Science.gov

Sample records for naturener glacier wind

  1. 76 FR 69720 - NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding of NaturEner Rim Rock Wind Energy, LLC's application for...

  2. 76 FR 62791 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ..., October 19, 2011. Docket Numbers: ER11-4666-000. Applicants: NaturEner Glacier Wind Energy 1, LLC. Description: NaturEner Glacier Wind Energy 1, LLC submits tariff filing per 35.1: Baseline Filing of Market.... Applicants: NaturEner Glacier Wind Energy 2, LLC. Description: NaturEner Glacier Wind Energy 2, LLC...

  3. Glacier winds in the Rongbuk Valley, north of Mount Everest: 1. Meteorological modeling with remote sensing data

    NASA Astrophysics Data System (ADS)

    Song, Yu; Zhu, Tong; Cai, Xuhui; Lin, Weili; Kang, Ling

    2007-06-01

    Persistent glacier winds blowing from noon to midnight in summer are present in the Rongbuk Valley, north of Mount Everest, with a maximum speed of 10 m s-1 and a vertical thickness as high as 1 km. These glacier winds may bring upper level atmosphere ozone to the surface, having a significant impact on the atmospheric environment. Such phenomena may be typical of the Tibetan Plateau, where most high mountains are covered by snow or glacier ice throughout the year. The Advanced Regional Prediction Model was used to simulate the down-valley flows, using realistic topography but neglecting synoptic winds. The modeling results agree well with the observations obtained in June 2002, revealing that the glacier winds are thermal flows primarily driven by the along-valley temperature gradient between the colder air over the glacier surface and the warmer air over surface areas covered by rock debris, which maintains air advection along the Rongbuk Valley. Downslope winds over the glacier slopes, especially from the western valley side, and the West Rongbuk Glacier, were forced by their inertia farther down into the valley and would intensify the glacier winds. The narrowing of the Rongbuk Valley could also speed up the glacier winds. Sensitivity tests showed that the detailed distribution of the Rongbuk Glacier, delineated by data from the Enhanced Thematic Mapper Plus on Landsat 7, plays an important role in glacier winds development. The glacier winds could be much weaker in winter when the area is completely snow covered.

  4. 77 FR 62504 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...-001. Applicants: NaturEner Glacier Wind Energy 1, LLC, NaturEner Glacier Wind Energy 2, LLC, NaturEner...Ener Glacier Wind Energy 1, LLC, et al. Filed Date: 10/1/12. Accession Number: 20121001-5470....

  5. Glaciers

    NASA Astrophysics Data System (ADS)

    Hambrey, Michael; Alean, Jürg

    2004-12-01

    Glaciers are among the most beautiful natural wonders on Earth, as well as the least known and understood, for most of us. Michael Hambrey describes how glaciers grow and decay, move and influence human civilization. Currently covering a tenth of the Earth's surface, glacier ice has shaped the landscape over millions of years by scouring away rocks and transporting and depositing debris far from its source. Glacier meltwater drives turbines and irrigates deserts, and yields mineral-rich soils as well as a wealth of valuable sand and gravel. However, glaciers also threaten human property and life. Our future is indirectly connected with the fate of glaciers and their influence on global climate and sea level. Including over 200 stunning photographs, the book takes the reader from the High-Arctic through North America, Europe, Asia, Africa, New Zealand and South America to the Antarctic. Michael Hambrey is Director of the Centre for Glaciology at the University of Wales, Aberystwyth. A past recipient of the Polar Medal, he was also given the Earth Science Editors' Outstanding Publication Award for the first edition of Glaciers (Cambridge, 1995). Hambrey is also the author of Glacial Environments (British Columbia, 1994). JÜrg Alean is Professor of Geography at the Kantonsschule ZÜrcher Unterland in BÜlach, Switzerland.

  6. A century of glacier change in the Wind River Range, WY

    NASA Astrophysics Data System (ADS)

    DeVisser, Mark H.; Fountain, Andrew G.

    2015-03-01

    The Wind River Range spans roughly 200 km along the continental divide in western Wyoming and encompasses at least 269 glaciers and perennial snowfields totaling 34.34 ± 0.13 km2 (2006), including Gannett Glacier, the largest glacier (2.81 km2) in the continental U.S. outside of Washington State. To track changing glacier and perennial snow surface area over the past century we used historic maps, aerial photography, and geologic evidence evident in said imagery. Since the end of the Little Ice Age (~ 1900), when the glaciers retreated from their moraines, to 2006 the ice-covered area shrank by ~ 47%. The main driver of surface area change was air temperature, with glaciers at lower elevations shrinking faster than those at higher elevations. The total contribution of ice wastage to late summer stream flow ranged from 0.4 to 1.5%, 0.9 to 2.8%, 1.7 to 5.4%, and 3.4 to 10.9% in four different watersheds, none of which exceeded 7% glacier cover. Results from previous studies were difficult to include because of differences in interpretation of glacier boundaries, because of poor imagery, or to extensive seasonal snow. These difficulties highlight potential problems in combining data sets from different studies and underscores the importance of reexamining past observations to ensure consistent interpretation.

  7. 77 FR 48509 - Combined Notice of Filings #3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... following electric rate filings: Docket Numbers: ER12-2057-000. Applicants: NaturEner Glacier Wind Energy 1, LLC. Description: Amendment to Filing of NaturEner Glacier Wind Energy 1, LLC. Filed Date:...

  8. Glacier winds in the Rongbuk Valley, north of Mount Everest: 2. Their role in vertical exchange processes

    NASA Astrophysics Data System (ADS)

    Cai, Xuhui; Song, Yu; Zhu, Tong; Lin, Weili; Kang, Ling

    2007-06-01

    High ozone concentrations, combined with low humidity and strong, persistent glacier winds, were found at the surface of Rongbuk Valley, north of Mount Everest, with sharply increased ozone concentrations in their vertical profiles. Glacier winds and their roles in vertical exchange of the atmosphere were investigated numerically to understand the phenomena. A Lagrangian particle dispersion model was used to carry out numerical experiments (forward-in-time simulations) and footprint analysis (backward-in-time simulations). The meteorological data inputs for these experiments were derived from the Advanced Regional Prediction System. Results showed that glacier winds may lead to significant downward transport of 1.5-2 km during the daytime from the northern slopes of Mount Everest. Glacier winds could advance down through the valley, with strong upward motions shown as a rolling up in front of their leading edge. Combining with upslope winds at two sidewalls of the valley or up-valley winds of tributaries, the lifting flows produced strong mixing of the atmosphere to a depth of approximately 3 km. Three-dimensional footprints derived from the particle dispersion model for the observational site, Rongbuk Monastery, clearly show influence from the mountainside of Mount Everest and from the southern part of the valley. The vertical extension of influence was as much as 2-3 km. Good correlation was found between the influence height and the ozone concentration. All the simulation results strongly indicate that the glacier winds and their related vertical exchange processes "pump down" ozone-rich air from upper levels to the surface of the valley.

  9. Turbulence Characteristics in the Atmospheric Surface Layer for Different Wind Regimes over the Tropical Zongo Glacier (Bolivia, S)

    NASA Astrophysics Data System (ADS)

    Litt, Maxime; Sicart, Jean-Emmanuel; Helgason, Warren D.; Wagnon, Patrick

    2015-03-01

    We investigate properties of the turbulent flow and sensible heat fluxes in the atmospheric surface layer of the high elevation tropical Zongo glacier ( m a.s.l., S, Bolivia) from data collected in the dry season from July to August 2007, with an eddy-covariance system and a 6-m mast for wind speed and temperature profiles. Focus is on the predominant downslope wind regime. A low-level wind-speed maximum, around a height of m, is detected in low wind conditions (37 % of the time). In strong wind conditions (39 % of the time), no wind-speed maximum is detected. Statistical and spectral analyses reveal low frequency oscillations of the horizontal wind speed that increase vertical mixing. In strong winds, wavelet analysis shows that coherent structures systematically enhance the turbulent sensible heat fluxes, accounting for 44-52 % of the flux. In contrast, in low wind conditions, the katabatic flow is perturbed by its slow oscillations or meandering motions, inducing erratic turbulent sensible heat fluxes. These motions account for 37-43 % of the flux. On tropical glaciers, the commonly used bulk aerodynamic profile method underestimates the eddy-covariance-based flux, probably because it does not account for low frequency disturbances that influence the surface flow in both wind regimes.

  10. Mesoscale Icefield Breezes over Athbasca Glacier.

    NASA Astrophysics Data System (ADS)

    Conway, J. P.; Helgason, W.; Pomeroy, J. W.; Sicart, J. E.

    2015-12-01

    Atmospheric boundary layer (ABL) dynamics over glaciers are of great interest as they can modify the response of glacier mass balance to large scale climate forcing. A key feature of the glacier ABL is formation of katabatic winds driven by turbulent sensible heat exchange with a cooler underlying ice surface. These winds can markedly alter the spatio-temporal distribution of air temperature over glacier surfaces from the environmental lapse rate, which in turn affects the distribution of melt. An intensive field campaign was conducted over 13 days in June 2015 at Athabasca Glacier, an outlet of Columbia Icefield in the Rocky Mountains of Canada. Multiple automatic weather stations, eddy covariance systems, distributed temperature sensors, SODAR and kite profiling systems were used to characterise how the glacier ABL evolved spatially and temporally, how the differences in glacier ABL properties were related to valley and regional circulation and what effect these differences had on surface lapse rates. In general strong daytime down-glacier winds were observed over the glacier. These winds extended well beyond the glacier into the proglacial area and through the depth of lower ice-free valley. On most days wind speed was consistent or increasing through to the top of the above-glacier profiles (100 to 200 m), indicating a quite well mixed surface boundary layer. A wind speed maximum in the lowest few metres above the glacier surface, characteristic of a katabatic wind, was only observed on one day. The dominant circulation within the valley appears to be what could be termed an 'icefield breeze'; strong down-glacier winds driven by mesoscale pressure gradients that are set up by differential suface heating over the non-glaciated valleys and much the larger Columbia Icefield upstream of the glacier. The effect of the different circulations on lapse rates will be explored with a view to developing variable lapse rates for modelling glacier mass balance.

  11. Jakobshavn Glacier

    Atmospheric Science Data Center

    2013-04-17

    ... Icebergs released from the glacier drift slowly with the ocean currents and pose hazards for shipping along the coast. The Multi-angle Imaging ... Glacier location:  Greenland Arctic Ocean thumbnail:  ...

  12. A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo glacier (16° S) during the dry season

    NASA Astrophysics Data System (ADS)

    Litt, M.; Sicart, J.-E.; Helgason, W.

    2015-01-01

    Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers, in remote and complex terrains remain challenging. Eddy-covariance (EC) and bulk-aerodynamic (BA) methods were used to estimate surface turbulent heat fluxes of sensible (H) and latent heat (LE) in the ablation zone of the tropical Zongo glacier, Bolivia (16° S, 5080 m a.s.l.), from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e., is positive), while LE cools it down (i.e., is negative). On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6% on net H + LE fluxes) originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12%). The BA method is highly sensitive to the method used to derive surface temperature from long-wave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, but to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE) are the largest in upslope flows, nonstationarity effects and underestimations of the vertical

  13. A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo Glacier (16° S) during the dry season

    NASA Astrophysics Data System (ADS)

    Litt, M.; Sicart, J.-E.; Helgason, W.

    2015-08-01

    Over glaciers in the outer tropics, during the dry winter season, turbulent fluxes are an important sink of melt energy due to high sublimation rates, but measurements in stable surface layers in remote and complex terrains remain challenging. Eddy-covariance (EC) and bulk-aerodynamic (BA) methods were used to estimate surface turbulent heat fluxes of sensible (H) and latent heat (LE) in the ablation zone of the tropical Zongo Glacier, Bolivia (16° S, 5080 m a.s.l.), from 22 July to 1 September 2007. We studied the turbulent fluxes and their associated random and systematic measurement errors under the three most frequent wind regimes. For nightly, density-driven katabatic flows, and for strong downslope flows related to large-scale forcing, H generally heats the surface (i.e. is positive), while LE cools it down (i.e. is negative). On average, both fluxes exhibit similar magnitudes and cancel each other out. Most energy losses through turbulence occur for daytime upslope flows, when H is weak due to small temperature gradients and LE is strongly negative due to very dry air. Mean random errors of the BA method (6 % on net H + LE fluxes) originated mainly from large uncertainties in roughness lengths. For EC fluxes, mean random errors were due mainly to poor statistical sampling of large-scale outer-layer eddies (12 %). The BA method is highly sensitive to the method used to derive surface temperature from longwave radiation measurements and underestimates fluxes due to vertical flux divergence at low heights and nonstationarity of turbulent flow. The EC method also probably underestimates the fluxes, albeit to a lesser extent, due to underestimation of vertical wind speed and to vertical flux divergence. For both methods, when H and LE compensate each other in downslope fluxes, biases tend to cancel each other out or remain small. When the net turbulent fluxes (H + LE) are the largest in upslope flows, nonstationarity effects and underestimations of the vertical

  14. Alaska Glaciers and Rivers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image on October 7, 2007, showing the Alaska Mountains of south-central Alaska already coated with snow. Purple shadows hang in the lee of the peaks, giving the snow-clad land a crumpled appearance. White gives way to brown on the right side of the image where the mountains yield to the lower-elevation Susitna River Valley. The river itself cuts a silver, winding path through deep green forests and brown wetlands and tundra. Extending from the river valley, are smaller rivers that originated in the Alaska Mountains. The source of these rivers is evident in the image. Smooth white tongues of ice extend into the river valleys, the remnants of the glaciers that carved the valleys into the land. Most of the water flowing into the Gulf of Alaska from the Susitna River comes from these mountain glaciers. Glacier melt also feeds glacier lakes, only one of which is large enough to be visible in this image. Immediately left of the Kahiltna River, the aquamarine waters of Chelatna Lake stand out starkly against the brown and white landscape.

  15. Antarctic Peninsula Tidewater Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Pettit, E. C.; Scambos, T. A.; Haran, T. M.; Wellner, J. S.; Domack, E. W.; Vernet, M.

    2015-12-01

    The northern Antarctic Peninsula (nAP, north of 66°S) is a north-south trending mountain range extending transverse across the prevailing westerly winds of the Southern Ocean resulting in an extreme west-to-east precipitation gradient. Snowfall on the west side of the AP is one to two orders of magnitude higher than the east side. This gradient drives short, steep, fast-flowing glaciers into narrow fjords on the west side, while longer lower-sloping glaciers flow down the east side into broader fjord valleys. This pattern in ice dynamics affects ice-ocean interaction on timescales of decades to centuries, and shapes the subglacial topography and submarine bathymetry on timescales of glacial cycles. In our study, we calculate ice flux for the western and eastern nAP using a drainage model that incorporates the modern ice surface topography, the RACMO-2 precipitation estimate, and recent estimates of ice thinning. Our results, coupled with observed rates of ice velocity from InSAR (I. Joughin, personal communication) and Landsat 8 -derived flow rates (this study), provide an estimate of ice thickness and fjord depth in grounded-ice areas for the largest outlet glaciers. East-side glaciers either still terminate in or have recently terminated in ice shelves. Sedimentary evidence from the inner fjords of the western glaciers indicates they had ice shelves during LIA time, and may still have transient floating ice tongues (tabular berg calvings are observed). Although direct oceanographic evidence is limited, the high accumulation rate and rapid ice flux implies cold basal ice for the western nAP glaciers and therefore weak subglacial discharge relative to eastern nAP glaciers and or other tidewater fjord systems such as in Alaska. Finally, despite lower accumulation rates on the east side, the large elongate drainage basins result in a greater ice flux funneled through fewer deeper glaciers. Due to the relation between ice flux and erosion, these east-side glaciers

  16. Pine Island Glacier, Antarctica

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This pair of MISR images of the Pine Island Glacier in western Antarctica was acquired on December 12, 2000 during Terra orbit 5246. At left is a conventional, true-color image from the downward-looking (nadir) camera. The false-color image at right is a composite of red band data taken by the MISR forward 60-degree, nadir, and aftward 60-degree cameras, displayed in red, green, and blue colors, respectively. Color variations in the left (true-color) image highlight spectral differences. In the multi-angle composite, on the other hand, color variations act as a proxy for differences in the angular reflectance properties of the scene. In this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange 'carrot-like' features are rough crevasses on the glacier's tongue. In the conventional nadir view, the blue ice labeled 'rough crevasses' and 'smooth blue ice' exhibit similar coloration, but the multi-angle composite reveals their different textures, with the smoother ice appearing dark purple instead of orange. This could be an indicator of different mechanisms by which this ice is exposed. The multi-angle view also reveals subtle roughness variations on the frozen sea ice between the glacier and the open water in Pine Island Bay.

    To the left of the 'icebergs' label are chunks of floating ice. Additionally, smaller icebergs embedded in the frozen sea ice are visible below and to the right of the label. These small icebergs are associated with dark streaks. Analysis of the illumination geometry suggests that these streaks are surface features, not shadows. Wind-driven motion and thinning of the sea ice in the vicinity of the icebergs is one possible explanation.

    Recently, Robert Bindschadler, a glaciologist at the NASA Goddard Space Flight Center discovered in Landsat 7 imagery a newly-formed crack traversing the Pine Island Glacier. This crack

  17. Alpine Glaciers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 27 August 2003

    This image shows part of the western flank of Arsia Mons, the southernmost of the three great Tharsis Montes. The surface shows parallel ridges more reminiscent of a Zen garden than any typical geological feature. These ridges are not typical of lava flow fronts, so a different explanation has been proposed by Mars scientists. These ridges may instead be ancient signs of previously existing glaciers that formed high on the volcano's flank. As glaciers retreat with the seasons and shifting climate, they leave behind a mound of debris along their receding edge. Successive retreats can produce a series of parallel ridges similar to those seen here.

    Image information: VIS instrument. Latitude -6.9, Longitude 230.5 East (129.5 West). 19 meter/pixel resolution.

  18. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  19. USGS collects ice core through Alpine glacier

    NASA Astrophysics Data System (ADS)

    Naftz, David L.; Miller, Kirk A.

    1992-01-01

    On August 24, 1991, a U.S. Geological Survey study team from Wyoming completed a core hole to bedrock underlying Upper Fremont Glacier in the Wind River Range of central Wyoming. During the month of core drilling, the team collected a 160-m ice core from the glacier at an elevation of 4000 m above sea level using a solar-powered thermal drill (See photo). The drill was constructed and operated by personnel from the Polar Ice Coring Office (PICO) in Fairbanks, Alaska.The 1991 drilling project is part of ongoing research conducted by the USGS since 1988 on temperate glaciers in the Wind River Range of Wyoming. The objective of the project is to use variations in concentrations of chemical and isotopic constituents in samples of ice cores to reconstruct records of the chemical quality of atmospheric deposition and to extend long-term climatic records. A maximum of 300-500 years of record is estimated to be available in upper accumulation zones of the Wind River Range glaciers. The proximity of the Wind River Range glaciers to atmospheric pollution sources in the western United States makes them unique environmental records. Cooperating in the project were the Shoshone and Arapaho Indian tribes, Wyoming Water Development Commission, PICO, Wyoming State Engineer, and the U.S. Bureau of Land Management.

  20. Glaciers of Europe

    USGS Publications Warehouse

    Williams, Richard S., Jr.; Ferrigno, Jane G.

    1993-01-01

    ALPS: AUSTRIAN: An overview is provided on the occurrence of the glaciers in the Eastern Alps of Austria and on the climatic conditions in this area, Historical documents on the glaciers have been available since the Middle Ages. Special glaciological observations and topographic surveys of individual glaciers were initiated as early as 1846. Recent data in an inventory based on aerial photographs taken in 1969 show 925 glaciers in the Austrian Alps with a total area of 542 square kilometers. Present research topics include studies of mass and energy balance, relations of glaciers and climate, physical glaciology, a complete inventory of the glaciers, and testing of remote sensing methods. The location of the glacier areas is shown on Landsat multispectral scanner images; the improved capabilities of the Landsat thematic mapper are illustrated with an example from the Oztaler Alpen group. ALPS: SWISS: According to a glacier inventory published in 1976, which is based on aerial photography of 1973, there are 1,828 glacier units in the Swiss Alps that cover a total area of 1fl42 square kilometers. The Rhonegletscher, currently the ninth largest in the country, was one of the first to be studied in detail. Its surface has been surveyed repeatedly; velocity profiles were measured, and the fluctuations of its terminus were mapped and recorded from 1874 to 1914. Recent research on the glacier has included climatological, hydrological, and massbalance studies. Glaciological research has been conducted on various other glaciers in Switzerland concerning glacier hydrology, glacier hazards, fluctuations of glacier termini, ice mechanics, ice cores, and mass balance. Good maps are available showing the extent of glaciers from the latter decades of the 19th century. More recently, the entire country has been mapped at scales of 1:25,000, 1:50,000, 1:100,000, 1:200,000, and 1:500,000. The 1:25,000-scale series very accurately represents the glaciers as well as locates

  1. Glaciers: A water resource

    USGS Publications Warehouse

    Meier, Mark; Post, Austin

    1995-01-01

    Most Americans have never seen a glacier, and most would say that glaciers are rare features found only in inaccessible, isolated wilderness mountains. Are they really so rare? Or are they really potentially important sources of water supply?

  2. Testing geographical and climatic controls on glacier retreat

    NASA Astrophysics Data System (ADS)

    Freudiger, Daphné; Stahl, Kerstin; Weiler, Markus

    2015-04-01

    Glacier melt provides an important part of the summer discharge in many mountainous basins. The understanding of the processes behind the glacier mass losses and glacier retreats observed during the last century is therefore relevant for a sustainable management of the water resources and reliable models for the prediction of future changes. The changes in glacier area of 49 sub-basins of the Rhine River in the Alps were analyzed for the time period 1900-2010 by comparing the glacier areas of Siegfried maps for the years 1900 and 1940 with satellite derived glacier areas for the years 1973, 2003 and 2010. The aim was to empirically investigate the controls of glacier retreat and its regional differences. All glaciers in the glacierized basins retreated over the last 110 years with some variations in the sub-periods. However, the relative changes in glacier area compared to 1900 differed for every sub-basin and some glaciers decreased much faster than others. These observed differences were related to a variety of different potential controls derived from different sources, including mean annual solar radiation on the glacier surface, average slope, mean glacier elevation, initial glacier area, average precipitation (summer and winter), and the precipitation catchment area of the glacier. We fitted a generalized linear model (GLM) and selected predictors that were significant to assess the individual effects of the potential controls. The fitted model explains more than 60% of the observed variance of the relative change in glacier area with the initial area alone only explaining a small proportion. Some interesting patterns emerge with higher average elevation resulting in higher area changes, but steeper slopes or solar radiation resulting in lower relative glacier area changes. Further controls that will be tested include snow transport by wind or avalanches as they play an important role for the glacier mass balance and potentially reduce the changes in glacier

  3. Glacier Ecosystems of Himalaya

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2012-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. In this presentation, we will briefly introduce glacier ecosystems in Himalaya; ecology and behavior of glacier animals, altitudinal zonation of snow algal communities, and the structure of their habitats in the glacier. Since the microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. We showed that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  4. Glaciers of Asia

    USGS Publications Warehouse

    Williams, Richard S., Jr.; Ferrigno, Jane G.

    2010-01-01

    This chapter is the ninth to be released in U.S. Geological Survey Professional Paper 1386, Satellite Image Atlas of Glaciers of the World, a series of 11 chapters. In each of the geographic area chapters, remotely sensed images, primarily from the Landsat 1, 2, and 3 series of spacecraft, are used to analyze the specific glacierized region of our planet under consideration and to monitor glacier changes. Landsat images, acquired primarily during the middle to late 1970s and early 1980s, were used by an international team of glaciologists and other scientists to study various geographic regions and (or) to discuss related glaciological topics. In each glacierized geographic region, the present areal distribution of glaciers is compared, wherever possible, with historical information about their past extent. The atlas provides an accurate regional inventory of the areal extent of glacier ice on our planet during the 1970s as part of a growing international scientific effort to measure global environmental change on the Earth?s surface. The chapter is divided into seven geographic parts and one topical part: Glaciers of the Former Soviet Union (F-1), Glaciers of China (F-2), Glaciers of Afghanistan (F?3), Glaciers of Pakistan (F-4), Glaciers of India (F-5), Glaciers of Nepal (F?6), Glaciers of Bhutan (F-7), and the Paleoenvironmental Record Preserved in Middle-Latitude, High-Mountain Glaciers (F-8). Each geographic section describes the glacier extent during the 1970s and 1980s, the benchmark time period (1972-1981) of this volume, but has been updated to include more recent information. Glaciers of the Former Soviet Union are located in the Russian Arctic and various mountain ranges of Russia and the Republics of Georgia, Kyrgyzstan, Tajikistan, and Kazakstun. The Glacier Inventory of the USSR and the World Atlas of Ice and Snow Resources recorded a total of 28,881 glaciers covering an area of 78,938 square kilometers (km2). China includes many of the mountain-glacier

  5. The thermophysics of glaciers

    SciTech Connect

    Zotikov, I.A.

    1986-01-01

    This volume presents the results of experimental and theoretical work on the thermodynamics of ice sheets and glaciers. The author has carried out extensive field work in both the Soviet Union and Antarctica over the last 25 years and has contributed to the understanding of the thermophysics of glaciers. The topics covered in this volume embrace heat flow measurement and temperature distributions in glaciers, the thermal drilling of glaciers, the melting and freezing of ice sheets, and other thermophysical problems. Also included are topics of relevance to glacial engineering.

  6. Recent changes of very small glaciers in the Swiss Alps

    NASA Astrophysics Data System (ADS)

    Fischer, Mauro; Huss, Matthias; Hoelzle, Martin

    2013-04-01

    Present knowledge about Alpine glaciers is not representative in terms of glacier size distribution. More than 80% of all Swiss glaciers are smaller than 0.5 km2 and hence belong to the class of very small glaciers. In the context of fast glacier wastage in the European Alps, the near-future development of the size class distribution will most probably be in favour of very small glaciers which will comparably increase in number. However, there has been little research carried out about very small glaciers so far. It is not clear whether findings and theoretical concepts elaborated for medium and large valley glaciers (> 3 km2) can be directly transferred to very small glaciers, whose accumulation patterns are, for instance, characteristically exceptional because winter precipitation is multiplied by wind drift and avalanching. The extent of glaciers in the European Alps has recently been mapped and inventoried spatio-temporally consistently. Nevertheless, such glacier outlines derived by satellite remote-sensing techniques are not accurate enough for the special case of investigating changes in very small glaciers. Therefore, glacier outlines are digitized manually using high-resolution (25 cm) orthophotographs covering the entire Swiss Alps acquired twice for every scene (both in the early and late noughties). In contrast to the known shortcomings of satellite remote-sensing based approaches, the margins of very small glaciers are (with few exceptions) clearly distinguishable on these orthophotos, even in shaded, snow- or debris-covered areas. For the eastern Swiss Alps (east of the rivers Reuss and Ticino), about one third of all glaciers has vanished since 1973. The total area presently still glacierized amounts to 140 km2, whereof very small glaciers cover only 25% but account for almost 90% of the total number of glaciers. Retreat rates are highest for very small glaciers but seem to be stabilizing or even decreasing since the early noughties, implying that

  7. 2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NNE. GIS N-37 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  8. HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HORSESHOE CURVE IN GLACIER POINT ROAD NEAR GLACIER POINT. HALF DOME AT CENTER REAR. SAME VIEW AT CA-157-2. LOOKING NNE. GIS: N-37' 43 44.3 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  9. Do Glaciers on Cascade Volcanoes Behave Differently Than Other Glaciers in the Region?

    NASA Astrophysics Data System (ADS)

    Riedel, J. L.; Ryane, C.; Osborn, J.; Davis, T.; Menounos, B.; Clague, J. J.; Koch, J.; Scott, K. M.; Reasoner, M.

    2006-12-01

    It has been suggested that glaciers on two stratovolcanoes in the Cascade Range of Washington state, Mt. Baker and Glacier Peak, achieved their maximum extent of the past 10,000 years during the early Holocene. These findings differ from most evidence in western North America, which indicates that Little Ice Age moraines represent the most extensive glacier advances of the Holocene. Significant early Holocene advances are difficult to reconcile with the documented warm, dry conditions at this time in western North America. Our data indicate that glaciers on these volcanoes responded similarly to Holocene climatic events as glaciers in other areas in Washington and British Columbia. Heavy winter accumulation and favorable hypsometry have been proposed as the explanations for the unusual behavior of glaciers on volcanoes compared to similar-sized glaciers elsewhere in the Cascade Range. However, glacier mass balance on the volcanoes is controlled by not only these factors, but also by glacier geometry, snow erosion and ablation. Accumulation zones of glaciers on isolated Cascade stratovolcanoes are high, but are narrow at the top. For example, the accumulation zone of Deming Glacier on the southwest side of Mt. Baker extends above 3000 m asl, but due to its wedge shape lies largely below 2500 m asl. Furthermore, glaciers on Mt. Baker and other symmetrical volcanoes have high ablation rates because they are not shaded, and south-southwest aspects are subject to erosion of snow by prevailing southwesterly winds. Modern glacier observations in the North Cascades quantify the important influence of aspect and snow erosion on glacier mass balance. For example, average equilibrium line altitude (ELA) of Easton Glacier on the south flank of Mt. Baker is 2160 m, whereas the ELA of a north-facing cirque glacier 25km to the east is 2040m. Our research at Mt. Baker contradicts the claim of extensive early Holocene advances on the south flank of the volcano. Tephra set SC, which

  10. Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; De Blasi, F.; Dalla Fontana, G.

    2015-05-01

    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect) and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium to large glaciers so far, while observations on smaller ice bodies (< 0.5 km2) are scarce. Using a data set from eight on-glacier and four off-glacier weather stations, collected in the summers of 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation. The methods proposed by Greuell and Bohm (1998) and Shea and Moore (2010) for calculating on-glacier temperature from off-glacier data did not fully reproduce our observations. Among them, the more physically based procedure of Greuell and Bohm (1998) provided the best overall results where the KBL prevails, but it was not effective elsewhere (i.e., on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

  11. Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier disintegration, intercomparison of calculation methods, and impacts on mass balance modeling

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; De Blasi, F.; Dalla Fontana, G.

    2014-12-01

    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

  12. Late Pleistocene and Holocene paleoclimate and alpine glacier fluctuations recorded by high-resolution grain-size data from an alpine lake sediment core, Wind River Range, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Thompson Davis, P.; Machalett, Björn; Gosse, John

    2013-04-01

    Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (<1% LOI) to more organic, less sticky, light brown silt above (4-10% LOI). Eight AMS radiocarbon ages on bulk sediment and macrofossils date the transition to about 11.6 cal 14C kyr. Thus, sampling resolution above the transition is about 22.57 yr and below the transition is about 12.56 yr, consistent with a decreased sediment accumulation rate in LTL when Younger Dryas ice pulled back from the TTB moraines opening up UTL as a sediment depositional basin. The presented high-resolution grain size record reveals amplitudes and other

  13. A strategy for monitoring glaciers

    USGS Publications Warehouse

    Fountain, Andrew G.; Krimmel, Robert M.; Trabant, Dennis C.

    1997-01-01

    Glaciers are important features in the hydrologic cycle and affect the volume, variability, and water quality of runoff. Assessing and predicting the effect of glaciers on water resources require a monitoring program to provide basic data for this understanding. The monitoring program of the U.S. Geological Survey employs a nested approach whereby an intensively studied glacier is surrounded by less intensively studied glaciers and those monitored solely by remote sensing. Ideally, each glacierized region of the United States would have such a network of glaciers. The intensively studied glacier provides a detailed understanding of the physical processes and their temporal changes that control the mass exchange of the glaciers in that region. The less intensively studied glaciers are used to assess the variability of such processes within the region.

  14. Bruggen Glacier, Chile

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Expedition 3 crew of the International Space Station caught a rare glimpse of the massive ice fields and glaciers of Patagonia early in the afternoon on September 25, 2001. This part of the South American coast sees frequent storms and is often obscured from view by cloud cover. Bruggen Glacier in southern Chile is the largest western outflow from the Southern Patagonian Ice Field and, unlike most glaciers worldwide, advanced significantly since 1945. From 1945 to 1976, Bruggen surged 5 km across the Eyre Fjord, reaching the western shore by 1962 and cutting off Lake Greve from the sea. The glacier continued advancing both northward and southward in the fjord to near its present position before stabilizing. The growth covers a distance of more than 10 km north to south, adding nearly 60 square km of ice. Additional information on this and other Patagonian glaciers may be found at the following link: USGS - Historic Fluctuations of Outlet Glaciers from the Patagonian Ice Fields. Image ISS003-E-6061 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  15. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the

  16. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  17. The Glaciers of HARMONIE

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Gleeson, Emily; Pagh Nielsen, Kristian

    2016-04-01

    Developed by the large ALADIN-HIRLAM consortium, the numerical weather prediction (NWP) model system HARMONIE is run by a large number of national weather services and research institutions in Europe, the Middle East and North Africa for weather forecasting. It is now being adopted for climate research purposes as a limited area model in a form known as HCLIM. It is currently run for a number of domains, mostly in Europe but also including Greenland, at a very high resolution (~2.5 km). HARMONIE is a convection permitting non-hydrostatic model that includes the multi-purpose SURFEX surface model. By improving the characterization of glacier surfaces within SURFEX we show that weather forecast errors over both the Greenland ice sheet and over Icelandic glaciers can be significantly reduced. The improvements also facilitate increasingly accurate ice melt and runoff computations, which are important both for ice surface mass balance estimations and hydropower forecasting. These improvements will also benefit the operational HARMONIE domains that cover the Svalbard archipelago, the Alps and the Scandinavian mountain glaciers. Future uses of HCLIM for these regions, where accurately characterizing glacial terrain will be crucial for climate and glaciological applications, are also expected to benefit from this improvement. Here, we report the first results with a new glacier surface scheme in the HARMONIE model, validated with observations from the PROMICE network of automatic weather stations in Greenland. The scheme upgrades the existing surface energy balance over glaciers by including a new albedo parameterization for bare glacier ice and appropriate coefficients for calculating the turbulent fluxes. In addition the snow scheme from the SURFEX land surface module has been upgraded to allow the retention and refreezing of meltwater in the snowpack. These changes allow us to estimate surface mass balance over glaciers at a range of model resolutions that can take full

  18. The GLIMS Glacier Database

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2007-12-01

    The Global Land Ice Measurements from Space (GLIMS) project has built a geospatial and temporal database of glacier data, composed of glacier outlines and various scalar attributes. These data are being derived primarily from satellite imagery, such as from ASTER and Landsat. Each "snapshot" of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. We have implemented two web-based interfaces to the database; one enables exploration of the data via interactive maps (web map server), while the other allows searches based on text-field constraints. The web map server is an Open Geospatial Consortium (OGC) compliant Web Map Server (WMS) and Web Feature Server (WFS). This means that other web sites can display glacier layers from our site over the Internet, or retrieve glacier features in vector format. All components of the system are implemented using Open Source software: Linux, PostgreSQL, PostGIS (geospatial extensions to the database), MapServer (WMS and WFS), and several supporting components such as Proj.4 (a geographic projection library) and PHP. These tools are robust and provide a flexible and powerful framework for web mapping applications. As a service to the GLIMS community, the database contains metadata on all ASTER imagery acquired over glacierized terrain. Reduced-resolution of the images (browse imagery) can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The interactive map application allows the user to constrain by time what data appear on the map. For example, ASTER or glacier outlines from 2002 only, or from Autumn in any year, can be displayed. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), Map

  19. Variations in Sr and Nd isotopic ratios of cryoconite on glaciers in Asia, Alaska, and Greenland

    NASA Astrophysics Data System (ADS)

    Nagatsuka, N.; Takeuchi, N.; Nakano, T.

    2012-12-01

    Recent shrinkages of glacial mass are not only due to global warming, but also possibly to accumulation of cryoconite on the glacial surface. Cryoconite is a biogenic surface dust consisting of organic matter mainly derived from living microbes on the glaciers, and mineral particles originated from basal till and/or wind-blown dust. Since cryoconite is dark color, it can reduce surface albedo of glaciers and accelerate their melting. Thus, it is important to understand their sources and formation process on the glaciers. The characteristics of cryoconite vary among geographical locations. For example, there are small amounts of cryoconite on Arctic glaciers and their glacial surface is clean. In contrast, large amounts of cryoconite accumulate on Asian glaciers and their glacial surface appears very dirty. These differences in cryoconite are likely to affect on surface albedo and melting of each glacier. However, the formation process of cryoconite, especially origins of minerals and production process of organic matters are still not well understood. Stable isotopic ratios of strontium (Sr) and neodymium (Nd) provide a means of identifying sources of substances and have been commonly used in loess or sediment studies. Furthermore, Sr isotope has been used as a tracer of Ca ion in studies of geochemical process, because its chemical characteristics are similar to Ca. Thus, Sr in organic matter including such organisms on the glacier may reveal their nutrient sources and ecology of them. In this study, we analyzed Sr and Nd isotopic ratios of four mineral and organic fractions in cryoconite on Asian and Polar glaciers. Based on the isotopic ratios, we identified origins of minerals in cryoconite and mineral sources used as nutrients by microbes on the glaciers. Sr and Nd isotopic ratios in the mineral fractions, especially silicate minerals, which are major components of mineral particles, vary significantly among the glaciers. Cryoconite on Asian glaciers showed

  20. Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Pellicciotti, F.; Shea, J. M.

    2015-04-01

    Air temperature is one of the most relevant input variables for snow and ice melt calculations. However, local meteorological conditions, complex topography, and logistical concerns in glacierized regions make the measuring and modeling of air temperature a difficult task. In this study, we investigate the spatial distribution of 2 m air temperature over mountain glaciers and propose a modification to an existing model to improve its representation. Spatially distributed meteorological data from Haut Glacier d'Arolla (Switzerland), Place (Canada), and Juncal Norte (Chile) Glaciers are used to examine approximate flow line temperatures during their respective ablation seasons. During warm conditions (off-glacier temperatures well above 0°C), observed air temperatures in the upper reaches of Place Glacier and Haut Glacier d'Arolla decrease down glacier along the approximate flow line. At Juncal Norte and Haut Glacier d'Arolla, an increase in air temperature is observed over the glacier tongue. While the temperature behavior over the upper part can be explained by the cooling effect of the glacier surface, the temperature increase over the glacier tongue may be caused by several processes induced by the surrounding warm atmosphere. In order to capture the latter effect, we add an additional term to the Greuell and Böhm (GB) thermodynamic glacier wind model. For high off-glacier temperatures, the modified GB model reduces root-mean-square error up to 32% and provides a new approach for distributing air temperature over mountain glaciers as a function of off-glacier temperatures and approximate glacier flow lines.

  1. Karakoram glacier surge dynamics

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Braun, M.; Glasser, N. F.; Bishop, M. P.; Hewitt, K.; Luckman, A.

    2011-09-01

    We examine the surges of five glaciers in the Pakistan Karakoram using satellite remote sensing to investigate the dynamic nature of surges in this region and how they may be affected by climate. Surface velocity maps derived by feature-tracking quantify the surge development spatially in relation to the terminus position, and temporally with reference to seasonal weather. We find that the season of surge initiation varies, that each surge develops gradually over several years, and that maximum velocities are recorded within the lowermost 10 km of the glacier. Measured peak surge velocities are between one and two orders of magnitude greater than during quiescence. We also note that two of the glaciers are of a type not previously reported to surge. The evidence points towards recent Karakoram surges being controlled by thermal rather than hydrological conditions, coinciding with high-altitude warming from long-term precipitation and accumulation patterns.

  2. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Habermann, M.; Hood, E.; Heavner, M.; Motyka, R.

    2008-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly and over the last century this loss of ice has contributed measurably to global sea level rise. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined how water inputs from large rainfall events as well as a glacier lake outburst flood affected the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice- marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice- marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, two Trimble NetRS dual frequency, differential GPS units were deployed on the glacier at approximately 1/3 and 2/3 down the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and captured the outburst flood associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us

  3. Exploring the links between transient water inputs and glacier velocity in a small temperate glacier in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Habermann, M.; Hood, E. W.; Fatland, D. R.

    2009-12-01

    Glaciers along the Gulf of Alaska are thinning and retreating rapidly. An important control on the rate at which ice is being lost is basal motion because higher glacier velocities increase the rate at which ice is delivered to ablation zones. Recent research has focused on understanding the effects of sub-glacial water storage on glacier basal motion. In this study, we examined two seasons of the effect of hydrologic controls (from large rainfall events as well as a glacier lake outburst floods) on the velocity of the Lemon Creek Glacier in southeastern Alaska. Lemon Creek Glacier is a moderately sized (~16~km2) temperate glacier at the margin of the Juneau Icefield. An ice-marginal lake forms at the head of the glacier and catastrophically drains once or twice every melt season. We have instrumented the glacier with two meteorological stations: one at the head of the glacier near the ice-marginal lake and another several kilometers below the terminus. These stations measure temperature, relative humidity, precipitation, incoming solar radiation and wind speed and direction. Lake stage in the ice-marginal lake was monitored with a pressure transducer. In addition, Lemon Creek was instrumented with a water quality sonde at the location of a US Geological Survey gaging station approximately 3 km downstream from the glacier terminus. The sonde provides continuous measurements of water temperature, dissolved oxygen, turbidity and conductivity. Finally, multiple Trimble NetRS dual frequency, differential GPS units were deployed on the glacier along the centerline of the glacier. All of the instruments were run continuously from May-September 2008 and May-September 2009 and captured threee outburst floods associated with the ice-marginal lake drainage as well as several large (>3~cm) rainfall events associated with frontal storms off of the Gulf of Alaska in late summer. Taken together, these data allow us to test the hypothesis that water inputs which overwhelm

  4. Greenland Glacier Albedo Variability

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The program for Arctic Regional Climate Assessment (PARCA) is a NASA-funded project with the prime goal of addressing the mass balance of the Greenland ice sheet. Since the formal initiation of the program in 1995, there has been a significant improvement in the estimates of the mass balance of the ice sheet. Results from this program reveal that the high-elevation regions of the ice sheet are approximately in balance, but the margins are thinning. Laser surveys reveal significant thinning along 70 percent of the ice sheet periphery below 2000 m elevations, and in at least one outlet glacier, Kangerdlugssuaq in southeast Greenland, thinning has been as much as 10 m/yr. This study examines the albedo variability in four outlet glaciers to help separate out the relative contributions of surface melting versus ice dynamics to the recent mass balance changes. Analysis of AVHRR Polar Pathfinder albedo shows that at the Petermann and Jakobshavn glaciers, there has been a negative trend in albedo at the glacier terminus from 1981 to 2000, whereas the Stor+strommen and Kangerdlugssuaq glaciers show slightly positive trends in albedo. These findings are consistent with recent observations of melt extent from passive microwave data which show more melt on the western side of Greenland and slightly less on the eastern side. Significance of albedo trends will depend on where and when the albedo changes occur. Since the majority of surface melt occurs in the shallow sloping western margin of the ice sheet where the shortwave radiation dominates the energy balance in summer (e.g. Jakobshavn region) this region will be more sensitive to changes in albedo than in regions where this is not the case. Near the Jakobshavn glacier, even larger changes in albedo have been observed, with decreases as much as 20 percent per decade.

  5. Climate regime of Asian glaciers revealed by GAMDAM glacier inventory

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Fujita, K.; Takenaka, S.; Nagai, H.; Lamsal, D.

    2015-05-01

    Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) such that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between the median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain the median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in arid high-mountain Asia receive less precipitation, while much precipitation makes a greater contribution to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in high-mountain Asia into summer-accumulation type and winter-accumulation type using the summer-accumulation ratio and confirmed that summer-accumulation-type glaciers have a higher sensitivity than winter-accumulation-type glaciers.

  6. Climate regime of Asian glaciers revealed by GAMDAM Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Fujita, K.; Takenaka, S.; Nagai, H.; Lamsal, D.

    2014-07-01

    Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in High Mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. We estimated precipitation contributing to glacier mass at median elevation of glaciers, which is presumed to be at equilibrium-line altitude (ELA) so that mass balance is zero at that elevation, by tuning adjustment parameters of precipitation. We also made comparisons between median elevation of glaciers, including the effect of drifting snow and avalanche, and eliminated those local effects. Then, we could obtain median elevation of glaciers depending only on climate to estimate glacier surface precipitation. The calculated precipitation contributing to glacier mass can elucidate that glaciers in the arid High Mountain Asia have very less precipitation, while much precipitation contribute to glacier mass in the Hindu Kush, the Himalayas, and the Hengduan Shan due to not only direct precipitation amount but also avalanche nourishment. We classified glaciers in High Mountain Asia into summer-accumulation type and winter-accumulation type using the summer accumulation ratio, and confirmed that summer-accumulation type glaciers have a higher sensitivity than winter-accumulation type glaciers.

  7. One decade of scientific studies of snow management on Austria's glacier ski resorts

    NASA Astrophysics Data System (ADS)

    Fischer, Andrea; Helfricht, Kay

    2016-04-01

    After the extremely warm summer of 2003, when melt affected Austria's glaciers up to the highest elevations, a scientific study on artificial modification of mass balance was initiated. It examined the effects of glacier covers and water injection, but also various grooming methods and snow accumulations based on monitoring and modelling of snow and energy balance. The results showed that covering the glacier was the most effective and cheapest method, saving about 70% of glacier melt in places. But covers are restricted to a small portion of the area, as they require high maintenance. In recent years, snow production and snow accumulation by wind drift have gained more and more importance, not only modifying glacier mass balance, but also guaranteeing an early season start. Initially about 35 ha of the glacier area (<10% of the ski resort area and less than one per mille of the total glacier area in Austria) were covered and later the area was reduced as snow production possibilities increased. Snow depots are often used as fun parks for snow boarders. Glacier covers are not primarily used for keeping snow for early season start on ski tracks, but to maintain the surface, especially close to cable car infrastructure, at a constant elevation and slope. Despite glacier dynamics, glacier surfaces with snow management show reduced decrease of surface elevation , both on piste and along lift tracks.

  8. Svalbard surging glacier landsystems

    NASA Astrophysics Data System (ADS)

    Lovell, Harold; Benn, Douglas; Lukas, Sven; Flink, Anne

    2014-05-01

    The percentage of Svalbard glaciers thought to be of surge-type is somewhere between 13-90% according to different sources variously based on statistical analysis and observations of diagnostic glaciological and geomorphological features, e.g. looped moraines. Developing a better understanding of which of these figures, if either, is most realistic is important in the context of glacier dynamics and related contributions of small glaciers and ice caps to sea level change in the immediate future. We present detailed geomorphological assessments of the margins of several known surge-type glaciers in Svalbard in order to update and improve the existing framework by which they are identified, and to provide a foundation for future reassessments of the surge-type glacier population based on distinct landform-sediment assemblages. Three landsystems are proposed: (1) Surges of small valley glaciers produce a prominent ice-cored latero-frontal moraine at their surge maximum and are characterised by an inner zone of ice stagnation terrain (hummocky topography, kettle lakes, debris flows) with no or only very few poorly-defined bedforms (crevasse squeeze ridges, eskers and flutes) and no recessional moraines. Many of these glaciers may have surged in the past but show no signs that they have the capability to do so again in the future. (2) Larger land-terminating glaciers, often with several tributaries, typically produce a push moraine complex which contains evidence for multiple advances, as identified from ridge-meltwater channel relationships. The inner zone often contains a large lagoon, partly dammed by the push moraine complex, and widespread ice stagnation terrain. Crevasse squeeze ridges, eskers and flutes are well-defined but small and limited in number and distribution. (3) Surges of large tidewater glaciers produce distinctive, often multi-generational, landform assemblages both in submarine and lateral terrestrial positions. The well-preserved submarine record

  9. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  10. Pine Island Glacier

    Atmospheric Science Data Center

    2013-04-16

    ... this representation, clouds show up as light purple. Blue to orange gradations on the surface indicate a transition in ice texture from smooth to rough. For example, the bright orange "carrot-like" features are rough crevasses on the glacier's tongue. In ...

  11. Characteristics of Glacier Ecosystem and Glaciological Importance of Glacier Microorganisms

    NASA Astrophysics Data System (ADS)

    Kohshima, S.; Yoshimura, Y.; Takeuchi, N.; Segawa, T.; Uetake, J.

    2004-12-01

    Biological activity on glaciers has been believed to be extremely limited. However, we found various biotic communities specialized to the glacier environment in various part of the world, such as Himalaya, Patagonia and Alaska. Some of these glacier hosted biotic communities including various cold-tolerant insects, annelids and copepods that were living in the glacier by feeding on algae and bacteria growing in the snow and ice. Thus, the glaciers are simple and relatively closed ecosystems sustained by the primary production in the snow and ice. Since these microorganisms growing on the glacier surface are stored in the glacial strata every year, ice-core samples contain many layers with these microorganisms. Recently, it was shown that the snow algae in the ice-core are useful for ice core dating and could be new environmental signals for the studies on past_@environment using ice cores. These microorganisms in the ice core will be important especially in the studies of ice core from the glaciers of warmer regions, in which chemical and isotopic contents are often heavily disturbed by melt water percolation. Blooms of algae and bacteria on the glacier can reduce the surface albedo and significantly affect the glacier melting. For example, the surface albedo of some Himalayan glaciers was significantly reduced by a large amount of dark-colored biogenic material (cryoconite) derived from snow algae and bacteria. It increased the melting rates of the surfaces by as much as three-fold. Thus, it was suggested that the microbial activity on the glacier could affect the mass balance and fluctuation of the glaciers.

  12. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    NASA Astrophysics Data System (ADS)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  13. Listening to Glaciers: Passive hydroacoustics near marine-terminating glaciers

    USGS Publications Warehouse

    Pettit, E.C.; Nystuen, J.A.; O'Neel, Shad

    2012-01-01

    The catastrophic breakup of the Larsen B Ice Shelf in the Weddell Sea in 2002 paints a vivid portrait of the effects of glacier-climate interactions. This event, along with other unexpected episodes of rapid mass loss from marine-terminating glaciers (i.e., tidewater glaciers, outlet glaciers, ice streams, ice shelves) sparked intensified study of the boundaries where marine-terminating glaciers interact with the ocean. These dynamic and dangerous boundaries require creative methods of observation and measurement. Toward this effort, we take advantage of the exceptional sound-propagating properties of seawater to record and interpret sounds generated at these glacial ice-ocean boundaries from distances safe for instrument deployment and operation.

  14. Modeled and measured glacier change and related glaciological, hydrological, and meteorological conditions at South Cascade Glacier, Washington, balance and water years 2006 and 2007

    USGS Publications Warehouse

    Bidlake, William R.; Josberger, Edward G.; Savoca, Mark E.

    2010-01-01

    terminus retreated at a rate of about 13 meters per year during balance year 2006 and at a rate of about 8 meters per year during balance year 2007. Glacier area near the end of balance years 2006 and 2007 was 1.74 and 1.73 square kilometers, respectively. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years 2006 and 2007. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier. Air-temperature over the glacier at a height of 2 meters generally was less than at the same altitude in the air mass away from the glacier. Cooling of the air by the glacier increased systematically with increasing ambient air temperature. Empirically based equations were developed to estimate 2-meter-height air temperature over the glacier at five sites from site altitude and temperature at a non-glacier reference site.

  15. Mass balance model parameter transferability on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg

    2013-04-01

    The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer

  16. Chernobyl fallout on Alpine glaciers

    SciTech Connect

    Ambach, W.; Rehwald, W.; Blumthaler, M.; Eisner, H.; Brunner, P.

    1989-01-01

    Measurements of the gross beta activity of snow samples from four Alpine glaciers contaminated by radioactive fallout from the Chernobyl nuclear accident and a gamma-spectrum analysis of selected samples are reported. The results are discussed with respect to possible risks to the population from using meltwater from these glaciers as drinking water.

  17. Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite covers an area of 55 by 40 kilometers (34 by 25 miles) over the southwest part of the Malaspina Glacier and Icy Bay in Alaska. The composite of infrared and visible bands results in the snow and ice appearing light blue, dense vegetation is yellow-orange and green, and less vegetated, gravelly areas are in orange. According to Dr. Dennis Trabant (U.S. Geological Survey, Fairbanks, Alaska), the Malaspina Glacier is thinning. Its terminal moraine protects it from contact with the open ocean; without the moraine, or if sea level rises sufficiently to reconnect the glacier with the ocean, the glacier would start calving and retreat significantly. ASTER data are being used to help monitor the size and movement of some 15,000 tidal and piedmont glaciers in Alaska. Evidence derived from ASTER and many other satellite and ground-based measurements suggests that only a few dozen Alaskan glaciers are advancing. The overwhelming majority of them are retreating.

    This ASTER image was acquired on June 8, 2001. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next six years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high-resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and

  18. Water, Ice, and Meteorological Measurements at Xiao Dongkemadi Glacier, Central Tibetan Plateau, Balance Years from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Xiaobo, He; Baisheng, Ye; Yongjian, Ding; Jian, Zhang

    2013-04-01

    The glaciers on Tibetan Plateau play an important role in the catchment hydrology and climatology of this region. However, our knowledge with respect to water circulation in this remote area is scarce. Xiao Dongkemadi Glacier (XDG) is located near Tanggula Pass (the highest point on the Lanzhou-Lhasa road 5231ma.s.l.), central Tibetan Plateau (33°04'N, 92°04'E). Here, glacier mass balance and runoff directly reflects the glacier's response to local climate change, and glacier changes on the Tibetan Plateau strongly influence human welfare since water supplies in this arid/semi-arid region are predominantly from glacier melt. Due to its remote location, the mass balance of XDG has been monitored discontinuously since 1988 by the direct glaciological method. Recently, a more complete and fine-grained glacier monitoring system has been established on the cap of XDG, and is expected to make further contributions to research on the change of the cryospheric and climatic environment in the area. Winter snow accumulation and summer snow and ice ablation were measured at XDG, to estimate glacier mass-balance quantities for balance years from 2008 to 2011. Runoff from the basin containing the glacier and from an adjacent nonglacierized basin was gaged during all or parts of water years from 2008 and 2011. Air temperature, wind speed, precipitation, and incoming solar radiation were measured at selected locations on and near the glacier.

  19. Reconstructing Glaciers on Mars

    NASA Astrophysics Data System (ADS)

    Hubbard, A., II; Brough, S.; Hubbard, B. P.

    2015-12-01

    Mars' mid-latitudes host a substantial volume of ice, equivalent to a ~1 - 2.5 m-thick global layer or the sum of Earth's glaciers and ice caps outside of Antarctica and Greenland. These deposits are the remnants of what is believed to have been a once far larger 'ice age', culminating in a last martian glacial maximum. Despite the identification of >1,300 glacier-like forms (GLFs) - the first order component of Mars' glacial landsystem - in Mars' mid-latitudes, little is known about their composition, dynamics or former extent. Here, we reconstruct the former 3D extent of a well-studied GLF located in eastern Hellas Planitia. We combine high-resolution geomorphic and topographic data, obtained from the High-Resolution Imaging Science Experiment (HiRISE) camera, to reconstruct the GLF's former limits. We then apply a perfect plasticity rheological model, to generate multiple flow-parallel ice-surface transects. These are combined with the GLF's boundary to guide interpolation using ArcGIS' 'Topo to Raster' function to produce a continuous 3D surface for the reconstructed former GLF. Our results indicate that, since its reconstructed 'recent maximum' extent, the GLF's volume has reduced by 0.31 km3 and its area by 6.85 km2, or 70%. On-going research is addressing the degree to which this change is typical of Mars' full GLF population.

  20. Polythermal Glacier Hydrology: A Review

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, Tristram D. L.; Hodson, Andrew J.; Moorman, Brian J.; Vatne, Geir; Hubbard, Alun L.

    2011-11-01

    The manner by which meltwater drains through a glacier is critical to ice dynamics, runoff characteristics, and water quality. However, much of the contemporary knowledge relating to glacier hydrology has been based upon, and conditioned by, understanding gleaned from temperate valley glaciers. Globally, a significant proportion of glaciers and ice sheets exhibit nontemperate thermal regimes. The recent, growing concern over the future response of polar glaciers and ice sheets to forecasts of a warming climate and lengthening summer melt season necessitates recognition of the hydrological processes in these nontemperate ice masses. It is therefore timely to present an accessible review of the scientific progress in glacial hydrology where nontemperate conditions are dominant. This review provides an appraisal of the glaciological literature from nontemperate glaciers, examining supraglacial, englacial, and subglacial environments in sequence and their role in hydrological processes within glacierized catchments. In particular, the variability and complexity in glacier thermal regimes are discussed, illustrating how a unified model of drainage architecture is likely to remain elusive due to structural controls on the presence of water. Cold ice near glacier surfaces may reduce meltwater flux into the glacier interior, but observations suggest that the transient thermal layer of near surface ice holds a hydrological role as a depth-limited aquifer. Englacial flowpaths may arise from the deep incision of supraglacial streams or the propagation of hydrofractures, forms which are readily able to handle varied meltwater discharge or act as locations for water storage, and result in spatially discrete delivery of water to the subglacial environment. The influence of such drainage routes on seasonal meltwater release is explored, with reference to summer season upwellings and winter icing formation. Moreover, clear analogies emerge between nontemperate valley glacier and

  1. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-03-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation. Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  2. Widespread evidences of hoarfrost formation at a rock glacier in the Seckauer Tauern, Austria

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, A.; Winkler, G.; Pauritsch, M.

    2012-04-01

    The mechanism of deep reversible air circulation (the so called "chimney effect" or "wind tube") is known to be a process of ground overcooling in the lower and deeper parts of porous sediments and related landforms such as scree slopes or intact and relict rock glaciers. Warm air outflow emerging from relatively small voids within these mostly coarse-grained sediment bodies is sometimes noticeable. However, easier to identify are associated phenomena such as snowmelt windows, snow cover depressions and hoarfrost formations. Generally, these indications for warm air outflow are found at the upper part of scree slopes or the rooting zone of rock glaciers. Here we present widespread field evidences of hoarfrost from the pseudo-relict Schöneben Rock Glacier in the Seckauer Tauern Range, Austria located at E14°40'26'' and N47°22'31''. Herewith, a pseudo-relict rock glacier is defined as an intermediate rock glacier type between a relict and a climatic-inactive rock glacier, hence a relict rock glacier with locally isolated patches of permafrost. The rock glacier covers an area of about 0.11km2, ranges from ca. 1720 to 1905 m a.s.l., and consists predominantly of coarse-grained gneissic sediments with blocks up to a size of several cubic metres at the surface. In particular the lower part and some ridges in the central and upper part are covered by dwarf pines (pinus mugo) mirroring the flow structure of the previously active rock glacier. Isolated permafrost occurs presumably at the rooting zone of the rock glacier as indicated by evidences from a neighbouring rock glacier in a comparable setting. Field observations in November 2011 showed widespread occurrences of hoarfrost crystals growing around the funnel edge indicating the sublimation of vapour from warm funnels. Such hoarfrost sites were found at more than 50 single locations distributed over the entire rock glacier from the tongue to the rooting zone generally. The occurrence of hoarfrost can get classified

  3. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for

  4. Beardmore Glacier proposals wanted

    NASA Astrophysics Data System (ADS)

    Proposals for research projects to be conducted in the upper Beardmore Glacier area of Antarctica during the 1985-1986 field season are being accepted by t h e National Science Foundation (NSF) through August 15. Later proposal submissions should be discussed with the appropriate program managers (see below).A temporary camp with helicopter support will be established in the region. Occupation by scientific parties will likely be between mid-November 1985 and mid-January 1986. Transportation in the field will be by UH1-N twin-engine Huey helicopters (with a range of approximately 185 km) and by motor toboggans. Satellite tent camps will be established within the range of the helicopters. The exact position of the main camp will be determined in November. Likely candidates, however, are Buckley Island Quadrangle, in the area of the Walcott Névé or the Bowden Névé, near Coalsack Bluff or Mount Sirius.

  5. Flow instabilities of Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    Turrin, James Bradley

    Over 300 of the largest glaciers in southern Alaska have been identified as either surge-type or pulse-type, making glaciers with flow instabilities the norm among large glaciers in that region. Consequently, the bulk of mass loss due to climate change will come from these unstable glaciers in the future, yet their response to future climate warming is unknown because their dynamics are still poorly understood. To help broaden our understanding of unstable glacier flow, the decadal-scale ice dynamics of 1 surging and 9 pulsing glaciers are investigated. Bering Glacier had a kinematic wave moving down its ablation zone at 4.4 +/- 2.0 km/yr from 2002 to 2009, which then accelerated to 13.9 +/- 2.0 km/yr as it traversed the piedmont lobe. The wave first appeared in 2001 near the confluence with Bagley Ice Valley and it took 10 years to travel ~64 km. A surge was triggered in 2008 after the wave activated an ice reservoir in the midablation zone, and it climaxed in 2011 while the terminus advanced several km into Vitus Lake. Ruth Glacier pulsed five times between 1973 and 2012, with peak velocities in 1981, 1989, 1997, 2003, and 2010; approximately every 7 years. A typical pulse increased ice velocity 300%, from roughly 40 m/yr to 160 m/yr in the midablation zone, and involved acceleration and deceleration of the ice en masse; no kinematic wave was evident. The pulses are theorized to be due to deformation of a subglacial till causing enhanced basal motion. Eight additional pulsing glaciers are identified based on the spatiotemporal pattern of their velocity fields. These glaciers pulsed where they were either constricted laterally or joined by a tributary, and their surface slopes are 1-2°. These traits are consistent with an overdeepening. This observation leads to a theory of ice motion in overdeepenings that explains the cyclical behavior of pulsing glaciers. It is based on the concept of glaciohydraulic supercooling, and includes sediment transport and erosion

  6. Surface melt dominates Alaska glacier mass balance

    USGS Publications Warehouse

    Larsen Chris F; Burgess, E; Arendt, A.A.; O'Neel, Shad; Johnson, A.J.; Kienholz, C.

    2015-01-01

    Mountain glaciers comprise a small and widely distributed fraction of the world's terrestrial ice, yet their rapid losses presently drive a large percentage of the cryosphere's contribution to sea level rise. Regional mass balance assessments are challenging over large glacier populations due to remote and rugged geography, variable response of individual glaciers to climate change, and episodic calving losses from tidewater glaciers. In Alaska, we use airborne altimetry from 116 glaciers to estimate a regional mass balance of −75 ± 11 Gt yr−1 (1994–2013). Our glacier sample is spatially well distributed, yet pervasive variability in mass balances obscures geospatial and climatic relationships. However, for the first time, these data allow the partitioning of regional mass balance by glacier type. We find that tidewater glaciers are losing mass at substantially slower rates than other glaciers in Alaska and collectively contribute to only 6% of the regional mass loss.

  7. Ocean forcing drives glacier retreat sometimes

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ultee, E.; Ma, Y.

    2015-12-01

    Observations show that marine-terminating glaciers respond to climate forcing nonlinearly, with periods of slow or negligible glacier advance punctuated by abrupt, rapid retreat. Once glacier retreat has initiated, glaciers can quickly stabilize with a new terminus position. Alternatively, retreat can be sustained for decades (or longer), as is the case for Columbia Glacier, Alaska where retreat initiated ~1984 and continues to this day. Surprisingly, patterns of glacier retreat show ambiguous or even contradictory correlations with atmospheric temperature and glacier surface mass balance. Despite these puzzles, observations increasingly show that intrusion of warm subsurface ocean water into fjords can lead to glacier erosion rates that can account for a substantial portion of the total mass lost from glaciers. Here we use a simplified flowline model to show that even relatively modest submarine melt rates (~100 m/a) near the terminus of grounded glaciers can trigger large increases in iceberg calving leading to rapid glacier retreat. However, the strength of the coupling between submarine melt and calving is a strong function of the geometry of the glacier (bed topography, ice thickness and glacier width). This can lead to irreversible retreat when the terminus is thick and grounded deeply beneath sea level or result in little change when the glacier is relatively thin, grounded in shallow water or pinned in a narrow fjord. Because of the strong dependence on glacier geometry, small perturbations in submarine melting can trigger glaciers in their most advanced—and geometrically precarious—state to undergo sudden retreat followed by much slower re-advance. Although many details remain speculative, our model hints that some glaciers are more sensitive than others to ocean forcing and that some of the nonlinearities of glacier response to climate change may be attributable to variations in difficult-to-detect subsurface water temperatures that need to be better

  8. Glacier Sensitivity Across the Andes

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.; Rupper, S.

    2010-12-01

    Most of the research on causes driving former glacial fluctuations, and the climatic signals involved, has focused on the comparisons of sequences of glacial events in separate regions of the world and their temporal-phasing relationship with terrestrial or extraterrestrial climate-forcing mechanisms. Nevertheless the climatic signals related with these glacial advances are still under debate. This impossibility to resolve these questions satisfactorily have been generally attributed to the insufficiently precise chronologies and unevenly distributed records. However, behind these ideas lies the implicit assumption that glaciers situated in different climate regimes respond uniformly to similar climatic perturbations. This ongoing research is aimed to explore the climate-glacier relationship at regional scale, through the analysis of the spatial variability of glacier sensitivity to climatic change. By applying a Surface Energy Mass Balance model (SEMB) developed by Rupper and Roe (2008) to glaciers located in different climatic regimes, we analyzed the spatial variability of mass balance changes under different baseline conditions and under different scenarios of climatic change. For the sake of this research, the analysis is being focused on the Andes, which in its 9,000 km along the western margin of South America offers an unparalleled climatic diversity. Preliminary results suggest that above some threshold of climate change (a hypothetical uniform perturbation), all the glaciers across the Andes would respond in the “same direction” (advancing or retreating). Below that threshold, glaciers located in some climatic regimes may be insensitive to the specific perturbation. On the other hand, glaciers located in different climatic regimes may exhibit a “different magnitude” of change under a uniform climatic perturbation. Thus, glaciers located in the dry Andes of Perú, Chile and Argentina are more sensitive to precipitation changes than variations in

  9. Modelling Greenland Outlet Glaciers

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelis; Abdalati, Waleed (Technical Monitor)

    2001-01-01

    The objective of this project was to develop simple yet realistic models of Greenland outlet glaciers to better understand ongoing changes and to identify possible causes for these changes. Several approaches can be taken to evaluate the interaction between climate forcing and ice dynamics, and the consequent ice-sheet response, which may involve changes in flow style. To evaluate the icesheet response to mass-balance forcing, Van der Veen (Journal of Geophysical Research, in press) makes the assumption that this response can be considered a perturbation on the reference state and may be evaluated separately from how this reference state evolves over time. Mass-balance forcing has an immediate effect on the ice sheet. Initially, the rate of thickness change as compared to the reference state equals the perturbation in snowfall or ablation. If the forcing persists, the ice sheet responds dynamically, adjusting the rate at which ice is evacuated from the interior to the margins, to achieve a new equilibrium. For large ice sheets, this dynamic adjustment may last for thousands of years, with the magnitude of change decreasing steadily over time as a new equilibrium is approached. This response can be described using kinematic wave theory. This theory, modified to pertain to Greenland drainage basins, was used to evaluate possible ice-sheet responses to perturbations in surface mass balance. The reference state is defined based on measurements along the central flowline of Petermann Glacier in north-west Greenland, and perturbations on this state considered. The advantage of this approach is that the particulars of the dynamical flow regime need not be explicitly known but are incorporated through the parameterization of the reference ice flux or longitudinal velocity profile. The results of the kinematic wave model indicate that significant rates of thickness change can occur immediately after the prescribed change in surface mass balance but adjustments in flow

  10. Aletsch Glacier, Switzerland

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Aletsch Glacier, the largest glacier of Europe, covers more than 120 square kilometers (more than 45 square miles)in southern Switzerland. At its eastern extremity lies a glacierlake, Mdrjelensee (2,350 meters/7,711 feet above sea level). To the west rises Aletschhorn (4,195 meters/13,763 feet), which was first climbed in 1859. The Rhone River flows along the southern flank of the mountains.

    This image was acquired on July 23, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as

  11. Monitoring Popocatepetl volcano's glaciers (Mexico): case study of glacier extinction

    NASA Astrophysics Data System (ADS)

    Delgado, H.; Julio, P.; Huggel, C.; Brugman, M.

    2003-04-01

    Popocatépetl volcano is located 60 km southeast of Mexico City and is one of the three ice-clad volcanoes in Mexico. The two glaciers of Popocatépetl became extinct after a strong retreat due to the combination of at least three causes: global change, change in regional meteorological conditions (induced by the vicinity to highly polluted areas) and local enforcement (namely volcanic eruption). Glacier dimensions of Popocatépetl glaciers have been measured by photogrammetric means, and even though continuous monitoring was not feasible for decades, in recent years availability of aerial photographs allowed a better documentation of glacier areal changes. The first inventory made in 1958 threw an areal extent of 0.89 km2. A second inventory of the areal extent of the two small glaciers of Popocatépetl in 1982 reported 0.56 km2. Average retreat rate resulted nearly 14,000 m2/year. An areal measurement for 1996 resulted in an-order-of-magnitude smaller retreat rate (more than 1,500 m2/year). In early 1997, the retreat rate was nearly 12,500 m2/year, an order of magnitude similar as that of the 1958-1982 period. This scheme changed strongly in the following years when retreat rate was twice in 1998 and more than 7 times greater in 1999. By the end of the year 2000, the retreat rate remained in the same order of magnitude as in early 1999. Since the year 2000 and up to the present, the glaciers are just a series of independent ice masses (seracs) and the bedrock is seen in between them. GPR determinations made in 1995 showed a 40 m average ice thickness. During ice drilling in the year 2000 at nearly the same spot where GPR determinations were made in 1995, a thickness of 4 m was found. Therefore, glacier shrinkage has been documented not only by areal restriction but also by strong changes in thickness. The strong retreat experienced by Popocatépetl’s glaciers along the last decades, were possibly due to global climatic enforcement and proximity to industrial

  12. From Glaciers to Icebergs

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy

    I will describe works from a collaboration between physics and glaciology that grew out of interactions at the Computations in Science seminar Leo Kadanoff organized at the University of Chicago. The first project considers the interaction between ocean waves and Antarctic ice shelves, large floating portions of ice formed by glacial outflows. Back-of-envelop calculation and seismic sensor data suggest that crevasses may be distributed within an ice shelf to shield it from wave energy. We also examine numerical scenarios in which changes in environmental forcing causes the ice shelf to fail catastrophically. The second project investigates the aftermath of iceberg calving off glacier terminus in Greenland using data recorded via time-lapse camera and terrestrial radar. Our observations indicate that the mélange of icebergs within the fjord experiences widespread jamming during a calving event and therefore is always close to being in a jammed state during periods of terminus quiescence. Joint work with Jason Amundson, Ivo R. Peters, Julian Freed Brown, Nicholas Guttenberg, Justin C Burton, L. Mac Cathles, Ryan Cassotto, Mark Fahnestock, Kristopher Darnell, Martin Truffer, Dorian S. Abbot and Douglas MacAyeal. Kadanoff Session DCMP.

  13. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years.

    PubMed

    Campagne, P; Crosta, Xavier; Houssais, M N; Swingedouw, D; Schmidt, S; Martin, A; Devred, E; Capo, S; Marieu, V; Closset, I; Massé, G

    2015-01-01

    The Mertz Glacier Polynya off George V Land, East Antarctica, is a source of Adélie Land Bottom Water, which contributes up to ~25% of the Antarctic Bottom Water. This major polynya is closely linked to the presence of the Mertz Glacier Tongue that traps pack ice upstream. In 2010, the Mertz Glacier calved a massive iceberg, deeply impacting local sea ice conditions and dense shelf water formation. Here we provide the first detailed 250-year long reconstruction of local sea ice and bottom water conditions. Spectral analysis of the data sets reveals large and abrupt changes in sea surface and bottom water conditions with a ~70-year cyclicity, associated with the Mertz Glacier Tongue calving and regrowth dynamics. Geological data and atmospheric reanalysis, however, suggest that sea ice conditions in the polynya were also very sensitive to changes in surface winds in relation to the recent intensification of the Southern Annular Mode. PMID:25803779

  14. Glacial ice and atmospheric forcing on the Mertz Glacier Polynya over the past 250 years

    NASA Astrophysics Data System (ADS)

    Campagne, P.; Crosta, Xavier; Houssais, M. N.; Swingedouw, D.; Schmidt, S.; Martin, A.; Devred, E.; Capo, S.; Marieu, V.; Closset, I.; Massé, G.

    2015-03-01

    The Mertz Glacier Polynya off George V Land, East Antarctica, is a source of Adélie Land Bottom Water, which contributes up to ~25% of the Antarctic Bottom Water. This major polynya is closely linked to the presence of the Mertz Glacier Tongue that traps pack ice upstream. In 2010, the Mertz Glacier calved a massive iceberg, deeply impacting local sea ice conditions and dense shelf water formation. Here we provide the first detailed 250-year long reconstruction of local sea ice and bottom water conditions. Spectral analysis of the data sets reveals large and abrupt changes in sea surface and bottom water conditions with a ~70-year cyclicity, associated with the Mertz Glacier Tongue calving and regrowth dynamics. Geological data and atmospheric reanalysis, however, suggest that sea ice conditions in the polynya were also very sensitive to changes in surface winds in relation to the recent intensification of the Southern Annular Mode.

  15. Mass balance simulations with an energy-based glacier model for the Muji Glacier on the eastern edge of the Pamirs

    NASA Astrophysics Data System (ADS)

    Su, Fengge; Ren, Zheng; Xu, Baiqing; Kan, Baoyun; Xie, Ying

    2015-04-01

    A distributed energy-based glacier model coupled with a land surface hydrology model is developed and validated over the Muji Glacier (39.1865° N, 73.746°E, 5532-4715 m above sea level, 2.42 km2) on the eastern edge of the Pamirs with meteorological measurements and mass balance stake records on the glacier. Surface energy fluxes and melt rates are simulated for each 30m × 30m grid cell at a 3-hourly resolution for the period July 2011 to September 2014. The inputs of the coupled model include daily maximum and minimum air temperature, daily precipitation, wind speed, slope and aspect, and elevation of each grid cell. A new scheme of downward shortwave and longwave radiation is developed based on the limited climate inputs. The simulated incoming shortwave and longwave radiation, and albedo are compared with the measurements from 3 automatic weather stations during July 2011-September 2014. The mass balance over each 30m × 30m grid cell is simulated for the entire Muji Glacier with the distributed energy balance model for the three water years. The simulated mass balance is validated with the stake records for both melt and accumulation seasons and the validation results are plausible. The coupled energy-based-glacier-hydrology model will be further validated at the basin scale with measured glacier runoff.

  16. Arctic polynya and glacier interactions

    NASA Astrophysics Data System (ADS)

    Edwards, Laura

    2013-04-01

    Major uncertainties surround future estimates of sea level rise attributable to mass loss from the polar ice sheets and ice caps. Understanding changes across the Arctic is vital as major potential contributors to sea level, the Greenland Ice Sheet and the ice caps and glaciers of the Canadian Arctic archipelago, have experienced dramatic changes in recent times. Most ice mass loss is currently focused at a relatively small number of glacier catchments where ice acceleration, thinning and calving occurs at ocean margins. Research suggests that these tidewater glaciers accelerate and iceberg calving rates increase when warming ocean currents increase melt on the underside of floating glacier ice and when adjacent sea ice is removed causing a reduction in 'buttressing' back stress. Thus localised changes in ocean temperatures and in sea ice (extent and thickness) adjacent to major glacial catchments can impact hugely on the dynamics of, and hence mass lost from, terrestrial ice sheets and ice caps. Polynyas are areas of open water within sea ice which remain unfrozen for much of the year. They vary significantly in size (~3 km2 to > ~50,000 km2 in the Arctic), recurrence rates and duration. Despite their relatively small size, polynyas play a vital role in the heat balance of the polar oceans and strongly impact regional oceanography. Where polynyas develop adjacent to tidewater glaciers their influence on ocean circulation and water temperatures may play a major part in controlling subsurface ice melt rates by impacting on the water masses reaching the calving front. Areas of open water also play a significant role in controlling the potential of the atmosphere to carry moisture, as well as allowing heat exchange between the atmosphere and ocean, and so can influence accumulation on (and hence thickness of) glaciers and ice caps. Polynya presence and size also has implications for sea ice extent and therefore potentially the buttressing effect on neighbouring

  17. Columbia Glacier, Alaska, 1986-2011

    NASA Video Gallery

    The Columbia Glacier in Alaska is one of many vanishing around the world. Glacier retreat is one of the most direct and understandable effects of climate change. The consequences of the decline in ...

  18. Increased glacier runoff enhances the penetration of warm Atlantic Water into a large Greenland fjord

    NASA Astrophysics Data System (ADS)

    Sole, Andrew; Payne, Anthony; Nienow, Peter; Christoffersen, Poul; Cottier, Finlo; Inall, Mark

    2013-04-01

    The retreat and acceleration of Greenland's marine-terminating outlet glaciers have been linked to ocean warming. However the mechanisms which control the transmission of this warming along fjords towards the glacier termini remain poorly understood. Here we aim to elucidate observed changes in water properties in Kangerdlugssuaq Fjord (KF), east Greenland, between 1993 and 2004 using the Bergen Ocean Model (BOM). Model outputs are compared with observed potential temperature, salinity and velocity data to determine the principal controls on heat transport within KF. The BOM includes wind, tidal and glacier runoff forcing and is able to replicate observed temperature and salinity profiles. Model results describe a robust four-layer estuarine flow, consisting of two distinct circulations. The shallow circulation (0 - ˜60 m) is forced by surface wind stress and to a lesser extent supraglacial runoff, while the intermediate circulation (˜60 - 500 m) is driven by runoff discharged into the fjord subglacially. AtlanticWater (AW) and warm Polar Surface Water (PSWw) are drawn into the fjord by the intermediate and shallow circulation cells respectively, in a pattern consistent with observations, and AW reaches Kangerdlugssuaq Glacier (at the fjord head) over a single summer. Along-fjord heat transport towards KG increases significantly with both glacier runoff and coastal water temperature. A doubling of glacier runoff produces a 29 % (48 %) amplification of mean annual (summer) heat transport towards the KG terminus. Our model shows, in agreement with observations, that maximum submarine melt rates occur when AW and PSWw are present at the fjord mouth and, crucially, glacier runoff is also high. Rising ice sheet runoff therefore increases the sensitivity of KG (and other Greenland marine-terminating glaciers) to ocean warming.

  19. Reconstructing deglaciation of Kolahoi glacier, western Himalaya and validation through field observations

    NASA Astrophysics Data System (ADS)

    Tayal, S.

    2011-12-01

    Kolahoi glacier, western Himalaya is located in Jammu and Kashmir, India between N 340 07'-340 12' and E 750 19'-750 23'. The glacier makes the head of Liddar valley and provides origin to west Liddar river, draining into river Jhelum. Kolahoi is characterized by the frontal activities of westerly winds from Dec to March-April and by dry subtropical climate during summer season. The glacier represents a twin glacier system with one branch from two sides of Kolahoi peak-east and west, merging together to form a common ablation zone and a north facing snout. The first recorded visit to Kolahoi Glacier was made by E. F. Neve in 1909. The earliest attempt to establish the quaternary glacial history of Liddar valley can be attributed to Grinlinton (1928) followed by Terra & Patterson (1939). As a result of their work, the quaternary glaciation of Liddar valley has been divided into a main series of four glacial and three interglacial epochs, of which the first two glaciations were more intensive than the later two. A significant result of this history has been that as compared with the interglacial periods the glacial periods were much shorter, in SW Kashmir. Presence of various glacial features of fourth stage, observed in the valley were correlated with the literature, coordinates taken through GPS and built on a GIS platform with overlyering of satellite image time series of recent decades. Decadal history of Kolahoi glacier deglaciation was reconstructed based on the satellite image time series, indirect volume-area scaling methods and field experiments, indicating variable retreat rate contributing to a total recession of 485m in the snout of glacier and an area loss of 15% in previous four decades, since 1965. Annual measurement of mass balance for Kolahoi glacier were conducted through glaciologic method since the first drilling of ablation stakes in 2008, which indicate a range from -2.0 m.w.e. to -3.5 m.w.e. per annum for the glacier. However, field observance

  20. Analysis of time series of glacier speed: Columbia Glacier, Alaska

    USGS Publications Warehouse

    Walters, R.A.; Dunlap, W.W.

    1987-01-01

    During the summer of 1984 and 1985, laser measurements were made of the distance from a reference location to markers on the surface of the lower reach of Columbia Glacier, Alaska. The speed varies from 7 to 15 m/d and has three noteworthy components: 1) a low-frequency perturbation in speed with a time scale of days related to increased precipitation, 2) semidiurnal and diurnal variations related to sea tides, and 3) diurnal variations related to glacier surface melt. -from Authors

  1. Glacier Mass Balance measurements in Bhutan

    NASA Astrophysics Data System (ADS)

    Jackson, Miriam; Tenzin, Sangay; Tashi, Tshering

    2014-05-01

    Long-term glacier measurements are scarce in the Himalayas, partly due to lack of resources as well as inaccessibility of most of the glaciers. There are over 600 glaciers in Bhutan in the Eastern Himalayas, but no long-term measurements. However, such studies are an important component of hydrological modelling, and especially relevant to the proposed expansion of hydropower resources in this area. Glaciological studies are also critical to understanding the risk of jøkulhlaups or GLOFS (glacier lake outburst floods) from glaciers in this region. Glacier mass balance measurements have been initiated on a glacier in the Chamkhar Chu region in central Bhutan by the Department of Hydro-Met Services in co-operation with the Norwegian Water Resources and Energy Directorate. Chamkhar Chu is the site of two proposed hydropower plants that will each generate over 700 MW, although the present and future hydrological regimes in this basin, and especially the contribution from glaciers, are not well-understood at present. There are about 94 glaciers in the Chamkhar Chhu basin and total glacier area is about 75 sq. km. The glaciers are relatively accessible for the Himalayas, most of them can be reached after only 4-5 days walk from the nearest road. One of the largest, Thana glacier, has been chosen as a mass balance glacier and measurements were initiated in 2013. The glacier area is almost 5 sq. km. and the elevation range is 500 m (5071 m a.s.l. to 5725 m a.s.l.) making it suitable as a benchmark glacier. Preliminary measurements on a smaller, nearby glacier that was visited in 2012 and 2013 showed 1 m of firn loss (about 0.6 m w.eq.) over 12 months.

  2. Revealing basin and regional scale snow accumulation magnitude and variability on glaciers throughout Alaska

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Oneel, S.; Sass, L. C., III; Gusmeroli, A.; Arendt, A. A.; Wolken, G. J.; Kienholz, C.; McNeil, C.

    2014-12-01

    Mass loss from Alaskan glaciers (-50 ± 17 Gt/a, 2003-2009) constitutes one of the largest contributions to global sea level rise outside of the Greenland and Antarctic ice sheets. The largest process-related uncertainties in this calculation arise from the difficulty in accurately measuring accumulation on glaciers and from the large variability of accumulation over a range of spatio-temporal scales. Further, the physical processes governing snow distribution in complex terrain elude model parameterization. Using ground-penetrating radar, constrained with probe and pit observations, we quantify the magnitude and variability of snow accumulation at six prominent glaciers throughout Alaska at the end of 2013 winter. We find that total SWE magnitude and variability are strongly controlled by the large-scale climate system (i.e. distance from the coastal moisture source along prevailing storm track). On average, total SWE decreases by 0.33 m per 100 km from the coast, while the SWE elevation gradient decreases by 0.06 m / 100 m per 100 km from the coast. SWE variability over small spatial scales (<200 m) is similar at most sites, although two glaciers exhibit notably low and high variability, likely related to their respective climatic provenance. On individual glaciers, strong elevation gradients, increasing from 0.07 m SWE / 100 m at the interior Gulkana Glacier to 0.30 m SWE / 100 m at the coastal Scott Glacier, exert the primary control on accumulation. Results from multi-variable linear regression models (based on topographic variables) find wind exposure/shelter is the most frequent secondary control on accumulation variability. Finally, we find strong agreement (<10% difference) between the radar derived and stake derived total SWE estimates at two glaciers in the USGS Benchmark Glacier Program.

  3. Climatic controls of western U.S. glaciers at the last glacial maximum

    USGS Publications Warehouse

    Hostetler, S.W.; Clark, P.U.

    1997-01-01

    We use a nested atmospheric modeling strategy to simulate precipitation and temperature of the western United States 18,000 years ago (18 ka). The high resolution of the nested model allows us to isolate the regional structure of summer temperature and winter precipitation that is crucial to determination of the net mass balance of late-Pleistocene mountain glaciers in this region of diverse topography and climate. Modeling results suggest that climatic controls of these glaciers varied significantly over the western U.S. Glaciers in the northern Rocky Mountains existed under relatively cold July temperatures and low winter accumulation, reflecting anticyclonic, easterly wind flow off the Laurentide Ice Sheet. In contrast, glaciers that existed under relatively warmer and wetter conditions are located along the Pacific coast south of Oregon, where enhanced westerlies delivered higher precipitation than at present. Between these two groupings lie glaciers that were controlled by a mix of cold and wet conditions attributed to the convergence of cold air from the ice sheet and moisture derived from the westerlies. Sensitivity tests suggest that, for our simulated 18 ka climate, many of the glaciers exhibit a variable response to climate but were generally more sensitive to changes in temperature than to changes in precipitation, particularly those glaciers in central Idaho and the Yellowstone Plateau. Our results support arguments that temperature depression generally played a larger role in lowering equilibrium line altitudes in the western U.S. during the last glacial maximum than did increased precipitation, although the magnitude of temperature depression required for steady-state mass balance varied from 8-18??C. Only the Sierra Nevada glaciers required a substantial increase in precipitation to achieve steady-state mass balance, while glaciers in the Cascade Range existed with decreased precipitation.

  4. Rock glaciers of the Karakoram Himalaya and surrounding mountains, Inner Asia

    NASA Astrophysics Data System (ADS)

    Hewitt, Kenneth

    2013-04-01

    The transHimalayan upper Indus Basin contains thousands of rock glaciers. An exceptional diversity of forms and sizes exist, hitherto largely unresearched. They are in a well-defined elevation band across the mountains, usually less than 1400 m vertically, although total relief exceeds 7000 m. The zone varies from north to south, west to east, and with slope orientation. Interfluve elevations are primary constraints. Rock glaciers are absent below the lowest and the highest interfluves. They are uncommon in the highest Mustagh Karakoram, Nanga Parbat, and Hindu Kush where glacier ice blankets the elevations where they could develop. The heaviest concentrations occur in sub-ranges of intermediate elevation. A full spectrum of generative conditions is found; related to periglacial, talus, glacial, avalanche, wind-blown snow, and rock avalanche processes. Forms vary between north and south slopes; arid, rainshadowed and more snowy, humid valleys. Rock glacier complexes, where two or more join to create extensive lobes, may have tributaries with different source conditions. The larger examples are several kilometres in length,usually glacier-derived, evidently affected by Holocene glacial history, trans-glacial processes, and paraglacial instabilities. In lesser ranges, many smaller rock glaciers are associated with glacier-free cirques, glacially sculpted valley walls, and floors with abundant glacial deposits. In general, they are transitional in genesis, process, and spatially relative to glacierization, to the vertical cascade of moisture and debris, and climate change in the vertical. Their landscape roles include extensive fragmentation of drainage systems. Countless inactive rock glaciers occur, typically continuing below active ones.

  5. Longitudinal surface structures (flowstripes) on Antarctic glaciers

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Gudmundsson, G. H.

    2012-03-01

    Longitudinal surface structures ("flowstripes") are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems; the Lambert Glacier/Amery Ice Shelf area, the Taylor and Ferrar Glaciers in the Ross Sea sector, Crane and Jorum Glaciers (ice-shelf tributary glaciers) on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1) as relatively wide flow stripes within glacier flow units and (2) as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

  6. Get Close to Glaciers with Satellite Imagery.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1986-01-01

    Discusses the use of remote sensing from satellites to monitor glaciers. Discusses efforts to use remote sensing satellites of the Landsat series for examining the global distribution, mass, balance, movements, and dynamics of the world's glaciers. Includes several Landsat images of various glaciers. (TW)

  7. Flow velocities of Alaskan glaciers.

    PubMed

    Burgess, Evan W; Forster, Richard R; Larsen, Christopher F

    2013-01-01

    Our poor understanding of tidewater glacier dynamics remains the primary source of uncertainty in sea level rise projections. On the ice sheets, mass lost from tidewater calving exceeds the amount lost from surface melting. In Alaska, the magnitude of calving mass loss remains unconstrained, yet immense calving losses have been observed. With 20% of the global new-water sea level rise coming from Alaska, partitioning of mass loss sources in Alaska is needed to improve sea level rise projections. Here we present the first regionally comprehensive map of glacier flow velocities in Central Alaska. These data reveal that the majority of the regional downstream flux is constrained to only a few coastal glaciers. We find regional calving losses are 17.1 Gt a(-1), which is equivalent to 36% of the total annual mass change throughout Central Alaska. PMID:23857302

  8. Erosion by an Alpine glacier.

    PubMed

    Herman, Frédéric; Beyssac, Olivier; Brughelli, Mattia; Lane, Stuart N; Leprince, Sébastien; Adatte, Thierry; Lin, Jiao Y Y; Avouac, Jean-Philippe; Cox, Simon C

    2015-10-01

    Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years. PMID:26450208

  9. Assessing streamflow sensitivity to variations in glacier mass balance

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Arendt, Anthony; Sass, Louis

    2014-01-01

    The purpose of this paper is to evaluate relationships among seasonal and annual glacier mass balances, glacier runoff and streamflow in two glacierized basins in different climate settings. We use long-term glacier mass balance and streamflow datasets from the United States Geological Survey (USGS) Alaska Benchmark Glacier Program to compare and contrast glacier-streamflow interactions in a maritime climate (Wolverine Glacier) with those in a continental climate (Gulkana Glacier). Our overall goal is to improve our understanding of how glacier mass balance processes impact streamflow, ultimately improving our conceptual understanding of the future evolution of glacier runoff in continental and maritime climates.

  10. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  11. Numerical Simulation and Sensitivity Analysis of Subglacial Meltwater Plumes: Implications for Ocean-Glacier Coupling in Rink Isbrae, West Greenland

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D.; Shroyer, E.; Nash, J. D.

    2014-12-01

    The rate of mass loss from the Greenland Ice Sheet quadrupled over the last two decades and may be due in part to changes in ocean heat transport to marine-terminating outlet glaciers. Meltwater commonly discharges at the grounding line in these outlet glacier fjords, generating a turbulent upwelling plume that separates from the glacier face when it reaches neutral density. This mechanism is the current paradigm for setting the magnitude of net heat transport in Greenland's glacial fjords. However, sufficient observations of meltwater plumes are not available to test the buoyancy-driven circulation hypothesis. Here, we use an ocean general circulation model (MITgcm) of the near-glacier field to investigate how plume water properties, terminal height, centerline velocity and volume transport depend on the initial conditions and numerical parameter choices in the model. These results are compared to a hydrodynamic mixing model (CORMIX), typically used in civil engineering applications. Experiments using stratification profiles from the continental shelf quantify the errors associated with using far-field observatons to initialize near-glacier plume models. The plume-scale model results are then integrated with a 3-D fjord-scale model of the Rink Isbrae glacier/fjord system in west Greenland. We find that variability in the near-glacier plume structure can strongly control the resulting fjord-scale circulation. The fjord model is forced with wind and tides to examine how oceanic and atmospheric forcing influence net heat transport to the glacier.

  12. Glacier recession in Iceland and Austria

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Bayr, Klaus J.

    1992-01-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle.

  13. Glacier recession in Iceland and Austria

    SciTech Connect

    Hall, D.K.; Williams, R.S. Jr.; Bayr, K.J. USGS, Reston, VA Keene State College, NH )

    1992-03-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle. 21 refs.

  14. The contribution of glacier melt to streamflow

    SciTech Connect

    Schaner, Neil; Voisin, Nathalie; Nijssen, Bart; Lettenmaier, D. P.

    2012-09-13

    Ongoing and projected future changes in glacier extent and water storage globally have lead to concerns about the implications for water supplies. However, the current magnitude of glacier contributions to river runoff is not well known, nor is the population at risk to future glacier changes. We estimate an upper bound on glacier melt contribution to seasonal streamflow by computing the energy balance of glaciers globally. Melt water quantities are computed as a fraction of total streamflow simulated using a hydrology model and the melt fraction is tracked down the stream network. In general, our estimates of the glacier melt contribution to streamflow are lower than previously published values. Nonetheless, we find that globally an estimated 225 (36) million people live in river basins where maximum seasonal glacier melt contributes at least 10% (25%) of streamflow, mostly in the High Asia region.

  15. Spatially heterogeneous wastage of Himalayan glaciers

    PubMed Central

    Fujita, Koji; Nuimura, Takayuki

    2011-01-01

    We describe volumetric changes in three benchmark glaciers in the Nepal Himalayas on which observations have been made since the 1970s. Compared with the global mean of glacier mass balance, the Himalayan glaciers showed rapid wastage in the 1970s–1990s, but similar wastage in the last decade. In the last decade, a glacier in an arid climate showed negative but suppressed mass balance compared with the period 1970s–1990s, whereas two glaciers in a humid climate showed accelerated wastage. A mass balance model with downscaled gridded datasets depicts the fate of the observed glaciers. We also show a spatially heterogeneous distribution of glacier wastage in the Asian highlands, even under the present-day climate warming. PMID:21808042

  16. Recent changes detected on two glaciers at the northern part of James Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Nývlt, Daniel; Kopačková, Veronika; Láska, Kamil; Engel, Zbyněk.

    2010-05-01

    Antarctic Peninsula is one of the regions, which have been exposed to the most rapid warming of the Earth since 1950. Consequences of climate changes are clearly documented by recent disintegration of ice shelves on both sides of the Antarctic Peninsula as well as by the retreat of land-based glaciers. James Ross Island, located close to the northernmost tip of the Antarctic Peninsula, represents an excellent place to study changes in the glacier mass-balance and their sensitivity to a regional warming trend. Two different types of glaciers of the Ulu Peninsula, the Whisky Glacier and the Davies Dome have been studied. Multi-temporal remote sensing data (aerial photographs, Landsat MSS, TM and ETM+ and Aster satellite optical and thermal multispectral data) and field survey allowed detecting changes in extent (2-D) as well as calculating glacier mass-balance changes (3-D) for these two glaciers from 1977 to 2009. The Whisky Glacier is a well-delimited valley glacier located mostly below the local Equilibrium line altitude (ELA). The glacier with high-flow velocities is fed by an intensive snow accumulation caused by prevailing southwestern winds. The Whisky Glacier covers an area of 2.3 km2 and its altitude varies from 215 to 475 m a.s.l. The Davies Dome is a flat-bottom dome glacier. Significant parts of its surface are located above the ELA and limited flow velocities are characteristic for the most parts of its body. However, the Davies Dome has a single 500-700 m wide southwestern outlet flowing towards the Whisky Bay. The Davies Dome extends an area of 6.7 km2 and its altitude ranges from 0 to 514 m a.s.l. Both glaciers experienced massive extension of their ice tongues towards the Brandy Bay during the mid Holocene. Lateral moraines located in front of the both glaciers heading down to the left coast of the Brandy Bay document this event. According to the remote sensing data and field investigations both glaciers have retreated since 1977. Between 2006 and

  17. Mountain Glaciers and Ice Caps

    USGS Publications Warehouse

    Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.

    2011-01-01

    Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.

  18. UV - GLACIER NATIONAL PARK MT

    EPA Science Inventory

    Brewer 134 is located in Glacier NP, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc. of ...

  19. Microbial Habitat on Kilimanjaro's Glaciers

    NASA Astrophysics Data System (ADS)

    Ponce, A.; Beaty, S. M.; Lee, C.; Lee, C.; Noell, A. C.; Stam, C. N.; Connon, S. A.

    2011-03-01

    Kilimanjaro glaciers captured a history of microbial diversity and abundance of supraglacial habitats. We show that a majority of bacterial clones, as determined by bacterial 16S rRNA gene sequencing, are most closely related to those isolated from cold-water environments.

  20. The current disequilibrium of North Cascade glaciers

    NASA Astrophysics Data System (ADS)

    Pelto, Mauri S.

    2006-03-01

    Three lines of evidence indicate that North Cascade (Washington, USA) glaciers are currently in a state of disequilibrium. First, annual balance measured on nine glaciers yields a mean cumulative balance for the 1984-2004 period of -8.58 m water equivalent (w.e.), a net loss of ice thickness exceeding 9.5 m. This is a significant loss for glaciers that average 30-50 m in thickness, representing 18-32% of their entire volume.Second, longitudinal profiles completed in 1984 and 2002 on 12 North Cascade glaciers confirm this volume change indicating a loss of -5.7 to -6.3 m in thickness (5.0-5.6 m w.e.) between 1984 and 2002, agreeing well with the measured cumulative balance of -5.52 m w.e. for the same period. The change in thickness on several glaciers has been equally substantial in the accumulation zone and the ablation zone, indicating that there is no point to which the glacier can retreat to achieve equilibrium. Substantial thinning along the entire length of a glacier is the key indicator that a glacier is in disequilibrium.Third, North Cascade glacier retreat is rapid and ubiquitous. All 47 glaciers monitored are currently undergoing significant retreat or, in the case of four, have disappeared. Two of the glaciers where mass balance observations were begun, Spider Glacier and Lewis Glacier, have disappeared. The retreat since 1984 of eight Mount Baker glaciers that were all advancing in 1975 has averaged 297 m. These observations indicate broad regional continuity in glacial response to climate.

  1. OMEGA - an operational glacier monitoring system

    NASA Astrophysics Data System (ADS)

    Pellikka, P. K. E.

    2003-04-01

    Glacier changes reflect local climate changes and are one of the most important direct indicators of global climate change. In general, the glaciers are retreating in Europe, but some glaciers are advancing. However, even in small areas glacier responses can be different. The application of glaciers as indicators requires sufficient amount of glaciers, which is possible only with remote sensing methods. Remote sensing data have been used for glacier monitoring from the late 19th century, first as terrestrial photographs, but later as aerial photographs. A new era began in the 1970’s as optical satellite data became available. Since late 1990’s the glacier monitoring could be performed with numerous satellite and airborne sensors ranging from satellite radar data to airborne laser scanner data. All together, the development of new remote sensing technologies and methods provides many possibilities for studies of glacier features and parameters. The glacier parameters of interest in operational monitoring are the changes of glacier area and volume, and the variation of glacier zones, such as snow, firn and ice. These parameters enable the estimation of relative volume change, AAR and equilibrium line, for example. Operational monitoring involves that the remote sensing data to be used is available continuously, the image processing methods are accurate and the processing chain is developed so that the derivation of the aimed parameters works fluently. The OMEGA project aims at the development of an operational glacier monitoring system applying all the potential remote sensing data. The objectives are to develop workflows and semi-automatic image processing methodologies for different data types in order to retrieve glacier parameters, to construct databases of the study glaciers and to develop the prototype of an operational monitoring system. The test glaciers are Hintereisferner in Austria and Engabreen in Norway. The deliverable of the project is the OMEGA

  2. Glacier area changes in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khromova, Tatiana; Nosenko, Gennady; Kutuzov, Stanislav; Muraviev, Anton; Chernova, Ludmila

    2014-01-01

    Glaciers are widely recognized as key indicators of climate change. Recent evidence suggests an acceleration of glacier mass loss in several key mountain regions. Glacier recession implies landscape changes in the glacial zone, the origin of new lakes and activation of natural disaster processes, catastrophic mudflows, ice avalanches, outburst floods, etc. The absence or inadequacy of such information results in financial and human losses. A more comprehensive evaluation of glacier changes is imperative to assess ice contributions to global sea level rise and the future of water resources from glacial basins. One of the urgent steps is a full inventory of all ice bodies and their changes. The first estimation of glacier state and glacier distribution on the territory of the former Soviet Union has been done in the USSR Glacier Inventory (UGI) published in 1965-1982. The UGI is based on topographic maps and air photos and reflects the status of the glaciers in the 1940s-1970s. There is information about 28 884 glaciers with an area of 7830.75 km2 in the inventory. It covers 25 glacier systems in Northern Eurasia. In the 1980s the UGI has been transformed into digital form as a part of the World Glacier Inventory (WGI). Recent satellite data provide a unique opportunity to look again at these glaciers and to evaluate changes in glacier extent for the second part of the 20th century. About 15 000 glacier outlines for the Caucasus, Polar Urals, Pamir Alay, Tien Shan, Altai, Kamchatka and Russian Arctic have been derived from ASTER and Landsat imagery and can be used for glacier change evaluation. Results of the analysis indicate the steady trend in glacier shrinkage in all mountain regions for the second part of the 20th century. Glacier area loss for the studied regions varies from 13% (Tien Shan) to 22.3% (Polar Urals). The common driver, most likely, is an increase in summer air temperature. There is also a very large variability in the degree of individual

  3. Glaciers in the Rupal Valley (Nanga Parbat)

    NASA Astrophysics Data System (ADS)

    Schmidt, Susanne; Nüsser, Marcus

    2014-05-01

    The widely discussed controversy about Himalayan glacier changes instigated a current boom in studies on a regional scale. In contrast to often simplified assumptions of general and mostly rapid glacier retreat, recent studies show a more complex pattern with stable, advancing and retreating glaciers. Furthermore, changes of debris covered glaciers are discussed controversial. Due to the great vertical span and steep relief, large ice streams in the Himalaya and Karakoram are often primarily fed by avalanches. Their impact on glacier mass balances is often unconsidered in present studies. However, Hewitt (2014) highlighted the crucial role of snow and ice re-distribution by avalanches for Karakoram glaciers. He used a concept of glacier typology based on different nourishment processes introduced at the beginning of the 20th century. By using this concept, Hewitt classified large glaciers in order to identify the effect of avalanches on the mass balance, because many Karakoram glaciers show low down-wasting or even thickening processes described as the "Karakoram anomaly" (Hewitt 2005). Also in the Nanga Parbat region, the western corner of the High Himalaya, the topography is characterized by steep rock walls with vertical distances up to 4700 m. The debris covered glaciers reach down to 2920 m a.s.l. and are regularly fed by small and large avalanches. Our field based investigations show that the glaciers are characterized by small retreating rates since 1857, when Adolph Schlagintweit has mapped them for the first time; others such as the Raikot Glacier are fluctuating since 1934. Furthermore, the extent of down-wasting varies between different glaciers. By using multi-temporal satellite data, topographical maps, sketches and terrestrial photographs changes of glacier lengths were measured. In order to calculate the down-wasting rates, a digital elevation model (DEM) with a spatial resolution of 30x30 m² was derived from the digitized contour lines of the

  4. Hasty retreat of glaciers in northern Patagonia

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Mölg, Nico

    2014-05-01

    Mapping glacier extent from optical satellite data has become a most efficient tool to create or update glacier inventories and determine glacier changes over time. A most valuable archive in this regard is the nearly 30-year time series of Landsat Thematic Mapper (TM) data that is freely available (already orthorectified) for most regions in the world from the USGS. One region with a most dramatic glacier shrinkage and a missing systematic assessment of changes, is the Palena province in Chile, located south of Puerto Montt in northern Patagonia. A major bottleneck for accurate determination of glacier changes in this region is related to the huge amounts of snow falling in this very maritime region, hiding the perimeter of glaciers throughout the year. Consequently, we found only three years with Landsat scenes that can be used to map glacier extent through time. We here present the results of a glacier change analysis from six Landsat scenes (path-rows 232-89/90) acquired in 1985, 2000 and 2011 covering the Palena district in Chile and neighbouring regions. Clean glacier ice was mapped automatically with a standard technique (TM3/TM band ratio) and manual editing was applied to remove wrongly classified lakes and to add debris-covered glacier parts. The digital elevation model (DEM) from ASTER (GDEM2) was used to derive drainage divides, determine glacier specific topographic parameters, and analyse the area changes in regard to topography. The scene from the year 2000 has the best snow conditions and was used to eliminate seasonal snow in the other two scenes by digital combination of the binary glacier masks and neighbourhood analysis. The derived mean relative area loss over the entire study area is 25%, showing a large spatial variability and a strong dependence on elevation. While small mountain glaciers at high elevations and steep slopes show only little change over the 26-year period, ice at low elevations from large valley glaciers shows a dramatic

  5. Modelling the behaviour of tidewater glaciers

    NASA Astrophysics Data System (ADS)

    Nick, Faezeh Maghami

    2006-09-01

    More than half of the annual mass transfer from whole cryosphere to the world's oceans occurs through calving. Uncertainties in predicting future sea level are partly caused by a lack of knowledge of the behaviour of calving glaciers. A better understanding of the factors that control the response of calving glaciers to climate change is needed to interpret the past or predict the future behaviour of these glaciers in a warmer climate. Over the past years, interest in the response of calving glaciers to climate change has increased considarably. Many bservational and modelling studies have been carried out to investigate the dynamics of the calving process and the associated response of the glacier terminus. It has been suggested that calving glaciers are inherently unstable showing a periodic advance and retreat that may be nearly independent of climate. The cycle of slow advance and rapid retreat of calving glaciers is mainly a function of fjord geometry, water depth at the glacier terminus, and sedimentation at the glacier front. Some other studies show that climate acts as a first-order control on the advance/retreat. Hence, the diverse behaviour of calving glaciers is a result of both internal dynamics and climate. In this thesis the dynamics of tidewater glaciers (temperate grounded calving glaciers) and the involved processes such as iceberg calving, basal sliding, and proglacial moraine bank are investigated. A numerical ice-flow model is developed, which simulates the rapid retreat and slow advance of tidewater glaciers very well. To construct a time-evolving numerical model that simulates the behaviour of calving glaciers, it is necessary to formulate realistic calving boundary conditions. Empirical studies provide two different calving schemes, the flotation and the water-depth model. We introduce two numerical ice-flow models using the water-depth and the flotation scheme. The results show that any model in which the loss of ice at the glacier front

  6. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  7. Generation of the relationship between glacier area and volume for a tropical glacier in Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Liu, T.; Kinouchi, T.; Hasegawa, A.; Tsuda, M.; Iwami, Y.; Asaoka, Y.; Mendoza, J.

    2015-12-01

    In Andes, retreat of tropical glaciers is rapid, thus water resources currently available from glacierized catchments would be changed in its volume and temporal variations due to climate change and glacier shrinkage. The relationship between glacier area and volume is difficult to define however which is important to monitor glaciers especially those are remote or inaccessible. Water resources in La Paz and El Alto in Bolivia, strongly depend on the runoff from glacierized headwater catchments in the Cordillera Real, Andes, which is therefore selected as our study region.To predict annual glacier mass balances, PWRI-Distributed Hydrological Model (PWRI-DHM) was applied to simulate runoff from the partially glacierized catchments in high mountains (i.e. Condoriri-Huayna West headwater catchment located in the Cordillera Real, Bolivian Andes). PWRI-DHM is based on tank model concept in a distributed and 4-tank configuration including surface, unsaturated, aquifer, and river course tanks. The model was calibrated and validated with observed meteorological and hydrological data from 2011 to 2014 by considering different phases of precipitation, various runoff components from glacierized and non-glacierized areas, and the retarding effect by glacial lakes and wetlands. The model is then applied with MRI-AGCM outputs from 1987 to 2003 considering the shrinkage of glacier outlines since 1980s derived from Landsat data. Annual glacier mass balance in each 100m-grid was reproduced, with which the glacier area-volume relationship was generated with reasonable initial volume setting. Out study established a method to define the relationship between glacier area and volume by remote sensing information and glacier mass balances simulated by distributed hydrological model. Our results demonstrated that the changing trend of local glacier had a consistency the previous observed glacier area-volume relationship in the Cordillera Real.

  8. Using Metaphorical Models for Describing Glaciers

    NASA Astrophysics Data System (ADS)

    Felzmann, Dirk

    2014-11-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists regarding glaciers were analysed. Students' conceptions were the result of teaching experiments whereby students received instruction about glaciers and ice ages and were then interviewed about their understandings. Scientists' conceptions were based on analyses of textbooks. Accordingly, four conceptual metaphors regarding the concept of a glacier were reconstructed: a glacier is a body of ice; a glacier is a container; a glacier is a reflexive body and a glacier is a flow. Students and scientists differ with respect to in which context they apply each conceptual metaphor. It was observed, however, that students vacillate among the various conceptual metaphors as they solve tasks. While the subject context of the task activates a specific conceptual metaphor, within the discussion about the solution, the students were able to adapt their conception by changing the conceptual metaphor. Educational strategies for teaching students about glaciers require specific language to activate the appropriate conceptual metaphors and explicit reflection regarding the various conceptual metaphors.

  9. Columbia Glacier in 1984: disintegration underway

    SciTech Connect

    Meier, M.F.; Rasmussen, L.A.; Miller, D.S.

    1985-01-01

    Columbia Glacier is a large, iceberg-calving glacier near Valdez, Alaska. The terminus of this glacier was relatively stable from the time of the first scientific studies in 1899 until 1978. During this period the glacier terminated partly on Heather Island and partly on a submerged moraine shoal. In December, 1978, the glacier terminus retreated from Heather Island, and retreat has accelerated each year since then, except during a period of anomalously low calving in 1980. Although the glacier has not terminated on Heather Island since 1978, a portion of the terminus remained on the crest of the moraine shoal until the fall of 1983. By December 8, 1983, that feature had receded more than 300 m from the crest of the shoal, and by December 14, 1984, had disappeared completely, leaving most of the terminus more than 2000 meters behind the crest of the shoal. Recession of the glacier from the shoal has placed the terminus in deeper water, although the glacier does not float. The active calving face of the glacier now terminates in seawater that is about 300 meters deep at the glacier centerline. Rapid calving appears to be associated with buoyancy effects due to deep water at the terminus and subglacial runoff. 12 refs., 10 figs.

  10. Future glacier runoff at the global scale

    NASA Astrophysics Data System (ADS)

    Huss, Matthias; Hock, Regine

    2016-04-01

    Water resources in mountain areas worldwide importantly depend on the runoff contribution by glaciers. Glacial water storage acts as an equilibrating element in the global hydrological cycle on various temporal scales. With ongoing and future glacier retreat a growing concern regarding water supply security in glacier-fed basins arises. However, glacier runoff projections at the regional or global scale are still rare and better models are urgently needed for planning and adaptation measures to cope with a changing seasonal distribution of water yields. Moreover, it is still an open debate in which region "peak water" - the maximum contribution of melting glaciers to runoff - has already been reached, i.e. whether increasing or declining annual runoff volumes must be expected. Here, we present results of a novel global glacier model for calculating the 21st century response of surface mass balance, three-dimensional glacier geometry and monthly water discharge for each individual glacier around the globe. The current surface geometry and thickness distribution for each of the world's roughly 200'000 glaciers is extracted from the Randolph Glacier Inventory and terrain models. Our simulations are driven with 14 Global Circulation Models from the CMIP5 project using the RCP4.5, RCP8.5 and RCP2.6 scenarios. We focus on the timing of peak water from glacierized catchments in all climatic regions of the earth and the corresponding importance of changes in the runoff regime on hydrological stress. The maximum rate of water release from glacial storage is subject to a high spatio-temporal variability depending on glacier characteristics and the transient response to climatic change. Furthermore, we discuss the significance of projected variations in glacier runoff in relation to the hydrology of the world's large-scale drainage basins and population distribution, and highlight 'hot spot' regions where the wastage of current ice volume is particularly relevant.

  11. From 'true' glaciers to rock glaciers? The case of the Llanos la Liebre rock glacier, dry Andes of Chile.

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Kinnard, C.

    2012-04-01

    In the dry Andes of Chile, rock glaciers are the most widespread and remarkable superficial landforms, and may constitute important solid water reservoirs. The existence of huge (up to 2-3 kilometres of length) rock glaciers located in deep cirques questions possible derivation from former 'true' glaciers. The issue is of importance (i) for understanding the mechanisms of the landscape evolution from glacial realm to periglacial realm, and (ii) because it may determine the ice content of the concerned rock glaciers. In the Colorado Río valley, in the upper part of the Elqui catchment (~30.15 deg. S and 70.80 deg. W), we investigated the internal structure of the Llanos la Liebre rock glacier using ground-penetrating radar (GPR). With 50 MHz antennas and a constant offset of 2 m between antennas, we performed various GPR profiles, especially a ~2.2 km-long one almost covering the entire length of the rock glacier. The processing and the subsequent interpretation of the GPR data were mainly based on the modelling of the radar wave velocity. Hence, the final representation of the internal structure of the rock glacier integrates the reconstructed stratigraphy, the 2-D velocity model, and first attempts for estimating the ice/water contents. The most striking results are: the neat identification of the base of the superficial blocky layer and of the rock glacier floor; the occurrence of stratigraphic patterns reminiscent of 'true' glaciers; the supremacy of high radar wave velocities in the upper part of the rock glacier. On the latter bases and taking into account the whole geomorphology of the site, the derivation of the Llanos la Liebre rock glacier from a former, buried glacier is debated.

  12. Inventory and Spatial distribution of rock glaciers in the Eastern Pyrenees: paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Pérez-Sánchez, Jordi; Salvà-Catarineu, Montserrat; Gómez-Ortiz, Antonio

    2016-04-01

    . With this purpose, we have identified a total of 149 headwaters, located above 2200 m and with concave morphology (50.3% N slope, 49.7% S slope). In 74% of these units, glacier cirques developed, though only 64% of them housed rock glaciers. No rock glaciers are found outside the formerly glaciated area (cirque, slope or valley bottom). Therefore, 26% of the high headwaters that were not glaciated and 34% of those that were glaciated but did not develop rock glaciers. The analysis of the morphotopographic characteristics of the high headwaters that were not glaciated during the Last Glaciation shows that the unfavourable aspect, exposure to prevailing winds, insufficient catchment area and steep catchment slopes explained the absence of glacier ice accumulation. However, it is not so obvious to interpret the absence of rock glaciers in a significant number of glacial cirques, which will require further analysis.

  13. Recent Observations and Structural Analysis of Surge-Type Glaciers in the Glacier Bay Area

    NASA Astrophysics Data System (ADS)

    Mayer, H.; Herzfeld, U. C.

    2003-12-01

    The Chugach-St.-Elias Mountains in North America hold the largest non-polar connected glaciated area of the world. Most of its larger glaciers are surge-type glaciers. In the summer of 2003, we collected aerial photographic and GPS data over numerous glaciers in the eastern St. Elias Mountains, including the Glacier Bay area. Observed glaciers include Davidson, Casement, McBride, Riggs, Cushing, Carroll, Rendu, Tsirku, Grand Pacific, Melbern, Ferris, Margerie, Johns Hopkins, Lamplugh, Reid, Burroughs, Morse, Muir and Willard Glaciers, of which Carroll, Rendu, Ferris, Grand Pacific, Johns Hopkins and Margerie Glaciers are surge-type glaciers. Our approach utilizes a quantitative analysis of surface patterns, following the principles of structural geology for the analysis of brittle-deformation patterns (manifested in crevasses) and ductile deformation patterns (visible in folded moraines). First results will be presented.

  14. Active seismoelectric exploration of glaciers

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Murray, T.; Rippin, D.

    2006-04-01

    Repeatable and strong seismoelectric signals were recorded on Glacier de Tsanfleuron, Switzerland, using a vertical sounding geometry. Electromagnetic waves are inferred to be generated by electrokinetic conversion of seismic energy within the snow pack and near the dry-wet ice and ice-bed interfaces. A simple gradient-based scheme allows such electrokinetic interface responses (EIRs) to be isolated from noise. EIRs depend sensitively on the azimuthal orientation of the receiving array of electrical dipoles. Seismoelectric techniques promise to allow mapping even of thin water-bearing strata within or beneath glaciers or frozen ground, estimation of hydraulic or fluid properties of such strata, as well as monitoring of ice fracturing or basal properties and processes at improved spatial resolution.

  15. Attribution of glacier fluctuations to climate change

    NASA Astrophysics Data System (ADS)

    Oerlemans, J.

    2012-04-01

    Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that

  16. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  17. 1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-36 43 45.8 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  18. 5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. LOOKING E. GIS: N-37 42 43.8 / W-119 35 12.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  19. The GAMDAM Glacier Inventory: a quality controlled inventory of Asian glaciers

    NASA Astrophysics Data System (ADS)

    Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.

    2014-06-01

    We present a new glacier inventory for the high mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using more than 226 Landsat ETM+ scenes from the period 1999-2003, in conjunction with a digital elevation model (DEM) and high-resolution Google Earth imagery. Geolocations are consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and rigorous peer review of all scenes used in order to maintain the consistency and quality of the inventory. Our GAMDAM Glacier Inventory (GGI) includes 82776 glaciers covering a total area of 87507 ± 13126 km2 in the high mountain Asia. Thus, our inventory represents a greater number (+4%) of glaciers but significantly less surface area (-31%) than a recent global glacier inventory (Randolph Glacier Inventory, RGI). The employed definition of the upper boundaries of glaciers, glacier recession since the 1970s, and misinterpretation of seasonal snow cover are likely causes of discrepancies between the inventories, though it is difficult to evaluate these effects quantitatively. The GGI will help improve the temporal consistency of the RGI, which incorporated glacier outlines from the 1970s for the Tibetan Plateau, and will provide new opportunities to study Asian glaciers.

  20. Antarctica: measuring glacier velocity from satellite images

    SciTech Connect

    Lucchitta, B.K.; Ferguson, H.M.

    1986-11-28

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  1. Antarctica: Measuring glacier velocity from satellite images

    USGS Publications Warehouse

    Lucchitta, B.K.; Ferguson, H.M.

    1986-01-01

    Many Landsat images of Antarctica show distinctive flow and crevasse features in the floating part of ice streams and outlet glaciers immediately below their grounding zones. Some of the features, which move with the glacier or ice stream, remain visible over many years and thus allow time-lapse measurements of ice velocities. Measurements taken from Landsat images of features on Byrd Glacier agree well with detailed ground and aerial observations. The satellite-image technique thus offers a rapid and cost-effective method of obtaining average velocities, to a first order of accuracy, of many ice streams and outlet glaciers near their termini.

  2. Internationally coordinated glacier monitoring: strategy and datasets

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Haeberli, Wilfried; Kääb, Andreas; Kargel, Jeff; Nussbaumer, Samuel; Paul, Frank; Raup, Bruce; Zemp, Michael

    2014-05-01

    Internationally coordinated monitoring of long-term glacier changes provide key indicator data about global climate change and began in the year 1894 as an internationally coordinated effort to establish standardized observations. Today, world-wide monitoring of glaciers and ice caps is embedded within the Global Climate Observing System (GCOS) in support of the United Nations Framework Convention on Climate Change (UNFCCC) as an important Essential Climate Variable (ECV). The Global Terrestrial Network for Glaciers (GTN-G) was established in 1999 with the task of coordinating measurements and to ensure the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. The basic monitoring principles must be relevant, feasible, comprehensive and understandable to a wider scientific community as well as to policy makers and the general public. Data access has to be free and unrestricted, the quality of the standardized and calibrated data must be high and a combination of detailed process studies at selected field sites with global coverage by satellite remote sensing is envisaged. Recently a GTN-G Steering Committee was established to guide and advise the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. Several online databases containing a wealth of diverse data types having different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. For world-wide inventories, data are now available through (a) the World Glacier Inventory containing tabular information of about 130,000 glaciers covering an area of around 240,000 km2, (b) the GLIMS-database containing digital outlines of around 118,000 glaciers with different time stamps and

  3. The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere-glacier mass balance model

    NASA Astrophysics Data System (ADS)

    Aas, Kjetil S.; Dunse, Thorben; Collier, Emily; Schuler, Thomas V.; Berntsen, Terje K.; Kohler, Jack; Luks, Bartłomiej

    2016-05-01

    In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere-glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of -257 mm w.e. yr-1, corresponding to a mean annual mass loss of about 8.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological, and satellite measurements. Model temperature biases of 0.19 and -1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 100 mm w.e. yr-1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 47 and 67 mm w.e. yr-1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of modeled surface height changes from 2003 to 2008, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1000 mm w.e. yr-1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using 9 km grid spacing reveal considerable differences on regional and local scales. In addition, 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.

  4. Ancient carbon from a melting glacier gives high ¹⁴C age in living pioneer invertebrates.

    PubMed

    Hågvar, Sigmund; Ohlson, Mikael

    2013-01-01

    Glaciers are retreating and predatory invertebrates rapidly colonize deglaciated, barren ground. The paradox of establishing predators before plants and herbivores has been explained by wind-driven input of invertebrate prey. Here we present an alternative explanation and a novel glacier foreland food web by showing that pioneer predators eat locally produced midges containing 21,000 years old ancient carbon released by the melting glacier. Ancient carbon was assimilated by aquatic midge larvae, and terrestrial adults achieved a radiocarbon age of 1040 years. Terrestrial spiders, harvestmen and beetles feeding on adult midges had radiocarbon ages of 340-1100 years. Water beetles assumed to eat midge larvae reached radiocarbon ages of 1100-1200 years. Because both aquatic and terrestrial pioneer communities use ancient carbon, the term "primary succession" is questionable in glacier forelands. If our "old" invertebrates had been collected as subfossils and radiocarbon dated, their age would have been overestimated by up to 1100 years. PMID:24084623

  5. Ice thickness, ablation, and other glaciological measurements on upper Fremont Glacier, Wyoming

    USGS Publications Warehouse

    Naftz, D.L.; Smith, M.E.

    1993-01-01

    Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990-1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. Annual ablation (including snow, firn, and ice) measured for the 1990-1991 period averaged about 0.93 m/a. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. -from Authors

  6. Brief communication: Getting Greenland's glaciers right - a new data set of all official Greenlandic glacier names

    NASA Astrophysics Data System (ADS)

    Bjørk, A. A.; Kruse, L. M.; Michaelsen, P. B.

    2015-12-01

    Place names in Greenland can be difficult to get right, as they are a mix of Greenlandic, Danish, and other foreign languages. In addition, orthographies have changed over time. With this new data set, we give the researcher working with Greenlandic glaciers the proper tool to find the correct name for glaciers and ice caps in Greenland and to locate glaciers described in the historic literature with the old Greenlandic orthography. The data set contains information on the names of 733 glaciers, 285 originating from the Greenland Ice Sheet (GrIS) and 448 from local glaciers and ice caps (LGICs).

  7. Increased glacier runoff enhances the penetration of warm Atlantic water into a large Greenland fjord

    NASA Astrophysics Data System (ADS)

    Sole, A. J.; Payne, A. J.; Nienow, P. W.; Christoffersen, P.; Cottier, F. R.; Inall, M. E.

    2012-11-01

    The retreat and acceleration of Greenland's marine-terminating outlet glaciers have been linked to ocean warming. However the mechanisms which control the transmission of this warming along fjords towards the glaciers remain poorly understood. The aim of this paper is to elucidate observed changes in water properties in Kangerdlugssuaq Fjord (KF), East Greenland using the Bergen Ocean Model (BOM). Model outputs are compared with observed potential temperature, salinity and velocity data to determine the principal controls on heat transport within KF and to estimate resulting submarine ice front melt rates of Kangerdlugssuaq Glacier (KG). The BOM includes wind, tidal and glacier runoff forcing and is able to replicate observed temperature and salinity profiles. Model results describe a robust four-layer estuarine flow, consisting of two distinct circulations. The shallow circulation (0-~ 60 m) is forced by surface wind stress and to a lesser extent supraglacial runoff, while the intermediate circulation (~ 60-500 m) is driven by runoff discharged into the fjord subglacially. Atlantic Water (AW) and warm Polar Surface Water (PSWw) are drawn into the fjord by the intermediate and shallow circulation cells respectively, in a pattern consistent with observations, and AW reaches KG over a single summer. Along-fjord heat transport towards KG increases significantly with both glacier runoff and coastal water temperature. A doubling of glacier runoff produces a 29% (48%) amplification of mean annual (summer) heat transport towards the KG terminus, increasing estimated mean annual (summer) submarine melt rates from 211 to 273 (842 to 1244) m yr-1. In contrast, heat transport towards KG in the surface ~ 60 m of the fjord decreases with rising glacier runoff because the enhanced down-fjord component of the intermediate circulation interferes with the up-fjord part of the shallow circulation. Thus, as ice sheet runoff increases, KG's dynamic response to oceanic forcing will

  8. GLIMS: Progress in Mapping the World's glaciers

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Khalsa, S. J. S.; Armstrong, R.; Racoviteanu, A.

    2009-04-01

    The Global Land Ice Measurements from Space (GLIMS) initiative has built a database of glacier outlines and related attributes, derived primarily from satellite imagery, such as from ASTER and Landsat. Each snapshot of a glacier is from a specific time, and the database is designed to store multiple snapshots representative of different times. The database currently contains outlines for approximately 83,000 glaciers. Of these, 549 glaciers have outlines from more than one time, which can be studied for change. The glacier-by-glacier area-change signal over large areas tends to be noisy, but the mode of the distribution of area change for these 549 glaciers is -5%. We have implemented two web-based interfaces to the database. One enables exploration of the data via interactive maps (Web map server), while the other allows searches based on text-field constraints. The Web map server creates interactive maps on our Web site, www.glims.org, and can also supply glacier layers to other servers over the Internet. As a service to the GLIMS community, the database contains metadata on all ASTER imagery (approximately 200,000 images) acquired over glacierized terrain. Reduced-resolution images can be viewed either as a layer in the MapServer application, or overlaid on the virtual globe within Google Earth. The system allows users to download their selected glacier data in a choice of formats. The results of a query based on spatial selection (using a mouse) or text-field constraints can be downloaded in any of these formats: ESRI shapefiles, KML (Google Earth), MapInfo, GML (Geography Markup Language) and GMT (Generic Mapping Tools). This "clip-and-ship" function allows users to download only the data they are interested in. In this presentation we describe our flexible Web interfaces to the database, which includes various ancillary layers, facilitates enhanced analysis of glacier systems, their distribution, and their impacts on other Earth systems.

  9. Advances in Modelling of Valley Glaciers

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra

    For glaciological conditions typical of valley glaciers, the central idea of this research lies in understanding the effects of high-order mechanics and parameterizing these for simpler dynamical and statistical methods in glaciology. As an effective tool for this, I formulate a new brand of dynamical models that describes distinct physical processes of deformational flow. Through numerical simulations of idealized glacier domains, I calculate empirical correction factors to capture the effects of longitudinal stress gradients and lateral drag for simplified dynamical models in the plane-strain regime. To get some insights into real glacier dynamics, I simulate Haig Glacier in the Canadian Rocky Mountains. As geometric effects overshadow dynamical effects in glacier retreat scenarios, it appears that high-order physics are not very important for Haig Glacier, particularly for evaluating its fate. Indeed, high-order and reduced models all predict that Haig Glacier ceases to exist by about AD2080 under ongoing climate warming. This finding regarding the minimal role of high-order physics may not be broadly valid, as it is not true in advance scenarios at Haig Glacier and it may not be representative of other glaciological settings. Through a 'bulk' parameterization of high-order physics, geometric and climatic settings, sliding conditions, and transient effects, I also provide new insights into the volume-area relation, a widely used statistical method for estimating glacier volume. I find a steady-state power-law exponent of 1:46, which declines systematically to 1:38 after 100 years of sustained retreat, in good accord with the observations. I recommend more accurate scaling relations through characterization of individual glacier morphology and degree of climatic disequilibrium. This motivates a revision of global glacier volume estimates, of some urgency in sea level rise assessments.

  10. Tracking glaciers with the Alaska seismic network

    NASA Astrophysics Data System (ADS)

    West, M. E.

    2015-12-01

    More than 40 years ago it was known that calving glaciers in Alaska created unmistakable seismic signals that could be recorded tens and hundreds of kilometers away. Their long monochromatic signals invited studies that foreshadowed the more recent surge in glacier seismology. Beyond a handful of targeted studies, these signals have remained a seismic novelty. No systematic attempt has been made to catalog and track glacier seismicity across the years. Recent advances in understanding glacier sources, combined with the climate significance of tidewater glaciers, have renewed calls for comprehensive tracking of glacier seismicity in coastal Alaska. The Alaska Earthquake Center has included glacier events in its production earthquake catalog for decades. Until recently, these were best thought of as bycatch—accidental finds in the process of tracking earthquakes. Processing improvements a decade ago, combined with network improvements in the past five years, have turned this into a rich data stream capturing hundreds of events per year across 600 km of the coastal mountain range. Though the source of these signals is generally found to be iceberg calving, there are vast differences in behavior between different glacier termini. Some glaciers have strong peaks in activity during the spring, while others peak in the late summer or fall. These patterns are consistent over years pointing to fundamental differences in calving behavior. In several cases, changes in seismic activity correspond to specific process changes observed through other means at particular glacier. These observations demonstrate that the current network is providing a faithful record of the dynamic behavior of several glaciers in coastal Alaska. With this as a starting point, we examine what is possible (and not possible) going forward with dedicated detection schemes.

  11. Climatic Forcing of Glacier Surface Mass Balance Changes Along North-Central Peru: A Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; Fernandez, A.

    2015-12-01

    Most tropical glaciers are Peru, where they are key water sources for communities in mountain environments and beyond. Thus, their sustained shrinkage portrays these glaciers as archetype of global warming impacts on the local scale. However, there is still no deep understanding on the mechanism connecting temperature and these glaciers. Among others, the effect of temperature on the glacier surface mass balance (GSMB) can be expressed within accumulation regimes and hence in surface albedo, or in ablation dynamics through incoming longwave energy (LE). Here, we report a study combining statistical analyses of reanalysis data (~30km grid-cell), regional climate modeling and glacier mass balance simulations at high resolution (2km) to analyze long-term (30 years) and seasonal GSMB along north-central Peru. Our goal is to mechanistically understand climate change impact on these glaciers. Results suggest temperature as the main factor controlling GSMB changes through the lapse rate (LR). Correlations of GSMB with LR, humidity and zonal wind point to vertical homogenization of temperature, causing LE to increase, despite this flux always remaining negative. This "less negative" LE multiplies the impact of the seasonal fluctuation in albedo, thereby enhancing total ablation. As this mechanism only needs a relative increase in temperature, it may even occur in subfreezing conditions. Model output also indicates that turbulent fluxes are small, largely cancelling out. This suggests that the impact of LE is more likely to occur compared to either turbulent fluxes changes or shifts in the proportion of sublimation versus melt, which we find to be regionally stable. These findings imply that glaciers in north-central Peru are sensitive to subtle changes in temperature. We discuss the implications for process-based understanding and how this non-linear and somewhat hidden effect of temperature reduces the skill of temperature index models to simulate GSMB in the Tropics.

  12. Glaciers. Attribution of global glacier mass loss to anthropogenic and natural causes.

    PubMed

    Marzeion, Ben; Cogley, J Graham; Richter, Kristin; Parkes, David

    2014-08-22

    The ongoing global glacier retreat is affecting human societies by causing sea-level rise, changing seasonal water availability, and increasing geohazards. Melting glaciers are an icon of anthropogenic climate change. However, glacier response times are typically decades or longer, which implies that the present-day glacier retreat is a mixed response to past and current natural climate variability and current anthropogenic forcing. Here we show that only 25 ± 35% of the global glacier mass loss during the period from 1851 to 2010 is attributable to anthropogenic causes. Nevertheless, the anthropogenic signal is detectable with high confidence in glacier mass balance observations during 1991 to 2010, and the anthropogenic fraction of global glacier mass loss during that period has increased to 69 ± 24%. PMID:25123485

  13. Quantification of Seasonal and Interannual Variability of Proglacial Meltwater from a Tidewater Glacier

    NASA Astrophysics Data System (ADS)

    Darlington, E. F.; Hodgkins, R.; Jenkins, A.

    2014-12-01

    Ice - ocean interactions of tidewater glaciers remain poorly understood; yet 39% of the global glaciated area drains directly into the ocean via tidewater glaciers. As the Arctic cryosphere continues to lose mass in response to a warming climate, more detailed observations are needed to increase our understanding of ice - ocean processes, enabling improved model predictions of Arctic change. Svalbard hosts a high proportion of tidewater glaciers, including Kronebreen, the fastest flowing glacier on the archipelago. The proglacial meltwater exiting the base of Kronebreen transports fine grained sediment to Kongsfjorden, entrained in a buoyant plume which spreads laterally and is visible at the surface. In-situ measurements of the concentration and spectral reflectance of these surface sediments were used to calibrate spectral data from the MODIS instruments on the Terra and Aqua satellites. Temperature and salinity in front of the calving face, and throughout the meltwater plume, have been measured using a hand held CTD. The spatial surface pattern of total suspended sediment (TSS; g l-1) and plume area, has been quantified for every cloud free day between 1st June - 30th September from 2002 - 2013. High TSS sediment during the early melt season indicates flushing, whilst sediment exhaustion is apparent at the end. We show that the areal extent of these proglacial plumes responds to atmospheric temperature, with a 12 day lag. An underlying seasonal evolution of plume extent is apparent; plume area is small at the beginning and end of the melt season, peaking mid-July. Wind speed and direction also play a role in dictating the length of plume formation, with katabatic winds originating from the glacier, lengthening plumes. However, the overall extent of the sediment plume is dependent on meltwater inputs. As such, this method enables the daily to interannual quantification of proglacial meltwater release from tidewater glaciers, utilizing remote sensing.

  14. Holocene glacier activity on Kerguelen Island: preliminary results from a novel proglacial lake sediment record

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Bakke, Jostein; Arnaud, Fabien; Poulenard, Jérôme; Fanget, Bernard; Malet, Emmanuel; Sabatier, Pierre

    2016-04-01

    The Polar-regions are changing rapidly as greenhouse warming is continuing with huge impact on e.g. sea ice extent and snow cover. This change triggers teleconnections to low latitude areas challenging societies and human activity. We have, however, very little quantitative information of past climate in the Polar-regions that can be used to evaluate the potential responses and the response patterns to forcing changes and changes in boundary conditions. Whatever anthropogenic changes may occur in the future, they will be superimposed on, and interact with, natural climate variations due to all the forcing we are aware of. This means we need to better document past climate/environmental variability of the Polar-regions. Especially in the Southern Ocean there are few time series recording past climate due to few suitable land areas and the few Sub-Antarctic Islands is remote and has cumbersome logistics. Continuous terrestrial records from this region are therefore urgently needed for constraining future scenarios from earth system models. Glaciers and ice caps are still ubiquitous in the Polar-regions, although they are rapidly shrinking due to the on-going warming. The continuous sedimentary records produced by glaciers, which are stored in downstream lakes, represent supreme archives of past variability wherefrom quantitative information of key climate system components can be extracted. Kerguelen Island is located within the Antarctic Circumpolar Current and the Southern Westerly wind belt and contains several glaciers and smaller ice caps. Terrestrial archives recording past history of the glaciers at Kerguelen thus have a unique potential to record past changes in oceanic and atmospheric circulation patterns from southern mid-latitudes. Here we present preliminary results from the first distal glacier-fed lake that is sampled from Kerguelen Island. A 2.8 m long sediment core was obtained from Lac Guynemer (121masl.) located at the Peninsule Loranchet at the

  15. Using Metaphorical Models for Describing Glaciers

    ERIC Educational Resources Information Center

    Felzmann, Dirk

    2014-01-01

    To date, there has only been little conceptual change research regarding conceptions about glaciers. This study used the theoretical background of embodied cognition to reconstruct different metaphorical concepts with respect to the structure of a glacier. Applying the Model of Educational Reconstruction, the conceptions of students and scientists…

  16. Microbial biodiversity in glacier-fed streams.

    PubMed

    Wilhelm, Linda; Singer, Gabriel A; Fasching, Christina; Battin, Tom J; Besemer, Katharina

    2013-08-01

    While glaciers become increasingly recognised as a habitat for diverse and active microbial communities, effects of their climate change-induced retreat on the microbial ecology of glacier-fed streams remain elusive. Understanding the effect of climate change on microorganisms in these ecosystems is crucial given that microbial biofilms control numerous stream ecosystem processes with potential implications for downstream biodiversity and biogeochemistry. Here, using a space-for-time substitution approach across 26 Alpine glaciers, we show how microbial community composition and diversity, based on 454-pyrosequencing of the 16S rRNA gene, in biofilms of glacier-fed streams may change as glaciers recede. Variations in streamwater geochemistry correlated with biofilm community composition, even at the phylum level. The most dominant phyla detected in glacial habitats were Proteobacteria, Bacteroidetes, Actinobacteria and Cyanobacteria/chloroplasts. Microorganisms from ice had the lowest α diversity and contributed marginally to biofilm and streamwater community composition. Rather, streamwater apparently collected microorganisms from various glacial and non-glacial sources forming the upstream metacommunity, thereby achieving the highest α diversity. Biofilms in the glacier-fed streams had intermediate α diversity and species sorting by local environmental conditions likely shaped their community composition. α diversity of streamwater and biofilm communities decreased with elevation, possibly reflecting less diverse sources of microorganisms upstream in the catchment. In contrast, β diversity of biofilms decreased with increasing streamwater temperature, suggesting that glacier retreat may contribute to the homogenisation of microbial communities among glacier-fed streams. PMID:23486246

  17. GIS-based glacier inventory of China

    NASA Astrophysics Data System (ADS)

    Li, X.; Wu, L.-Z.

    2003-04-01

    The project of the Glacier Inventory of China initialized in 1979 was just accomplished in 2000. This inventory was complied based on numerous LandSat TM images, aerial photographs, and topographic maps. More than 40 Chinese glaciologists made their great efforts in this work. With the newest statistics from the inventory, there are total 46,928 glaciers in China; the total area is 59,406 km2 and the ice volume is 5,598 km3. We launched a new project to digitize the 11 volumes of published glacier data and all the distribution maps of glaciers in China. Large-scale topographic maps were also used as reference to reconstruct a more accurate geographic coordinate system of the inventory. We paid particularly attention to the data quality control. The properties of both the spatial and attribute data were carefully examined with a few operations by manual and computerized checks. Since the digital inventory lays a baseline for the monitoring of glacier change, we are going to release the database on the Internet and with CD-ROMs. In additions, the second glacier inventory in some glaciered drainages were carried out. Chinese glaciologist are using new generation remote sensors such as ASTER and LandSat ETM+ to identify glacier change in many areas. Preliminary results showed that the change is significant.

  18. Glacier-derived August runoff in northwest Montana

    USGS Publications Warehouse

    Clark, Adam; Harper, Joel T.; Fagre, Daniel B.

    2015-01-01

    The second largest concentration of glaciers in the U.S. Rocky Mountains is located in Glacier National Park (GNP), Montana. The total glacier-covered area in this region decreased by ∼35% over the past 50 years, which has raised substantial concern about the loss of the water derived from glaciers during the summer. We used an innovative weather station design to collect in situ measurements on five remote glaciers, which are used to parameterize a regional glacier melt model. This model offered a first-order estimate of the summer meltwater production by glaciers. We find, during the normally dry month of August, glaciers in the region produce approximately 25 × 106 m3 of potential runoff. We then estimated the glacier runoff component in five gaged streams sourced from GNP basins containing glaciers. Glacier-melt contributions range from 5% in a basin only 0.12% glacierized to >90% in a basin 28.5% glacierized. Glacier loss would likely lead to lower discharges and warmer temperatures in streams draining basins >20% glacier-covered. Lower flows could even be expected in streams draining basins as little as 1.4% glacierized if glaciers were to disappear.

  19. Debris-covered Himalayan glaciers under a changing climate: observations and modelling of Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil

    2016-04-01

    Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable

  20. Cloud effects on the surface energy and mass balance of Brewster Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Conway, J. P.; Cullen, N. J.

    2015-02-01

    A thorough understanding of the influence of clouds on glacier surface energy balance (SEB) and surface mass balance (SMB) is critical for forward and backward modelling of glacier-climate interactions. A validated 22 month time series of SEB/SMB was constructed for the ablation zone of the Brewster Glacier, using high quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than the minimal change in air temperature and wind speed. During overcast conditions, positive net longwave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and the occurrence of precipitation, which enabled a strong accumulation-albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. There is a need to include the effects of atmospheric moisture (vapour, cloud and precipitation) on melt processes when modelling glacier-climate interactions.

  1. Englacial Hydrology of Temperate Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, A. G.; Creyts, T. T.

    2015-12-01

    The englacial region of temperate glaciers is generally treated as a passive conveyor of water from the surface to the bed. Consequently, few studies have examined this region and relatively little is known. This is an important issue because englacial processes probably exert a first order control on the distribution of water to the subglacial hydraulic system. Controlling the water distribution probably controls the type of subglacial hydraulic features present and therefore sliding behavior. Certainly, englacial conduits play a major, if not primary, role in conveying water in the ablation zone. In regions of over-deepenings, areas highly crevassed, or in the accumulation zone, the importance of englacial conduits is less clear. Field studies have shown that intersecting englacial passageways in these regions are relatively common, implying that large water fluxes can drain efficiently through a network of fractures. Hypothetically, efficient drainage systems composed of englacial conduits develop in response to point input of large surface water fluxes. Where input is small and distributed, common to highly crevassed areas or the accumulation zone, water is probably routed through a network of englacial fractures. Glacier geometry may also play a role. Conduits may not develop in the over-deepened (closed basins) regions of a glacier requiring another flow pathway. That englacial fractures exist and can convey water presents a promising alternative. Measured rates of flow in fractures strongly suggest laminar conditions and a sufficient fracture density exists to accommodate the estimated water flux generated upstream by surface melt. The slow flow rates do not generate sufficient viscous heat to compensate expected rates of closure by freezing, however field observations and seismic evidence point to spontaneous fracture formation at depth that must regenerate the fracture network. It is unfortunate that englacial investigations are ignored in favor of

  2. Accelerating thinning of Kenai Peninsula glaciers, Alaska

    NASA Astrophysics Data System (ADS)

    VanLooy, J.; Forster, R.; Ford, A.

    2006-11-01

    Temperate mountain glaciers are thinning at high rates and significantly contributing to sea level rise. Due to these glaciers' remote locations, remote sensing and digital elevation models (DEMs) are an effective way to calculate their thinning rates and contribution to sea level rise. Comparisons of 1950s United States Geological Survey (USGS) and 2000 Shuttle Radar Topographic Mission (SRTM) DEMs with DEMs produced from Lidar profiles of glacier center-lines indicate thinning rates from the mid-1990s to 1999 (-0.72 +/- 0.13 m y-1) accelerated by a factor of 1.5 as compared with 1950 to mid-1990s (-0.47 +/- 0.01 m y-1) for glaciers on the Harding Icefield. Overall, comparison of USGS and SRTM DEMs indicate the Harding Icefield and Grewingk-Yalik Glacier Complex, Alaska, are thinning -0.61 +/- 0.12 m y-1 from 1950 to 1999.

  3. Glaciers in 21st Century Himalayan Geopolitics

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Wessels, R.; Kieffer, H. H.

    2002-05-01

    Glaciers are ablating rapidly the world over. Nowhere are the rates of retreat and downwasting greater than in the Hindu Kush-Himalaya (HKH) region. It is estimated that over the next century, 40,000 square kilometers of present glacier area in the HKH region will become ice free. Most of this area is in major valleys and the lowest glaciated mountain passes. The existence and characteristics of glaciers have security impacts, and rapidly changing HKH glaciers have broad strategic implications: (1) Glaciers supply much of the fresh water and hydroelectric power in South and Central Asia, and so glaciers are valuable resources. (2) Shared economic interests in water, hydroelectricity, flood hazards, and habitat preservation are a force for common cause and reasoned international relations. (3) Glaciers and their high mountains generally pose a natural barrier tending to isolate people. Historically, they have hindered trade and intercultural exchanges and have protected against aggression. This has further promoted an independent spirit of the region's many ethnic groups. (4) Although glaciers are generally incompatible with human development and habitation, many of the HKH region's glaciers and their mountains have become sanctuaries and transit routes for militants. Siachen Glacier in Kashmir has for 17 years been "the world's highest battlefield," with tens of thousands of troops deployed on both sides of the India/Pakistan line of control. In 1999, that conflict threatened to trigger all-out warfare, and perhaps nuclear warfare. Other recent terrorist and military action has taken place on glaciers in Kyrgyzstan and Tajikistan. As terrorists are forced from easily controlled territories, many may tend to migrate toward the highest ground, where definitive encounters may take place in severe alpine glacial environments. This should be a major concern in Nepali security planning, where an Army offensive is attempting to reign in an increasingly robust and brutal

  4. The length of the glaciers in the world - a straightforward method for the automated calculation of glacier center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-05-01

    Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.

  5. Surface winds over West Antarctica

    NASA Technical Reports Server (NTRS)

    Bromwich, David

    1993-01-01

    Five winter months (April-August 1988) of thermal infrared satellite images were examined to investigate the occurrence of dark (warm) signatures across the Ross Ice Shelf in the Antarctic continent. These features are inferred to be generated by katabatic winds that descend from southern Marie Byrd Land and then blow horizontally across the ice shelf. Significant mass is added to this airstream by katabatic winds blowing from the major glaciers that flow through the Transantarctic Mountains from East Antarctica. These negatively buoyant katabatic winds can reach the northwestern edge of the shelf - a horizontal propagation distance of up to 1,000 km - 14 percent of the time. Where the airstream crosses from the ice shelf to the ice-covered Ross Sea, a prominent coastal polynya is formed. Because the downslope buoyancy force is near zero over the Ross Ice Shelf, the northwestward propagation of the katabatic air mass requires pressure gradient support. The study shows that the extended horizontal propagation of this atmospheric density current occurred in conjunction with the passage of synoptic cyclones over the southern Amundsen Sea. These cyclones can strengthen the pressure gradient in the interior of West Antarctica and make the pressure field favorable for northwestward movement of the katabatic winds from West Antarctica across the ice shelf in a geostrophic direction. The glacier winds from East Antarctica are further accelerated by the synoptic pressure gradient, usually undergo abrupt adjustment beyond the exit to the glacier valley, and merge into the mountain-parallel katabatic air mass.

  6. A field and glacier modelling based approach to determine the timing and extent of glaciation in southern Africa

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie C.; Rowan, Ann V.; Barrow, Timothy T.; Plummer, Mitchell A.; Smith, Michael; Grab, Stefan W.; Carr, Simon J.; Fifield, L. Keith

    2014-05-01

    Moraines identified at high-altitude sites in southern Africa and dated to the last glacial maximum (LGM) indicate that the climate in this region was cold enough to support glaciers. Small glaciers are very sensitive to changes in temperature and precipitation and the identification of LGM moraines in southern Africa has important palaeoclimatic implications concerning the magnitude of temperature change and the seasonality of precipitation during the last glacial cycle. This paper presents a refined time-frame for likely glaciations based on surface exposure dating using Cl-36 at sites in Lesotho and reports results of a 2D glacier energy balance and ice flow modelling approach (Plummer and Phillips, 2003) to evaluate the most likely climatic scenarios associated with mapped moraine limits. Samples for surface exposure dating were collected from glacially eroded bedrock at several locations and yield ages within the timescale of the LGM. Scatter in the ages may be due to insufficient erosion of the bedrock surface due to the small and relatively thin nature of the glaciers. To determine the most likely climatic conditions that may have caused the glaciers to reach their mapped extent, we use a glacier-climate model, driven by data from local weather stations and a 30m (ASTER) DEM (sub-sampled to 10m) representation of the topographic surface. The model is forced using modern climate data for primary climatic controls (temperature and precipitation) and for secondary climatic parameters (relative humidity, cloudiness, wind speed). Various sensitivity tests were run by dropping temperature by small increments and by varying the amount of precipitation and its seasonality relative to present-day values. Results suggest that glaciers could have existed in the Lesotho highlands with a temperature depression of ~5-6 ºC and that the glaciers were highly sensitive to small changes in temperature. The additional accumulation of mass through wind redistribution appears to

  7. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Vermilyea, Andrew; Fellman, Jason; Raymond, Peter; Stubbins, Aron; Scott, Durelle; Hood, Eran

    2014-05-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13C-DOC, Δ 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14C-DOC of stream samples at the outflow (-181.7 to -355.3‰) was comparable to the Δ 14C-DOC for snow samples from the accumulation zone (-207.2 to -390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century.

  8. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers

    NASA Astrophysics Data System (ADS)

    Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.

    2015-05-01

    We present a new glacier inventory for high-mountain Asia named "Glacier Area Mapping for Discharge from the Asian Mountains" (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999-2003, in conjunction with a digital elevation model (DEM) and high-resolution Google EarthTM imagery. Geolocations are largely consistent between the Landsat imagery and DEM due to systematic radiometric and geometric corrections made by the United States Geological Survey. We performed repeated delineation tests and peer review of glacier outlines in order to maintain the consistency and quality of the inventory. Our GAMDAM glacier inventory (GGI) includes 87 084 glaciers covering a total area of 91 263 ± 13 689 km2 throughout high-mountain Asia. In the Hindu Kush-Himalaya range, the total glacier area in our inventory is 93% that of the ICIMOD (International Centre for Integrated Mountain Development) inventory. Discrepancies between the two regional data sets are due mainly to the effects of glacier shading. In contrast, our inventory represents significantly less surface area (-24%) than the recent global Randolph Glacier Inventory, version 4.0 (RGI), which includes 119 863 ± 9201 km2 for the entirety of high Asian mountains. Likely causes of this disparity include headwall definition, effects of exclusion of shaded glacier areas, glacier recession since the 1970s, and inclusion of seasonal snow cover in the source data of the RGI, although it is difficult to evaluate such effects quantitatively. Further rigorous peer review of GGI will both improve the quality of glacier inventory in high-mountain Asia and provide new opportunities to study Asian glaciers.

  9. Black soot and the survival of Tibetan glaciers.

    PubMed

    Xu, Baiqing; Cao, Junji; Hansen, James; Yao, Tandong; Joswia, Daniel R; Wang, Ninglian; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei; Liu, Xianqin; He, Jianqiao

    2009-12-29

    We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. PMID:19996173

  10. Black soot and the survival of Tibetan glaciers

    PubMed Central

    Xu, Baiqing; Cao, Junji; Hansen, James; Yao, Tandong; Joswia, Daniel R.; Wang, Ninglian; Wu, Guangjian; Wang, Mo; Zhao, Huabiao; Yang, Wei; Liu, Xianqin; He, Jianqiao

    2009-01-01

    We find evidence that black soot aerosols deposited on Tibetan glaciers have been a significant contributing factor to observed rapid glacier retreat. Reduced black soot emissions, in addition to reduced greenhouse gases, may be required to avoid demise of Himalayan glaciers and retain the benefits of glaciers for seasonal fresh water supplies. PMID:19996173

  11. Geomicrobiology of a Supraglacial Stream on the Cotton Glacier, Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Foreman, C. M.; Morris, C. E.; Cory, R. M.

    2006-12-01

    The Cotton Glacier lies in the Transantarctic Mountains north of Cape Roberts and has a limited catchment area in the Clare and St. Johns ranges, but receives a large amount of sedimentary deposits from surrounding areas. The bedrock geology of the area is dominated by basement granite and Ferrar dolerite sills, with minor amounts of amphibolite and schist sandwiched between granite bodies. A unique fluvial system forms on the Cotton Glacier as a result of its location in the Transantarctic Mountains. The prevailing winds converge and deposit debris on the Cotton Glacier, warming up the surface and increasing meltwater production. During the austral summer of 2004-2005 we sampled a braided stream that flowed from mid glacier into a series of crevasses downstream. While low in dissolved organic carbon (44-47 μM C) and nutrients the supraglacial stream on the Cotton Glacier is capable of sustaining life, with bacterial cell abundances from 2.7 - 8.2 x 104 cells ml-1, and bacterial production ranging from 58.84 - 293.18 ng C d-1. Isolates recovered from the Cotton Glacier produced a rainbow of pigment colors and were similar to those recovered from other icy systems (Cytophaga- Flavobateria-Bacteroides and β-Proteobacteria lineages), suggesting that the occurrence of these related phylotoyes from diverse environs is due to similar survival strategies allowing them to remain active at sub- zero temperatures and survive multiple freeze-thaw events. Two isolates from the Cotton Glacier have been shown to possess ice nucleating activity. These bacteria can catalyze ice formation at -3.5°C and colder temperatures and likely possess Type I ice nuclei proteins. The fluorescence and absorbance spectra of the filtered Cotton Glacier water were analyzed to characterize the dissolved organic matter (DOM). The absorbance spectra of the Cotton Glacier sample exhibited a peak around 270 nm, which disappeared over time in the dark at 4°C. Analysis of excitation-emission matrices

  12. Quantifying global warming from the retreat of glaciers

    SciTech Connect

    Oerlemans, J. )

    1994-04-08

    Records of glacier fluctuations compiled by the World Glacier Monitoring Service can be used to derive an independent estimate of global warming during the last 100 years. Records of different glaciers are made comparable by a two-step scaling procedure; one allowing for differences in glacier geometry, the other for differences in climate sensitivity. The retreat of glaciers during the last 100 years appears to be coherent over the globe. On the basis of modeling of the climate sensitivity of glaciers, the observed glacier retreat can be explained by a linear warming trend of 0.66 kelvin per century.

  13. Glaciers in Patagonia: Controversy and prospects

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Alho, P.; Buytaert, W.; Célleri, R.; Cogley, J. G.; Dussaillant, A.; Guido, Z.; Haeberli, W.; Harrison, S.; Leonard, G.; Maxwell, A.; Meier, C.; Poveda, G.; Reid, B.; Reynolds, J.; Rodríguez, C. A. Portocarrero; Romero, H.; Schneider, J.

    2012-05-01

    Lately, glaciers have been subjects of unceasing controversy. Current debate about planned hydroelectric facilities—a US7- to 10-billion megaproject—in a pristine glacierized area of Patagonia, Chile [Romero Toledo et al., 2009; Vince, 2010], has raised anew the matter of how glaciologists and global change experts can contribute their knowledge to civic debates on important issues. There has been greater respect for science in this controversy than in some previous debates over projects that pertain to glaciers, although valid economic motivations again could trump science and drive a solution to the energy supply problem before the associated safety and environmental problems are understood. The connection between glaciers and climate change—both anthropogenic and natural—is fundamental to glaciology and to glaciers' practical importance for water and hydropower resources, agriculture, tourism, mining, natural hazards, ecosystem conservation, and sea level [Buytaert et al., 2010; Glasser et al., 2011]. The conflict between conservation and development can be sharper in glacierized regions than almost anywhere else. Glaciers occur in spectacular natural landscapes, but they also supply prodigious exploitable meltwater.

  14. Glacier Monitoring: Opportunities, Accomplishments, and Limitations.

    NASA Astrophysics Data System (ADS)

    Meier, M. F.; Dyurgerov, M. B.

    2001-12-01

    Glaciers and ice caps, exclusive of the two major ice sheets, have been monitored for more than a century. Initially sparked by interest in the effect of glaciers on the landscape and their sensitive response to changes of climate, glacier study is now additionally motivated because of impacts on cold-regions ecology and hydrology as well as global sea-level rise. Glacier observations in many areas provide the only real data on climate change in the mountains. A substantial number of mass balance programs were initiated during the 1960s that improved our understanding of spatial and temporal changes in climate, and provided a basis for projecting future changes to glaciers and sea level. These results show a general increase in both snow accumulation and ice melting during the last 40 years (but with net wastage predominating), and a marked increase in the sensitivity of ice wastage to air temperature since the late 1980s. The World Data Center system provided unrestricted exchange of data among glaciologists during the `cold war.' The World Glacier Monitoring Service together with the National Snow and Ice Data Center and several individuals now provide ready access to glacier data. Remaining problems include inadequate access to digital data, a size bias to small glaciers, some traditional methodologies which limit the usefulness of the results, slow incorporation of new technologies, complexity of incorporating glacier dynamics in mass balance analysis, and insufficient attention by some investigators to reporting observational error. Perhaps the most difficult problems are the extension of limited data to the synthesis of broad regional or global conclusions, and a general dwindling of support for monitoring activities.

  15. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile

    NASA Astrophysics Data System (ADS)

    Janke, Jason R.; Bellisario, Antonio C.; Ferrando, Francisco A.

    2015-07-01

    In the Dry Andes of Chile (17 to 35° S), debris-covered glaciers and rock glaciers are differentiated from true glaciers based on the percentage of surface debris cover, thickness of surface debris, and ice content. Internal ice is preserved by an insulating cover of thick debris, which acts as a storage reservoir to release water during the summer and early fall. These landforms are more numerous than glaciers in the central Andes; however, the existing legislation only recognizes uncovered or semicovered glaciers as a water resource. Glaciers, debris-covered glaciers, and rock glaciers are being altered or removed by mining operations to extract valuable minerals from the mountains. In addition, agricultural expansion and population growth in this region have placed additional demands on water resources. In a warmer climate, as glaciers recede and seasonal water availability becomes condensed over the course of a snowmelt season, rock glaciers and debris-covered glaciers contribute a larger component of base flow to rivers and streams. As a result, identifying and locating these features to implement sustainable regional planning for water resources is important. The objective of this study is to develop a classification system to identify debris-covered glaciers and rock glaciers based on the interpretation of satellite imagery and aerial photographs. The classification system is linked to field observations and measurements of ice content. Debris-covered glaciers have three subclasses: surface coverage of semi (class 1) and fully covered (class 2) glaciers differentiates the first two forms, whereas debris thickness is critical for class 3 when glaciers become buried with more than 3 m of surface debris. Based on field observations, the amount of ice decreases from more than 85%, to 65-85%, to 45-65% for semi, fully, and buried debris-covered glaciers, respectively. Rock glaciers are characterized by three stages. Class 4 rock glaciers have pronounced

  16. A graph-based approach to glacier flowline extraction: An application to glaciers in Switzerland

    NASA Astrophysics Data System (ADS)

    Le Moine, Nicolas; Gsell, Pierre-Stéphane

    2015-12-01

    In this paper we propose a new, graph-based approach to glacier segmentation and flowline extraction. The method, which requires a set of glacier contours and a Digital Elevation Model (DEM), consists in finding an optimum branching that connects a set of vertices belonging to the topological skeleton of each glacier. First, the challenges associated with glacier flowline extraction are presented. Then, the three main steps of the method are described: the skeleton extraction and pruning algorithm, the definition and computation of a travel cost between all pairs of skeleton vertices, and the identification of the directed minimum spanning tree in the resulting directed graph. The method, which is mainly designed for valley glaciers, is applied to glaciers in Switzerland.

  17. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Nettles, M.; Larsen, T. B.; Elósegui, P.; Hamilton, G. S.; Stearns, L. A.; Ahlstrøm, A. P.; Davis, J. L.; Andersen, M. L.; de Juan, J.; Khan, S. A.; Stenseng, L.; Ekström, G.; Forsberg, R.

    2008-12-01

    Geodetic observations show several large, sudden increases in flow speed at Helheim Glacier, one of Greenland's largest outlet glaciers, during summer, 2007. These step-like accelerations, detected along the length of the glacier, coincide with teleseismically detected glacial earthquakes and major iceberg calving events. No coseismic offset in the position of the glacier surface is observed; instead, modest tsunamis associated with the glacial earthquakes implicate glacier calving in the seismogenic process. Our results link changes in glacier velocity directly to calving-front behavior at Greenland's largest outlet glaciers, on timescales as short as minutes to hours, and clarify the mechanism by which glacial earthquakes occur.

  18. Combining a Distributed Melt Model and Meteorological Data of Shackleton Glacier, Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Jiskoot, H.

    2010-12-01

    Runoff from the Canadian Rocky Mountains into the Upper Columbia and Kootenay basins is strongly dominated by winter snow accumulation and spring melt, and it has been suggested that future reductions in snowpack will create increased competition for water between spring and early fall (Hamlet & Lettenmaier, 1999). Although the glacierised area is substantial for affecting summer flows in these basins, there are no measurements or quantified estimates of glacier runoff contribution. In an effort to provide an estimate of glacier runoff for the region, we measured ablation over 5 years, set up weather stations and temperature sensors in Summers 2009 and 2010 and developed a melt model for Shackleton Glacier (42.5 km2), the largest outlet of the Clemenceau Icefield Group (271 km2), which is the major local ice mass feeding into the Upper Columbia basin. Two HOBO weather stations (WS) were installed on the glacier for two weeks in Summer 2010, one near the left lateral moraine on very dirty ice, and one mid-glacier on relatively clean ice. Instrumentation included pyranometers (solar radiation and albedo), and temperature, wind speed and direction, relative humidity and barometric pressure sensors. A weather station off ice provided additional temperature and precipitation data. Other data included daily ablation stake measurements, surface roughness measurements, temperature data from Tidbit loggers on and off ice, and daily manual weather observations. Yearly ablation stake measurements and summer weather observations have been made by our team since 2005. A BC River Forecast Centre automatic snow pillow station provides additional temperature and precipitation data. Using these meteorological and ablation data for parameterisation and optimisation, a distributed GIS melt model was constructed from a simple energy balance model. The model is driven by hourly direct and diffuse radiation and DEM hillshading, an albedo parameterisation based on four ice/snow zones

  19. Interaction between glacier and glacial lake in the Bhutan, Himalaya

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Sugiyama, S.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-12-01

    Recession of mountain glaciers in the Himalayas has been reported in the context of global warming. Associated with the glacier retreat, supraglacial lakes have been formed on the termini of debris-covered glaciers. Although it has been said that lake-terminating glaciers flow faster than land-terminating glaciers, observational evidence was scarce. We observationally investigated the influence of the presence/absence of glacial lakes on changes in surface elevation through glacier dynamics in two debris-covered glaciers, Thorthormi Glacier (land-terminating) and Lugge Glacier (lake-terminating), in the Lunana region, the Bhutan Himalaya. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier was much more negative than that of the land-terminating Thorthormi Glacier. Considering almost flat slope and location at lower elevation, however, larger ice thinning rate of the Thorthormi Glacier should have been expected than the Lugge Glacier. We measured surface flow speed of the two glaciers during 2009-2010 by multitemporal orthorectified The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) images of ALOS. Surface flow speed of the Thorthormi Glacier was faster in the upper reaches and reduced toward the downstream. In contrast, the flow speed at the Lugge Glacier measured in the same periods was greatest at the lower most part. Observed spatial distribution of surface flow speed at both glaciers are evaluated by a two-dimensional numerical flow model. The model shows that contribution of basal sliding to surface flow velocity is large in the lower part of both glaciers. Particularly in the Thorthormi Glacier, approximately 100% of surface flow velocity attribute to basal sliding. Calculated emergence velocity at the Thorthormi Glacier is larger than that at the Lugge Glacier. This result suggests that decreasing in flow

  20. Glacier Instability, Rapid Glacier Lake Growth and Related Hazards at Belvedere Glacier, Macugnaga, Italy

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Kaeaeb, A.; Haeberli, W.; Mortara, G.; Chiarle, M.; Epifani, F.

    2002-12-01

    Starting in summer 2000, Belvedere Glacier, near Macugnaga, Italian Alps, developed an extraordinary change in flow, geometry and surface appearance. A surge-type flow acceleration started in the lower parts of the Monte-Rosa east face, leading to strong crevassing and deformation of Belvedere Glacier, accompanied by bulging of its orographic right margin. In September 2001, a small supraglacial lake developed on the glacier. High water pressure and accelerated movement lasted into winter 2001/2002. The ice, in places, started to override moraines from the Little Ice Age. In late spring and early summer 2002, the supraglacial lake grew at extraordinary rates reaching a maximum area of more than 150'000 m2 by end of June. The evolution of such a large supraglacial lake, a rather unique feature in the Alps, was probably enabled by changes in the subglacial drainage system in the course of the surge-like developments with high water pressure in the glacier. At the end of June, an enhanced growth of the lake level with a rise of about 1 m per day was observed such that the supraglacial lake became a urgent hazard problem for the community of Macugnaga. Emergency measures had to be taken by the Italian Civil Protection. The authors thereby acted as the official expert advisers. Temporal evacuations were ordered and a permanent monitoring and alarm system was installed. Pumps with a maximum output of 1 m3/s were brought to the lake. Bathymetric studies yielded a maximum lake depth of 55 m and a volume of 3.3 millions of cubic meters of water. Aerial photography of 1995, 1999, September 2001 and October 2001 was used to calculate ice flow velocities and changes in surface altitude. Compared to the period of 1995 to 1999, the flow accelerated by about five times in 2001 (max. speeds up to 200 m/yr). Surface uplift measured was about 10-15 m/yr. The results of the photogrammetric studies were used to evaluate different possible lake-outburst scenarios, in particular

  1. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging

    NASA Astrophysics Data System (ADS)

    Sevestre, Heïdi; Benn, Douglas I.; Hulton, Nicholas R. J.; Bælum, Karoline

    2015-10-01

    Switches between cold- and warm-based conditions have long been invoked to explain surges of High Arctic glaciers. Here we compile existing and new data on the thermal regime of six glaciers in Svalbard to test the applicability of thermal switch models. Two of the large glaciers of our sample are water terminating while one is land terminating. All three have a well-known surge history. They have a thick basal layer of temperate ice, superimposed by cold ice. A cold terminus forms during quiescence but is mechanically removed by calving on tidewater glaciers. The other three glaciers are relatively small and are either entirely cold or have a diminishing warm core. All three bear evidence of former warm-based thermal regimes and, in two cases, surge-like behavior during the Little Ice Age. In Svalbard, therefore, three types of glaciers have switched from slow to fast flow: (1) small glaciers that underwent thermal cycles during and following the Little Ice Age (switches between cold- and warm-based conditions), (2) large terrestrial glaciers which remain warm based throughout the entire surge cycle but develop cold termini during quiescence, and (3) large tidewater glaciers that remain warm based throughout the surge cycle. Our results demonstrate that thermal switching cannot explain the surges of large glaciers in Svalbard. We apply the concept of enthalpy cycling to the spectrum of surge and surge-like behavior displayed by these glaciers and demonstrate that all Svalbard surge-type glaciers can be understood within a single conceptual framework.

  2. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  3. Climatology of Andean glaciers: A framework to understand glacier response to climate change

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Lowell, T. V.

    2012-04-01

    Recent glacial and climate models suggest that glaciers located in contrasting climates could respond with different magnitudes to identical climatic perturbations. This implies that to understand the response of glaciers to a particular climate perturbation or to compare glacial fluctuations between different regions, climate conditions that permit glaciers to exist must be taken into account. In this study we systematize, classify, and identify the spatial distribution of the climates that permit the occurrence of present-day glaciers in the climatically diverse Andes. A first approximation suggests that a sample of 234 Andean glaciers exist under three distinctive combinations of temperature and precipitation conditions: i) cold and dry, ii) intermediate, and iii) warm and wet conditions. Cluster analysis (CA) and Principal Component analysis (PCA) of temperature, precipitation, and humidity reveal seven climatic configurations that support present-day Andean glaciers and suggest that these configurations have a distinctive geographical distribution. The groups are: 1) inner tropics and Tierra del Fuego, 2) wetter outer tropics, 3) drier outer tropics, 4) subtropics, 5) central Chile-Argentina (semi-arid), 6) northern and central Patagonia, and 7) southern Patagonia. This classification provides a basis to examine the spatial variability of glacier sensitivity to climate change, to unravel the causes of past glacial fluctuations, to understand the climatic signals driving present-day glacier fluctuations, and perhaps to predict the response of glaciers to future climate changes.

  4. A Revised Glacier Inventory of Bhaga Basin Himachal Pradesh, India : Current Status and Recent Glacier Variations

    NASA Astrophysics Data System (ADS)

    Birajdar, F.; Venkataraman, G.; Bahuguna, I.; Samant, H.

    2014-11-01

    Himalayan glaciers show large uncertainty regarding their present and future state due to their sensitive reaction towards change in climatic condition. Himalayan glaciers are unique as they are located in tropical, high altitude regions, predominantly valley type and many are covered with debris. The great northern plains of India sustain on the perennial melt of glaciers meeting the water requirements of agriculture, industries, domestic sector even in the months of summer when large tracts of the country go dry. Therefore, it is important to monitor and assess the state of snow and glaciers and to know the sustainability of glaciers in view of changing global scenarios of climate and water security of the nation. Any information pertaining to Himalayan glaciers is normally difficult to be obtained by conventional means due to its harsh weather and rugged terrains. Due to the ecological diversity and geographical vividness, major part of the Indian Himalaya is largely un-investigated. Considering the fact that Himalayan glaciers are situated in a harsh environment, conventional techniques of their study is challenging and difficult both in terms of logistics and finances whereas the satellite remote sensing offers a potential mode for monitoring glaciers in long term. In order to gain an updated overview of the present state of the glacier cover and its changes since the previous inventories, an attempt has been made to generate a new remotesensing- derived glacier inventory on 1:50,000 scale for Bhaga basin (N32°28'19.7'' - N33°0'9.9'' ; E76°56'16.3'' - E77°25'23.7'' ) Western Himalaya covering an area of 1695.63 km2. having 231 glaciers and occupying glacierized area of 385.17 ±3.71 km2. ranging from 0.03 km2. to 29.28 km2. Glacier inventory has been carried out using high resolution IRS P6 LISS III data of 2011, ASTER DEM and other ancillary data. Specific measurements of mapped glacier features are the inputs for generating the glacier inventory data

  5. Biogeochemistry of glacier and rock glacier outflow in the western United States

    NASA Astrophysics Data System (ADS)

    Fegel, T. S.; Baron, J.; Hall, E.; Boot, C. M.

    2013-12-01

    Glaciers are melting at unprecedented rates worldwide, releasing bioavailable minerals and nutrients and altering downstream biogeochemistry. Though much research has focused on the recession of ice-glaciers in alpine environments, far less is known about the melt dynamics and biogeochemistry of rock glaciers. Rock glaciers, which are mixtures of ice and rocks that flow like a glacier, are far more abundant in mountainous regions of the western United States than ice glaciers. Little is known about their influence on downstream hydrology and water quality. We report here preliminary results of a west-wide survey of the influence of glaciers and rock glaciers on headwater properties. Measurements of specific conductance, nitrate (NO3-), ammonium (NH4+), dissolved silica, and dissolved organic matter were compared between glaciers, rock glaciers, and snow-fed reference streams from three basins in the Colorado Front Range. Samples were collected from ice, where possible, and downstream at 500m intervals from the first flowing water to tree line. UV and fluorescence data were analyzed using excitation emission matrices (EEMs) and PARAFAC modeling. High concentrations of NH4+ were only found in ice and the most upstream locations; NH4+ was below detection at all lower elevation sites, whereas NO3- concentrations were low in the headwaters and higher downstream. The fluorescence spectrum of DOC from both ice and the highest elevations had a strong autochthonous (microbial or algal) signal that was replaced by a more allochtonous, terrestrially-derived DOC as it approached tree line. Rock glacier stream chemistry was intermediate between glacier-fed streams and strictly snow fed drainages. DOC levels for ice glaciers ranged 2-3mg/L with increasing values downstream, while rock glaciers ranged from 1-2.5 mg/L with attenuation downstream. Snowfed only streams had DOC values at detection <0.5mg/L, with the exception at Lake Husted outflow, with an upland wetland, unlike the

  6. Glacier Retreat in the Southern Peruvian Andes: Climate Change, Environmental Impacts, Human Perception and Social Response

    NASA Astrophysics Data System (ADS)

    Orlove, B.

    2007-12-01

    This paper presents results from recent environmental and anthropological research near glacierized areas in the department of Cusco, Peru, home to the well-known Quelccaya Ice Cap and to the peak of Ausangate (6384 m). Glaciers in the region are in negative mass balance, losing volume and area, with upslope movement of the glacier fronts. Somewhat paradoxically, flows in many streams close to the glaciers are reduced, particularly in the dry season, due to a shift in the seasonal distribution of melting, to increased evaporation and to increased percolation into newly-exposed sands and gravels. Associated with this reduction in flow is a desiccation of some anthropogenic and natural wetlands, reducing the availability of dry season forage to wild (vicuna) and domesticated (alpaca, llama) ruminants. Interviews and ethnographic observations with local populations of Quechua-speaking herders at elevations of 4500-5200 meters provide detailed comments on these changes. They have an extensive vocabulary of terms for glacial features associated with retreat. They link this treat with environmental factors (higher temperatures, greater winds that deposit dust on lower portions of glaciers) and with religious factors (divine punishment for human wrong-doing, failure of humans to respect mountain spirits). They describe a variety of economic and extra-economic impacts of this retreat on different spatial, social and temporal scales. Though they face other issues as well (threats of pollution from new mining projects, inadequacy of government services), glacier retreat is their principal concern. Many herders express extreme distress over this unprecedented threat to their livelihoods and communities, though a few propose responses - out-migration, the formation of an association of neighboring communities, development of irrigation works - that could serve as adaptations.

  7. Distinct patterns of seasonal Greenland glacier velocity

    NASA Astrophysics Data System (ADS)

    Moon, Twila; Joughin, Ian; Smith, Ben; Broeke, Michiel R.; Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-10-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes.

  8. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  9. Malaspina Glacier, Alaska, Perspective with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Malaspina Glacier in southeastern Alaska is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    This perspective view was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Landsat views both visible and infrared light, which have been combined here into a color composite that generally shows glacial ice in light blue, snow in white, vegetation in green, bare rock in grays and tans, and the ocean (foreground) in dark blue. The back (northern) edge of the data set forms a false horizon that meets a false sky.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Glaciers are sensitive indicators of climatic change. They can grow and thicken with increasing snowfall and/or decreased melting. Conversely, they can retreat and thin if snowfall decreases and/or atmospheric temperatures rise and cause increased melting. Landsat imaging has been an excellent tool for mapping the changing geographic extent of glaciers since 1972. The elevation measurements taken by SRTM in February 2000 now provide a near-global baseline against which future non-polar region glacial thinning or thickening can be assessed.

  10. Stabilizing feedbacks in glacier-bed erosion.

    PubMed

    Alley, R B; Lawson, D E; Larson, G J; Evenson, E B; Baker, G S

    2003-08-14

    Glaciers often erode, transport and deposit sediment much more rapidly than nonglacial environments, with implications for the evolution of glaciated mountain belts and their associated sedimentary basins. But modelling such glacial processes is difficult, partly because stabilizing feedbacks similar to those operating in rivers have not been identified for glacial landscapes. Here we combine new and existing data of glacier morphology and the processes governing glacier evolution from diverse settings to reveal such stabilizing feedbacks. We find that the long profiles of beds of highly erosive glaciers tend towards steady-state angles opposed to and slightly more than 50 per cent steeper than the overlying ice-air surface slopes, and that additional subglacial deepening must be enabled by non-glacial processes. Climatic or glaciological perturbations of the ice-air surface slope can have large transient effects on glaciofluvial sediment flux and apparent glacial erosion rate. PMID:12917679

  11. Complex Greenland outlet glacier flow captured.

    PubMed

    Aschwanden, Andy; Fahnestock, Mark A; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  12. Employing terrestrial photogrammetry to determine surface roughness on a debris covered glacier

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Miles, E. S.; Brun, F.; Detert, M.

    2015-12-01

    Aerodynamic surface roughness is an essential parameter in energy balance studies on glaciers. While actual measurements on bare ice glaciers are rare, a number of literature values exist for different types of ice and snow covers. There are only very few constant values suggested in the literature for debris covered glaciers and actual measurements are even scarcer. This is a significant shortcoming as the debris surface is often very heterogeneous, which results in variable turbulent fluxes. These fluxes, which use surface roughness as an input parameter, are also employed to derive debris thickness from surface temperature. The increased use of aerial and terrestrial photogrammetry on glaciers provides an opportunity to better account for this present shortcoming. On a number of locations of Lirung Glacier in the Nepalese Himalayas we produced high resolution DEMs from terrestrial photogrammetry, from 1 x 1 m plots to a wider basin spanning more than 100 m. These images were then downsampled to different resolutions, ranging from one millimeter to a few centimeters. Employing different equations from the literature we determine surface roughness at different scales. This way we can discuss (1) the variability of results between different commonly used approaches, (2) the variability of surface roughness in space and (3) the impact of image resolution. From a tower with wind and temperature sensors at different heights we additionally infer surface roughness locally. We can then compare these values as well as see the effect of different wind speeds on the derivation of the value. Employing a software originally developed to determine grain size distributions in river beds from optical imagery, we additionally determine rock shapes and size as well as provide an estimate for the grain size distribution of the debris cover. This could provide an initial step to a better estimation of the porous space of the debris cover, which is essential to determine energy flux

  13. Towards a complete World Glacier Inventory

    NASA Astrophysics Data System (ADS)

    Zemp, Michael

    2013-04-01

    The need for an inventory of the world's glaciers evolved during the International Hydrological Decade (1965-74). As a result, guidelines were established in the mid 1970s to compile a worldwide detailed inventory of existing perennial snow and ice masses. Following these international guidelines, several countries started compiling national glacier inventories based primarily on aerial photographs and maps. In the 1980s, the World Glacier Inventory (WGI) database was launched together with a status report about global and regional glacierised surface areas for the second half of the 20th century. These estimates were based on the detailed inventory data together with preliminary estimates of the remaining glacierised regions derived from early satellite imagery. In the late 1990s, the Global Land Ice Measurements from Space (GLIMS) database was initiated to continue the inventory task with space-borne sensors. In the WGI, glaciers are represented by geographical point coordinates. The GLIMS database includes digital outlines. Both include exact time stamps and tabular information on glacier classifications, length, area, orientation, and altitude range. Both are regularly updated with newly available data: the WGI stores point information for the second half of the 20th century whereas the GLIMS includes digital outlines for the 21st century. Since these detailed glacier inventories are not (yet) globally complete, there have been several efforts towards preliminary estimates of the overall global glacier coverage. A first, well elaborated one was included in the original status report of the WGI, published in 1989, and was refined in 2005 with information from other sources by Dyurgerov and Meier. Other studies used the detailed WGI, or an extended format by Cogley, for regional or global up-scaling of glacier extents. In 2003, Cogley published a global map of percentage glacier coverage per 1°x1° grid box (GGHydro) that is widely used for modeling at global

  14. International Symposium on Fast Glacier Flow

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.

    1990-01-01

    Cryospheric Sciences Program "International Symposium on Fast Glacier Flow" (PI, C. Lingle) provided partial support for publication of Annals of Glaciology 36 by the International Glaciological Society. Annals of Glaciology is a peer-reviewed journal. Annals 36, which was published in 2003, contains 39 peer-reviewed and edited papers from the International Symposium on Fast Glacier Flow, which was held in Yakutat, Alaska, 10-14 June 2002.

  15. Regional Observations of Alaska Glacier Dynamics

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Hall, D. K.

    2010-12-01

    Alaska glaciers contribute more to sea level rise than any other glacierized mountain region in the world. Alaska is loosing ~84 Gt of ice annually, which accounts for ~0.23 mm/yr of SLR (Luthcke et al., 2008). Complex glacier flow dynamics, frequently related to tidewater environments, is the primary cause of such rapid mass loss (Larsen et al., 2007). Indirect observations indicate these complex flow dynamics occur on many glaciers throughout Alaska, but no comprehensive velocity measurements exist. We are working to measure glacier surface velocities throughout Alaska using synthetic aperture radar (SAR) offset tracking. This work focuses on the Seward/Malaspina, Bering, Columbia, Kaskawulsh, and Hubbard Glaciers and uses a MODIS land surface temperature "melt-day" product (Hall et al., 2006, 2008) to identify potential links between velocity variability and summertime temperature fluctuations. Hall, D., R. Williams Jr., K. Casey, N. DiGirolamo, and Z. Wan (2006), Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance, Geophysical Research Letters, 33(11). Hall, D., J. Box, K. Casey, S. Hook, C. Shuman, and K. Steffen (2008), Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland, Remote Sensing of Environment, 112(10), 3739-3749. Larsen, C. F., R. J. Motyka, A. A. Arendt, K. A. Echelmeyer, and P. E. Geissler (2007), Glacier changes in southeast Alaska and northwest British Columbia and contribution to sea level rise, J. Geophys. Res. Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008), Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, Journal of Glaciology, 54(188), 767-777.

  16. The fleeting glaciers of the Arctic

    NASA Astrophysics Data System (ADS)

    Bakke, Jostein; Røthe, Torgeir; van der Bilt, Willem; Paasche, Øyvind

    2015-04-01

    Glaciers and snow are the very symbol of the Arctic, covering large parts of its terrestrial surface throughout the year. The cool temperatures that have allowed for the widespread coverage of glaciers are now trending towards a warmer climate, and with this gradual shift we observe a non-linear response in the cryosphere of which glaciers are a key component. This change is manifested in retreating fronts and an overall thinning. Because the typology of Arctic glaciers is rich and varied, the response pattern to the on-going warming is not unison. Instead we observe large spatial variations due to the critical balance between summer temperature and winter precipitation, but also other factors such as aspect, altitude, geographical location, debris cover and so forth. Even so, minor variations is superimposed on a larger trends which suggests that in a not so distant future, glaciers will probably be less abundant than what has been common for the last 100 years. In the context of the last 10 000 years it is evident that arctic glaciers have changed significantly and they have even been smaller than they are today, which was the case 9000 to 5000 years ago. On Svalbard, three glacier lake sediment records foretell of large past variations, indicating a more articulated sensitivity to climate change than what is commonly perceived for the Arctic cryosphere. Based on the lake sediment studies we will discuss Arctic glaciers sensitivity to decadal to millenium scale climate fluctuations and discuss possible forcing mechanims behind suitable for explaining what we see.

  17. Fuzzy Cognitive Maps for Glacier Hazards Assessment: Application to Predicting the Potential for Glacier Lake Outbursts

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Kargel, J. S.; Fink, W.; Bishop, M. P.

    2010-12-01

    Glaciers and ice sheets are among the largest unstable parts of the solid Earth. Generally, glaciers are devoid of resources (other than water), are dangerous, are unstable and no infrastructure is normally built directly on their surfaces. Areas down valley from large alpine glaciers are also commonly unstable due to landslide potential of moraines, debris flows, snow avalanches, outburst floods from glacier lakes, and other dynamical alpine processes; yet there exists much development and human occupation of some disaster-prone areas. Satellite remote sensing can be extremely effective in providing cost-effective and time- critical information. Space-based imagery can be used to monitor glacier outlines and their lakes, including processes such as iceberg calving and debris accumulation, as well as changing thicknesses and flow speeds. Such images can also be used to make preliminary identifications of specific hazardous spots and allows preliminary assessment of possible modes of future disaster occurrence. Autonomous assessment of glacier conditions and their potential for hazards would present a major advance and permit systematized analysis of more data than humans can assess. This technical leap will require the design and implementation of Artificial Intelligence (AI) algorithms specifically designed to mimic glacier experts’ reasoning. Here, we introduce the theory of Fuzzy Cognitive Maps (FCM) as an AI tool for predicting and assessing natural hazards in alpine glacier environments. FCM techniques are employed to represent expert knowledge of glaciers physical processes. A cognitive model embedded in a fuzzy logic framework is constructed via the synergistic interaction between glaciologists and AI experts. To verify the effectiveness of the proposed AI methodology as applied to predicting hazards in glacier environments, we designed and implemented a FCM that addresses the challenging problem of autonomously assessing the Glacier Lake Outburst Flow

  18. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  19. Integrated glacier and snow hydrological modelling in the Urumqi No.1 Glacier catchment

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Savenije, Hubert

    2015-04-01

    The glacier and snow melt water from mountainous area is an essential water resource in Northwest China, where the climate is arid. Therefore a hydrologic model including glacier and snow melt simulation is in an urgent need for water resources management and prediction under climate change in this region. In this study, the Urumqi No.1 Glacier catchment in Northwest China, with 51% area covered by glacier, was selected as the study site. An integrated daily hydrological model was developed to systematically simulate the hydrograph, runoff separation (glacier and non-glacier runoff), the glacier mass balance (GMB), the equilibrium line altitude (ELA), and the snow water equivalent (SWE). Only precipitation, temperature and sunshine hour data is required as forcing input. A combination method, which applies degree-day approach during dry periods and empirical energy balance formulation during wet seasons, was implemented to simulate snow and glacier melt. Detailed snow melt processes were included in the model, including the water holding capacity of snow pack, the liquid water refreezing process in snow pack, and the change of albedo with time. A traditional rainfall-runoff model (Xinanjiang) was applied to simulate the rainfall(snowmelt)-runoff process in non-glacierized area. Additionally, the influence of elevation on temperature and precipitation distribution, and the impact of different aspect on snow and glacier melting were considered. The model was validated, not only by long-term observed daily runoff data, but also by measured snow (SWE) and glacier data (GMB, ELA) of over 50 years. Furthermore, the calibrated model can be upscaled into a larger catchment, which further supports our proposed model and optimized parameter sets.

  20. Glacier speed-up events and water inputs on the lower Franz Josef Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Kehrl, L. M.; Horgan, H.; Mackintosh, A. N.; Anderson, B. A.; Dadic, R.

    2012-12-01

    A glacier speed-up event occurs when a water input exceeds the capacity of the subglacial drainage system, and the subglacial water pressure increases. Several studies have suggested that glacier speed-up events do not affect overall glacier motion, as high ice-flow velocities during the event are offset by lower ice-flow velocities after the event due to a more efficient subglacial drainage system. In this study, we combine in-situ velocity measurements with a full Stokes glacier flowline model to explore the temporal and spatial variability in glacier flow on the lower Franz Josef Glacier, Southern Alps, New Zealand. Significant volumes of water enter the Franz Josef Glacier throughout the year due to high rainfall rates and year-round ablation. As a result, we infer that the subglacial drainage system is generally well-developed. In late summer (March) 2011, measured ice-flow velocities increased by up to 75% above background values because of rain events and by up to 32% above background values because of diurnal melt cycles. The observed speed-up events occurred at all survey locations within 4 ± 1 hours after the peak water input. We use a flowline model to show that a spatially-uniform subglacial water pressure, which increased during periods of heavy rain and glacier melt, can reproduce the measured ice-flow velocities across the lower glacier. From our results, we suggest that the variability in water inputs, rather than the mean water input to the system, is the primary driver in glacier speed-up events. If this is the case and the variability in water inputs is maintained, then glacier speed-up events can occur even if the subglacial drainage system is well-developed.

  1. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  2. Creating improved ASTER DEMs over glacierized terrain

    NASA Astrophysics Data System (ADS)

    Raup, B. H.; Khalsa, S. S.; Armstrong, R.

    2006-12-01

    Digital elevation models (DEMs) produced from ASTER stereo imagery over glacierized terrain frequently contain data voids, which some software packages fill by interpolation. Even when interpolation is applied, the results are often not accurate enough for studies of glacier thickness changes. DEMs are created by automatic cross-correlation between the image pairs, and rely on spatial variability in the digital number (DN) values for this process. Voids occur in radiometrically homogeneous regions, such as glacier accumulation areas covered with uniform snow, due to lack of correlation. The same property that leads to lack of correlation makes possible the derivation of elevation information from photoclinometry, also known as shape-from-shading. We demonstrate a technique to produce improved DEMs from ASTER data by combining the results from conventional cross-correlation DEM-generation software with elevation information produced from shape-from-shading in the accumulation areas of glacierized terrain. The resulting DEMs incorporate more information from the imagery, and the filled voids more accurately represent the glacier surface. This will allow for more accurate determination of glacier hypsometry and thickness changes, leading to better predictions of response to climate change.

  3. Glacier area and length changes in Norway from repeat inventories

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Andreassen, L. M.; Kienholz, C.

    2014-10-01

    In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+-derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900) based on historic maps surveyed between 1895 and 1907. Area and length changes are assessed per glacier unit, 36 subregions, and for three main parts of Norway: southern, central, and northern. The results show a decrease in the glacierized area from 2994 km2 in GIn50 to 2668 km2 in GI2000 (total 2722 glacier units), corresponding to an area reduction of -326 km2, or -11% of the initial GIn50 area. The average length change for the full epoch (within GIn50 and GI2000) is -240 m. Overall, the comparison reveals both area and length reductions as general patterns, even though some glaciers have advanced. The three northernmost subregions show the highest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several factors such as glacier geometry, elevation, and continentality, especially in southern Norway.

  4. Modeling debris-covered glaciers: response to steady debris deposition

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  5. Integrated firn elevation change model for glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m‑³ or the density of ice (917 kg m‑³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m‑³) and accumulation (600 kg m‑³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer

  6. Four+ Years of Measurements from the Mendenhall Glacier Terminus

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Fatland, D. R.

    2012-12-01

    We describe the instrumentation, power, communications, and lessons learned from ongoing four+ years of measurements at the terminus of Mendenhall Glacier. In this presentation we focus on the most successful microserver deployment. The microserver is a simple rugged computer with a radio modem that can survive and operate outdoors in harsh environments like Antarctica. The system is called a microserver because of the networking capabilities, particularly as it may act as anchor points for localized lightweight sensor networks. SEAMONSTER, the SouthEast Alaska MOnitoring Network for Science, Technology, Education and Research, is a demonstration sensor web effort. The microserver design for SEAMONSTER is intended to provide general capabilities that could be used in harsh environments specifically for cryospheric observations. At the Mendenhall terminus the observations included meteorologic data and repeat digital photography. Other SEAMONSTER stations included snow accumulation and density, precision GPS, seismic, water pressure, and other measurements. Power generation at the Mendenhall deployment is both solar and wind.

  7. What Influences Climate and Glacier Change in the Southwestern China?

    NASA Technical Reports Server (NTRS)

    Yasunari, Teppei J.

    2012-01-01

    The subject of climate change in the areas of the Tibetan Plateau (TP) and the Himalayas has taken on increasing importance because of available water resources from their mountain glaciers. Many of these glaciers over the region have been retreating, while some are advancing and stable. Other studies report that some glaciers in the Himalayas show acceleration on their shrinkage. However, the causes of the glacier meltings are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. However, it is vital that we pursue further study to enable the future prediction on glacier changes.

  8. Glacier Changes in the Russian High Arctic.

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.

    2014-12-01

    We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet

  9. Evaluating the performance of a glacier erosion model applied to Peyto Glacier, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Vogt, R.; Mlynowski, T. J.; Menounos, B.

    2013-12-01

    Glaciers are effective agents of erosion for many mountainous regions, but primary rates of erosion are difficult to quantify due to unknown conditions at the glacier bed. We develop a numerical model of subglacial erosion and passively couple it to a vertically integrated ice flow model (UBC regional glaciation model). The model accounts for seasonal changes in water pressure at the glacier bed which affect rates of abrasion and quarrying. We apply our erosion model to Peyto Glacier, and compare estimates of glacier erosion to the mass of fine sediment contained in a lake immediately down valley from the glacier. A series of experiments with our model and ones based on subglacial sliding rates are run to explore model sensitivity to bedrock hardness, seasonal hydrology, changes in mass balance, and longer-term dimensional changes of the glacier. Our experiments show that, as expected, erosion rates are most sensitive to bedrock hardness and changes in glacier mass balance. Silt and clay contained in Peyto Lake primarily originate from the glacier, and represent sediments derived from abrasion and comminution of material produced by quarrying. Average specific sediment yield during the period AD1917-1970 from the lake is 467×190 Mg km-2yr-1 and reaches a maximum of 928 Mg km-2yr-1 in AD1941. Converting to a specific sediment yield, modelled average abrasion and quarrying rates during the comparative period are 142×44 Mg km-2yr-1 and 1167×213 Mg km-2yr-1 respectively. Modelled quarrying accounts for approximately 85-95% of the erosion occurring beneath the glacier. The basal sliding model estimates combined abrasion and quarrying. During the comparative period, estimated yields average 427×136 Mg km-2yr-1, lower than the combined abrasion and quarrying models. Both models predict maximum sediment yield when Peyto Glacier reached its maximum extent. The simplistic erosion model shows higher sensitivity to climate, as seen by accentuated sediment yield peaks

  10. Ancient carbon from a melting glacier gives high 14C age in living pioneer invertebrates

    PubMed Central

    Hågvar, Sigmund; Ohlson, Mikael

    2013-01-01

    Glaciers are retreating and predatory invertebrates rapidly colonize deglaciated, barren ground. The paradox of establishing predators before plants and herbivores has been explained by wind-driven input of invertebrate prey. Here we present an alternative explanation and a novel glacier foreland food web by showing that pioneer predators eat locally produced midges containing 21,000 years old ancient carbon released by the melting glacier. Ancient carbon was assimilated by aquatic midge larvae, and terrestrial adults achieved a radiocarbon age of 1040 years. Terrestrial spiders, harvestmen and beetles feeding on adult midges had radiocarbon ages of 340–1100 years. Water beetles assumed to eat midge larvae reached radiocarbon ages of 1100–1200 years. Because both aquatic and terrestrial pioneer communities use ancient carbon, the term “primary succession” is questionable in glacier forelands. If our “old” invertebrates had been collected as subfossils and radiocarbon dated, their age would have been overestimated by up to 1100 years. PMID:24084623

  11. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input.

    PubMed

    Stibal, Marek; Tranter, Martyn; Benning, Liane G; Rehák, Josef

    2008-08-01

    Cryoconite holes are unique freshwater environments on glacier surfaces, formed when solar-heated dark debris melts down into the ice. Active photoautotrophic microorganisms are abundant within the holes and fix inorganic carbon due to the availability of liquid water and solar radiation. Cryoconite holes are potentially important sources of organic carbon to the glacial ecosystem, but the relative magnitudes of autochthonous microbial primary production and wind-borne allochthonous organic matter brought are unknown. Here, we compare an estimate of annual microbial primary production in 2006 on Werenskioldbreen, a Svalbard glacier, with the organic carbon content of cryoconite debris. There is a great disparity between annual primary production (4.3 mug C g(-1) year(-1)) and the high content of organic carbon within the debris (1.7-4.5%, equivalent to 8500-22 000 mug C g(-1) debris). Long-term accumulation of autochthonous organic matter is considered unlikely due to ablation dynamics and the surface hydrology of the glacier. Rather, it is more likely that the majority of the organic matter on Werenskioldbreen is allochthonous. Hence, although glacier surfaces can be a significant source of organic carbon for glacial environments on Svalbard, they may be reservoirs rather than oases of high productivity. PMID:18430008

  12. Investigating connections between local-remote atmospheric variability and Greenland outlet glacier behavior

    NASA Astrophysics Data System (ADS)

    Sobolowski, Stefan; Chen, Linling; Miles, Victoria

    2016-04-01

    /climate dynamics in glacier behavior. Our study suggests a strong relationship between large-scale tropospheric circulation patterns, such as the so-called Greenland Blocking Index (GBI), and glacier front position. This relationship is seen in the wintertime (summertime) circulation influence on spring (fall) front position. Dynamically, a physical pathway is illustrated via canonical correlation analyses and composites of low-mid level winds, which show strong southerly advection into the region when the GBI is positive. There are also potential links between local and remote diabatic heating in the atmospheric column, SSTs, sea-ice concentration and front position. Whether there are physical pathways connecting remote surface processes, such as heating along western Greenland is not yet clear. Causality is always difficult to infer in reanalysis-based studies but physical intuition and theory provide multiple lines of evidence, which suggest a substantial influence of large-scale atmospheric dynamics at the margins of the GrIS. Improving our understanding of these physical connections will be crucial, as we know the outlet glaciers will respond under rapidly changing climate conditions.

  13. Glacier Surface Monitoring by Maximizing Mutual Information

    NASA Astrophysics Data System (ADS)

    Erten, E.; Rossi, C.; Hajnsek, I.

    2012-07-01

    The contribution of Polarimetric Synthetic Aperture Radar (PolSAR) images compared with the single-channel SAR in terms of temporal scene characterization has been found and described to add valuable information in the literature. However, despite a number of recent studies focusing on single polarized glacier monitoring, the potential of polarimetry to estimate the surface velocity of glaciers has not been explored due to the complex mechanism of polarization through glacier/snow. In this paper, a new approach to the problem of monitoring glacier surface velocity is proposed by means of temporal PolSAR images, using a basic concept from information theory: Mutual Information (MI). The proposed polarimetric tracking method applies the MI to measure the statistical dependence between temporal polarimetric images, which is assumed to be maximal if the images are geometrically aligned. Since the proposed polarimetric tracking method is very powerful and general, it can be implemented into any kind of multivariate remote sensing data such as multi-spectral optical and single-channel SAR images. The proposed polarimetric tracking is then used to retrieve surface velocity of Aletsch glacier located in Switzerland and of Inyltshik glacier in Kyrgyzstan with two different SAR sensors; Envisat C-band (single polarized) and DLR airborne L-band (fully polarimetric) systems, respectively. The effect of number of channel (polarimetry) into tracking investigations demonstrated that the presence of snow, as expected, effects the location of the phase center in different polarization, such as glacier tracking with temporal HH compared to temporal VV channels. Shortly, a change in polarimetric signature of the scatterer can change the phase center, causing a question of how much of what I am observing is motion then penetration. In this paper, it is shown that considering the multi-channel SAR statistics, it is possible to optimize the separate these contributions.

  14. Stationary monitoring of glacier response to climate change in China

    NASA Astrophysics Data System (ADS)

    Ren, Jiawen; Li, Zhongqin; Qin, Xiang; He, Yuanqing; He, Xiaobo; Li, Huilin

    2016-04-01

    At present, there are about 48571 glaciers with a total area of about 51.8×103 km2 and a volume of about 5.6×103 km3 in China. They are distributed widely in the high mountains in and surrounding the Tibetan Plateau and other high mountains such as Tianshan, Altay and Pamir. In view of differences in climatic conditions and glacier types, stationary monitoring of the glacier variations has been ongoing in different regions in order to investigate the glacier response to climate change. The monitoring results show that all the monitoring glaciers have been in retreat during the past decades and especially since 1990's the retreat rate has an accelerating trend. The accumulative mass balance is much negative and has a large annual variability for the monsoonal maritime glaciers in comparison with the continental and sub-continental glaciers. Under climate warming background, the acceleration of glacier melting is mainly attributed to rise in air temperature, ice temperature augment and albedo reduction of glacier surface. Particularly, the albedo reduction has a positive feedback effect on the glacier melting. Based on long term observation of glacier variations and physical properties, a simple dynamics model is coupled with mass balance modeling to make a projection of a typical glacier change in future. The primary modeling results suggest that the glacier will continue in shrinkage until vanishing within 50-90 years.

  15. Rock glaciers and the sediment dynamics in arid mountain belts

    NASA Astrophysics Data System (ADS)

    Blöthe, Jan Henrik; Höser, Thorsten; Rosenwinkel, Swenja; Korup, Oliver

    2016-04-01

    Rock glaciers are common periglacial features in highest elevations of semiarid to arid mountain ranges. Rock glaciers predominate in realms where precipitation values fall below thresholds that allow for ice glacier formation, then even outranging ice glaciers in size and number. The influence of ice glaciers on high-mountain's sediment dynamics is manifold: ice-glacier-driven erosion produces large amounts of clastic material; ice glaciers act as a conveyor belt for sediments, delivering material from their source regions to their terminus; ice glaciers entering trunk valleys form efficient dams that interrupt sediment delivery. While these mechanisms have been addressed in numerous earlier studies, the role of rock glaciers for the sediment dynamics of arid mountain belts remains elusive. We address this shortcoming by analysing a rock glacier inventory that we compiled for the Himalaya-Karakoram ranges and the Tien Shan ranges in Central Asia. Our inventory comprises more than 1000 specimen, a large number of which form dams of large trunk rivers and minor tributaries, disconnecting the sediment fluxes from upstream. In certain regions that are nearly devoid of ice-glaciers, like the Gamugah surface of NW Pakistan, rock glaciers of >10^4-m length occupy valley bottoms entirely, constituting the only mode of transport for sediments produced in headwaters. In conclusion, we call for a better understanding of the role that rock glaciers take in the sediment dynamics of arid mountain belts.

  16. Measured Climate Induced Volume Changes of Three Glaciers and Current Glacier-Climate Response Prediction

    NASA Astrophysics Data System (ADS)

    Trabant, D. C.; March, R. S.; Cox, L. H.; Josberger, E. G.

    2003-12-01

    Small but hydrologically significant shifts in climate have affected the rates of glacier volume change at the three U.S. Geological Survey Benchmark glaciers. Rate changes are detected as inflections in the cumulative conventional and reference-surface mass-balances of Wolverine and Gulkana Glaciers in Alaska and South Cascade Glacier in Washington. The cumulative mass balances are robust and have recently been corroborated by geodetic determinations of glacier volume change. Furthermore, the four-decade length of record is unique for the western hemisphere. Balance trends at South Cascade Glacier in Washington are generally in the opposite sense compared with Wolverine Glacier in Alaska; NCEP correlation of winter balance with local winter temperatures is positive at 0.59 for Wolverine and -0.64 for South Cascade Glacier. At Wolverine Glacier, the negative trend of cumulative mass balances, since measurements began in 1965, was replaced by a growth trend \\(positive mass balances\\) during the late 1970s and 1980s. The positive mass-balance trend was driven by increased precipitation during the 1976/77 to 1989 period. At Gulkana Glacier, the cumulative mass-balance trend has been negative throughout its measurement history, but with rate-change inflection points that coincide with the interdecadal climate-regime shifts in the North Pacific indices. At South Cascade Glacier, the mass-loss trend, observed since measurements began in 1953, was replaced by a positive trend between 1970 and 1976 then became strongly and continuously negative until 1997 when the rate of loss generally decreased. Since 1989, the trends of the glaciers in Alaska have also been strongly negative. These loss rates are the highest rates in the entire record. The strongly negative trends during the 1990s agree with climate studies that suggest that the period since the 1989 regime shift has been unusual. Volume response time and reference surface balance are the current suggested methods for

  17. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  18. Exploration of Uncertainty in Glacier Modelling

    NASA Technical Reports Server (NTRS)

    Thompson, David E.

    1999-01-01

    There are procedures and methods for verification of coding algebra and for validations of models and calculations that are in use in the aerospace computational fluid dynamics (CFD) community. These methods would be efficacious if used by the glacier dynamics modelling community. This paper is a presentation of some of those methods, and how they might be applied to uncertainty management supporting code verification and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modelling are discussed. After establishing sources of uncertainty and methods for code verification, the paper looks at a representative sampling of verification and validation efforts that are underway in the glacier modelling community, and establishes a context for these within overall solution quality assessment. Finally, an information architecture and interactive interface is introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment is proposed for exploring and managing sources of uncertainty in glacier modelling codes and methods, and for supporting scientific numerical exploration and verification. The details and functionality of this Environment are described based on modifications of a system already developed for CFD modelling and analysis.

  19. Geophysical imaging of alpine rock glaciers

    NASA Astrophysics Data System (ADS)

    Maurer, Hansruedi; Hauck, Christian

    Slope instabilities caused by the disappearance of ice within alpine rock glaciers are an issue of increasing concern. Design of suitable counter-measures requires detailed knowledge of the internal structures of rock glaciers, which can be obtained using geophysical methods. We examine benefits and limitations of diffusive electromagnetics, geoelectrics, seismics and ground-penetrating radar (georadar) for determining the depth and lateral variability of the active layer, the distributions of ice and water, the occurrence of shear horizons and the bedrock topography. In particular, we highlight new developments in data acquisition and data analysis that allow 2-D or even 3-D structures within rock glaciers to be imaged. After describing peculiarities associated with acquiring appropriate geophysical datasets across rock glaciers and emphasizing the importance of state-of-the-art tomographic inversion algorithms, we demonstrate the applicability of 2-D imaging techniques using two case studies of rock glaciers in the eastern Swiss Alps. We present joint interpretations of geoelectric, seismic and georadar data, appropriately constrained by information extracted from boreholes. A key conclusion of our study is that the different geophysical images are largely complementary, with each image resolving a different suite of subsurface features. Based on our results, we propose a general template for the cost-effective and reliable geophysical characterization of mountain permafrost.

  20. Distinct patterns of seasonal Greenland glacier velocity

    PubMed Central

    Moon, Twila; Joughin, Ian; Smith, Ben; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Usher, Mika

    2014-01-01

    Predicting Greenland Ice Sheet mass loss due to ice dynamics requires a complete understanding of spatiotemporal velocity fluctuations and related control mechanisms. We present a 5 year record of seasonal velocity measurements for 55 marine-terminating glaciers distributed around the ice sheet margin, along with ice-front position and runoff data sets for each glacier. Among glaciers with substantial speed variations, we find three distinct seasonal velocity patterns. One pattern indicates relatively high glacier sensitivity to ice-front position. The other two patterns are more prevalent and appear to be meltwater controlled. These patterns reveal differences in which some subglacial systems likely transition seasonally from inefficient, distributed hydrologic networks to efficient, channelized drainage, while others do not. The difference may be determined by meltwater availability, which in some regions may be influenced by perennial firn aquifers. Our results highlight the need to understand subglacial meltwater availability on an ice sheet-wide scale to predict future dynamic changes. Key Points First multi-region seasonal velocity measurements show regional differences Seasonal velocity fluctuations on most glaciers appear meltwater controlled Seasonal development of efficient subglacial drainage geographically divided PMID:25821275

  1. Mathematical challenges in glacier modeling (Invited)

    NASA Astrophysics Data System (ADS)

    jouvet, G.

    2013-12-01

    Many of Earth's glaciers are currently shrinking and it is expected that this trend will continue as global warming progresses. To virtually reproduce the evolution of glaciers and finally to predict their future, one needs to couple models of different disciplines and scales. Indeed, the slow motion of ice is described by fluid mechanics equations while the daily snow precipitations and melting are described by hydrological and climatic models. Less visible, applied mathematics are essential to run such a coupling at two different levels: by solving numerically the underlying equations and by seeking parameters using optimisation methods. This talk aims to make visible the role of mathematics in this area. I will first present a short educational film I have made for the "Mathematics of Planet Earth 2013", which is an introduction to the topic. To go further, solving the mechanical model of ice poses several mathematical challenges due to the complexity of the equations and geometries of glaciers. Then, I will describe some strategies to deal with such difficulties and design robust simulation tools. Finally, I will present some simulations of the largest glacier of the European Alps, the Aletsch glacier. As a less unexpected application, I will show how these results allowed us to make a major advance in a police investigation started in 1926.

  2. ICESat Observations of Southern Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Molnia, Bruce F.; Mitchell, Darius

    2003-01-01

    In late February and March, 2003, the Ice, Cloud, and land Elevation Satellite (ICESat) measured ice and land elevations along profiles across southern Alaska. During this initial data acquisition stage ICESat observations were made on 8-day repeat tracks to enable calibration and validation of the ICESat data products. Each profile consists of a series of single point values derived from centroid elevations of an $\\approx$70 m diameter laser footprint. The points are s4pakated by $\\approx$172 m along track. Data siets of 8-day observations (an ascending and descending ground track) crossed the Bering and Malaspina Glacier. Following its 1993--1995 surge; the Bering Glacier has undergone major terminus retreat as well as ike thinning in the abtation zone. During the later part of the 20th century, parts of the Malaspina thinned by about 1 m/yr. The multiple observation profiles across the Bering and Malaspina piedmont lobes obtained in February/March are being geolocated on Landsat images and the elevation profiles will be used for a number o scientific objectives. Based on our simulations of ICESat performance over the varied ice surface of the Jakobshavn Glacier of GReenland, 2003, we expect to measure annual, and possibly seasonal, ice elevation changes on the large Alaskan glaciers. Using elevation data obtained from a second laser, we plan to estimate ice elevation changes on the Bering Glacier between March and October 2003.

  3. Improving Mass Balance Modeling of Benchmark Glaciers

    NASA Astrophysics Data System (ADS)

    van Beusekom, A. E.; March, R. S.; O'Neel, S.

    2009-12-01

    The USGS monitors long-term glacier mass balance at three benchmark glaciers in different climate regimes. The coastal and continental glaciers are represented by Wolverine and Gulkana Glaciers in Alaska, respectively. Field measurements began in 1966 and continue. We have reanalyzed the published balance time series with more modern methods and recomputed reference surface and conventional balances. Addition of the most recent data shows a continuing trend of mass loss. We compare the updated balances to the previously accepted balances and discuss differences. Not all balance quantities can be determined from the field measurements. For surface processes, we model missing information with an improved degree-day model. Degree-day models predict ablation from the sum of daily mean temperatures and an empirical degree-day factor. We modernize the traditional degree-day model as well as derive new degree-day factors in an effort to closer match the balance time series and thus better predict the future state of the benchmark glaciers. For subsurface processes, we model the refreezing of meltwater for internal accumulation. We examine the sensitivity of the balance time series to the subsurface process of internal accumulation, with the goal of determining the best way to include internal accumulation into balance estimates.

  4. Calibration of a distributed ablation model for Zhadang Glacier, Tibetan Plateau,using a time lapse camera system

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Huintjes, E.; Bhattacharya, A.; Sauter, T.; Yang, W.; Bolch, T.; Pieczonka, T.; Maussion, F.; Kang, S.; Buchroithner, M.; Scherer, D.; Yao, T.

    2011-12-01

    A 1-dimensional energy balance model for calculation of snow melt including sub-surface refreezing has been applied in a simplified version for distributed ablation modeling on Zhadang Glacier, Nyainqentanglha Range, Tibetan Plateau. The model includes a distributed computation of short-wave radiation on a digital elevation model. Reduction of short-wave radiation due to cloud cover has been accounted for by comparing calculated radiation against measurements at an automatic weather station (AWS) on the glacier. Air temperature was distributed using the lapse rate as derived from AWS measurements in different altitudes along the Zhadang Valley. Specific humidity and wind speed were assumed to be spatially invariant. Also, ice temperature in spring at 10 m depth was assumed to be equal all over the glacier. In the same way, accumulation as measured at the AWS using an ultra-sonic ranging system was assumed to be the same for the whole glacier surface. Snow accumulation was corrected using daily imagery obtained from an automatic time lapse camera system installed outside the glacier. The same time series of pictures allows for detailed spatial and temporal observation of the transient snow line. Gaps in AWS data are filled by downscaling of the output of WRF numerical atmospheric model output to the AWS location on the glacier. The runs of the ablation model are initialized using spatially distributed snow depth measured at a series of ablation stakes on the glacier. From the model results the location of the transient snow line can be precisely located. The findings are compared to the transient snow line as derived from the picture series. Besides the possibility of post-calibrating the spatially distributed ablation model, the results of this approach also allow for identifying further relevant spatial processes that are not yet considered.

  5. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  6. Columbia Glacier, Alaska: changes in velocity 1977-1986

    USGS Publications Warehouse

    Krimmel, R.M.; Vaughn, B.H.

    1987-01-01

    The Columbia Glacier, a grounded, iceberg-calving tidewater glacier near Valdez, Alaska, began to retreat about 1977. Drastic retreat occurred in 1984, and by early 1986, retreat amounted to 2km. The glacier has thinned more than 100m since 1974 at a point 4km behind the 1974 terminus position. Between 1977 and 1985 the lower glacier ice velocity increased from 3-8m/d to 10-15m/d. -from Authors

  7. Earthshots: Satellite images of environmental change – Petermann Glacier, Greenland

    USGS Publications Warehouse

    Adamson, Thomas

    2016-01-01

    This calving is normal, but it’s worth watching Petermann and other Greenland glaciers closely. Petermann is one of the major marine-terminating glaciers of Greenland. Ice loss from the Greenland Ice Sheet has increased recently. An article in Nature concluded that climate change may cause Petermann and other Greenland glaciers to contribute to sea level rise. Landsat helps glaciologists keep a close eye on this remote but significant glacier.

  8. Modeled climate-induced glacier change in Glacier National Park, 1850-2100

    USGS Publications Warehouse

    Hall, M.H.P.; Fagre, D.B.

    2003-01-01

    The glaciers in the Blackfoot-Jackson Glacier Basin of Glacier National Park, Montana, decreased in area from 21.6 square kilometers (km2) in 1850 to 7.4 km2 in 1979. Over this same period global temperatures increased by 0.45??C (?? 0. 15??C). We analyzed the climatic causes and ecological consequences of glacier retreat by creating spatially explicit models of the creation and ablation of glaciers and of the response of vegetation to climate change. We determined the melt rate and spatial distribution of glaciers under two possible future climate scenarios, one based on carbon dioxide-induced global warming and the other on a linear temperature extrapolation. Under the former scenario, all glaciers in the basin will disappear by the year 2030, despite predicted increases in precipitation; under the latter, melting is slower. Using a second model, we analyzed vegetation responses to variations in soil moisture and increasing temperature in a complex alpine landscape and predicted where plant communities are likely to be located as conditions change.

  9. The differing biogeochemical and microbial signatures of glaciers and rock glaciers

    NASA Astrophysics Data System (ADS)

    Fegel, Timothy S.; Baron, Jill S.; Fountain, Andrew G.; Johnson, Gunnar F.; Hall, Ed K.

    2016-03-01

    Glaciers and rock glaciers supply water and bioavailable nutrients to headwater mountain lakes and streams across all regions of the American West. Here we present a comparative study of the metal, nutrient, and microbial characteristics of glacial and rock glacial influence on headwater ecosystems in three mountain ranges of the contiguous U.S.: the Cascade Mountains, Rocky Mountains, and Sierra Nevada. Several meltwater characteristics (water temperature, conductivity, pH, metals, nutrients, complexity of dissolved organic matter (DOM), and bacterial richness and diversity) differed significantly between glacier and rock glacier meltwaters, while other characteristics (Ca2+, Fe3+, SiO2 concentrations, reactive nitrogen, and microbial processing of DOM) showed distinct trends between mountain ranges regardless of meltwater source. Some characteristics were affected both by glacier type and mountain range (e.g., temperature, ammonium (NH4+) and nitrate (NO3-) concentrations, and bacterial diversity). Due to the ubiquity of rock glaciers and the accelerating loss of the low-latitude glaciers, our results point to the important and changing influence that these frozen features place on headwater ecosystems.

  10. Impact of debris cover on glacier ablation and atmosphere-glacier feedbacks in the Karakoram

    NASA Astrophysics Data System (ADS)

    Collier, E.; Maussion, F.; Nicholson, L. I.; Mölg, T.; Immerzeel, W. W.; Bush, A. B. G.

    2015-08-01

    The Karakoram range of the Hindu-Kush Himalaya is characterized by both extensive glaciation and a widespread prevalence of surficial debris cover on the glaciers. Surface debris exerts a strong control on glacier surface-energy and mass fluxes and, by modifying surface boundary conditions, has the potential to alter atmosphere-glacier feedbacks. To date, the influence of debris on Karakoram glaciers has only been directly assessed by a small number of glaciological measurements over short periods. Here, we include supraglacial debris in a high-resolution, interactively coupled atmosphere-glacier modeling system. To investigate glaciological and meteorological changes that arise due to the presence of debris, we perform two simulations using the coupled model from 1 May to 1 October 2004: one that treats all glacier surfaces as debris-free and one that introduces a simplified specification for the debris thickness. The basin-averaged impact of debris is a reduction in ablation of ~ 14 %, although the difference exceeds 5 m w.e. on the lowest-altitude glacier tongues. The relatively modest reduction in basin-mean mass loss results in part from non-negligible sub-debris melt rates under thicker covers and from compensating increases in melt under thinner debris, and may help to explain the lack of distinct differences in recent elevation changes between clean and debris-covered ice. The presence of debris also strongly alters the surface boundary condition and thus heat exchanges with the atmosphere; near-surface meteorological fields at lower elevations and their vertical gradients; and the atmospheric boundary layer development. These findings are relevant for glacio-hydrological studies on debris-covered glaciers and contribute towards an improved understanding of glacier behavior in the Karakoram.

  11. Malaspina Glacier, Alaska, Anaglyph with Landsat Overlay

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This anaglyph view of Malaspina Glacier in southeastern Alaska was created from a Landsat satellite image and an elevation model generated by the Shuttle Radar Topography Mission (SRTM). Malaspina Glacier is considered the classic example of a piedmont glacier. Piedmont glaciers occur where valley glaciers exit a mountain range onto broad lowlands, are no longer laterally confined, and spread to become wide lobes. Malaspina Glacier is actually a compound glacier, formed by the merger of several valley glaciers, the most prominent of which seen here are Agassiz Glacier (left) and Seward Glacier (right). In total, Malaspina Glacier is up to 65 kilometers (40 miles) wide and extends up to 45 kilometers (28 miles) from the mountain front nearly to the sea.

    Glaciers erode rocks, carry them down slope, and deposit them at the edge of the melting ice, typically in elongated piles called moraines. The moraine patterns at Malaspina Glacier are quite spectacular in that they have huge contortions that result from the glacier crinkling as it gets pushed from behind by the faster-moving valley glaciers.

    Numerous other features of the glaciers and the adjacent terrain are clearly seen when viewing this image at full resolution. The series of tonal arcs on Agassiz Glacier's extension onto the piedmont are called 'ogives.' These arcs are believed to be seasonal features created by deformation of the glacier as it passes over bedrock irregularities at differing speeds through the year. Assuming one light-and-dark ogive pair per year, the rate of motion of the glacial ice can be estimated (in this case, about 200 meters per year where the ogives are most prominent). Just to the west, moraine deposits abut the eroded bedrock terrain, forming a natural dam that has created a lake. Near the northwest corner of the scene, a recent landslide has deposited rock debris atop a small glacier. Sinkholes are common in many areas of the moraine deposits. The sinkholes form when

  12. 36 CFR 7.3 - Glacier National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Glacier National Park. 7.3... REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.3 Glacier National Park. (a) Fishing. (1) Fishing... food, drink, or lodging for sale may be operated on any privately owned lands within Glacier...

  13. Contrasting responses of Central Asian rock glaciers to global warming

    PubMed Central

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers – and glaciers elsewhere – to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  14. Contrasting responses of Central Asian rock glaciers to global warming.

    PubMed

    Sorg, Annina; Kääb, Andreas; Roesch, Andrea; Bigler, Christof; Stoffel, Markus

    2015-01-01

    While the responses of Tien Shan glaciers--and glaciers elsewhere--to climatic changes are becoming increasingly well understood, this is less the case for permafrost in general and for rock glaciers in particular. We use a novel approach to describe the climate sensitivity of rock glaciers and to reconstruct periods of high and low rock glacier activity in the Tien Shan since 1895. Using more than 1500 growth anomalies from 280 trees growing on rock glacier bodies, repeat aerial photography from Soviet archives and high-resolution satellite imagery, we present here the world's longest record of rock glacier movements. We also demonstrate that the rock glaciers exhibit synchronous periods of activity at decadal timescales. Despite the complex energy-balance processes on rock glaciers, periods of enhanced activity coincide with warm summers, and the annual mass balance of Tuyuksu glacier fluctuates asynchronously with rock glacier activity. At multi-decadal timescales, however, the investigated rock glaciers exhibit site-specific trends reflecting different stages of inactivation, seemingly in response to the strong increase in air temperature since the 1970s. PMID:25657095

  15. Controls on microalgal community structures in cryoconite holes upon high-Arctic glaciers, Svalbard

    NASA Astrophysics Data System (ADS)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2016-02-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances but rather a positive correlation with eukaryotic microalgae. Shared environmental preferences and a positive effect of grazing are the proposed mechanisms to explain these correlations. Most microalgae found in this study form colonies (< 10 cells, or > 25 µm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in redundancy (RDA) and principal component (PCA) analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of nutrient input by bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting

  16. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers, Svalbard

    NASA Astrophysics Data System (ADS)

    Vonnahme, T. R.; Devetter, M.; Žárský, J. D.; Šabacká, M.; Elster, J.

    2015-07-01

    Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct cylindrical holes filled with meltwater and sediments are considered as hot spots for microbial life. The present paper addresses possible biological interactions within the community of prokaryotic cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, additional to their environmental controls. Svalbard glaciers with substantial allochthonous input of material from local sources reveal high microalgal densities. Small valley glaciers with high sediment coverages and high impact of birds show high biomasses and support a high biological diversity. Invertebrate grazer densities do not show any significant negative correlation with microalgal abundances, but a positive correlation with eukaryotic microalgae. Most microalgae found in this study form large colonies (< 10 cells, or > 25 μm), which may protect them against invertebrate grazing. This finding rather indicates grazing as a positive control on eukaryotic microalgae by nutrient recycling. Density differences between the eukaryotic microalgae and prokaryotic cyanobacteria and their high distinction in RDA and PCA analyses indicate that these two groups are in strong contrast. Eukaryotic microalgae occurred mainly in unstable cryoconite holes with high sediment loads, high N : P ratios, and a high impact of bird guano, as a proxy for nutrients. In these environments autochthonous nitrogen fixation appears to be negligible. Selective wind transport of Oscillatoriales via soil and dust particles is proposed to explain their dominance in cryoconites further away from the glacier margins. We propose that, for the studied glaciers, nutrient levels related to recycling of limiting nutrients is the main factor driving variation in the community structure of microalgae and grazers.

  17. Glacial changes and glacier mass balance at Gran Campo Nevado, Chile during recent decades

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Schnirch, M.; Kilian, R.; Acuña, C.; Casassa, G.

    2003-04-01

    Within the framework of the program Global Land Ice Measurements from Space (GLIMS) a glacier inventory of the Peninsula Muñoz Gamero in the southernmost Andes of Chile (53°S) has been generated using aerial photopgrahy and Landsat Thematic Mapper imagery. The Peninsula is partly covered by the ice cap of the Gran Campo Nevado (GCN), including several outlet glaciers plus some minor glaciers and firn fields. All together the ice covered areas sum up to 260 km2. GCN forms the only major ice body between the Southern Patagonia Icefield and the Strait of Magallan. Its almost unique location in a zone affected year-round by the westerlies makes it a region of key interest in terms of glacier and climate change studies of the west-wind zone of the Southern Hemisphere. A digital elevation model (DEM) was created for the area, using aerial imagery from 1942, 1984, and 1998 and a Chilean topographic map (1: 100 000). All information was incorporated into a GIS together with satellite imagery from 1986 and 2001. Delineation of glacier inflow from the central plateau of Gran Campo Nevado was accomplished using an automatic module for watershed delineation within the GIS. The GIS served to outline the extent of the present glaciation of the peninsula, as well as to evaluate the derived historic information. The comparison of historic and recent imagery reveals a dramatic glacier retreat during the last 60 years. Some of the outlet glaciers lost more than 20% of their total area during this period. In February and March 2000 a automatic weather station (AWS) was run on a nameless outlet glacier, inofficially Glaciar Lengua, of the Gran Campo Nevado Ice Cap. From the computed energy balance, it was possible to derive degree-day factors for the Glaciar Lengua. With data from the nearby AWS at fjord coast (Bahia Bahamondes) we computed ablation for the summer seasons of 1999/2000, 2000/2001 and 2001/2002. Ablation at 450 m a.s.l. sums up to about 7 m in 1999/2000, 5.5 m in 2000

  18. Ocean and glaciers interactions in Svalbard area

    NASA Astrophysics Data System (ADS)

    Walczowski, Waldemar; Błaszczyk, Małgorzata; Wawrzyniak, Tomasz; Beszczyńska-Möller, Agnieszka

    2016-04-01

    Arctic fjords are a link between land and ocean. The inshore boundary of the fjords system is usually dominated by the tidewater glaciers and seasonal freshwater input while its offshore boundary is strongly influenced by oceanic waters. Improved understanding of the fjords-ocean exchange and processes within Arctic fjords is of a highest importance because their response to atmospheric, oceanic and glacial variability provides a key to understand the past and to forecast the future of the high latitude glaciers and Arctic climate. Rapidly changed Arctic climate requires multidisciplinary and complex investigations of the basic climate components and interactions between them. The aim of the Polish-Norwegian project 'Arctic climate system study of ocean, sea ice and glaciers interactions in Svalbard area' (AWAKE-2) is to understand the interactions between the ocean, atmosphere and cryosphere. The main oceanic heat source in Svalbard region is the West Spitsbergen Current consisting of multi-branch, northward flow of warm, Atlantic origin water (AW). During its transit through the Nordic Seas, AW releases a large amount of heat to the atmosphere. When entering the Western Svalbard fjords, AW modifies hydrographic conditions, reduces winter ice cover and directly influences tidewater glaciers. An impact of the AW variability on atmosphere and sea ice is clearly visible with strong correlations between AW properties and air temperature or sea ice coverage. For tidewater glaciers these effects can be recognized, but correlations are weaker due to different processes that influence the intensity of glaciers melting and calving. The dedicated, multidisciplinary approach was adopted to achieve the AWAKE-2 project's aims by carrying out the coordinated meteorological, oceanographic, glaciological and geophysical observations in the Hornsund fjord, the adjacent shelf and ocean.

  19. Comparative metagenome analysis of an Alaskan glacier.

    PubMed

    Choudhari, Sulbha; Lohia, Ruchi; Grigoriev, Andrey

    2014-04-01

    The temperature in the Arctic region has been increasing in the recent past accompanied by melting of its glaciers. We took a snapshot of the current microbial inhabitation of an Alaskan glacier (which can be considered as one of the simplest possible ecosystems) by using metagenomic sequencing of 16S rRNA recovered from ice/snow samples. Somewhat contrary to our expectations and earlier estimates, a rich and diverse microbial population of more than 2,500 species was revealed including several species of Archaea that has been identified for the first time in the glaciers of the Northern hemisphere. The most prominent bacterial groups found were Proteobacteria, Bacteroidetes, and Firmicutes. Firmicutes were not reported in large numbers in a previously studied Alpine glacier but were dominant in an Antarctic subglacial lake. Representatives of Cyanobacteria, Actinobacteria and Planctomycetes were among the most numerous, likely reflecting the dependence of the ecosystem on the energy obtained through photosynthesis and close links with the microbial community of the soil. Principal component analysis (PCA) of nucleotide word frequency revealed distinct sequence clusters for different taxonomic groups in the Alaskan glacier community and separate clusters for the glacial communities from other regions of the world. Comparative analysis of the community composition and bacterial diversity present in the Byron glacier in Alaska with other environments showed larger overlap with an Arctic soil than with a high Arctic lake, indicating patterns of community exchange and suggesting that these bacteria may play an important role in soil development during glacial retreat. PMID:24712530

  20. Columbia Glacier in 1986; 800 meters retreat

    USGS Publications Warehouse

    Krimmel, R.M.

    1987-01-01

    Columbia Glacier, in Prince William Sound, Alaska, continued its rapid retreat in 1986, with a retreat of 800 m. Average velocity of the lower portion of the glacier, 10 September 1986 to 26 January 1987, was three km/yr, or about one-half of the velocity during similar periods for the previous three years. This reduced velocity is a new development in the progression of the retreat, and if the calving rate follows the pattern of previous years, will result in continued retreat. (Author 's abstract)

  1. A multicomponent coupled model of glacier hydrology

    NASA Astrophysics Data System (ADS)

    Flowers, Gwenn Elizabeth

    Multiple lines of evidence suggest a causal link between subglacial hydrology and phenomena such as fast-flowing ice. This evidence includes a measured correlation between water under alpine glaciers and their motion, the presence of saturated sediment beneath Antaxctic ice streams, and geologic signatures of enhanced paleo-ice flow over deformable substrates. The complexity of the glacier bed as a three-component mixture presents an obstacle to unraveling these conundra. Inadequate representations of hydrology, in part, prevent us from closing the gap between empirical descriptions and a comprehensive consistent framework for understanding the dynamics of glacierized systems. I have developed a distributed numerical model that solves equations governing glacier surface runoff, englacial water transport, subglacial drainage, and subsurface groundwater flow. Ablation and precipitation drive the surface model through a temperature-index parameterization. Water is permitted to flow over and off the glacier, or to the bed through a system of crevasses, pipes, and fractures. A macroporous sediment horizon transports subglacial water to the ice margin or to an underlying aquifer. Governing equations are derived from the law of mass conservation and are expressed as a balance between the internal redistribution of water and external sources. Each of the four model components is represented as a two-dimensional, vertically-integrated layer that communicates with its neighbors through water exchange. Stacked together, these layers approximate a three-dimensional system. I tailor the model to Trapridge Glacier, where digital maps of the surface and bed have been derived from ice-penetrating radar data. Observations of subglacial water pressure provide additional constraints on model parameters and a basis for comparison of simulations with real data. Three classical idealizations of glacier geometry are used for simple model experiments. Equilibrium tests emphasize geometric

  2. Glacier surge after ice shelf collapse.

    PubMed

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-01

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves. PMID:12624263

  3. Glacier fluctuations in the Kenai Fjords, Alaska, U.S.A.: An evaluation of controls on Iceberg-calving glaciers

    SciTech Connect

    Wiles, G.C.; Calkin, P.E.; Post, A.

    1995-08-01

    The histories of four iceberg-calving outlet-glacier systems in the Kenai Fjords National Park underscore the importance of fiord depth, sediment supply, and fiord geometry on glacier stability. These parameters, in turn, limit the reliability of calving glacier chronologies as records of climatic change. Tree-ring analysis together with radiocarbon dating show that the Northwestern and McCarty glaciers, with large drainage basins, were advancing in concert with nearby land-terminating glaciers about A.D. 600. After an interval of retreat and possible nonclimatically induced extension during the Medieval Warm Period, these ice margins advanced again through the Little Ice Age and then retreated synchronously with the surrounding land-terminating glaciers about A.D. 1900. In contrast, Holgate and Aialik glaciers, with deeper fiords and smaller basins, retreated about 300 yr earlier. Reconstructions of Little Ice Age glaciers suggest that equilibrium-line altitudes of Northwestern and McCarty glaciers were, respectively, 270 and 500 m lower than now. Furthermore, the reconstructions show that these two glaciers were climatically sensitive when at their terminal moranies. However, with ice margins at their present recessional positions and accumulation area ratios between 0.8 and 0.9, only McCarty Glacier shows evidence of advance. Aialik and Holgate glaciers were climatically insensitive during the Little Ice Age maxima and remain insensitive to climate. 40 refs., 7 figs., 2 tabs.

  4. Surface characteristics and evolution of debris covered glaciers

    NASA Astrophysics Data System (ADS)

    Mölg, Nico; Vieli, Andreas; Bolch, Tobias; Bauder, Andreas; Bhattacharya, Atanu

    2016-04-01

    Global climate change has led to increasing glacier retreat in most parts of the world. However, many heavily debris-covered glaciers have shown much smaller recession rates than their clean-ice neighbours. This can be attributed to the insulation effect of the supraglacial debris. Remote-sensing based investigations revealed that recent mass balances of debris-covered glaciers are equally negative. This fact is partly due to enhanced melting at supra-glacial lakes and ice cliffs but can also be caused by reduced mass flux. In this context, insufficient process understanding constitutes a major challenge for large scale glacier change assessment and modelling. In this project, we aim at better understanding the evolution of glaciers in connection with changes in supra-glacial debris coverage. It is performed on Zmutt Glacier in Matter valley in Switzerland and on Gangotri Glacier in Garwhal Himalaya in India. Changes in glacier length, area, debris coverage, and surface elevation were compiled based on topographic maps, oblique photos, aerial and satellite orthoimages, digital terrain models (DTMs), and glacier monitoring data for a 50 (Gangotri) and 120 (Zmutt) year period, respectively. The subsequent analysis revealed that Zmutt Glacier has been in a slow but almost continuous retreating state since the end of the 19th century and showed a clear reduction in glacier area and volume. Similarly, Gangotri Glacier has retreated and, to a smaller degree, lost volume. However, the change in glacier length and area is clearly smaller than for other nearby, less debris-covered or debris-free glaciers. This fact is attributed to the larger debris-covered area that has steadily increased. Further in the project, this data will serve as an important input and validation for the envisaged 3D flow modelling and, hence, will contribute to the understanding of the development of glaciers and debris-covered ice in a period of fast climatic changes.

  5. Glacier area and length changes in Norway from repeat inventories

    NASA Astrophysics Data System (ADS)

    Winsvold, S. H.; Andreassen, L. M.; Kienholz, C.

    2014-06-01

    In this study, we assess glacier area and length changes in mainland Norway from repeat Landsat TM/ETM+ derived inventories and digitized topographic maps. The multi-temporal glacier inventory consists of glacier outlines from within three time ranges: 1947 to 1985 (GIn50), 1988 to 1997 (GI1990), and 1999 to 2006 (GI2000). For the northernmost regions, we include an additional inventory (GI1900), based on historic maps surveyed between 1895 to 1907. Area and length changes are assessed per glacier unit, for 36 subregions, and for three main parts of Norway: southern, central and northern Norway. The results show a decrease of the glacierized area from 2994 km2 in GIn50, to 2668 km2 in GI2000 (totally 2722 glacier units), corresponding to an area reduction of -326 km2, or -11% of the initial GIn50 area. This is equivalent to an average change rate of -11 km2 a-1 over the past 30 years. The average length change for the full epoch (within GIn50 and GI2000) is -240 m, corresponding to an average length change rate of -8 m a-1. Overall, the comparison reveals both area and length reduction as a general pattern, even though some glaciers have advanced. The three northernmost glacier regions show the strongest retreat rates, whereas the central part of Norway shows the lowest change rates. Glacier area and length changes indicate that glaciers in maritime areas in southern Norway have retreated more than glaciers in the interior, and glaciers in the north have retreated more than southern glaciers. These observed spatial trends in glacier change are related to a combination of several geographical factors like glacier geometry and elevation, and other climatic aspects, such as continentality and the North Atlantic Oscillation.

  6. Impact of sublimation losses in the mass balance of glaciers in semi-arid mountain regions

    NASA Astrophysics Data System (ADS)

    Ayala, Alvaro; Pellicciotti, Francesca; Burlando, Paolo; MacDonell, Shelley; McPhee, James

    2016-04-01

    Glaciers in semiarid mountain regions may lose an important part of their winter snow accumulation through sublimation processes that are enhanced by the high-elevation, intense radiation and dry atmosphere of these environments. As glaciers in these regions secure freshwater resources to lower valleys during summer and drought periods, it is important to advance in a detailed quantification of their sublimation losses. However, logistical concerns and complex meteorological features make the measuring and modelling of glacier mass balances a difficult task. In this study, we estimated the spring-summer mass balances of Tapado and Juncal Norte glaciers in the semiarid Andes of north-central Chile by running a distributed energy balance model that accounts for melt, refreezing and sublimation from the surface and blowing snow. Meteorological input data were available from on-glacier Automatic Weather Stations (AWS) that were installed during the ablation season of years 2005-06, 2008-09, 2013-14 and 2014-15. Snow pits, ablation stakes and a time-lapse camera that provided surface albedo were also available. Distributed air temperature and wind speed were dynamically downscaled from NASA MERRA reanalysis using the software WINDSIM and validated against the data from the AWSs. The rest of the meteorological variables were distributed using statistical relations with air temperature derived from the AWSs data. Initial snow conditions were estimated using satellite images and distributed manual snow depth measurements. Preliminary results show that total ablation diminishes with elevation and that, during the early ablation season (October-November), melt is the main ablation component below 4500 m with sublimation dominating the ablation above this elevation. Above 4500 m an important fraction of meltwater refreezes during night. As the ablation season advances (December-February), melt extends to higher elevations, refreezing plays a smaller role and sublimation is

  7. Contrasting response of South Greenland glaciers to recent climatic change

    SciTech Connect

    Warren, C.R.; Glasser, N.F. )

    1992-05-01

    A unique geographical configuration of glaciers exists in the Narsarsuaq district of South Greenland. Two large outlet glaciers divide into seven distributaries, such that each glacier system has land-terminating, tidewater-calving, and fresh-water-calving termini. Despite a similar climatic regime, these seven glaciers have exhibited strongly contrasting terminal behavior in historical time, as shown by historical records, aerial photographs, and fieldwork in 1989. The behavior of the calving glaciers cannot be accounted for with reference solely to climatic parameters. The combination of iceberg calving dynamics and topographic control has partially decoupled them from climatic forcing such that their oscillations relate more closely to glaciodynamic than glacioclimatic factors.

  8. Sensitivity of glaciers and small ice caps to greenhouse warming

    SciTech Connect

    Oerlemans, J.; Fortuin, J.P.F. )

    1992-10-02

    Recent field programs on glaciers have supplied information that makes simulation of glacier mass balance with meteorological models meaningful. An estimate of world-wide glacier sensitivity based on a modeling study of 12 selected glaciers situated in widely differing climatic regimes shows that for a uniform 1 K warming the area-weighted glacier mass balance will decrease by 0.40 meter per year. This corresponds to a sea-level rise of 0.58 millimeter per year, a value significantly less than earlier estimates.

  9. Simulating the climatic mass balance of Svalbard glaciers from 2003 to 2013 with a high-resolution coupled atmosphere-glacier model

    NASA Astrophysics Data System (ADS)

    Aas, K. S.; Dunse, T.; Collier, E.; Schuler, T. V.; Berntsen, T. K.; Kohler, J.; Luks, B.

    2015-10-01

    In this study we simulate the climatic mass balance of Svalbard glaciers with a coupled atmosphere-glacier model with 3 km grid spacing, from September 2003 to September 2013. We find a mean specific net mass balance of -167 mm w.e. yr-1, corresponding to a mean annual mass loss of about 5.7 Gt, with large interannual variability. Our results are compared with a comprehensive set of mass balance, meteorological and satellite measurements. Model temperature biases of 0.17 and -1.9 °C are found at two glacier automatic weather station sites. Simulated climatic mass balance is mostly within about 0.1 m w.e. yr-1 of stake measurements, and simulated winter accumulation at the Austfonna ice cap shows mean absolute errors of 0.05 and 0.06 m w.e. yr-1 when compared to radar-derived values for the selected years 2004 and 2006. Comparison of surface height changes from 2003 to 2008 from model, and satellite altimetry reveals good agreement in both mean values and regional differences. The largest deviations from observations are found for winter accumulation at Hansbreen (up to around 1 m w.e. yr-1), a site where sub-grid topography and wind redistribution of snow are important factors. Comparison with simulations using a 9 km grid spacing reveal considerable differences on regional and local scales. In addition, the 3 km grid spacing allows for a much more detailed comparison with observations than what is possible with a 9 km grid spacing. Further decreasing the grid spacing to 1 km appears to be less significant, although in general precipitation amounts increase with resolution. Altogether, the model compares well with observations and offers possibilities for studying glacier climatic mass balance on Svalbard both historically as well as based on climate projections.

  10. Exploiting SENTINEL-1 Amplitude Data for Glacier Surface Velocity Field Measurements: Feasibility Demonstration on Baltoro Glacier

    NASA Astrophysics Data System (ADS)

    Nascetti, A.; Nocchi, F.; Camplani, A.; Di Rico, C.; Crespi, M.

    2016-06-01

    The leading idea of this work is to continuously retrieve glaciers surface velocity through SAR imagery, in particular using the amplitude data from the new ESA satellite sensor Sentinel-1 imagery. These imagery key aspects are the free access policy, the very short revisit time (down to 6 days with the launch of the Sentinel-1B satellite) and the high amplitude resolution (up to 5 m). In order to verify the reliability of the proposed approach, a first experiment has been performed using Sentinel-1 imagery acquired over the Karakoram mountain range (North Pakistan) and Baltoro and other three glaciers have been investigated. During this study, a stack of 11 images acquired in the period from October 2014 to September 2015 has been used in order to investigate the potentialities of the Sentinel-1 SAR sensor to retrieve the glacier surface velocity every month. The aim of this test was to measure the glacier surface velocity between each subsequent pair, in order to produce a time series of the surface velocity fields along the investigated period. The necessary coregistration procedure between the images has been performed and subsequently the glaciers areas have been sampled using a regular grid with a 250 × 250 meters posting. Finally the surface velocity field has been estimated, for each image pair, using a template matching procedure, and an outlier filtering procedure based on the signal to noise ratio values has been applied, in order to exclude from the analysis unreliable points. The achieved velocity values range from 10 to 25 meters/month and they are coherent to those obtained in previous studies carried out on the same glaciers and the results highlight that it is possible to have a continuous update of the glacier surface velocity field through free Sentinel-1 imagery, that could be very useful to investigate the seasonal effects on the glaciers fluid-dynamics.

  11. Malaspina Glacier: a modern analog to the Laurentide Glacier in New England

    SciTech Connect

    Gustavson, T.C.; Boothroyd, J.C.

    1985-01-01

    The land-based temperate Malaspina Glacier is a partial analog to the late Wisconsinan Laurentide Ice Sheet that occupied New England and adjacent areas. The Malaspina occupies a bedrock basin similar to basins occupied by the margin of the Laurentide Ice Sheet. Ice lobes of the Malaspina are similar in size to end moraine lobes in southern New England and Long Island,New York. Estimated ice temperature, ablation rates, surface slopes and meltwater discharge per unit of surface area for the Laurentide Ice Sheet are similar to those for the Malaspina Glacier. In a simple hydrologic-fluvial model for the Malaspina Glacier meltwater moves towards the glacier bed and down-glacier along intercrystalline pathways, crevasses and moulins, and a series of tunnels. Regolith and bedrock at the glacier floor, which are eroded and transported by subglacial and englacial streams, are the sources of essentially all fluvio-lacustrine sediment on the Malaspina Foreland. Supraglacial eskers containing coarse gravels occur as much as 100 m above the glacier bed and are evidence that bedload can be lifted hydraulically. Subordinant amounts of sediment are contributed to outwash by small surface streams draining the ice margin. By analogy a similar hydrologic-fluvial system existed along the southeastern margin of the Laurentide Ice Sheet. Subglacial regolith and bedrock eroded from beneath the Laurentide Ice Sheet by meltwater was also the source of most glaciofluvial and glaciolacustrine deposits in southern New England, not sediment carried to the surface of the ice sheet along shear planes and washed off the glacier by meltwater.

  12. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Kjeldsen, K. K.; Kjær, K. H.; Bevan, S.; Luckman, A.; Aschwanden, A.; Bjørk, A. A.; Korsgaard, N. J.; Box, J. E.; van den Broeke, M.; van Dam, T. M.; Fitzner, A.

    2014-08-01

    Observations over the past decade show significant ice loss associated with the speed-up of glaciers in southeast Greenland from 2003, followed by a deceleration from 2006. These short-term, episodic, dynamic perturbations have a major impact on the mass balance on the decadal scale. To improve the projection of future sea level rise, a long-term data record that reveals the mass balance beyond such episodic events is required. Here, we extend the observational record of marginal thinning of Helheim and Kangerdlugssuaq glaciers from 10 to more than 80 years. We show that, although the frontal portion of Helheim Glacier thinned by more than 100 m between 2003 and 2006, it thickened by more than 50 m during the previous two decades. In contrast, Kangerdlugssuaq Glacier underwent minor thinning of 40-50 m from 1981 to 1998 and major thinning of more than 100 m after 2003. Extending the record back to the end of the Little Ice Age (prior to 1930) shows no thinning of Helheim Glacier from its maximum extent during the Little Ice Age to 1981, while Kangerdlugssuaq Glacier underwent substantial thinning of 230 to 265 m. Comparison of sub-surface water temperature anomalies and variations in air temperature to records of thickness and velocity change suggest that both glaciers are highly sensitive to short-term atmospheric and ocean forcing, and respond very quickly to small fluctuations. On century timescales, however, multiple external parameters (e.g. outlet glacier shape) may dominate the mass change. These findings suggest that special care must be taken in the projection of future dynamic ice loss.

  13. Long-term linkages between glaciers, permafrost and hydrology at two glacierized watersheds in Alaska

    NASA Astrophysics Data System (ADS)

    Gaedeke, A.; Liljedahl, A. K.; Gatesman, T.; Campbell, S. W.; Hock, R.; Oneel, S.

    2015-12-01

    Climate warming is expected to have considerable impact on the regional water balance of high latitude Arctic and sub-Arctic glacerized watersheds. In this study we combine field observations and the physically based Water Balance Simulation Model WaSiM to refine our understanding of the linkages between glaciers, permafrost and hydrology at two nearby basins with contrasting precipitation regimes: Jarvis Cr. watershed (630 km2) on the north (rain-shadow) side of Eastern Alaska Range and the south facing Phelan Cr. (32 km2), which include the US Geological Survey benchmark site Gulkana Glacier. Both are characterized by a semi-arid climate and are sub-watersheds of the Tanana River basin (12,000 km2). Our research questions include: How has glacier water storage and release varied in the past and how are they expected to change in the future? And what are the subsequent effects on lowland runoff and regional groundwater recharge? Our analyses show i) an increase in air temperature and summer warmth index (the sum of all mean monthly air temperature above 0 °C) in recent decades and ii) a continued negative glacier mass balance. Our findings suggest that, on the larger spatial scale (Tanana River basin), the reduced glacier coverage and increased glacier wastage has, in combination with limited changes in precipitation, lead to (i) increased mean annual and (ii) late winter (March) runoff. We postulate that this is due to increased groundwater recharge, which has been fueled by the 20% reduction in glacier coverage of the Tanana River basin. Here we aim to assess the combined effect of climate change, glacier shrinkage and thawing permafrost on the regional sub-arctic mountain- to lowland hydrologic system, which may transition into a regime with less surface and more subsurface water availability.

  14. Implications of Glacier Volume Change for Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; O'Neel, S.; Fellman, J.; Bidlack, A.; Arendt, A. A.; Arimitsu, M.; Spencer, R. G.

    2015-12-01

    Changes in climate are forcing complex glaciological responses that can be transmitted to downstream ecosystems via glacier runoff. Along the Gulf of Alaska, rates of glacier mass loss are among the highest measured on Earth. Changes in glacier volume in this region are altering the amount of glacier runoff delivered to the coastal ocean. Moreover, shifts in glacier extent are changing the location of the ice-ocean interface and, in cases where tidewater glaciers become grounded, fundamentally altering circulation in glacierized fjords. The runoff from glacier ecosystems is unique in terms of its physical and chemical properties when compared to runoff from non-glacial ecosystems. For example, the silt and chemical constituents in glacier discharge alter light penetration and the nutrient regime in near-shore marine ecosystems, which, in turn, influence levels of marine primary productivity. Future changes in the magnitude, timing, and location of glacier runoff have important implications for biogeochemical and ecological processes in glacially-dominated fjords and estuaries. This talk will highlight research from glacierized watersheds and fjords to synthesize what is known about the physical, chemical, and biological linkages that characterize icefield-ocean ecosystems along the Gulf of Alaska.

  15. Satellite-Based Study of Glaciers Retreat in Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Munir, Siraj

    Glaciers serve as a natural regulator of regional water supplies. About 16933 Km 2 area of glaciers is covered by Pakistan. These glaciers are enormous reservoirs of fresh water and their meltwater is an important resource which feed rivers in Pakistan. Glacier depletion, especially recent melting can affect agriculture, drinking water supplies, hydro-electric power, and ecological habitats. This can also have a more immediate impact on Pakistan's economy that depends mainly on water from glacier melt. Melting of seasonal snowfall and permanent glaciers has resulted not only in reduction of water resources but also caused flash floods in many areas of Pakistan. With the advent of satellite technology, using optical and SAR data the study of glaciers, has become possible. Using temporal data, based on calculation of snow index, band ratios and texture reflectance it has been revealed that the rate of glacier melting has increased as a consequent of global warming. Comparison of Landsat images of Batura glacier for October 1992 and October 2000 has revealed that there is a decrease of about 17 sq km in Batura glaciers. Although accurate changes in glacier extent cannot be assessed without baseline information, these efforts have been made to analyze future changes in glaciated area.

  16. Modelling glacier change in the Everest region, Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Immerzeel, W. W.; Wagnon, P.; Vincent, C.; Bajracharya, S.

    2015-05-01

    In this study, we apply a glacier mass balance and ice redistribution model to examine the sensitivity of glaciers in the Everest region of Nepal to climate change. High-resolution temperature and precipitation fields derived from gridded station data, and bias-corrected with independent station observations, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Koshi basin is -6.4 ± 1.5 km3, a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is -101.0 ± 11.4 km2, a decrease of approximately 20% from the initial extent. The modelled glacier sensitivity to future climate change is high. Application of temperature and precipitation anomalies from warm/dry and wet/cold end-members of the CMIP5 RCP4.5 and RCP8.5 ensemble results in sustained mass loss from glaciers in the Everest region through the 21st century.

  17. A complex relationship between calving glaciers and climate

    USGS Publications Warehouse

    Post, A.; O'Neel, S.; Motyka, R.J.; Streveler, G.

    2011-01-01

    Many terrestrial glaciers are sensitive indicators of past and present climate change as atmospheric temperature and snowfall modulate glacier volume. However, climate interpretations based on glacier behavior require careful selection of representative glaciers, as was recently pointed out for surging and debris-covered glaciers, whose behavior often defies regional glacier response to climate [Yde and Paasche, 2010]. Tidewater calving glaciers (TWGs)mountain glaciers whose termini reach the sea and are generally grounded on the seaflooralso fall into the category of non-representative glaciers because the regional-scale asynchronous behavior of these glaciers clouds their complex relationship with climate. TWGs span the globe; they can be found both fringing ice sheets and in high-latitude regions of each hemisphere. TWGs are known to exhibit cyclic behavior, characterized by slow advance and rapid, unstable retreat, largely independent of short-term climate forcing. This so-called TWG cycle, first described by Post [1975], provides a solid foundation upon which modern investigations of TWG stability are built. Scientific understanding has developed rapidly as a result of the initial recognition of their asynchronous cyclicity, rendering greater insight into the hierarchy of processes controlling regional behavior. This has improved the descriptions of the strong dynamic feedbacks present during retreat, the role of the ocean in TWG dynamics, and the similarities and differences between TWG and ice sheet outlet glaciers that can often support floating tongues.

  18. SAR investigations of glaciers in northwestern North America

    NASA Technical Reports Server (NTRS)

    Lingle, Craig S.; Harrison, William D.

    1995-01-01

    The objective of this project was to investigate the utility of satellite synthetic aperture radar (SAR) imagery for measurement of geophysical parameters on Alaskan glaciers relevant to their mass balance and dynamics, including: (1) the positions of firn lines (late-summer snow lines); (2) surface velocities on fast-flowing (surging) glaciers, and also on slower steady-flow glaciers; and (3) the positions and changes in the positions of glacier termini. Preliminary studies of topography and glacier surface velocity with SAR interferometry have also been carried out. This project was motivated by the relationships of multi-year to decadal changes in glacier geometry to changing climate, and the probable significant contribution of Alaskan glaciers to rising sea level.

  19. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  20. 21st-century evolution of Greenland outlet glacier velocities.

    PubMed

    Moon, T; Joughin, I; Smith, B; Howat, I

    2012-05-01

    Earlier observations on several of Greenland's outlet glaciers, starting near the turn of the 21st century, indicated rapid (annual-scale) and large (>100%) increases in glacier velocity. Combining data from several satellites, we produce a decade-long (2000 to 2010) record documenting the ongoing velocity evolution of nearly all (200+) of Greenland's major outlet glaciers, revealing complex spatial and temporal patterns. Changes on fast-flow marine-terminating glaciers contrast with steady velocities on ice-shelf-terminating glaciers and slow speeds on land-terminating glaciers. Regionally, glaciers in the northwest accelerated steadily, with more variability in the southeast and relatively steady flow elsewhere. Intraregional variability shows a complex response to regional and local forcing. Observed acceleration indicates that sea level rise from Greenland may fall well below proposed upper bounds. PMID:22556249

  1. Glacier modeling in support of field observations of mass balance at South Cascade Glacier, Washington, USA

    USGS Publications Warehouse

    Josberger, Edward G.; Bidlake, William R.

    2010-01-01

    The long-term USGS measurement and reporting of mass balance at South Cascade Glacier was assisted in balance years 2006 and 2007 by a new mass balance model. The model incorporates a temperature-index melt computation and accumulation is modeled from glacier air temperature and gaged precipitation at a remote site. Mass balance modeling was used with glaciological measurements to estimate dates and magnitudes of critical mass balance phenomena. In support of the modeling, a detailed analysis was made of the "glacier cooling effect" that reduces summer air temperature near the ice surface as compared to that predicted on the basis of a spatially uniform temperature lapse rate. The analysis was based on several years of data from measurements of near-surface air temperature on the glacier. The 2006 and 2007 winter balances of South Cascade Glacier, computed with this new, model-augmented methodology, were 2.61 and 3.41 mWE, respectively. The 2006 and 2007 summer balances were -4.20 and -3.63 mWE, respectively, and the 2006 and 2007 net balances were -1.59 and -0.22 mWE. PDF version of a presentation on the mass balance of South Cascade Glacier in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  2. The Bay in Place of a Glacier.

    ERIC Educational Resources Information Center

    Howell, Wayne

    1997-01-01

    The cultural resource specialist at Glacier Bay National Park (Alaska) explains the collaborative efforts of park staff and the Hoonah Tlingit to overcome language and cultural barriers in documenting park place names and clan oral history and traditions. The new park-community relationship, which follows decades of conflict, includes training…

  3. A Facies Model for Temperate Continental Glaciers.

    ERIC Educational Resources Information Center

    Ashley, Gail Mowry

    1987-01-01

    Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)

  4. Glacier Change Investigation for Early Elementary Students

    NASA Astrophysics Data System (ADS)

    Hintz, R. S.; Landis, C.

    2008-12-01

    Few opportunities exist for early elementary students to do inquiry or guided inquiry into topics dealing with climate change and glaciers. "Flubber" offers a simulation for the movement of glacial ice. It is inexpensive to make, stores well, and can be re-used. Students of all ages enjoy watching, measuring, and thinking about flubber and what it represents. As the interest in ice sheets continues to build, activities that both help to illustrate how glaciers move and provide a launch pad for student-driven investigations need to be available to teachers. With support from the National Science Foundation's Science and Technology Center for the Remote Sensing of Ice Sheets (CReSIS), a set of activities has been developed to provide opportunities for early elementary students to develop inquiry skills within the standards for early elementary grades bands in the National Science Education Standards. Lesson plans, instructions for making and using "Flubber", student worksheets, teacher guides with glacier and climate change information, and a chart of the National Science Education Standards applicable to the activities are available to elementary teachers wishing to introduce their students to glaciers and climate change.

  5. Subglacial till: the deforming glacier bed

    NASA Astrophysics Data System (ADS)

    van der Meer, Jaap J. M.; Menzies, John; Rose, James

    2003-07-01

    "Till is a sediment and is perhaps more variable than any sediment known by a single name." R.F. Flint 1957 Glacial and Pleistocene Geology Tills are commonly classified according to the perceived process of deposition. However, it is increasingly recognised that this classification, which is mainly based on macroscopic field data, has severe limitations. At the same time the concept of the deforming glacier bed has become more realistic as a framework for discussing tills and their properties, and this (tectonic) concept is irreconcilable with the existing (depositional) till classification scheme. Over the last 20 years large thin sections have been used to study tills, which has provided new insights into the textural and structural properties of tills. These results have revolutionised till sedimentology as they show that, in the main, subglacial tills possess deformational characteristics. Depositional properties are rare. Based on this new insight the process of subglacial till formation is discussed in terms of glacier/ice sheet basal velocity, clay, water and carbonate content and the variability of these properties in space and time. The end result of this discussion is: till, the deforming glacier bed. To distinguish subglacial till from depositional sediments the term 'tectomict' is proposed. Within the single framework of subglacial till as the deforming glacier bed, many textural, structural and geomorphological features of till beds can be more clearly and coherently explained and understood.

  6. Fast Recession of a West Antarctic Glacier

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.

    1998-01-01

    Satellite radar interferometry observations of Pine Island Glacier, in West Antarctica, reveal that the hinge-line position of this major ice stream retreated 1.2+/-0.2 km per year between 1992 and 1996, which in turn implies ice thinning at 3.5+/-0.6m ice per year.

  7. The first glacier inventory for entire Greenland

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Bolch, T.; Mölg, N.; Le Bris, R.; Paul, F.

    2012-04-01

    Detailed glacier data is becoming more and more important in the last decades to solve several research issues. One of the most prominent questions in this regard is the potential contribution of glaciers and icecaps (GIC) to global sea-level rise. Primarily, estimates are uncertain due to the globally still incomplete information about glacier location and size, as well as large uncertainties in future climate scenarios. Recent studies that calculate global sea-level rise from GIC have developed simplified approaches using information from glacier inventories or gridded data sets and a range of different global climate models and emission scenarios. However, for several strongly glacierized regions very rough assumptions about the ice distribution have to be made and an urgent demand for a globally complete glacier inventory is expressed. The GIC on Greenland are one of the regions with lacking information. Within the EU FP7 project ice2sea we mapped the GIC on Greenland using Landsat TM/ETM+ imagery acquired around the year 2000, along with an additional dataset in the North (DCW - Digital Chart of the World). A digital elevation model (DEM) with 90 m resolution (GIMP DEM) was used to derive drainage divides and henceforth topographic parameters for each entity. A major challenge in this regard is the application of a consistent strategy to separate the local GIC from the ice sheet. For this purpose we have defined different levels of connectivity (CL) of the local GIC with the ice sheet: CL0: Not connected. CL1: Connected but separable (either with drainage divides in the accumulation region or in touch only - and thus separable - in the ablation region). CL2: Connected but non-separable (the local GIC contribute to the flow of an ice sheet outlet in the ablation area). Up to now close to 12'000 GIC (only CL0 and CL1) with a total area of about 129'000 km2 have been mapped considering only entities larger than 0.1 km2. The area of the ice sheet itself is

  8. Glaciers along proposed routes extending the Copper River Highway, Alaska

    USGS Publications Warehouse

    Glass, R.L.

    1996-01-01

    Three inland highway routes are being considered by the Alaska Department of Transportation and Public Facilities to connect the community of Cordova in southcentral Alaska to a statewide road system. The routes use part of a Copper River and Northwest Railway alignment along the Copper River through mountainous terrain having numerous glaciers. An advance of any of several glaciers could block and destroy the roadway, whereas retreating glaciers expose large quantities of unconsolidated, unvegetated, and commonly ice-rich sediments. The purpose of this study was to map historical locations of glacier termini near these routes and to describe hazards associated with glaciers and seasonal snow. Historical and recent locations of glacier termini along the proposed Copper River Highway routes were determined by reviewing reports and maps and by interpreting aerial photographs. The termini of Childs, Grinnell, Tasnuna, and Woodworth Glaciers were 1 mile or less from a proposed route in the most recently available aerial photography (1978-91); the termini of Allen, Heney, and Schwan Glaciers were 1.5 miles or less from a proposed route. In general, since 1911, most glaciers have slowly retreated, but many glaciers have had occasional advances. Deserted Glacier and one of its tributary glaciers have surge-type medial moraines, indicating potential rapid advances. The terminus of Deserted Glacier was about 2.1 miles from a proposed route in 1978, but showed no evidence of surging. Snow and rock avalanches and snowdrifts are common along the proposed routes and will periodically obstruct the roadway. Floods from ice-dammed lakes also pose a threat. For example, Van Cleve Lake, adjacent to Miles Glacier, is as large as 4.4 square miles and empties about every 6 years. Floods from drainages of Van Cleve Lake have caused the Copper River to rise on the order of 20 feet at Million Dollar Bridge.

  9. Remote Sensing Characterization of Glaciers in the N. Himachal Pradesh

    NASA Astrophysics Data System (ADS)

    Le, D.; Catania, G. A.

    2012-12-01

    Glaciers in high mountain Asia represent the largest volume of ice outside of the polar regions. They play an important role in the water resources of communities downstream and there has been recent dispute over the total amount of ice present how it is changing. The immense quantity of glaciers and variability of glacier types in the Himalayas coupled with the sparse amount of suitable satellite data limits the capability of conducting detailed and efficient remote sensing observations on a regional scale. This study aims to develop a semi-automated characterization of approximately 5,000 glaciers in the N. Himachal Pradesh region of India using multi-spectral data. We use an August 2002 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image because of its small percentage of snow and cloud cover, and because it is acquired late in the summer allowing for delineation of ablation and accumulation zones. Glacier outlines from the GLIMS glacier database for this region comprise total glacier area including debris covered ice regions. We outline the accumulation (snow-covered) region for each glacier exploiting the high reflectance value of snow compared to ice and debris. We further outline debris-free, bare-ice using a threshold on a ratio image of ETM+ bands 4 and 5. Subtracting this region from the GLIMS outlines leaves us with the debris-covered ice region. Using our resulting ablation and accumulation areas, we compute the area-accumulation ratio (AAR) for the many glaciers in our region. These data are compared to mean aspect, mean elevation, glacier size, percentage of debris cover, and mean equilibrium line altitude (ELA) for each glacier. This study hopes to contribute to and improve on glacier databases for the Himalayan region and to advance glacier analyses using remote sensing data. A possible future aim is to identify benchmark glaciers which can be used for detailed future study.

  10. Glacier and hydrology changes in future climate over western Canada

    NASA Astrophysics Data System (ADS)

    Winger, Katja; Sushama, Laxmi; Marshall, Shawn

    2016-04-01

    Glaciers are frozen fresh water reservoirs that respond to changes in temperature and snowfall. Concern is growing about the impact that changes in glaciers may have on water resources in regions such as western Canada that derive a lot of their summer streamflow from glacier melt. Given that RCM projections are an important tool and are increasingly being used in assessing projected changes to water resources, particularly due to its high resolution compared with GCMs, realistic representation of glaciers in RCMs is very important. Currently, glaciers are only represented in an extremely simplified way in the fifth generation Canadian Regional Climate Model (CRCM5). This simple approach of representing glaciers as static glacier masks is appropriate for short-term integrations, where the response of glacier to changing atmospheric conditions might still be small due to glacier response times and therefore the feedback of changing glacier extent on large-scale atmospheric flow conditions might be negligible. A new dynamic glacier scheme has been developed for use within CRCM5, based on volume-area relationships. Simulations have been performed with this glacier model and Land Surface Scheme CLASS for the 2000-2100 period over a domain covering western Canada. These simulations were driven by outputs from a CRCM5 transient climate change simulation driven by CanESM2 at the lateral boundaries, for RCPs 4.5 and 8.5. Preliminary results suggest significant decreases to glacier fractions in future climate. Though the glacier contribution to streamflows is found to dramatically decrease in future climate, the total streamflows did not show any dramatic decreases due to the increase in precipitation for these regions.

  11. Model based historical runoff contribution from an Alpine glacier

    NASA Astrophysics Data System (ADS)

    Zoccatelli, Davide; Bonato, Paola; Carturan, Luca; Dalla Fontana, Giancarlo; De Blasi, Fabrizio; Borga, Marco

    2016-04-01

    The aim of this work is to analyze how climatic variability and glacier retreat impact the water balance of a small (8.5 km2) glaciarised catchment in the Eastern Italia Alps over a 30 year (1983-2013) period. The analysis is carried out by coupling local high quality data and a glacio-hydrological model able to simulate both the glacier and hydrology dynamics. Runoff contribution from glacier ice is related with trends in climatic variables and with glacier retreat. The area analyzed is the headwater of Noce Bianco river basin, lying in the Ortles-Cevedale group and including the La Mare glacier. During the study period the glacier area decreased from 4.7 km2 (50% basin area) to 3.47 km2 (40% basin area). In this area the following observations are available: 30 years of daily meteorological data at high elevation close to the catchment; three DTMs of the glacier, covering the entire period, which enable the calculation of the volume change and geodetic mass balance; direct glaciological mass balance observations over the period 2003-2013; discharge measurement at the catchment outlet over the period 2007-2013. The data availability and the significant shrinking of the glacier during the analyzed period make this catchment ideal for studying the hydrological impacts of glacier retreat. The semi-distributed conceptual model includes a snow and glacier accumulation and ablation module, based on temperature-radiation index and a glacier retreat model. The glacier retreat model allows to use the annual simulated glacier mass balance to update the glacier area (Huss et al., 2010). The model simulations are carried out from 1983 to 2013. We show that the model is able to capture adequately the measured daily discharge, the observed changes in glacier area and their spatial distribution. The contribution of glacier ice meltwater to annual runoff is below 10% in the first decade of simulation. This variable however showed a clear increasing trend, with peaks for single

  12. Origin, Evolution, and Preservation of Cold Based Debris Covered Glaciers: Quantifying Sublimation Rates of Ancient Buried Ice in Antarctica

    NASA Astrophysics Data System (ADS)

    Kowalewski, D. E.; Marchant, D. R.

    2007-12-01

    Growing interest in our planet's climate history has placed a premium on acquiring detailed records of past climate change. Of considerable interest are archives of ancient atmosphere trapped within the debris-covered alpine glaciers of the western Dry Valleys region of Antarctica. The Mullins Valley debris-covered glacier (~8 km in length) is sourced from local snowfall at the steep headwall of the valley. The first 1.2 km of this glacier is generally free of overlying debris except for isolated cobbles and boulders. Thereafter, the ice surface is covered with a thin, continuous sheet of dolerite-rich rubble. Factors that influence the origin and modification of this ice include atmospheric temperature and relative humidity, precipitation, incoming solar radiance, surface albedo, till texture, winds, surface roughness, salts, and secondary ice lenses. We applied a diffusion model to track vapor flux within a sublimation till overlying the Mullins Valley debris-covered glacier, purportedly the world's oldest debris-covered alpine glacier. As input, we used meteorological data from HOBO data loggers that captured climate change and till temperatures. Results show that vapor flows into and out of the sublimation till at rates dependent on the non-linear variation of soil temperature with depth. Sublimation rates along the Mullins Glacier varied as a function of till thickness, local climate (using a calculated regional lapse rate of 0.88°C per 100 m), and till texture. Ice loss during the study interval (November 27, 2006 to December 24, 2006) ranged from as high as 2.12 mm for exposed glacier ice in the upper ablation zone, to as low as 0.01 mm for buried ice beneath till >50 cm in thickness. Averaged over the entire ablation zone (6.7 km2), this yields a net ice-surface lowering of 0.32 mm during the study interval. Numerical modeling suggests that a modest ice accumulation rate at the headwall of ~1 cm a-1 appears sufficient to maintain current ice volumes

  13. Snowline observations to remotely derive glacier-wide mass balance on four Kyrgyz glaciers from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Sold, Leo; Kienholz, Christian; Usubaliev, Ryskul; Bolch, Tobias; Hoelzle, Martin

    2016-04-01

    The monitoring of glacier mass balance in remote regions is challenging but vital for understanding the response of glaciers to climate change. Direct mass balance observations are sparse and discontinuous in the Kyrgyz Tien Shan and Pamir. The under-sampling problem of glacier change assessments limits change predictions and impact projections. In this study, we elaborate on novel approaches to derive sub-seasonal glacier mass balance based on remote snowline monitoring on four Kyrgyz glaciers for a period from 2003 to 2015. The proposed methodology is based on the information content of short-term changes in snowline elevation detected with repeated remote sensing imagery for both the quantities of winter accumulation and summer ablation. By backward modelling the observed snowline position and the glacier geometry are related to the glacier-wide mass balance. Snowline position over the glacier area is detected with a semi-automatic procedure on remote sensing images (Landsat, ASTER) and automatically on terrestrial photographs. We apply the methodology to four glaciers on which direct mass balance measurements have been (re)-initiated recently and use reanalysed and partly reconstructed mass balance series as a first source to validate our approach to remotely determine the seasonal glacier mass budget. In a second step, the derived glacier-wide mass balance is compared to geodetic mass balance calculations for the first decade of the 21st century.

  14. A GRASS GIS module to obtain an estimation of glacier behavior under climate change: A pilot study on Italian glacier

    NASA Astrophysics Data System (ADS)

    Strigaro, Daniele; Moretti, Massimiliano; Mattavelli, Matteo; Frigerio, Ivan; Amicis, Mattia De; Maggi, Valter

    2016-09-01

    The aim of this work is to integrate the Minimal Glacier Model in a Geographic Information System Python module in order to obtain spatial simulations of glacier retreat and to assess the future scenarios with a spatial representation. The Minimal Glacier Models are a simple yet effective way of estimating glacier response to climate fluctuations. This module can be useful for the scientific and glaciological community in order to evaluate glacier behavior, driven by climate forcing. The module, called r.glacio.model, is developed in a GRASS GIS (GRASS Development Team, 2016) environment using Python programming language combined with different libraries as GDAL, OGR, CSV, math, etc. The module is applied and validated on the Rutor glacier, a glacier in the south-western region of the Italian Alps. This glacier is very large in size and features rather regular and lively dynamics. The simulation is calibrated by reconstructing the 3-dimensional dynamics flow line and analyzing the difference between the simulated flow line length variations and the observed glacier fronts coming from ortophotos and DEMs. These simulations are driven by the past mass balance record. Afterwards, the future assessment is estimated by using climatic drivers provided by a set of General Circulation Models participating in the Climate Model Inter-comparison Project 5 effort. The approach devised in r.glacio.model can be applied to most alpine glaciers to obtain a first-order spatial representation of glacier behavior under climate change.

  15. Internationally coordinated glacier monitoring - a timeline since 1894

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Samuel U.; Armstrong, Richard; Fetterer, Florence; Gärtner-Roer, Isabelle; Hoelzle, Martin; Machguth, Horst; Mölg, Nico; Paul, Frank; Raup, Bruce H.; Zemp, Michael

    2016-04-01

    Changes in glaciers and ice caps provide some of the clearest evidence of climate change, with impacts on sea-level variations, regional hydrological cycles, and natural hazard situations. Therefore, glaciers have been recognized as an Essential Climate Variable (ECV). Internationally coordinated collection and distribution of standardized information about the state and change of glaciers and ice caps was initiated in 1894 and is today organized within the Global Terrestrial Network for Glaciers (GTN-G). GTN-G ensures the continuous development and adaptation of the international strategies to the long-term needs of users in science and policy. A GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC), and the Global Land Ice Measurements from Space (GLIMS) initiative. In this presentation, we trace the development of the internationally coordinated glacier monitoring since its beginning in the 19th century. Today, several online databases containing a wealth of diverse data types with different levels of detail and global coverage provide fast access to continuously updated information on glacier fluctuation and inventory data. All glacier datasets are made freely available through the respective operational bodies within GTN-G, and can be accessed through the GTN-G Global Glacier Browser (http://www.gtn-g.org/data_browser.html). Glacier inventory data (e.g., digital outlines) are available for about 180,000 glaciers (GLIMS database, RGI - Randolph Glacier Inventory, WGI - World Glacier Inventory). Glacier front variations with about 45,000 entries since the 17th century and about 6,200 glaciological and geodetic mass (volume) change observations dating back to the 19th century are available in the Fluctuations of Glaciers (FoG) database. These datasets reveal clear evidence that

  16. Constraining Glacier Sensitivity across the Andes: A Modeling Experiment

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Rupper, S.; Lowell, T. V.

    2011-12-01

    Valley glaciers are sensitive indicators of climate change. Records of former glacial fluctuations have been extensively used to reconstruct paleoclimatic conditions at different temporal and spatial scales. These reconstructions typically do not account for variations in regional climate conditions. Based on modeling results, it has been suggested these regional climate conditions could play an important role modulating the magnitude of glacier response for large scale climate perturbations. The climatically diverse Andes mountain range represents an ideal setting to test hypothesis of glacier sensitivity variability. Here, we quantify glacier sensitivity to climate change in different climatic regimes across the Andean. By applying a regional Surface Energy Mass Balance model (SEMB), we analyze the change in the Equilibrium Line Altitude (ELA) for a sample of 234 glaciers, under different climatic perturbations. Our results suggest that ELAs of Andean glaciers respond linearly to changes in temperature, with rates that oscillate between 153 and 186 m/°C. For example, with a perturbation of -6°C (~Global LGM), our model predicts a drop in the ELA of 916 m for the least sensitive glaciers and 1117 m for the more sensitive ones. This glacier sensitivity variability exhibits a very distinctive spatial distribution. The most sensitive glaciers are located in Central Chile (south of 31°C), and the Western Cordillera of Peru (north of 13°S). In contrast, lower sensitivity glaciers are situated in the inner Tropics, Eastern Cordillera of Peru and Bolivia (south of 13°S), and part of southern Patagonia and Tierra del Fuego. When analyzing the response of glaciers to changes in accumulation, our results suggest that under a scenario of increasing precipitation, glacier behavior is nonlinear. A statistical cluster analysis of glacier sensitivity divides our 234 glaciers into three distinct groups. The most sensitive glaciers correspond to those situated in western

  17. Seasonality and extent of East Greenland glacier fluctuations from automatic satellite monitoring of calving glacier fronts

    NASA Astrophysics Data System (ADS)

    Seale, Anthony; Christoffersen, Poul; Mugford, Ruth

    2010-05-01

    The recent acceleration of Greenland outlet glaciers shows that flow speeds can respond sensitively to changes of calving front positions, but little is known about the seasonality and range of margin position changes. To investigate the geographical extent of margin changes on subseasonal timescale, we developed an automated procedure for identifying calving margins from MODIS data (2000-2008), allowing for the analysis of 105,536 images of 32 glaciers in East Greenland. Validation exercises found results to compare well to those of other studies, which have been limited in either temporal resolution or spatial extent by more labor-intensive methods. All most all glacier exhibited seasonal cycles, demonstrating a strong sensitivity to environmental conditions. However, there was a distinct difference in response of glaciers north and south of 65.9°N. Those above showed close to no interannual change, whilst those below retreated rapidly by an average of 2.9 km over 2001 to 2005. We found that only a few glaciers have returned to their original calving position and that only 26% of the average calving retreat was recovered when the glaciers returned to a steady margin position during 2005 to 2008. The extent of rapid change of calving positions is consistent with the recent attribution of sustained mass losses in southeast Greenland to increased discharge. Meteorological records and climate reanalysis data show clear evidence of recent atmospheric warming in southeast Greenland, but this warming trend do not statistically explain the observed extent of margin recessions. A statistically convincing explanation was found in the output from the ¼ degree NEMO ocean model where variable extent of Atlantic water intrusions onto the East Greenland continental shelf coincide with the observed glacier change.

  18. Franz Josef and Fox Glaciers, New Zealand: Historic length records

    NASA Astrophysics Data System (ADS)

    Purdie, Heather; Anderson, Brian; Chinn, Trevor; Owens, Ian; Mackintosh, Andrew; Lawson, Wendy

    2014-10-01

    Compilation of modern and historical length change records for Franz Josef and Fox Glaciers demonstrates that these glaciers have lost ~ 3 km in length and at least 3-4 km2 in area since the 1800s, with the greatest overall loss occurring between 1934 and 1983. Within this dramatic and ongoing retreat, both glaciers have experienced periods of re-advance. The record from Franz Josef Glacier is the most detailed, and shows major advances from 1946 to 1951 (340 m), 1965-1967 (400 m), 1983-1999 (1420 m) and 2004-2008 (280 m). At Fox Glacier the record is similar, with advances recorded during 1964-1968 (60 m), 1985-1999 (710 m) and 2004-2008 (290 m). Apart from the latest advance event, the magnitude of advance has been greater at Franz Josef Glacier, suggesting a higher length sensitivity. Analysis of the relationship between glacier length and a reconstructed annual equilibrium line altitude (ELA) record shows that the glaciers react very quickly to ELA variations - with the greatest correlation at 3-4 years' lag. The present (2014) retreat is the fastest retreat in the records of both glaciers. While decadal length fluctuations have been linked to hemispheric ocean-atmosphere variability, the overall reduction in length is a clear sign of twentieth century warming. However, documenting glacier length changes can be challenging; especially when increased surface debris-cover makes identification of the 'true' terminus a convoluted process.

  19. Glacier Changes in the Bhutanese Himalaya - Present and Future

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Schaefer, J. M.; Burgener, L. K.; Maurer, J.; Smith, R.; Cook, E.; Putnam, A. E.; Krusic, P.; Tsering, K.; Koenig, L.

    2012-12-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. The most conservative results indicate that, even if climate were to remain at the present-day mean values (1980-2000), almost 10% of Bhutan's glacierized area would vanish and the meltwater flux would drop by as much as 30%. New mapping of glacierized area from 2000-2010 shows a significant change in glacierized area of 4-6%. Thus the conservative steady-state area changes predicted by the model are already being realized. Under the conservative scenario of an additional 1°C regional warming, glacier retreat is predicted to continue until about 25% of Bhutan's glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%.

  20. Assessing streamflow sensitivity to variations in glacier mass balance

    NASA Astrophysics Data System (ADS)

    Oneel, S.; Hood, E. W.; Arendt, A. A.; Sass, L. C.; March, R. S.

    2013-12-01

    We examine long-term streamflow and mass balance data from two Alaskan glaciers located in climatically distinct basins: Gulkana Glacier, a continental glacier located in the Alaska Range, and Wolverine Glacier, a maritime glacier located in the Kenai Mountains. Both glaciers lost mass, primarily as a result of summer warming, and both basins exhibit increasing streamflow over the 1966-2011 study interval. We estimated total glacier runoff via summer mass balance, and separated the fraction related to annual mass imbalances. In both climates, the fraction of streamflow related to annual mass balance averages less than 20%, substantially smaller than the fraction related to total summer mass loss (>50%), which occurs even in years of glacier growth. The streamflow fraction related to changes in annual mass balance has increased only in the continental environment. In the maritime climate, where deep winter snowpacks and frequent rain events drive consistently high runoff, the magnitude of this streamflow fraction is small and highly variable, precluding detection of any existing trend. Changes in streamflow related to annual balance are often masked by interannual variability of maritime glacier mass balance, such that predicted scenarios of continued glacier recession are more likely to impact the quality and timing of runoff than the total basin water yield.

  1. Modelling glacier change in the Everest region, Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Shea, J. M.; Immerzeel, W. W.; Wagnon, P.; Vincent, C.; Bajracharya, S.

    2014-10-01

    In this study, we apply a glacier mass balance and ice redistribution model to simulate historical and future glacier change in the Everest region of Nepal. High-resolution temperature and precipitation fields derived from gridded APHRODITE data, and validated against independent station observations from the EVK2CNR network, are used to drive the historical model from 1961 to 2007. The model is calibrated against geodetically derived estimates of net glacier mass change from 1992 to 2008, termini position of four large glaciers at the end of the calibration period, average velocities observed on selected debris-covered glaciers, and total glacierized area. We integrate field-based observations of glacier mass balance and ice thickness with remotely-sensed observations of decadal glacier change to validate the model. Between 1961 and 2007, the mean modelled volume change over the Dudh Kosi basin is -6.4 ± 1.5 km3, a decrease of 15.6% from the original estimated ice volume in 1961. Modelled glacier area change between 1961 and 2007 is -101.0 ± 11.4 km2, a decrease of approximately 20% from the initial extent. Scenarios of future climate change, based on CMIP5 RCP4.5 and RCP8.5 end members, suggest that glaciers in the Everest region will continue to lose mass through the 21st century. Glaciers in the basin are concentrated between 5000 and 6000 m of elevation, and are thus expected to be sensitive to changes in temperature and equilibrium line altitude (ELA). Glacier volume reductions between -35 to -62% are possible by 2050, and sustained temperature increases to 2100 may result in total glacier volume losses of between -73 and -96%.

  2. Spring bloom dynamics in a subarctic fjord influenced by tidewater outlet glaciers (Godthåbsfjord, SW Greenland)

    NASA Astrophysics Data System (ADS)

    Meire, Lorenz; Mortensen, John; Rysgaard, Søren; Bendtsen, Jørgen; Boone, Wieter; Meire, Patrick; Meysman, Filip J. R.

    2016-06-01

    In high-latitude fjord ecosystems, the spring bloom accounts for a major part of the annual primary production and thus provides a crucial energy supply to the marine food web. However, the environmental factors that control the timing and intensity of these spring blooms remain uncertain. In 2013, we studied the spring bloom dynamics in Godthåbsfjord, a large fjord system adjacent to the Greenland Ice Sheet. Our surveys revealed that the spring bloom did not initiate in the inner stratified part of the fjord system but only started farther away from tidewater outlet glaciers. A combination of out-fjord winds and coastal inflows drove an upwelling in the inner part of the fjord during spring (April-May), which supplied nutrient-rich water to the surface layer. This surface water was subsequently transported out-fjord, and due to this circulation regime, the biomass accumulation of phytoplankton was displaced away from the glaciers. In late May, the upwelling weakened and the dominant wind direction changed, thus reversing the direction of the surface water transport. Warmer water was now transported toward the inner fjord, and a bloom was observed close to the glacier terminus. Overall, our findings imply that the timing, intensity, and location of the spring blooms in Godthåbsfjord are controlled by a combination of upwelling strength and wind forcing. Together with sea ice cover, the hydrodynamic regime hence plays a crucial role in structuring food web dynamics of the fjord ecosystem.

  3. Microbial Energetics Beneath the Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mikucki, J. A.; Turchyn, A. V.; Farquhar, J.; Priscu, J. C.; Schrag, D. P.; Pearson, A.

    2007-12-01

    Subglacial microbiology is controlled by glacier hydrology, bedrock lithology, and the preglacial ecosystem. These factors can all affect metabolic function by influencing electron acceptor and donor availability in the subglacial setting leaving biogeochemical signatures that can be used to determine ecosystem processes. Blood Falls, an iron-rich, episodic subglacial outflow from the Taylor Glacier in the McMurdo Dry Valleys Antarctica provides an example of how microbial community structure and function can provide insight into subglacial hydrology. This subglacial outflow contains cryoconcentrated, Pliocene-age seawater salts that pooled in the upper Taylor Valley and was subsequently covered by the advance of the Taylor Glacier. Biogeochemical measurements, culture-based techniques, and genomic analysis were used to characterize microbes and chemistry associated with the subglacial outflow. The isotopic composition of important geochemical substrates (i.e., δ34Ssulfate, Δ33Ssulfate, δ18Osulfate, δ18Owater, Δ14SDIC) were also measured to provide more detail on subglacial microbial energetics. Typically, subglacial systems, when driven to anoxia by the hydrolysis of organic matter, will follow a continuum of redox chemistries utilizing electron acceptors with decreasing reduction potential (e.g., Fe (III), sulfate, CO2). Our data provide no evidence for sulfate reduction below the Taylor Glacier despite high dissolved organic carbon (450 μM C) and measurable metabolic activity. We contend that, in the case of the Taylor Glacier, the in situ bioenergetic reduction potential has been 'short-circuited' at Fe(III)-reduction and excludes sulfate reduction and methanogenesis. Given the length of time that this marine system has been isolated from phototrophic production (~2 Mya) the ability to degrade and consume increasingly recalcitrant organic carbon is likely an important component to the observed redox chemistry. Our work indicates that glacier hydrology

  4. Climatic Teleconnections Recorded By Tropical Mountain Glaciers

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Permana, D.; Mosley-Thompson, E.; Davis, M. E.

    2014-12-01

    Information from ice cores from the world's highest mountains in the Tropics demonstrates both local climate variability and a high degree of teleconnectivity across the Pacific basin. Here we examine recently recovered ice core records from glaciers near Puncak Jaya in Papua, Indonesia, which lie on the highest peak between the Himalayas and the South American Andes. These glaciers are located on the western side of the Tropical Pacific warm pool, which is the "center of action" for interannual climate variability dominated by El Niño-Southern Oscillation (ENSO). ENSO either directly or indirectly affects most regions of Earth and their populations. In 2010, two ice cores measuring 32.13 m and 31.25 m were recovered to bedrock from the East Northwall Firn ice field. Both have been analyzed in high resolution (~3 cm sample length, 1156 and 1606 samples, respectively) for stable isotopes, dust, major ions and tritium concentrations. To better understand the controls on the oxygen isotopic (δ18 O) signal for this region, daily rainfall samples were collected between January 2013 and February 2014 at five weather stations over a distance of ~90 km ranging from 9 meters above sea level (masl) on the southern coast up to 3945 masl. The calculated isotopic lapse rate for this region is 0.24 ‰/100m. Papua, Indonesian ice core records are compared to ice core records from Dasuopu Glacier in the central Himalayas and from Quelccaya, Huascarán, Hualcán and Coropuna ice fields in the tropical Andes of Peru on the eastern side of the Pacific Ocean. The composite of the annual isotopic time series from these cores is significantly (R2 =0.53) related to tropical Pacific sea surface temperatures (SSTs), reflecting the strong linkage between tropical Pacific SSTs associated with ENSO and tropospheric temperatures in the low latitudes. New data on the already well-documented concomitant loss of ice on Quelccaya, Kilimanjaro in eastern Africa and the ice fields near Puncak

  5. Glacier melt on the Third Pole

    NASA Astrophysics Data System (ADS)

    Yao, T.

    2015-12-01

    With an average elevation above 4,000 metres, the Third Pole (TP) is a unique region with many high mountains centered on the Tibetan Plateau stretching over 5 million square kilometers. Major environmental changes are taking place on the TP characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes. These processes are critical for the well-being of the three billion people inhabiting the plateau and the surrounding regions. Glacier melt is one of the most significant environmental changes observed on the TP. Over the past decade, most of the glaciers on the TP have undergone considerable melt. The Third Pole Environment (TPE) has focused on the causes of the glacier melt by conducting large-scale ground in-situ observation and monitoring, analyzing satellite images and remote sensing data, and applying numerical modeling to environmental research on the TP. The studies of long-term record of water stable isotopes in precipitation and ice core throughout the TP have revealed different features with regions, thus proposing significant influence of atmospheric circulations on spatial precipitation pattern over the TP. Validation of the result by isotope-equipped general circulation models confirms the spatial distribution of different atmospheric circulation dominances on the TP, with northern part dominated by the westerlies, southern part by the summer monsoon, and central part featuring the influences of both circulation systems. Such unique circulation patterns also bear directly on the status of glaciers and lakes over the TP and its surroundings. The studies therefore found the largest glacier melt in the monsoon-dominated southern part, moderate melt in the central part of transition, and the least melt, or even slight advance in the westerlies-dominated northern TP. It is clear that some mountains on the TP are undergoing rapid melt and the consequence of without ice and snow will be very soon. The

  6. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    NASA Astrophysics Data System (ADS)

    Edwards, Arwyn; Pachebat, Justin A.; Swain, Martin; Hegarty, Matt; Hodson, Andrew J.; Irvine-Fynn, Tristram D. L.; Rassner, Sara M. E.; Sattler, Birgit

    2013-09-01

    Cryoconite is a microbe-mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe-mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated.

  7. A study of the atmospheric surface layer and roughness lengths on the high-altitude tropical Zongo glacier, Bolivia

    NASA Astrophysics Data System (ADS)

    Sicart, Jean Emmanuel; Litt, Maxime; Helgason, Warren; Tahar, Vanessa Ben; Chaperon, Thomas

    2014-04-01

    The atmospheric surface layer of high-altitude tropical glaciers is inadequately understood, particularly concerning turbulent fluxes. Measurements have shown that sublimation reduces melt energy in the dry season, but the errors are large when a katabatic wind maximum occurs at a low height. This study analyzed wind and temperature vertical profiles measured by a 6 m mast in the ablation area of the tropical Zongo glacier (16°S, 5060 m above sea level) in the dry seasons of 2005 and 2007. Surface roughness lengths for momentum and temperature were derived from least squares fits of hourly wind and temperature profile data. Measurement errors were explored, focusing on the poorly defined reference level for sensor heights. A katabatic wind maximum at heights between 2 and 3 m was regularly observed during low wind speed and strong inversion conditions, or about ~50%of the time, greatly reducing the surface layer depth. The glacier surface, experiencing melting conditions in the early afternoon and strong cooling at night, remained relatively smooth with z0 ~ 1 mm and zT ~ 0.1 mm. Sensible heat flux measured at ~1 m was not very sensitive to the zero reference level due to two opposite effects: when measurement heights increase, profile-derived roughness lengths increase but temperature and wind gradients decrease. The relation between zT/z0 and the roughness Reynolds number Re* roughly agrees with the surface renewal model. However, this is mostly due to self-correlation because of the shared variable z0 in zT/z0 and Re*, which prevents a sound experimental validation of the model.

  8. Glacier Dynamics and Outburst Flood Potential from the Imja and Thulagi Glacier-Lake Systems (Nepal)

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey; Leonard, Gregory; Regmi, Dhananjay; Haritashya, Umesh; Chand, Mohan; Pradhan, Suresh; Sapkota, Nawaraj; Byers, Alton; Joshi, Sharad; McKinney, Daene; Mool, Pradeep; Somos-Valenzuela, Marcelo; Huggel, Christian

    2015-04-01

    Thulagi and Imja lakes are, according to ICIMOD, among Nepal's most dangerous glacier lakes, i.e., most likely to cause death and destruction in case of a glacier lake outburst flood (GLOF). Imja Lake and the associated Imja and Lhoste-Shar glaciers have been intensively studied; Thulagi Glacier and its lake are much less studied. Collectively, we have undertaken a series of increasingly thorough bathymetric and land surveys and satellite remote sensing analyses of Imja Lake and its glacier setting. We are analyzing several expeditions' data to build a detailed assessment of the glacier and lake to better establish the dynamical evolution of the system and its future GLOF potential. Our most recent, most complete bathymetric survey of Imja Lake has revealed a much greater volume (75,200,000 cubic meters) and maximum depth (149.8 m) than found before. Our analysis suggests that not all possible Imja GLOF scenarios would result in devastation. Some moraine melt-through or down-cutting mechanisms -- perhaps induced by extreme monsoon precipitation or an earthquake -- could generate outbursts lasting from 10,000-100,000 seconds ("slow GLOFs"), thus limiting peak flows and downstream damage. The potential damage from a slow GLOF from Imja Lake -- even if there is a large total volume -- is lessened by the relatively low peak discharge and because the major villages downstream from Imja Lake are situated just outside of and above a deep, broad outwash and debris-flow channel system. Imja and other glaciers in the area have built a large fan, now deeply trenched, which is able to accommodate the peak discharges of potential slow GLOFs, such that Dingboche and other villages would be spared. However, local geomorphology also bears evidence of "fast GLOFs," such as may be issued by a tsunami, which could be initiated by a large mass movement into Imja Lake and which might override and damage the end moraine in <100 seconds. Dingboche and other villages are vulnerable to

  9. Surge-type glaciers in the Tien Shan (Central Asia)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Kriti; Bolch, Tobias

    2016-04-01

    Surge-type glaciers in High Mountain Asia are mostly observed in Karakoram and Pamir. However, few surge-type glaciers also exist in the Tien Shan, but have not comprehensively studied in detail in the recent literature. We identified surge-type glaciers in the Tien Shan either from available literature or by manual interpretation using available satellite images (such as Corona, Hexagon, Landsat, SPOT, IRS) for the period 1960 to 2014. We identified 39 possible surge-type glaciers, showing typical characteristics like looped moraines. Twenty-two of them rapidly advanced during different periods or a surge was clearly described in the literature. For the remaining possible surge-type glaciers either the advance, in terms of time and length, were not mentioned in detail in the literature, or the glaciers have remained either stable or retreated during the entire period of our study. Most of the surge-type glaciers cluster in the Inner Tien Shan (especially in the Ak-Shiirak rage) and the Central Tien Shan, are in size and are facing North, West or North West. Pronounced surge events were observed for North Inylchek and Samoilowitsch glaciers, both of which are located in the Central Tien Shan. Samoilowitsch Glacier retreated by more than 3 km between 1960 (length ~8.9 km) and 1992 (~5.8 km), advanced by almost 3 km until 2006 and slightly retreated thereafter. The most pronounced advance occurred between 2000 and 2002. DEM differencing (based on SRTM3 data and stereo Hexagon and Cartosat-1 data) revealed a significant thickening in the middle reaches (reservoir area) of the glacier between 1973 and 2000 while the surface significantly lowered in the middle and upper parts of the glacier between 2000 and 2006. Hence, the ice mass was transferred to the lower reaches (receiving area) and caused the advance with a maximum thickening of more than 80 m. The ~30 km long North Inylchek Glacier retreated since 1943 and showed a very rapid advance of ~3.5 km especially in

  10. Norwegian mountain glaciers in the past, present and future

    NASA Astrophysics Data System (ADS)

    Nesje, Atle; Bakke, Jostein; Dahl, Svein Olaf; Lie, Øyvind; Matthews, John A.

    2008-01-01

    Documentation of glacier changes is a key element for reconstruction of past climate variability and early detection of global climate change. In this paper, records of Holocene glacier variations in different regions in Norway have been synthesised. During the period from approximately 8000 to 4000 cal. yr BP, most glaciers in Norway were completely melted away at least once due to high summer temperatures and/or reduced winter precipitation. Lichenometrically and historically dated moraines at Jostedalsbreen, in Jotunheimen, at Hardangerjøkulen, and at Folgefonna were used to extend records of glacier length variations back to their maximum position during the 'Little Ice Age'. The timing of the maximum 'Little Ice Age' glacial advance in different parts of southern Norway varied considerably, ranging from the early 18th century to the late 19th century. Cumulative glacier length variations of glaciers in southern Norway show an overall retreat from ˜ AD 1750 to the 1930s-40s. Thereafter, most Norwegian glaciers retreated significantly. Short maritime outlet glaciers with a short response time (< 10-15 yr) started to advance in the mid-1950s, whereas long outlet glaciers with longer frontal time lag (> 15-20 yr) continued their retreat to the 1980s. In the 1990s, however, several of the maritime glaciers started to advance as a response to higher winter accumulation during the first part of the 1990s. Since 2000 most of the observed glaciers have retreated remarkably fast (annual frontal retreat > 100 m) mainly due to high summer temperatures. The last glacier inventory in Norway published in 1988 shows that there were 1627 glaciers covering a total area of 2609 km 2 with an estimated volume of 164 km 3. Modern climate-glacier relationships from mass balance data in Scandinavia have been used to present possible effects on the Norwegian glaciers of climate scenarios between 1961-1990 and 2070-2100 presented by the 'RegClim' project. This long-term weather

  11. Differences in dissolved organic matter lability between alpine glaciers and alpine rock glaciers of the American West

    NASA Astrophysics Data System (ADS)

    Hall, E.; Fegel, T. S., II; Baron, J.; Boot, C. M.

    2015-12-01

    While alpine glaciers in montane regions represent the largest flux of dissolved organic matter (DOM) from global ice melt no research has examined the bioavailability of DOM melted out of glacial ice in the western continental United States. Furthermore, rock glaciers are an order of magnitude more abundant than ice glaciers in U.S., yet are not included in budgets for perennial ice carbon stores. Our research aims to understand differences in the bioavailability of carbon from ice glaciers and rock glaciers along the Central Rocky Mountains of Colorado. Identical microbial communities were fed standardized amounts of DOM from four different ice glacier-rock glaciers pairs. Using laboratory incubations, paired with mass spectrometry based metabolomics and 16S gene sequencing; we were able to examine functional definitions of DOM lability in glacial ice. We hypothesized that even though DOM quantities are similar in the outputs of both glacial types in our study area, ice glacial DOM would be more bioavailable than DOM from rock glaciers due to higher proportions of byproducts from microbial metabolism than rock glacier DOM, which has higher amounts of "recalcitrant" plant material. Our results show that DOM from ice glaciers is more labile than DOM from geologically and geographically similar paired rock glaciers. Ice glacier DOM represents an important pool of labile carbon to headwater ecosystems of the Rocky Mountains. Metabolomic analysis shows numerous compounds from varying metabolite pathways, including byproducts of nitrification before and after incubation, meaning that, similar to large maritime glaciers in Alaska and Europe, subglacial environments in the mountain ranges of the United States are hotspots for biological activity and processing of organic carbon.

  12. Modeling Runoff from Partially Glacierized Catchments in the Tropical Andes with Different Glacier Coverage and Land Cover Conditions

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Mendoza, J.; Luna, J.; Asaoka, Y.

    2014-12-01

    In Bolivian Andes, retreats of tropical glaciers are rapid, thus water resources currently available from glacierized catchments for drinking, agriculture, industry and hydropower would be changed in its volume and variations due to changing climate. Water resources in La Paz and El Alto, the capital city areas of Bolivia, strongly depend on the runoff from partially glacierized catchments located in the Cordillera Real, which is a combined contribution of surface and subsurface flow from glacierized and non-glacierized areas due to rainfall, snow melt and glacier melt. To predict the long-term availability of water resources for the capital city areas, we developed a semi-distributed conceptual glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitudinal catchments located in the outer tropics. In the model, the retarding effect of lakes and wetlands was considered, based on the observed hydraulic functions and distribution of wetlands. The model was applied to three sub-catchments of the Tuni Lake watershed (98km2), from which the water resources for La Paz and El Alto are supplied. With calibrated parameters, the model reproduced well the observed seasonal variations of daily runoff during recent two years. Simulated results of water balance suggested that for the catchment with a larger glacier cover, more than 40% of the annual total runoff is contributed from glacierized areas due to glacier melt and snowmelt. The contribution from glacierized areas in other two sub-catchments, with relatively smaller areas covered by glacier ice, was calculated to be between 10-15%. We found that the role of wetlands and lakes are essential in retarding and regulating the runoff from partially glacierized high-mountain catchments.

  13. Glaciers and ice caps outside Greenland

    USGS Publications Warehouse

    Sharp, Marin; Wolken, G.; Burgess, D.; Cogley, J.G.; Copland, L.; Thomson, L.; Arendt, A.; Wouters, B.; Kohler, J.; Andreassen, L.M.; O'Neel, Shad; Pelto, M.

    2015-01-01

    Mountain glaciers and ice caps cover an area of over 400 000 km2 in the Arctic, and are a major influence on global sea level (Gardner et al. 2011, 2013; Jacob et al. 2012). They gain mass by snow accumulation and lose mass by meltwater runoff. Where they terminate in water (ocean or lake), they also lose mass by iceberg calving. The climatic mass balance (Bclim, the difference between annual snow accumulation and annual meltwater runoff) is a widely used index of how glaciers respond to climate variability and change. The total mass balance (ΔM) is defined as the difference between annual snow accumulation and annual mass losses (by iceberg calving plus runoff).

  14. Mass loss on Himalayan glacier endangers water resources

    NASA Astrophysics Data System (ADS)

    Kehrwald, Natalie M.; Thompson, Lonnie G.; Tandong, Yao; Mosley-Thompson, Ellen; Schotterer, Ulrich; Alfimov, Vasily; Beer, Jürg; Eikenberg, Jost; Davis, Mary E.

    2008-11-01

    Ice cores drilled from glaciers around the world generally contain horizons with elevated levels of beta radioactivity including 36Cl and 3H associated with atmospheric thermonuclear bomb testing in the 1950s and 1960s. Ice cores collected in 2006 from Naimona'nyi Glacier in the Himalaya (Tibet) lack these distinctive marker horizons suggesting no net accumulation of mass (ice) since at least 1950. Naimona'nyi is the highest glacier (6050 masl) documented to be losing mass annually suggesting the possibility of similar mass loss on other high-elevation glaciers in low and mid-latitudes under a warmer Earth scenario. If climatic conditions dominating the mass balance of Naimona'nyi extend to other glaciers in the region, the implications for water resources could be serious as these glaciers feed the headwaters of the Indus, Ganges, and Brahmaputra Rivers that sustain one of the world's most populous regions.

  15. Quality controlled glacier inventory in high Asian mountains

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Nuimura, T.; Taniguchi, K.; Lamsal, D.; Nagai, H.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S.; Tsunematsu, K.; Tshering, P.; Fujita, K.; Okamoto, S.

    2013-12-01

    Glacier inventories provide a basic information for the water resources, glacier mass balance and ice volume at continental areas. Although glaciers in the Asian mountain are thought to play an important role for the regional water resources (Immerzeel et al., 2010), glacier distribution in the Asia have been poorly understood. Our GAMDAM (Glacier Area Mapping for Discharge in Asian Mountains) project have conducted to establish a glacier inventory with the aim of estimating glacier runoff contribution to river runoff. Our target region covers the High Mountain Asia, extending from 27 to 52 degrees N and from 68 to 104 degrees E. Glacier outlines were manually delineated using more than 260 of LANDSAT images taken from 1999 to 2003. Thermal infrared band was also used to delineate termini of debris-covered glaciers with help of high resolution images on Google Earth. The manual delineation has been conducted for more than two years by 5-7 operators. We conducted several tests, along which the operators delineated the same regions, and assessed the quality and criteria, and fed them back to the operators. At the end of June 2013, the inventory was completed 80% with about 63000 glaciers covering 7.8 × 10^4 km^2. Median elevation of glaciers has been interpreted as a proxy for the equilibrium line altitude (ELA), at which the accumulation and ablation were equal and thus the mass balance was zero (Braithwaite and Raper, 2009). Distribution of the median altitude derived from the GAMDAM glacier inventory was well consistent with that previously reported (Shi et al., 1980).

  16. Holocene cirque glacier activity in Rondane, southern Norway

    NASA Astrophysics Data System (ADS)

    Kvisvik, Bjørn Christian; Paasche, Øyvind; Dahl, Svein Olaf

    2015-10-01

    Skriufonnen is a small cirque glacier (0.03 km2) in the continental mountains of Rondane in southern Norway. At present, it is the only glacier in Rondane, and very little is known about Holocene glacier fluctuations in this region. Direct observations of the glacier began in 2002, since which time Skriufonnen has been in a state of strong decline. In order to provide a temporal context, past glacier fluctuations were reconstructed based on a series of short HTH gravity cores (n = 8) and long piston cores (n = 6) retrieved from three downstream lakes of Skriufonnen. The cores were analysed for selected magnetic properties (χbulk, ARM, SIRM, 77 K/293 K), organic content (LOI), and geochemical trace elements. Soil catchment samples (n = 6) were collected along a transect running from the three lakes up to the present glacier terminus. Bulk susceptibility (χbulk) measurements show that the finest fractions systematically return the highest values and that ferromagnetic minerals are depleted with distance to the glacier front. This means that periods dominated by paramagnetic minerals indicate very little or no glacier activity, whereas intervals with more ferromagnetic minerals suggest increased glacier activity. The quantitative core analyses indicate that Skriufonnen existed prior to 10,200 b2k (years before A.D. 2000) and disappeared ~ 10,000 b2k. No glacier activity is recorded from c. 10,000 b2k until the glacier reoccurred at the onset of the local Neoglacial period, c. 4000 b2k. The glacier attained its maximum extent between 3200 and 2400 b2k and during the end of the 'Little Ice Age' (LIA) c. A.D. 1800. Neoglacial fluctuations of Skriufonnen are in line with shifts in local summer temperatures and show a delayed Neoglacial inception compared to western Norway.

  17. Modelling mass balance and temperature sensitivity on Shallap glacier, Peru

    NASA Astrophysics Data System (ADS)

    Gurgiser, W.; Marzeion, B.; Nicholson, L. I.; Ortner, M.; Kaser, G.

    2013-12-01

    Due to pronounced dry seasons in the tropical Andes of Peru glacier melt water is an important factor for year-round water availability for the local society. Andean glaciers have been shrinking during the last decades but present day's magnitudes of glacier mass balance and sensitivities to changes in atmospheric drivers are not well known. Therefore we have calculated spatial distributed glacier mass and energy balance of Shallap glacier (4700 m - 5700 m, 9°S), Cordillera Blanca, Peru, on hourly time steps for the period Sept. 2006 to Aug. 2008 with records from an AWS close to the glacier as model input. Our model evaluation against measured surface height change in the ablation zone of the glacier yields our model results to be reasonable and within an expectable error range. For the mass balance characteristics we found similar vertical gradients and accumulation area ratios but markedly differences in specific mass balance from year to year. The differences were mainly caused by large differences in annual ablation in the glacier area below 5000m. By comparing the meteorological conditions in both years we found for the year with more negative mass balance that total precipitation was only slightly lower but mean annual temperature was higher, thus the fraction of liquid precipitation and the snow line altitude too. As shortwave net energy turned out to be the key driver of ablation in all seasons the deviations in snow line altitude and surface albedo explain most of the deviations in available melt energy. Hence, mass balance of tropical Shallap glacier was not only sensitive to precipitation but also to temperature which has not been expected for glaciers in the Peruvian Andes before. We furthermore have investigated impacts of increasing temperature due to its multiple effects on glacier mass and energy balance (fraction of liquid precipitation, long wave incoming radiation, sensible and latent heat flux). Presenting these results should allow for better

  18. Response of Glaciers to Climate Change in Northwest China

    NASA Astrophysics Data System (ADS)

    Li, Z.; Wang, P.

    2015-12-01

    In Northwest China, an extremely dry region, more than 20,000 mountain glaciers are developed. Glacial melt water is vital for local water resources, ecosystem in the lower reaches, peoples' living and city development there. During the past several decades, due to climate warming, the most glaciers in NW China are in a state of rapid retreating. To obtain the general idea on response of glaciers in that region, Tianshan Glaciological Station, Chinese Academy of Sciences selected more than ten glaciers in six sub-regions along Altai Mountain, Tianshan and Qilian Mountain, respectively, doing in-situ observations. Based on field observation and remote sensing technique, this study has revealed that the area reductions in different regions range between 8.8%~34.2 % during the past four decades. The potential impact of the glacier recession on water resource in future will be spatially different. For the Tarim River, the glacier runoff is estimated to maintain its current level or increase somewhat in next 30~50 years. In the north slope of Tianshan, the glaciers with a size smaller than 1 km2 are most likely to be melted away in next 20~40 years, and those larger than 5 km2 are melting intensively. In eastern Xinjiang, because the number of the glaciers is small and also because the climate is extremely dry, the glacier retreating are causing the water shortage problem. For Ili River and Irtysh River, because they are dominant by snow melt runoff, the impact of the glacier shrinkage and temperature rise would be limited on the quantity of the river runoff, but significant on the annual distribution of the river runoff. For Qilian Mountains, glaciers are quite small. The vanishing of small glacier will have significant impact on local water resources in near future.

  19. A macroscopic approach to glacier dynamics

    USGS Publications Warehouse

    Harrison, W.D.; Raymond, C.F.; Echelmeyer, K.A.; Krimmel, R.M.

    2003-01-01

    A simple approach to glacier dynamics is explored in which there is postulated to be a relationship between area and volume with three parameters: the time for area to respond to changes in volume, a thickness scale, and an area characterizing the condition of the initial state. This approach gives a good fit to the measurements of cumulative balance and area on South Cascade Glacier from 1970-97; the area time-scale is roughly 8 years, the thickness scale about 123 m, and the 1970 area roughly 4% larger than required for adjustment with volume. Combining this relationship with a version of mass continuity expressed in terms of area and volume produces a theory of glacier area and volume response to climate in which another time constant, the volume time-scale, appears. Area and volume both respond like a damped spring and mass system. The damping of the South Cascade response is approximately critical, and the volume time-scale is roughly 48 years, six times the area time-scale. The critically damped spring and mass analogy reproduces the time dependence predicted by the more complicated traditional theory of Nye.

  20. Modelling Glacier Retreat after Ice Shelf Collapse

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.; Rott, H.; Bamber, J. L.

    2014-12-01

    Satellite measurements have shown the consistent and ongoing speed-up and retreat of glaciers that were once buttressed by the collapsed Larsen B ice shelf. Understanding the response of grounded ice to ice shelf collapse is a prerequisite to future predictions of sea level rise as other ice shelfs such as Scar Inlet or the Larsen Ice Shelf further weaken due to changing atmospheric and ocean conditions.We present model results for a number of sensitivity experiments that aim to simulate the response of glaciers to the collapse of Larsen B. For this purpose we use a state of the art shallow shelf model with grounding line resolving capabilities. The model is initialized to observed pre-2002 conditions with the ice shelf in place, and transient runs are done that study the response to a weakening and removal of the ice shelf. Results are compared to a novel dataset of observed ice velocities, which provides the most comprehensive overview of dynamical changes after the collapse to-date. In addition, we investigate glacier response to the future collapse of Scar Inlet, a remnant of the Larsen B ice shelf which has been suggested to show signs of weakening in recent years. Results will also be used to inform a future Antartic Peninsula-wide modelling study.

  1. Dielectric Signatures of Annealing in Glacier Ice

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Stillman, D. E.; MacGregor, J. A.

    2015-12-01

    We analyzed the dielectric spectra of 49 firn and ice samples from ice sheets and glaciers to better understand how differing ice formation and evolution affect electrical properties. The dielectric relaxation of ice is well known and its characteristic frequency increases with the concentration of soluble impurities in the ice lattice. We found that meteoric ice and firn generally possess two such relaxations, indicating distinct crystal populations or zonation. Typically, one population is consistent with that of relatively pure ice, and the other is significantly more impure. However, high temperatures (e.g., temperate ice), long residence times (e.g., ancient ice from Mullins Glacier, Antarctica), or anomalously high impurity concentrations favor the development of a single relaxation. These relationships suggest that annealing causes two dielectrically distinct populations to merge into one population. The dielectric response of temperate ice samples indicates increasing purity with increasing depth, suggesting final rejection of impurities from the lattice. Separately, subglacially frozen samples from the Vostok 5G ice core possess a single relaxation whose variable characteristic frequency likely reflects the composition of the source water. Multi-frequency electrical measurements on cores and in the field can track annealing of glacier ice.

  2. Pathways of Petermann Glacier meltwater, Greenland

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna; Johnson, Helen; Münchow, Andreas

    2016-04-01

    Radar and satellite observations suggest that the floating ice shelf of Petermann Glacier loses up to 80% of its mass through basal melting, caused by the intrusion of warm Atlantic Water into the fjord and under the ice shelf. The fate of Petermann's glacial meltwater is still largely unknown. It is investigated here, using hydrographic observations collected during a research cruise on board I/B Oden in August 2015. Two methods are used to detect the meltwater from Petermann: a mathematical one that provides the concentration of ice shelf meltwater, and a geometrical one to distinguish the meltwater from Petermann and the meltwater from other ice shelves. The meltwater from Petermann mostly circulates on the north side of the fjord. At the sill, 0.5 mSv of meltwater leave the fjord, mostly on the northeastern side between 100 and 350 m depth, but also in the central channel, albeit with a lesser concentration. Meltwater from Petermann is found in all the casts in Hall Basin, notably north of the sill by Greenland coast. The geometrical method reveals that the casts closest to the Canadian side mostly contain meltwater from other, unidentified glaciers. As Atlantic Water warms up, it is key to monitor Greenland melting glaciers and track their meltwater to properly assess their impact on the ocean circulation and sea level rise.

  3. Columbia Glacier stake location, mass balance, glacier surface altitude, and ice radar data, 1978 measurement year

    USGS Publications Warehouse

    Mayo, L.R.; Trabant, D.C.; March, Rod; Haeberli, Wilfried

    1979-01-01

    A 1 year data-collection program on Columbia Glacier, Alaska has produced a data set consisting of near-surface ice kinematics, mass balance, and altitude change at 57 points and 34 ice radar soundings. These data presented in two tables, are part of the basic data required for glacier dynamic analysis, computer models, and predictions of the number and size of icebergs which Columbia Glacier will calve into shipping lanes of eastern Prince William Sound. A metric, sea-level coordinate system was developed for use in surveying throughout the basin. Its use is explained and monument coordinates listed. A series of seven integrated programs for calculators were used in both the field and office to reduce the surveying data. These programs are thoroughly documented and explained in the report. (Kosco-USGS)

  4. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska

    USGS Publications Warehouse

    Kopczynski, S.E.; Ramage, J.; Lawson, D.; Goetz, S.; Evenson, E.; Denner, J.; Larson, G.

    2008-01-01

    We advance an approach to use satellite passive microwave observations to track valley glacier snowmelt and predict timing of spring snowmelt-induced floods at the terminus. Using 37 V GHz brightness temperatures (Tb) from the Special Sensor Microwave hnager (SSM/I), we monitor snowmelt onset when both Tb and the difference between the ascending and descending overpasses exceed fixed thresholds established for Matanuska Glacier. Melt is confirmed by ground-measured air temperature and snow-wetness, while glacier hydrologic responses are monitored by a stream gauge, suspended-sediment sensors and terminus ice velocity measurements. Accumulation area snowmelt timing is correlated (R2 = 0.61) to timing of the annual snowmelt flood peak and can be predicted within ??5 days. Copyright 2008 by the American Geophysical Union.

  5. Ice loss and sea level rise contribution from Alaskan glaciers

    NASA Astrophysics Data System (ADS)

    Berthier, E.; Schiefer, E.; Clarke, G. K.; Menounos, B.; Rémy, F.; Cazenave, A. A.

    2009-12-01

    Over the last 50 years, retreating glaciers and ice caps (GIC) contributed 0.5 mm/yr to SLR, and one third is believed to originate from ice masses bordering the Gulf of Alaska. However, these estimates of ice wastage in Alaska are based on methods that directly measure mass changes from a limited number of glaciers and extrapolate the results to estimate ice loss for the many thousands of others. Here, using a new glacier inventory with elevation changes derived from sequential digital elevation models (DEMs), we found that, between 1962 and 2006, Alaskan glaciers lost 41.9 ± 8.6 km**3/yr water equivalent (w.e.) and contributed 0.12 ± 0.02 mm/yr to SLR. Our ice loss is 34% lower than previous estimates. Reasons for our lower values include the higher spatial resolution of the glacier inventory used in our study and the complex pattern of ice elevation changes at the scale of individual glaciers and mountain ranges which was not resolved in earlier work. Our ice elevation changes reveal that glacier dynamics (surges, phase of the tidewater cycle, etc...) have a profound effect on the wastage of Alaska glaciers. 3D satellite view of Columbia glacier, Chugach Mountains, Alaska. (Copyright CNES 2007, Distribution Spot Image, processing E. Berthier CNRS)

  6. Climatic Significance of Holocene Glacier Fluctuations in New Zealand

    NASA Astrophysics Data System (ADS)

    Doughty, A. M.; Mackintosh, A. N.; Anderson, B. A.; Putnam, A. E.; Barrell, D.; Denton, G.; Schaefer, J. M.

    2012-12-01

    Holocene glacier fluctuations in New Zealand are represented by well-preserved moraine complexes in the Southern Alps. Recent cosmogenic dating of Holocene moraine sequences has allowed for interhemispheric comparisons of glacier advances and hence climate change. However, Balco (2009, Science, v 324, p 599-600) and others have asked "Can the timing and magnitude of observed past glacier changes in a particular region be explained by stochastic variability inherent in a steady climate, or is a change in the mean climate required?" To understand better the link between glaciers and climate during the Holocene, we evaluate possible past climate parameters by simulating ice extent at several well-preserved moraines deposited by the Cameron Glacier in the Arrowsmith Range, Southern Alps, New Zealand. We use a coupled 2-D ice-flow and distributed energy balance model with a snow transport component, the latter of which is necessary because, in its present-day configuration, this glacier receives a component of its accumulation from frequent snow avalanches. In our first experiment, we use steady-state simulations to identify the temperature and precipitation forcing required to fit the modelled Cameron Glacier to each of the geomorphically-defined moraine ridges. In our second experiment, we forced the glacier model with a time series of stochastic climate forcing that excludes a background temperature change. We discuss results of these tests, which permit assessment of the sensitivity and response of the Cameron Glacier to different modes of climate variability.

  7. Little Ice Age glaciers in the Mediterranean mountains

    NASA Astrophysics Data System (ADS)

    Hughes, Philip

    2014-05-01

    Only a few small glaciers survive today in the Mountains of the Mediterranean. Notable examples are found in the Pyrenees, Maritime Alps, Italian Apennines, the Dinaric and Albanian Alps and the mountains of Turkey. Many glaciers disappeared during the 20th Century. Glaciers were much larger and more numerous during the Little Ice Age (Hughes, 2014). Small glaciers even existed as far south as the High Atlas of Morocco and the Sierra Nevada of southern Spain. In more northerly areas, such as the western Balkans, glaciers and permanent snow patches occupied hundreds of cirques on relatively low-lying mountains. In the High Atlas and the Sierra Nevada no glaciers exist today, whilst in the Balkans only a few modern glaciers have been reported. A similar situation is apparent throughout the mountains of the Mediterranean region. New evidence for glacier change since the Little Ice Age will be published soon in Hughes (2014) and this paper reviews the extent, timing and climatic significance of Little Ice Age glaciation in the Mediterranean region. Reference: Hughes, P.D. (2014) Little Ice Age glaciers in the Mediterranean mountains. In: Carozza, J.-M., Devillers, B., Morhange, C. (eds) Little Ice Age in the Mediterranean, Méditerranée, volume 123.

  8. Effect of fjord geometry on tidewater glacier stability

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.

    2016-04-01

    Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.

  9. Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Conway, J. P.; Cullen, N. J.

    2016-02-01

    The effect of clouds on glacier surface energy balance (SEB) has received increased attention in the last decade, but how clouds interact with other meteorological forcing to influence surface mass balance (SMB) is not as well understood. This paper resolves the SEB and SMB at a site in the ablation zone of Brewster Glacier over a 22-month period, using high-quality radiation data to carefully evaluate SEB terms and define clear-sky and overcast conditions. A fundamental change in glacier SEB in cloudy conditions was driven by increased effective sky emissivity and surface vapour pressure, rather than a minimal change in air temperature and wind speed. During overcast conditions, positive net long-wave radiation and latent heat fluxes allowed melt to be maintained through a much greater length of time compared to clear-sky conditions, and led to similar melt in each sky condition. The sensitivity of SMB to changes in air temperature was greatly enhanced in overcast compared to clear-sky conditions due to more frequent melt and changes in precipitation phase that created a strong albedo feedback. During the spring and autumn seasons, the sensitivity during overcast conditions was strongest. To capture these processes, future attempts to explore glacier-climate interactions should aim to resolve the effects of atmospheric moisture (vapour, cloud, and precipitation) on melt as well as accumulation, through enhanced statistical or physically based methods.

  10. How important are glaciers for Indus water resources?

    NASA Astrophysics Data System (ADS)

    Sorteberg, A.

    2013-12-01

    How important are glaciers for Indus water resources? Looking into the literature reveals a wide range of estimates to this question. They partly diverge because of different definitions of a 'water resource' and partly due to the different estimates of the contribution from the glaciers. Defining the Indus water resources as precipitation (rain and snowfall) minus the loss of water due to evapotranspiration and sublimation for non-glaciated regions and the total runoff from the glaciated regions (sum of seasonal snowmelt on top of the glacier, percolating rainfall and loss of glacier ice), we have attempted to estimate the fraction of the total water resource that is coming from the glaciated regions and the fraction due to loss of glacier ice alone (which is the part that may be lost if a glacier disappears). Here we present estimates of water resources from non-glaciated regions using a wide range of estimates from observationally based, reanalysis and land data assimilation systems. Our results indicate large differences between the different estimates even for the annual values averaged over the whole basin. The implication of this finding is that the large uncertainties in the water resources of the non-glaciated regions will prevent us from making narrow estimates of the importance of the glaciers. For estimating the contribution from the glaciers we use an energy balance model with snow metamorphosis forced with 3 hourly reanalysis data (including perturbed precipitation and temperature runs based on the uncertainties in temperature and precipitation found from 10 different datasets). As there is over 10 000 glaciers in Indus it is not possible to model individual glaciers. Instead we model ';representative' glaciers where we get the average elevation of terminus and top, avg. glacier depth etc. from the Extended World Glacier Inventory in a given sub basin (using the FAO HydroSHEDS dataset to divide the Indus basin into subbasins). The mass balance and

  11. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland

    PubMed Central

    Selmes, Nick; James, Timothy D.; Edwards, Stuart; Martin, Ian; O'Farrell, Timothy; Aspey, Robin; Rutt, Ian; Nettles, Meredith; Baugé, Tim

    2015-01-01

    Abstract During summer 2013 we installed a network of 19 GPS nodes at the ungrounded margin of Helheim Glacier in southeast Greenland together with three cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 s and was designed to be robust to loss of nodes as the glacier calved. Data collection covered 55 days, and many nodes survived in locations right at the glacier front to the time of iceberg calving. The observations included a number of significant calving events, and as a consequence the glacier retreated ~1.5 km. The data provide real‐time, high‐frequency observations in unprecedented proximity to the calving front. The glacier calved by a process of buoyancy‐force‐induced crevassing in which the ice downglacier of flexion zones rotates upward because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data. Tracking of oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GPS data and camera data in combination allows us to place constraints on the height of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. The flexion zones are probably formed by the exploitation of basal crevasses, and theoretical considerations suggest that their propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. Thus, this calving mechanism is likely to dominate whenever such geometry occurs and is of increasing importance in Greenland. PMID:27570721

  12. Observations of Dynamic Changes at an Advancing Tidewater Glacier: Hubbard Glacier, Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Stearns, L. A.; Pritchard, M. E.; Bartholomaus, T.

    2015-12-01

    Hubbard Glacier, located in southeast Alaska, is the largest non-polar tidewater glacier in the world and one of a small number of glaciers that is steadily advancing. These attributes make it an intriguing target for observations of variations in ice dynamics over time. We use synthetic aperture radar data (ALOS and TerraSAR-X) and high-resolution optical imagery (WorldView and Quickbird) with a pixel tracking technique to map surface velocities from 2008 to the present, lengthening and broadening the time series of ice velocities presented in previous studies. A key result from our analysis is that Hubbard displays peak speeds of up to 12 m/day during the winter months (December - February) and minimum speeds during late summer (August - September). The times of peak and minimum speeds is quite different from those found in previous studies of Hubbard surface velocities derived from Landsat imagery, GPS, and photogrammetric methods. Those studies found peak speeds during late spring (May - June) and minimum speeds in fall (October-November), a pattern observed generally at tidewater glaciers. A second major feature we observe in our time series is the dramatic seasonal variation in surface speeds. The minimum speeds we find along the terminal lobe of the glacier are much lower than those found in previous studies, with values decreasing to near zero. Such a dramatic slow down of a tidewater glacier has not been widely observed. This result, along with the recent pattern of seasonal velocity peaks and minimas, suggests that Hubbard has undergone a change in ice dynamics.

  13. Dynamics of glacier calving at the ungrounded margin of Helheim Glacier, southeast Greenland

    NASA Astrophysics Data System (ADS)

    Murray, Tavi; Selmes, Nick; James, Timothy D.; Edwards, Stuart; Martin, Ian; O'Farrell, Timothy; Aspey, Robin; Rutt, Ian; Nettles, Meredith; Baugé, Tim

    2015-06-01

    During summer 2013 we installed a network of 19 GPS nodes at the ungrounded margin of Helheim Glacier in southeast Greenland together with three cameras to study iceberg calving mechanisms. The network collected data at rates up to every 7 s and was designed to be robust to loss of nodes as the glacier calved. Data collection covered 55 days, and many nodes survived in locations right at the glacier front to the time of iceberg calving. The observations included a number of significant calving events, and as a consequence the glacier retreated ~1.5 km. The data provide real-time, high-frequency observations in unprecedented proximity to the calving front. The glacier calved by a process of buoyancy-force-induced crevassing in which the ice downglacier of flexion zones rotates upward because it is out of buoyant equilibrium. Calving then occurs back to the flexion zone. This calving process provides a compelling and complete explanation for the data. Tracking of oblique camera images allows identification and characterisation of the flexion zones and their propagation downglacier. Interpretation of the GPS data and camera data in combination allows us to place constraints on the height of the basal cavity that forms beneath the rotating ice downglacier of the flexion zone before calving. The flexion zones are probably formed by the exploitation of basal crevasses, and theoretical considerations suggest that their propagation is strongly enhanced when the glacier base is deeper than buoyant equilibrium. Thus, this calving mechanism is likely to dominate whenever such geometry occurs and is of increasing importance in Greenland.

  14. Detecting glacier-bed overdeepenings for glaciers in the Western Italian Alps using the GlabTop2 model: the test site of the Rutor Glacier, Aosta Valley

    NASA Astrophysics Data System (ADS)

    Viani, Cristina; Machguth, Horst; Huggel, Christian; Perotti, Luigi; Giardino, Marco

    2016-04-01

    It is expected that the rapid retreat of glaciers, observed in the European Alps and other mountain regions of the world, will continue in the future. One of the most evident and relevant consequences of this phenomenon is the formation of new glacier lakes in recently deglaciated areas. During glacier retreat overdeepened parts of the glacier bed become exposed and, in some cases, filled with water. It is important to understand where these new lakes can appear because of the associated potential risks (i.e. lake outburst and consequent flood) and opportunities (tourism, hydroelectricity, water reservoir, etc.) especially in densely populated areas such as the European Alps. GlabTop2 (Glacier Bed Topography model version 2) allows to model glacier bed topography over large glaciated areas combining digital terrain information and slope-related estimates of glacier thickness. The model requires a minimum set of input data: glaciers outlines and a surface digital elevation model (DEM). In this work we tested the model on the Rutor Glacier (8,1 km2) located in the Aosta Valley. The glacier has a well-known history of a series of glacier lake outburst floods between 1430 AD and 1864 AD due to front fluctuations. After the last advance occurred during the 70s of the previous century, glacier shrinkage has been continuous and new lakes have formed in newly exposed overdeepenings. We applied GlabTop2 to DEMs derived from historical data (topographic maps and aerial photos pair) representing conditions before the proglacial lake formation. The results obtained have been compared with the present situation and existing lakes. Successively we used the model also on present-day DEMs, which are of higher resolution than the historical derived ones, and compared the modeled bed topography with an existing bedrock map obtained by in-situ geophysical investigations (GPR surveys). Preliminary results, obtained with the 1991 surface model, confirm the robustness of GlabTop2 in

  15. Extending Glacier Monitoring into the Little Ice Age and Beyond

    NASA Astrophysics Data System (ADS)

    Nussbaumer, S. U.; Gärtner-Roer, I.; Zemp, M.; Zumbühl, H. J.; Masiokas, M. H.; Espizua, L. E.; Pitte, P.

    2011-12-01

    Glaciers are among the best natural proxies of climatic changes and, as such, a key variable within the international climate observing system. The worldwide monitoring of glacier distribution and fluctuations has been internationally coordinated for more than a century. Direct measurements of seasonal and annual glacier mass balance are available for the past six decades. Regular observations of glacier front variations have been carried out since the late 19th century. Information on glacier fluctuations before the onset of regular in situ measurements have to be reconstructed from moraines, historical evidence, and a wide range of dating methods. The majority of corresponding data is not available to the scientific community which challenges the reproducibility and direct comparison of the results. Here, we present a first approach towards the standardization of reconstructed Holocene glacier front variations as well as the integration of the corresponding data series into the database of the World Glacier Monitoring Service (www.wgms.ch), within the framework of the Global Terrestrial Network for Glaciers (www.gtn-g.org). The concept for the integration of these reconstructed front variations into the relational glacier database of the WGMS was jointly elaborated and tested by experts of both fields (natural and historical sciences), based on reconstruction series of 15 glaciers in Europe (western/central Alps and southern Norway) and 9 in southern South America. The reconstructed front variation series extend the direct measurements of the 20th century by two centuries in Norway and by four in the Alps and in South America. The storage of the records within the international glacier databases guarantees the long-term availability of the data series and increases the visibility of the scientific research which - in historical glaciology - is often the work of a lifetime. The standardized collection of reconstructed glacier front variations from southern Norway

  16. Climate Change and Glacier Retreat: Scientific Fact and Artistic Opportunity

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.

    2008-12-01

    Mountain glaciers continue to retreat rapidly over most of the globe. In North America, at Glacier National Park, Montana, recent research results from Sperry Glacier (2005-2007) indicate negative mass balances are now 3-4 times greater than in the 1950s. A geospatial model of glacier retreat in the Blackfoot-Jackson basin suggested all glaciers would be gone by 2030 but has proved too conservative. Accelerated glacier shrinkage since the model was developed has mirrored an increase in actual annual temperature that is almost twice the rate used in the model. The glaciers in Glacier National Park are likely to be gone well before 2030. A variety of media, curricula, and educational strategies have been employed to communicate the disappearance of the glaciers as a consequence of global warming. These have included everything from print media and television coverage to podcasts and wayside exhibits along roads in the park. However, a new thrust is to partner with artists to communicate climate change issues to new audiences and through different channels. A scientist-artist retreat was convened to explore the tension between keeping artistic products grounded in factually-based reality while providing for freedom to express artistic creativity. Individual artists and scientists have worked to create aesthetic and emotional images, using painting, poetry, music and photography, to convey core messages from research on mountain ecosystems. Finally, a traveling art exhibit was developed to highlight the photography that systematically documents glacier change through time. The aim was to select photographs that provide the most compelling visual experience for an art-oriented viewer and also accurately reflect the research on glacier retreat. The exhibit opens on January 11, 2009

  17. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  18. Patterns of Glacier Change in the American West

    NASA Astrophysics Data System (ADS)

    Fountain, A. G.; Basagic, H. J.; Hoffman, M. J.

    2008-12-01

    We examine a century of glacier area change in the American West, exclusive of Alaska, using historic photography, historic maps, and recent aerial photos. Of the approximately 3200 glaciers and permanent snow masses, we track about 400 glaciers across a region that spans from Washington to California and Colorado to Montana. All glaciers have retreated since 1900 with the greatest change in Montana (Lewis Range) and the Sierra Nevada of California, and the least change in Washington including the North Cascades and the Olympic Peninsula. The pattern since 1970s is more complex, with the majority of glaciers having retreated since the 1970s, some vastly more than others. The glaciers that exhibit relatively little retreat are largely restricted to the high stratovolcanoes >3500m in elevation. In these cases we infer elevated snow accumulation at higher elevations compensates for increased ablation (melt) at lower elevations. In addition, many of the most stable glaciers are debris covered in their lower elevations, due to rock fall from the relatively weak volcanic edifice. Small glaciers, <1 km2, show great variability in their behavior, with a few glaciers at equilibrium or slightly advancing, to the majority retreating, with some losing 67% of their area. These differences are more difficult to explain. We infer that local climatic/topographic influences play a dominant role in the magnitude of change while regional climate patterns control the sign of the change. Temporal patterns of glacier change are very similar across broad regions while the magnitude of that change is particular to individual glaciers.

  19. Evaluating different methods for glacier mass balance interpolation on a tropical glacier

    NASA Astrophysics Data System (ADS)

    Mölg, Nico; Ceballos, Jorge Luis

    2016-04-01

    Glaciers in the inner tropics receive precipitation throughout the year while the annual temperature amplitude is small. Therefore, a seasonal distinction in accumulation and ablation season as for mid-latitude glaciers is hardly applicable. In order to better understand the sub-annual glacier development and its relation to meteorological conditions, a mass balance programme with monthly resolution was established on Conejeras Glacier in the Cordillera Central in Colombia in 2006. After almost ten years of measurements the time series has been reanalysed. The results show a mass balance of around -25 m w.e. during this period and a strong correlation to several warm and cold phases of ENSO. Reanalysis of the monthly mass balance data reveal an often low correlation between ablation/accumulation and elevation. Quality and density of the measurement network allow for the application of several different interpolation methods, recommended ones as well as "outlawed" GIS methods like Kriging. In this study we show the advantages and disadvantages of a number of possibilities and try to rank their usability according to different conditions and purposes. The application of multiple methods can also be of advantage for the estimation of uncertainty ranges.

  20. A century of glacier change in the American West

    NASA Astrophysics Data System (ADS)

    Fountain, A. G.

    2007-12-01

    Over the past 100 years glaciers in the American West (exclusive of Alaska) have largely receded. The magnitude of the recession varies across the west, with the greatest loss in Montana and California (>50% area loss) and the least loss on the stratovolcanoes (>35%) of the Pacific Northwest. The variations can be broadly characterized by elevation. Our results suggest that increased mass loss caused by increased summer temperatures affect all glaciers, whereas increasing winter temperatures, that change the phase of precipitation from snow to rain adversely affect those glaciers less than 3000m in elevation. The high glaciers (>3000m) of California and Colorado appear to be immune to variations in snowfall making them sensitive to variations in temperature alone. We infer that these very small, steep glaciers can only hold a given amount of snow beyond which extra snow avalanches or is blown off. Conversely, during winters of little direct snowfall, additional snow may be added through win drift from the surrounding terrain. The relatively little glacier shrinkage on the stratovolcanoes is due to the high altitude of the glacier accumulation zones. An east to west decrease in glacier shrinkage from Montana through Washington is due to enhanced winter precipitation along the west coast that somewhat buffers ice loss due to summer temperatures and winter precipitation phase changes.

  1. The motion of Martian glaciers and volcanic activity

    NASA Astrophysics Data System (ADS)

    Czechowski, L.

    2015-10-01

    The role of density of the heat flow on the velocity of motion of Martian glaciers is investigated using numerical model. We find that for enhanced heat flow the motion could increase dramatically. Similar effect could be achieved by thick insulating thermally layer on the top of the glacier.

  2. Sensitivity and Response of Bhutanese Glaciers to Atmospheric Warming

    NASA Technical Reports Server (NTRS)

    Rupper, Summer; Schaefer, Joerg M.; Burgener, Landon K.; Koenig, Lora S.; Tsering, Karma; Cook, Edward

    2013-01-01

    Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan s glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1 C regional warming, glacier retreat is going to continue until about 25% of Bhutan s glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%. Citation

  3. 36 CFR 7.3 - Glacier National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Glacier National Park. 7.3 Section 7.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.3 Glacier National Park. (a) Fishing. (1) Fishing regulations, based on management...

  4. Over 400 previously undocumented Svalbard surge-type glaciers identified

    NASA Astrophysics Data System (ADS)

    Farnsworth, Wesley R.; Ingólfsson, Ólafur; Retelle, Michael; Schomacker, Anders

    2016-07-01

    Identifying glaciers that exhibit surge-type behavior is important when using evidence of ice front fluctuations as a proxy for reconstructing past climate oscillations. This study identifies previously undocumented surge-type glaciers in Svalbard, based on the presence of crevasse squeeze ridges in glacier forelands. Crevasse squeeze ridges are landforms suggested to be unique to surging glacier land systems. Estimates vary greatly as to the actual percentage of surge-type glaciers in Svalbard, and consequently their distribution pattern is poorly understood. A detailed survey of recent (2008-2012), high-resolution aerial imagery from TopoSvalbard, provided by the Norwegian Polar Institute, allowed for a survey of all the glacier forelands in Svalbard. Before our study, 277 individual glaciers in Svalbard have been documented to exhibit surge behavior. By using crevasse squeeze ridges as indicators of surge behavior, we have identified 431 additional glaciers that have surged. We suggest that this is a modest value as the unique surge landforms were not visible in approximately one-third of the forelands with documented surge histories. Limits to the crevasse squeeze ridge technique are presented and potential controlling factors for crevasse squeeze ridge formation/preservation are discussed.

  5. Reanalysis of the USGS Alaskan benchmark glacier dataset

    NASA Astrophysics Data System (ADS)

    van Beusekom, A. E.; O'Neel, S.; March, R. S.; Sass, L. C.

    2010-12-01

    Resolving the relationship between glacier surface-forcing (climate) and glacier geometry changes is accomplished through mass-balance estimates which can be made with remote sensing methods or field-based observations. The small scale of Alaskan glaciers has prevented remote sensing methods until recently, and field data are essential for validating new techniques. Field data provide the only long duration record that can be studied with respect to climate. The United States Geological Survey has maintained a 44-year mass-balance program at Alaska’s Gulkana Glacier and Wolverine Glacier. We have reanalyzed the Alaskan benchmark glaciers mass balance time series so that all data are treated similarly and systematically. Both glaciers are undergoing sustained mass loss with an increasing rate in recent years. However, the magnitude of the calculated loss depends on the number and location of the data collection sites. We explore the sensitivity of the glacier-wide balance estimates to the method of integration used on the necessarily point data. The robustness of the balance is strengthened with use of independent photogrammetric measurements.

  6. The length of the world's glaciers - a new approach for the global calculation of center lines

    NASA Astrophysics Data System (ADS)

    Machguth, H.; Huss, M.

    2014-09-01

    Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.

  7. Full Stokes glacier model on GPU

    NASA Astrophysics Data System (ADS)

    Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel

    2015-04-01

    Two different approaches are commonly used in glacier ice flow modeling: models based on asymptotic approximations of ice physics and full stokes models. Lower order models are computationally lighter but reach their limits in regions of complex flow, while full Stokes models are more exact but computationally expansive. To overcome this constrain, we investigate the potential of GPU acceleration in glacier modeling. The goal of this preliminary research is to develop a three-dimensional full Stokes numerical model and apply it to the glacier flow. We numerically solve the nonlinear Stokes momentum balance equations together with the incompressibility equation. Strong nonlinearities for the ice rheology are also taken into account. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme. We have ported it to C-CUDA to run it on GPUs. Our model is benchmarked against other full Stokes solutions for all diagnostic ISMIP-HOM experiments (Pattyn et al.,2008). The preliminary results show good agreement with the other models. The major advantages of our programming approach are simplicity and order 10-100 times speed-up in comparison to serial CPU version of the code. Future work will include some real world applications and we will implement the free surface evolution capabilities. References: [1] F. Pattyn, L. Perichon, A. Aschwanden, B. Breuer, D.B. Smedt, O. Gagliardini, G.H. Gudmundsson, R.C.A. Hindmarsh, A. Hubbard, J.V. Johnson, T. Kleiner, Y. Konovalov, C. Martin, A.J. Payne, D. Pollard, S. Price, M. Ruckamp, F. Saito, S. Sugiyama, S., and T. Zwinger, Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM), The Cryosphere, 2 (2008), 95-108.

  8. Exploring tidewater glacier retreat using past and current observations at Columbia Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    O'Neel, S.; Pfeffer, W. T.; Howat, I. M.; Conway, H.; Columbia Glacier Consortium

    2010-12-01

    Since fulfilling Austin Post’s prediction of impending retreat in the late 1970s, Columbia Glacier has repeatedly surprised both casual and careful observers with its ability for rapid change. Over the last three decades, Columbia Glacier has lost approximately 18 km of its original 66 km length, while thinning by approximately 50% at the present terminus. The total ice volume lost to the Gulf of Alaska Estimates upwards of 120 km3 constrain the total ice volume lost to the Gulf of Alaska. Recently, the terminus supported a ~1.5 km long floating tongue for over than a year, contradicting the common assumption that the mechanical properties of temperate ice prohibit flotation over sustained time intervals. The rich history of study offers an opportunity to better understand tidewater glacier retreat, and a valuable analog to the dynamic instability underway at several ice sheet outlet glaciers. Current research aims to improve processing resolution of existing aerial photographic data, while complimenting the 30-year photogrammetric record with a suite of field observations. Recent instrumentation includes: oblique time lapse and still imagery, semi-permanent GPS, airborne radar, mass balance, passive seismology and LiDAR. This presentation will focus on innovative methods developed in recent field seasons, sharing insight each has provided into the retreat process . 1The Columbia Glacier Consortium consists of: Fabian Walter (SIO), Kenichi Matsuoka (NPI), Ben Smith (UW), Ethan Welty (CU-Boulder), Chris Larsen (UAF), Dave Finnegan (CRREL), Dan McNamara (USGS), Yushin Ahn (OSU), Julie Markus (OSU), Adam LeWinter (EIS).

  9. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  10. Examining a Half Century of Northwestern North American Glacier Behavior

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Fahey, M. J.; Friesen, B.; Josberger, E. G.

    2015-12-01

    In 1957, as part of the United States' contribution to the International Geophysical Year (IGY), the American Geographical Society (AGS) initiated a multi-institutional mapping project to produce 1:10,000-scale topographic maps of nine northwestern North American glaciers. The project's goal was to prepare precise maps at large scales of selected small glaciers to form a permanent record of the condition of these glaciers so that at a future date they could be resurveyed and compared. Continued surveys would give the history of wastage and accumulation, and more accurate interpretation of the response of these glaciers to meteorological and other factors. The resulting maps and a descriptive summary brochure were published in 1960 by the American Geographical Society. The USGS Global Fiducials Program (GFP) began to systematically image the same nine glaciers approximately half-century after its IGY mapping. The results of the GFP analyses would permit the types of comparisons that were envisioned by the IGY project. Imagery of each of these nine glaciers has been collected from multiple sources, including Next View licensed commercial imagery, vertical and oblique aerial photography, Landsat, and US National Imagery Systems. Exploitation of the imagery has resulted in the production of new 21st century maps that can be compared and contrasted with the vintage AGS map set. Comparison will permit the calculation of a number of parameters which will provide a direct insight into the changes that northwestern North American glaciers have been experiencing during the past half century. Specifically, these comparisons will permit the calculation of changes in glacier length, area, thickness, and volume; computation of rates of glacier advance and/or retreat, rates of glacier thickening and/or thinning, and rates of volume change; production of digital elevation models (DEMs); and generation of velocity fields from crevasse migration. The subsequent re-mapping and

  11. Glacier response to North Atlantic climate variability during the Holocene

    NASA Astrophysics Data System (ADS)

    Balascio, N. L.; D'Andrea, W. J.; Bradley, R. S.

    2015-12-01

    Small glaciers and ice caps respond rapidly to climate variations, and records of their past extent provide information on the natural envelope of past climate variability. Millennial-scale trends in Holocene glacier size are well documented and correspond with changes in Northern Hemisphere summer insolation. However, there is only sparse and fragmentary evidence for higher-frequency variations in glacier size because in many Northern Hemisphere regions glacier advances of the past few hundred years were the most extensive and destroyed the geomorphic evidence of ice growth and retreat during the past several thousand years. Thus, most glacier records have been of limited use for investigating centennial-scale climate forcing and feedback mechanisms. Here we report a continuous record of glacier activity for the last 9.5 ka from southeast Greenland derived from high-resolution measurements on a proglacial lake sediment sequence. Physical and geochemical parameters show that the glaciers responded to previously documented Northern Hemisphere climatic excursions, including the "8.2 ka" cooling event, the Holocene Thermal Maximum, Neoglacial cooling, and 20th century warming. In addition, the sediments indicate centennial-scale oscillations in glacier size during the late Holocene. Beginning at 4.1 ka, a series of abrupt glacier advances occurred, each lasting ~100 years and followed by a period of retreat, that were superimposed on a gradual trend toward larger glacier size. Thus, while declining summer insolation caused long-term cooling and glacier expansion during the late Holocene, climate system dynamics resulted in repeated episodes of glacier expansion and retreat on multi-decadal to centennial timescales. These episodes coincided with ice rafting events in the North Atlantic Ocean and periods of regional ice cap expansion, which confirms their regional significance and indicates that considerable glacier activity on these timescales is a normal feature of

  12. Dynamics of rock glaciers and debris-covered glaciers in the Central Chilean Andes over the last 50 years

    NASA Astrophysics Data System (ADS)

    Bodin, Xavier; Brenning, Alexander; Rojas Marchini, Fernanda

    2010-05-01

    In the semiarid Central Andes of Chile at 33.5°S., mountain permafrost is widely present above 3500-4000 m asl, especially in the form of rock glaciers, which often coexist with glaciers and debris-covered glaciers. This peculiar configuration of the cryosphere involves complex and poorly known responses of its components to climate change. Our study area in the Laguna Negra catchment is part of a watershed that provides up to two-thirds of the drinking water supplies to Chile's capital Santiago (5.5 million inhabitants) during the dry summer months. The 35 km² watershed contains 2.3 km² of uncovered glaciers, 0.9 km² of debris-covered glacier area and 4.3 km² of rock glaciers, and hosts the longest series of glacier mass balance measurement in Chile (Echaurren Norte glacier). Using orthorectified aerial photographs of 1956 and 1996 and a high resolution satellite image of 2008, we mapped the geometric changes that affected the glacier and the debris-covered glacier of the Punta Negra sub-catchment during the last 50 years. Surface displacements and volume changes were estimated based on 1956 and 1996 digital elevation models (DEMs), and the total loss of water equivalent in the catchment was quantified. At a shorter time scale, rock glaciers and a debris-covered glacier are being monitored since 2004, providing insights into their kinematics and near-surface thermal regime. The orthophotos reveal a 44.7% reduction of the uncovered glacier area between 1955 and 1996, and only small surface changes between 1996 and 2008. The volume reduction of both uncovered and debris-covered glaciers is estimated at at least 3.9 million m3 water equivalent between 1955 and 1996. The second noticeable change is the growth of the thermokarst areas on the debris-covered glacier, with the formation of new and the widening and deepening of existing melt-out depressions between 1955 and 2008. The thermal monitoring revealed that, in 2003/04, the mean annual ground surface

  13. Ocean forcing of glacier retreat in the western Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Cook, A. J.; Holland, P. R.; Meredith, M. P.; Murray, T.; Luckman, A.; Vaughan, D. G.

    2016-07-01

    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region.

  14. Ocean forcing of glacier retreat in the western Antarctic Peninsula.

    PubMed

    Cook, A J; Holland, P R; Meredith, M P; Murray, T; Luckman, A; Vaughan, D G

    2016-07-15

    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region. PMID:27418507

  15. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    USGS Publications Warehouse

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-01-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5–10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  16. Effects of volcanism on the glaciers of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Brugman, M. M.; Post, A.

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 sq/km of glacier snow and ice including a large part of Shoestring Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystallization of snow and ice surviving on Mount St. Helens could cause and lubricate mud flows and generate outburst floods.

  17. Summer melt regulates winter glacier flow speeds throughout Alaska

    NASA Astrophysics Data System (ADS)

    Burgess, Evan W.; Larsen, Christopher F.; Forster, Richard R.

    2013-12-01

    how climate change will affect glacier and ice sheet flow speeds remains a large hurdle toward accurate sea level rise forecasting. Increases in surface melt rates are known to accelerate glacier flow in summer, whereas in winter, flow speeds are believed to be relatively invariant. Here we show that wintertime flow speeds on nearly all major glaciers throughout Alaska are not only variable but are inversely related to melt from preceding summers. For each additional meter of summertime melt, we observe an 11% decrease in wintertime velocity on glaciers of all sizes, geometries, climates, and bed types. This dynamic occurs because interannual differences in summertime melt affect how much water is retained in the subglacial system during winter. The ubiquity of the dynamic indicates it occurs globally on glaciers and ice sheets not frozen to their beds and thus constitutes a new mechanism affecting sea level rise projections.

  18. Subglacial discharge at tidewater glaciers revealed by seismic tremor

    NASA Astrophysics Data System (ADS)

    Bartholomaus, Timothy C.; Amundson, Jason M.; Walter, Jacob I.; O'Neel, Shad; West, Michael E.; Larsen, Christopher F.

    2015-08-01

    Subglacial discharge influences glacier basal motion and erodes and redeposits sediment. At tidewater glacier termini, discharge drives submarine terminus melting, affects fjord circulation, and is a central component of proglacial marine ecosystems. However, our present inability to track subglacial discharge and its variability significantly hinders our understanding of these processes. Here we report observations of hourly to seasonal variations in 1.5-10 Hz seismic tremor that strongly correlate with subglacial discharge but not with basal motion, weather, or discrete icequakes. Our data demonstrate that vigorous discharge occurs from tidewater glaciers during summer, in spite of fast basal motion that could limit the formation of subglacial conduits, and then abates during winter. Furthermore, tremor observations and a melt model demonstrate that drainage efficiency of tidewater glaciers evolves seasonally. Glaciohydraulic tremor provides a means by which to quantify subglacial discharge variations and offers a promising window into otherwise obscured glacierized environments.

  19. Dust transport from glacierized rivers of southern Alaska to the Gulf of Alaska: Interannual variability in magnitude and sources

    NASA Astrophysics Data System (ADS)

    Crusius, J.; Schroth, A. W.; Campbell, R. W.; Resing, J.; Gasso, S.

    2014-12-01

    Dust from high latitudes is underappreciated and little studied. We recently identified new sites of dust formation, and a new dust generation mechanism, from the southern AK coastline, in Crusius et al, 2011. Dust is generated each autumn from glacierized river valleys as river levels and discharge decrease following summer peak glacier melt. The most prominent such river is the Copper River, the single largest freshwater source to the Gulf of Alaska. Each autumn the exposed river floodplains contain abundant, fine glacial flour and represent a large dust source region, prior to significant snowfall. Strong katabatic winds channeled down mountain river valleys generate dust from the fine glacial flour, which is transported as much as several hundred kilometers into the ocean. This dust is an important source of Fe to the Gulf of Alaska, where phytoplankton growth is limited by available Fe (a micronutrient). Glaciers are rapidly losing mass in this region, so there is an increasing supply of fine glacial flour during the summer melt season, and possibly increased deposition of fine glacial flour in the dust source regions. We initiated continuous, year-round time-series measurements of dust concentration, and its geochemical composition, in August of 2011 on Middleton Island, AK, which lies in the path of the dust plume extending from the Copper River valley. Dust is clearly generated from other glacierized river valleys along the southern coast of AK, as well. We will discuss results from our continuous record spanning three dust seasons, which prominently shows these events each autumn, and displays substantial interannual variability. Dust appears to remain in the boundary layer, but is transported hundreds of kilometers into the ocean, into Fe-limited waters. It is also possible that some of this dust is redeposited on snow or glacier surfaces, enhancing melting. This dust source is not accounted for in typical global dust models.

  20. Botanical Evidence of the Modern History of Nisqually Glacier, Washington

    USGS Publications Warehouse

    Sigafoos, Robert S.; Hendricks, E.L.

    1961-01-01

    A knowledge of the areas once occupied by mountain glaciers reveals at least part of the past behavior of these glaciers. From this behavior, inferences of past climate can be drawn. The maximum advance of Nisqually Glacier in the last thousand years was located, and retreat from this point is believed to have started about 1840. The maximum downvalley position of the glacier is marked by either a prominent moraine or by a line of difference between stands of trees of strikingly different size and significantly different age. The thousand-year age of the forest beyond the moraine or line between abutting stands represents the minimum time since the surface was glaciated. This age is based on the age of the oldest trees, plus an estimated interval required for the formation of humus, plus evidence of an ancient fire, plus an interval of deposition of pyroclastics. The estimate of the date when Nisqually Glacier began to retreat from its maximum advance is based upon the ages of the oldest trees plus an interval of 5 years estimated as the time required for the establishment of trees on stable moraines. This interval was derived from a study of the ages of trees growing at locations of known past positions of the glacier. Reconnaissance studies were made on moraines formed by Emmons and Tahoma Glaciers. Preliminary analyses of these data suggest that Emmons Glacier started to recede from its maximum advance in about 1745. Two other upvalley moraines mark positions from which recession started about 1849 and 1896. Ages of trees near Tahoma Glacier indicate that it started to recede from its position of maximum advance in about 1635. About 1835 Tahoma Glacier started to recede again from another moraine formed by a readvance that ter minated near the 1635 position.

  1. Glacier Mapping With Landsat Tm: Improvements and Accuracy

    NASA Astrophysics Data System (ADS)

    Paul, F.; Huggel, C.; Kaeaeb, A.; Maisch, M.

    The new Swiss Glacier Inventory for the year 2000 (SGI 2000) is presently derived from Landsat TM data. Glacier areas were obtained by segmentation of a ratio image from TM band 4 and 5. This method has proven to be very simple and highly accurate - an essential requirement for world-wide application within the project GLIMS (Global Land Ice Measurements from Space). Mis-classification using TM4 / TM 5 results for lakes, forests and areas with vegetation in cloud shadows. Digital image processing techniques are used to classify these regions separately and eliminate them from the glacier map. Automatic mapping of debris-covered glacier ice is difficult due to the spectral similarity with the surrounding terrain. For the SGI 2000, an attempt has been made to obtain the debris-covered area on glaciers by a combination of pixel- based image classification, digital terrain modelling, an object-oriented procedure and change detection analysis. First results of these improvements are presented. The accuracy of the TM derived glacier outlines is assessed by a comparison with manually derived outlines of higher resolution data sets (pan bands from SPOT, IRS- 1C and Ikonos). The overlay of outlines show very good correspondence (within the georeferencing accuracy) and the comparison of glacier areas reveals differences smaller than 5% for debris-free ice. Since acquisition of IRS-1C and Ikonos imagery is one year before and after the TM scene, respectively, small differences are also a result of glacier retreat. The automatically mapped debris-covered glacier areas are compared to the areas assigned manually on the TM image by visual interpretation. For most glaciers only a few pixels have to be corrected, for some others larger modi- fications are required.

  2. Geographic Names of Iceland's Glaciers: Historic and Modern

    USGS Publications Warehouse

    Sigurdsson, Oddur; Williams, Richard S., Jr.

    2008-01-01

    Climatic changes and resulting glacier fluctuations alter landscapes. In the past, such changes were noted by local residents who often documented them in historic annals; eventually, glacier variations were recorded on maps and scientific reports. In Iceland, 10 glacier place-names are to be found in Icelandic sagas, and one of Iceland's ice caps, Snaefellsjokull, appeared on maps of Iceland published in the 16th century. In the late 17th century, the first description of eight of Iceland's glaciers was written. Therefore, Iceland distinguishes itself in having a more than 300-year history of observations by Icelanders on its glaciers. A long-term collaboration between Oddur Sigurdsson and Richard S. Williams, Jr., led to the authorship of three books on the glaciers of Iceland. Much effort has been devoted to documenting historical glacier research and related nomenclature and to physical descriptions of Icelandic glaciers by Icelanders and other scientists from as far back as the Saga Age to recent (2008) times. The first book, Icelandic Ice Mountains, was published by the Icelandic Literary Society in 2004 in cooperation with the Icelandic Glaciological Society and the International Glaciological Society. Icelandic Ice Mountains was a glacier treatise written by Sveinn Palsson in 1795 and is the first English translation of this important scientific document. Icelandic Ice Mountains includes a Preface, including a summary of the history and facsimiles of page(s) from the original manuscript, a handwritten copy, and an 1815 manuscript (without maps and drawings) by Sveinn Palsson on the same subject which he wrote for Rev. Ebenezer Henderson; an Editor's Introduction; 82 figures, including facsimiles of Sveinn Palsson's original maps and perspective drawings, maps, and photographs to illustrate the text; a comprehensive Index of Geographic Place-Names and Other Names in the treatise; References, and 415 Endnotes. Professional Paper 1746 (this book) is the second

  3. Instrument for Analysis of Greenland's Glacier Mills

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E.; Matthews, Jaret B.; Tran, Hung B.; Steffen, Konrad; McGrath, Dan; Phillips, Thomas; Elliot, Andrew; OHern, Sean; Lutz, Colin; Martin, Sujita; Wang, Henry

    2010-01-01

    A new instrument is used to study the inner workings of Greenland s glacier mills by riding the currents inside a glacier s moulin. The West Greenland Moulin Explorer instrument was deployed into a tubular shaft to autonomously record temperature, pressure, 3D acceleration, and location. It is built with a slightly positive buoyancy in order to assist in recovery. The unit is made up of several components. A 3-axis MEMS (microelectromechanical systems) accelerometer with 0.001-g resolution forms the base of the unit. A pressure transducer is added that is capable of withstanding 500 psi (=3.4 MPa), and surviving down to -40 C. An Iridium modem sends out data every 10 minutes. The location is traced by a GPS (Global Positioning System) unit. This GPS unit is also used for recovery after the mission. Power is provided by a high-capacity lithium thionyl chloride D-sized battery. The accelerometer is housed inside a cylindrical, foot-long (=30 cm) polyvinyl chloride (PVC) shell sealed at each end with acrylic. The pressure transducer is attached to one of these lids and a MEMS accelerometer to the other, recording 100 samples per second per axis.

  4. Models for polythermal ice sheets and glaciers

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Schoof, Christian

    2016-04-01

    The dynamics of ice-sheets and glaciers depend sensitively on their thermal structure. Many ice masses are polythermal, containing both cold ice, with temperature below the melting point, and temperate ice, with temperature at the melting point. The temperate ice is really an ice-water mixture, with water produced at grain boundaries by dissipative heating. Although the water content is typically small, it can have an important effect on ice dynamics; water content controls ice viscosity, and internal meltwater percolation affects hydrology. Locations where this may be important are in the enhanced shear layer at the base of fast-flowing outlet glaciers, and in the shear margins of ice streams. In this study, we present a simplified model to describe the temperature and water-content of polythermal ice masses, accounting for the possibility of gravity- and pressure-driven water drainage according to Darcy's law. The model is based on the principle of energy conservation and the theory of viscous compaction. Numerical solutions are described and a number of illustrative test problems presented. The model is compared with existing methods in the literature, including enthalpy gradient methods, to which it reduces under certain conditions. Based on the results of our analysis, we suggest a modified enthalpy method that allows for drainage under gravity but that can be relatively easily implemented in ice-sheet models.

  5. The Physics of Glaciers, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Bahr, David

    At one time or another, who among us has not marveled at the beauty of the snow and ice-covered Alps, or admired the tenacity of polar explorers and the adventurous spirits of climbers on the glacier-clad summits of the high Himalaya? The fascination of distant ice covered expanses has enlisted more than a few recruits into the ranks of glaciologists, but many, if not most, of today's students of glaciology are a slightly less romantic and more mathematical lot, attracted by the quantitative world of physics and the applied sciences of polar climatology, ice mechanics, and snow hydrology.Once a relatively quiet branch of geophysics filled with venturesome climbers capable of reaching the objects of their study, glaciology is now a field that is fueled by a rapid influx of talent, technology, and new ideas due to the increasingly acknowledged relationships between global climate, sea level, and ice sheets. While the understanding of glacier processes has seen significant progress, as a result there is also a sense of being overwhelmed by the voluminous and sometimes speculative theories and field observations associated with an expanding discipline.

  6. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fishing are authorized in Glacier Bay? 13.1132 Section 13.1132 Parks, Forests, and Public Property...-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are authorized in Glacier Bay? Three types of commercial fishing are authorized in Glacier Bay...

  7. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fishing are authorized in Glacier Bay? 13.1132 Section 13.1132 Parks, Forests, and Public Property...-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are authorized in Glacier Bay? Three types of commercial fishing are authorized in Glacier Bay...

  8. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fishing are authorized in Glacier Bay? 13.1132 Section 13.1132 Parks, Forests, and Public Property...-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are authorized in Glacier Bay? Three types of commercial fishing are authorized in Glacier Bay...

  9. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fishing are authorized in Glacier Bay? 13.1132 Section 13.1132 Parks, Forests, and Public Property...-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are authorized in Glacier Bay? Three types of commercial fishing are authorized in Glacier Bay...

  10. 36 CFR 13.1132 - What types of commercial fishing are authorized in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fishing are authorized in Glacier Bay? 13.1132 Section 13.1132 Parks, Forests, and Public Property...-Glacier Bay National Park and Preserve Commercial Fishing § 13.1132 What types of commercial fishing are authorized in Glacier Bay? Three types of commercial fishing are authorized in Glacier Bay...

  11. Scale effects impeding palaeoclimate reconstructions from mountain glaciers

    NASA Astrophysics Data System (ADS)

    Prinz, Rainer; Nicholson, Lindsey; Mölg, Thomas; Kaser, Georg

    2016-04-01

    Lewis Glacier on Mt. Kenya lost more than 80% of its area since its last stadial in the late 19th century (L19). Can we reconstruct climate conditions sustaining Lewis Glacier in its L19 extent? First, we optimized a physical based energy and mass balance model to the modern-day glacier extent with in situ observed climate observations. Second, from this record we constructed synthetic climate scenarios (based on coupled parameter perturbation applying a simple weather generator concept) as input for the mass balance model. These scenarios reflect the observed variability in precipitation and air temperature over recent decades, reproduce the observed mass balance variability for the modern-day glacier extent, and quantify the glacier's sensitivity to climate. Using the mass balance model as optimized for the modern-day glacier on the L19 extent, driven by climate perturbations most favourable to glaciation, results in negative mass balances. This would traditionally be interpreted to mean that even the extremes of the present-day climate are incapable of reproducing the L19 conditions. Alternatively or additionally, the modelling suggests that the L19 Lewis Glacier could be sustained if a favourable climate perturbation is applied in conjunction with a modification of the gradients used to extrapolate the climate observations over the glacier surface from those optimized for the very small modern-day glacier. Such a modification might be justifiable, where the modern-day glacier is so small that it is unlikely to generate significant microclimatological effects that would be expected for the larger L19 extent, when e.g. the glacier filled its cirque reducing long-wave emissions from surrounding terrain drastically. In a general sense this finding indicates that extracting proxy climate conditions from a particular glacier geometry, using a modelling system optimized on a dramatically different geometry, may invalidate the approach, particularly if changes in

  12. Bathymetric Controls On Observed Tidewater Glacier Retreat In Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Tinto, K. J.; Boghosian, A.; Cochran, J. R.; Bell, R. E.

    2013-12-01

    Although many of the largest glaciers in Greenland are losing mass, the large variability in observed mass wastage of the remaining glaciers clouds interpretation of the proposed external forcings, such as warming of the ocean or atmosphere. Some glaciers are accelerating and thinning while other nearby glaciers advance and gain mass. Recent efforts suggest that increased ocean temperatures may be responsible for the observed glacial retreat in Greenland and Antarctica through increased basal melting beneath floating ice tongues and vertical ice faces of tidewater glaciers. Basal melting may contribute significantly to calving and thinning, and to an eventual speeding up of the glacier, resulting in thinning further inland. Knowledge of fjord geometry is crucial for ice-ocean interaction because the availability of ocean heat to the ice will be restricted by narrow sills and shallow grounding lines. We investigate whether the variability in observed changes among Greenland glaciers can be partially explained by variation in fjord geometry. Some features of a fjord that could influence the ice-ocean system include the depth of the grounding line, the presence of sills, sloping bed, and the water cavity shape beneath floating ice. New estimates of fjord bathymetries in northwest Greenland, using airborne gravimetry measurements from NASA Operation IceBridge flights, are compared to estimates of ice acceleration and mass wastage of neighboring glaciers. We investigate the correlation between fjord geometry features and several glacier parameters, such as surface velocity and elevation changes. We determine that the geometry of glacial fjords play a large role in determining the stability of outlet glaciers. Deep sills and deep terminus grounding lines will allow greater interaction with the deep and warm Atlantic water off the shelf break. For two neighboring glaciers in northwest Greenland, we find that the glacier with a deeper grounding line, and presumably in

  13. Combined Ice and Water Balances of Maclure Glacier, California, South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, 1967 Hydrologic Year

    USGS Publications Warehouse

    Tangborn, Wendell V.; Mayo, Lawrence R.; Scully, David R.; Krimmel, Robert M.

    1977-01-01

    Combined ice and water balances were measured in the 1967 hydrologic year (October 1-September 30) on four glaciers in western North America ranging in latitude from 37 deg to 63 deg N. This hydrologic year was characterized by heavier than normal winter precipitation in California and Washington and abnormally dry winter conditions in coastal Alaska. In summer the western conterminous states were abnormally dry and central and southern Alaska experienced very wet conditions. Maclure Glacier (lat 37 deg 45' N., 3,650-m (metres) mean equilibrium line altitude) had an above normal winter balance of 3.46 m and a positive annual balance of 1.05 m (metres of water equivalent). South Cascade Glacier (lat 48 deg 22' N., 1900-m mean equilibrium line altitude) had a winter balance of 3.28 m, slightly above average. Above normal summer ablation resulted in a final annual balance of -0.58 m, slightly more negative than has been the case for the past decade. Wolverine Glacier's (lat 60 deg 24' N., 1,200-m mean equilibrium line altitude) winter balance was 1.17 m, considerably below normal; the annual balance was -2.04 m. Gulkana Glacier (lat 63 deg 15' N., 1,700-m mean equilibrium line altitude) had a winter balance of 1.05 m, approximately normal for this glacier; the final annual balance was -0.30 m.

  14. What influences climate and glacier change in southwestern China?

    NASA Astrophysics Data System (ADS)

    Yasunari, Teppei J.

    2011-12-01

    The subject of climate change in the Tibetan Plateau (TP) and Himalayas has taken on increasing importance because of the availability of water resources from their mountain glaciers (Immerzeel et al 2010). Many of the glaciers over these regions have been retreating, while some are advancing and stable (Yao et al 2004, Scherler et al 2011). Other studies report that some glaciers in the Himalayas show acceleration of their shrinkage (e.g., Fujita and Nuimura 2011). However, the causes of glacier melting are still difficult to grasp because of the complexity of climatic change and its influence on glacier issues. Despite this, it is vital that we pursue further study to enable future predictions of glacier changes. The paper entitled 'Climate and glacier change in southwestern China during the past several decades' by Li et al (2011) provided carefully analyzed, quality controlled, long-term data on atmospheric temperature and precipitation during the period 1961-2008. The data were obtained from 111 Chinese stations. The researchers performed systematic analyses of temperature and precipitation over the whole southwestern Chinese domain. They discussed those changes in terms of other meteorological components such as atmospheric circulation patterns, radiation and altitude difference, and then showed how these factors could contribute to climate and glacier changes in the region. Air temperature and precipitation are strongly associated with glacier mass balance because of heat balance and the addition of mass when it snows. Temperature warming trends over many places in southwestern China were unequivocally dominant in all seasons and at higher altitudes. This indicates that the heat contribution to the glaciers has been increasing. On the other hand, precipitation has a wider variability in time and space. It is more difficult to clearly understand the effect of precipitation on the climate and glacier melting characteristics in the whole of southwestern China

  15. Variations in Alaska tidewater glacier frontal ablation, 1985-2013

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Hock, R.; Huss, M.

    2015-01-01

    Our incomplete knowledge of the proportion of mass loss due to frontal ablation (the sum of ice loss through calving and submarine melt) from tidewater glaciers outside of the Greenland and Antarctic ice sheets has been cited as a major hindrance to accurate predictions of global sea level rise. We present a 28 year record (1985-2013) of frontal ablation for 27 Alaska tidewater glaciers (representing 96% of the total tidewater glacier area in the region), calculated from satellite-derived ice velocities and modeled estimates of glacier ice thickness. We account for cross-sectional ice thickness variation, long-term thickness changes, mass lost between an upstream fluxgate and the terminus, and mass change due to changes in terminus position. The total mean rate of frontal ablation for these 27 glaciers over the period 1985-2013 is 15.11 ± 3.63Gta-1. Two glaciers, Hubbard and Columbia, account for approximately 50% of these losses. The regional total ablation has decreased at a rate of 0.14Gta-1 over this time period, likely due to the slowing and thinning of many of the glaciers in the study area. Frontal ablation constitutes only ˜4% of the total annual regional ablation, but roughly 20% of net mass loss. Comparing several commonly used approximations in the calculation of frontal ablation, we find that neglecting cross-sectional thickness variations severely underestimates frontal ablation.

  16. Levoglucosan evidence for biomass burning records over Tibetan glaciers.

    PubMed

    You, Chao; Xu, Chao; Xu, Baiqing; Zhao, Huabiao; Song, Lili

    2016-09-01

    Intense biomass burning (BB) events are widespread in tropical and subtropical Asia. However, the impact of BB aerosols on the Tibetan Plateau (TP), especially on Tibetan glaciers, is poorly understood. In this study, BB signals are revealed using the specific molecular tracer levoglucosan in snow and ice samples from different Tibetan glaciers. Tibetan glaciers mainly act as receptors of BB emissions from surrounding regions. Significant differences in levoglucosan concentrations in glacier samples collected from two slopes on the same mountain range indicate that high mountains can act as natural barriers to block the transport of smoke aerosols to the TP. Levoglucosan concentrations show a decreasing trend from west to east on glaciers impacted by the Indian summer monsoon on the southern edge of the TP, while the opposite pattern was observed on glaciers under the prevailing westerlies along the northern edge. The emission sources, the controlling climate system, as well as deposition and degradation during transport determined the spatial distribution regimes of levoglucosan concentration on Tibetan glaciers. PMID:27262131

  17. On the role of buoyant flexure in glacier calving

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; James, Timothy D.; Murray, Tavi; Vella, Dominic

    2016-04-01

    Interactions between glaciers and the ocean are key for understanding the dynamics of the cryosphere in the climate system. Here we investigate the role of hydrostatic forces in glacier calving. We develop a mathematical model to account for the elastic deformation of glaciers in response to three effects: (i) marine and lake-terminating glaciers tend to enter water with a nonzero slope, resulting in upward flexure around the grounding line; (ii) horizontal pressure imbalances at the terminus are known to cause hydrostatic in-plane stresses and downward acting torque; (iii) submerged ice protrusions at the glacier front may induce additional buoyancy forces that can cause calving. Our model provides theoretical estimates of the importance of each effect and suggests geometric and material conditions under which a given glacier will calve from hydrostatic flexure.We find good agreement with observations. This work sheds light on the intricate processes involved in glacier calving and can be hoped to improve our ability to model and predict future changes in the ice-climate system.

  18. Biodiversity under threat in glacier-fed river systems

    NASA Astrophysics Data System (ADS)

    Jacobsen, Dean; Milner, Alexander M.; Brown, Lee E.; Dangles, Olivier

    2012-05-01

    Freshwater biodiversity is under threat across the globe, with climate change being a significant contributor. One impact of climate change is the rapid shrinking of glaciers, resulting in a reduction in glacial meltwater contribution to river flow in many glacierized catchments. These changes potentially affect the biodiversity of specialized glacier-fed river communities. Perhaps surprisingly then, although freshwater biodiversity is a major conservation priority, the effects of shrinkage and disappearance of glaciers on river biodiversity have hitherto been poorly quantified. Here we focus on macroinvertebrates (mainly insect larvae) and demonstrate that local (α) and regional (γ) diversity, as well as turnover among reaches (β-diversity), will be consistently reduced by the shrinkage of glaciers. We show that 11-38% of the regional species pools, including endemics, can be expected to be lost following complete disappearance of glaciers in a catchment, and steady shrinkage is likely to reduce taxon turnover in proglacial river systems and local richness at downstream reaches where glacial cover in the catchment is less than 5-30%. Our analysis demonstrates not only the vulnerability of local biodiversity hotspots but also that extinction will probably greatly exceed the few known endemic species in glacier-fed rivers.

  19. On the role of buoyant flexure in glacier calving

    NASA Astrophysics Data System (ADS)

    Wagner, Till J. W.; James, Timothy D.; Murray, Tavi; Vella, Dominic

    2016-01-01

    Interactions between glaciers and the ocean are key for understanding the dynamics of the cryosphere in the climate system. Here we investigate the role of hydrostatic forces in glacier calving. We develop a mathematical model to account for the elastic deformation of glaciers in response to three effects: (i) marine and lake-terminating glaciers tend to enter water with a nonzero slope, resulting in upward flexure around the grounding line; (ii) horizontal pressure imbalances at the terminus are known to cause hydrostatic in-plane stresses and downward acting torque; (iii) submerged ice protrusions at the glacier front may induce additional buoyancy forces that can cause calving. Our model provides theoretical estimates of the importance of each effect and suggests geometric and material conditions under which a given glacier will calve from hydrostatic flexure. We find good agreement with observations. This work sheds light on the intricate processes involved in glacier calving and can be hoped to improve our ability to model and predict future changes in the ice-climate system.

  20. Surge dynamics in the Nathorstbreen glacier system, Svalbard

    NASA Astrophysics Data System (ADS)

    Sund, M.; Lauknes, T. R.; Eiken, T.

    2014-04-01

    Nathorstbreen glacier system (NGS) recently experienced the largest surge in Svalbard since 1936, and this was examined using spatial and temporal observations from DEM differencing, time series of surface velocities from satellite synthetic aperture radar (SAR) and other sources. The upper basins with maximum accumulation during quiescence corresponded to regions of initial lowering. Initial speed-up exceeded quiescent velocities by a factor of several tens. This suggests that polythermal glacier surges are initiated in the temperate area before mass is displaced downglacier. Subsequent downglacier mass displacement coincided with areas where glacier velocity increased by a factor of 100-200 times (stage 2). After more than 5 years, the joint NGS terminus advanced abruptly into the fjord during winter, increasing velocities even more. The advance was followed by up-glacier propagation of crevasses, indicating the middle and subsequently the upper part of the glaciers reacting to the mass displacement. NGS advanced ~15 km, while another ~3 km length was lost due to calving. Surface lowering of ~50 m was observed in some up-glacier areas, and in 5 years the total glacier area increased by 20%. Maximum measured flow rates were at least 25 m d-1, 2500 times quiescent velocity, while average velocities were about 10 m d-1. The surges of Zawadzkibreen cycle with ca. 70-year periods.

  1. Controls of air temperature variability over an Alpine Glacier

    NASA Astrophysics Data System (ADS)

    Shaw, Thomas; Brock, Ben; Ayala, Álvaro; Rutter, Nick

    2016-04-01

    Near surface air temperature (Ta) is one of the most important controls on energy exchange between a glacier surface and the overlying atmosphere. However, not enough detail is known about the controls on Ta across a glacier due to sparse data availability. Recent work has provided insights into variability of Ta along glacier centre-lines in different parts of the world, yet there is still a limited understanding of off-centreline variability in Ta and how best to estimate it from distant off-glacier locations. We present a new dataset of distributed 2m Ta records for the Tsanteleina Glacier in Northwest Italy from July-September, 2015. Data provide detailed information of lateral (across-glacier) and centre-line variations in Ta, with ~20,000 hourly observations from 17 locations. The suitability of different vertical temperature gradients (VTGs) in estimating air temperature is considered under a range of meteorological conditions and from different forcing locations. A key finding is that local VTGs account for a lot of Ta variability under a broad range of climatic conditions. However, across-glacier variability is found to be significant, particularly for high ambient temperatures and for localised topographic depressions. The relationship of spatial Ta patterns with regional-scale reanalysis data and alternative Ta estimation methodologies are also presented. This work improves the knowledge of local scale Ta variations and their importance to melt modelling.

  2. Glacier calving, dynamics, and sea-level rise. Final report

    SciTech Connect

    Meier, M.F.; Pfeffer, W.T.; Amadei, B.

    1998-08-01

    The present-day calving flux from Greenland and Antarctica is poorly known, and this accounts for a significant portion of the uncertainty in the current mass balance of these ice sheets. Similarly, the lack of knowledge about the role of calving in glacier dynamics constitutes a major uncertainty in predicting the response of glaciers and ice sheets to changes in climate and thus sea level. Another fundamental problem has to do with incomplete knowledge of glacier areas and volumes, needed for analyses of sea-level change due to changing climate. The authors proposed to develop an improved ability to predict the future contributions of glaciers to sea level by combining work from four research areas: remote sensing observations of calving activity and iceberg flux, numerical modeling of glacier dynamics, theoretical analysis of the calving process, and numerical techniques for modeling flow with large deformations and fracture. These four areas have never been combined into a single research effort on this subject; in particular, calving dynamics have never before been included explicitly in a model of glacier dynamics. A crucial issue that they proposed to address was the general question of how calving dynamics and glacier flow dynamics interact.

  3. Wind Simulation

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  4. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be

  5. High Sensitivity of Tidewater Glacier Dynamics to Shape

    NASA Astrophysics Data System (ADS)

    Enderlin, E. M.; Howat, I. M.; Vieli, A.

    2012-12-01

    Tidewater outlet glaciers in close proximity to each other, and therefore likely exposed to similar external forcing, display contrasting dynamic behavior. This variability has been attributed to differences in outlet shape (i.e., bed elevation and width), but this dependence has not been investigated in detail. We apply a one-dimensional (depth-integrated, flow-line) numerical ice flow model to glaciers of varying width and bed topography, based on observations from Greenland, and compare their response to perturbation at the calving front, designed to simulate a reduction in buttressing. Each glacier is initially grounded on a shoal, immediately seaward of a basal depression, and perturbed from steady state by increasing the strain rate across the calving front. Following this perturbation, all glaciers undergo initial retreat and thinning as the glacier geometry adjusts to the new stress balance. Narrower glaciers and those with higher shoals tend to reach a new steady state before they become ungrounded from the shoal, resulting in little total retreat and thinning. On the other hand, wider glaciers and those with deeper shoals are initially closer to flotation, so that thinning results in ungrounding over the basal depression and rapid, unstable retreat. Once triggered, along-flow differences in outlet shape influence both the timing and magnitude of this retreat. The difference in initial thickness between several glaciers that remain stable and those that undergo unstable retreat is on the order of 10's of meters, and small (< 35 m) changes in bed height can result in switching from stable to unstable retreat. Since these differences are similar to the resolution of ice thickness measurements, it is unclear whether observations can adequately constrain prognostic models of glacier dynamics.

  6. Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J.; Schaefer, J. M.; Cook, E. R.; Putnam, A. E.; Krusic, P.; Smith, R. G.

    2013-12-01

    Glaciers are particularly sensitive to climate change, making them vulnerable elements of the environment. Of potential concern for societies is the rapid glacier retreat of Himalayan glaciers. However, the temporally short and spatially sparse instrumental records of climate, and arguably shorter and sparser glacier records, make it extremely difficult to quantify glacier sensitivity to climatic change or to place recent glacier changes into a longer, historical context. Here we address many of these issues by quantifying the glacier-climate sensitivity in the Bhutanese Himalaya over the past 800 years using a combination of remote sensing data, paleoclimate data, glacier modeling, and glacial geochronology. Bhutan is chosen for two key reasons. First, Bhutan exemplifies an area where little data on glacier changes are available and where it is logistically difficult to obtain field-based studies, a common problem for many regions of the Himalayas. Thus the methods developed here will be directly applicable to other regions. Second, glaciers in Bhutan, just as neighboring glaciers in India, Nepal, and Southwest China, sit in the bulls-eye of high snow accumulation glaciers. Sensitivity tests using a surface energy- and mass-balance model show that high accumulation regions are extremely temperature-sensitive. Therefore, Bhutan's glaciers form a highly suitable natural laboratory to investigate glacier sensitivity and response to temperature change in the monsoonal Himalaya. In this study, we map Bhutan glacierized area and volume changes over the past forty years, and show significant changes and rapid retreat of these glaciers over this period of time. In addition, we map the former glacier extents for key glacierized regions of Bhutan, and produce a 10Be chronology for glacier fluctuations for one region. Finally, we model the glacierized changes over the past 800 years using Bhutan tree-ring temperature reconstructions as climate input. Our results show that

  7. Summer energy balance and ablation of high elevation glaciers in the central Chilean Andes

    NASA Astrophysics Data System (ADS)

    Brock, Benjamin; Rivera, Andres; Burger, Flavia; Bravo, Claudio

    2014-05-01

    sublimation, 2.16 m melt). The surface energy balance is dominated by shortwave radiation, which is the only net energy input, apart from a minor contribution from sensible heat, while the main outputs of energy are net longwave radiation, melt and sublimation. Ablation is dominated by melt during the warmer midsummer months at the two AWS sites, with mean rates exceeding 30 mm w.e. per day. However, due to the high latent heat of sublimation, it is only in January and February that the melt energy flux clearly exceeds the sublimation energy flux. Sublimation rates are typically ~1 mm w.e. per day and are 50 to 100 % higher at Olivares Beta as a result of higher wind speed and surface temperature, despite similar air temperatures at the two sites. Melt rates are around twice as high in summer months with mean air temperature > -2° C, compared with cooler months. This implies that future atmospheric warming will accelerate shrinkage of these glaciers as the ablation regime switches increasingly from sublimation to a more efficient melt regime.

  8. Small Glacier Area Studies: A New Approach for Turkey

    NASA Technical Reports Server (NTRS)

    Yavasli, Dogukan D.; Tucker, Compton J.

    2012-01-01

    Many regions of Earth have glaciers that have been neglected for study because they are small. We report on a new approach to overcome the problem of studying small glaciers, using Turkey as an example. Prior to our study, no reliable estimates of Turkish glaciers existed because of a lack of systematic mapping, difficulty in using Landsat data collected before 1982, snowpack vs. glacier ice differentiation using existing satellite data and aerial photography, the previous high cost of Landsat images, and a lack of high-resolution imagery of small Turkish glaciers. Since 2008, a large number of < 1 m satellite images have become available at no cost to the research community. In addition, Landsat data are now free of charge from the U.S. Geological Survey, enabling the use of multiple images. We used 174 Landsat and eight high-resolution satellite images to document the areal extent of Turkish glaciers from the 1970s to 2007-2011. Multiple Landsat images, primarily Thematic Mapper (TM) data from 1984 to 2011, enabled us to minimize differentiation problems between snow and glacier ice, a potential source of error. In addition, we used Ikonos, Quickbird, and World View-1 & -2 very high-resolution imagery to evaluate our TM accuracies and determine the area of nine smaller glaciers in Turkey. We also used five Landsat-3 Return Beam Videcon (RBV) 30 m pixel resolution images, all from 1980, for six glaciers. The total area of Turkish glaciers decreased from 23 km2 in the 1970s to 10.1 km2 in 2007-2011. By 2007-2011, six Turkish glaciers disappeared, four were < 0.3 km2, and only three were 1.0 km2 or larger. No trends in precipitation from 1970 to 2006 and cloud cover from 1980 to 2010 were found, while surface temperatures increased, with summer minimum temperatures showing the greatest increase. We conclude that increased surface temperatures during the summer were responsible for the 56% recession of Turkish glaciers from the 1970s to 2006-2011.

  9. Ocean-Glacier Interactions in Alaska and Comparison to Greenland

    NASA Astrophysics Data System (ADS)

    Motyka, R. J.; Truffer, M.

    2011-12-01

    Meltwater from Alaska's coastal glaciers and icefields accounts for nearly half of the total freshwater discharged into the Gulf of Alaska (GOA), with 10% coming from glacier volume loss associated with rapid thinning and retreat of glaciers (Neal et al, 2010). This glacier freshwater discharge contributes to maintaining the Alaska Coastal Current (ACC), which eventually reaches the Arctic Ocean (Royer and Grosch, 2006), thereby linking changes of glaciers along the coast of Alaska to the whole Arctic system. Water column temperatures on the shelf of northern GOA, monitored at buoy GAK1 near Seward, have increased by about 1 deg C since 1970 throughout the 250 m depth and vertical density stratification has also increased. Roughly half of the glacier contribution to ACC is derived from the ~ 50 tidewater glaciers (TWG) that drain from Alaska's coastal mountains into the Gulf of Alaska (GOA). Fjord systems link these TWGs to the GOA, with fjord circulation patterns driven in part by buoyancy-driven convection of subglacial freshwater discharge at the head of the fjord. Neoglacial shallow sills (< 50 m deep) modulate the influx of warm ocean waters (up to 10 deg C) into these fjords. Convection of these warm waters melts icebergs and submerged faces of TWGs. The study of interactions between glaciers, fjords, and the ocean in coastal Alaska has had a long but very sporadic history. We examine this record starting with the "TWG cycle" hypothesis. We next examine recent hydrographic data from several different TWG fjords, representative of advancing and retreating TWGs (Columbia, Yahtse, Hubbard, and LeConte Glaciers), evaluate similarities and differences, and estimate the relative contributions of submarine glacier melting and subglacial discharge to fjord circulation. Circulation of warm ocean waters in fjords has also been hypothesized to play an important role in destabilizing and modulating glacier discharge from outlet glaciers in Greenland. We therefore compare

  10. Detection of glacier lake using ALOS PALSAR data at Bhutan

    NASA Astrophysics Data System (ADS)

    Yamanokuchi, T.; Tadono, T.; Tomiyama, N.

    2010-12-01

    The retreat of mountain glaciers and expansion of glacial lakes are the common issue related to global warming and it sometimes causes a sudden flood, which is called as Glacier Lake Outburst Flood (GLOF). GLOF event occurs frequently in 1960s at Himalayan glaciers. Satellite data is a sophisticated tool for this research because it is difficult to operate frequent field survey due to severe weather condition and hard accessibility. However, the optical sensor equipped on satellite has one serious problem, which is weather condition of target area. It is very difficult to acquire cloud-free data at Himalayan region on a regular schedule. Therefore, it is necessary to find another way to avoid this problem. Synthetic Aperture Radar (SAR) is one possible way because SAR can observe under all weather condition and SAR image is able to distinguish water surface and other landcovers because water surface is smoother than the other landcovers, especially in the case of L-band wavelength scale. On the other hand, SAR image has geometric and radiometric distortion due to its observation mechanism and topographic feature. Geometric distortion is able to correct by applying systematic orthorectification using DEM data. However, radiometric distortion is still remained. Recently, several radiometric terrain correction (RTC) methods are proposed. This method corrects the radiometric distortion due to local topographic slope. After RTC, radiometric distortion due to topographic relief is suppressed and backscatter brightness of the image after RTC almost depend on landcovers. In this study, we used L-band ALOS/PALSAR (SAR) data after applying RTC, ALOS/AVNIR-2 (Optical Sensor) data and SRTM-3 (DEM) data. PALSAR data is used for detection of glacier lake to set threshold of radar brightness. AVNIR-2 data is used for making glacier mask area because radar brightness of smooth glacier or icecap area is as dark as water surface on the PALSAR image. To avoid this misdetection, we

  11. Inland thinning of Pine Island Glacier, West Antarctica.

    PubMed

    Shepherd, A; Wingham, D J; Mansley, J A; Corr, H F

    2001-02-01

    The Pine Island Glacier (PIG) transports 69 cubic kilometers of ice each year from approximately 10% of the West Antarctic Ice Sheet (WAIS). It is possible that a retreat of the PIG may accelerate ice discharge from the WAIS interior. Satellite altimetry and interferometry show that the grounded PIG thinned by up to 1.6 meters per year between 1992 and 1999, affecting 150 kilometers of the inland glacier. The thinning cannot be explained by short-term variability in accumulation and must result from glacier dynamics. PMID:11157163

  12. External forcing modulates Pine Island Glacier flow

    NASA Astrophysics Data System (ADS)

    Christianson, K. A.; Bushuk, M.; Holland, D.; Dutrieux, P.; Joughin, I.; Parizek, B. R.; Alley, R. B.; Anandakrishnan, S.; Heywood, K. J.; Jenkins, A.; Nicholls, K. W.; Webber, B.; Muto, A.; Stanton, T. P.

    2015-12-01

    Nearly 50 years ago, Mercer first suggested the Eemian sea-level high stand was a result of a collapse of the marine portions of the West Antarctic ice sheet. Recently, special attention has been paid to West Antarctica's Amundsen Sea Embayment due to its steeply sloping retrograde beds that are well below sea level, and observations of rapid grounding-line retreat, high ice-shelf basal-melt rates, and basin-wide glacier thinning and acceleration. Despite this focus, accurate assessments of the past and future behavior of this embayment remain elusive due to a lack of understanding of calving processes and ice-ocean interactions. Here we present a continuous two-year (2012-2014) time series of oceanographic, borehole, glaciological, and seismological observations of Pine Island Glacier ice shelf, its sub-ice ocean cavity, and the adjacent Amundsen Sea. With these data, we captured the ice shelf's response to a large fluctuation in the temperature of the water (~1 °C) entering the sub-ice-ocean cavity. Initially, the ice shelf slowed by 5%, but, by the end of 2014, it had nearly recovered its earlier speed. The generally smooth changes in ice flow were punctuated by rapid (2-3 week), high-amplitude (~2.5% of the background speed) speedups and slowdowns. Satellite and seismological observations indicate that rapid speedups are caused by reduction of lateral drag along the ice stream's shear margins as a large iceberg calves and that rapid slowdowns may be due to periodic regrounding on bed highs at low tide. Coupled ice-stream/ice-shelf/ocean-plume flowband modeling informed by these new data indicates that the more-gradual changes in speed are related to ocean temperature, ice-front position, and past ice-flow history. Our observations highlight an ice shelf's rapid response to external forcings and that past ice-flow behavior affects subsequent ice response to external forcing. Thus, long-term, multifaceted investigations are necessary to determine whether a

  13. Distribution and transportation of mercury from glacier to lake in the Qiangyong Glacier Basin, southern Tibetan Plateau, China.

    PubMed

    Sun, Shiwei; Kang, Shichang; Huang, Jie; Li, Chengding; Guo, Junming; Zhang, Qianggong; Sun, Xuejun; Tripathee, Lekhendra

    2016-06-01

    The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin. PMID:27266318

  14. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 1. Effect of Percolating Meltwater on their Distribution in Glacier Ice.

    PubMed

    Pavlova, Pavlina Aneva; Jenk, Theo Manuel; Schmid, Peter; Bogdal, Christian; Steinlin, Christine; Schwikowski, Margit

    2015-12-15

    In Alpine regions, glaciers act as environmental archives and can accumulate significant amounts of atmospherically derived pollutants. Due to the current climate-warming-induced accelerated melting, these pollutants are being released at correspondingly higher rates. To examine the effect of melting on the redistribution of legacy pollutants in Alpine glaciers, we analyzed polychlorinated biphenyls in an ice core from the temperate Silvretta glacier, located in eastern Switzerland. This glacier is affected by surface melting in summer. As a result, liquid water percolates down and particles are enriched in the current annual surface layer. Dating the ice core was a challenge because meltwater percolation also affects the traditionally used parameters. Instead, we counted annual layers of particulate black carbon in the ice core, adding the years with negative glacier mass balance, that is, years with melting and subsequent loss of the entire annual snow accumulation. The analyzed samples cover the time period 1930-2011. The concentration of indicator PCBs (iPCBs) in the Silvretta ice core follows the emission history, peaking in the 1970s (2.5 ng/L). High PCB values in the 1990s and 1930s are attributed to meltwater-induced relocation within the glacier. The total iPCB load at the Silvretta ice core site is 5 ng/cm(2). A significant amount of the total PCB burden in the Silvretta glacier has been released to the environment. PMID:26632967

  15. Glacier changes on the Tibetan Plateau since the 1970s

    NASA Astrophysics Data System (ADS)

    Ye, Q.

    2015-12-01

    Glacier area on the Tibetan Plateau (TP hereafter) and its change were studied in different drainage basins by time series of Landsat satellite images since the 1970s. High resolution of various optical images of good quality, with minimal cloud and snow cover, were selected for glacier extraction on TP. There were 240 scenes of Landsat MSS with 60 m spatial resolution in 1970s. There are 150 scenes of Landsat7 ETM+ images (spatial resolution: 30m) were selected for periods of 1999-2002. 148 scenes of L1T were selected from the Operational Land Imager (OLI) of Landsat 8 with 30-m multi-spectral spatial resolutions. All satellite data were mosaicked to represent three periods, i.e. 1970s, 2000s, 2013/2014. The majority date in each period was adopted as the mosaic image date: i.e. 1976, 2001 and 2013. Glacier outlines were digitized manually based on the three mosaics by RGB: 432, with reference of SRTM DEM v4.1 and Google Earth imagery. The adjacent glaciers were regarded as continuous ice body, or glacier complexes that have not been subdivided into single glaciers. The debris-covered ice was not involved in the study. Overall glacier area uncertainty was evaluated at three study sites here where our previous regional studies available by different methods, which includes the Mt. Qomolangma, Mt. Naimona'Nyi, Mt. Geladandong. All evaluations were carried out in the same periods. The largest difference between the data sets was within ~±8%. In 1976, glaciers cover 1.7% of the TP study area as a whole, however, 56% of all the studied glacier area locates in interior drainage basins (IB hereafter). Glacier area on the TP has decreased at an accelerating rate over the last several decades, from 44,366 ± 4329 km2 in 1976 to 42,210 ± 2469 km2 in 2001 (area change was -2,156 km2 by -4.86%, or -0.19% a-1), and further decreased to 41,137 ± 2269 km2 in 2013 (area change was -1,073 km2 by -2.54%, or -0.21% a-1). ICESat/GLAS data from 2003-2009 were used to calculate

  16. Glacier-specific elevation changes in western Alaska

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Le Bris, Raymond

    2013-04-01

    Deriving glacier-specific elevation changes from DEM differencing and digital glacier outlines is rather straight-forward if the required datasets are available. Calculating such changes over large regions and including glaciers selected for mass balance measurements in the field, provides a possibility to determine the representativeness of the changes observed at these glaciers for the entire region. The related comparison of DEM-derived values for these glaciers with the overall mean avoids the rather error-prone conversion of volume to mass changes (e.g. due to unknown densities) and gives unit-less correction factors for upscaling the field measurements to a larger region. However, several issues have to be carefully considered, such as proper co-registration of the two DEMs, date and accuracy of the datasets compared, as well as source data used for DEM creation and potential artefacts (e.g. voids). In this contribution we present an assessment of the representativeness of the two mass balance glaciers Gulkana and Wolverine for the overall changes of nearly 3200 glaciers in western Alaska over a ca. 50-year time period. We use an elevation change dataset from a study by Berthier et al. (2010) that was derived from the USGS DEM of the 1960s (NED) and a more recent DEM derived from SPOT5 data for the SPIRIT project. Additionally, the ASTER GDEM was used as a more recent DEM. Historic glacier outlines were taken from the USGS digital line graph (DLG) dataset, corrected with the digital raster graph (DRG) maps from USGS. Mean glacier specific elevation changes were derived based on drainage divides from a recently created inventory. Land-terminating, lake-calving and tidewater glaciers were marked in the attribute table to determine their changes separately. We also investigated the impact of handling potential DEM artifacts in three different ways and compared elevation changes with altitude. The mean elevation changes of Gulkana and Wolverine glaciers (about -0

  17. UAVs for Glacier Mapping: Lessons Learned

    NASA Astrophysics Data System (ADS)

    McKinnon, T.; McKinnon, K. A.; Anderson, B.

    2014-12-01

    Using two different unmanned aerial vehicles (UAVs) mounted with cameras, we created a digital elevation model (DEM) of the lower 12 km^2 of Tasman Glacier, South Island, New Zealand in March 2014. The project served primarily as a proof-of-concept, and here we discuss the lessons learned, emphasizing the practical, logistical, and flight issues. We tested two different fixed-wing airframes -- a twin-boom tradition and flying wing; two different camera types, both consumer-grade RGB; and various combinations of RC and telemetry radios. We used both commercial and open-source photogrammetry software to create the mosaic and DEM imagery. Some of the most critical UAV-specific issues are: access to a launch/landing site, adequate landing zones, range, airspace contention with manned aircraft, and hardware reliability. While UAVs provide a lower-cost method for photogrammetry access, it also comes with a unique set of challenges.

  18. Analysis of glacier facies using satellite techniques

    USGS Publications Warehouse

    Williams, R.S., Jr.; Hall, D.K.; Benson, C.S.

    1991-01-01

    Landsat-derived reflectance is lowest for exposed ice and increases markedly at the transient snow line. Above the slush zone is a gradual increase in near-infrared reflectance as a result of decreasing grain-size of the snow, which characterizes drier snow. Landsat data are useful in measuring the areal extent of the ice facies, the slush zone within the wet-snow facies, the snow facies (combined wet-snow, percolation and dry-snow facies), and the respective position of the transient snow line and the slush limit. In addition, fresh snowfall and/or airborne contaminants, such as soot and tephra, can limit the utility of Landsat data for delineation of the glacier facies in some cases. -from Authors

  19. Glaciers in a changing global climate: first results of worldwide glacier mass balance measurements 2000/2001

    NASA Astrophysics Data System (ADS)

    Frauenfelder, R.; Hoelzle, M.; Haeberli, W.

    2003-04-01

    Glacier signals from mountain areas are key elements of early detection strategies for dealing with possible man-induced climate change. The IPCC Third Assessment Report indeed defines mountain glaciers as one of the best natural indicators of atmospheric warming with the highest reliability ranking. In the chain of processes linking climate and glacier fluctuations, glacier length variation is the indirect/delayed response, whereas glacier mass change is the direct/undelayed reaction. Internationally coordinated long-term monitoring of glaciers started in 1894. The responsibility to collect and publish standardized data has been assumed since 1986 by the World Glacier Monitoring Service (WGMS). This work is primarily being carried out under the auspices of the International Commission on Snow and Ice (ICSI/IAHS) and the Federation of Astronomical and Geophysical Services (FAGS/ICSU). The WGMS maintains data exchange with the ICSU World Data Center A (WDC-A) for Glaciology in Boulder, Colorado. Corresponding data bases and measurement networks form an essential part of the Global Terrestrial Network for Glaciers (GTN-G: operated by the WGMS) as a pilot project within the Global Terrestrial Observing System (GTOS/GCOS). A network of 60 glacier mass balance observations provides information on presently observed rates of change in glacier mass, corresponding acceleration trends and regional distribution patterns. A preliminary calculation of the mass balance observations in 2000/2001 relating to 23 selected data sets provide a mean specific (annual) net balance of -367 mm w.e., 26 % of the observed balances were positive. The corresponding mean in six mountain ranges was -571 mm w.e. Such values indicate that mass losses in 2000/2001 have been less extreme than in the extraordinary years before but are still strongly negative. Over the past two decades glacier melt appears to continue at a considerable and possibly even an accelerating rate. The observed average

  20. North Cascade Glacier Annual Mass Balance Record Analysis 1984-2013

    NASA Astrophysics Data System (ADS)

    Pelto, M. S.

    2014-12-01

    The North Cascade Glacier Climate Project (NCGCP) was founded in 1983 to monitor 10 glaciers throughout the range and identify their response to climate change. The annual observations include mass balance, terminus behavior, glacier surface area and accumulation area ratio (AAR). Annual mass balance (Ba) measurements have been continued on the 8 original glaciers that still exist. Two glaciers have disappeared: the Lewis Glacier and Spider Glacier. In 1990, Easton Glacier and Sholes Glacier were added to the annual balance program to offset the loss. One other glacier Foss Glacier has declined to the extent that continued measurement will likely not be possible. Here we examine the 30 year long Ba time series from this project. All of the data have been reported to the World Glacier Monitoring Service (WGMS). This comparatively long record from glaciers in one region conducted by the same research program using the same methods offers some useful comparative data. Degree day factors for melt of 4.3 mm w.e.°C-1d-1 for snow and 6.6 mm w.e.°C-1d-1 for ice has been determined from 412 days of ablation observation. The variation in the AAR for equilibrium Ba is small ranging from 60 to 67. The mean annual balance of the glaciers from 1984-2013 is -0.45 ma-1, ranging from -0.31 to -0.57 ma-1 for individual glacier's. The correlation coefficient of Ba is above 0.80 between all glaciers including the USGS benchmark glacier, South Cascade Glacier. This indicates that the response is to regional climate change, not local factors. The mean annual balance of -0.45 ma-1 is close to the WGMS global average for this period -0.50 ma-1. The cumulative loss of 13.5 m w.e. and 15 m of ice thickness represents more than 20% of the volume of the glaciers.

  1. Fast-flowing outlet glaciers on Svalbard ice caps

    SciTech Connect

    Dowdeswell, J.A. ); Collin, R.L. )

    1990-08-01

    Four well-defined outlet glaciers are present on the 2510 km{sup 2} cap of Vestfonna in Nordaustlandet, Svalbard. Airborne radio echo sounding and aerial-photograph and satellite-image analysis methods are used to analyze the morphology and dynamics of the ice cap and its component outlet glaciers. The heavily crevassed outlets form linear depressions in the ice-cap surface and flow an order of magnitude faster than the ridges of uncrevassed ice between them. Ice flow on the ridges is accounted for by internal deformation alone, whereas rates of outlet glacier flow require basal motion. One outlet has recently switched into and out of a faster mode of flow. Rapid terminal advance, a change from longitudinal compression to tension, and thinning in the upper basin indicate surge behavior. Observed outlet glacier discharge is significantly greater than current inputs of mass of the ice cap, indicating that present rates of flow cannot be sustained under the contemporary climate.

  2. Calving rates at tidewater glaciers vary strongly with ocean temperature

    PubMed Central

    Luckman, Adrian; Benn, Douglas I.; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-01-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing. PMID:26450063

  3. Colonization of maritime glacier ice by bdelloid Rotifera.

    PubMed

    Shain, Daniel H; Halldórsdóttir, Katrín; Pálsson, Finnur; Aðalgeirsdóttir, Guðfinna; Gunnarsson, Andri; Jónsson, Þorsteinn; Lang, Shirley A; Pálsson, Hlynur Skagfjörð; Steinþórssson, Sveinbjörn; Arnason, Einar

    2016-05-01

    Very few animal taxa are known to reside permanently in glacier ice/snow. Here we report the widespread colonization of Icelandic glaciers and ice fields by species of bdelloid Rotifera. Specimens were collected within the accumulation zones of Langjökull and Vatnajökull ice caps, among the largest European ice masses. Rotifers reached densities up to ∼100 individuals per liter-equivalent of glacier ice/snow, and were freeze-tolerant. Phylogenetic analyses indicate that glacier rotifers are polyphyletic, with independent ancestries occurring within the Pleistocene. Collectively, these data identify a previously undescribed environmental niche for bdelloid rotifers and suggest their presence in comparable habitats worldwide. PMID:26932187

  4. Contribution of small glaciers to global sea level

    USGS Publications Warehouse

    Meier, M.F.

    1984-01-01

    Observed long-term changes in glacier volume and hydrometeorological mass balance models yield data on the transfer of water from glaciers, excluding those in Greenland and Antarctica, to the oceans, The average observed volume change for the period 1900 to 1961 is scaled to a global average by use of the seasonal amplitude of the mass balance. These data are used to calibrate the models to estimate the changing contribution of glaciers to sea level for the period 1884 to 1975. Although the error band is large, these glaciers appear to accountfor a third to half of observed rise in sea level, approximately that fraction not explained by thermal expansion of the ocean.

  5. Modeling East African tropical glaciers during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Doughty, Alice; Kelly, Meredith; Russell, James; Jackson, Margaret; Anderson, Brian; Nakileza, Robert

    2016-04-01

    The timing and magnitude of tropical glacier fluctuations since the last glacial maximum could elucidate how climatic signals transfer between hemispheres. We focus on ancient glaciers of the East African Rwenzori Mountains, Uganda/D.R. Congo, where efforts to map and date the moraines are on-going. We use a coupled mass balance - ice flow model to infer past climate by simulating glacier extents that match the mapped and dated LGM moraines. A range of possible temperature/precipitation change combinations (e.g. -15% precipitation and -7C temperature change) allow simulated glaciers to fit the LGM moraines dated to 20,140±610 and 23,370±470 years old.

  6. Undercutting of marine-terminating glaciers in West Greenland

    NASA Astrophysics Data System (ADS)

    Rignot, Eric; Fenty, Ian; Xu, Yun; Cai, Cilan; Kemp, Chris

    2015-07-01

    Marine-terminating glaciers control most of Greenland's ice discharge into the ocean, but little is known about the geometry of their frontal regions. Here we use side-looking, multibeam echo sounding observations to reveal that their frontal ice cliffs are grounded deeper below sea level than previously measured and their ice faces are neither vertical nor smooth but often undercut by the ocean and rough. Deep glacier grounding enables contact with subsurface, warm, salty Atlantic waters (AW) which melts ice at rates of meters per day. We detect cavities undercutting the base of the calving faces at the sites of subglacial water (SGW) discharge predicted by a hydrological model. The observed pattern of undercutting is consistent with numerical simulations of ice melt in which buoyant plumes of SGW transport warm AW to the ice faces. Glacier undercutting likely enhances iceberg calving, impacting ice front stability and, in turn, the glacier mass balance.

  7. Glacier shrinkage and water resources in the Andes

    NASA Astrophysics Data System (ADS)

    Francou, Bernard; Coudrain, Anne

    For more than a century glaciers around the world have been melting as air temperatures rise due to a combination of natural processes and human activity. The disappearance of these glaciers can have wide-ranging effects, such as the creation of new natural hazards or changes in stream flow that could threaten water suppliesSome of the most dramatic melting has occurred in the Andes mountain range in South America. To highlight the climatic and glacial change in the Andes and to encourage the scientific community to strengthen the glacier observation network that stretches from Colombia to the Patagonian ice fields, the Instituto Nacional de Recursos Naturales (INRENA), Perú, and the Institute of Research and Development (IRD), France, recently organized the second Symposium on Mass Balance of Andean Glaciers in Huaráz,Perú.

  8. Calving rates at tidewater glaciers vary strongly with ocean temperature

    NASA Astrophysics Data System (ADS)

    Luckman, Adrian; Benn, Douglas I.; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-10-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing.

  9. Calving rates at tidewater glaciers vary strongly with ocean temperature.

    PubMed

    Luckman, Adrian; Benn, Douglas I; Cottier, Finlo; Bevan, Suzanne; Nilsen, Frank; Inall, Mark

    2015-01-01

    Rates of ice mass loss at the calving margins of tidewater glaciers (frontal ablation rates) are a key uncertainty in sea level rise projections. Measurements are difficult because mass lost is replaced by ice flow at variable rates, and frontal ablation incorporates sub-aerial calving, and submarine melt and calving. Here we derive frontal ablation rates for three dynamically contrasting glaciers in Svalbard from an unusually dense series of satellite images. We combine ocean data, ice-front position and terminus velocity to investigate controls on frontal ablation. We find that frontal ablation is not dependent on ice dynamics, nor reduced by glacier surface freeze-up, but varies strongly with sub-surface water temperature. We conclude that calving proceeds by melt undercutting and ice-front collapse, a process that may dominate frontal ablation where submarine melt can outpace ice flow. Our findings illustrate the potential for deriving simple models of tidewater glacier response to oceanographic forcing. PMID:26450063

  10. Evaluating glacier movement fluctuations using remote sensing: A case study of the Baird, Patterson, LeConte, and Shakes glaciers in central Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Davidson, Robert Howard

    Global Land Survey (GLS) data encompassing Landsat Multispectral Scanner (MSS), Landsat 5's Thematic Mapper (TM), and Landsat 7's Enhanced Thematic Mapper Plus (ETM+) were used to determine the terminus locations of Baird, Patterson, LeConte, and Shakes Glaciers in Alaska in the time period 1975-2010. The sequences of the terminuses locations were investigated to determine the movement rates of these glaciers with respect to specific physical and environmental conditions. GLS data from 1975, 1990, 2000, 2005, and 2010 in false-color composite images enhancing ice-snow differentiation and Iterative Self-Organizing (ISO) Data Cluster Unsupervised Classifications were used to 1) quantify the movement rates of Baird, Patterson, LeConte, and Shakes Glaciers; 2) analyze the movement rates for glaciers with similar terminal terrain conditions and; 3) analyze the movement rates for glaciers with dissimilar terminal terrain conditions. From the established sequence of terminus locations, movement distances were quantified between the glacier locations. Movement distances were then compared to see if any correlation existed between glaciers with similar or dissimilar terminal terrain conditions. The Global Land Ice Measurement from Space (GLIMS) data was used as a starting point from which glacier movement was measured for Baird, Patterson, and LeConte Glaciers only as the Shakes Glacier is currently not included in the GLIMS database. The National Oceanographic and Atmospheric Administration (NOAA) temperature data collected at the Petersburg, Alaska, meteorological station (from January 1, 1973 to December 31, 2009) were used to help in the understanding of the climatic condition in this area and potential impact on glaciers terminus. Results show that glaciers with similar terminal terrain conditions (Patterson and Shakes Glaciers) and glaciers with dissimilar terminal terrain conditions (Baird, Patterson, and LeConte Glaciers) did not exhibit similar movement rates

  11. Erosion: Wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion refers to the detachment, transport and deposition of sediment by wind. It is a dynamic, physical process where loose, dry, bare soils are transported by strong winds. Wind erosion is a soil degrading process that affects over 500 million ha of land worldwide and creates between 500 an...

  12. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  13. Glacier elevation changes on the Tibetan Plateau derived by ICESat

    NASA Astrophysics Data System (ADS)

    Neckel, N.; Kropacek, J.; Bolch, T.

    2012-04-01

    Glaciers are a sensitive indicator for climate change in high mountain regions where climate stations are rare or non-existent. In addition, glacier changes have a significant impact on the hydrological cycle of the vulnerable region of the Tibetan Plateau. Therefore a continuous monitoring of glaciers is necessary. In-situ measurements are essential but can only be conducted at a very limited number of glaciers in this large and remote region due to enormous logistical efforts and high costs. Remote sensing techniques are suitable to complement these in-situ measurements and address a large area simultaneously. Traditionally, mountain glaciers are monitored in terms of area changes from aerial or satellite image data. However, these changes show, in contrast to volume changes, a delayed signal to climate only. In order to estimate volume changes of glaciers on the Tibetan Plateau data from the Geoscience Laser Altimeter System (GLAS) carried on-board the Ice Cloud and Elevation Satellite (ICESat) was used for extraction of elevation changes for the period 2003 to 2009. GLAS shots over glaciers were selected using the Global Land Ice Measurements from Space (GLIMS) dataset with support of recent cloud free Landsat scenes obtained from USGS. ICESat repeat-tracks are spatially close but do not match exactly. They can be horizontally separated by up to 3000 m. Therefore, an independent reference surface is used for a multi-temporal comparison of GLAS shots. For this purpose we use a Digital Elevation Model (DEM) acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM). Glaciers with an adequate ICESat data coverage (approximately 12% of the glaciers captured in the GLIMS database) were grouped according to the mountain chains in certain compact geographic regions. Mean trends in glacier elevation changes were estimated for these regions for the seven years of ICESat's lifetime. Preliminary results suggest a heterogeneous wastage of glaciers across the

  14. Potential and limitations of ICESat over small mountain glaciers

    NASA Astrophysics Data System (ADS)

    Treichler, D.; Kaeaeb, A.

    2014-12-01

    While the use of ICESat GLAS data is well established for monitoring elevation changes on ice sheets, this data holds valuable information also for more complex terrain and small glaciers, as recently demonstrated for example for high mountain Asia. This study aims at exploring the potential and limitations of ICESat over glaciated, mountainous terrain on the example of Southern Norway. The glaciers in Southern Norway are spread over an area of roughly 100'000 km2 in size. Despite high cloud coverage due to coastal proximity, we found that on average 85% of the laser returns per operational campaign contain valid elevation information from the Earth's surface, as compared with reference elevations from DEMs of 20m spatial resolution.While only 1.5% of the study area is glacierised, the laser footprints on ice represent Southern Norway's glaciers well in elevation, aspect, slope, glacier size, and spatial distribution, even for individual campaigns. With decreasing number of data points towards the end of ICESat's operational period, relative oversampling of larger ice bodies and spatial clumping occurs. Employing GLAS data for smaller or less glacierised areas might thus lead to a spatial bias due to overrepresentation of a particular glacier, and contrasting mass change estimates compared to traditional mass balance programs that are rather biased towards smaller valley glaciers with different glacier behaviour. Using only data captured at the end of the hydrological year as a proxy for yearly net mass balance, we find a slightly negative glacier surface elevation trend of -0.28 +/- 0.1 m ice per year for the ICESat period 2003 to 2008. This is in accordance with the heterogeneous but overall negative net balance in the range of -0.82 to +0.36 m w.eq. per year obtained by traditional in-situ measurements for ten glaciers in Southern Norway. When including the ICESat winter campaigns, yearly variations in snow height of 50 to 100 cm in the lowlands are accurately

  15. Geological Controls on Glacier Surging?: Statistics and Speculation

    NASA Astrophysics Data System (ADS)

    Flowers, G. E.; Crompton, J. W.

    2015-12-01

    Glacier surging represents an end-member behavior in the spectrum of ice dynamics, involving marked acceleration and high flow speeds due to abrupt changes in basal mechanics. Though much effort has been devoted to understanding the role of basal hydrology and thermal regime in fast glacier flow, fewer studies have addressed the potential role of the geologic substrate. One interesting observation is that surge-type glaciers appear almost universally associated with unconsolidated (till) beds, and several large-scale statistical studies have revealed correlations between glacier surging and bedrock properties. We revisit this relationship using field measurements. We selected 20 individual glaciers for sampling in a 40x40 km region of the St. Elias Mountains of Yukon, Canada. Eleven of these glaciers are known to surge and nine are not. The 20 study glaciers are underlain by lithologies that we have broadly classified into two types: metasedimentary only and mixed metasedimentary-granodiorite. We characterized geological and geotechnical properties of the bedrock in each basin, and analyzed the hydrochemistry and mineralogy and grain size distribution (GSD) of the suspended sediments in the proglacial streams. Here we focus on some intriguing results of the GSD analysis. Using statistical techniques, including significance testing and principal component analysis, we find that: (1) lithology determines GSD for non-surge-type glaciers, with metasedimentary basins associated with finer mean grain sizes and mixed-lithology basins with coarser mean grain sizes, but (2) the GSDs associated with surge-type glaciers are intermediate between the distributions described above, and are statistically indistinguishable between metasedimentary and mixed lithology basins. The latter suggests either that surge-type glaciers in our study area occur preferentially in basins where various processes conspire to produce a characteristic GSD, or that the surge cycle itself exerts an

  16. Brief Communication "The 2013 Erebus Glacier Tongue calving event"

    NASA Astrophysics Data System (ADS)

    Stevens, C. L.; Sirguey, P.; Leonard, G. H.; Haskell, T. G.

    2013-09-01

    The Erebus Glacier Tongue, a small floating glacier in southern McMurdo Sound, is one of the best-studied ice tongues in Antarctica. Despite this, its calving on the 27 February 2013 (UTC) was around 10 yr earlier than previously predicted. The calving was likely a result of ocean currents and the absence of fast ice. The subsequent trajectory of the newly created iceberg supports previous descriptions of the surface ocean circulation in southern McMurdo Sound.

  17. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers.

    PubMed

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the "Little Ice Age" although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice

  18. Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Siler, N.; Koutnik, M. R.; Roe, G.

    2015-12-01

    Glacier mass-balance (i.e., accumulation vs. ablation) provides a direct indicator of a glacier's relationship with climate. However, mass-balance records contain noise due to internal climate variability (i.e., from stochastic fluctuations in large-scale atmospheric circulation), which can obscure or bias trends in these relatively short timeseries. This presents a challenge in correctly identifying the signature of anthropogenic change. "Dynamical adjustment" is a technique that identifies patterns of variance shared between a climate timeseries of interest (e.g., mass-balance) and independent "predictor" variables associated with large-scale circulation (e.g., Sea Level Pressure, SLP, or Sea Surface Temperature, SST). Extracting the component of variance due to internal variability leaves a residual timeseries for which trends can more confidently be attributed to external forcing. We apply dynamical adjustments based on Partial Least Squares Regression to mass-balance records from South Cascade Glacier in Washington State and Wolverine and Gulkana Glaciers in Alaska, independently analyzing seasonal balance records to assess the dynamical influences on winter accumulation and summer ablation. Seasonally averaged North Pacific SLP and SST fields perform comparably as predictor variables, explaining 50-60% of the variance in winter balance and 30-40% of variance in summer balance for South Cascade and Wolverine Glaciers. Gulkana glacier, located further inland than the other two glaciers, is less closely linked to North Pacific climate variability, with the predictors explaining roughly one-third of variance in its winter and summer balance. We analyze the significance of linear trends in the raw and adjusted mass-balance records, and find that for all three glaciers, a) summer balance shows a statistically significant downward trend that is not substantially altered when dynamically induced variability is removed, and b) winter balance shows no statistically

  19. Prolific Sources of Icequakes: The Mulock and Skelton Glaciers, Antarctica

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Lough, A. C.; Anandakrishnan, S.; Nyblade, A.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.

    2015-12-01

    The Mulock and Skelton Glaciers are large outlet glaciers that flow through the Transantarctic Mountains and into the Ross Ice Shelf. A regional seismic deployment in the central Transantarctic Mountains (TAM) in 1999-2000 led to the identification of 63 events in the vicinity of Mulock and Skelton Glaciers [Bannister and Kennett, 2002]. A more recent study utilizing seismic data collected as part of the POLENET/A-NET and AGAP projects during 2009 again identified significant seismicity associated with these glaciers and suggested that many of these events were icequakes based on their shallow depths [Lough, 2014]. These two glaciers represent the most seismically active regions in the TAM aside from the well-studied David Glacier region [Danesi et al, 2007; Zoet et al., 2012]. In addition, many of the icequakes from this region have magnitude ML > 2.5, in contrast to most glacial events that are generally of smaller magnitude. Using the waveforms of previously identified icequakes as templates, nearby POLENET/A-NET, AGAP, and GSN seismic stations were scanned using a cross-correlation method to find similar waveforms. We then used a relative location algorithm to determine high-precision locations and depths. The use of regional velocity models derived from recent seismic studies facilitates accurate absolute locations that we interpret in the context of the local geological and glacial features. The icequakes are concentrated in heavily crevassed regions associated with steep bedrock topography, likely icefalls. Future work will focus on determining whether these events are associated with stick-slip events at the bed of the glacier and/or crevasse formation near the surface. In addition the temporal pattern of seismicity will also be examined to search for repeating icequakes, which have been identified at the base of several other glaciers.

  20. Younger Dryas glaciers in the High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Hughes, Philip; Fink, David

    2016-04-01

    Twelve cirque glaciers formed during the Younger Dryas on the mountains of Aksoual (3912 m a.s.l.) and Adrar el Hajj (3129 m a.s.l.) in the Marrakesh High Atlas. Moraines in two separate cirques on these mountains have been dated using 10Be and 36Cl exposure dating. In both cirques the age scatter is relatively small (13.8-10.1 ka) and all ages overlap within error with the Younger Dryas (12.9-11.7 ka). The glaciers were small and covered <2 km2 and formed on north-facing slopes. However, the altitudinal range of the glaciers was very large, with equilibrium line altitudes (ELAs) ranging from 2470 and 3560 m. This large range is attributed to local topoclimatic factors with the lowest glacier (confirmed as Younger Dryas in age by 3 exposure ages) occupying a very steep cirque floor where a combination of steep glacier gradient and a large potential avalanche catchment enabled its low-lying position. This indicates that caution should be taken when using single glacier sites for reconstructing regional palaeoclimate, especially those formed in steep catchments that have strong topoclimatic controls. The average ELA of the twelve Younger Dryas glaciers was c. 3109 m a.s.l. (St Dev = 325 m) and this represents an ELA depression of > 1000 m from the modern theoretical regional ELA. Under precipitation values similar to today this would require a mean annual temperature depression of 9°C. Moreover, the glacier-climate modelling indicates that it is very unlikely that climate was drier than today during the Younger Dryas in the Marrakesh High Atlas.

  1. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    PubMed Central

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  2. Elevation change (2000-2004) on the Malaspina Glacier, Alaska

    NASA Technical Reports Server (NTRS)

    Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.

    2005-01-01

    The glaciers of the southeastern Alaska coastal region are the largest temperate glacier meltwater source on Earth and may contribute one third of the total glacier meltwater entering the global ocean. Since melt onset and refreeeze timing in this region show a tendency toward earlier onset and longer ablation seasons, accelerated glacier wastage may be occurring. In this study we focus on one of the largest temperate glacier systems on Earth, the Malaspina Glacier. This glacier, with a length of approximately 110 km and an area of approximately square 5,000 km, has the largest piedmont lobe of any temperate glacier. The entire lobe, which lies at elevations below 600 m, is within the ablation zone. We report and interpret ice elevation change between a digital elevation model (DEM) derived from the Shuttle Radar Topography Mission (SRTM C band) observations in Feb. 2000 and ICESat Laser 1-3 observations between Feb. 2003 and Nov. 2004. We use these elevation change results, along with earlier studies, to address the spatial and temporal variability in wastage of the piedmont lobe. Between 2000 and 2004 ice elevation changes of 10-30 meters occurred across the central Malaspina piedmont lobe. From 1972/73 (USGS DEM) to 1999 (SRTM corrected for estimated winter snow accumulation) Malaspina's (Agassiz, Seward Lobe, and Marvine) mean ice thinning was estimated at -47 m with maximum thinning on parts of the lobes to -160 m. The Malaspina's accumulation area is only slightly larger than its ablation area (2,575 km2 vs. 2,433 km2); unfortunately few glaciological observations are available from this source region. Snow accumulation rates have been largely inferred from low-altitude precipitation and temperature data. Comparing sequential ICESat observations in the Malaspina source region, we estimated short-term elevation increases of up to 5 meters during the winter of 2003/04.

  3. Mass balance investigation of alpine glaciers through LANDSAT TM data

    NASA Technical Reports Server (NTRS)

    Bayr, Klaus J.

    1989-01-01

    An analysis of LANDSAT Thematic Mapper (TM) data of the Pasterze Glacier and the Kleines Fleisskees in the Austrian Alps was undertaken and compared with meteorological data of nearby weather stations. Alpine or valley glaciers can be used to study regional and worldwide climate changes. Alpine glaciers respond relatively fast to a warming or cooling trend in temperature through an advance or a retreat of the terminus. In addition, the mass balance of the glacier is being affected. Last year two TM scenes of the Pasterze Glacier of Aug. 1984 and Aug. 1986 were used to study the difference in reflectance. This year, in addition to the scenes from last year, one MSS scene of Aug. 1976 and a TM scene from 1988 were examined for both the Pasterze Glacier and the Kleines Fleisskees. During the overpass of the LANDSAT on 6 Aug. 1988 ground truthing on the Pasterze Glacier was undertaken. The results indicate that there was considerable more reflectance in 1976 and 1984 than in 1986 and 1988. The climatological data of the weather stations Sonnblick and Rudolfshuette were examined and compared with the results found through the LANDSAT data. There were relations between the meteorological and LANDSAT data: the average temperature over the last 100 years showed an increase of .4 C, the snowfall was declining during the same time period but the overall precipitation did not reveal any significant change over the same period. With the use of an interactive image analysis computer, the LANDSAT scenes were studied. The terminus of the Pasterze Glacier retreated 348 m and the terminus of the Kleines Fleisskees 121 m since 1965. This approach using LANDSAT MSS and TM digital data in conjunction with meteorological data can be effectively used to monitor regional and worldwide climate changes.

  4. Mapping complementarity between solar and hydro power: Sensitivity study to glacier retreat in the Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Borga, Marco; Baptiste, François; Zoccatelli, Davide

    2016-04-01

    High penetration of climate related energy sources (such as solar and small hydropower) might be facilitated by using their complementarity in order to increase the balance between energy load and generation. In this study we examine and map the complementarity between solar PV and run-of-the-river energy along the river network of catchments in the Eastern Italian Alps which are significantly affected by glaciers. We analyze energy sources complementarity across different temporal scales using two indicators: the standard deviation of the energy balance and the theoretical storage required for balancing generation and load (François et a., 2016). Temporal scales ranging from hours to years are assessed. By using a glacio-hydrological model able to simulate both the glacier and hydrology dynamics, we analyse the sensitivity of the obtained results with respect to different scenarios of glacier retreat. Reference: François, B., Hingray, B., Raynaud, D., Borga, M., Creutin, J.D., 2016: Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix. Renewable Energy, 87, 686-696.

  5. Distributed modeling of ablation (1996–2011) and climate sensitivity on the glaciers of Taylor Valley, Antarctica

    DOE PAGESBeta

    Hoffman, Matthew J.; Fountain, Andrew G.; Liston, Glen E.

    2016-04-01

    Here, the McMurdo Dry Valleys of Antarctica host the coldest and driest ecosystem on Earth, which is acutely sensitive to the availability of water coming from glacial runoff. We modeled the spatial variability in ablation and assessed climate sensitivity of the glacier ablation zones using 16 years of meteorological and surface mass-balance observations collected in Taylor Valley. Sublimation was the primary form of mass loss over much of the ablation zones, except for near the termini where melt, primarily below the surface, dominated. Microclimates in ~10 m scale topographic basins generated melt rates up to ten times higher than overmore » smooth glacier surfaces. In contrast, the vertical terminal cliffs on the glaciers can have higher or lower melt rates than the horizontal surfaces due to differences in incoming solar radiation. The model systematically underpredicted ablation for the final 5 years studied, possibly due to an increase of windblown sediment. Surface mass-balance sensitivity to temperature was ~–0.02 m w.e. K–1, which is among the smallest magnitudes observed globally. We also identified a high sensitivity to ice albedo, with a decrease of 0.02 having similar effects as a 1 K increase in temperature, and a complex sensitivity to wind speed.« less

  6. Assessment of thermal change in cold avalanching glaciers in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Gilbert, A.; Vincent, C.; Gagliardini, O.; Krug, J.; Berthier, E.

    2015-08-01

    High-elevation glaciers covered by cold firn are undergoing substantial warming in response to ongoing climate change. This warming is affecting the ice/rock interface temperature, the primary driver of avalanching glacier instability on steep slopes. Prediction of future potential instability therefore requires appropriate modeling of the thermal evolution of these glaciers. Application of a state-of-the-art model to a glacier in the French Alps (Taconnaz) has provided the first evaluation of the temperature evolution of a cold hanging glacier through this century. Our observations and three-dimensional modeling of the glacier response (velocity, thickness, temperature, density, and water content) to climate change indicate that Taconnaz glacier will become temperate and potentially unstable over a large area by the end of the 21st century. The risk induced by this glacier hazard is high for the populated region below and makes observation and modeling of such glaciers a priority.

  7. First-principles Simulations and the Criticality of Calving Glaciers

    NASA Astrophysics Data System (ADS)

    Vallot, D.; Åström, J. A.; Schäfer, M.; Welty, E.; O'Neel, S.; Bartholomaus, T. C.; Liu, Y.; Riikilä, T.; Zwinger, T.; Timonen, J.; Moore, J.

    2014-12-01

    The algoritm of a first principles calving-simulation computer-code is outlined and demonstrated. The code is particle-based and uses Newtonian dynamics to simulate ice-fracture, motion and calving. The code can simulate real-size glacier but is only able to simualte individual calving events within a few tens of minutes in duration. The code couples to the Elmer/Ice ice flow-simulation code: Elmer is employed to produce various glacier geomteries, which are then tested for stability using the particle code. In this way it is possible to pin-point the location of calving fronts. The particle simulation code and field observations are engaged to investigate the criticality of calving glaciers. The calving mass and inter-event waiting times both have power-law distributions with the same critical exponents as found for Abelian sand-pile models. This indicate that calving glaciers share characteristics with Self-Organized Critical systems (SOC). This would explain why many glacier found in nature may become unstable as a result of even minor changes in their environment. An SOC calving glacier at the critical point will display so large fluctuations in calving rate that it will render the concept 'average calving rate' more or less useless. I.e. 'average calving rate' will depend on measurement time and always have fluctuaions in the range of 100% more or less independent of the averaging time.

  8. Overview on radon measurements in Arctic glacier waters

    NASA Astrophysics Data System (ADS)

    Kies, A.; Hengesch, O.; Tosheva, Z.; Nawrot, A. P.; Jania, J.

    2015-03-01

    We present a possibility to investigate the presence of the subglacial component in waters supplied by glacierized basins in introducing radioactive isotope measurements, in combination with more classical parameters like temperature and electrical conductivity. Among the natural radioactive elements the most promising is the noble gas radon isotope 222Rnv. With a half-life of 3.8 days, it constitutes a short time tracer and also allows continuous measurements. In waters drained out from a target landbased Svalbard glacier, radon levels show surprisingly high values up to 33 Bq L-1 in the accumulation season. In the ablation period varying radon concentrations can be linked to mixing of waters from different origins, roughly supraglacial (meltwater and rain water), englacial and subglacial. Only water recently in close contact with bedrock or sediments can be charged with radon. Results from several years of radon measurements on Werenskiold glacier, in ablation and accumulation seasons, are presented and discussed. The results of continuous measurements give proxy information on drainage footpaths and the style and system of the draining of glaciers. They enable to distinguish the presence of a subglacial component in water flowing from the glacier system in different seasons of the year and thus are a step towards the indication of the prevailing type of glacier drainage during summer and winter seasons.

  9. Tropical glaciers and climate dynamics: Resolving the linkages

    NASA Astrophysics Data System (ADS)

    Mölg, Thomas

    2013-04-01

    Large-scale atmosphere/ocean circulation and mountain glaciers represent two entirely different scales in the climate system. Therefore, statistical linkages between the two mask a cascade of processes that act on different temporal and spatial dimensions. Low-latitude glaciers are particularly well suited for studying such processes, since these glaciers are situated in the "heart" of the global climate system (the tropics). This presentation gives an overview of a decade of research on tropical climate and glaciers on Kilimanjaro (East Africa), which is, to our knowledge, the only case where space/time linkages between high-altitude glaciers and climate dynamics have been investigated systematically throughout the main scales. This includes the complex modification of atmospheric flow when air masses impinge on high mountains, an aspect that has been widely neglected from a cryospheric viewpoint. The case of Kilimanjaro demonstrates (1) the great potential of learning about climate system processes and their connections, (2) advances in our understanding of the importance of moisture for glaciers that lie far above the mean freezing level, and (3) methodological advances in combining atmospheric and cryospheric modelling.

  10. Irreversible mass loss of Canadian Arctic Archipelago glaciers

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Angelen, Jan H.; Broeke, Michiel R.; Gardner, Alex S.; Wouters, Bert; Meijgaard, Erik

    2013-03-01

    The Canadian Arctic Archipelago (CAA) contains the largest volume of glacier ice on Earth outside of Antarctica and Greenland. In the absence of significant calving, CAA glacier mass balance is governed by the difference between surface snow accumulation and meltwater runoff—surface mass balance. Here we use a coupled atmosphere/snow model to simulate present-day and 21st century CAA glacier surface mass balance. Through comparison with Gravity Recovery and Climate Experiment mass anomalies and in situ observations, we show that the model is capable of representing present-day CAA glacier mass loss, as well as the dynamics of the seasonal snow cover on the CAA tundra. Next, we force this model until 2100 with a moderate climate warming scenario (AR5 RCP4.5). We show that enhanced meltwater runoff from CAA glaciers is not sufficiently compensated by increased snowfall. Extrapolation of these results toward an AR5 multimodel ensemble results in sustained 21st century CAA glacier mass loss in the vast majority (>99%) of the ~7000 temperature realizations.

  11. Deducing high-altitude precipitation from glacier mass balance measurements

    NASA Astrophysics Data System (ADS)

    Giesen, Rianne H.; Immerzeel, Walter W.; Wanders, Niko

    2016-04-01

    The spatial distribution of precipitation in mountainous terrain is generally not well known due to underrepresentation of gauge observations at higher elevations. Precipitation tends to increase with elevation, but since observations are mainly performed in the valleys, the vertical precipitation gradient cannot be deduced from these measurements. Furthermore, the spatial resolution of gridded meteorological data is often too coarse to resolve individual mountain chains. Still, a reliable estimate of high-elevation precipitation is required for many hydrological applications. We present a method to determine the vertical precipitation gradient in mountainous terrain, making use of glacier mass balance observations. These measurements have the advantage that they provide a basin-wide precipitation estimate at high elevations. The precipitation gradient is adjusted until the solid precipitation over the glacier area combined with the calculated melt gives the measured annual glacier mass balance. Results for the glacierized regions in Central Europe and Scandinavia reveal spatially coherent patterns, with predominantly positive precipitation gradients ranging from -4 to +28 % (100 m)‑1. In some regions, precipitation amounts at high elevations are up to four times as large as in the valleys. A comparison of the modelled winter precipitation with observed snow accumulation on glaciers shows a good agreement. Precipitation measured at the few high-altitude meteorological stations is generally lower than our estimate, which may result from precipitation undercatch. Our findings will improve the precipitation forcing for glacier modelling and hydrological studies in mountainous terrain.

  12. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  13. Sensitivity of very small glaciers in the Swiss Alps to future climate change

    NASA Astrophysics Data System (ADS)

    Huss, Matthias; Fischer, Mauro

    2016-04-01

    Very small glaciers (<0.5km2) currently account for up to 80% of the total number of glaciers in mountain ranges around the globe. Although their total area and volume is small compared to larger glaciers, they are a relevant component of the cryosphere contributing to landscape formation, local hydrology and sea-level rise. Very small glaciers have generally shorter response times than valley glaciers and their mass balance is strongly dependent on snow redistribution processes. Worldwide glacier monitoring has focused on medium-sized to large glaciers leaving us with a relatively limited understanding of the behavior of very small glaciers. With warming climate there is an increasing concern that very small glaciers might be the first to disappear. Already in the next decades this might result in the complete deglaciation of mountain ranges with glacier equilibrium lines close to the highest peaks. Here, we present a comprehensive modeling framework to assess past and future changes of very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and the time-varying effect of supraglacial debris. It computes the mass balance distribution, the englacial temperature regime and proglacial runoff. The past evolution of 1'133 glaciers in the Swiss Alps is individually constrained based on geodetic ice volume changes, and the model is validated against an extensive data base of in-situ measurements on very small glaciers. Our results indicate that 52% of all very small glaciers in Switzerland will completely disappear within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find highly variable sensitivities of very small glaciers to air temperature change, gently-sloping, low-elevation, and debris-covered glaciers being most sensitive.

  14. Glacier changes in the Karakoram region mapped by multimission satellite imagery

    NASA Astrophysics Data System (ADS)

    Rankl, M.; Kienholz, C.; Braun, M.

    2014-05-01

    Positive glacier-mass balances in the Karakoram region during the last decade have fostered stable and advancing glacier termini positions, while glaciers in the adjacent mountain ranges have been affected by glacier recession and thinning. In addition to fluctuations induced solely by climate, the Karakoram is known for a large number of surge-type glaciers. The present study provides an updated and extended inventory on advancing, stable, retreating, and surge-type glaciers using Landsat imagery from 1976 to 2012. Out of 1219 glaciers the vast majority showed a stable terminus (969) during the observation period. Sixty-five glaciers advanced, 93 glaciers retreated, and 101 surge-type glaciers were identified, of which 10 are new observations. The dimensional and topographic characteristics of each glacier class were calculated and analyzed. Ninety percent of nonsurge-type glaciers are shorter than 10 km, whereas surge-type glaciers are, in general, longer. We report short response times of glaciers in the Karakoram and suggest a shift from negative to balanced/positive mass budgets in the 1980s or 1990s. Additionally, we present glacier surface velocities derived from different SAR (synthetic aperture radar) sensors and different years for a Karakoram-wide coverage. High-resolution SAR data enables the investigation of small and relatively fast-flowing glaciers (e.g., up to 1.8 m day-1 during an active phase of a surge). The combination of multitemporal optical imagery and SAR-based surface velocities enables an improved, Karakoram-wide glacier inventory and hence, provides relevant new observational information on the current state of glaciers in the Karakoram.

  15. Dating buried glacier ice using cosmogenic 3He in surface clasts: Theory and application to Mullins Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackay, Sean L.; Marchant, David R.

    2016-05-01

    We develop a modeling framework to describe the accumulation of terrestrial cosmogenic 3He in Antarctic debris-covered glaciers. The framework helps quantify the expected range in cosmogenic-nuclide inventories for measured clasts at the surface of supraglacial debris. We first delineate the physical factors that impact clast movement within, and on top of, debris-covered glaciers, including the effects of (1) ice ablation, (2) erosion at the debris surface, and (3) stochastic geomorphic processes that impact clast movement within and on top of supraglacial debris; we then explicitly calculate the impact of each process in altering the total inventory of cosmogenic nuclides in surface clasts. Assuming basic elements of ice-dynamics and debris entrainment are known, the model results provide an estimate for the total accumulation of cosmogenic nuclides, as well as the expected range in nuclide inventories, for any clast at the surface of debris-covered glaciers. Because the values are quantified, the approach can be applied to help evaluate the robustness of existing and future cosmogenic datasets applied to these systems. As a test, we applied our model framework towards Mullins Glacier, a cold-based debris-covered alpine glacier in the Dry Valleys of Antarctica. Our simulated values for cosmogenic-nuclide inventories compare well with those previously measured from fifteen surface cobbles along Mullins Glacier (3He), both in terms of expected ranges and absolute values, and suggest that our model framework adequately incorporates most of the complicating factors that impact cosmogenic datasets for cold-based, debris-covered glaciers. Relating these cosmogenic-nuclide inventories to ice ages, the results show that ice within Mullins Glacier increases non-linearly, ranging from 12 ka to ∼220 ka in areas of active flow, to ≫1.6 Ma in areas of slow-moving-to-stagnant ice.

  16. Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range)

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomu

    2013-09-01

    Snow and ice algae are cold tolerant algae growing on the surface of snow and ice, and they play an important role in the carbon cycles for glaciers and snowfields in the world. Seasonal and altitudinal variations in seven major taxa of algae (green algae and cyanobacteria) were investigated on the Gulkana glacier in Alaska at six different elevations from May to September in 2001. The snow algal communities and their biomasses changed over time and elevation. Snow algae were rarely observed on the glacier in May although air temperature had been above 0 ° C since the middle of the month and surface snow had melted. In June, algae appeared in the lower areas of the glacier, where the ablation ice surface was exposed. In August, the distribution of algae was extended to the upper parts of the glacier as the snow line was elevated. In September, the glacier surface was finally covered with new winter snow, which terminated algal growth in the season. Mean algal biomass of the study sites continuously increased and reached 6.3 × 10 μl m-2 in cell volume or 13 mg carbon m-2 in September. The algal community was dominated by Chlamydomonas nivalis on the snow surface, and by Ancylonema nordenskiöldii and Mesotaenium berggrenii on the ice surface throughout the melting season. Other algae were less abundant and appeared in only a limited area of the glacier. Results in this study suggest that algae on both snow and ice surfaces significantly contribute to the net production of organic carbon on the glacier and substantially affect surface albedo of the snow and ice during the melting season.

  17. Experimental Testing of Glacier Sliding Laws

    NASA Astrophysics Data System (ADS)

    Zoet, L.; Iverson, N. R.

    2013-12-01

    Glacier sliding laws exist in various forms and are applied in modeling of glacier dynamics. Sliding laws have been, in most cases, theoretically derived but not experimentally tested. Under certain conditions ice sliding over a rigid bed will generate cavities in the lees of bedrock bumps. These cavities will redistribute shear stress to regions of the bed that are in contact with ice. Sliding laws that incorporate cavity formation relate drag to the maximum adverse slope of the region of ice-bed contact. Sinusoidal and stepped-bed geometries are, therefore, predicted to affect basal drag differently. A sinusoidal bed is predicted to have a double-valued drag response as a function of sliding velocity, whereas the steady-state drag on a stepped bed with linear adverse slopes is expected to be independent of sliding velocity. We have conducted an experimental study of sliding laws using a ring shear apparatus that slides ice over a rigid bed. The device rotates a ring of ice that is 20 cm wide, 20 cm tall, with outer diameter of 90 cm. The sliding speed at the ice ring's centerline was incrementally stepped between 7.25--324 m/yr, and a vertical stress of 500 kPa was applied to the ice ring. The ice consisted initially of randomly oriented crystals that with sliding quickly developed a fabric like those observed in ice near glacier beds. The temperature of the ice is held at the pressure melting point and is regulated to ~0.01oC by a bath of circulating fluid that surrounds the sample chamber. Experiments have been conducted on a stepped bed with a constant slope of 8.3 and a sinusoidal bed with a wavelength of 183.3 mm and an amplitude of 15.3 mm. Water was allowed to drain from cavities, so effective stress at the bed was equal to the total vertical stress. Our experimental results differ from theoretical predictions. For the stepped bed, a decrease in shear stress of ~50% over a 12-fold increase in velocity is observed, in contrast to theoretical predictions of

  18. Sediment connectivity evolution on an alpine catchment undergoing glacier retreat

    NASA Astrophysics Data System (ADS)

    Goldin, Beatrice; Rudaz, Benjamin; Bardou, Eric

    2014-05-01

    Climate changes can result in a wide range of variations of natural environment including retreating glaciers. Melting from glaciers will have a significant impact on the sediment transport characteristics of glacierized alpine catchments that can affect downstream channel network. Sediment connectivity assessment, i.e. the degree of connections that controls sediment fluxes between different segments of a landscape, can be useful in order to address management activity on sediment fluxes changes of alpine streams. Through the spatial characterization of the connectivity patterns of a catchment and its potential evolution it is possible to both define sediment transport pathways and estimate different contributions of the sub-catchment as sediment sources. In this study, a topography based index (Cavalli et al., 2013) has been applied to assess spatial sediment connectivity in the Navisence catchment (35 km2), an alpine basin located in the southern Walliser Alps (Switzerland) characterized by a complex glacier system with well-developed lateral moraines on glacier margins already crossed by several lateral channels. Glacier retreat of the main glacial edifice will provide a new connectivity pattern. At present the glacier disconnects lateral slopes from the main talweg: it is expected that its retreat will experience an increased connectivity. In order to study this evolution, two high resolution (2 m) digital terrain models (DTMs) describing respectively the terrain before and after glacier retreat have been analyzed. The current DTM was obtained from high resolution photogrammetry (2 m resolution). The future DTM was derived from application of the sloping local base level (SLBL) routine (Jaboyedoff et al., 2004) on the current glacier system, allowing to remove the ice body by reconstituting a U-shaped polynomial bedrock surface. From this new surface a coherent river network was drawn and slight random noise was added. Finally the river network was burned into

  19. Rapid Changes of Large Tidewater Glaciers in SE Greenland

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Hamilton, G. S.

    2005-12-01

    New field and satellite remote sensing measurements show that Kangerdlugssuaq Glacier and Helheim Glacier, two fast-flowing tidewater glaciers in South-East Greenland, accelerated 40-300% between 2001 and 2005 and retreated 3-5 km since July 2003. Together, the catchment basins of these two glaciers encompass ~10% of the area of the Greenland ice sheet. Previous studies observed rates of surface lowering on the main trunks of both glaciers that were too large to be caused by enhanced surface melting or decreased snow fall alone. One hypothesis to explain the thinning rates is a change in ice dynamics. We use repeat satellite imagery and published reports to reconstruct the last ~decade of flow histories for both glaciers and compare the results with velocities derived from field GPS surveys in the summer 2005. Helheim Glacier was flowing at ~8 km/yr in 1995 and 2001. In 2005, flow speeds were ~11.7 km/yr, a ~40% increase. The acceleration of Kangerdlugssuaq Glacier was more substantial. Portions of the main trunk that were flowing at ~5 km/yr in 1988, 1996 and 2001 were flowing at ~14 km/yr in summer 2005, an almost threefold increase. The accelerations in flow speeds were accompanied by other changes, including the rapid retreat of calving fronts that had maintained quasi-stable positions for the previous ~40 years, and a lowering of the ice surface by about 100 m, leaving stranded ice on adjacent ridges. The rapid thinning, acceleration and retreat of these two relatively nearby glaciers suggests a common triggering mechanism, such as enhanced surface melting due to regional climate warming. The current flow speeds, ~11 - 14 km/yr at the terminus, are too fast to be caused solely by internal deformation of the ice, implying that an increase in basal sliding forced by additional meltwater production is the probable cause of the velocity increases. The new observations and the hypothesized cause highlight the sensitivity of large outlet glaciers to local climate

  20. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    NASA Astrophysics Data System (ADS)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    The increase of rockfalls from the surrounding slopes and of englacial melt-out material has led to an increase of the debris cover extent on Alpine glaciers. In recent years, distributed debris energy-balance models have been developed to account for the melt rate enhancing/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya. Some of the input data such as wind or temperature are also of difficult extrapolation from station measurements. Due to their lower data requirement, empirical models have been used in glacier melt modelling. However, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of debris thickness on melt. In this paper, we present a new temperature-index model accounting for the debris thickness feedback in the computation of melt rates at the debris-ice interface. The empirical parameters (temperature factor, shortwave radiation factor, and lag factor accounting for the energy transfer through the debris layer) are optimized at the point scale for several debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter has been validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. The new model is developed on Miage Glacier, Italy, a debris cover glacier in which the ablation area is mantled in near-continuous layer of rock. Subsequently, its transferability is tested on Haut Glacier d'Arolla, Switzerland, where debris is thinner and its extension has been seen to expand in the last decades. The results show that the performance of the new debris temperature-index model (DETI) in simulating the glacier melt rate at the point scale

  1. Glacier lake outburst floods - modelling process chains

    NASA Astrophysics Data System (ADS)

    Schaub, Yvonne; Huggel, Christian; Haeberli, Wilfried

    2013-04-01

    New lakes are forming in high-mountain areas all over the world due to glacier recession. Often they will be located below steep, destabilized flanks and are therefore exposed to impacts from rock-/ice-avalanches. Several events worldwide are known, where an outburst flood has been triggered by such an impact. In regions such as in the European Alps or in the Cordillera Blanca in Peru, where valley bottoms are densely populated, these far-travelling, high-magnitude events can result in major disasters. For appropriate integral risk management it is crucial to gain knowledge on how the processes (rock-/ice-avalanches - impact waves in lake - impact on dam - outburst flood) interact and how the hazard potential related to corresponding process chains can be assessed. Research in natural hazards so far has mainly concentrated on describing, understanding, modeling or assessing single hazardous processes. Some of the above mentioned individual processes are quite well understood in their physical behavior and some of the process interfaces have also been investigated in detail. Multi-hazard assessments of the entire process chain, however, have only recently become subjects of investigations. Our study aims at closing this gap and providing suggestions on how to assess the hazard potential of the entire process chain in order to generate hazard maps and support risk assessments. We analyzed different types of models (empirical, analytical, physically based) for each process regarding their suitability for application in hazard assessments of the entire process chain based on literature. Results show that for rock-/ice-avalanches, dam breach and outburst floods, only numerical, physically based models are able to provide the required information, whereas the impact wave can be estimated by means of physically based or empirical assessments. We demonstrate how the findings could be applied with the help of a case study of a recent glacier lake outburst event at Laguna

  2. Distinguishing snow and glacier ice melt in High Asia using MODIS

    NASA Astrophysics Data System (ADS)

    Rittger, Karl; Brodzik, Mary J.; Bair, Edward; Racoviteanu, Adina; Barrett, Andrew; Jodha Khalsa, Siri; Armstrong, Richard; Dozier, Jeff

    2016-04-01

    In High Mountain Asia, snow and glacier ice contribute to streamflow, but the contribution of each of these hydrologic components is not fully understood. We generate daily maps of snow cover and exposed glacier ice derived from MODIS at 500 m resolution as inputs to melt models to estimate daily snow and glacier ice contributions to streamflow. The daily maps of 1) exposed glacier ice (EGI), 2) snow over ice (SOI) and 3) snow over land (SOL) between 2000 and 2014 are generated using fractional snow cover, snow grain size, and annual minimum ice and snow from the MODIS-derived MODSCAG and MODICE products. The method allows a systematic analysis of the annual cycle of snow and glacier ice extents over High Mountain Asia. We compare the time series of these three types of surfaces for nine sub-basins of the Upper Indus Basin (UIB) and characterize the variability over the MODIS record. Results show that the Dras Nala, Astore, and Zanskar sub-basins located in the eastern part of the UIB have the highest annual fraction of SOL driven by mid-winter westerly storms. Sub-basins in the northwestern extent of the UIB with relatively high mean elevations, the Hunza, Shigar, and Shyok show the highest annual fraction of both SOI and EGI (i.e. accumulation and ablation zones of the glacier). The largest sub-basin, Kharmong has the smallest annual fraction of SOL, SOI, and EGI, and a smaller SOI and EGI than the mouth of the river (Tarbela). Using these maps, snow and ice melt contributions are then estimated for the nine Upper Indus sub-basins using two melt models: a calibrated temperature-index (TI) model and an uncalibrated energy balance (EB) model. Near-surface air temperatures for the TI model are downscaled from ERA-Interim upper air temperatures, bias corrected using observed temperatures, and aggregated to 100 m elevation bands. We calibrate the seasonally variable degree-day factors for ice and snow by comparing streamflow to the sum of melt (SOL+SOI+EGI) and

  3. Interactions of the Greenland Petermann Glacier with the ocean: An initial perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Falkner, K. K.; Johnson, H. L.; Melling, H.; Muenchow, A.; Samelson, R. M.; Friends Of Petermann

    2010-12-01

    be sporadic on a decadal timescale. Multiple factors likely contribute to calving events. These include the geometry of the fjord, absence of sea ice, preconditioning of the glacier by crevassing and melt related cracking and occurrence of strong katabatic or orographically channeled winds. The recent event falls within the realm of previously documented calving rates but the remaining tongue length is the shortest ever directly observed. Gaps in the 134 year record preclude final judgment about whether the recent calving is entirely unprecedented. Rising surface temperature trends and changed sea ice and ocean circulation patterns in the Arctic could render the tongue susceptible to collapse. As this could contribute to accelerated ice mass flux from Greenland, it is important to continue to observe and clarify processes operative in this system.

  4. Evaluating glacier volume changes since the Little Ice Age maximum and consequences for stream flow by integrating models of glacier flow and hydrology in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Huh, K. I.; Mark, B. G.; Baraer, M.; Ahn, Y.

    2014-12-01

    Assessing the historical contribution of glacier ice volume loss to stream flow based on reconstructed volume changes through Little Ice Age (LIA) can be directly related to the understanding of glacier-hydrology in the current epoch of rapid glacier ice loss that has disquieting implications for water resources in the Cordillera Blanca of the Peruvian Andes. However, the accurate prediction of the future glacial meltwater availability for the increasing regional Andean society needs more extensive quantitative estimation from long-term glacial meltwater of reconstructed glacial volume. Modeling LIA paleoglaciers using a cellular automata glacier flow model in different catchments of the Cordillera Blanca allows us to reconstruct glacier volume and its change from likely combinations of climatic control variables and time. We compute the rate and magnitude of glacier volume changes for Yanamarey and Queshque glaciers between the LIA and modern defined by 2011 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM V2) from the Cordillera Blanca. Also, we employ a recently demonstrated hydrological stream model (Baraer et al., 2012) for integrating the reconstructed glacier volume and its change to calculate glacier contribution to meltwater runoff as a function of glacier loss rate in the Yanamarey and the Queshque catchments, and reconstruct long-term glacier significance to stream flow.

  5. The Bossons glacier protects Europe's summit from erosion

    NASA Astrophysics Data System (ADS)

    Godon, C.; Mugnier, J. L.; Fallourd, R.; Paquette, J. L.; Pohl, A.; Buoncristiani, J. F.

    2013-08-01

    The contrasting efficiency of erosion beneath cold glacier ice, beneath temperate glacier ice, and on ice-free mountain slopes is one of the key parameters in the development of relief during glacial periods. Detrital geochronology has been applied to the subglacial streams of the north face of the Mont-Blanc massif in order to estimate the efficiency of erosional processes there. Lithologically this area is composed of granite intruded at ~303 Ma within an older polymetamorphic complex. We use macroscopic features (on ~10,000 clasts) and U-Pb dating of zircon (~500 grains) to establish the provenance of the sediment transported by the glacier and its subglacial streams. The lithology of sediment collected from the surface and the base of the glacier is compared with the distribution of bedrock sources. The analysis of this distribution takes into account the glacier's surface flow lines, the surface areas beneath temperate and cold ice above and below the Equilibrium Line Altitude (ELA), and the extent of the watersheds of the three subglacial meltwater stream outlets located at altitudes of 2300 m, 1760 m and 1450 m. Comparison of the proportions of granite and metamorphics in these samples indicates that (1) glacial transport does not mix the clasts derived from subglacial erosion with the clasts derived from supraglacial deposition, except in the lower part of the ice tongue where supraglacial streams and moulins transfer the supraglacial load to the base of the glacier; (2) the glacial erosion rate beneath the tongue is lower than the erosion rate in adjacent non-glaciated areas; and (3) glacial erosion beneath cold ice is at least 16 times less efficient than erosion beneath temperate ice. The low rates of subglacial erosion on the north face of the Mont-Blanc massif mean that its glaciers are protecting "the roof of Europe" from erosion. A long-term effect of this might be a rise in the maximum altitude of the Alps.

  6. Monitoring water accumulation in a glacier using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Legchenko, A.; Vincent, C.; Baltassat, J. M.; Girard, J. F.; Thibert, E.; Gagliardini, O.; Descloitres, M.; Gilbert, A.; Garambois, S.; Chevalier, A.; Guyard, H.

    2014-01-01

    Tête Rousse is a small polythermal glacier located in the Mont Blanc area (French Alps) at an altitude of 3100 to 3300 m. In 1892, an outburst flood from this glacier released about 200 000 m3 of water mixed with ice, causing much damage. A new accumulation of melt water in the glacier was not excluded. The uncertainty related to such glacier conditions initiated an extensive geophysical study for evaluating the hazard. Using three-dimensional surface nuclear magnetic resonance imaging (3-D-SNMR), we showed that the temperate part of the Tête Rousse glacier contains two separate water-filled caverns (central and upper caverns). In 2009, the central cavern contained about 55 000 m3 of water. Since 2010, the cavern is drained every year. We monitored the changes caused by this pumping in the water distribution within the glacier body. Twice a year, we carried out magnetic resonance imaging of the entire glacier and estimated the volume of water accumulated in the central cavern. Our results show changes in cavern geometry and recharge rate: in two years, the central cavern lost about 73% of its initial volume, but 65% was lost in one year after the first pumping. We also observed that, after being drained, the cavern was recharged at an average rate of 20 to 25 m3 d-1 during the winter months and 120 to 180 m3 d-1 in summer. These observations illustrate how ice, water and air may refill englacial volume being emptied by artificial draining. Comparison of the 3-D-SNMR results with those obtained by drilling and pumping showed a very good correspondence, confirming the high reliability of 3-D-SNMR imaging.

  7. Modeling Ocean-Forced Changes in Smith Glacier

    NASA Astrophysics Data System (ADS)

    Lilien, D.; Joughin, I. R.; Smith, B. E.

    2014-12-01

    Glaciers along the Amundsen Coast are changing rapidly, which has drawn substantial scientific and public attention. Modeling and observation suggest warm-water intrusion and consequent melting as the cause of observed changes, and that unstoppable retreat may have already been triggered in some drainages. While Pine Island and Thwaites Glaciers are losing the most mass and have been the predominant objects study, other systems, particularly Smith, Pope and Kohler Glaciers and the corresponding Dotson and Crosson Shelves, are changing more rapidly relative to their size. Though smaller, these glaciers still have potentially large implications for overall regional dynamics as their beds connect below sea level to surrounding basins. In particular, the long, deep trough of Smith Glacier nearly links to the large eastern tributary of Thwaites, potentially causing rapid changes of Smith to have significant impact on the continuing retreat of Thwaites.We implemented a numerical model in Elmer/Ice, an open-source, full-Stokes, finite-element software package, to investigate the response of the Smith/Pope/Kohler system to different initial conditions. We use various parameterizations of sub-shelf melting with constant magnitude to examine the sensitivity of overall dynamics to melt distribution. Because melt distribution affects lateral buttressing and upstream grounded areas, it is potentially an important control on ice shelf and outlet glacier dynamics. Through comparison to the most recent velocity data, we evaluate the ability of differing melt parameterizations to reproduce the behavior currently seen in Smith/Pope/Kohler glaciers. In addition, we investigate the effect of using different years of velocity data with constant elevation input when initiating model runs. By comparing results over the satellite record to initiation with synchronous observations, we assess the accuracy of the often necessary practice of using differently timestamped datasets.

  8. Temperate Ice Under Jakobshavn Isbrae and Other Greenland Glaciers

    NASA Astrophysics Data System (ADS)

    Poinar, K. E.; Joughin, I. R.

    2010-12-01

    Jakobshavn Isbrae, western Greenland's largest outlet glacier, drains 6.5% of the ice sheet's area and therefore may be poised to make rapid contributions to global sea level rise. Indeed, in the late 1990s the glacier doubled in speed as its floating ice tongue disintegrated. Driving stresses up to 300 kPa suggest that a considerable amount of ice deformation combines with basal sliding to produce Jakobshavn's fast speed. Boreholes and overturned icebergs have indicated the existence of a soft, temperate layer at the bottom of the ice, where shear deformation would be concentrated. The thickness and water content of the temperate ice layer determine how much of the motion it can provide. While we focus on Jakobshavn, we also apply our analysis to other Greenland outlet glaciers. This project uses an implicit finite-difference model to compute the temperate ice thickness and water content along multiple flowlines feeding Jakobshavn Isbrae and other Greenland glaciers, in an effort to identify the mechanisms for their rapid movement. In contrast to previous modeling studies, which chose ice velocities in order to match partial temperature profiles measured in boreholes, our model is constrained by satellite-observed surface velocities. The model calculates the temperature field and determines the sliding and internal deformation velocities, constrained by the velocity measurements, to make a self-consistent balance. Feedbacks between temperature, water content, and viscosity allow the temperate shear layer to evolve. Our model results for temperate ice thickness under Jakobshavn (150-300 meters) agree with previous estimates (100-700 meters) and recent observations (30 and 200-250 meters). This model is well suited for glaciers with deeply eroded bedrock troughs. Forthcoming observational campaigns such as NASA's IceBridge program will produce detailed basal topography data for other Greenland outlet glaciers. As these data come online, we will model the temperate

  9. Submarine landforms characteristic of glacier surges in two Spitsbergen fjords

    NASA Astrophysics Data System (ADS)

    Ottesen, D.; Dowdeswell, J. A.; Benn, D. I.; Kristensen, L.; Christiansen, H. H.; Christensen, O.; Hansen, L.; Lebesbye, E.; Forwick, M.; Vorren, T. O.

    2008-08-01

    Well-preserved submarine landforms, all less than 100 years old, are imaged on high-resolution swath bathymetry obtained from Van Keulenfjorden and Rindersbukta (inner Van Mijenfjorden), Spitsbergen, Svalbard. Several tidewater glaciers in these fjords have surged in the last few hundred years. Streamlined landforms, found within the limits of known surges, are interpreted as mega-scale glacial lineations (MSGL) formed subglacially beneath actively surging ice. Large transverse ridges are terminal moraines formed by thrusting at the maximum position of glacier surges. Sediment lobes at the distal margins of terminal moraines are interpreted as glacigenic debris flows, formed either by failure of the frontal slopes of thrust moraines or from deforming sediment extruded from beneath the glacier. Sinuous ridges are eskers, formed after surge termination by the sedimentary infilling of subglacial conduits. Concordant ridges, parallel to former ice margins, are interpreted as minor push moraines, probably formed annually during winter glacier readvance. Discordant ridges, oblique to former ice margins, are interpreted as crevasse-squeeze ridges, forming when soft subglacial sediments are injected into basal crevasses. These submarine landforms have been deposited in the following sequence based on cross-cutting relationships between them, linked to stages of the surge cycle: (1) MSGL; (2a) terminal moraines and (2b) lobe-shaped debris flows; (3) isolated areas of crevasse-fill ridges; (4) eskers and (5) annual retreat ridges. A descriptive landsystem model for tidewater surge-type glaciers has been developed, whose wider applicability is emphasised by comparison with two areas in Isfjorden, Spitsbergen. The model also has a number of features in common with landsystem models for terrestrial surge-type glaciers, but is likely to be more complete since submarine landforms are particularly well preserved. The landforms discussed here may be produced and preserved in

  10. Glacier surface velocity fields in South Shetland Islands

    NASA Astrophysics Data System (ADS)

    Osmanoglu, B.; Giseke, H.; Navarro, F. J.; Rueckamp, M.; Falk, U.; Corcuera, M. I.; Braun, M.

    2011-12-01

    In this study surface velocity of glaciers in South Shetland Islands (Antarctic Peninsula) are calculated based on synthetic aperture radar data from ALOS PALSAR and TerraSAR-X as well as differential GPS measurements. The obtained glacier velocities will be used to calculate the total glacier mass budget and to better understand the contribution of the study areas to the sea level rise. Only recent studies have examined the region for mass balance and sea level rise estimates. However, larger scale mass budget computations are not yet available. Ice dynamics obtained from satellite data have only been derived in a few occasions, often due to lacking spatial resolution or temporal decorrelation. Hence, any spacebased information on ice dynamics can significantly improve estimates of calving fluxes and mass loss. In this study we analysed over 30 PALSAR and 30 TSX scenes acquired over the King George Island and Livingston Island, the two largest islands in the South Shetland Island group. In the study areas the glacier velocities are calculated using two independent data sets; namely satellite radar imagery and GPS. Feature-tracking methods are applied to the radar imagery to obtain glacier velocities using Gamma Interferometric SAR Processor and TU-Delft DORIS. Results from Gamma and Doris software packages are compared to each other as well as GPS measurements where available. For a subset of the study area tracking results from different acquisitions modes (stripmap and spotlight) and orbits are compared. Comparison of glacier velocities obtained by radar and GPS provide an estimate for the uncertainties in the measured rates. The results obtained from all data sets are then compiled to construct a map of glacier velocities for the entire island group.

  11. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S.; MacDonell, S.; Rabatel, A.

    2011-12-01

    Quantitative assessment of glacier contribution to present-day streamflow is a prerequisite to the anticipation of climate change impact on water resources in the Dry Andes. In this paper we focus on two glaciated headwater catchments of the Huasco Basin (Chile, 29° S). The combination of glacier monitoring data for five glaciers (Toro 1, Toro 2, Esperanza, Guanaco, Estrecho and Ortigas) with five automatic streamflow records at sites with glacier coverage of 0.4 to 11 % allows the estimation of the mean annual glacier contribution to discharge between 2003/2004 and 2007/2008 hydrological years. In addition, direct manual measurements of glacier runoff were conducted in summer at the snouts of four glaciers, which provide the instantaneous contribution of glacier meltwater to stream runoff during summer. The results show that the mean annual glacier contribution to streamflow ranges between 3.3 and 23 %, which is greater than the glaciated fraction of the catchments. We argue that glacier contribution is partly enhanced by the effect of snowdrift from the non-glacier area to the glacier surface. Glacier mass loss is evident over the study period, with a mean of -0.84 m w.e. yr-1 for the period 2003/2004-2007/2008, and also contributes to increase glacier runoff. An El Niño episode in 2002 resulted in high snow accumulation, modifying the hydrological regime and probably reducing the glacier contribution in favor of seasonal snowmelt during the subsequent 2002/2003 hydrological year. At the hourly timescale, summertime glacier contributions are highly variable in space and time, revealing large differences in effective melting rates between glaciers and glacierets (from 1 mm w.e. h-1 to 6 mm w.e. h-1).

  12. Modeling debris-covered glaciers: extension due to steady debris input

    NASA Astrophysics Data System (ADS)

    Anderson, L. S.; Anderson, R. S.

    2015-11-01

    Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, mass balance gradients can be reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. Our model and parameter selections produce two-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities from glaciers in High Asia. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  13. Sensitivity of very small glaciers in the Swiss Alps to future climate change

    NASA Astrophysics Data System (ADS)

    Huss, Matthias; Fischer, Mauro

    2016-04-01

    Very small glaciers (<0.5 km2) account for more than 80% of the total number of glaciers in mid- to low-latitude mountain ranges. Although their total area and volume is small compared to larger glaciers, they are a relevant component of the cryosphere, contributing to landscape formation, local hydrology and sea-level rise. Worldwide glacier monitoring mostly focuses on medium-sized to large glaciers leaving us with a limited understanding of the response of dwarf glaciers to climate change. In this study, we present a comprehensive modeling framework to assess past and future changes of very small glaciers at the mountain-range scale. Among other processes our model accounts for snow redistribution, changes in glacier geometry and the time-varying effect of supraglacial debris. It computes the mass balance distribution, the englacial temperature regime and proglacial runoff. The evolution of 1,133 individual glaciers in the Swiss Alps is modeled in detail until 2060 based on new distributed data sets. Our results indicate that 52% of all very small glaciers in Switzerland will completely disappear within the next 25 years. However, a few avalanche-fed glaciers at low elevation might be able to survive even substantial atmospheric warming. We find highly variable sensitivities of very small glaciers to air temperature change, with gently-sloping, low-elevation, and debris-covered glaciers being most sensitive.

  14. Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia

    NASA Astrophysics Data System (ADS)

    Smith, T.; Bookhagen, B.; Cannon, F.

    2015-09-01

    Studies of glaciers generally require precise glacier outlines. Where these are not available, extensive manual digitization in a geographic information system (GIS) must be performed, as current algorithms struggle to delineate glacier areas with debris cover or other irregular spectral profiles. Although several approaches have improved upon spectral band ratio delineation of glacier areas, none have entered wide use due to complexity or computational intensity. In this study, we present and apply a glacier mapping algorithm in Central Asia which delineates both clean glacier ice and debris-covered glacier tongues. The algorithm is built around the unique velocity and topographic characteristics of glaciers and further leverages spectral and spatial relationship data. We found that the algorithm misclassifies between 2 and 10 % of glacier areas, as compared to a ~ 750 glacier control data set, and can reliably classify a given Landsat scene in 3-5 min. The algorithm does not completely solve the difficulties inherent in classifying glacier areas from remotely sensed imagery but does represent a significant improvement over purely spectral-based classification schemes, such as the band ratio of Landsat 7 bands three and five or the normalized difference snow index. The main caveats of the algorithm are (1) classification errors at an individual glacier level, (2) reliance on manual intervention to separate connected glacier areas, and (3) dependence on fidelity of the input Landsat data.

  15. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): a comparison.

    PubMed

    Grzesiak, Jakub; Górniak, Dorota; Świątecki, Aleksander; Aleksandrzak-Piekarczyk, Tamara; Szatraj, Katarzyna; Zdanowski, Marek K

    2015-09-01

    Surface ice and cryoconite holes of two types of polythermal Svalbard Glaciers (Hans Glacier--grounded tidewater glacier and Werenskiold Glacier-land-based valley glacier) were investigated in terms of chemical composition, microbial abundance and diversity. Gathered data served to describe supraglacial habitats and to compare microbe-environment interactions on those different type glaciers. Hans Glacier samples displayed elevated nutrient levels (DOC, nitrogen and seston) compared to Werenskiold Glacier. Adjacent tundra formations, bird nesting sites and marine aerosol were candidates for allochtonic enrichment sources. Microbial numbers were comparable on both glaciers, with surface ice containing cells in the range of 10(4) mL(-1) and cryoconite sediment 10(8) g(-1) dry weight. Denaturating gradient gel electrophoresis band-based clustering revealed differences between glaciers in terms of dominant bacterial taxa structure. Microbial community on Werenskiold Glacier benefited from the snow-released substances. On Hans Glacier, this effect was not as pronounced, affecting mainly the photoautotrophs. Over-fertilization of Hans Glacier surface was proposed as the major factor, desensitizing the microbial community to the snow melt event. Nitrogen emerged as a limiting factor in surface ice habitats, especially to Eukaryotic algae. PMID:26104673

  16. Fifty-Year Record of Glacier Change Reveals Shifting Climate in the Pacific Northwest and Alaska, USA

    USGS Publications Warehouse

    U.S. Geological Survey

    2009-01-01

    Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).

  17. Velocities of Thwaites and Land glaciers

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.; Mullins, Kevin F.; Ferrigno, J. G.

    1993-01-01

    Changes in the area of volume of polar ice sheets are intricately linked to changes in global climate and may severely impact the densely populated coastal regions on Earth. An ice sheet's velocity is a critical parameter, which, together with ice thickness, allows the determination of discharge rates. Using moderate-resolution satellite images such as Landsat, the velocity of floating ice can be measured quickly and relatively inexpensively by tracing crevasse patterns on shelves and ice tongues. Errors in measured velocities are as little as 0.02 km per year, if the following criteria are met: (1) the time interval is longer than 10 years; (2) the velocity is higher than 0.5 km per year; (3) the coregistration points are well dispersed and enclose the area to be measured; and (4) the image pair includes a Landsat 4 or 5 image. The fewer of these conditions that are met, the less accurate the results become; but even for poor conditions, the velocities are generally reliable to near 0.1 km per year. We are in the process of obtaining velocities of all ice shelves and ice tongues along the Bakutis and Ruppert coasts, wherever suitable crevasse patterns exist. So far, we have obtained velocities for the Thwaites and Land glacier tongues.

  18. Bent glacier tongues: A new look at Lliboutry's model of the evolution of the crooked Jatunraju Glacier (Parón Valley, Cordillera Blanca, Perú)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2013-09-01

    The article tackles the issue of which factors may influence the flow direction and morphological shape of glacier tongues terminating at tributary junctions to the main valley in high mountain landscapes. A very particular morphological form of a glacier tongue shows the Jatunraju Glacier in the Cordillera Blanca (Perú). It terminates in the superior Parón Valley with a prominent crooked form, embedded in a 250 m-high moraine pedestal. Lliboutry (1977) has explained the deviation of the Jatunraju Glacier tongue as a result of a proglacial lake outburst. Alternative hypothetical models on a general scale have been developed for the causes determining the morphological characteristics of glacier tongues. These are based on empirical field evidence from the Parón Valley and from glaciers located in other high mountain areas, in particular in the Himalaya Region, where glacier tongues in confluence settings are abundant. The comparative investigations demonstrate that the pronounced crooked form of the Jatunraju Glacier may not be the result of a single extreme event, but may have been produced as well by gradual processes. In a general context, the study shows that crooked glacier tongues are common landforms in other mountain regions and mainly intrinsic to debris-covered glaciers. The morphological evolution of glacier tongues may involve a polygenetic process pattern over a longer geological time period. Apart from the steepness of the valley gradient of the main valley, the former confluence from the source glacier with the main glacier during times of a more extensive glaciation is regarded as one of the dominating factors controlling the later evolution of glacier tongues in general ("inherited confluence model").

  19. A new glacier inventory for 2009 reveals spatial and temporal variability in glacier response to atmospheric warming in the Northern Antarctic Peninsula, 1988-2009

    NASA Astrophysics Data System (ADS)

    Davies, B. J.; Carrivick, J. L.; Glasser, N. F.; Hambrey, M. J.; Smellie, J. L.

    2011-12-01

    The Northern Antarctic Peninsula has recently exhibited ice-shelf disintegration, glacier recession and acceleration. However, the dynamic response of land-terminating, ice-shelf tributary and tidewater glaciers has not yet been quantified or assessed for variability, and there are sparse published data for glacier classification, morphology, area, length or altitude. This paper firstly uses ASTER images from 2009 and a SPIRIT DEM from 2006 to classify the area, length, altitude, slope, aspect, geomorphology, type and hypsometry of 194 glaciers on Trinity Peninsula, Vega Island and James Ross Island. Secondly, this paper uses LANDSAT-4 and ASTER images from 1988 and 2001 and data from the Antarctic Digital Database (ADD) from 1997 to document glacier change 1988-2009. From 1988-2001, 90 % of glaciers receded, and from 2001-2009, 79 % receded. Glaciers on the western side of Trinity Peninsula retreated relatively little. On the eastern side of Trinity Peninsula, the rate of recession of ice-shelf tributary glaciers has slowed from 12.9 km2 a-1 (1988-2001) to 2.4 km2 a-1 (2001-2009). Tidewater glaciers on the drier, cooler Eastern Trinity Peninsula experienced fastest recession from 1988-2001, with limited frontal retreat after 2001. Land-terminating glaciers on James Ross Island also retreated fastest in the period 1988-2001. Large tidewater glaciers on James Ross Island are now declining in areal extent at rates of up to 0.04 km2 a-1. This east-west difference is largely a result of orographic temperature and precipitation gradients across the Antarctic Peninsula. Strong variability in tidewater glacier recession rates may result from the influence of glacier length, altitude, slope and hypsometry on glacier mass balance. High snowfall means that the glaciers on the Western Peninsula are not currently rapidly receding. Recession rates on the eastern side of Trinity Peninsula are slowing as the floating ice tongues retreat into the fjords and the glaciers reach a

  20. Latest Pleistocene and Holocene Glacier Fluctuations in southernmost Patagonia

    NASA Astrophysics Data System (ADS)

    Menounos, B.; Maurer, M.; Clague, J. J.; osborn, G.; Ponce, F.; Davis, P. T.; Rabassa, J.; Coronato, A.; Marr, R.

    2011-12-01

    Summer insolation has been proposed to explain long-term glacier fluctuations during the Holocene. If correct, the record of glacier fluctuations at high latitudes in the Southern Hemisphere should differ from that in the Northern Hemisphere. Testing this insolation hypothesis has been hampered by dating uncertainties of many Holocene glacier chronologies from Patagonia. We report on our ongoing research aimed at developing a regional glacier chronology at the southern end of the Andes north and west of Ushuaia, Argentina. We have found evidence for an advance of cirque glaciers at the end of the Pleistocene; one or locally two closely spaced moraines extend up to 2 km beyond Little Ice Age moraines. Radiocarbon dating of terrestrial macrofossils recovered from basal sediments behind two of these moraines yielded ages of 10,320 ± 25 and 10,330 ± 30 14C yr BP. These moraines may record glacier advances coeval with the Antarctic Cold Reversal; surface exposure dating of these moraines is currently in progress to test this hypothesis. We find no evidence of Holocene moraines older than 6800 14C yr BP, based on the distribution of Hudson tephra of that age. At some sites, there is evidence for an early Neoglacial advance of glaciers slightly beyond (< 0.5 km) Little Ice Age limits. Terrestrial macrofossils at the upper contact of basal till from one site yielded an age of 4505 ± 30 14C yr BP; this age overlaps the most probable age range of early Neoglacial ice expansion in southern Patagonia reported by Porter (2000) and the age of plants killed by expansion of the Quelccaya Ice Cap in Peru. We have documented multiple wood mats with stumps in growth position separated by till units in a 100 m section of the northeast lateral moraine at Stoppani Glacier (54.78 S, 68.98 W), 50 km west of Ushuaia. Ten radiocarbon ages on these wood mats range in age from 3510 ± 15 to 135 ± 15 14C yr BP. The mats decrease in age up-section; many overlap with published age ranges for

  1. Tide-modulated ice flow variations drive seismicity near the calving front of Bowdoin Glacier, Greenland

    NASA Astrophysics Data System (ADS)

    Podolskiy, Evgeny A.; Sugiyama, Shin; Funk, Martin; Walter, Fabian; Genco, Riccardo; Tsutaki, Shun; Minowa, Masahiro; Ripepe, Maurizio

    2016-03-01

    Glacier microseismicity is a promising tool to study glacier dynamics. However, physical processes connecting seismic signals and ice dynamics are not clearly understood at present. Particularly, the relationship between tide-modulated seismicity and dynamics of calving glaciers remains elusive. Here we analyze records from an on-ice seismometer placed 250 m from the calving front of Bowdoin Glacier, Greenland. Using high-frequency glacier flow speed measurements, we show that the microseismic activity is related to strain rate variations. The seismic activity correlates with longitudinal stretching measured at the glacier surface. Both higher melt rates and falling tides accelerate glacier motion and increase longitudinal stretching. Long-term microseismic monitoring could therefore provide insights on how a calving glacier's force balance and flow regime react to changes at the ice-ocean interface.

  2. Changing Hydrology in Glacier-fed High Altitude Andean Peatbogs

    NASA Astrophysics Data System (ADS)

    Slayback, D. A.; Yager, K.; Baraer, M.; Mohr, K. I.; Argollo, J.; Wigmore, O.; Meneses, R. I.; Mark, B. G.

    2012-12-01

    Montane peatbogs in the glacierized Andean highlands of Peru and Bolivia provide critical forage for camelids (llama and alpaca) in regionally extensive pastoral agriculture systems. During the long dry season, these wetlands often provide the only available green forage. A key question for the future of these peatbog systems, and the livelihoods they support, is the impact of climate change and glacier recession on their hydrology, and thus forage production. We have already documented substantial regional glacier recession, of, on average, approximately 30% of surface area over the past two decades. As glaciers begin to retreat under climate change, there is initially a period of increased meltwater outflow, culminating in a period of "peak water", and followed by a continual decline in outflows. Based on previous work, we know that some glaciers in the region have already passed peak water conditions, and are now declining. To better understand the impacts of these processes on peatbog hydrology and productivity, we have begun collecting a variety of surface data at several study sites in both Bolivia and Peru. These include precipitation, stream flow, water levels, water chemistry and isotope analyses, and peatbog biodiversity and biomass. These measurements will be used in conjunction with a regional model driven by satellite data to predict likely future impacts. We will present the results from these initial surface measurements, and an overview of satellite datasets to be used in the regional model.

  3. Controls on Helheim Glacier calving rates from 2001-2014

    NASA Astrophysics Data System (ADS)

    Stearns, L. A.; Foga, S. C.; Hamilton, G. S.; Straneo, F.; Sutherland, D.; van der Veen, C. J.; Oltmanns, M.; Schild, K. M.

    2014-12-01

    Iceberg calving is an efficient mechanism for ice mass loss. While the physical controls on calving are not well understood, recent field and remote sensing observations from Helheim Glacier, southeast Greenland, suggest calving is dependent on both glacier and fjord conditions. This presentation investigates the sensitivity of calving rates to ice velocity, ocean temperature and mélange composition using a combination of in situ and satellite observations. Ocean properties in Sermilik Fjord for 2009-2014 are reconstructed using mooring data, and an object-based image analysis (OBIA) that inventories icebergs, sea-ice and small icebergs quantifies mélange composition several times a season. Ice velocity from InSAR and optical imagery is used to calculate calving rates and investigate the role of longitudinal gradients on calving. Ice velocity appears to be the dominant control on calving rates at Helheim Glacier. However, calving rates exhibit a complex pattern of seasonal and interannual variability, which does not simply mimic ice velocity patterns. We explore the relative roles of ocean properties, glacier geometry, and mélange composition on calving rates from 2001-2014 in order to improve physically-based glacier models.

  4. Bacterial succession in a glacier foreland of the High Arctic

    PubMed Central

    Schütte, Ursel M.E.; Abdo, Zaid; Bent, Stephen J.; Williams, Christopher J.; Schneider, G. Maria; Solheim, Bjørn; Forney, Larry J.

    2009-01-01

    Succession is defined as changes in biological communities over time. It has been extensively studied in plant communities, but little is known about bacterial succession, in particular in environments such as High Arctic glacier forelands. Bacteria carry out key processes in the development of soil, biogeochemical cycling, and facilitating plant colonization. In this study we sampled two roughly parallel chronosequences in the foreland of Midre Lovén glacier on Svalbard, Norway and tested whether any of several factors were associated with changes in the structure of bacterial communities, including time after glacier retreat, horizontal variation caused by the distance between chronosequences, and vertical variation at two soil depths. The structures of soil bacterial communities at different locations were compared using terminal restriction fragment length polymorphisms (T-RFLP) of 16S rRNA genes, and the data were analyzed by sequential analysis of log-linear statistical models. While no significant differences in community structure were detected between the two chronosequences, statistically significant differences between sampling locations in the surface and mineral soils could be demonstrated even though glacier forelands are patchy and dynamic environments. These findings suggest bacterial succession occurs in High Arctic glacier forelands but may differ in different soil depths. PMID:19587774

  5. Sensitivity of Greenland outlet glacier dynamics to submarine melting

    NASA Astrophysics Data System (ADS)

    Beckmann, Johanna; Siegrfied, Merten; Perrette, Mahé; Carlov, Reinhard; Ganopolski, Andrey

    2015-04-01

    Over the last few decades Greenland ice mass loss has strongly increased due to surface melt and dynamic changes in marine-terminating outlet glaciers. A major reason for the retreat of these glaciers is believed to be related to increased submarine melting, which in turn is caused by surrounding ocean warming and the enhanced subglacial water discharge. These complex physical processes are not yet fully understood. Inspecting the sensitivities of submarine melting to model formulation and model parameters is crucial for investigations of outlet glacier response to future climate change. Different approaches have been used to compute submarine melt rates of outlet glaciers using experimental data, numerical modelling and simplified analytical solutions. To model the process of submarine melting for a selection of Greenland outlet glaciers, a simple submarine melt parameterization is incorporated into a one-dimensional dynamic ice-flow model. The behaviour of this submarine melt parameterization is demonstrated by running a suite of simulations to investigate the sensitivity of submarine melt to changes in ocean properties and the amount and distribution of subglacial water discharge. A comparison of the simple parameterization with three-dimensional models and experimental data is conducted to assess the quality of parameterization and improve the parameterization of submarine melting.

  6. A regional view of fluctuations in glacier length in southern South America

    NASA Astrophysics Data System (ADS)

    Lopez, Paulina; Chevallier, Pierre; Favier, Vincent; Pouyaud, Bernard; Ordenes, Fernando; Oerlemans, Johannes

    2010-03-01

    Fluctuations in the length of 72 glaciers in the Northern and Southern Patagonia Icefield (NPI and SPI, respectively) and the Cordillera Darwin Icefield (CDI) were estimated between 1945 and 2005. The information obtained from historical maps based on 1945 aerial photographs was compared to ASTER and Landsat satellite images and to information found in the literature. The majority of glaciers have retreated considerably, with maximum values of 12.2 km for Marinelli Glacier in the CDI, 11.6 km for O'Higgins Glacier in the SPI and 5.7 km for San Rafael Glacier in the NPI. Among the 20 glaciers that have retreated the most relative to their size, small (less than 50 km²) and medium (between 50 and 200 km²) glaciers are the most affected. However, no direct relation between glacier retreat and size was found for the 72 glaciers studied. The highest percentage retreat in the CDI was by the CDI-03 Glacier (37.9%) and Marinelli Glacier (37.6%). In the SPI, relative retreats were heterogeneous and fluctuated between 27.2% (Amelia Glacier) and 0.4% (Viedma Glacier). In the NPI, relative retreat was very high for Strindberg and Cachet glaciers (35.9% and 27.6%, respectively) but for the remaining glaciers in this icefield it ranged between 11.8% (Piscis Glacier) and 3.6% (San Quintín Glacier). In addition to surface area, the surface slope (calculated on the basis of the DEM SRTM) was also related to the relative retreat and no straightforward relation was found. From a global point of view, we suggest that glacier retreat in the region is controlled firstly by atmospheric warming, as it has been reported in this area. Besides the general increase in temperature observed, no signal of a geographical pattern for the fluctuations in glacier length was found. Consequently, glaciers appear to initially react to local conditions most probably induced by their exposition, geometry and hypsometry. The heterogeneity of rates of retreat suggests that differences in basin geometry

  7. The Status of Glaciers in the Hindu Kush-Himalayas from satellite data

    NASA Astrophysics Data System (ADS)

    Bajracharya, S. R.; Maharjan, S.; Shrestha, F.; Shrestha, B.; Wanqin, G.; Shiyin, L.; Xiaojun, Y.; Khattak, G. A.

    2011-12-01

    In contrary to general glacier retreat in this vast Hindu Kush-Himalayan (HKH) region, some of the glaciers are advancing in the Karakorum (Hewitt, 1985). To understand the climate change impacts on glaciers, it is crucial to update the glacier status. The bigger concern in the HKH region, however, is the lack of long-term information on glaciers at the regional level for any kind of credible baseline or assessment of change. Hence to provide the up to date glacier information the glacier inventory was carried out using a single source satellite images of latest date so far possible. The present mapping of glaciers is the first effort of homogeneous glacier inventory of entire Hindu Kush-Himalayan region, which made the first time reporting of glaciers from Myanmar and first generation of glacier mapping and inventory of Afghanistan and Jammu & Kashmir and Arunachal states of India for ICIMOD. For Nepal, Bhutan, Pakistan, some states of India (Himachal, Uttarakhand and Sikkim) and Ganges basin in China will be the second generation glacier mapping and inventory of ICIMOD. The inventory is based on Landsat 7 ETM+ satellite images from 2005±3 years and SRTM DEM. The methodology of semi-automatic mapping and inventory is developed and implemented in the present study for quick delivery of glacier database. A first attempt is also made to map and deliver the Clean Ice and Debris Cover glaciers data separately. The glacier parameters like Glacier ID (Watershed and GLIMS), Area (Debris Cover and Clean Ice), Elevation, Slope, Aspect, Thickness, Ice reserve and 100m Glacier Area-Altitude bins are generated. The glaciers with sizes larger than 0.02 km2 are mapped. From the entire HKH region about 54,800 glaciers are mapped with about 60,400 km2 glacier area and 6,100 km3 estimated ice reserves. It was found that the average glacier area of the HKH region is 1.10 km2 per glacier (Bajracharya and others 2011).

  8. The Holocene Sedimentary Record of Climate Change from Gualas Glacier, Golfo Elefantes, Northern Patagonia (46.5°S)

    NASA Astrophysics Data System (ADS)

    Fernandez-Vasquez, R. A.; Anderson, J. B.; Bertrand, S.; Wellner, J. S.

    2010-12-01

    Gualas Glacier is an outlet glacier of the Northern Patagonian Icefield (NPI), one of the largest temperate ice bodies on Earth. NPI is nourished by moisture from the Pacific Ocean, which is transported by the southern hemisphere Westerlies and results in year-round precipitation. This system also creates a strong West to East gradient due to the rain shadow effect of the Andes (Warren, 1993). Most glaciers of the NPI, including Gualas Glacier, are currently receding from their historical maximum position, which was reached during the northern hemisphere Little Ice Age (LIA) (Harrison and Winchester, 2000). However, virtually nothing is known about the Holocene behavior of NPI outlet glaciers prior to the LIA, although it is generally assumed that they followed the pattern of Neoglacial advances described for the Southern Patagonian Icefield (SPI) by Mercer (1965, 1968, 1976). The lack of data in this sensitive area of the Patagonian Andes, the only continental cordillera in the Southern Hemisphere that intersects the entire Westerly Wind Belt, limits our understanding of climate processes that relate mid-latitude circulation patterns with low and high latitudes as well as the inter-hemispheric coupling of climate changes. We present the results of a marine geological survey at Golfo Elefantes, the depositional basin of Gualas Glacier. The dataset includes swath bathymetry, single channel seismic data and sediment cores analyses. The studied sedimentary record spans, with some hiatuses, at least the last 10.5 Ka. No evidences of ice proximal or till deposits were found in the area, and seismic records show no evidence of basin-wide erosional hiatuses. This implies that the arcuate terminal moraines that occur along the edges of Golfo Elefantes, which have been suggested to represent Neoglacial advances of Gualas Glacier, were instead formed during the waning stages of the local LGM (Late Pleistocene) after ~12.6 ka according to paleogeographical reconstructions

  9. Thermodynamical and Hydrological Discontinuities in Polythermal Glaciers

    NASA Astrophysics Data System (ADS)

    Aschwanden, A.; Kirner, P.; Rappaz, J.; Blatter, H.

    2006-12-01

    Polythermal glaciers exhibit various thermodynamical and hydrological discontinuities. In this work, two discontinuities are investigated in more detail: the cold-temperate transition surface (CTS), which separates cold ice from temperate ice, and (2) the basal thermal transition (BTT) from sliding in the temperate ice to non- sliding in the cold ice. Ice is defined as temperate if a change in heat content leads to a change in water content alone, and is considered cold if a change in heat content leads to a temperature change alone. The dynamics of the CTS are mainly controlled by the flow field of the glacier and the amount of liquid water in the temperate ice. The two most significant sources contributing to the content of liquid water at the CTS are water entrapped in the firn of the accumulation area and englacial melting due to strain heating. {Pettersson2004a} measured an absolute liquid water of about 7 grams of water per kilogram ice in the upper part of the CTS. Less than 10% of this water can be explained by englacial melting due to strain heating {AschwandenBlatter2005}. The difference can thus be attributed to water entrapment, which is an important boundary condition for the modeling of the dynamics of the CTS. The modeling is performed using a finite element software. To obtain better energy conservation in the scheme, the enthalpy equation (instead of the Fourier equation) is solved together with the constitutive equations for enthalpy in temperate ice (ice water mixture). The mathematical singularity is avoided by a novel regularization scheme applying a brine pocket scheme with a ternary mixture of ice, water and salt. The salt content is assumed to be large enough to regularize the scheme but small enough to influence the results negligibly. This opens the possibility to predict the reaction of the CTS to changes in the amount of trapped water and changes in the flow field due to a changing climate. For a precise modeling of the dynamics of the

  10. The controversial age of Kilimanjaro's plateau glaciers

    NASA Astrophysics Data System (ADS)

    Uglietti, Chiara; Zapf, Alexander; Szidat, Sönke; Salazar, Gary; Hardy, Doug; Schwikowski, Margit

    2015-04-01

    Interpreting climate signals contained in natural archives requires a precise chronology. Radiocarbon analysis can be a powerful tool for dating high-altitude ice cores, especially for the lowermost segments for which ice flow-induced thinning limits the counting of annual layers. Radiocarbon dating has been applied to ice cores containing sufficient organic material, which is a limiting factor to the wider application of this technique. We present a novel radiocarbon dating approach using carbonaceous aerosols enclosed in the ice to help resolve the debate about the age of the Kilimanjaro's plateau glaciers. Paleoclimate reconstructions based on six ice cores drilled in 2000 assigned a basal age of 11'700 years. A recent study claims recurring cycles of waxing and waning controlled primarily by atmospheric moisture and an absence of the ice bodies was suggested for 1200 AD. The Kilimanjaro ice fields are subject to rapid areal shrinkage and thinning and are expected to disappear within several decades. Resolving the controversy of the time frame for the extinction of the Kilimanjaro ice might have wide implications for the understanding of the natural climate variability in the tropics. A stratigraphic sequence of samples from the exposed vertical ice cliffs at the margins of the Northern Ice Field (NIF) was collected in 2011. A total of 45 horizontal short cores (50 cm length) were extracted from 22 horizons characterized by varying micro-particle concentrations. Additionally, 3 samples were taken from the glacier surface to investigate a potential age offset. All samples were shipped frozen to Paul Scherrer Institute, decontaminated in a cold room by removing the outer layer (0.3 mm) and by rinsing the samples with ultra-pure water. The insoluble carbonaceous particles were filtrated by using freshly preheated quartz fibre filters. Procedural blanks were estimated using artificial ice blocks of frozen ultra-pure water treated as real ice samples and were

  11. Area and Elevation Changes of a Debris-Covered Glacier and a Clean-Ice Glacier Between 1952-2013 Using Aerial Images and Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Lardeux, P.; Glasser, N. F.; Holt, T.; Irvine-Fynn, T. D.; Hubbard, B. P.

    2015-12-01

    Since 1952, the clean-ice Glacier Blanc has retreated twice as fast as the adjacent debris-covered Glacier Noir. Located in the French Alps and separated by only 1 km, both glaciers experience the same climatic conditions, making them ideal to evaluate the impact of debris cover on glacier evolution. We used aerial photographs from 16 acquisitions from 1952 to 2013 to reconstruct and analyze glacier elevation changes using Structure-from-Motion (SfM) techniques. Here, we present the process of developing sub-metric resolution digital elevation models (DEMs) from these aerial photographs. By combining 16 DEMs, we produced a dataset of elevation changes of Glacier Noir and Glacier Blanc, including time-series analysis of lateral and longitudinal profiles, glacier hypsometry and mass balance variation. Our preliminary results indicate that Glacier Noir and Glacier Blanc have both thinned to a similar magnitude, ≤ 20 m, despite a 1 km retreat for Glacier Blanc and only 500 m for Glacier Noir. However, these elevation change reconstructions are hampered by large uncertainties, principally due to the lack of independent camera calibration on the historical imagery. Initial attempts using posteriori correction grids have proven to significantly increase the accuracy of these data. We will present some of the uncertainties and solutions linked to the use of SfM on such a large scale and on such an old dataset. This study demonstrates how SfM can be used to investigate long-term trends in environmental change, allowing glacier monitoring to be up-scaled. It also highlights the need for on-going validation of methods to increase the accuracy and precision of SfM in glaciology. This work is not only advancing our understanding of the role of the debris layer, but will also aid glacial geology more generally with, for example, detailed geomorphological analysis of proglacial terrain and Quaternary sciences with quick and accurate reconstruction of a glacial paleo-environment.

  12. Evaluating the controls on glacier behaviour on the Kamchatka Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Lynch, Colleen; Barr, Iestyn, ,, Dr; Mullan, Donal, ,, Dr

    2016-04-01

    Glaciers have been unequivocally linked to changes in global climatic conditions, with an unprecedented and climatically-driven decline in glacier coverage witnessed over recent decades. Despite this relationship, variation in glacier response suggests that other (non-climatic) controls are involved in governing glacier behaviour. This variation presents a challenge when assessing how best to model and predict future glacier behaviour. This study looks at the non-climatic controls on glacial behaviour on the Kamchatka Peninsula, and assesses associated impacts on glacier vulnerability to changes in climate. A detailed multi-annual study was undertaken using Landsat 7 and 8 images to monitor the inter-annual variability of Kamchatka's glaciers, with topographic information obtained from the 30m SRTM DEM. Glaciers were mapped manually, with 676 present in the year 2000, representing an area of 664.79 ± 65.25 km2. Analysis revealed an overall decline in the glacial coverage of ˜30.04 % over the 2000-2014 period. However, there is considerable spatial variability in glacier behaviour across the Peninsula, suggesting corresponding variability in the controls on glacier extent. Here the role of glacier hypsometry, aspect, surface slope and areal extent, basin geometry and distance from the coast are examined to evaluate the role each has played in either enhancing or suppressing glacier vulnerability to the changing climate.

  13. A new glacier model resolving ice dynamics applied to the Alps

    NASA Astrophysics Data System (ADS)

    Maussion, Fabien; Marzeion, Ben

    2016-04-01

    Most regional and global glacier models rely on empirical scaling laws to account for glacier area and volume change with time. These scaling methods are computationally cheap and are statistically robust when applied to many glaciers, but their accuracy considerably lowers at the glacier or catchment scale. The nearest alternative in terms of complexity - glacier flowline modelling - requires significantly more information about the glacier geometry. Here we present a new open source glacier model applicable at regional to global scale implementing i) the determination of glacier centerlines, ii) the inversion of glacier bed topography, and iii) a multi-branch flowline model handling glacier tributaries. Using the HISTALP dataset as climatological input we apply the model in the Alps for 1800 to present and present new estimations of present-day and past glacier volume. The relatively large number of independent data available for validation in this region allow a critical discussion of the added value of our new approach. In particular, we will focus our discussion on two contradictory aspects inherent to any geoscientific model development: while our model clearly opens wide-ranging possibilities to better resolve the glacier processes, this new playground is associated with an increase in complexity, the number of calibration parameters, and…uncertainty?

  14. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  15. Bibliography of glacier studies by the U.S. Geological Survey

    USGS Publications Warehouse

    Snyder, E.F.

    1996-01-01

    Reports on glaciers written by U.S. Geological Survey members between 1896 and early 1996 are listed. The reports contain information about glacier and had at least one USGS author or was dependent on USGS data or projects. Extensive glacier studies have been done by the USGS in North America, Greenland, Iceland, as well as in Antarctica.

  16. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit...

  17. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit...

  18. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  19. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  20. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  1. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit...

  2. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit...

  3. 36 CFR 13.1150 - Is a permit required for a vessel in Glacier Bay?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vessel in Glacier Bay? 13.1150 Section 13.1150 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve Vessel Permits § 13.1150 Is a permit required for a vessel in Glacier Bay? A permit...

  4. 36 CFR 13.1116 - Do I need a camping permit in Glacier Bay?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Glacier Bay? 13.1116 Section 13.1116 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and Preserve General Provisions § 13.1116 Do I need a camping permit in Glacier Bay? From May...

  5. ASTER based velocity profile of glaciers in the Nanga Parbat region, western Himalaya

    NASA Astrophysics Data System (ADS)

    Parkes, A. T.; Haritashya, U. K.

    2011-12-01

    Glaciers, in general, are highly sensitive to climate fluctuations making them important indicators of climate change. Overall, lack of data on this region is troubling for the amount of hydrological importance and climatic forecasts these glaciers hold. Therefore, this study aims to measure glacier velocity on selected glaciers using cross-correlation techniques. One of the main problems with determining the amount of loss or perhaps gain in glacier mass is determining their velocity. The Himalayan glaciers are inaccessible in most areas and field measurements can be impossible, which creates a problem when determining the velocity of glaciers. Consequently, we generated velocity profiles of glaciers in the Nanga Parbat region of the western Himalaya using 2009 and 2010 ASTER satellite data. Our glacier fluctuation study have shown oscillating behavior of these glaciers; however, our preliminary velocity result indicates high velocity on most of these glaciers. These results are the first ever velocity profile generated for this region and would be able to help understand glacier dynamics in a much more comprehensive manner.

  6. Basal resistance for three of the largest Greenland outlet glaciers

    NASA Astrophysics Data System (ADS)

    Shapero, Daniel R.; Joughin, Ian R.; Poinar, Kristin; Morlighem, Mathieu; Gillet-Chaulet, Fabien

    2016-01-01

    Resistance at the ice-bed interface provides a strong control on the response of ice streams and outlet glaciers to external forcing, yet it is not observable by remote sensing. We used inverse methods constrained by satellite observations to infer the basal resistance to flow underneath three of the Greenland Ice Sheet's largest outlet glaciers. In regions of fast ice flow and high (>250 kPa) driving stresses, ice is often assumed to flow over a strong bed. We found, however, that the beds of these three glaciers provide almost no resistance under the fast-flowing trunk. Instead, resistance to flow is provided by the lateral margins and stronger beds underlying slower-moving ice upstream. Additionally, we found isolated patches of high basal resistivity within the predominantly weak beds. Because these small-scale (<1 ice thickness) features may be artifacts of overfitting our solution to measurement errors, we tested their robustness to different degrees of regularization.

  7. Investigating Long-term Behavior of Outlet Glaciers in Greenland

    NASA Technical Reports Server (NTRS)

    Csatho, Beata; vanderVeen, Kees; Schenk, Toni

    2005-01-01

    Repeat surveys by airborne laser altimetry in the 1990s have revealed significant thinning of outlet glaciers draining the interior of the Greenland Ice Sheet, with thinning rates up to several meters per year. To fully appreciate the significance of these recent glacier changes, the magnitude of retreat and surface lowering must be placed within the broader context of the retreat since the Last Glacial Maximum and, more significantly, of the retreat following the temporary glacier advance during the Little Ice Age (LIA). The LIA maximum stand is marked by trimlines, sharp boundaries between recently deglacifated unvegetated rocks, and vegetated surfaces at higher elevations. The objective of this project was to demonstrate the use of remote sensing data to map these trimlines and other glacial geomorphologic features.

  8. Theoretical Foundations of Remote Sensing for Glacier Assessment and Mapping

    NASA Technical Reports Server (NTRS)

    Bishop, Michael P.; Bush, Andrew B. G.; Furfaro, Roberto; Gillespie, Alan R.; Hall, Dorothy K.; Haritashya, Umesh K.; Shroder, John F., Jr.

    2014-01-01

    The international scientific community is actively engaged in assessing ice sheet and alpine glacier fluctuations at a variety of scales. The availability of stereoscopic, multitemporal, and multispectral satellite imagery from the optical wavelength regions of the electromagnetic spectrum has greatly increased our ability to assess glaciological conditions and map the cryosphere. There are, however, important issues and limitations associated with accurate satellite information extraction and mapping, as well as new opportunities for assessment and mapping that are all rooted in understanding the fundamentals of the radiation transfer cascade. We address the primary radiation transfer components, relate them to glacier dynamics and mapping, and summarize the analytical approaches that permit transformation of spectral variation into thematic and quantitative parameters. We also discuss the integration of satellite-derived information into numerical modeling approaches to facilitate understandings of glacier dynamics and causal mechanisms.