

    2016-01-01

    Companion dogs with naturally occurring cancer serve as an important large animal model in translational research because they share strong similarities with human cancers. In this study, we investigated a long circulating liposomal-iodine contrast agent (Liposomal-I) for computed tomography (CT) imaging of solid tumors in companion dogs with naturally occurring cancer. The institutional animal ethics committees approved the study and written informed consent was obtained from all owners. Thirteen dogs (mean age 10.1 years) with a variety of masses including primary and metastatic liver tumors, sarcomas, mammary carcinoma and lung tumors, were enrolled in the study. CT imaging was performed pre-contrast and at 15 minutes and 24 hours after intravenous administration of Liposomal-I (275 mg/kg iodine dose). Conventional contrast-enhanced CT imaging was performed in a subset of dogs, 90 minutes prior to administration of Liposomal-I. Histologic or cytologic diagnosis was obtained for each dog prior to admission into the study. Liposomal-I resulted in significant (p < 0.05) enhancement and uniform opacification of the vascular compartment. Non-renal, reticulo-endothelial systemic clearance of the contrast agent was demonstrated. Liposomal-I enabled visualization of primary and metastatic liver tumors. Sub-cm sized liver lesions grossly appeared as hypo-enhanced compared to the surrounding normal parenchyma with improved lesion conspicuity in the post-24 hour scan. Large liver tumors (> 1 cm) demonstrated a heterogeneous pattern of intra-tumoral signal with visibly higher signal enhancement at the post-24 hour time point. Extra-hepatic, extra-splenic tumors, including histiocytic sarcoma, anaplastic sarcoma, mammary carcinoma and lung tumors, were visualized with a heterogeneous enhancement pattern in the post-24 hour scan. The long circulating liposomal-iodine contrast agent enabled prolonged visualization of small and large tumors in companion dogs with naturally

  2. Position-specific 13C distributions within propane from experiments and natural gas samples

    NASA Astrophysics Data System (ADS)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  3. Position-specific 13C distributions within propane from experiments and natural gas samples

    USGS Publications Warehouse

    Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.

    2018-01-01

    Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in

  4. Dual isotope plots reflect transformation pathways of pesticides: Potential to assess pesticide fate and elucidate transformation mechanisms

    NASA Astrophysics Data System (ADS)

    Meyer, Armin; Penning, Holger; Sorensen, Sebastian; Aamand, Jens; Elsner, Martin

    2010-05-01

    The degradation of pesticides in deeper soil layers and groundwater is of growing interest, because they have repeatedly been found in drinking water supply wells and may pose a risk to future water resources. Current assessment schemes face a common problem, however: natural degradation often cannot be reliably assessed by concentration measurements alone, since mass balances are difficult to establish and transformation cannot be distinguished from sorption or dilution. Even detection of metabolites may only give an incomplete picture. When several transformation pathways occur, some metabolites may be degraded or form bound residues so that the associated pathways may be missed. Our research shows that dual isotope plots derived from compound specific isotope analysis offer a novel approach to give additional, complementary insight into the natural degradation of pesticides. Detection of metabolites is not required, since the isotope fractionation can be fully observed in the pesticide itself. Specifically, different initial biotransformation reactions of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) in pure culture experiments with bacterial and fungal strains showed strongly pathway-dependent isotope fractionation. When analyzing isotopic changes in different parts of the isoproturon molecule, hydroxylation of the isopropyl group by fungi was found to be associated with C and H isotope fractionation. In contrast, hydrolysis by Arthrobacter globiformis D47 caused strong C and N isotope fractionation, albeit in a different manner than abiotic hydrolysis so that isotope measurements can distinguish between both modes of transformation. Likewise, we observed highly pathway-dependent C and N isotope fractionation of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine). Desalkylation of atrazine by Rhodococcus sp. strain NI86/21 resulted in enrichment of both 13-C and 15-N in atrazine, whereas hydrolysis to hydroxyatrazine

  5. Isotope pattern deconvolution as a tool to study iron metabolism in plants.

    PubMed

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes

    2008-01-01

    Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.

  6. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  7. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    PubMed

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  8. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect.

    PubMed

    Revalde, Gita; Sholupov, Sergey; Ganeev, Alexander; Pogarev, Sergey; Ryzhov, Vladimir; Skudra, Atis

    2015-08-05

    A new analytical portable system is proposed for the direct determination of benzene vapor in the ambient air and natural gas, using differential absorption spectrometry with the direct Zeeman effect and innovative radiation sources: capillary mercury lamps with different isotopic compositions ((196)Hg, (198)Hg, (202)Hg, (204)Hg, and natural isotopic mixture). Resonance emission of mercury at a wavelength of 254 nm is used as probing radiation. The differential cross section of benzene absorption in dependence on wavelength is determined by scanning of magnetic field. It is found that the sensitivity of benzene detection is enhanced three times using lamp with the mercury isotope (204)Hg in comparison with lamp, filled with the natural isotopic mixture. It is experimentally demonstrated that, when benzene content is measured at the Occupational Exposure Limit (3.2 mg/m(3) for benzene) level, the interference from SO2, NO2, O3, H2S and toluene can be neglected if concentration of these gases does not exceed corresponding Occupational Exposure Limits. To exclude the mercury effect, filters that absorb mercury and let benzene pass in the gas duct are proposed. Basing on the results of our study, a portable spectrometer is designed with a multipath cell of 960 cm total path length and detection limit 0.5 mg/m(3) at 1 s averaging and 0.1 mg/m(3) at 30 s averaging. The applications of the designed spectrometer to measuring the benzene concentration in the atmospheric air from a moving vehicle and in natural gas are exemplified. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Evaluation of the Fate of Naturally Occurring Escherichia coli O157:H7 During Bovine Manure Composting Processes

    USDA-ARS?s Scientific Manuscript database

    Foodborne illnesses associated with produce consumption have brought attention to livestock manure composts as potential sources of pathogens for the contamination of these crops. Our objective was to determine the fate of naturally-occurring E. coli O157:H7 during “minimally managed” on-farm bovin...

  10. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  11. Left atrial volume and function in dogs with naturally occurring myxomatous mitral valve disease.

    PubMed

    Höllmer, M; Willesen, J L; Tolver, A; Koch, J

    2017-02-01

    Myxomatous mitral valve disease (MMVD) induces progressive left atrial (LA) enlargement. The LA modulates left ventricular filling and performance through its reservoir, conduit, and contractile function. Assessment of LA size and function may provide valuable information on the level of cardiac compensation. Left atrial function in dogs with naturally occurring MMVD remains largely unexplored. The objective of this study was to evaluate LA volume and function in dogs with naturally occurring MMVD. This prospective study included 205 client-owned dogs of different breeds, 114 healthy dogs, and 91 dogs with MMVD of different disease severities. Using two-dimensional echocardiography, the biplane area-length method was applied to assess LA volume and calculate volumetric indices of LA reservoir, conduit, and contractile function. Left atrial volume and LA stroke volume increased, whereas LA reservoir and contractile function decreased with increasing disease severity. A maximal LA volume <2.25mL/kg was the optimal cut off identified for excluding congestive heart failure in dogs with chronic MMVD with a sensitivity of 96% and a specificity of 100%. An active LA emptying fraction <24% and/or a LA expansion index <126% were suggestive of congestive heart failure in dogs with chronic MMVD with a sensitivity of 77% and a specificity of 89% and a sensitivity of 82% and a specificity of 82%, respectively. Dogs with MMVD appear to have larger LA volumes with poorer LA function. Deteriorating LA function, characterized by a decreasing reservoir and active contractile function, was evident in dogs with MMVD with increasing disease severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    PubMed

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  13. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    PubMed Central

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect

  14. Fractionation of Sulfur Isotopes by Desulfovibrio vulgaris Mutants Lacking Periplasmic Hydrogenases or the Type I Tetraheme Cytochrome c3

    NASA Astrophysics Data System (ADS)

    Sim, M.; Ono, S.; Bosak, T.

    2012-12-01

    , because intracellular concentrations of electron transport components can be altered by environmental factors such as iron availability. Simultaneous sulfate reduction and fermentation, and their corresponding sulfur isotope effects, also generate a hypothesis that links sulfur isotope fractionation to the cellular energy budget. Theoretically, the largest fractionation during microbial sulfate reduction occurs when the backward fluxes equal the forward fluxes in sulfate reduction pathway. However, when the generation of ATP depends exclusively on sulfate respiration, a minimum respiration rate is required to fulfill the maintenance energy requirement. In contrast, when sulfate reduction occurs simultaneously with fermentation, the latter process may contribute toward maintenance energy, enabling slower and more reversible sulfate reduction, and leading to larger fractionation. Given that many sulfate-reducing microbes are also facultative fermenters, fermentation by sulfate reducing microbes in natural habitats and sulfur isotope signatures produced by such communities deserve further exploration.

  15. Nitrogen isotope effects induced by anammox bacteria

    PubMed Central

    Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.

    2013-01-01

    Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043

  16. "Anticlumping" and Other Combinatorial Effects on Clumped Isotopes: Implications for Tracing Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Yeung, L.

    2015-12-01

    I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can

  17. Naturally Occurring Structural Isomers in Serum IgA1 O-Glycosylation

    PubMed Central

    Takahashi, Kazuo; Smith, Archer D.; Poulsen, Knud; Kilian, Mogens; Julian, Bruce A.; Mestecky, Jiri; Novak, Jan; Renfrow, Matthew B.

    2013-01-01

    IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr225, Thr228, Ser230, Ser232 and Thr236 have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC/MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser230, Thr233 or Thr236 produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability. PMID:22067045

  18. The Naturally Occurring Compound Garcinia Indica Selectively Impairs the Reconsolidation of a Cocaine-Associated Memory.

    PubMed

    Monsey, Melissa S; Sanchez, Hayde; Taylor, Jane R

    2017-02-01

    Sustained abstinence from cocaine use is frequently compromised by exposure to environmental stimuli that have previously been strongly associated with drug taking. Such cues trigger memories of the effects of the drug, leading to craving and potential relapse. Our work has demonstrated that manipulating cocaine-cue memories by destabilizing them through interfering with the reconsolidation process is one potential therapeutic tool by which to prolong abstinence. Here, we examine the use of the naturally occurring amnestic agent garcinol to manipulate an established cocaine-cue memory. Rats underwent 12 days of cocaine self-administration training during which time active lever presses resulted in an i.v. infusion of cocaine that was paired with a light/tone cue. Next rats underwent lever extinction for 8 days followed by light/tone reactivation and a test of cue-induced cocaine-seeking behavior. Systemic injection of garcinol 30 min after reactivation significantly impaired the reconsolidation of the cocaine-associated cue memory. Further testing revealed that garcinol had no effect on drug-induced cocaine-seeking, but was capable of blocking the initial conditioned reinforcing properties of the cue and prevents the acquisition of a new response. Additional experiments showed that the effects of garcinol are specific to reactivated memories only, temporally constrained, cue-specific, long-lasting, and persist following extended cocaine access. These data provide strong evidence that the naturally occurring compound, garcinol, may be a potentially useful tool to sustain abstinence from drug abuse.

  19. The Naturally Occurring Compound Garcinia Indica Selectively Impairs the Reconsolidation of a Cocaine-Associated Memory

    PubMed Central

    Monsey, Melissa S; Sanchez, Hayde; Taylor, Jane R

    2017-01-01

    Sustained abstinence from cocaine use is frequently compromised by exposure to environmental stimuli that have previously been strongly associated with drug taking. Such cues trigger memories of the effects of the drug, leading to craving and potential relapse. Our work has demonstrated that manipulating cocaine-cue memories by destabilizing them through interfering with the reconsolidation process is one potential therapeutic tool by which to prolong abstinence. Here, we examine the use of the naturally occurring amnestic agent garcinol to manipulate an established cocaine-cue memory. Rats underwent 12 days of cocaine self-administration training during which time active lever presses resulted in an i.v. infusion of cocaine that was paired with a light/tone cue. Next rats underwent lever extinction for 8 days followed by light/tone reactivation and a test of cue-induced cocaine-seeking behavior. Systemic injection of garcinol 30 min after reactivation significantly impaired the reconsolidation of the cocaine-associated cue memory. Further testing revealed that garcinol had no effect on drug-induced cocaine-seeking, but was capable of blocking the initial conditioned reinforcing properties of the cue and prevents the acquisition of a new response. Additional experiments showed that the effects of garcinol are specific to reactivated memories only, temporally constrained, cue-specific, long-lasting, and persist following extended cocaine access. These data provide strong evidence that the naturally occurring compound, garcinol, may be a potentially useful tool to sustain abstinence from drug abuse. PMID:27380937

  20. Clinical and microbiological parameters of naturally occurring periodontitis in the non-human primate Macaca mulatta

    PubMed Central

    Colombo, A. P. V.; Paster, B. J.; Grimaldi, G.; Lourenço, T. G. B.; Teva, A.; Campos-Neto, A.; McCluskey, J.; Kleanthous, H.; Van Dyke, T. E.; Stashenko, P.

    2017-01-01

    ABSTRACT Background: Non-human primates appear to represent the most faithful model of human disease, but to date the oral microbiome in macaques has not been fully characterized using next-generation sequencing. Objective: In the present study, we characterized the clinical and microbiological features of naturally occurring periodontitis in non-human primates (Macaca mulatta). Design: Clinical parameters of periodontitis including probing pocket depth (PD) and bleeding on probing (BOP) were measured in 40 adult macaques (7–22 yrs), at six sites per tooth. Subgingival plaque was collected from diseased and healthy sites, and subjected to 16S rDNA sequencing and identification at the species or higher taxon level. Results: All macaques had mild periodontitis at minimum, with numerous sites of PD ≥ 4 mm and BOP. A subset (14/40) had moderate-severe disease, with >2 sites with PD ≥ 5mm, deeper mean PD, and more BOP. Animals with mild vs moderate-severe disease were identical in age, suggesting genetic heterogeneity. 16S rDNA sequencing revealed that all macaques had species that were identical to those in humans or closely related to human counterparts, including Porphyromonas gingivalis which was present in all animals. Diseased and healthy sites harboured distinct microbiomes; however there were no significant differences in the microbiomes in moderate-severe vs. mild periodontitis. Conclusions: Naturally occurring periodontitis in older macaques closely resembles human adult periodontitis, thus validating a useful model to evaluate novel anti-microbial therapies. PMID:29805776

  1. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio, Luis G.; Arvidson, Kirk B.; Chanderbhan, Ronald F.

    2007-07-01

    Consistent with the U.S. Food and Drug Administration (FDA) Critical Path Initiative, predictive toxicology software programs employing quantitative structure-activity relationship (QSAR) models are currently under evaluation for regulatory risk assessment and scientific decision support for highly sensitive endpoints such as carcinogenicity, mutagenicity and reproductive toxicity. At the FDA's Center for Food Safety and Applied Nutrition's Office of Food Additive Safety and the Center for Drug Evaluation and Research's Informatics and Computational Safety Analysis Staff (ICSAS), the use of computational SAR tools for both qualitative and quantitative risk assessment applications are being developed and evaluated. One tool of current interest ismore » MDL-QSAR predictive discriminant analysis modeling of rodent carcinogenicity, which has been previously evaluated for pharmaceutical applications by the FDA ICSAS. The study described in this paper aims to evaluate the utility of this software to estimate the carcinogenic potential of small, organic, naturally occurring chemicals found in the human diet. In addition, a group of 19 known synthetic dietary constituents that were positive in rodent carcinogenicity studies served as a control group. In the test group of naturally occurring chemicals, 101 were found to be suitable for predictive modeling using this software's discriminant analysis modeling approach. Predictions performed on these compounds were compared to published experimental evidence of each compound's carcinogenic potential. Experimental evidence included relevant toxicological studies such as rodent cancer bioassays, rodent anti-carcinogenicity studies, genotoxic studies, and the presence of chemical structural alerts. Statistical indices of predictive performance were calculated to assess the utility of the predictive modeling method. Results revealed good predictive performance using this software's rodent carcinogenicity module of over 1200

  2. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography.

    PubMed

    Zheng, Jian; Yamada, Masatoshi

    2006-01-15

    The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.

  3. C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways.

    PubMed

    Penning, Holger; Sørensen, Sebastian R; Meyer, Armin H; Aamand, Jens; Elsner, Martin

    2010-04-01

    The fate of pesticides in the subsurface is of great interest to the public, industry, and regulatory authorities. Compound-specific isotope analysis (CSIA) is a promising tool complementary to existing methods for elucidating pesticide degradation reactions. Here, we address three different initial biotransformation reactions of the phenylurea herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) in pure culture experiments with bacterial and fungal strains. When analyzing isotopic changes in different parts of the isoproturon molecule, hydroxylation of the isopropyl group by fungi was found to be associated with C and H isotope fractionation. In contrast, hydrolysis by Arthrobacter globiformis D47 caused strong C and N isotope fractionation, albeit in a different manner than abiotic hydrolysis so that isotope measurements can distinguish between both modes of transformation. No significant isotope fractionation was observed during N-demethylation by Sphingomonas sp. SRS2. The observed isotope fractionation patterns were in agreement with the type of reactions and elements involved. Moreover, their substantially different nature suggests that isotope changes in natural samples may be uniquely attributed to either pathway, allowing even to distinguish the abiotic versus biotic nature of hydrolysis. Our investigations show how characteristic isotope patterns may significantly add to the present understanding of the environmental fate of pesticides.

  4. GHR1 - A new Eocene natural reference material for U-Pb and Hf isotopic measurements in zircon

    NASA Astrophysics Data System (ADS)

    Ibanez-Mejia, M.; Eddy, M. P.

    2017-12-01

    We present chemical abrasion-isotope dilution-thermal ionization (CA-ID-TIMS) U-Pb zircon geochronology and solution multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) Hf isotopic data from a proposed natural zircon reference material for use during in situ analyses of U-Pb and Hf isotopic ratios. The sample, GHR1, was collected from the rapakivi intrusive phase of the Eocene Golden Horn batholith in Washington, USA. Zircons separated from this sample range up to 250-300 μm in length and have moderate aspect ratios. A weighted mean of 15 Th-corrected 206Pb/238U zircon dates from GHR1 produced at the Massachusetts Institute of Technology is 48.132 ± 0.023 Ma (2σ analytical and tracer uncertainties only, MSWD=1.70) confirming that there is little or no inter-crystal age heterogeneity at the scale of a few 10 kyr. Solution MC-ICP-MS measurements of chemically purified aliquots give a 176Hf/177Hf weighted mean of 0.283050 ± 17 (2σ, n=10), corresponding to a ɛHf0 of ca. +9.3. The 2σ variability of these measurements is comparable to our reproducibility of the JMC-475 Hf isotopic standard 0.282160 ± 14 (n= 13), suggesting that GHR1 zircons are homogenous with respect to 176Hf/177Hf. In situ 206Pb/238U dates from collaborating secondary ion mass spectrometry (SIMS), sensitive high-resolution ion microprobe (SHRIMP), and laser ablation ICP-MS (LA-ICP-MS) laboratories are in excellent agreement with the CA-ID-TIMS date and illustrate the reproducibility and potential value of this reference zircon. The mean values of 176Hf/177Hf measurements from two LA-ICP-MS laboratories are in agreement with the solution MC-ICP-MS value, but show slightly greater dispersion and higher (Lu+Yb)/Hf values. We attribute this discrepancy to apatite inclusions that are high in REE and may lead to greater isobaric interferences on 176Hf. These inclusions and potential isobaric interferences from REE were removed during the chemical abrasion step prior to bulk

  5. Design of Bioactive Peptides from Naturally Occurring μ-Conotoxin Structures*

    PubMed Central

    Stevens, Marijke; Peigneur, Steve; Dyubankova, Natalia; Lescrinier, Eveline; Herdewijn, Piet; Tytgat, Jan

    2012-01-01

    To date, cone snail toxins (“conotoxins”) are of great interest in the pursuit of novel subtype-selective modulators of voltage-gated sodium channels (Navs). Navs participate in a wide range of electrophysiological processes. Consequently, their malfunctioning has been associated with numerous diseases. The development of subtype-selective modulators of Navs remains highly important in the treatment of such disorders. In current research, a series of novel, synthetic, and bioactive compounds were designed based on two naturally occurring μ-conotoxins that target Navs. The initial designed peptide contains solely 13 amino acids and was therefore named “Mini peptide.” It was derived from the μ-conotoxins KIIIA and BuIIIC. Based on this Mini peptide, 10 analogues were subsequently developed, comprising 12–16 amino acids with two disulfide bridges. Following appropriate folding and mass verification, blocking effects on Navs were investigated. The most promising compound established an IC50 of 34.1 ± 0.01 nm (R2-Midi on Nav1.2). An NMR structure of one of our most promising compounds was determined. Surprisingly, this structure does not reveal an α-helix. We prove that it is possible to design small peptides based on known pharmacophores of μ-conotoxins without losing their potency and selectivity. These data can provide crucial material for further development of conotoxin-based therapeutics. PMID:22773842

  6. Steroid isotopic standards for gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS).

    PubMed

    Zhang, Ying; Tobias, Herbert J; Brenna, J Thomas

    2009-03-01

    Carbon isotope ratio (CIR) analysis of urinary steroids using gas chromatography-combustion isotope ratio mass spectrometry (GCC-IRMS) is a recognized test to detect illicit doping with synthetic testosterone. There are currently no universally used steroid isotopic standards (SIS). We adapted a protocol to prepare isotopically uniform steroids for use as a calibrant in GCC-IRMS that can be analyzed under the same conditions as used for steroids extracted from urine. Two separate SIS containing a mixture of steroids were created and coded CU/USADA 33-1 and CU/USADA 34-1, containing acetates and native steroids, respectively. CU/USADA 33-1 contains 5alpha-androstan-3beta-ol acetate (5alpha-A-AC), 5alpha-androstan-3alpha-ol-17-one acetate (androsterone acetate, A-AC), 5beta-androstan-3alpha-ol-11, 17-dione acetate (11-ketoetiocholanolone acetate, 11k-AC) and 5alpha-cholestane (Cne). CU/USADA 34-1 contains 5beta-androstan-3alpha-ol-17-one (etiocholanolone, E), 5alpha-androstan-3alpha-ol-17-one (androsterone, A), and 5beta-pregnane-3alpha, 20alpha-diol (5betaP). Each mixture was prepared and dispensed into a set of about 100 ampoules using a protocol carefully designed to minimize isotopic fractionation and contamination. A natural gas reference material, NIST RM 8559, traceable to the international standard Vienna PeeDee Belemnite (VPDB) was used to calibrate the SIS. Absolute delta(13)C(VPDB) and Deltadelta(13)C(VPDB) values from randomly selected ampoules from both SIS indicate uniformity of steroid isotopic composition within measurement reproducibility, SD(delta(13)C)<0.2 per thousand. This procedure for creation of isotopic steroid mixtures results in consistent standards with isotope ratios traceable to the relevant international reference material.

  7. Natural occurrence of silicon carbide in a diamondiferous kimberlite from Fuxian

    USGS Publications Warehouse

    Leung, I.; Guo, W.; Friedman, I.; Gleason, J.

    1990-01-01

    Considerable debate surrounds the existence of silicon carbide in nature, mostly owing to the problem of possible contamination by man-made SiC. Recently, Gurney1 reviewed reports of rare SiC inclusions in diamonds, and noted that SiC can only be regarded as a probable rather than proven cogenetic mineral. Here we report our observation of clusters of SiC coexisting with diamond in a kimberlite from Fuxian, China. Macrocrysts of ??-SiC are overgrown epitaxially by ??-SiC, and both polymorphs are structurally well ordered. We have also measured the carbon isotope compositions of SiC and diamonds from Fuxian. We find that SiC is more enriched in 12C than diamond by 20% relative to the PDB standard. Isotope fractionation might have occurred through an isotope exchange reaction in a common carbon reservoir. Silicon carbide may thus ultimately provide information on carbon cycling in the Earth's mantle.

  8. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  9. Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot

    NASA Astrophysics Data System (ADS)

    Cuneyitoglu Ozkul, Mine; Saranli, Afsar; Yazicioglu, Yigit

    2013-10-01

    Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero crossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.

  10. METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS NATURALLY OCCURRING PHASIC DOPAMINE SIGNALING

    PubMed Central

    Howard, Christopher D.; Daberkow, David P.; Ramsson, Eric S.; Keefe, Kristen A.; Garris, Paul A.

    2013-01-01

    Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson’s disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, prior studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called “spontaneous” phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these sub-second DA changes may play a role in enhancing reward-cue associations. METH-pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits. PMID:23574406

  11. Effect of naturally-occurring Wolbachia in Anopheles gambiae s.l. mosquitoes from Mali on Plasmodium falciparum malaria transmission

    USDA-ARS?s Scientific Manuscript database

    A novel naturally-occurring Wolbachia strain was identified in mosquitoes of the A. gambiae complex collected in the Malian villages of Dangassa and Kenieroba (wAnga-Mali). Phylogenetic analysis of the nucleotide sequence of two 16S rRNA regions showed that wAnga-Mali clusters with Wolbachia strains...

  12. Sulfur and Oxygen Isotopic Composition of Sulfate in the Fresh Water, King Sejong Station, King George Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, I.; Lee, J.; Park, B.; Mayer, B.; Kaufman, A. J.; Park, S.; Kim, G.; Lee, K.

    2008-12-01

    Isotopic compositions of sulfur (δ34S) and oxygen (δ18O) were measured for the sulfate of the fresh water near the King Sejong Station, King George Island, Antarctica. Sejong station is located in the Barton peninsular of the King George Island. The geology around King Sejong station mainly composed of basalt-andesite, quart monzodiorite, and granodiorite. Lapilli tuff, conglomerate, sandstone, and siltstone occur along the southern and eastern shore of the Barton peninsula. Lapilli tuff also occurs on the highland located on southeastern part of the Barton peninsula. The δ34S values of sulfate extracted from fresh water samples at King Sejong Station range from 13.7 to 16.3 per mil excluding 1 sample. These sulfur values are very narrow in their range compared with those from anthropogenic sources. These sulfur values are 5 to 7 per mil lower than those of typical present seawater. Considering the rocks occurring near the King Sejong station, these sulfur isotopic values do not seem to be related to any evaporites of certain age. In Antarctic region the natural source of sulfate dissolved in water could be originated from marine biogenic source (DMS), sea-salt, volcanic source, or other continental sources. Most of the δ34S values of sulfate at King Sejong station seems to indicate the dominance of marine biogenic origin for the source of sulfur. The δ18O values of sulfate extracted from fresh water samples at King Sejong Station range from 1.9 to 6.4 per mil excluding 1 sample. These oxygen isotope values are lower than those of the sulfate in the present seawater by 6 per mil. However, both sulfur and oxygen isotope values strongly represent the influence of the seawater sulfate. One sample have 2.6 and -1.1 per mil in its δ34S and δ18O values, respectively, that are quite different from the isotopic values of other samples. This sample was collected in the highland far from the King Sejong station. Therefore this sample might reflect the composition of

  13. Lead contamination in cocoa and cocoa products: isotopic evidence of global contamination.

    PubMed

    Rankin, Charley W; Nriagu, Jerome O; Aggarwal, Jugdeep K; Arowolo, Toyin A; Adebayo, Kola; Flegal, A Russell

    2005-10-01

    In this article we present lead concentrations and isotopic compositions from analyses of cocoa beans, their shells, and soils from six Nigerian cocoa farms, and analyses of manufactured cocoa and chocolate products. The average lead concentration of cocoa beans was natural food. In contrast, lead concentrations of manufactured cocoa and chocolate products were as high as 230 and 70 ng/g, respectively, which are consistent with market-basket surveys that have repeatedly listed lead concentrations in chocolate products among the highest reported for all foods. One source of contamination of the finished products is tentatively attributed to atmospheric emissions of leaded gasoline, which is still being used in Nigeria. Because of the high capacity of cocoa bean shells to adsorb lead, contamination from leaded gasoline emissions may occur during the fermentation and sun-drying of unshelled beans at cocoa farms. This mechanism is supported by similarities in lead isotopic compositions of cocoa bean shells from the different farms (206Pb/207Pb = 1.1548-1.1581; 208Pb/207Pb = 2.4344-2.4394) with those of finished cocoa products (206Pb/207Pb = 1.1475-1.1977; 208Pb/207Pb = 2.4234-2.4673). However, the much higher lead concentrations and larger variability in lead isotopic composition of finished cocoa products, which falls within the global range of industrial lead aerosols, indicate that most contamination occurs during shipping and/or processing of the cocoa beans and the manufacture of cocoa and chocolate products.

  14. Assessment of marine-derived nutrients in the Copper River Delta, Alaska, using natural abundance of the stable isotopes of nitrogen, sulfur, and carbon

    USGS Publications Warehouse

    Kline, Thomas C.; Woody, Carol Ann; Bishop, Mary Anne; Powers, Sean P.; Knudsen, E. Eric

    2007-01-01

    We performed nitrogen, sulfur, and carbon stable isotope analysis (SIA) on maturing and juvenile anadromous sockeye and coho salmon, and periphyton in two Copper River delta watersheds of Alaska to trace salmonderived nutrients during 2003–2004. Maturing salmon were isotopically enriched relative to alternate freshwater N, S, and C sources as expected, with differences consistent with species trophic level differences, and minor system, sex, and year-to-year differences, enabling use of SIA to trace these salmon-derived nutrients. Periphyton naturally colonized, incubated, and collected using Wildco Periphtyon Samplers in and near spawning sites was 34S- and 15N-enriched, as expected, and at all freshwater sites was 13C-depleted. At nonspawning and coho-only sites, periphyton 34S and 15N was generally low. However, 34S was low enough at some sites to be suggestive of sulfate reduction, complicating the use of S isotopes. Juvenile salmon SIA ranged in values consistent with using production derived from re-mineralization as well as direct utilization, but only by a minority fraction of coho salmon. Dependency on salmon-derived nutrients ranged from relatively high to relatively low, suggesting a space-limited system. No one particular isotope was found to be superior for determining the relative importance of salmon-derived nutrients.

  15. Further evidence for GHB naturally occurring in common non-alcoholic beverages.

    PubMed

    Elliott, Simon P; Fais, Paolo

    2017-08-01

    GHB has been implicated in many cases of suspected surreptitious administration with the purpose of increasing victim vulnerability to sexual assault. Low amounts of endogenous (or naturally occurring) GHB, which do not reach pharmacologically active levels, have been detected in alcoholic and non-alcoholic beverages. Due to the continued requirement to obtain data on the presence of endogenous GHB in various beverage types, GHB concentrations were measured in a series of non-alcoholic beverages. Tonic water and lemon flavoured tonic water beverages were analysed at 0, 24 and 96h after the bottle opening using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) on an Agilent 6890/7000C Triple Quadrupole. GHB was detected in all beverages at very low amounts ranging from 89 to 145ng/mL (0.089-0.145mg/L) and did not demonstrate a general trend of variation for concentration along the tested time span (96h). The presented data provide additional evidence for the endogenous nature of GHB in non-alcoholic beverages at very low concentrations, which are many orders of magnitude lower than those described to produce any pharmacological effect on the subject. However, when considering a case of alleged drug-facilitated sexual assault, a low level of GHB detected in a drink may be related both to a surreptitiously GHB administration with subsequent dilution for concealment or to the presence of endogenous GHB. On this basis, a comprehensive analysis of all the available information, including circumstantial data demonstrating possible attempts to conceal GHB administration and an assessment of levels of endogenous GHB in the suspected beverage type, is of the utmost importance for a proper interpretation of the toxicological results. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Isotope-abundance variations of selected elements (IUPAC technical report)

    USGS Publications Warehouse

    Coplen, T.B.; Böhlke, J.K.; De Bievre, P.; Ding, T.; Holden, N.E.; Hopple, J.A.; Krouse, H.R.; Lamberty, A.; Peiser, H.S.; Revesz, K.; Rieder, S.E.; Rosman, K.J.R.; Roth, E.; Taylor, P.D.P.; Vocke, R.D.; Xiao, Y.K.

    2002-01-01

    Documented variations in the isotopic compositions of some chemical elements are responsible for expanded uncertainties in the standard atomic weights published by the Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry. This report summarizes reported variations in the isotopic compositions of 20 elements that are due to physical and chemical fractionation processes (not due to radioactive decay) and their effects on the standard atomic-weight uncertainties. For 11 of those elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon, sulfur, chlorine, copper, and selenium), standard atomic-weight uncertainties have been assigned values that are substantially larger than analytical uncertainties because of common isotope-abundance variations in materials of natural terrestrial origin. For 2 elements (chromium and thallium), recently reported isotope-abundance variations potentially are large enough to result in future expansion of their atomic-weight uncertainties. For 7 elements (magnesium, calcium, iron, zinc, molybdenum, palladium, and tellurium), documented isotope variations in materials of natural terrestrial origin are too small to have a significant effect on their standard atomic-weight uncertainties. This compilation indicates the extent to which the atomic weight of an element in a given material may differ from the standard atomic weight of the element. For most elements given above, data are graphically illustrated by a diagram in which the materials are specified in the ordinate and the compositional ranges are plotted along the abscissa in scales of (1) atomic weight, (2) mole fraction of a selected isotope, and (3) delta value of a selected isotope ratio.

  17. Individual-specific transgenerational marking of fish populations based on a barium dual-isotope procedure.

    PubMed

    Huelga-Suarez, Gonzalo; Moldovan, Mariella; Garcia-Valiente, America; Garcia-Vazquez, Eva; Alonso, J Ignacio Garcia

    2012-01-03

    The present study focuses on the development and evaluation of an individual-specific transgenerational marking procedure using two enriched barium isotopes, (135)Ba and (137)Ba, mixed at a given and selectable molar ratio. The method is based on the deconvolution of the isotope patterns found in the sample into four molar contribution factors: natural xenon (Xe nat), natural barium (Ba nat), Ba135, and Ba137. The ratio of molar contributions between Ba137 and Ba135 is constant and independent of the contribution of natural barium in the sample. This procedure was tested in brown trout ( Salmo trutta ) kept in captivity. Trout were injected with three different Ba137/Ba135 isotopic signatures ca. 7 months and 7 days before spawning to compare the efficiency of the marking procedure at long and short term, respectively. The barium isotopic profiles were measured in the offspring by means of inductively coupled plasma mass spectrometry. Each of the three different isotopic signatures was unequivocally identified in the offspring in both whole eggs and larvae. For 9 month old offspring, the characteristic barium isotope signatures could also be detected in the otoliths even in the presence of a high and variable amount of barium of natural isotope abundance. In conclusion, it can be stated that the proposed dual-isotope marking is inheritable and can be detected after both long-term and short-term marking. Furthermore, the dual-isotope marking can be made individual-specific, so that it allows identification of offspring from a single individual or a group of individuals within a given fish group. © 2011 American Chemical Society

  18. Assessing Precipitation Isotope Variations during Atmospheric River Events to Reveal Dominant Atmospheric/Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    McCabe-Glynn, S. E.; Johnson, K. R.; Yoshimura, K.; Buenning, N. H.; Welker, J. M.

    2015-12-01

    Extreme precipitation events across the Western US commonly associated with atmospheric rivers (ARs), whereby extensive fluxes of moisture are transported from the subtropics, can result in major damage and are projected by most climate models to increase in frequency and severity. However, they are difficult to project beyond ~ten days and the location of landfall and topographically induced precipitation is even more uncertain. Water isotopes, often used to reconstruct past rainfall variability, are useful natural tracers of atmospheric hydrologic processes. Because of the typical tropical and sub-tropical origins, ARs can carry unique water isotope (δ18O and δ2H, d-excess) signatures that can be utilized to provide source and process information that can lead to improving AR predictions. Recent analysis of the top 10 weekly precipitation total samples from Sequoia National Park, CA, of which 9 contained AR events, shows a high variability in the isotopic values. NOAA Hysplit back trajectory analyses reveals a variety of trajectories and varying latitudinal source regions contributed to moisture delivered to this site, which may explain part of the high variability (δ2H = -150.03 to -49.52 ‰, δ18O = -19.27 to -7.20 ‰, d-excess = 4.1 to 25.8). Here we examine the top precipitation totals occurring during AR events and the associated isotopic composition of precipitation samples from several sites across the Western US. We utilize IsoGSM, an isotope-enabled atmospheric general circulation model, to characterize the hydrologic processes and physical dynamics contributing to the observed isotopic variations. We investigate isotopic influences from moisture source location, AR speed, condensation height, and associated temperature. We explore the dominant controls on spatial and temporal variations of the isotopic composition of AR precipitation which highlights different physical processes for different AR events.

  19. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells

    USGS Publications Warehouse

    Ayotte, J.D.; Szabo, Z.; Focazio, M.J.; Eberts, S.M.

    2011-01-01

    The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in

  20. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    PubMed

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  1. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W; Simon, J I; DePaolo, D J

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop

  2. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent

  3. Isotopic Equilibrium in Mature Oceanic Lithosphere: Insights From Sm-Nd Isotopes on the Corsica (France) Ophiolites

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Raczek, I.; Romairone, A.

    2003-12-01

    .6-8.9. Sm/Nd isotopic compositions of the peridotites are therefore consistent with a Jurassic age of melting and melt impregnation, and point to isotopic compositional similarities between depleted peridotites and associated magmatic rocks. In a regional geodynamic context, Sm/Nd isotope data for the Mt.Maggiore gabbro-peridotite association represent the first record of the attainment of a mature oceanic stage of the Ligurian Tethys ocean. Also, the data presented provide striking evidence of the existence of isotopic equilibrium between melts and their mantle residue. References Snow et al. (1994), Nature 371, 57-60. Salters and Dick (2002), Nature 418,68-72.

  4. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal

  5. Dog Models of Naturally Occurring Cancer

    PubMed Central

    Rowell, Jennie L.; McCarthy, Donna O.; Alvarez, Carlos E.

    2011-01-01

    Studies using dogs provide an ideal solution to the gap in animal models of natural disease and translational medicine. This is evidenced by approximately 400 inherited disorders being characterized in domesticated dogs, most of which are relevant to humans. There are several hundred isolated populations of dogs (breeds) and each has vastly reduced genetic variation compared to humans; this simplifies disease mapping and pharmacogenomics. Dogs age five to eight-fold faster than humans, share environments with their owners, are usually kept until old age, and receive a high level of health care. Farseeing investigators recognized this potential and, over the last decade, developed the necessary tools and infrastructure to utilize this powerful model of human disease, including the sequencing of the dog genome in 2005. Here we review the nascent convergence of genetic and translational canine models of spontaneous disease, focusing on cancer. PMID:21439907

  6. IsoCor: correcting MS data in isotope labeling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2012-05-01

    Mass spectrometry (MS) is widely used for isotopic labeling studies of metabolism and other biological processes. Quantitative applications-e.g. metabolic flux analysis-require tools to correct the raw MS data for the contribution of all naturally abundant isotopes. IsoCor is a software that allows such correction to be applied to any chemical species. Hence it can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc) to unusual ((57)Fe, (77)Se, etc) isotopes. It also provides new features-e.g. correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and implements an efficient algorithm to process large datasets. Its user-friendly interface makes isotope labeling experiments more accessible to a wider biological community. IsoCor is distributed under OpenSource license at http://metasys.insa-toulouse.fr/software/isocor/

  7. Fingerprinting Bacterial and Fungal Manganese Oxidation via Stable Oxygen Isotopes of Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.

    2016-12-01

    Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be

  8. Possibility of wine dating using the natural Pb-210 radioactive isotope.

    PubMed

    Hubert, Ph; Pravikoff, M S; Gaye, J

    2015-04-01

    To control the authenticity of an old wine without opening the bottle, we developed a few years ago a method based on the measurement of the (137)Cs activity. However, for recent vintages, the (137)Cs activity drops to far too low values (most of the time less than 10 mBq/L for a 10-year-old wine) for this method to perform correctly. In this paper we examine the possibility to date wines using the natural radio-element (210)Pb which has a 22-year period. This new method we propose implies the opening of the bottle and the follow-on destruction of the wine itself, which means that it can only be used for investigating non-expensive bottles or wine lots where there are multiple bottles of the same provenance. Uncertainties on the resulting (210)Pb radioactivity values are large, up to more than 50%, mainly due to local atmospheric variations, which prevents us to carry out precise dating. However it can be used to discriminate between an old wine (pre-1952) and a young wine (past-1990), an information that cannot be obtained with the other techniques based on other isotopes ((137)Cs, (14)C or tritium). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A review of isotopic composition as an indicator of the natural and anthropogenic behavior of mercury

    USGS Publications Warehouse

    Ridley, W.I.; Stetson, S.J.

    2006-01-01

    There are seven stable isotopes of Hg that can be fractionated as a result of inorganic and organic interactions. Important inorganic reactions involve speciation changes resulting from variations in environmental redox conditions, and phase changes resulting from variations in temperature and/or atmospheric pressure. Important organic reactions include methylation and demethylation, reactions that are bacterially mediated, and complexing with organic anions in soils. The measurement of Hg isotopes by multi-collector-inductively coupled plasma-mass spectrometry (MC-ICP-MS) is now sufficiently precise and sensitive that it is potentially possible to develop the systematics of Hg isotopic fractionation. This provides an opportunity to evaluate the utility of Hg isotopes in identifying source processes, transport mechanisms, and sinks. New values are provided for, 201Hg/198Hg, 200Hg/198Hg, 199Hg/198Hg for three standard materials (IRMM-AE639, SRM 1641c, SRM 3133) that can be used to make inter-laboratory data comparisons, and these values are tabulated with published isotopic information. Overall, the isotopic data for these standards agree to approximately 0.2???. The paper reviews Hg isotope studies that deal with hydrothermal ore deposits, sediments, coal and organic complexing. ?? 2006 Elsevier Ltd. All rights reserved.

  10. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  11. Essentials of iron, chromium, and calcium isotope analysis of natural materials by thermal ionization mass spectrometry

    USGS Publications Warehouse

    Fantle, M.S.; Bullen, T.D.

    2009-01-01

    The use of isotopes to understand the behavior of metals in geological, hydrological, and biological systems has rapidly expanded in recent years. One of the mass spectrometric techniques used to analyze metal isotopes is thermal ionization mass spectrometry, or TIMS. While TIMS has been a useful analytical technique for the measurement of isotopic composition for decades and TIMS instruments are widely distributed, there are significant difficulties associated with using TIMS to analyze isotopes of the lighter alkaline earth elements and transition metals. Overcoming these difficulties to produce relatively long-lived and stable ion beams from microgram-sized samples is a non-trivial task. We focus here on TIMS analysis of three geologically and environmentally important elements (Fe, Cr, and Ca) and present an in-depth look at several key aspects that we feel have the greatest potential to trouble new users. Our discussion includes accessible descriptions of different analytical approaches and issues, including filament loading procedures, collector cup configurations, peak shapes and interferences, and the use of isotopic double spikes and related error estimation. Building on previous work, we present quantitative simulations, applied specifically in this study to Fe and Ca, that explore the effects of (1) time-variable evaporation of isotopically homogeneous spots from a filament and (2) interferences on the isotope ratios derived from a double spike subtraction routine. We discuss how and to what extent interferences at spike masses, as well as at other measured masses, affect the double spike-subtracted isotope ratio of interest (44Ca/40Ca in the case presented, though a similar analysis can be used to evaluate 56Fe/54Fe and 53Cr/52Cr). The conclusions of these simulations are neither intuitive nor immediately obvious, making this examination useful for those who are developing new methodologies. While all simulations are carried out in the context of a

  12. Protein abundances can distinguish between naturally-occurring and laboratory strains of Yersinia pestis, the causative agent of plague

    DOE PAGES

    Merkley, Eric D.; Sego, Landon H.; Lin, Andy; ...

    2017-08-30

    Adaptive processes in bacterial species can occur rapidly in laboratory culture, leading to genetic divergence between naturally occurring and laboratory-adapted strains. Differentiating wild and closely-related laboratory strains is clearly important for biodefense and bioforensics; however, DNA sequence data alone has thus far not provided a clear signature, perhaps due to lack of understanding of how diverse genome changes lead to adapted phenotypes. Protein abundance profiles from mass spectrometry-based proteomics analyses are a molecular measure of phenotype. Proteomics data contains sufficient information that powerful statistical methods can uncover signatures that distinguish wild strains of Yersinia pestis from laboratory-adapted strains.

  13. Carbon isotopic fractionation in heterotrophic microbial metabolism

    NASA Technical Reports Server (NTRS)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  14. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results frommore » studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by

  15. Intramolecular carbon and nitrogen isotope analysis by quantitative dry fragmentation of the phenylurea herbicide isoproturon in a combined injector/capillary reactor prior to GC separation.

    PubMed

    Penning, Holger; Elsner, Martin

    2007-11-01

    Potentially, compound-specific isotope analysis may provide unique information on source and fate of pesticides in natural systems. Yet for isotope analysis, LC-based methods that are based on the use of organic solvents often cannot be used and GC-based analysis is frequently not possible due to thermolability of the analyte. A typical example of a compound with such properties is isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea), belonging to the worldwide extensively used phenylurea herbicides. To make isoproturon accessible to carbon and nitrogen isotope analysis, we developed a GC-based method during which isoproturon was quantitatively fragmented to dimethylamine and 4-isopropylphenylisocyanate. Fragmentation occurred only partially in the injector but was mainly achieved on a heated capillary column. The fragments were then chromatographically separated and individually measured by isotope ratio mass spectrometry. The reliability of the method was tested in hydrolysis experiments with three isotopically different batches of isoproturon. For all three products, the same isotope fractionation factors were observed during conversion and the difference in isotope composition between the batches was preserved. This study demonstrates that fragmentation of phenylurea herbicides does not only make them accessible to isotope analysis but even enables determination of intramolecular isotope fractionation.

  16. Meteorites and their parent bodies: Evidence from oxygen isotopes

    NASA Technical Reports Server (NTRS)

    Clayton, R. N.

    1978-01-01

    Isotopic abundance variations among meteorites are used to establish genetic associations between meteorite classes. Oxygen isotope distributions between group II E irons with H-group ordinary chondrites and enstatic meteorites indicate that the parent bodies were formed out of pre-solar material that was not fully mixed at the time condensation occurred within the solar nebula.

  17. MNA of Chlorinated Solvents and Fuel Oxygenates: Why it occurs, how it evolved, and using stable carbon isotopes to predict plume behavior

    EPA Science Inventory

    The organisms that degrade MTBE under anaerobic conditions are evolved to acquire energy for growth by using molecular hydrogen and carbonate ion to cleave methyl ether bonds. Methyl ether bonds are common in nature and the bond also occurs in MTBE. MTBE in contaminated ground...

  18. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs.

    PubMed

    Schwarz, Frank; Herten, Monika; Sager, Martin; Bieling, Katrin; Sculean, Anton; Becker, Jürgen

    2007-04-01

    The aim of the present study was to evaluate and compare naturally occuring and ligature-induced peri-implantitis bone defects in humans and dogs. Twenty-four partially and fully edentulous patients undergoing peri-implant bone augmentation procedures due to advanced peri-implant infections were included in this study (n=40 implants). Furthermore, peri-implantitis was induced by ligature placement and plaque accumulation in five beagle dogs for three months following implant insertion (n=15 implants). The ligatures were removed when about 30% of the initial bone was lost. During open flap surgery, configuration and defect characteristics of the peri-implant bone loss were recorded in both humans and dogs. Open flap surgery generally revealed two different classes of peri-implant bone defects. While Class I defects featured well-defined intrabony components, Class II defects were characterized by consistent horizontal bone loss. The allocation of intrabony components of Class I defects regarding the implant body allowed a subdivision of five different configurations (Classes Ia-e). In particular, human defects were most frequently Class Ie (55.3%), followed by Ib (15.8%), Ic (13.3%), Id (10.2%), and Ia (5.4%). Similarly, bone defects in dogs were also most frequently Class Ie (86.6%), while merely two out of 15 defects were Classes Ia and Ic (6.7%, respectively). Within the limits of the present study, it might be concluded that configurations and sizes of ligature-induced peri-implantitis bone defects in dogs seemed to resemble naturally occurring lesions in humans.

  19. Committed effective dose from naturally occuring radionuclides in shellfish

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Wahib, Norfadira Binti; Amin, Yusoff Mohd.; Bradley, D. A.

    2013-07-01

    Recognizing their importance in the average Malaysian daily diet, the radioactivity concentrations in mollusc- and crustacean-based food have been determined for key naturally occuring radionuclides. Fresh samples collected from various maritime locations around peninsular Malaysia have been processed using standard procedures; the radionuclide concentrations being determined using an HPGe γ-ray spectrometer. For molluscs, assuming secular equilibrium, the range of activities of 238U (226Ra), 232Th (228Ra) and 40K were found to be 3.28±0.35 to 5.34±0.52, 1.20±0.21 to 2.44±0.21 and 118±6 to 281±14 Bq kg-1 dry weight, respectively. The respective values for crustaceans were 3.02±0.57 to 4.70±0.52, 1.38±0.21 to 2.40±0.35 and 216±11 to 316±15 Bq kg-1. The estimated average daily intake of radioactivity from consumption of molluscs are 0.37 Bq kg-1 for 238U (226Ra), 0.16 Bq kg-1 for 232Th (228Ra) and 18 Bq kg-1 for 40K; the respective daily intake values from crustaceans are 0.36 Bq kg-1, 0.16 Bq kg-1 and 23 Bq kg-1. Associated annual committed effective doses from molluscs are estimated to be in the range 21.3 to 34.7 μSv for 226Ra, 19.3 to 39.1 μSv for 228Ra and 17.0 to 40.4 μSv for 40K. For crustaceans, the respective dose ranges are 19.6 to 30.5 μSv, 22.0 to 38.4 μSv and 31.1 to 45.5 μSv, being some several times world average values.

  20. Mo isotope record of shales points to deep ocean oxygenation in the early Paleoproterozoic

    NASA Astrophysics Data System (ADS)

    Asael, Dan; Scott, Clint; Rouxel, Olivier; Poulton, Simon; Lyons, Timothy; Javaux, Emmanuelle; Bekker, Andrey

    2014-05-01

    Two steps in Earth's surface oxidation lie at either end of the Proterozoic Eon. The first step, known as the Great Oxidation Event (GOE), occurred at ca. 2.32 Ga (1), when atmospheric oxygen first exceeded 0.001% of present atmospheric levels (2). The second step, occurred at ca. 0.58 Ga, resulting in the pervasive oxygenation of the deep oceans, a feature that persisted through most of the Phanerozoic (3). The conventional model envisions two progressive and unidirectional increases in free oxygen. However, recent studies have challenged this simplistic view of the GOE (4, 5). A dramatic increase and decline in Earth oxidation state between 2.3 and 2.0 Ga is now well supported (6-9) and raises the question of how well-oxygenated the Earth surface was in the immediate aftermath of the GOE. In order to constrain the response of the deep oceans to the GOE, we present a study of Mo isotope composition and Mo concentration from three key early Paleoproterozoic black shale units with ages ranging from 2.32 to 2.06 Ga. Our results suggest high and unstable surface oxygen levels at 2.32 Ga, leading to an abrupt increase in Mo supply to the still globally anoxic ocean, and producing extreme seawater Mo isotopic enrichments in these black shales. We thus infer a period of significant Mo isotopic Rayleigh effects and non-steady state behaviour of the Mo oceanic system at the beginning of the GOE. Between 2.2-2.1 Ga, we observe smaller Mo isotopic variations and estimate the δ98Mo of seawater to be 1.42 ± 0.27 ‰W conclude that oxygen levels must have stabilized at a relatively high level and that the deep oceans were oxygenated for the first time in Earth's history. By ca. 2.06 Ga, immediately after the Lomagundi Event, the Mo isotopic composition decreased dramatically to δ98MoSW = 0.80 ± 0.21 o reflecting the end of deep ocean oxygenation and the return of largely anoxic deep oceans. References: [1] A. Bekker et al., 2004, Nature 427, 117-20. [2] A. Pavlov and J