Science.gov

Sample records for navajo volcanic field

  1. Eruptive conditions and depositional processes of Narbona Pass Maar volcano, Navajo volcanic field, Navajo Nation, New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Clarke, Amanda B.; Semken, Steven

    2009-01-01

    Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5-20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic

  2. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  3. Melding Research on the Navajo Volcanic Field into Undergraduate Curriculum to Promote Scientific Literacy

    NASA Astrophysics Data System (ADS)

    Gonzales, D. A.

    2011-12-01

    This presentation highlights the curricular design and preliminary outcomes of undergraduate research in the Department of Geosciences at Fort Lewis College (FLC), supported by an NSF-RUI project on the Navajo volcanic field (NVF). A prime impact of this project was to support the education and career development of undergraduate students by further developing basic knowledge and skills in the context of authentic inquiry on petrologic-based research topics. Integrating research into the curriculum promoted scientific habits of mind by engaging students as "active agents" in discovery, and the creative development and testing of ideas. It also gave students a sense of ownership in the scientific process and knowledge construction. The initial phase of this project was conducted in Igneous Petrology at FLC in 2010. Eleven students were enrolled in this course which allowed them to work as a team in collaboration with the PI, and engage in all aspects of research to further develop and hone their skills in scientific inquiry. This course involved a small component of traditional lecture in which selected topics were discussed to provide students with a foundation to understand magmatic processes. This was complemented by a comprehensive review of the literature in which students read and discussed a spectrum of articles on Tertiary magmatism in the western United States and the NVF. Invited lectures by leading-scientists in geology provided opportunities for discussions and interaction with professional geologists. All of the students in the class engaged in the active collection of petrologic data in the field and laboratory sessions, and were introduced to the use of state-of-the art analytical tools as part of their experiences. Four students were recruited from the course to design, develop, and conduct long-term research projects on selected petrologic topics in the NVF. This research allowed these students to engage in the "messy" process of testing existing

  4. Chemical properties of Garnets from Garnet Ridge, Navajo volcanic field in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Koga, I.; Ogasawara, Y.

    2012-12-01

    Significant amounts of garnet crystals have derived from kimberlitic diatremes at Garnet Ridge in northern Arizona. These garnets are chemically diverse and their origins have been still controversial. The diatremes at Garnet Ridge were dated at 30Ma (Smith et al., 2004). Coesite-bearing lawsonite eclogite reported by Usui et al., (2003) is important evidence for subduction of the Fallaron Plate below the Colorado plateau. This study characterized various kinds of garnets with several origins by petrographical observations and electron microprobe analyses (JXA-8900 WDS mode and JXA-733 EDS mode). On the basis of the chemical compositions and other features, the garnets were classified into the following 8 groups (A to H). Inclusions and exsolved phases were identified by laser Raman spectroscopy. (A) Garnet crystals (5-8 mm) with purple color are called ''Navajo Ruby''. A significant amount of Cr2O3 is a typical feature (up to ~5.9 wt. %). These garnet were rich in pyrope (66-78 mol. %). Olivine, Cpx, and exsolved lamellae of rutile were contained. (B) Reddish brown garnets were Pyp-rich (60-75 mol. %), and contained a minor amount of Cr2O3 (less than ~1 wt. %). The inclusions were rod-shaped rutile , Cpx, Opx, zircon, olivine and exsolved lamellae of apatite. (C) Garnet megacrysts (8-12 cm) were plotted near the center of Prp-Alm-Grs triangle (Pyp30-35 Alm28-33 Grs29-35). Exsolved apatite lamellae were confirmed. (D) Some of reddish brown garnets were plotted on same area as the Type-C. (E) Garnets in eclogite have Alm-rich composition (Pyp6-22 Alm52-65 Grs16-42). They clearly showed prograde chemical zonation; MgO: 1.4 to 5.4 wt. %, CaO: 14.0 to 5.6 wt. % both from core to rim. (F) Garnets in altered or metasomatized eclogite had a wide range of chemical composition (Pyp7-38 Alm52-69 Grs4-31) with similar prograde zonation. The cores were plotted near the rim of Type-E garnet. (G) Garnets in unidentified rock (strongly altered) had Alm-rich composition near Alm

  5. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

    USGS Publications Warehouse

    Muirhead, James D.; Van Eaton, Alexa R.; Re, Giuseppe; White, James D. L.; Ort, Michael H.

    2016-01-01

    Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere

  6. Subducted Farallon Plate Carries Water for Hydration Above the Flat Slab and Deep into the Mantle: Evidence from the Navajo Volcanic Field HP and UHP Xenolith Suite

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Helmstaedt, H. H.; Davis, D.

    2014-12-01

    Xenoliths in the Navajo Volcanic Field diatremes include HP-LT and UHP metamorphic eclogites (with lawsonite, phengite, coesite, zircon), exotic hydrous Cr-omphacitites (with guyanaite - CrOOH, carmichaelite, eskolaite, tawmawite, redledgeite) and hydrous and anhydrous peridotite, pyroxenite and lower crustal rocks. The eclogites (primarily dated at 30-80 Ma), omphacitites (30 Ma) and some of the (serpentinized) peridotites were derived from the subducted Farallon Plate (and possibly near-trench mantle wedge material accompanying the slab) from the flat slab by the diatremes at 30 Ma, approximately 700 km from the trench. Dehydration reactions in this assemblage (primarily prograde metamorphism of serpentinite yielding peridotite but also breakdown of guyanaite to eskolaite + water) provided water that hydrated overlying mantle materials (garnet and spinel peridotite to antigorite/chlorite serpentinite, garnet pyroxenite to chlorite-bearing eclogite, garnet and spinel pyroxenite to pargasite + chlorite). The accompanying volume expansion contributed to uplift of the Colorado Plateau, as originally suggested by Hess (1955). Phengite and possibly lawsonite remained stable and continued to carry water to greater depths. Guyanaite is stable to over 13.5 GPa and can transport water at least into the transition zone and thus may be a vehicle for hydrating ringwoodite in the transition zone (the present location of the Farallon slab). It is not known to how deep other hydrous minerals in these assemblages are stable (e.g., carmichaelite, redledgeite, tawmawite) but they, too, have potential for carrying water deep into the mantle.

  7. Field manual for the collection of Navajo Nation streamflow-gage data

    USGS Publications Warehouse

    Hart, Robert J.; Fisk, Gregory G.

    2014-01-01

    The Field Manual for the Collection of Navajo Nation Streamflow-Gage Data (Navajo Field Manual) is based on established (standard) U.S. Geological Survey streamflow-gaging methods and provides guidelines specifically designed for the Navajo Department of Water Resources personnel who establish and maintain streamflow gages. The Navajo Field Manual addresses field visits, including essential field equipment and the selection of and routine visits to streamflow-gaging stations, examines surveying methods for determining peak flows (indirect measurements), discusses safety considerations, and defines basic terms.

  8. Navajo minettes in the Cerros de las Mujeres, New Mexico

    NASA Astrophysics Data System (ADS)

    Vaniman, D.; Laughlin, A. W.; Gladney, E. S.

    1985-06-01

    The Cerros de las Mujeres in west-central New Mexico are three mafic minette plugs that should be considered part of the Navajo volcanic fields on the central Colorado Plateau. This newly recognized occurrence extends the Navajo volcanic fields to the southeastern margin of the Colorado Plateau, within 45 km of the extensional tectonic setting in which the Mogollon ash-flow tuff cauldrons occur. The Cerros de las Mujeres provide additional evidence for contemporaneous sodic and potassic volcanism within the Navajo volcanic fields.

  9. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  10. Payún Volcanic Field

    NASA Image and Video Library

    2017-09-27

    Situated in the southern Andes Mountains, the Payún volcanic field of Argentina is a complex landscape that formed over hundreds of thousands of years. Sprawling over 5,200 square kilometers (2,000 square miles), Payún is a massive shield volcano—a broad formation resembling an ancient warrior shield. This false-color image is a composite of observations acquired on February 7 and March 20, 2001 by the Enhanced Thematic Mapper Plus on the Landsat 7 satellite. It was made from a combination of visible and infrared light, where green indicates vegetation, black indicates lava flows, and orange is bare rock rich in iron oxides. Part of the back-arc volcanism of the Andes, Payún lies about 530 kilometers (330 miles) east from where the Nazca plate subducts below the South America plate. Not surprisingly, a volcanic zone extends over some 1,000 kilometers (600 miles) north-to-south in this region. According to a study published in 2010, the regional geology and chemical composition of the rocks indicate that the volcanic field likely formed within the past 300,000 years. The dominant feature of the volcanic field is Payún Matru, an elliptical caldera measuring roughly 9 by 7 kilometers (6 by 4 miles). Geologists surmise that the caldera formed after the old magma chamber emptied and the summit collapsed. Southwest of the caldera is a stratovolcano composed of alternating layers of compacted ash, hardened lava, and rocks ejected during previous eruptions. This stratovolcano, Payún, rises to 3,680 meters (12,073 feet) above sea level. (The entire volcanic field sits at 2,000 meters, or 6,600 feet.) The stratovolcano may be the most prominent feature in the volcanic field but it is by no means the only one. More than 300 eruptive features litter the shield volcano, most of them occupying an east-west line. West of Payún Matru is an area known as Los Volcanes, a mass of strombolian cones and basaltic lava flows. Image courtesy Michael P. Taylor, Landsat Data

  11. Reappraisal of the significance of volcanic fields

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo

    2016-01-01

    "Volcanic field" is a term commonly used to loosely describe a group of volcanoes. Often, it is implicitly assumed that the volcanoes on a volcanic field are small, monogenetic and dominantly basaltic, but none of those attributes is indispensable on some definitions of the term. Actually, the term "volcanic field" can be used to describe a group of purely monogenetic edifices, a group of mixed monogenetic and polygenetic edifices, or even a group formed only by purely polygenetic edifices. Differences between each of those alternatives might be important, but the extent to which those differences are truly relevant remains still to be explored. Furthermore, there are several limitations on the current knowledge of this type of volcanic activity that explain the lack of a comprehensive effort to study volcanic fields in global contexts. In this work, issues concerning current definitions of a volcanic field are examined, and some criteria that can be used to distinguish volcanic fields from non-field volcanoes are suggested. Special attention is given to the role played by spatial scale on such a distinction. Also, the tectonic implications of their spatial distribution are explored. In particular, it is shown that volcanic fields are an important component of volcanic activity at a global scale that is closely associated to diffuse plate boundaries, and might well be considered the archetypical volcanic form of such tectonic scenarios.

  12. Age and progression of volcanism, Wrangell volcanic field, Alaska

    NASA Astrophysics Data System (ADS)

    Richter, D. H.; Smith, J. G.; Lanphere, M. A.; Dalrymple, G. B.; Reed, B. L.; Shew, Nora

    1990-12-01

    The Wrangell volcanic field covers more than 10 000 km2 in southern Alaska and extends uninterrupted into northwest. Yukon Territory. Lavas in the field exhibit medium-K, calc-alkaline affinities, typical of continental volcanic arcs along convergent plate margins. Eleven major eruptive centers are recognized in the Alaskan part of the field. More than 90 K-Ar age determinations in the field show a northwesterly progression of eruptive activity from 26 Ma, near the Alaska-Yukon border, to about 0.2 Ma at the northwest end of the field. A few age determinations in the southeast extension of the field in Yukon Territory, Canada, range from 11 to 25 Ma. The ages indicate that the progression of volcanism in the Alaska part of the field increased from about 0.8 km/Ma, at 25 Ma, to more than 20 km/MA during the past 2 Ma. The progression of volcanic activity and its increased rate of migration with time is attributed to changes in the rate and angle of Pacific plate convergence and the progressive decoupling of the Yakutat terrane from North America. Subduction of Yakutat terrane-Pacific plate and Wrangell volcanic activity ceased about 200 000 years age when Pacific plate motion was taken up by strike-slip faulting and thrusting.

  13. Age and progression of volcanism, Wrangell volcanic field, Alaska

    USGS Publications Warehouse

    Richter, D.H.; Smith, James G.; Lanphere, M.A.; Dalrymple, G.B.; Reed, B.L.; Shew, N.

    1990-01-01

    The Wrangell volcanic field covers more than 10 000 km2 in southern Alaska and extends uninterrupted into northwest. Yukon Territory. Lavas in the field exhibit medium-K, calc-alkaline affinities, typical of continental volcanic arcs along convergent plate margins. Eleven major eruptive centers are recognized in the Alaskan part of the field. More than 90 K-Ar age determinations in the field show a northwesterly progression of eruptive activity from 26 Ma, near the Alaska-Yukon border, to about 0.2 Ma at the northwest end of the field. A few age determinations in the southeast extension of the field in Yukon Territory, Canada, range from 11 to 25 Ma. The ages indicate that the progression of volcanism in the Alaska part of the field increased from about 0.8 km/Ma, at 25 Ma, to more than 20 km/MA during the past 2 Ma. The progression of volcanic activity and its increased rate of migration with time is attributed to changes in the rate and angle of Pacific plate convergence and the progressive decoupling of the Yakutat terrane from North America. Subduction of Yakutat terrane-Pacific plate and Wrangell volcanic activity ceased about 200 000 years age when Pacific plate motion was taken up by strike-slip faulting and thrusting. ?? 1990 Springer-Verlag.

  14. Io: Heat flow from dark volcanic fields

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.

    2009-11-01

    Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io's total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ˜200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io's heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ˜5% of Io's global heat flow or ˜5 × 10 12 W.

  15. Io: Heat Flow from Dark Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Davies, A. G.; Johnson, T. V.

    2008-03-01

    We focus on the heat flow contribution from dark volcanic fields on Io. These are concentrated in the anti-Loki hemisphere. We use the areas and estimated effective temperatures of dark flucti to derive their total power.

  16. Controls on volcanism at intraplate basaltic volcanic fields

    NASA Astrophysics Data System (ADS)

    van den Hove, Jackson C.; Van Otterloo, Jozua; Betts, Peter G.; Ailleres, Laurent; Cas, Ray A. F.

    2017-02-01

    A broad range of controlling mechanisms is described for intraplate basaltic volcanic fields (IBVFs) in the literature. These correspond with those relating to shallow tectonic processes and to deep mantle plumes. Accurate measurement of the physical parameters of intraplate volcanism is fundamental to gain an understanding of the controlling factors that influence the scale and location of a specific IBVF. Detailed volume and geochronology data are required for this; however, these are not available for many IBVFs. In this study the primary controls on magma genesis and transportation are established for the Pliocene-Recent Newer Volcanics Province (NVP) of south-eastern Australia as a case-study for one of such IBVF. The NVP is a large and spatio-temporally complex IBVF that has been described as either being related to a deep mantle plume, or upper mantle and crustal processes. We use innovative high resolution aeromagnetic and 3D modelling analysis, constrained by well-log data, to calculate its dimensions, volume and long-term eruptive flux. Our estimates suggest volcanic deposits cover an area of 23,100 ± 530 km2 and have a preserved dense rock equivalent of erupted volcanics of least 680 km3, and may have been as large as 900 km3. The long-term mean eruptive flux of the NVP is estimated between 0.15 and 0.20 km3/ka, which is relatively high compared with other IBVFs. Our comparison with other IBVFs shows eruptive fluxes vary up to two orders of magnitude within individual fields. Most examples where a range of eruptive flux is available for an IBVF show a correlation between eruptive flux and the rate of local tectonic processes, suggesting tectonic control. Limited age dating of the NVP has been used to suggest there were pulses in its eruptive flux, which are not resolvable using current data. These changes in eruptive flux are not directly relatable to the rate of any interpreted tectonic driver such as edge-driven convection. However, the NVP and other

  17. THE NAVAJOS.

    ERIC Educational Resources Information Center

    Navajo Tribe Public Relations and Information Dept., Window Rock, AZ.

    A STUDY OF NAVAJO AMERICAN INDIANS IS PRESENTED. INCLUDED ARE THE TRIBE'S HISTORY, RESOURCES, ECONOMIC SITUATION, AND WAYS TO IMPROVE IT. THE NAVAJOS ARE DIFFERENT FROM OTHER AMERICAN INDIAN TRIBES IN THAT THEY ARE RAPIDLY INCREASING, THEY HAVE INCREASED THE SIZE OF THEIR RESERVATION, THEY STILL LIVE IN ISOLATION AND IN A PRIMITIVE FASHION, AND…

  18. THE NAVAJOS.

    ERIC Educational Resources Information Center

    Navajo Tribe Public Relations and Information Dept., Window Rock, AZ.

    A STUDY OF NAVAJO AMERICAN INDIANS IS PRESENTED. INCLUDED ARE THE TRIBE'S HISTORY, RESOURCES, ECONOMIC SITUATION, AND WAYS TO IMPROVE IT. THE NAVAJOS ARE DIFFERENT FROM OTHER AMERICAN INDIAN TRIBES IN THAT THEY ARE RAPIDLY INCREASING, THEY HAVE INCREASED THE SIZE OF THEIR RESERVATION, THEY STILL LIVE IN ISOLATION AND IN A PRIMITIVE FASHION, AND…

  19. Field calibration of volcanic surveillance cameras

    NASA Astrophysics Data System (ADS)

    Ospina, C. A.; Narvaez, A.; Corchuelo, I. D.

    2017-06-01

    In volcanic surveillance, cameras are largely used allowing amazing images of volcanic eruptions as well as beautiful views of these grand Earth constructions. The Colombian Geological Service through the Volcanological and Seismological Observatory of Popayán (OVSPo) have 10 surveillance cameras looking at three volcanoes present in Provinces of Cauca, Huila and Tolima. However, these cameras were not calibrated previously, which has limited the analysis and exploitation of the information up to now. The development of this work take into account that the calibration process should not change camera parameters like orientation and position and what’s more, we consider the access difficulties to reach and stay at the camera stations (volcanic environment). A calibration methodology was developed and applied on three (3) cameras on field, achieving to improve the analysis and exploitation of information within images of volcanic surveillance cameras.

  20. Navajo Studies at Navajo Community College.

    ERIC Educational Resources Information Center

    Hatathli, Ned

    The document covers the Navajo Studies Program (NSP) at Navajo Community College (NCC). The Navajo Studies Program differs from other Indian Studies Programs in 7 ways, e.g.: (1) it is located on the Navajo Reservation and controlled by the tribe; (2) NCC incorporates Indian studies into every individual program and area of concentration--English…

  1. The San Francisco volcanic field, Arizona

    USGS Publications Warehouse

    Priest, S.S.; Duffield, W.A.; Malis-Clark, Karen; Hendley, J. W.; Stauffer, P.H.

    2001-01-01

    Northern Arizona's San Francisco Volcanic Field, much of which lies within Coconino and Kaibab National Forests, is an area of young volcanoes along the southern margin of the Colorado Plateau. During its 6-million-year history, this field has produced more than 600 volcanoes. Their activity has created a topographically varied landscape with forests that extend from the Pi?on-Juniper up to the Bristlecone Pine life zones. The most prominent landmark is San Francisco Mountain, a stratovolcano that rises to 12,633 feet and serves as a scenic backdrop to the city of Flagstaff.

  2. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  3. Monogenetic volcanism in the Cordillera Central of Colombia: unknown volcanic fields associated with the northernmost Andes' volcanic chain related subduction

    NASA Astrophysics Data System (ADS)

    Murcia, Hugo; Borrero, Carlos; Németh, Károly

    2017-04-01

    Monogenetic volcanic fields are commonly related to rifts and/or intraplate tectonic settings. However, although less common, they appear also associated with subduction zones, including both front and back-arc volcanoes. To nourish this uncommon tectonic location, it is shown here that monogenetic volcanic fields, in addition to polygenetic volcanoes, also appear at the northernmost part of the Andes Northern Volcanic Zone (NVZ) (2° S to 4°30´N). These fields are associated with the main axe of the Quaternary active volcanic structures; they are linked to the polygenetic Cerro Bravo - Cerro Machín Volcanic Chain ( 80 km long; CBCMVC) in Colombia, the chain that hosts the iconic Nevado del Ruiz volcano. To the present, three monogenetic volcanic fields, with a typical calc-alkaline signature, have been identified in both sides of this chain: 1) Villamaría - Termales Monogenetic Volcanic Field (VTMVF) located to the northwestern part (>5 km) of the CBCMVC. This field is made up of at least 14 volcanoes aligned with the Villamaría - Termales fault zone. The volcanism has been mainly effusive, represented by lava domes and some lava flows. The volcanoes are andesitic to dacitic in composition. It is inferred that the magmatic source is a magma chamber close to Nevado del Ruiz volcano. Based on stratigraphic relationships, it is assumed that the last eruption occurred <38 ka. 2) Samaná Monogenetic Volcanic Field (SMVF) located 50 km north of Romeral volcano, the northernmost active volcano from the CBCMVC. This field comprises at least three volcanoes: A maar-diatreme volcano ( 20 ka years old) and two undefined structures. The volcanic products exhibit andesitic and riolitic composition. It is inferred that this field results of the same magmatism of the CBCMVC. 3. Pijaos Monogenetic Volcanic Field (PMVF) located 25 km south of Cerro Machín volcano, the southernmost active volcano of the CBCMVC. This field comprises at least four volcanoes formed by effusive

  4. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  5. The San Franciscan volcanic field, Arizona

    USGS Publications Warehouse

    Robinson, Henry Hollister

    1913-01-01

    LOCATION OF AREAThe San Franciscan volcanic field, which takes its name from San Francisco Mountain, the largest volcano of the group, covers about 3,000 square miles in the north-central part of Arizona, as shown by the shaded space on the index map forming figure 1. The center of the field lies about 50 miles south of the Grand Canyon of the Colorado and the southern boundary is in part coterminous with that of the San Francisco Plateau, which forms the southwestern division of the great Colorado Plateau.The region is easily reached, for the main line of the Atchison, Topeka, & Santa Fe Railway traverses it from east to west for more than 60 miles. Flagstaff, a town of 1,500 inhabitants 10 miles south of the summit of San Francisco Mountain, is on the railroad, amid a branch line runs from Williams, 34 miles farther west, to the Grand Canyon. All the more important points of interest in the field may be reached without difficulty by wagon, and outfits may be obtained at Flagstaff.OUTLINE OF THE REPORTThis report deals primarily with the volcanic phenomena of the region as determined in the field and laboratory. Chapter I contains a brief description of the geography of the field and Chapter II is devoted largely to the sedimentary formations and structure. The rest of the report Chapters III to VI—treats entirely of the various features of the volcanoes and igneous rocks, both individually and collectively. Detailed descriptions of the volcanoes and lava fields are given in Chapter III; the volcanic history of the region and its correlation with the general history of the surrounding country are presented in Chapter IV. These two chapters will presumably suffice for the general reader who may desire to become acquainted with the broader volcanic features of the region. Chapter V (Petrography) is devoted entirely to the detailed description of the individual igneous rocks of the region, as represented by a selected set of type specimens. In Chapter VI (Petrology

  6. South Arch volcanic field9d\

    USGS Publications Warehouse

    Lipman, P.W.; Clague, D.A.; Moore, J.G.; Holcomb, R.T.

    1989-01-01

    Several young lava fields were imaged by GLORIA sidescan sonar along the Hawaiian Arch south of Hawaii. The largest, 35 by 50 km across, includes a central area characterized by high sonar backscatter and composed of several flow lobes radiating from a vent area. Reflection profiling and sea-floor photography indicate that the central lobes are flat sheet flows bounded by pillowed margins; thin surface sediment and thin palagonite rinds on lava surfaces suggest ages of 1-10 ka. Vents are localized along the arch crest near bases of Cretaceous seamounts. Two dredged flows are basanite and alkalic basalt, broadly similar to rejuvenated-stage and some pre-shield alkalic lavas on the Hawaiian Ridge. Arch volcanism represents peripheral leakage of melt from the Hawaiian hot spot over much larger areas than previously recognized. -Authors

  7. Temporal and Spatial Analysis of Monogenetic Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji

    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more

  8. Navajo Electrification Demonstraiton Project

    SciTech Connect

    Larry Ahasteen, Project Manager

    2006-07-17

    This is a final technical report required by DOE for the Navajo Electrification Demonstration Program, This report covers the electric line extension project for Navajo families that currently without electric power.

  9. Volcanology, geochemistry and age of the Lausitz Volcanic Field

    NASA Astrophysics Data System (ADS)

    Büchner, J.; Tietz, O.; Viereck, L.; Suhr, P.; Abratis, M.

    2015-11-01

    The Lausitz (Lusatia) Volcanic Field is part of the Central European Volcanic Province, and its magmas represent an alkaline trend from olivine nephelinites and basanites to trachytes and phonolites, typical for intraplate settings. Neighbouring volcanic fields are the České Středohoří Mountains to the south-west and the Fore-Sudetic Basin in Lower Silesia to the east. More than 1000 volcanic structures associated with approximately 500 vents have been located within this volcanic field. Residuals of scoria cones, lava lakes, lava flows and maar-diatreme in filling occur in situ near the level of the original syn-volcanic terrain. In more deeply eroded structures, volcanic relicts outcrop as plugs or feeders. Evolved rocks occur as monogenetic domes or intrusions in diatremes, while their volcaniclastic equivalents are rare. Twenty-three localities were dated using the 40Ar/39Ar method. The ages range from 35 to 27 Ma, with a focus around 32-29 Ma, indicating Late Eocene and mainly Oligocene volcanism for the LVF. Differentiated rocks appear to be slightly younger than less differentiated. No geographical age clusters are apparent.

  10. The Zuni-Bandera Volcanic Field, NM: An Analog for Exploring Planetary Volcanic Terrains

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Garry, W. B.; Zimbelman, J. R.; Crumpler, L. S.; Aubele, J. C.

    2010-12-01

    The Zuni-Bandera volcanic field, near Grants, New Mexico, is comprised of volcanic deposits from several basaltic eruptions during the last million years. This vent field exhibits a diverse group of coalesced lava flows and displays well-preserved volcanic features including a’a and pahoehoe flows, collapsed lava tubes, cinder cones and low shields. The McCartys flow is a 48-km long inflated basalt flow and is the youngest in the field at around 3000 years old. Over the last three years we have used the Zuni-Bandera volcanic field, and the McCartys flow in particular, as a terrestrial analog for exploring planetary volcanic fields, and understanding the role of lava sheet inflation in flow field development. We have conducted three different styles of analog tests, 1) basic field science focused on understanding lava sheet inflation, 2) mission operations tests related to EVA design and real-time modification of traverse plans, and 3) science enabling technology tests. The Zuni-Bandera field is an ideal location for each style of analog test because it provides easy access to a diverse set of volcanic features with variable quality of preservation. However, many limitations must also be considered in order to maximize lessons learned. The McCartys flow displays well-preserved inflation plateaus that rise up to 15 m above the surrounding field. The preservation state enables textures and morphologies indicative of this process to be characterized. However, the pristine nature of the flow does not compare well with the much older and heavily modified inflated flows of Mars and the Moon. Older flows west of McCartys add value to this aspect of analog work because of their degraded surfaces, development of soil horizons, loose float, and limited exposure of outcrops, similar to what might be observed on the Moon or Mars. EVA design tests and science enabling technology tests at the Zuni-Bandera field provide the opportunity to document and interpret the relationships

  11. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  12. Navajo Adult Basic Education.

    ERIC Educational Resources Information Center

    Navajo Community Coll., Tsaile, AZ.

    The objectives of this Special Experimental Demonstration Project in Adult Basic Education for the Navajo were: (1) to raise the educational and social level of Navajo adult students who are unable to read, write, and speak English; (2) to assist the Navajo adult students to take advantage of occupational and vocational training programs; (3) to…

  13. Numerical Modeling of Magma Transport In Distributed Volcanic Fields: A Case Study of the Springerville Volcanic Field, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Malservisi, Rocco; Deng, Fanghui; Connor, Charles; Germa, Aurelie; Connor, Laura

    2017-04-01

    Numerical modeling is an efficient way to understand the interaction between magmatic systems and surrounding structures on a variety of scales. Here we use a finite difference model to simulate long term average magma migration leading to the development of distributed volcanic fields. According to the ergodic hypothesis, the viscous flow of a fluid in a porous media (Darcy's Law) is statistically equivalent to full field scale magma migration averaged over geological time through the crust. The location and flux from the magma source region are boundary conditions of the model. Changes in the model permeability, associated with changes in the bulk properties of the lithosphere, can simulate preferential magma migration paths and alter the estimated magma flux at the surface. The simulated surface flux can be validated using the observed spatial intensity map of the volcanic field computed using vent location data. Our results show that for several volcanic fields in the western U.S. the modeled permeability necessary to reproduce the observed vent distribution is not uniform. Changes in model permeability correlate with crustal structure, which is determined from long-wavelength gravity anomalies, geologic models, and related tectonic data. We suggest that in some distributed volcanic fields large-scale crustal structures, such as inherited tectonic block boundaries, influence magma ascent and the pattern of volcanic eruptions. Probabilistic models of volcanic hazard for distributed volcanic fields can be improved by identifying crustal structures and assessing their impact on volcano distribution with the use of numerical models.

  14. Constraining the onset of flood volcanism in Isle of Skye Lava Field, British Paleogene Volcanic Province

    NASA Astrophysics Data System (ADS)

    Angkasa, Syahreza; Jerram, Dougal. A.; Svensen, Henrik; Millet, John M.; Taylor, Ross; Planke, Sverre

    2016-04-01

    In order to constrain eruption styles at the onset of flood volcanism, field observations were undertaken on basal sections of the Isle of Skye Lava Field, British Paleogene Volcanic Province. This study investigates three specific sections; Camus Ban, Neist Point and Soay Sound which sample a large area about 1500 km2 and can be used to help explain the variability in palaeo-environments at the onset of flood volcanism. Petrological analysis is coupled with petrophysical lab data and photogrammetry data to create detailed facies models for the different styles of initiating flood basalt volcanism. Photogrammetry is used to create Ortho-rectified 3D models which, along with photomontage images, allow detailed geological observations to be mapped spatially. Petrographic analyses are combined with petrophysical lab data to identify key textural variation, mineral compositions and physical properties of the volcanic rocks emplaced during the initial eruptions. Volcanism initiated with effusive eruptions in either subaerial or subaqueous environments resulting in tuff/hyaloclastite materials or lava flow facies lying directly on the older Mesozoic strata. Volcanic facies indicative of lava-water interactions vary significantly in thickness between different sections suggesting a strong accommodation space control on the style of volcanism. Camus Ban shows hyaloclastite deposits with a thickness of 25m, whereas the Soay Sound area has tuffaceous sediments of under 0.1m in thickness. Subaerial lavas overly these variable deposits in all studied areas. The flood basalt eruptions took place in mixed wet and dry environments with some significant locally developed water bodies (e.g. Camus Ban). More explosive eruptions were promoted in some cases by interaction of lavas with these water bodies and possibly by local interaction with water - saturated sediments. We record key examples of how palaeotopography imparts a primary control on the style of volcanism during the

  15. Space Radar Image of Pinacate Volcanic Field, Mexico

    NASA Image and Video Library

    1999-04-15

    This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers 93 miles southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image.

  16. Field measurement and analysis of climatic factors affecting dune mobility near Grand Falls on the Navajo Nation, southwestern United States

    USGS Publications Warehouse

    Bogle, Rian C.; Redsteer, Margaret Hiza; Vogel, John M.

    2015-01-01

    Aeolian sand covers extensive areas of the Navajo Nation in the southwestern United States. Much of this sand is currently stabilized by vegetation, although many drier parts of these Native lands also have active and partly active dunes. Current prolonged drought conditions that started in the mid-1990s are producing significant changes in dune mobility. Reactivation of regional aeolian deposits due to drought or increasing aridity from rising temperatures resulting from climate change could have serious consequences for human and animal populations, agriculture, grazing, and infrastructure. To understand and document the current and future potential for mobility, seasonally repeated surveys were used to track the location of multiple active barchan dunes. By utilizing Real-Time Kinematic GPS field surveys and simultaneously collecting in-situ meteorological data, it is possible to examine climatic parameters and seasonal variations that affect dune mobility and their relative influences. Through analysis of the recorded data, we examined the fit of various climate parameters, and demonstrate that under the current prolonged drought, wind power is the dominant factor controlling dune mobility.

  17. Evolution of volcanic rocks and associated ore deposits in the Marysvale volcanic field, Utah

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Rowley, Peter D.; Naeser, Charles W.; Mehnert, Harald H.; Hedge, Carl E.; Ludwig, Kenneth R.

    1994-01-01

    A geological account on the igneous activity and associated mineral deposition in the volcanic field of Marysvale in Utah is presented. Three episodes (34-22 Ma, 22-14 Ma and 9-5 Ma) involved in the volcanic rock eruption and associated mineralization are described. The first episode is believed to have occurred during the time of tectonic convergence when two contrasting suites of rocks, Mount Dutton Formation and Bullion Canyon Volcanics, erupted concurrently. Mineralization during this period was sparse. In the second episode, change from intermediate to bimodal volcanism occurred. During the third episode, basaltic compositions did not change. Although major element constituent had rhyolites similar to that of the second episode, rhyolites had a marked radiogenic isotope characteristic difference.

  18. Hazards of Monogenetic Volcanic Fields in the USA

    NASA Astrophysics Data System (ADS)

    Amin, J.

    2012-12-01

    A map has been compiled of the monogenetic volcanic fields which have erupted within 100 ka in the conterminous United States. Many of these fields are currently not monitored despite the fact that twenty-two of them have had a Holocene eruption. The spectrum of processes that take place in monogenetic fields can pose a great and immediate danger to life within 5 km of an erupting vent. While there is a recognized nonhomogeneity in the spatial and temporal recurrence rate of eruptions within monogenetic fields, a reasonable first-order estimate of a hazard zone for a volcanic field is obtained by extending a 5 km buffer around the limits of the currently mapped volcanic products for a given field. Using Census 2010 "zip-code" level data and a 5 km buffer around the mapped volcanic fields, there are over 100,000 people living in these high-risk zones. Eruptions within monogenetic fields can also produce sustained plumes that pose an aviation threat. There are 16 regional airports and many regularly-traveled flight paths between international airports that fall within a 50 km buffer of the mapped volcanic fields.

  19. Records of wells in sandstone and alluvial aquifers and chemical data for water from selected wells in the Navajo aquifer in the vicinity ofthe Greater Aneth Oil Field, San Juan County, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    1992-01-01

    This report contains hydrologic data for wells finished in sandstone and alluvial aquifers in southeastern San Juan County, Utah, and chemical data for water from selected wells in the Navajo aquifer. Temperature, specific conductance, pH, and discharge data from 1989-91 for water from selected wells in all aquifers are also presented.Data presented in this report were compiled from previously published reports (Goode, 1958; Sumsion, 1975; Avery, 1986; Kimball, 1987; Howells, 1990); data bases of the U.S. Geological Survey, the Navajo Tribe, the U.S. Bureau of Land Management, the Utah Division of Water Rights, and the Utah Division of Oil, Gas, and Mining; and from information obtained from oil companies in the Greater Aneth Oil Field. Results of investigations by Avery (1986) during 1982-83 indicated that water from many wells in the Navajo aquifer in the vicinity of the Greater Aneth Oil Field was moderately saline and that in some wells, salinity appeared to increase over time. The purpose of this study is to assess the physical extent and concentration of saline water in the Navajo and other aquifers in this area. The purpose of this report is to present available water-quality data for water from wells in the Navajo aquifer and present records for selected wells in the Navajo and other aquifers.

  20. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  1. Neogene rhyolites of the northern Jemez volcanic field, New Mexico

    SciTech Connect

    Loeffler, B.M.; Vaniman, D.T.; Baldridge, W.S.; Shafiqullah, M.

    1988-06-10

    Volcanic centers previously mapped as the 20 Ma El Rechuelos Rhyolite in the northern Jemez volcanic field, New Mexico, include three distinct episodes of rhyolitic volcanism. An early (7.5 Ma) extrusive dome of flow-banded biotite rhyolite and an intermediate (5.8 Ma) rhyolite, possibly a volcanic neck, correspond in age to rhyolites of the Keres Group in the southern Jemez volcanic field. Three other extrusive domes of aphyric, pumiceous rhyolite and obsidian comprise a late volcanic episode, dated at 2.0 Ma. We retain the name El Rechuelos Rhyolite only for these late centers. Another center, farther north than the others but previously mapped with the El Rechuelos Rhyolite, is a dacite pumice ring whose age (5.2 Ma), petrography, major- and trace-element chemistry, and Sr initial ratio all suggest it should be included with rocks of the Tschicoma Formation. Nd and Sr isotopic ratios of the Neogene rhyolites of the northern Jemez volcanic field suggest that these rhyolites were not produced by partial melting of either upper or lower crust. Rather, they may have been generated from a mantle-derived mafic magma, such as the nearby Lobato Basalt, by fractional crystallization with concomitant assimilation of small amounts (<6%) of lower crust. If the El Rechuelos is derived from a lower crust magma chamber, as seems likely, then it is not related to the bandelier magma system, even though it is part of a continuum of rhyolite volcanism ranging from 3.6 Ma to 130,000 years ago that includes the Bandelier and precursor rhyolitic units. copyright American Geophysical Union 1988

  2. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

    NASA Astrophysics Data System (ADS)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.

    2017-05-01

    Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such

  3. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  4. Navajo Biographies. Volume I.

    ERIC Educational Resources Information Center

    Hoffman, Virginia

    The life stories of eight Navajo ("Dine", their term for themselves) leaders are presented in volume one of this collection of biographies. Interspersed with portraits, drawings, and maps, the narrative chronologically covers the time period from 1766 when the Navajos lived on land under the rule of Spain into the twentieth century and…

  5. Navajo Mineral Development

    ERIC Educational Resources Information Center

    Ruffing, Lorraine Turner

    1978-01-01

    Comparing the resource development of the Navajo Nation with that of Third World countries, this article examines Navajo-Third World similarities in terms of various decision-making alternatives such as transitional corporations and the new forms of agreements now used by Third World countries. (JC)

  6. Navajo Wisdom and Traditions.

    ERIC Educational Resources Information Center

    Yazzie, Ethelou

    The oral literature of the Navajo people generally falls into two categories: the sacred stories and the folk tales, which often, but not always, point a moral. Sacred stories relate the Navajo's emergence history. These stories tell how the universe holds two kinds of people: the "Earth Surface People" (both living and dead) and the…

  7. The Navajo Yearbook.

    ERIC Educational Resources Information Center

    Young, Robert W., Comp.

    The Navajo Yearbook began as an annual report to relate progress in carrying out provisions of the Navajo-Hopi Long Range Rehabilitation Act (P.L. 474 - 81st Congress), but the scope has been expanded to include all programs conducted on the reservation. This volume, the eighth in the series, is designed to reflect changing problems, changing…

  8. Conference on Navajo Orthography.

    ERIC Educational Resources Information Center

    Ohannessian, Sirarpi; And Others

    This report on the Conference on Navajo Orthography, held in Albuquerque, New Mexico on May 2-3, 1969 constitutes a summary of the discussion and decisions of a meeting which was convened by the Center for Applied Linguistics under contract with the Bureau of Indian Affairs to agree on an orthography for the Navajo language. The immediate purpose…

  9. The Navajo Language Program at Navajo Community College - Context and Collaboration.

    ERIC Educational Resources Information Center

    Slate, Clay; Pfeiffer, Anita

    Over the last 10 years, there has been considerable expansion of the Navajo Language Program at Navajo Community College (NCC). The guiding principle for this development has been that the seminal work be done by Navajos, in Navajo, for a Navajo audience, and for Navajo purposes. Navajos who speak Navajo have a richness of resource and an access…

  10. Volcanic ash aggregation: new insights from field and numerical experiments

    NASA Astrophysics Data System (ADS)

    Rossi, Eduardo; Bagheri, Gholamhossein; Bonadonna, Costanza

    2015-04-01

    Particle aggregation is considered as a key process that may affect dispersal and sedimentation of volcanic ash, with significant implications for the associated hazards. So far the theoretical description of volcanic ash aggregation is commonly related to the solution of the Smoluchowski Coagulation Equations, a set of Ordinary Differential Equations (ODEs) which basically describe the change in time of an initial grain-size distribution due to the interaction of "single" particles. Nevertheless, field data show that this general description lacks of completeness, mainly due to the peculiarities of the volcanic context with respect to other fields (aerosol and pollution sciences). We propose an improvement of the general theoretical model in order to take into account the new insights from field observations. In particular, we focused on the problem of different densities between single particles and aggregates. This algorithm has been applied to observed volcanic eruptions (i.e. Eyjafjallajokull 2010, Sakurajima 2013 and Mt. Saint Helens 1980) in order to investigate the sensitiveness of the model with respect to the input parameters (total grain-size distribution, collision kernels, sticking efficiencies). Constrains on these parameters come from field observations and laboratory experiments.

  11. Seismicity of the Stanovoi Volcanic Field Region, Eastern Russia

    NASA Astrophysics Data System (ADS)

    Moyer, P. A.; Mackey, K. G.; Fujita, K.; Shibaev, S. V.; Gounbina, L. V.

    2007-12-01

    The Stanovoi region of southern Yakutia is one of the most poorly understood seismically active regions in eastern Russia. Although a considerable number of earthquakes have been located in the region, the epicenters are likely poor as only distant stations were used in the locations. In addition, the active faults, type of faulting, and levels of microseismicity in the region were unknown. Within the Stanovoi region is a province of Cenozoic basaltic volcanism (0.5-1.0 Ma) that is near a cluster of previously located earthquakes. Up to now, it was unknown if the seismicity in the region had any connection to the volcanic field or to large faults visible in the satellite images and topography of the region. The proposed extension of the Tanlu fault into Russia from China may also terminate near the study area. We conducted a temporary deployment of five broadband seismic stations encircling the Stanovoi volcanic field. We also observed clear young fault scarps interpreted as southward-plunging low angle thrusts. Our seismicity results indicate that the volcanic field proper is aseismic while surrounding areas are very active. Combined analysis of seismicity and observed scarps and geomorphic features indicate that the Stanovoi region may be underlain by large, active thrust faults, which are generally consistent with north-northeastward movement of the Amur block into the Eurasian plate.

  12. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  13. Navajo-ABLE: Replication Model Navajo Assistive Technology Loan Program. Final Program Evaluation.

    ERIC Educational Resources Information Center

    Norton, Katie Jebb

    This final report discusses the activities and outcomes of the Navajo Assistive Bank of Loanable Equipment (Navajo-ABLE), a federally funded program designed to provide assistive technology (AT) devices, services, technical information, funding information, and training for Navajo children and youth with disabilities. The program was operated and…

  14. A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah

    NASA Astrophysics Data System (ADS)

    Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.

    2016-12-01

    A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.

  15. A Larger Volcanic Field About Yucca Mountain: New Geochemical Data From the Death Valley Volcanic Field, Inyo County California

    NASA Astrophysics Data System (ADS)

    Tibbetts, A. K.; Smith, E. I.

    2008-12-01

    Volcanism is an important issue for the characterization of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Due to recent legal decisions that now require DOE to evaluate hazards over both 10,000 year and 1,000,000 year compliance periods, the definition of the area of interest for calculation of disruption probability and a knowledge of the volcanic process have become more important. New geochemical data for the Death Valley volcanic field in the Greenwater Range in Inyo County, California indicate that the Death Valley field and the volcanoes about Yucca Mountain are parts of the same volcanic field. The Death Valley field is just 35 km south of Yucca Mountain and only 20 km south of buried volcanoes in the Amargosa Valley. Trace elements for both areas show a negative Nb anomaly, but differ in that Death Valley basalt has lower La (70 vs. 130 ppm). Isotopic ratios are remarkably similar and strongly support a link between the Death Valley and Yucca Mountain areas. The isotope ranges for Death Valley are -11.88 to -3.26, 0.706322 to 0.707600, 17.725 to 18.509, 15.512 to 15.587, and 38.237 to 38.854 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Crater Flat isotope ranges are -13.17 to -5.48, 0.706221 to 0.707851, 18.066 to 18.706, 15.488 to 15.564, and 38.143 to 38.709 for epsilon Nd, 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb respectively. Depth of melting calculated using the Fe-Na geobarometer indicates that basalt magma was generated at depths of 135-138 km beneath Death Valley and 115-133 km for Crater Flat indicating asthenospheric melting for both areas. Combining the Death Valley and Yucca Mountain areas into a single volcanic field increases the area of interest for probability calculations by over 1/3 and increases the number of volcanic events by 23. The increased size of the volcanic field and number of volcanoes may result in an increase in the probability of disruption of the

  16. Spatio-temporal evolution of the Tuxtla Volcanic Field

    NASA Astrophysics Data System (ADS)

    Kobs Nawotniak, S. E.; Espindola, J.; Godinez, L.

    2010-12-01

    Mapping of the Tuxtla Volcanic Field (TVF), located in Veracruz, Mexico, through the use of digital elevation models, aerial photography, and field confirmation has found 353 distinct cones, 4 large composite volcanoes, and 42 maars. Eruptive activity in the TVF began in the late Miocene, underwent a quiescent period approximately 2.6-0.8 Ma, and continues into historic times with the most recent eruption occurring at San Martín Tuxtla volcano in 1793. The covariance of the minimum cone separation in the TVF indicates that, despite the influence of clear vent alignments following regional faulting trends, the field as a whole is anticlustered. Dividing the cones by morphometric age shows that while the older cones have an anti-clustered distribution, the younger cones (<50 Ka) are clustered. The younger cones display a stronger spatial association with the Anegada fault than their predecessors, are more likely to form in aligned groups of similarly-sized cones, and are clustered in two areas: the area immediately surrounding San Martín Tuxtla and an area approximately 3 km east of Laguna Catemaco. These areas of concentrated volcanism roughly correspond to the locations of two gravity anomalies previously identified in the area. While the average height/width ratio is equal between the two clusters, the cones in the eastern group are significantly smaller than their counterparts in the western group. The maars of the TVF are mostly located within the younger volcanic series, west of Laguna Catemaco, and have an anticlustered distribution; many of the maars are evenly spaced along curved lines, where they are weakly grouped according to crater diameter. Results indicate volcanism TVF has undergone continued spatial restriction over time, concentrating in the western half of the TVF with the onset of the eruption of the younger volcanic series 0.8 Ma and further contracting along the principle fault system within the last 50 Ka.

  17. NAVAJO ELECTRIFICATION DEMONSTRATION PROJECT

    SciTech Connect

    Terry W. Battiest

    2008-06-11

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year project which addresses the electricity needs of the unserved and underserved Navajo Nation, the largest American Indian tribe in the United States. The program serves to cumulatively provide off-grid electricty for families living away from the electricty infrastructure, line extensions for unserved families living nearby (less than 1/2 mile away from) the electricity, and, under the current project called NEDP-4, the construction of a substation to increase the capacity and improve the quality of service into the central core region of the Navajo Nation.

  18. Navajo childbirth in transition.

    PubMed

    Waxman, A G

    1990-03-01

    For the Navajo Indians, the transition from home-centered childbearing practices based on religious ritual to biomedically directed childbirth in hospitals was completed over a relatively short time in the middle decades of this century. For Anglo-American society, the acceptance of medically oriented childbirth occurred during an equally short period earlier in the century. The transition was driven for both by many common factors. For Navajo women it was additionally influenced by the social and economic changes that affected the Reservation following the beginning of the Second World War. This paper examines the changes in Navajo childbearing practices and, for comparison, those of the dominant American society. It reviews factors that permitted the acceptance of biomedical childbirth by Navajo women and explores the health implications of the transition.

  19. Area Health Education Center of the Navajo Health Authority to Establish the Navajo Center for Health Professions Education.

    ERIC Educational Resources Information Center

    Navajo Health Authority, Window Rock, AZ.

    The Area Health Education Center (AHEC) is designed to provide educational opportunities in health and allied fields and to improve health care for the Navajo people and other Indians in the region that includes and immediately surrounds the Navajo Indian Reservation. As prime contractor, the University of New Meixco School of Medicine will…

  20. Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.

    2002-01-01

    The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and

  1. Diabetes in Navajo Youth

    PubMed Central

    Dabelea, Dana; DeGroat, Joquetta; Sorrelman, Carmelita; Glass, Martia; Percy, Christopher A.; Avery, Charlene; Hu, Diana; D'Agostino, Ralph B.; Beyer, Jennifer; Imperatore, Giuseppina; Testaverde, Lisa; Klingensmith, Georgeanna; Hamman, Richard F.

    2009-01-01

    OBJECTIVE—To estimate the prevalence and incidence of diabetes, clinical characteristics, and risk factors for chronic complications among Navajo youth, using data collected by the SEARCH for Diabetes in Youth Study (SEARCH study). RESEARCH DESIGN AND METHODS—The SEARCH study identified all prevalent cases of diabetes in 2001 and all incident cases in 2002–2005 among Navajo youth. We estimated denominators with the user population for eligible health care facilities. Youth with diabetes also attended a research visit that included questionnaires, physical examination, blood and urine collection, and extended medical record abstraction. RESULTS—Diabetes is infrequent among Navajo youth aged <10 years. However, both prevalence and incidence of diabetes are high in older youth. Among adolescents aged 15–19 years, 1 in 359 Navajo youth had diabetes in 2001 and 1 in 2,542 developed diabetes annually. The vast majority of diabetes among Navajo youth with diabetes is type 2, although type 1 diabetes is also present, especially among younger children. Navajo youth with either diabetes type were likely to have poor glycemic control, high prevalence of unhealthy behaviors, and evidence of severely depressed mood. Youth with type 2 diabetes had more metabolic factors associated with obesity and insulin resistance (abdominal fat deposition, dyslipidemia, and higher albumin-to-creatinine ratio) than youth with type 1 diabetes. CONCLUSIONS—Our data provide evidence that diabetes is an important health problem for Navajo youth. Targeted efforts aimed at primary prevention of diabetes in Navajo youth and efforts to prevent or delay the development of chronic complications among those with diabetes are warranted. PMID:19246579

  2. Petrogenesis of the Mount Taylor volcanic field and comparison to the Jemez Mountains volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Fellah, K.; Wolff, J. A.; Goff, F. E.

    2010-12-01

    The Mt. Taylor volcanic field (MTVF) is an eroded composite volcano largely composed of trachyandesite to tracydacite lavas erupted between 3.6 and 1.5 Ma. Recent detailed mapping augmented with new dates and major and trace element analyses provides new insights on the evolution of the MTVF. Mount Taylor shares petrologic similarities with the Jemez Mountains volcanic field (JMVF), located ~100 km to the northeast on thinner lithosphere associated with the Rio Grande rift. Both volcanic fields lie on the Jemez Lineament, an alignment of Neogene volcanic fields that sits atop a Precambrian suture zone and coincides with the southeastern margin of the Colorado Plateau. Comparison of the two volcanic fields will provide an understanding of the lineament-influenced vs. extension-influenced factors in petrogenesis. Rocks from the MTVF range from 42 to 76% SiO2, with the basalts having MgO contents between 4 and 15 wt%. Lavas at the MTVF are more alkaline than those of the JMVF. The most primitive lavas are basanites that are depleted in K with respect to other incompatible trace elements, and are thought to result from low-degree partial melts of lithospheric mantle with residual amphibole, similar to primitive JMVF nephelinites and basanites. Major, trace element and isotopic data are consistent with initial deep-crustal storage and contamination of primitive magmas to produce basalts with 4% - 8% MgO, that subsequently evolve largely by fractional crystallization to produce the rest of the MTVF suite. Mildly increasing K/Nb with SiO2 indicates that minor assimilation of crust was also involved during the second stage. These findings are consistent with the conclusions of Perry et al. (1990) that the MTVF suite is the product of polybric assimilation-fractional crystallization processes. Volcanic fields along the Jemez lineament show a tendency to higher alkalinity and lower silica saturation away from the intersection of the lineament with the Rio Grande rift

  3. Tectonic implications of space-time patterns of Cenozoic volcanism in the Palo Verde Mountain volcanic field, southeastern California

    SciTech Connect

    Murray, K.S.

    1981-01-01

    Variations in Cenozoic volcanism in the western United States are believed to correlate closely with changes in tectonic setting. A transition in volcanic association from calc-alkaline to fundamentally basaltic volcanism and subsequent crustal extension, appears to have coincided temporally with the initial collision of the East Pacific Rise with the continental margin trench off western North America, between 28 and 25 Ma. The volcanic stratigraphy of the Palo Verde Mountain volcanic field is broadly similar to other volcanic centers in southeastern California and can be divided into tripartite regional stratigraphy. A basal sequence of andesitic to rhyolitic lava flows, plugs, domes, and extensive pyroclastic deposits rests unconformably on pre-Cenozoic basement rocks. The basal sequence is intruded by cogenetic Cenozoic plutonic rocks and overlain by basaltic to rhyolitic lava flows, dikes, and a second widespread assemblage of pyroclastic deposits, cumulatively referred to as the silicic sequence. The youngest volcanic rocks of the field include olivine basalt flows and breccia which occur at scattered localities in the Palo Verde Mountains. The age, stratigraphy, and chemistry of the intermediate and basaltic composition volcanic rocks broadly supports previously cited volcanic-tectonic models, if modified to incorporate modern plate reconstruction theory. This modification results in a southeast migration of the transition to basaltic volcanism to southeastern California occurring significantly later in time than the previously cited ages of transition. Moreover, this southeast migration of the volcanic transition is coincident with the inception of Basin and Range faulting and the initiation of movement on the San Andreas fault south of the Transverse Ranges, corresponding to the southward migration of the Pacific-Cocos Ridge.

  4. Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Kawabata, Emily; Bebbington, Mark S.; Cronin, Shane J.; Wang, Ting

    2016-09-01

    In monogenetic volcanic fields, where each eruption forms a new volcano, focusing and migration of activity over time is a very real possibility. In order for hazard estimates to reflect future, rather than past, behavior, it is vital to assemble as much reliable age data as possible on past eruptions. Multiple swamp/lake records have been extracted from the Auckland Volcanic Field, underlying the 1.4 million-population city of Auckland. We examine here the problem of matching these dated deposits to the volcanoes that produced them. The simplest issue is separation in time, which is handled by simulating prior volcano age sequences from direct dates where known, thinned via ordering constraints between the volcanoes. The subproblem of varying deposition thicknesses (which may be zero) at five locations of known distance and azimuth is quantified using a statistical attenuation model for the volcanic ash thickness. These elements are combined with other constraints, from widespread fingerprinted ash layers that separate eruptions and time-censoring of the records, into a likelihood that was optimized via linear programming. A second linear program was used to optimize over the Monte-Carlo simulated set of prior age profiles to determine the best overall match and consequent volcano age assignments. Considering all 20 matches, and the multiple factors of age, direction, and size/distance simultaneously, results in some non-intuitive assignments which would not be produced by single factor analyses. Compared with earlier work, the results provide better age control on a number of smaller centers such as Little Rangitoto, Otuataua, Taylors Hill, Wiri Mountain, Green Hill, Otara Hill, Hampton Park and Mt Cambria. Spatio-temporal hazard estimates are updated on the basis of the new ordering, which suggest that the scale of the 'flare-up' around 30 ka, while still highly significant, was less than previously thought.

  5. Navajo Spelling Lists. Navajo Reading Study Progress Report No. 11.

    ERIC Educational Resources Information Center

    Holm, Wayne

    The Navajo spelling lists are intended for teachers or materials writers who require sets of Navajo words with certain characteristics. The lists are derived from the corpus collected as the basis for a computer-assisted study of the vocabulary of 6-year-old Navajo children. Words in the corpus, whether used by adult interviewers or by children,…

  6. Contemporary Navajo Affairs: Navajo History Volume III, Part B.

    ERIC Educational Resources Information Center

    Eck, Norman K.

    Written specifically for Navajo junior high through college students, but also serving those interested in modern reservation developments and processs, the third volume of a curricular series on Navajo history provides a synthesis of data and pictorial records on current events in the areas of Navajo government, economic development, and health.…

  7. Origin of steep-pointed and flat-topped volcanic cones in Southwest volcanic field

    NASA Astrophysics Data System (ADS)

    Fukui, U.; Hirota, F.; Yokose, H.

    2002-12-01

    KR01-12 cruise of Japan Marine Science and Technology Center using ROV KAIKO and its mother ship R/V KAIREI were carried out around Hawaii islands in the early fall of 2001. During this cruise, two dives of ROV KAIKO were made on southwest Oahu volcanic field (K203 and K206).The new Seabeam bathymetry revealed that there are remarkable topographic features: flat-topped volcanic cone, ca.2.5 in diameter and 200m in height; steep pointed cone, ellipsoidal in plain: major axis 2km, minor axis 0.5km; 200-400 m in height. This volcanic topographies are similar to those described in elsewhere e.g., Clague et al., 2001. Flat-topped cones distributed in this area are different from other area in their occurrence. They are accompanied with steep-pointed cone. In order to study the geological and petrological relationship between flat-topped cone and steep-pointed cone, both K203 and K206 have been analyzed by video image, thin sections and bulk rock chemistry. The rocks recovered from K206 and K203 are trachybasalt and basanite respectibly. There is no critical differences between FTVC and SPVCin their bulk chemistry. For example rocks from FTCV are almost identical to the SPCV in SiO2 contents in the same site. Total AK concentration of rocks from FTCV is lower than those of SPVC in K203, but FTVC is higher than SPCV in K206. This result implies that topographical characters are not correlated with bulk chemistry. Both in K206 or K203, rocks collected from SPVC have higher vesicularity, ranging from 20 to 40%, and higher crystallinity in groundmass than those from FTCV. It is suggest that differences in topographical characteristics between FTVC and SPVC are controlled by physical property of the groundmass. That is, the viscosity of magma lead to rise due to exsolution of gas phase from melt.

  8. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  9. Navajos Sign an Apprenticeship Pact

    ERIC Educational Resources Information Center

    Manning, Diane B.

    1977-01-01

    Discusses the Navajo Tribe's joining with the AFL-CIO building and construction trades unions to develop an apprentice job training program geared to the special employment problems of Navajos and to the projected labor needs for construction projects on or near the reservation. Focus is on the Navajo Construction Industry Manpower Program…

  10. Geology and geochemistry of volcanic centers within the eastern half of the Sonoma volcanic field, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Rytuba, James J.; Langenheim, V.E.; Fleck, Robert J.

    2011-01-01

    The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.

  11. Audiomagnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2011-01-01

    The U.S. Geological Survey is conducting a series of multidisciplinary studies of the San Luis Basin as part of the Geologic framework of the Rio Grande Basins project. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, audiomagnetotelluric surveys, and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west audiomagnetotelluric sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field. No interpretation of the data is included.

  12. Structural control of monogenetic volcanism in the Garrotxa volcanic field (Northeastern Spain) from gravity and self-potential measurements

    NASA Astrophysics Data System (ADS)

    Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.

    2014-01-01

    We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship

  13. 1992-93 Results of geomorphological and field studies Volcanic Studies Program, Yucca Mountain Project

    SciTech Connect

    Wells, S.G.

    1993-10-01

    Field mapping and stratigraphic studies were completed of the Black Tank volcanic center, which represents the southwestern most eruptive center in the Cima volcanic field of California. The results of this mapping are presented. Contacts between volcanic units and geomorphic features were field checked, incorporating data from eight field trenches as well as several exposures along Black Tank Wash. Within each of the eight trenches, logs were measured and stratigraphic sections were described. These data indicate that three, temporally separate volcanic eruptions occurred at the Black Tank center. The field evidence for significant time breaks between each stratigraphic unit is the presence of soil and pavement-bounded unconformities.

  14. Field guide to sedimentary structures in the Navajo and Entrada sandstones in southern Utah and northern Arizona: Chapter in Field-trip guidebook, 100th annual meeting, The Geological Society of America, Phoenix, Arizona, October 26-29, 1987

    USGS Publications Warehouse

    Rubin, David M.; Hunter, Ralph E.

    1987-01-01

    This field-trip guide describes the common sedimentary structures that occur in eolian sands. The outcrops that are described occur in the Navajo and Entiaia Sandstones between the areas of Page, Arizona and St. George, Utah (figure I), but the sedimentary structures of these two sandstones are typical of most eolian deposits. The main part of the guide discusses the geologic setting and the origin of the various structures, and the road log discusses which structures are best displayed at selected outcrops.

  15. Spatial and Temporal Evolution of the Rockeskyllerkopf Volcanic Centre, West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Shaw, C.; Woodland, A. B.; Hopp, J.; Trenholm, N.

    2009-04-01

    The Rockeskyllerkopf volcanic center in the Quaternary West Eifel volcanic field, Germany was active between 474 ± 39 ka and 360 ± 40 ka during which time phreatomagmatic to magmatic eruptions occurred sequentially at three distinct centers: SE Lammersdorf (SEL), Rockeskyllerkopf (RKK) and Franzosenbuche (FB). Eruptions at the SEL center were predominantly phreatomagmatic which resulted in deposition of lithic-rich pyroclastic flow deposits with minor juvenile-lapilli dominated, magmatic eruptions in the middle of the sequence. These deposits have their source in an elongate crater to the north east of the present outcrop. The N-S trending RKK center is dominated by lithic-poor, magmatic, coarse grained partially welded deposits with a distinct horizon of fine-grained airfall deposits. The RKK deposits fill a small valley and likely form the main mass of the current topographic high at Rockeskyllerkopf. The deposits of the FB center locally overlie a palaeosol and plant fossil rich horizon that indicate a significant hiatus in eruptive activity prior to this last eruptive phase. The FB deposits are magmatic and comprise an elongate scoria cone with a deep crater that has been filled by airfall deposits and later lava flows. The geochemical signatures of the lavas at each center are distinct, indicating that the mantle source region is heterogeneous on the scale of 100's of m to ~ 1 km. All the lavas have incompatible trace element characteristics indicative of derivation from depths corresponding to the garnet - spinel transition zone in the presence of hydrous phases: phlogopite in the source of the SEL magma, amphibole in the FB source and both amphibole and phlogopite in the RKK source region.

  16. Large Volume 18O-depleted Rhyolitic Volcanism: the Bruneau-Jarbidge Volcanic Field, Idaho

    NASA Astrophysics Data System (ADS)

    Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M. M.; Larson, P. B.

    2003-12-01

    The Bruneau-Jarbidge (BJ) volcanic field is located in southern Idaho at the intersection of the western and eastern arms of the Snake River Plain. The BJ region is an oval structural basin of about 6000 km2, and is likely a system of nested caldera and collapse structures similar to, though larger than, the Yellowstone Volcanic Plateau. BJ rocks are high-temperature rhyolite tuffs, high-temperature rhyolite lavas, and volumetrically minor basalts. Exposed volumes of individual rhyolite units range up to greater than 500 km3. We have analyzed feldspar and, where present, quartz from 30 rhyolite units emplaced throughout the history of the BJ center. All, including the Cougar Point Tuff, are 18O depleted (δ 18OFSP = -1.3 to 3.7‰ ), while petrographically, temporally, and chemically similar lavas erupted along the nearby Owyhee Front have "normal" rhyolite magmatic δ 18O values of 7 - 9‰ . There is no evidence for significant modification of δ 18O values by post-eruptive alteration. No correlation exists between δ 18O and age, magmatic temperature, major element composition or trace element abundances among depleted BJ rhyolites. The BJ and WSRP rhyolites possess the geochemical characteristics (depressed Al, Ca, Eu, and Sr contents, high Ga/Al and K/Na) expected of liquids derived from shallow melting of calc-alkaline granitoids with residual plagioclase and orthopyroxene (Patino-Douce, Geology v.25 p.743-746, 1997). The classic Yellowstone low δ 18O rhyolites are post-caldera collapse lavas, but at BJ, both lavas and caldera-forming ignimbrites are strongly 18O-depleted. The total volume of low δ 18O rhyolite may be as high as 10,000 km3, requiring massive involvement of meteoric-hydrothermally altered crust in rhyolite petrogenesis. Regional hydrothermal modification of the crust under the thermal influence of the Yellowstone hotspot apparently preceded voluminous rhyolite generation at Bruneau-Jarbidge.

  17. Walking in Navajo Footprints.

    ERIC Educational Resources Information Center

    Butler, Katie B.

    This module presents a guide for the study of the Navajo Indians' life and customs as they existed about thirty years ago. The length of time necessary to complete the activities, which are designed for use in kindergarten through third grades, may vary from one to two weeks. The module includes language, science, mathematics, art, music, dramatic…

  18. Seismic signals at the Nirano Mud Volcanic Field, Italy

    NASA Astrophysics Data System (ADS)

    Antunes, Verónica; Lupi, Matteo; Carrier, Aurore; Planès, Thomas; Obermann, Anne; Mazzini, Adriano; Ricci, Tullio; Sciarra, Alessandra; Moretti, Milena

    2017-04-01

    Mud volcanoes are geological phenomena that only recently are beginning to be investigated with passive seismic methods. To shed light on the seismic signals associated with mud volcanic activity we deployed a temporary network composed of 7 seismic stations around Nirano, Italy. We identified the different types of signals generated by this active system. During the three months survey period, the stations repeatedly recorded drumbeat signals beneath the structure. We have identified two types of drumbeat signals: one with durations of about 50 seconds and frequency range of 10-45 Hz; the second has a duration of about 4 seconds and frequency range of 5-45 Hz. These drumbeat signals were captured depending on the position of the seismic station and the distance from the mud vents. We also identified a third signal, present in almost every station in the network, with a duration of about 10 seconds and frequency range of 5-45 Hz. The amplitude of these signals varies across the stations suggesting that the most active part of the system is located in the north eastern-most area of the mud volcanic field where new mud vents recently appeared.

  19. Compositional and Textural Analysis of Maar-Diatreme Volcanic Deposits at Hopi Buttes Volcanic Field (AZ) Using GigaPan Panoramic and Thermal Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Lee, R.; Graettinger, A. H.; Weinell, M.; Hughes, C. G.

    2016-12-01

    Basaltic maar-diatreme volcanoes are produced when rising magma interacts with groundwater and produces a maar crater at the ground surface. This crater is underlain by a diatreme, a downward-tapering conical structure filled with a mixture of fragments of intruded magma, fractured host rock, and clasts recycled through repeated discrete subsurface explosions. The debris of the diatreme records the mixing processes caused by subsurface explosions and is the source for ejected material that forms maar tephra rings. Determining the variable depths and lateral locations of these explosions and how energy is dissipated in the subsurface is critical to understanding how maar-diatreme eruptions progress. The Hopi Buttes Volcanic Field (HBVF) in the Navajo Nation, Arizona, USA, contains several diatremes and incised tephra rings with heterolithic clasts 10 mm - 10 m in size, and are well-exposed near-vertical to vertical outcrops. Our ability to measure the length scales and distribution of textures produced by subsurface explosions in these diatremes is limited by the physical accessibility of the exposures, due to both the verticality of the outcrops and the cultural sensitivity of the site. Quantifying the number and locations of explosions is dependent on our ability to investigate the full diatreme outcrop, and not just what can be accessed through traditional field observations. We present a novel field and computer-based technique for both quantitatively and qualitatively characterizing the composition and texture of maar-diatreme deposits in vertical outcrops. This technique uses a combination of field-collected multispectral thermal infrared (TIR) image data and visible wavelength GigaPan imagery to characterize the compositional and textural variations over a whole outcrop. To increase the spatial and spectral resolution of the TIR data, a super-resolution technique will be applied. The technique provides a simple and efficient method to augment the study of the

  20. Space Radar Image of Pinacate Volcanic Field, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This spaceborne radar image shows the Pinacate Volcanic Field in the state of Sonora, Mexico, about 150 kilometers (93 miles) southeast of Yuma, Arizona. The United States/Mexico border runs across the upper right corner of the image. More than 300 volcanic vents occur in the Pinacate field, including cinder cones that experienced small eruptions as recently as 1934. The larger circular craters seen in the image are a type of volcano known as a 'maar', which erupts violently when rising magma encounters groundwater, producing highly pressurized steam that powers explosive eruptions. The highest elevations in the volcanic field, about 1200 meters (4000 feet), occur in the 'shield volcano' structure shown in bright white, occupying most of the left half of the image. Numerous cinder cones dot the flanks of the shield. The yellow patches to the right of center are newer, rough-textured lava flows that strongly reflect the long wavelength radar signals. Along the left edge of the image are sand dunes of the Gran Desierto. The dark areas are smooth sand and the brighter brown and purple areas have vegetation on the surface. Radar data provide a unique means to study the different types of lava flows and wind-blown sands. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on April 18, 1994. The image is 57 kilometers by 48 kilometers (35 miles by 30 miles) and is centered at 31.7 degrees north latitude, 113.4 degrees West longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted, vertically received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  1. Morphometric characterization of monogenetic volcanic cones of the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico

    NASA Astrophysics Data System (ADS)

    Zarazua-Carbajal, Maria Cristina; De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    Morphometric characterization of volcanic edifices is one of the main approaches providing information about a volcano eruptive history, whether it has one or more eruptive vents or if it had any sector collapses. It also provides essential information about the physical processes that modify their shapes during periods of quietness, and quite significantly, about the volcanoes' ages. In the case of monogenetic activity, a volcanic field can be characterized by the size and slope distributions, and other cone's morphometric parameter distributions that may provide valuable information about the temporal evolution of the volcanic field. The increasingly available high-resolution digital elevation models and the continuously developing computer tools have allowed a faster development and more detailed morphometric characterization techniques. We present here a methodology to readily obtain diverse volcanic cone shape parameters from the contour curves such as mean slope, slope distribution, dimensions of the cone and crater, crater location within the cone, orientation of the cone's principal axis, eccentricity, and other morphological features using an analysis algorithm that we developed, programmed in Python and ArcPy. Preliminary results from the implementation of this methodology to the Chichinautzin and Michoacán-Guanajuato monogenetic volcanic fields in Mexico have permitted a preliminary estimation of the age distribution of some of the cones with an acceptable correlation with the available radiometric ages. A large part of the Chichinautzin region DEM was obtained from a LIDAR survey by the Mexican National Institute of Statistics and Geography (INEGI).

  2. Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study

    NASA Astrophysics Data System (ADS)

    Herrero-Hernández, Antonio; López-Moro, Francisco Javier; Gallardo-Millán, José Luis; Martín-Serrano, Ángel; Gómez-Fernández, Fernando

    2015-01-01

    This work focuses on the influence of Cenozoic volcanism of the Campo de Calatrava volcanic field on the sedimentation of two small continental basins in Spain (Argamasilla and Calzada-Moral basins). The volcanism in this area was mainly monogenetic, according to the small-volume volcanic edifices of scoria cones that were generated and the occurrence of tuff rings and maars. A sedimentological analysis of the volcaniclastic deposits led to the identification of facies close to the vents, low-density (dilute) pyroclastic surges, secondary volcanic deposits and typical maar deposits. Whole-rock K/Ar dating, together with palaeomagnetic constraints, yielded an age of 3.11-3.22 Ma for the onset of maar formation, the deposition finished in the Late Gauss-Early Matuyana. Using both techniques and previous paleontological data allowed it to be inferred that the maar formation and the re-sedimentation stage that occurred in Argamasilla and Calzada-Moral basins were roughly coeval. The occurrence of syn-eruption volcaniclastic deposits with small thicknesses that were separated by longer inter-eruption periods, where fluvial and lacustrine sedimentation was prevalent, together with the presence of small-volume volcanic edifices indicated that there were short periods of volcanic activity in this area. The volcanic activity was strongly controlled by previous basement faults that favoured magma feeding, and the faults also controlled the location of volcanoes themselves. The occurrence of the volcanoes in the continental basins led to the creation of shallow lakes that were related to the maar formation and the modification of sedimentological intra-basinal features, specifically, valley slope and sediment load.

  3. Geochemical characterization of the San Francisco Volcanic Field source

    NASA Astrophysics Data System (ADS)

    Peterson, B. T.; DePaolo, D. J.

    2012-12-01

    The San Francisco Volcanic Field (SFVF) is an active clustering of basalt flows and evolved silicic complexes in Arizona, USA, within the transition zone of crustal thickening from the Basin and Range Province (BRP) to the Colorado Plateau (CP). Although the field is not associated with typical volcanic geodynamic/tectonic regimes (e.g. subduction zones or mantle plumes), peak magma production was sufficient to produce a central stratovolcano. A subcontinental lithospheric mantle source has been inferred for transition zone volcanics, possibly related to sub-Moho or sub-lithosphere topography through processes like edge-driven convection. The central stratovolcano and coeval surrounding lower-volume, monogenetic basalt eruptions suggest there could be systematic spatial variability in chemistry and magma production rates within the SFVF source; on a much larger scale, variability has been observed in dynamic plume-driven volcanic provinces, such as Iceland and the Hawaiian Islands. In order to constrain the source chemistry and geometry, and investigate magmatic evolution of the SFVF, we have measured major and trace element abundances, and Nd, Sr, and Pb isotope ratios in Brunhes-aged samples that cover the eastern SFVF (including the stratovolcano and surrounding basalts). Stratovolcano mafic samples span a compositionally equivalent or narrower isotopic range than that observed in the surrounding monogenetic basalts; stratovolcano samples have ɛNd from -6 to -0.5, while surrounding samples range from -11 to +3. Sr isotopes in stratovolcano and more distal samples are comparatively unradiogenic, and range from 0.7028 to 0.7042. Pb isotopes in all samples are enriched beyond depleted mantle and above the NHRL. Some non-proximal samples have nearly identical isotopic values; for instance, several samples (in some cases samples from the stratovolcano and nearby cones) may cluster together in Sr-Nd space. When we filter data to exclude samples with <5 wt% MgO, the

  4. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.

    2015-03-01

    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1 km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF ( n = 11; ~2.21 to ~1.43 Ma) and BMVF ( n = 7; ~3.91 to ~0.91 Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  5. Sedimentation architecture of the volcanically-dammed Alf valley in the West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Eichhorn, Luise; Lange, Thomas; Engelhardt, Jörn; Polom, Ulrich; Pirrung, Michael; Büchel, Georg

    2015-04-01

    In the southeastern part of the Quaternary West Eifel Volcanic Field, the Alf valley with its morphologically wide (~ 500 m) and flat valley bottom is visibly outstanding. This flat valley bottom was formed during the Marine Isotope Stage 2 due to fluviolacustrine sediments which deposited upstream of a natural volcanic dam. The dam consisted of lava and scoria breccia from the Wartgesberg Volcano complex (Cipa 1958, Hemfler et al. 1991) that erupted ~ 31 BP (40Ar/ 39Ar dating on glass shards, Mertz, pers. communication 2014). Due to this impoundment, the Alf creek turned into a dendritic lake, trapping the catchment sediments. The overall aim is to create the sedimentation architecture of the Alf valley. In comparison to maar archives like Holzmaar or Meerfelder Maar in the vicinity, the fluviolacustrine sediments of the Alf valley show clay-silt lamination despite the water percolation. This archive covers the transition from the Last Glacial Maximum to Early Holocene (Pirrung et al. 2007). Focus of this study is the creation of a 3D model by applying the program ESRI ArcGIS 10.2 to reconstruct the pre-volcanic Alf valley. Moreover, the sedimentation architecture is reconstructed and the sediment fill quantified. Therefore, the digital elevation model with 5 m resolution from the State Survey and Geobasis Information of Rhineland-Palatinate, polreduced magnetic data measured on top of the Strohn lava stream, shear seismic data and core stratigraphies were utilized. Summarizing previous results, Lake Alf had a catchment area of ~ 55 km² (Meerfelder Maar: 1.27 km²) and a surface area of 8.2 km² (Meerfelder Maar: 0.24 km²) considering a maximum lake water level of 410 m a.s.l.. In the deepest parts (~ 50 m) of Lake Alf, lake sediments are laminated, up to 21 m thick and show a very high sedimentation rate ~ 3 mm a-1 (Dehner Maar ~ 1.5 mm a-1, (Sirocko et al. 2013)). The sediments become coarser upstream und stratigraphically above the fine-grained lake sediments

  6. Geothermal Fields on the Volcanic Axis of Mexico

    SciTech Connect

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  7. Wave field decomposition of volcanic tremor at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lanza, F.; Waite, G. P.; Kenyon, L. M.

    2013-12-01

    A dense, small-aperture array of 12 short-period seismometers was deployed on the west flank of Pacaya volcano (Guatemala) and operated for 14 days in January 2011. The data were used to investigate the properties of the volcanic tremor wave field at the volcano. Volcanic tremor has been proven to be a powerful tool for eruption forecasting, therefore, identifying its source locations may shed new light on the dynamics of the volcano system. A preliminary spectral analysis highlights that most of the seismic energy is associated with six narrow spectral peaks between 1 and 6 Hz. After taking topography into account, we performed frequency-slowness analyses using the MUSIC algorithm and the semblance technique with the aim to define and locate the different components contributing to the wave field. Results show a complex wave field, with possibly multiple sources. We identify peaks at frequencies < 2 Hz as being related to anthropogenic sources coming from the N- NW direction where the geothermal plant and San Vincente Pacaya village are located. Azimuth measurements indicate that the 3 Hz signal propagates from the SE direction and it has been attributed to the new vent on the southeast flank of Pacaya Volcano. However, the presence of secondary peaks with azimuths of ˜ 200°, 150° and 70° seems to suggest either nonvolcanic sources or perhaps the presence of structural heterogeneities that produce strong scattered waves. At higher frequencies, results show effects of array aliasing, and therefore have not been considered in this study. The dispersive properties of the wave field have been investigated using the Spatial Auto-Correlation Method (SPAC). The dispersion characteristics of Rayleigh waves have been then inverted to find a shallow velocity model beneath the array, which shows a range of velocities from about 0.3 km/s to 2 km/s, in agreement with slowness values of the frequency bands considered. In detail, apparent velocities of 1-2 km/s dominate at

  8. Multiple Brunhes Chron Excursions Recorded in the Eifel Volcanic Field

    NASA Astrophysics Data System (ADS)

    Singer, B. S.; Guillou, H.; Zhang, X.; Schnepp, E.; Hoffman, K. A.

    2006-12-01

    Volcanic records of excursional geomagnetic field behavior, in particular paleointensity estimates, are fragmentary for the Pleistocene. The West Eifel volcanic field is unique in that 12 of 66 measured lava flow sites record Virtual Geomagnetic Poles (VGPs) clustered between 34 to 45° N and 30 to 50° E (over Iraq). Paleointensities of 37 lavas reveal that 9 transitionally magnetized and four normally magnetized lavas are <30 μT and have VADMs < 3.8 x 10^{22} Am2 [Schnepp and Hradetzky, 1994; JGR]. Until now, the ages of these lava flows have been known only from imprecise 40Ar/39Ar data that implied acquisition of magnetic remanence between about 460 and 660 ka. Thus, they have been interpreted to record a single, but poorly defined, excursion. To incorporate these paleofield data into the global high-resolution Geomagnetic Instability Time Scale (GITS), we have determined precise ages of groundmass from 11 transitionally magnetized lava flows using the 40Ar/39Ar incremental heating method. New unspiked K-Ar age determinations from two samples are indistinguishable from their 40Ar/39Ar ages. The age determinations fall into five groups at 722 ± 38, 626 ± 24, 578 ± 8, 555 ± 4, and 528 ±16 ka (2σ analytical uncertainties, relative to 1.194 Ma Alder Creek sanidine). The group of 4 flows with an age of 578 ±8 ka correspond in age with lava flow sequences on Tahiti and La Palma that record the Big Lost excursion at 579 ±6 ka. The six other lavas erupted from 626 ka onward correlate with a group of second-order paleointensity lows in SINT-800 centered on the broad low during which the Big Lost excursion occurred. These lava flows thus record snapshots of the behavior of the total vector field experienced at this site during one of the most complex periods of geodynamo instability of the Brunhes Chron. Our findings suggest that four temporally distinctive excursions are recorded between 626 and 528 ka and that each weakening of the geodynamo during this period

  9. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    SciTech Connect

    Wobus, R.A.; Mochel, D.W. ); Mertzman, S.A.; Eide, E.A.; Rothwarf, M.T. ); Loeffler, B.M.; Johnson, D.A. ); Keating, G.N.; Sultz, K. ); Benjamin, A.E. ); Venzke, E.A. ); Filson, T. )

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km{sup 2} mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which present the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rack major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78% SiO{sub 2}, indicate that the rocks of the Guffey center are among the most highly enriched in K{sub 2}O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  10. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    NASA Astrophysics Data System (ADS)

    Wobus, Reinhard A.; Mochel, David W.; Mertzman, Stanley A.; Eide, Elizabeth A.; Rothwarf, Miriam T.; Loeffler, Bruce M.; Johnson, David A.; Keating, Gordon N.; Sultze, Kimberly; Benjamin, Anne E.; Venzke, Edward A.; Filson, Tammy

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km2 mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which represent the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs and tuff breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rock major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78%SiO2, indicate that the rocks of the Guffey center are among the most highly enriched in K2O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  11. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    NASA Astrophysics Data System (ADS)

    Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F. A.

    2008-09-01

    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.

  12. The State of Navajo Education.

    ERIC Educational Resources Information Center

    Navajo Tribe, Window Rock, AZ.

    Ten working papers covered the following topics: (1) Centralized vs. Local Schools, (2) Self-Determination and Contracting, (3) Implications of the Tribal Plans in Education, (4) Navajo Professionals (Indian Preference), (5) Public Schools and Navajo School System, (6) Standards (Certification and Accreditation), (7) Bilingual Education, (8)…

  13. The Navajos, A Critical Bibliography.

    ERIC Educational Resources Information Center

    Iverson, Peter

    Perhaps the most significant issue in the history of the Navajos is the tribe's success in maintaining its traditional culture while adapting to the massive pressures of Euramerican society. Few tribal groups have had to contend with as many and as diverse cultural and political competitors for as long a period of time as have the Navajos--Spain,…

  14. The Navajos, A Critical Bibliography.

    ERIC Educational Resources Information Center

    Iverson, Peter

    Perhaps the most significant issue in the history of the Navajos is the tribe's success in maintaining its traditional culture while adapting to the massive pressures of Euramerican society. Few tribal groups have had to contend with as many and as diverse cultural and political competitors for as long a period of time as have the Navajos--Spain,…

  15. Piagetian Conservation in Navajo Children.

    ERIC Educational Resources Information Center

    Odell, Sandra J.; Ferraro, Douglas P.

    In order to determine the cognitive development of Navajo children in terms of Piagetian conservation of number, mass, and continuous quantity, 168 Navajo children at seven different age levels from 5 to adult were presented with a series of three conservation tasks. The tasks consisted of a standard object and an equivalent object that could be…

  16. Lessons from the Navajo: Assistance with Environmental Data Collection Ensures Cultural Humility and Data Relevance

    PubMed Central

    deLemos, Jamie; Rock, Tommy; Brugge, Doug; Slagowski, Naomi; Manning, Thomas; Lewis, Johnnye

    2008-01-01

    Background The Navajo Nation suffers from a legacy of environmental pollution from historical uranium mining activities, resulting in adverse public health outcomes and continuous exposure. Objective Partner with a Navajo graduate student and community members in a field campaign to characterize the spatial distribution and geochemistry of uranium for a multipathway uranium exposure assessment under development by the Dine Network for Environmental Health (DiNEH) project. Methods Attend community meetings, acquire Navajo language skills, and integrate local knowledge into sampling approach of sediment, water, and vegetation. Results Navajo participation (1) helped to foster trust in research efforts during community interactions, (2) taught aspects of Navajo culture and language to maintain positive and respectful relations, and (3) conveyed information on Navajo culture that would impact sampling strategies. Conclusions Community engagement helps to sustain equitable partnerships and aids in culturally appropriate, relevant data collection. PMID:19655034

  17. Magnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2010-01-01

    The population of the San Luis Basin region of northern New Mexico is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's groundwater resources. An important issue in managing the groundwater resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal groundwater aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west MT sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field where drillhole data are sparse. Resistivity modeling of the MT data can be used to help map changes in electrical resistivity with depths that are related to differences in rock types. These various rock types help control the properties of aquifers. The purpose of this report is to release the MT sounding data collected along the east-west profile. No interpretation of the data is included.

  18. Ancient Mudflows in the Tuxtla Volcanic Field, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Espindola, J.; Zamora-Camacho, A.; Godinez, M.

    2011-12-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic enclave in eastern Mexico at the margin of the Gulf of Mexico. Due to the high rates of precipitation floods and mudflows are common. Resulting from a systematic study of geologic hazard in the TVF we found several mudflow deposits that impacted pre-Columbian settlements. Sections of the deposits were observed in detail and sampled for granulometric studies. The deposits contained materials suitable for dating: ceramic shards and some of them charcoal fragments. Shards from the interior of the deposit were collected and placed in black bags to prevent the action of light and to be analyzed by thermoluminiscense (TL), the charcoal samples were dated using standard radiocarbon methods (C-14). The sites were dubbed La Mojarra (18°37.711', 95°18.860'), Revolución (18° 35.848', 95°11.412'), Pisatal (18°36.618', 95°10.634'), and Toro Prieto (18°38.229, 95°12.037'). These places were named after the nearby villages the first two, lake Pisatal the third and Toro Prieto creek the fourth. All the deposits occur close to the margins of riverbeds or lakes. Samples of these sites yielded ages of 1176±100 (TL), 1385±70 (C-14), 1157±105 (TL), 2050+245-235 (C-14), respectively. These locations have undergone recurrent floods in the last decades, showing that these phenomena impact the same areas over centuries. The dates mentioned are important because, no vestiges of human settlements had been reported in the area, which in the past was covered by a dense forest. The settlements must have been very small and depended of such cities as nearby Matacapan an important city with strong ties to Teotihuacán in central Mexico. The ages agree with the findings of archeologic studies in Matacapan, which indicate that the population became increasingly ruralized since the late classic period (≈ 600-800 AD).

  19. A History of Navajo Clans. First Edition.

    ERIC Educational Resources Information Center

    Lynch, Regina H.; And Others

    Pen and ink drawings illustrate characterizations of 29 Navajo clans in this book, which is intended to acquaint young Navajo people and others with Navajo history and culture. The introduction discusses the significance of the Navajo clan system and the relationship among family bonds, self-esteem, and cultural values. The illustrated text tells…

  20. To Be A Navajo. Second Edition, 1976.

    ERIC Educational Resources Information Center

    Begay, Shirley M., Ed.

    Designed to provide culturally relevant and interesting reading material in Navajo for Navajo speaking children, this booklet presents 20 short stories written and illustrated by students at Rough Rock Demonstration School. Intended to encourage Navajo speaking children, and others, to read and to instill pride in being a Navajo, the stories…

  1. Navajo Coal: Demands, Attitudes, and Environment.

    ERIC Educational Resources Information Center

    Goodman, James M.

    The operation of several coal mines with vast proven reserves on the Navajo reservation is a manifestation of conflict between: a power hungry external world; the preservationist attitudes of traditional Navajo culture; the disadvantaged socio-economic status of the average Navajo wage earner; and the Navajo Nation's long term needs for internal…

  2. A History of Navajo Clans. First Edition.

    ERIC Educational Resources Information Center

    Lynch, Regina H.; And Others

    Pen and ink drawings illustrate characterizations of 29 Navajo clans in this book, which is intended to acquaint young Navajo people and others with Navajo history and culture. The introduction discusses the significance of the Navajo clan system and the relationship among family bonds, self-esteem, and cultural values. The illustrated text tells…

  3. To Be A Navajo. Second Edition, 1976.

    ERIC Educational Resources Information Center

    Begay, Shirley M., Ed.

    Designed to provide culturally relevant and interesting reading material in Navajo for Navajo speaking children, this booklet presents 20 short stories written and illustrated by students at Rough Rock Demonstration School. Intended to encourage Navajo speaking children, and others, to read and to instill pride in being a Navajo, the stories…

  4. Oxygen Isotope Character of the Lake Owyhee Volcanic Field, Oregon

    NASA Astrophysics Data System (ADS)

    Blum, T.; Strickland, A.; Valley, J. W.

    2012-12-01

    Oxygen isotope analyses of zircons from lavas and tuffs from the Lake Owyhee Volcanic Field (LOVF) of east central Oregon unequivocally demonstrate the presence of mid-Miocene low-δ18O magmas (δ18Ozrc<4.7 ‰). Despite the growing data set of low-δ18O melts within, and proximal to, the Snake River Plain (SRP) Large Igneous Province, debate persists regarding both the mechanisms for low-δ18O magma petrogenesis, and their relative influence in the SRP. The LOVF is associated with widespread silicic volcanism roughly concurrent with the eruption of the Steens-Columbia River Basalt Group between ~17-15Ma. Silicic activity in the LOVF is limited to 16-15Ma, when an estimated 1100km3 of weakly peralkaline to metaluminous rhyolitic lavas and ignimbrites erupted from a series of fissures and calderas. Geographically, the LOVF overlaps the Oregon-Idaho Graben (OIG), and straddles the 87Sr/86Sr= 0.704 line which, together with the 0.706 line to the east, delineate the regional transition from the North American Precambrian continental crust to the east to younger Phanerozoic accreted terranes to the west. Here we report high accuracy ion microprobe analyses of δ18O in zircons using a 10-15μm spot, with average spot-to-spot precision ±0.28‰ (2SD), to investigate intra-grain and intra-unit δ18Ozrc trends for LOVF rhyolites. Due to its high closure temperature, chemical and physical resistance, and slow oxygen diffusion rates, zircon offers a robust record of magmatic oxygen isotope ratios during crystallization and provides constraints on the petrogenesis of Snake River Plain (SRP) low-δ18O melts. Individual zircons from LOVF rhyolites show no evidence of core-rim δ18O zoning, and populations exhibit ≤0.42‰ (2SD) intra-unit variability. Unit averages range from 2.2 to 4.3‰, with the lowest values in caldera-forming ignimbrites, but all units show evidence of crystallization from low-δ18O melts. Quartz and feldspar analyses by laser fluorination (precision

  5. The Physical and Petrologic Evolution of a Multi-vent Volcanic Field Associated With Yellowstone-Newberry Volcanism

    NASA Astrophysics Data System (ADS)

    Brueseke, M. E.; Hart, W. K.

    2004-12-01

    The Santa Rosa-Calico volcanic field (SC) of northern Nevada is perhaps the most chemically and physically diverse of all volcanic fields associated with mid-Miocene northwestern USA volcanism. SC volcanism occurred from 16.5 to 14 Ma and was characterized by the eruption of a complete compositional spectrum from basalt through high-Si rhyolite. Locally derived tholeiitic lava flows and shallow intrusive bodies are chemically and isotopically identical to the Steens Basalt (87/86Sri=<0.7040), the Oregon Plateau-wide mid-Miocene flood basalt. Andesite-dacite lava flows are exposed as at least four geographically and chemically distinct packages representing products of multiple, discrete magmatic systems. The most voluminous of these is calc-alkaline and characterized by abundant granitoid and mafic xenoliths/xenocrysts and radiogenic Sr isotopic ratios. Subalkaline silicic lava flows, domes, and shallow intrusive bodies define three diffuse north-south trending zones. Textural, chemical, and isotopic variability within the silicic units is linked to their spatial and temporal distribution, again necessitating the existence of multiple magmatic systems. The youngest locally derived silicic units are ash flows exposed in the central portion of the SC that erupted in actively forming sedimentary basins at ˜15.4 Ma. Underlying the 400-1500m thick package of SC volcanic rocks are temporally ( ˜103 and ˜85 Ma), chemically, and isotopically (87/86Sr at 16 Ma= 0.7045 to 0.7058 and 0.7061 to >0.7070) heterogeneous granitoid plutons and a package of ˜20-23 Ma calc-alkaline, arc-related intermediate lava flows. The observed disequilibrium textures, xenoliths, and chemical/isotopic diversity suggests that upwelling Steens magma interacted with local crust, siliceous crustal melts, and the mafic plutonic roots of early Miocene arc volcanism in multiple magmatic systems characterized by heterogeneous open system processes. The formation of these systems is tectonically

  6. Structure and evolution of the Rockeskyllerkopf Volcanic Complex, West Eifel Volcanic Field, Germany

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Woodland, Alan B.; Hopp, Jens; Trenholm, Nesha D.

    2010-10-01

    The Rockeskyllerkopf Volcanic Complex (RVC) comprises three overlapping monogenetic volcanic centers: Southeast Lammersdorf (SEL), Mäuseberg (M) and Rockeskyllerkopf (RKK). Each volcanic center comprises proximal wall deposits with a well defined crater wall unconformity and crater fill deposits that partially to completely cover the outer crater wall. The SEL Center is a phreatomagmatic tuff ring composed of lithic rich tephra deposited by pyroclastic falls and surges. The second center, Mäuseberg, with its crater to the northwest of the SEL Center is predominantly magmatic. Topographic and outcrop patterns suggest that this center may have formed a series of overlapping scoria cones along a N-S trending fissure. The youngest center, RKK, which lies on a poorly developed palaeosol within the earlier Mäuseberg deposits, comprises a well developed proximal crater wall sequence. This sequence of magmatic, likely Strombolian, fall and grain avalanche deposits passes upward into a crater fill sequence that comprises variably welded bombs. The final eruptions in the center were massive lava flows that were ponded within the RKK crater. Ar-Ar age dating of reequilibrated fragments of phlogopite megacrysts in the SEL lavas indicates volcanic activity began at 474 ± 39 ka. Literature K-Ar dates for the youngest lava flows in the RKK Center give ages of 360 ± 60 to 470 ka. Our interpretation of the age data and the presence of the poorly developed palaeosol between the Mäuseberg and RKK centers indicates that volcanism in the RVC began around 470 ka with the eruption of the SEL and Mäuseberg centers followed a few thousand years later by the eruption of the RKK Center.

  7. Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA

    USGS Publications Warehouse

    Morgan, L.A.; McIntosh, W.C.

    2005-01-01

    The Snake River Plain (SRP) developed over the last 16 Ma as a bimodal volcanic province in response to the southwest movement of the North American plate over a fixed melting anomaly. Volcanism along the SRP is dominated by eruptions of explosive high-silica rhyolites and represents some of the largest eruptions known. Basaltic eruptions represent the final stages of volcanism, forming a thin cap above voluminous rhyolitic deposits. Volcanism progressed, generally from west to east, along the plain episodically in successive volcanic fields comprised of nested caldera complexes with major caldera-forming eruptions within a particular field separated by ca. 0.5-1 Ma, similar to, and in continuation with, the present-day Yellowstone Plateau volcanic field. Passage of the North American plate over the melting anomaly at a particular point in time and space was accompanied by uplift, regional tectonism, massive explosive eruptions, and caldera subsidence, and followed by basaltic volcanism and general subsidence. The Heise volcan ic field in the eastern SRP, Idaho, represents an adjacent and slightly older field immediately to the southwest of the Yellowstone Plateau volcanic field. Five large-volume (>0.5 km3) rhyolitic ignimbrites constitute a time-stratigraphic framework of late Miocene to early Pliocene volcanism for the study region. Field relations and high-precision 40Ar/39Ar age determinations establish that four of these regional ignimbrites were erupted from the Heise volcanic field and form the framework of the Heise Group. These are the Blacktail Creek Tuff (6.62 ?? 0.03 Ma), Walcott Tuff (6.27 ?? 0.04 Ma), Conant Creek Tuff (5.51 ?? 0.13 Ma), and Kilgore Tuff (4.45 ?? 0.05 Ma; all errors reported at ?? 2??). The fifth widespread ignimbrite in the regions is the Arbon Valley Tuff Member of the Starlight Formation (10.21 ?? 0.03 Ma), which erupted from a caldera source outside of the Heise volcanic field. These results establish the Conant Creek Tuff as a

  8. Morphological Study of Jaraguay and San Borja Volcanic Fields, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, R.; Canon-Tapia, E.

    2005-12-01

    Volcanism younger than 12.5 Ma has occurred mainly as monogenetic volcanic fields along the Baja California Peninsula, but until now very little attention has been given to the morphological description of this type of volcanism. In this study we present the preliminary results of the first stage of elaboration of a Geographical Information System (GIS) of the northernmost volcanic fields of the Peninsula; Jaraguay and San Borja, which are among the less studied fields in the region. The present status of the GIS includes the main morphological characteristics and localization of over 350 eruptive centers identified in both volcanic fields. Our data show that over 90% of the eruptive centers are cinder cones, whereas the rest of volcanic structures include some stratovolcanos, shield volcanoes and calderas. Detailed analysis of digital elevation models and 14 m resolution Landsat TM images show a remarkable diversity of the size of reported eruptive centers: the average height lies around 720 m with peaks that reaches 1,412 m asl. Preliminary graphic analyses show local concentrations of the biggest volcanic structures in some areas in both fields. This spatial distribution is more evident at the San Borja volcanic field where the biggest volcanic centers are systematically located in its south and north-western boundaries. A similar concentration of bigger volcanic structures is found at the western edge of Jaraguay volcanic field where cinder cones are largely confined to its eastern most edge. The observed morphological changes of volcanic structures occur in both cases within a distance of less than 100 km. We interpret such variations as the result of heterogeneities of the low velocity zone below this particular area of the Baja California Peninsula, although the final evaluation of the distribution of the regional stress field and its relationship with the actual spatial distribution of eruptive centers must wait until more information becomes available. In

  9. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-04-01

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  10. New Mexico Geochronology Research Laboratory: Zuni-Bandera volcanic field road log

    SciTech Connect

    Laughlin, A.W.; Charles, R.; Reid, K.; White, C.

    1993-01-01

    This field conference was designed to assemble a group of Quaternary researchers to examine the possibility of using the Zuni-Bandera volcanic field in western New Mexico as a test area for evaluating and calibrating various Quaternary dating techniques. The Zuni-Bandera volcanic-field is comprised of a large number of basaltic lava flows ranging in age from about 700 to 3 ka. Older basalts are present in the Mount Taylor volcanic field to the north. Geologic mapping has been completed for a large portion of the Zuni-Bandera volcanic field and a number of geochronological investigations have been initiated in the area. While amending this conference, please consider how you might bring your expertise and capabilities to bear on solving the many problem in Quaternary geochronology.

  11. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  12. Geologic field-trip guide to Lassen Volcanic National Park and vicinity, California

    USGS Publications Warehouse

    Muffler, L. J. Patrick; Clynne, Michael A.

    2015-07-22

    This geologic field-trip guide provides an overview of Quaternary volcanism in and around Lassen Volcanic National Park in northern California. The guide begins with a comprehensive overview of the geologic framework and the stratigraphic terminology of the Lassen region, based primarily on the “Geologic map of Lassen Volcanic National Park and vicinity” (Clynne and Muffler, 2010). The geologic overview is then followed by detailed road logs describing the volcanic features that can readily be seen in the park and its periphery. Twenty-one designated stops provide detailed explanations of important volcanic features. The guide also includes mileage logs along the highways leading into the park from the major nearby communities. The field-trip guide is intended to be a flexible document that can be adapted to the needs of a visitor approaching the park from any direction.

  13. Mafic potassic lavas of the Quaternary West Eifel volcanic field

    NASA Astrophysics Data System (ADS)

    Mertes, H.; Schmincke, H.-U.

    1985-05-01

    Major and trace element analyses for 103 volcanoes of the Quaternary West Eifel volcanic field show the lavas to be dominantly primitive (MgO>7 wt.%) and potassic (Na2O/K2O˜1). The rocks are divided into (1) a foidite (F)-suite, volumetrically dominant and consisting of four types: leucitites and nephelinites, melilite-bearing foidites, olivine-free foidites, sodalite-bearing melilite-free foidites, and (2) a younger olivine-nephelinite and basanite (ONB)-suite, concentrated in the southeastern part of the field. Dominantly cpx-phyric F-suite magmas differ from the dominantly ol-phyric ONB-suite mainly in higher K2O/ Na2O and CaO/Al2O3-ratios, higher Rb, Cu, H2O, CO2 and LREE concentrations and slightly lower Sr, Ni and Y contents. Most magmas have fractionated small amounts of olivine, clinopyroxene, and minor phlogopite. Systematic compositional variations within volcanoes or volcano groups are rare. Five more differentiated volcanoes (2 tephrites, 3 phonolites) occur in the center of the field. Their magmas are interpreted to have formed by fractionation within crustal magma chambers. Chemical differences between primary magmas (43% of volcanoes sampled) within both suites can be explained by different degrees of crystal fractionation at high pressures in the ascending magma column and possibly by varying degrees of partial melting (about 2 8%) in a garnetlherzolite mantle source. Distinct isotope ratios, parallel element variations, and different ratios of similarly incompatible elements, however, indicate a heterogeneous mantle beneath the West Eifel. The F-suite magmas originated from a mantle source more strongly enriched in alkalis and incompatible elements than the ONB-suite mantle source. The following model is proposed, based also on experimental studies and geophysical data: Within a large low velocity body of garnet-lherzolite, enriched in fluids and LIL elements (metasomatized mantle) between about 50 and 150 km depth, two different magma types were

  14. A Navajo health consumer survey.

    PubMed

    Stewart, T; May, P; Muneta, A

    1980-12-01

    The findings of a health consumer survey of 309 Navajo families in three areas of the Navajo Reservation are reported. The survey shows that access to facilities and lack of safe water and sanitary supplies are continuing problems for these families. The families show consistent use of Indian Health Service providers, particularly nurses, pharmacists and physicians, as well as traditional Navajo medicine practitioners. Only incidental utilization of private medical services is reported. Extended waiting times and translation from English to Navajo are major concerns in their contacts with providers. A surprisingly high availability of third-party insurance is noted. Comparisons are made between this data base and selected national and regional surveys, and with family surveys from other groups assumed to be disadvantaged in obtaining health care. The comparisons indicate somewhat lower utilization rates and more problems in access to care for this Navajo sample. The discussion suggests that attitudes regarding free health care eventually may be a factor for Navajo people and other groups, that cultural considerations are often ignored or accepted as truisms in delivering care, and that the Navajo Reservation may serve as a unique microcosm of health care in the U.S.

  15. Depressive illness and Navajo healing.

    PubMed

    Storck, M; Csordas, T J; Strauss, M

    2000-12-01

    What is the experience of Navajo patients in Navajo religious healing who, by the criteria and in the vernacular of contemporary psychiatry, would be diagnosed with the disorder called depression? We ask this question in the context of a double dialogue between psychiatry and anthropology and between these disciplines' academic constructs of illness and those of contemporary Navajos. The dialogue is conducted in the arena of patient narratives, providing a means for observing and explicating processes of therapeutic change in individuals, for illustrating variations in forms of Navajo religious healing sought out by patients demonstrating similar symptoms of distress, and for considering the heuristic utility of psychiatric diagnoses and nomenclature in the conceptualization of illness, recovery, and religious healing. From among the 37 percent of patients participating in the Navajo Healing Project who had a lifetime history of a major depressive illness, three are discussed herein, their selection based on two criteria: (1) all met formal psychiatric diagnostic criteria for a major depressive episode at the time of their healing ceremonies, and (2) together, their experiences illustrate the range of contemporary Navajo religious healing, including Traditional, Native American Church (NAC), and Christian forms. We suggest that, despite the explicit role of the sacred in religious healing interventions available to Navajo patients, differences between biomedical and religious healing systems may be of less significance than their shared existential engagement of problems such as those glossed as depression.

  16. Stratigraphic relations and lithologic variations in the Jemez Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Gardner, Jamie N.; Goff, Fraser; Garcia, Sammy; Hagan, Roland C.

    1986-02-01

    Over 100 radiometric dates and recent detailed geologic mapping allow some refinements of the stratigraphic relations of major units and generalization of temporal lithologic variations in the Jemez volcanic field. Volcanism had begun in the area by about 16.5 Ma with episodic eruptions of alkaline basalts. By 13 Ma, alkaline volcanism had been replaced with eruptions of more voluminous olivine tholeiite. High-silica rhyolite, derived from melts of lower crust, also was erupting by about 13 Ma. Basalt and high-silica rhyolite continued to be erupted until about 7 and 6 Ma, respectively, but effusions of dominantly andesitic differentiates of basalt that began as early as about 12 Ma volumetrically overshadowed all other eruptive products between 10 and 7 Ma. From 7 to 3 Ma the dominant erupted lithology was dacite, which appears to have been generated by mixing of magmas whose compositions are approximated by earlier andesites and high-silica rhyolites. Less than 4-3 Ma volcanism was dominated by eruption of rhyolitic tuffs. Field relations, geochemistry, and dates specifically indicate the following with regards to stratigraphie relations: (1) distinctions among basalt of Chamisa Mesa, Paliza Canyon Formation basalts, and Lobato Basalt for other than geographic reasons are artificial; basaltic volcanism was continuous in volcanic field from >13 to 7 Ma, (2) Canovas Canyon and Bearhead rhyolites form a continuum of high-silica rhyolite volcanism from >13 to 6 Ma, (3) hypabyssal and volcanic rocks of the Cochiti mining district probably represent the exhumed interior of a Keres Group volcano(s), (4) temporal overlaps exist among the major stratigraphie groups which may imply some genetic relations, and (5) the Tewa Group formation Cerro Rubio Quartz Latite may more appropriately be considered part of the Tschicoma Formation of the Polvadera Group. Preliminary analysis of hydrothermal alteration in the context of the volcanic stratigraphy suggests at least three

  17. 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Layer, P. W.; Lassiter, J. C.; Benowitz, J. A.; Macías, J. L.; Ramírez-Espinosa, J.

    2013-12-01

    Monogenetic structures located at the southern and western ends of the Chichinautzin volcanic field (Trans-Mexican Volcanic Belt, Central Mexico) yield 40Ar/39Ar ages ranging from 1.2 Ma in the western portion of the field to 1.0-0.09 Ma in the southern portion, all of which are older than the <0.04 Ma age previously established for the entire volcanic field. These new ages indicate: (1) an eruption rate of 0.47 km3/kyr, which is much lower than the 11.7 km3/kyr previously estimated; (2) that the Chichinautzin magmatism coexisted with the Zempoala (0.7 Ma) and La Corona (1.0 Ma) polygenetic volcanoes on the southern edge of Las Cruces Volcanic Range (Trans-Mexican Volcanic Belt); and confirm (3) that the drainage system between the Mexico and Cuernavaca basins was closed during early Pleistocene forming the Texcoco Lake. Whole-rock chemistry and Sr, Nd, and Pb isotopic data indicate heterogeneous magmatism throughout the history of Chichinautzin activity that likely reflects variable degrees of slab and sediment contributions to the mantle wedge, fractional crystallization, and crustal assimilation. Even with the revised duration of volcanism within the Chichinautzin Volcanic Field, its eruption rate is higher than most other volcanic fields of the Trans-Mexican Volcanic Belt and is comparable only to the Tacámbaro-Puruaran area in the Michoacán-Guanajuato Volcanic Field to the west. These variations in eruption rates among different volcanic fields may reflect a combination of variable subduction rates of the Rivera and Cocos plates along the Middle America Trench, as well as different distances from the trench, variations in the depth with respect to the subducted slab, or the upper plate characteristics.

  18. Quantifying the morphometric variability of monogenetic cones in volcanic fields: the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Grosse, Pablo; Barette, Florian; Smets, Benoît; Albino, Fabien; Kervyn, François; Kervyn, Matthieu

    2016-04-01

    Volcanic cone fields are generally made up of tens to hundreds of monogenetic cones, sometimes related to larger polygenetic edifices, which can exhibit a wide range of morphologies and degrees of preservation. The Virunga Volcanic Province (VVP) developed itself in a transfer zone which separates two rift segments (i.e. Edward and Kivu rift) within the western branch of the East-African Rift. As the result of volcanic activity related to this tectonic regime of continental extension, the VVP hosts eight large polygenetic volcanoes, surrounded by over 500 monogenetic cones and eruptive fissures, scattered over the vast VVP lava flow fields. Some cones lack any obvious geo-structural link to a specific Virunga volcano. Using recent high-resolution satellite images (SPOT, Pléiades) and a newly created 5-m-resolution digital elevation model (TanDEM-X), we have mapped and classified all monogenetic cones and eruptive fissures of the VVP. We analysed the orientation of all mapped eruptive fissures and, using the MORVOLC program, we calculated a set of morphometric parameters to highlight systematic spatial variations in size or morphometric ratios of the cones. Based upon morphological indicators, we classified the satellite cones into 4 categories: 1. Simple cones with one closed-rim crater; 2. Breached cones with one open-rim crater; 3. Complex cones with two or more interconnected craters and overlapping cones; 4. Other edifices without a distinguishable crater or cone shape (e.g. spatter mounds and levees along eruptive fissures). The results show that cones are distributed in clusters and along alignments, in some cases parallel with the regional tectonic orientations. Contrasts in the volumes of cones positioned on the rift shoulders compared to those located on the rift valley floor can possibly be attributed to contrasts in continental crust thickness. Furthermore, higher average cone slopes in the East-VVP (Bufumbira zone) and central-VVP cone clusters suggest

  19. The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site

    NASA Astrophysics Data System (ADS)

    Németh, Károly; Moufti, Mohammed R.

    2017-04-01

    UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not

  20. Rapid uplift during 2007-2012 at Laguna del Maule volcanic field, Andean Southern Volcanic Zone, Chile

    NASA Astrophysics Data System (ADS)

    Le Mevel, H.; Feigl, K.; Ali, T.; Cordova V., M. L.; DeMets, C.; Singer, B. S.

    2012-12-01

    The Laguna del Maule (LdM) volcanic field includes an unusual concentration of post-glacial rhyolitic lava coulees and domes, dated between 24 to 2 thousand years old that cover more than 100 square kilometers and erupted from 24 vents that encircle a 20-km-diameter lake basin on the range crest. The recent concentration of rhyolite is unparalleled in the Southern Volcanic Zone of the Andes. Moreover, the western portion of the LdM volcanic field has experienced rapid uplift since 2007, leading to questions about the current configuration of the magmatic system and processes that drive the ongoing inflation. We aim to quantify the active deformation of the LdM volcanic field and its evolution with time. To do so, we use interferometric synthetic aperture radar (InSAR) data acquired by three satellite missions: Envisat in 2003 and 2004, ALOS between 2007 and 2010, and TerraSAR-X in 2012. An interferogram spanning March 2003 to February 2004 "shows no deformation" (Fournier et al., 2010). From 2007 through 2012, however, the shortening of the satellite-to-ground distance revealed a range change rate of greater than 200 mm/yr along the radar line of sight. The deformation includes a circular area 20 km in diameter centered on the western portion of the circle of young rhyolite domes. To analyze the InSAR results, we employ the General Inversion for Phase Technique (GIPhT; Feigl and Thurber, 2009; Ali and Feigl, 2012). We have considered several hypotheses to interpret this deformation. Artefacts such as orbital errors, atmospheric perturbations or topographic contribution cannot account for the observed signal. We also reject the hypothesis of uplift due to gravitational unloading of the crust based on our modeling of independently measured lake level variations over the observed time interval. We thus attribute the deformation to the intrusion of magma into the upper crust below the southwest region of the LdM volcanic field. The best fit to the InSAR data is

  1. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    USGS Publications Warehouse

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  2. The Status of Navajo Women.

    ERIC Educational Resources Information Center

    Shepardson, Mary

    1982-01-01

    Compares Navajo women's positions at three periods: in traditional society before stock reduction (1868-1933); during and after stock reduction (1933 to early 1950s); and at the present day (1980s). (Author)

  3. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island

  4. Preliminary bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle, Navajo and Apache Counties, northern Arizona

    USGS Publications Warehouse

    Amoroso, Lee; Priest, Susan S.; Hiza-Redsteer, Margaret

    2014-01-01

    The bedrock and surficial geologic map of the west half of the Sanders 30' x 60' quadrangle was completed in a cooperative effort of the U.S. Geological Survey (USGS) and the Navajo Nation to provide regional geologic information for management and planning officials. This report provides baseline geologic information that will be useful in future studies of groundwater and surface water resources, geologic hazards, and the distribution of soils and plants. The west half of the Sanders quadrangle encompasses approximately 2,509 km2 (980 mi2) within Navajo and Apache Counties of northern Arizona and is bounded by lat 35°30' to 35° N., long 109°30' to 110° W. The majority of the land within the map area lies within the Navajo Nation. South of the Navajo Nation, private and State lands form a checkerboard pattern east and west of Petrified Forest National Park. In the west half of the Sanders quadrangle, Mesozoic bedrock is nearly flat lying except near folds. A shallow Cenozoic erosional basin that developed about 20 Ma in the western part of the map area cut across late Paleozoic and Mesozoic rocks that were subsequently filled with flat-lying Miocene and Pliocene mudstone and argillaceous sandstone and fluvial sediments of the Bidahochi Formation and associated volcanic rocks of the Hopi Buttes volcanic field. The Bidahochi rocks are capped by Pliocene(?) and Pleistocene fluvial sediments and Quaternary eolian and alluvial deposits. Erosion along northeast-southwest-oriented drainages have exposed elongated ridges of Bidahochi Formation and basin-fill deposits that are exposed through shallow eolian cover of similarly oriented longitudinal dunes. Stokes (1964) concluded that the accumulation of longitudinal sand bodies and the development of confined parallel drainages are simultaneous processes resulting in parallel sets of drainages and ridges oriented along the prevailing southwest wind direction on the southern Colorado Plateau.

  5. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  6. The Temporal and Spatial Association of Faulting and Volcanism in the Cerros del Rio Volcanic Field - Rio Grande Rift, USA

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Hudson, M. R.; Minor, S. A.; McIntosh, W. C.; Miggins, D. P.; Grauch, V.

    2008-12-01

    The Plio-Pleistocene Cerros del Rio volcanic field (CdRVF) in northern New Mexico is one of the largest ( greater than 700 square kilometers) predominantly basaltic and andesitic volcanic centers of the Rio Grande rift; it records the late-stage, volcano-tectonic evolution of the SW part of the Espanola Basin. The CdRVF reflects both regional proclivity toward Pliocene basaltic volcanism following protracted Neogene extensional tectonism and localized eruptive response to migration of basin- bounding faults. Approximately 180 cubic kilometers of flat lying to gently dipping basalt, andesite, and minor dacite lava flows and pyroclastic deposits of the CdRVF were erupted from more than 50 exposed vents between 2.8 Ma and 1.14 Ma. Subsurface interpretations of drill hole data and incised canyon exposures of the Rio Grande show that volcanic deposits are interbedded with Santa Fe Group sediments deposited in actively subsiding sub-basins of the southernmost Espanola Basin. Major basin-bounding faults in this area strike north to northwest, dip basinward, and have mostly dip-slip and subordinate strike-slip displacement. Although major basin-bounding faults were active prior to the onset of volcanism in the CdRVF, protracted extension resulted in a westward migration of graben-bounding faults. Phases of coeval volcanism at 2.8-2.6 Ma, 2.5-2.2 Ma, and 1.5-1.1 Ma, decreased in eruptive volume through time and are delineated on the basis of mapped stratigraphy, argon geochronology, paleomagnetic and aeromagnetic properties, and record a syntectonic westward migration of eruptive centers. The alignment of vent areas with mapped faults strongly suggests deep magmatic sources utilized local structures as conduits (i.e. faults and fractures developed in response to regional stress). However, some near-surface feeder dikes associated with eroded cinder cones record orientations that are not typically correlative with regional fault patterns suggesting near-surface conduits are

  7. 40Ar/39Ar dating of the Quaternary Chichinautzin Volcanic Field, south of Mexico City: Implications for timing, effusion rate, and distribution of the volcanism

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Layer, P. W.; Lassiter, J. C.; Benowitz, J.; Ramirez, J.; Macias, J. L.

    2013-05-01

    Monogenetic structures located at the southern and western ends of the Chichinautzin Volcanic Field (Trans-Mexican Volcanic Belt, central Mexico) yielded 40Ar/39Ar ages ranging from 1.2 Ma in the west to 1.0-0.09 Ma in the south, which are older than the <0.004 Ma previously established for the entire volcanic field. These new ages indicate: (1) an eruption rate of 0.47km3/1000 yr, which is much lower than the 11.7 km3/1000 yr previously estimated; (2) that the monogenetic Chichinautzin magmatism coexisted with the Zempoala (0.7 Ma) and La Corona (1.0 Ma) polygenetic volcanoes on the southern edge of Las Cruces Volcanic Range (southern Trans-Mexican Volcanic Belt); and (3) confirm that the drainage system between the Mexico and Cuernavaca basins was closed during early Pleistocene forming the Texcoco Lake. Whole-rock chemistry and Sr, Nd, and Pb isotopic data indicate that heterogeneous magmatism has been throughout the life of Chichinautzin, probably due to slab and sediment contributions to the mantle wedge plus contamination and fractional crystallization. The overall Pleistocene magmatism at the Chichinautzin Volcanic Field has undergone a higher eruption rate if compared to other volcanic fields of the Trans-Mexican Volcanic Belt. This could be due to a combination of variable subduction rates of the Rivera and Cocos plates along the Middle America Trench, to different distances from the trench, and the depth to the subducted slab

  8. Development of a risk assessment tool for volcanic urban environments: RiskScape and the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Leonard, G.; King, A.; Wilson, G.; Wilson, T.; Lindsay, J. M.

    2013-12-01

    Auckland city, home to a third of New Zealand's population, is situated on top of the Auckland Volcanic Field (AVF), which last erupted roughly 500 years ago. Since 2008, the Determining Volcanic Risk in Auckland (DEVORA) program has investigated the geologic context of the AVF, improved timing constraints of past eruptions, explored possible tempo-spatial-volume eruption trends, and identified likely styles and hazards of future eruptions. DEVORA is now moving into development of risk and societal models for Auckland. The volcanic module of RiskScape, a multi-hazard risk assessment tool developed by Crown Research Institutes GNS Science and NIWA, will be expanded and used to model risk and impact to the built environment and population caused by a future AVF eruption. RiskScape models casualties, damage and disruption caused by various hazards, the resulting reduced functionality of assets, and associated clean up costs. A strength of RiskScape is that the effect of various mitigation strategies can be explored by strengthening asset attributes and examining resulting changes in the output risk evaluation. We present our framework for building a volcano hazard exposure module for RiskScape along with our approach for assessing asset vulnerability through the development of fragility functions. We also present the framework for engagement with regional Auckland stakeholders, including representatives of local and regional governments and utility companies, to identify complementary needs to ensure that final risk products are relevant and useable by end users.

  9. Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

    USGS Publications Warehouse

    ,

    2017-06-23

    The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

  10. A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: Geology, distribution and morphology of the volcanic vents

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E.

    2010-11-01

    The most abundant volcanic manifestations along the east-west trending Trans-Mexican Volcanic Belt (TMVB) are the scoria cones. These have been grouped by other authors in extended monogenetic volcanic fields such as Michoacán-Guanajuato, Chichinautzin, Apan and Los Tuxtlas. Here we present geological and morphological data of a relatively unknown group of monogenetic volcanoes located on the east flank of the Cofre de Perote volcano (CP), around the city of Xalapa in the state of Veracruz, Mexico. Within an area of about 2400 km 2, the "Xalapa Monogenetic Volcanic Field" (XMVF) contains over 50 late Quaternary volcanoes. Most of them are scoria cones, but small shield volcanoes and tuff rings also occur. The lava flows produced by these volcanoes are constrained by an abrupt topography and cover a great percentage of the surface on the eastern and northeastern flanks of CP, between 3000 and 500 m a.s.l. The representative rocks of the different volcanic centers include olivine basalt, basaltic andesite with phenocrysts of plagioclase, pyroxene and minor olivine, and andesite with phenocrysts of plagioclase and pyroxene. SiO 2 and Al 2O 3 contents of the rocks vary between 45 and 62 wt% and 15 to 18 wt%, respectively. Most of the basaltic rocks have MgO contents between 4.2 and 9 wt%, Ni and Cr concentrations between 23 and 180 and 10 to 380 ppm, respectively, with a typical calc-alkaline behavior. Trace elements suggest two types of magmas; the most abundant are characterized by an enrichment of LILE and LREE with negative anomalies of Nb and Ti, which denote a calc-alkaline affinity. Others are LILE depleted and show high concentrations of MgO, Cr, and Ni, which is typical of primary calc-alkaline magmas. The mean scoria cone morphological values are: cone height (Hco) = 90.8 m, cone diameter (Wco) = 686.38 m, crater diameter (Wcr) = 208.49 m and 0.12 km 3 for the cone volume. We dated twelve different scoria cones using the 40Ar/ 39Ar method; for the other

  11. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    García-Abdeslem, Juan; Calmus, Thierry

    2015-08-01

    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  12. Navajo Education, 1948-1978: Its Progress and Its Problems. Volume III, Part A, Navajo History.

    ERIC Educational Resources Information Center

    Roessel, Robert A., Jr.

    One in a continuing series on Navajo history and culture, this volume presents extensive information about Navajo education from 1948 through 1978 and analyzes that information from a Navajo viewpoint with the purpose of promoting quality education directed and controlled by Navajo people. Following a brief introduction to the series and to Navajo…

  13. Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan Volcanic Field, Colorado, USA

    USGS Publications Warehouse

    Parat, F.; Dungan, M.A.; Lipman, P.W.

    2005-01-01

    Locally, voluminous andesitic volcanism both preceded and followed large eruptions of silicic ash-flow tuff from many calderas in the San Juan volcanic field. The most voluminous post-collapse lava suite of the central San Juan caldera cluster is the 28 Ma Huerto Andesite, a diverse assemblage erupted from at least 5-6 volcanic centres that were active around the southern margins of the La Garita caldera shortly after eruption of the Fish Canyon Tuff. These andesitic centres are inferred, in part, to represent eruptions of magma that ponded and differentiated within the crust below the La Garita caldera, thereby providing the thermal energy necessary for rejuvenation and remobilization of the Fish Canyon magma body. The multiple Huerto eruptive centres produced two magmatic series that differ in phenocryst mineralogy (hydrous vs anhydrous assemblages), whole-rock major and trace element chemistry and isotopic compositions. Hornblende-bearing lavas from three volcanic centres located close to the southeastern margin of the La Garita caldera (Eagle Mountain - Fourmile Creek, West Fork of the San Juan River, Table Mountain) define a high-K calc-alkaline series (57-65 wt % SiO2) that is oxidized, hydrous and sulphur rich. Trachyandesitic lavas from widely separated centres at Baldy Mountain-Red Lake (western margin), Sugarloaf Mountain (southern margin) and Ribbon Mesa (20 km east of the La Garita caldera) are mutually indistinguishable (55-61 wt % SiO2); they are characterized by higher and more variable concentrations of alkalis and many incompatible trace elements (e.g. Zr, Nb, heavy rare earth elements), and they contain anhydrous phenocryst assemblages (including olivine). These mildly alkaline magmas were less water rich and oxidized than the hornblende-bearing calc-alkaline suite. The same distinctions characterize the voluminous precaldera andesitic lavas of the Conejos Formation, indicating that these contrasting suites are long-term manifestations of San Juan

  14. Building Optimum Learning Environments for Navajo Students.

    ERIC Educational Resources Information Center

    Little Soldier, Lee

    1992-01-01

    Offers insights into the traditional Navajo way of life, with particular emphasis on aspects of culture and language that have implications for teaching Navajo and other Native American students. (LB)

  15. Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Rodríguez Ceja, M.; Goguitchaichvili, A.; Calvo-Rathert, M.; Morales-Contreras, J.; Alva-Valdivia, L.; Rosas Elguera, J.; Urrutia Fucugauchi, J.; Delgado Granados, H.

    2006-10-01

    This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position Plat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving SF = 15.4 with SU = 19.9 and SL = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671± 13 ka which may correspond the worldwide observed Delta excursion at about 680-690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362± 13 and 354± 5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.

  16. Paleomagnetism of the Pleistocene Tequila Volcanic Field (Western Mexico)

    NASA Astrophysics Data System (ADS)

    Ceja, Maria Rodríguez; Goguitchaichvili, Avto; Calvo-Rathert, Manuel; Morales-Contreras, Juan; Alva-Valdivia, Luis; Elguera, José Rosas; Fucugauchi, Jaime Urrutia; Granados, Hugo Delgado

    2006-10-01

    This paper presents new paleomagnetic results from 24 independent cooling units in Tequila area (western Trans-Mexican Volcanic Belt). These units were recently dated by means of state-of-the-art 40Ar-39Ar method (Lewis-Kenedy et al., 2005) and span from 1130 to 150 ka. The characteristic paleodirections are successfully isolated for 20 cooling units. The mean paleodirection, discarding intermediate polarity sites, is I = 29.6°, D = 359.2°, k = 26, α95 = 7.1°, n = 17, which corresponds to the mean paleomagnetic pole position P lat = 85.8°, Plong = 84.3°, K = 27.5, A95 = 6.9°. These directions are practically undistinguishable from the expected Plestocene paleodirections, as derived from reference poles for the North American polar wander curve and in agreement with previously reported directions from western Trans-Mexican Volcanic Belt. This suggests that no major tectonic deformation occurred in studied area since early-middle Plestocene to present. The paleosecular variation is estimated trough the study of the scatter of virtual geomagnetic poles giving S F = 15.4 with S U = 19.9 and S L = 12.5 (upper and lower limits respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. (1991) for the last 5 Myr. The interesting feature of the paleomagnetic record obtained here is the occurrence of an intermediate polarity at 671 ± 13 ka which may correspond the worldwide observed Delta excursion at about 680-690 ka. This gives the volcanic evidence of this event. Two independent lava flows dated as 362 ±13 and 354 ±5 ka respectively, yield transitional paleodirections as well, probably corresponding to the Levantine excursion.

  17. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    USGS Publications Warehouse

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The orignial geologic maps were prepared under the Geothermal Research Program of the U.S. Geological Survey as a basis for interpreting the history of magmatic activity in the volcanic field. The San Francisco field, which is largely Pleistocene in age, is in northern Arizona, just north of the broad transition zone between the Colorado Plateau and the Basin and Range province. It is one of several dominantly basaltic volcanic fields of the late Cenozoic age situated near the margin of the Colorado Plateau. The volcanic field contains rocks ranging in composition from basalt to rhyolite—the products of eruption through Precambrian basement rocks and approximately a kilometer of overlying, nearly horizontal, Paleozoic and Mesozoic sedimentary rocks. About 500 km3 of erupted rocks cover about 5,000 km2 of predominantly Permian and locally preserved Triassic sedimentary rocks that form the erosionally stripped surface of the Colorado Plateau in Northern Arizona.

  18. Numerical recognition of alignments in monogenetic volcanic areas: Examples from the Michoacán-Guanajuato Volcanic Field in Mexico and Calatrava in Spain

    NASA Astrophysics Data System (ADS)

    Cebriá, J. M.; Martín-Escorza, C.; López-Ruiz, J.; Morán-Zenteno, D. J.; Martiny, B. M.

    2011-04-01

    Identification of geological lineaments using numerical methods is a useful tool to reveal structures that may not be evident to the naked eye. In this sense, monogenetic volcanic fields represent an especially suitable case for the application of such techniques, since eruptive vents can be considered as point-like features. Application of a two-point azimuth method to the Michoacán-Guanajuato Volcanic Field (Mexico) and the Calatrava Volcanic Province (Spain) demonstrates that the main lineaments controlling the distributions of volcanic vents (~ 322° in Calatrava and ~ 30° in Michoacán) approach the respective main compressional axes that dominate in the area (i.e. the Cocos-North America plates convergence and the main Betics compressional direction, respectively). Considering the stress fields that are present in each volcanic area and their respective geodynamic history, it seems that although volcanism may be a consequence of contemporaneous extensional regimes, the distribution of the volcanic vents in these kinds of monogenetic fields is actually controlled by reactivation of older fractures which then become more favourable for producing space for magma ascent at near-surface levels.

  19. Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.

    1999-01-01

    Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the

  20. Eruptive Productivity of the Ceboruco-San Pedro Volcanic Field, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Frey, H. M.; Lange, R. A.; Hall, C. M.; Delgado-Granados, H.

    2002-12-01

    High-precision 40Ar/39Ar geochronology coupled with GIS spatial analysis provides constraints on magma eruption rates over the past 1 Myr of the Ceboruco-San Pedro volcanic field (1870 km2), located in the Tepic-Zacoalco rift in western Mexico. The volcanic field is part of the Trans Mexican Volcanic arc and is dominated by the andesitic-dacitic stratocone of Volcan Ceboruco and includes peripheral fissure-fed flows, domes, and monogenetic cinder cones. The ages of these volcanic features were determined using 40Ar/39Ar laser step-heating techniques on groundmass or mineral separates, with 78% of the 52 analyses yielding plateau ages with a 2 sigma error < 50 kyrs. The volumes were determined using high resolution (1:50,000) digital elevation models, orthophotos, and GIS software, which allowed for the delineation of individual volcanic features, reconstruction of the pre-eruptive topography, and volume calculations by linear interpolation. The relative proportions of the 80 km3 erupted over the past 1 Myr are 14.5% basaltic andesite, 64.5% andesite, 20% dacite, and 1% rhyolite, demonstrating the dominance of intermediate magma types (in terms of silica content). Overall, there appears to be no systematic progression in the eruption of different magma types (e.g., basalt, andesite, dacite, etc.) with time. However, more than 75% of the total volume of lava within the Ceboruco-San Pedro volcanic field erupted in the last 100 kyrs. This reflects the youthfulness of Volcan Ceboruco, which was constructed during the last 50 kyrs and has a present day volume of 50 +/- 2.5 km3, accounting for 81% of the andesite and 50% of the dacite within the volcanic field. Eleven cinder cones, ranging from the Holocene to 0.37 Ma, display a narrow compositional range, with 52-58 wt% SiO2, 3-5.5 wt% MgO, and relatively high TiO2 concentrations (0.9-1.8 wt%). The total volume of the cinder cones is 0.83 km3. No lavas with < 51 wt% SiO2 have erupted in the past 1 Myr. Peripheral

  1. Navajo Pawn: A Misunderstood Traditional Trading Practice

    ERIC Educational Resources Information Center

    Kiser, William S.

    2012-01-01

    Navajo trading has been a crucial component of that tribe's localized economy for generations and has been the subject of much scholarship over the years. The role of the Navajo trader in influencing the types and styles of crafts that Navajos created as well as providing tribal members with an outlet for those items remains important to their…

  2. Navajo Pawn: A Misunderstood Traditional Trading Practice

    ERIC Educational Resources Information Center

    Kiser, William S.

    2012-01-01

    Navajo trading has been a crucial component of that tribe's localized economy for generations and has been the subject of much scholarship over the years. The role of the Navajo trader in influencing the types and styles of crafts that Navajos created as well as providing tribal members with an outlet for those items remains important to their…

  3. A Utah Navajo History = Dineji Nakee' Naahane'

    ERIC Educational Resources Information Center

    Benally, Clyde; And Others

    This book presents Navajo history in two aspects--traditional stories that describe the ancestors of the Navajo and explain how the Earth-Surface World was changed from monster-filled chaos into the well-ordered world of today, and historical events from 1525 to today after the Navajos had settled in the Southwest. Events described include…

  4. A Bibliographic Essay Pertaining to Navajo Indians.

    ERIC Educational Resources Information Center

    Harrison, Scott

    Introduced by a discussion of the fact that most of the works cited describe Navajos as they "used to be" and an admonition against the common practice of placing all Navajos, or all Indians, under one stereotype, this bibliographic essay traces the history of Navajo contact with the white man and emphasizes efforts at educational…

  5. The Origins of Navajo Youth Gangs.

    ERIC Educational Resources Information Center

    Henderson, Eric; Kunitz, Stephen J.; Levy, Jerrold E.

    1999-01-01

    Extended interviews with 50 Navajo men, aged 21 to 45, provided information on peer relationships and gang formation among male Navajo youth in the 1960s through the 1980s. Results suggest that gangs are an extreme example of traditional hell-raising among young Navajo men and that most gang members "age out" of their gangs. Suggestions for gang…

  6. Evolution of a subglacial basaltic lava flow field: Tennena volcanic center, Mount Edziza volcanic complex, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Hungerford, Jefferson D. G.; Edwards, Benjamin R.; Skilling, Ian P.; Cameron, Barry I.

    2014-02-01

    Studies of terrestrial glaciovolcanic deposits have elucidated the utility of these deposits as tools to constrain ice conditions at the time of their emplacement. Very few studies, however, have documented the emplacement of effusion-dominated, basaltic glaciovolcanic eruptions. The Tennena volcanic center (TVC), located at 57° 40‧ 57.705″ N 130° 39‧ 43.138″ W on the western flank of Mount Edziza volcanic complex (MEVC) in northwestern British Columbia, Canada, preserves a detailed record of interactions between coherent basaltic lavas and a local/regional ice sheet inferred to be associated with the Last Glacial Maximum (LGM). Here we describe the field characteristics of five primary volcanic lithofacies and five associated glaciogenic lithofacies, and discuss their spatial distribution within the volcanic center. We find that 1) the distribution of primary hydrovolcanic clastic deposits (tuff breccias and lapilli tuffs) is confined to Tennena Cone, 2) pillow lavas are present throughout the extent of the surrounding lava field with morphologies that include distinctive structures comprising vertically-oriented, distended pillows, 3) multiple lobes of massive (non-pillowed) lavas that represent high initial magma discharge rates are confined to medial distances from the cone, and 4) associated glaciogenic facies that underlie or onlap the TVC lavas indicate a variable sediment/water ratio during subglacial meltwater drainage at the time of the eruption or shortly afterwards. Analyses of H2O/CO2 in pillow rim samples give broad constraints for emplacement pressures equivalent to 500-1400 m of overlying ice. No subaerial lava morphologies are found on the cone or in the proximal, medial and distal lithofacies, and the sequence is interpreted as documenting an eruption of basaltic lava flows beneath either the LGM Cordilleran ice sheet or a Younger Dryas expansion of the still-extant Edziza ice cap. The TVC lavas, especially medial and distal ones

  7. Origin of north Queensland Cenozoic volcanism: Relationships to long lava flow basaltic fields, Australia

    NASA Astrophysics Data System (ADS)

    Sutherland, F. L.

    1998-11-01

    A plume model proposed for north Queensland late Cenozoic volcanism and long lava flow distribution combines basalt ages with recent seismic studies of Australia's mantle, regional stress fields, and plate motion. Several basalt fields overlie mantle "thermal" anomalies, and other fields outside these anomalies can be traced to them through past lithospheric motion. Elsewhere, anomalies close to Australia's eastern rift margin show little volcanism, probably due to gravity-enhanced compression. Since final collision of north Queensland with New Guinea, areas of basaltic volcanism have developed over 10 Myr, and episodes appear to migrate southward from 15° to 20°S. Long lava flows increase southward as area/volume of fields increases, but topography, vent distributions, and uplifts play a role. This is attributed to magmatic plume activation within a tensional zone, as lithosphere moves over mantle thermal anomalies. The plume model predicts peak magmatism under the McBride field, coincident with the Undara long lava flow and that long lava flow fields will erupt for another 5-10 Myr. Queensland's movement over a major N-S thermal system imparts a consistent isotopic signature to its northern younger basalts, distinct to basalts from older or more southern thermal systems. Australia's motion toward this northern thermal system will give north Queensland fields continued vigorous volcanism, in contrast to the Victorian field which is leaving its southern thermal system.

  8. Paleomagnetic evidence for an episodic eruptive history of the Cerros del Rio volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Hudson, M. R.; Thompson, R. A.

    2011-12-01

    The Pliocene to Quaternary (~2.6-1.14 Ma) Cerros del Rio volcanic field of northern New Mexico forms a dissected basaltic plateau sourced by multiple eruptive centers. Paleomagnetic data compliment geologic mapping, geochronologic and geochemical data to define the spatial and temporal eruptive history of Cerros del Rio volcanic deposits. The preserved stratigraphic sequence reflects three principal phases of volcanism; 1) 2.7-2.6 Ma, 2) 2.5-2.2 Ma, and 3) 1.5-1.1 Ma. Paleomagnetic data collected from 85 sites that span the area of the volcanic field largely sample phase-1 deposits that record the Guass normal-polarity chron or phase-2 deposits that record the Matuyama reversed-polarity chron. A grand mean of individual sites (excluding transitional directions) is D = 352.8°, I = 49.7°, k= 14, a95 = 3.9. However, normal- and reversed-polarity group means are not statistically antipodal, with the normal-polarity inclination being significantly shallower than an expected (55°) dipole inclination. This failed reversal test suggests that paleosecular variation has not be fully averaged within both polarity groups, despite a basis on abundant data from multiple eruptive centers. Compared to variation recorded by the full volcanic field, site directions from individual eruptive centers have restricted dispersion, indicating that the centers formed quickly relative to paleosecular variation. Grouping data within individual eruptive centers to calculate eruptive-group means (EGM), directions of the normal- and reversed-polarity EGM remain skewed from antipodal. Modal analysis demonstrates the presence of multiple directional clusters among the normal-polarity EGM whereas the frequency distribution of reversed polarity EGM are symmetrical about their maximum. These paleomagnetic directional characteristics indicate that voluminous phase-1 deposits of the Cerros del Rio volcanic field probably erupted episodically during short time intervals and that several individual

  9. Self-similar clustering of cinder cones and crust thickness in the Michoacan-Guanajuato and Sierra de Chichinautzin volcanic fields, Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Ferrari, Luca; Isola, Ilaria

    2010-04-01

    The spatial clustering of basaltic vents in monogenetic volcanic fields has been used as a proxy for crustal thickness in extensional and back-arc tectonic settings. The basaltic vents have a fractal clustered distribution (self-similar clustering) described by a power-law. The power-law is defined over a range, the size range of the distribution, of values (in this case the vents' separation) delimited by a lower and an upper cut-offs. Here we apply the fractal clustering analysis to the two largest monogenetic volcanic fields of the Trans-Mexican Volcanic Belt (TMVB), a continental arc built on different crustal terranes. The Michoacan-Guanajuato volcanic field (MGVF), located in the central-western TMVB, includes over 1000 vents of late Pliocene to Quaternary age, built on attenuated crust of Mesozoic to Tertiary age. The Sierra de Chichinautzin volcanic field (SCVF), in the central-eastern TMVB, is composed of ~ 220 Late Pleistocene to Holocene vents laying above thicker crust of Precambrian to Tertiary age. Monogenetic vents in both volcanic fields show self-similar clustering with fractal exponent D = 1.67 in the range 1.3-38 km (MGVF) and D = 1.56 in the range 1.5-32 km (SCVF). The upper cut-off (Uco) for the power-law distribution of the MGVF well fits the crustal thickness below the volcanic field as derived from independent geophysical data. The Uco value of SCVF indicates a crust thickness of about 32 km, this value is in agreement with new geophysical data that indicate magma underplating the crust beneath the volcanic field area.

  10. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  11. The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina

    NASA Astrophysics Data System (ADS)

    Risso, Corina; Németh, Károly; Combina, Ana María; Nullo, Francisco; Drosina, Marina

    2008-01-01

    The Plio-Pleistocene Llancanelo Volcanic Field, together with the nearby Payun Matru Field, comprises at least 800 scoria cones and voluminous lava fields that cover an extensive area behind the Andean volcanic arc. Beside the scoria cones in the Llancanelo Field, at least six volcanoes show evidence for explosive eruptions involving magma-water interaction. These are unusual in the context of the semi-arid climate of the eastern Andean ranges. The volcanic structures consist of phreatomagmatic-derived tuff rings and tuff cones of olivine basalt composition. Malacara and Jarilloso tuff cones were produced by fallout of a range of dry to wet tephra. The Malacara cone shows more evidence for a predominance of wet-emplaced units, with a steep slump-slope characterized by many soft-sediment deformation structures, such as: undulating bedding planes, truncated beds and water escape features. The Piedras Blancas and Carapacho tuff rings resulted from explosive eruptions with deeper explosion loci. These cones are hence dominated by lapilli tuff and tuff units, emplaced mainly by wet and/or dry pyroclastic surges. Carapacho is the only centre that appears to have started with phreatomagmatic eruptions, with lowermost tephra being rich in non-volcanic country rocks. The presence of deformed beds with impact sags, slumping textures, asymmetrical ripples, dunes, cross- and planar lamination, syn-volcanic faulting and accretionary lapilli beds indicate an eruption scenario dominated by excessive water in the transportational and depositional regime. This subordinate phreatomagmatism in the Llancanelo Volcanic Field suggests presence of ground and/or shallow surface water during some of the eruptions. Each of the tuff rings and cones are underlain by thick, fractured multiple older lava units. These broken basalts are inferred to be the horizons where rising magma interacted with groundwater. The strong palagonitization at each of the phreatomagmatic cones formed hard beds

  12. Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua

    NASA Astrophysics Data System (ADS)

    Avellán, Denis Ramón; Macías, José Luis; Pardo, Natalia; Scolamacchia, Teresa; Rodriguez, Dionisio

    2012-02-01

    The Nejapa Volcanic Field (NVF) is located on the western outskirts of Managua, Nicaragua. It consists of at least 30 volcanic structures emplaced along the N-S Nejapa fault, which represents the western active edge of the Managua Graben. The study area covers the central and southern parts of the volcanic field. We document the basic geomorphology, stratigraphy, chemistry and evolution of 17 monogenetic volcanic structures: Ticomo (A, B, C, D and E); Altos de Ticomo; Nejapa; San Patricio; Nejapa-Norte; Motastepe; El Hormigón; La Embajada; Asososca; Satélite; Refinería; and Cuesta El Plomo (A and B). Stratigraphy aided by radiocarbon dating suggests that 23 eruptions have occurred in the area during the past ~ 34,000 years. Fifteen of these eruptions originated in the volcanic field between ~ 28,500 and 2,130 yr BP with recurrence intervals varying from 400 to 7,000 yr. Most of these eruptions were phreatomagmatic with minor strombolian and fissural lava flow events. A future eruption along the fault might be of a phreatomagmatic type posing a serious threat to the more than 500,000 inhabitants in western Managua.

  13. Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) measured by satellite radar interferometry

    NASA Astrophysics Data System (ADS)

    Feigl, K.; Ali, T.; Singer, B. S.; Pesicek, J. D.; Thurber, C. H.; Jicha, B. R.; Lara, L. E.; Hildreth, E. W.; Fierstein, J.; Williams-Jones, G.; Unsworth, M. J.; Keranen, K. M.

    2011-12-01

    The Laguna del Maule (LdM) volcanic field of the Andean Southern Volcanic Zone extends over 500 square kilometers and comprises more than 130 individual vents. As described by Hildreth et al. (2010), the history has been defined from sixty-eight Ar/Ar and K-Ar dates. Silicic eruptions have occurred throughout the past 3.7 Ma, including welded ignimbrite associated with caldera formation at 950 ka, small rhyolitic eruptions between 336 and 38 ka, and a culminating ring of 36 post-glacial rhyodacite and rhyolite coulees and domes that encircle the lake. Dating of five post-glacial flows implies that these silicic eruptions occurred within the last 25 kyr. Field relations indicate that initial eruptions comprised modest volumes of mafic rhyodacite magma that were followed by larger volumes of high silica rhyolite. The post-glacial flare-up of silicic magmatism from vents distributed around the lake, is unprecedented in the history of this volcanic field. Using satellite radar interferometry (InSAR), Fournier et al. (2010) measured uplift at a rate of more than 180 mm/year between 2007 and 2008 in a round pattern centered on the west side of LdM. More recent InSAR observations suggest that rapid uplift has continued from 2008 through early 2011. In contrast, Fournier et al. found no measurable deformation in an interferogram spanning 2003 through 2004. In this study, we model the deformation field using the General Inversion of Phase Technique (GIPhT), as described by Feigl and Thurber (2009). Two different models fit the data. The first model assumes a sill at ~5 km depth has been inflating at a rate of more than 20 million cubic meters per year since 2007. The second model assumes that the water level in the lake dropped at a rate of 20 m/yr from January 2007 through February 2010, thus reducing the load on an elastic simulation of the crust. The rate of intrusion inferred from InSAR is an order of magnitude higher than the average rate derived from well-dated arc

  14. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  15. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-05-01

    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  16. Development and relationship of monogenetic and polygenetic volcanic fields in time and space.

    NASA Astrophysics Data System (ADS)

    Germa, Aurelie; Connor, Chuck; Connor, Laura; Malservisi, Rocco

    2013-04-01

    The classification of volcanic systems, developed by G. P. L. Walker and colleagues, relates volcano morphology to magma transport and eruption processes. In general, distributed monogenetic volcanic fields are characterized by infrequent eruptions, low average output rate, and a low spatial intensity of the eruptive vents. In contrast, central-vent-dominated systems, such as stratovolcanoes, central volcanoes and lava shields are characterized by frequent eruptions, higher average flux rates, and higher spatial intensity of eruptive vents. However, it has been observed that a stratovolcano is often associated to parasitic monogenetic vents on its flanks, related to the central silicic systems, and surrounded by an apron of monogenetic edifices that are part of the volcanic field but independent from the principal central system. It appears from spatial distribution and time-volume relationships that surface area of monogenetic fields reflects the lateral extent of the magma source region and the lack of magma focusing mechanisms. In contrast, magma is focused through a unique conduit system for polygenetic volcanoes, provided by a thermally and mechanically favorable pathway toward the surface that is maintained by frequent and favorable stress conditions. We plan to relate surface observations of spatio-temporal location of eruptive vents and evolution of the field area through time to processes that control magma focusing during ascent and storage in the crust. We choose to study fields that range from dispersed to central-vent dominated, through transitional fields (central felsic system with peripheral field of monogenetic vents independent from the rhyolitic system). We investigate different well-studied volcanic fields in the Western US and Western Europe in order to assess influence of the geodynamic setting and tectonic stress on the spatial distribution of magmatism. In summary, incremental spatial intensity maps should reveal how fast a central conduit

  17. The craniofacial team and the Navajo patient.

    PubMed

    Smoot, E C; Kucan, J O; Cope, J S; Aase, J M

    1988-10-01

    The craniofacial team at the University of New Mexico Medical Center in Albuquerque, New Mexico has treated a large population of Navajo Indians. Team awareness of the Navajo concept of health as man in balance with his environment has resulted in more expedient treatment of the Navajo children. An understanding of Navajo concerns with ghosts, skinwalkers, and rules for orderly living has allowed team members to integrate the family and the Navajo medicine man in caring for the children with craniofacial disease. Special concerns for informed surgical consent and genetic counseling of the Navajo are reviewed. Respect for the traditional Navajo healing ceremonies and special handling of disposed body parts in surgery are required of the health professionals caring for these people.

  18. Tough Issues for Navajo Youth and Navajo Schools. Draft.

    ERIC Educational Resources Information Center

    Trotter, Robert T., II; And Others

    In 1990, the Native American Prevention Project of AIDS and Substance Abuse began to develop, implement, and evaluate culturally sensitive in-school prevention programs for Navajo youth and their families. This project paper combines ethnographic interviews and observations with baseline quantitative data collection. A baseline survey of 174 9th-…

  19. NAVAJO MADE EASIER--A COURSE IN CONVERSATIONAL NAVAJO.

    ERIC Educational Resources Information Center

    GOOSSEN, IRVY W.

    THIS TEXT IS DESIGNED TO INTRODUCE THE BASIC VOCABULARY OF NAVAHO (NAVAJO) IN CONVERSATIONAL FORM. EACH OF THE 64 SHORT LESSON UNITS CONTAINS A PAGE OF QUESTION-AND-RESPONSE PATTERNS IN NAVAHO (TRANSLATED IN ENGLISH ON THE NEXT PAGE), FOLLOWED BY DESCRIPTIVE GRAMMATICAL EXPLANATIONS AND OCCASIONAL COMMENTS ON NAVAHO USAGE AND CULTURE. A…

  20. Volcanic hazard assessment in the Phlegraean Fields: a contribution based on stratigraphic and historical data

    NASA Astrophysics Data System (ADS)

    Rosi, M.; Santacroce, R.

    1984-06-01

    Phenomena occurring since 1982 in the Phlegraean Fields, interpreted as precursors of a potential renewal of volcanic activity, have forced us to anticipate some conclusions of a volcanic-hazard study based on the reconstruction of past eruptions in the area, to serve as basis for civil defense preparedness plans. The eruptive history of the Phlegraean Fields suggests a progressive decrease with time in the strength of eruptive phenomena paralleling a migration of vents towards the center of the Phlegraean caldera. Studies concerning the volcanic risk zonation were therefore concentrated on activities during the last 4,500 years and two eruptions (Monte Nuovo and Agnano Monte Spina), that occurred in 1538 and 4,400 years B.P., respectively were selected as the «reference eruptions» from which possible eruption scenarios were drawn.

  1. The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana

    USGS Publications Warehouse

    Christiansen, Robert L.

    2001-01-01

    This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.

  2. Resolving the architecture of monogenetic feeder systems from exposures of extinct volcanic fields

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Van Eaton, A. R.; Re, G.; White, J. D. L.; Ort, M. H.

    2016-12-01

    Monogenetic volcanic fields pose hazards to a number of major cities worldwide. During an eruption, the evolution of the intrusive feeder network modulates eruption behavior and location, as well as the warning signs of impending activity. However, historical examples of monogenetic eruptions are rare, particularly those monitored with the modern tools required to constrain the geometry and interconnectivity of subsurface intrusive feeders (e.g., InSAR, GPS). Geologic exposures in extinct fields around the Colorado Plateau provide clues to the geometry of shallow intrusions (<1000 m depth) that feed monogenetic volcanoes. We present field- and satellite-based observations of exposed intrusions in the Hopi Buttes volcanic field (Arizona), which reveal that many eruptions were fed by interconnected dike-sill systems. Results from the Hopi Buttes show that volcanic cone alignment studies are biased to the identification of dike intrusions, and thereby neglect the important contributions of sills to shallow feeder systems. For example, estimates of intruded volumes in fields exhumed by uplift and erosion in Utah and Arizona show that sills make up 30 - 92% of the shallow intruded volume within 1000 m of the paleosurface. By transporting magma toward and away from eruptive conduits, these sills likely played a role in modulating eruption styles (e.g., explosive vs effusive) and controlling lateral vent migrations. Sill transitions at Hopi Buttes would have produced detectable surface uplifts, and illustrate the importance of geological studies for informing interpretations of geodetic and seismological data during volcanic crises.

  3. GIS methods applied to the degradation of monogenetic volcanic fields: A case study of the Holocene volcanism of Gran Canaria (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Gonzalez, A.; Fernandez-Turiel, J. L.; Perez-Torrado, F. J.; Aulinas, M.; Carracedo, J. C.; Gimeno, D.; Guillou, H.; Paris, R.

    2011-11-01

    Modeling of volcanic morphometry provides reliable measurements of parameters that assist in the determination of volcanic landform degradation. Variations of the original morphology enable the understanding of patterns affecting erosion and their development, facilitating the assessment of associated hazards. A total of 24 volcanic Holocene eruptions were identified in the island of Gran Canaria (Canary Islands, Spain). 87% of these eruptions occurred in a wet environment while the rest happened in a dry environment. 45% of Holocene eruptions are located along short barrancos (S-type, less than 10 km in length), 20% along large barrancos (L-type, 10-17 km in length) and 35% along extra-large barrancos (XL-type, more than 17 km in length). The erosional history of Holocene volcanic edifices is in the first stage of degradation, with a geomorphic signature characterized by a fresh, young cone with a sharp profile and a pristine lava flow. After intensive field work, a careful palaeo-geomorphological reconstruction of the 24 Holocene eruptions of Gran Canaria was conducted in order to obtain the Digital Terrain Models (DTMs) of the pre- and post-eruption terrains. From the difference between these DTMs, the degradation volume and the incision rate were obtained. The denudation of volcanic cones and lava flows is relatively independent both their geographical location and the climatic environment. However, local factors, such as pre-eruption topography and ravine type, have the greatest influence on the erosion of Holocene volcanic materials in Gran Canaria. Although age is a key factor to help understand the morphological evolution of monogenetic volcanic fields, the Gran Canaria Holocene volcanism presented in this paper demonstrates that local and regional factors may determine the lack of correlation between morphometric parameters and age. Consequently, the degree of transformation of the volcanic edifices evolves, in many cases, independently of their age.

  4. New Paper Words: Historical Images of Navajo Literacy.

    ERIC Educational Resources Information Center

    Lockard, Louise

    1996-01-01

    Weaves a Navajo elementary teacher's anecdotes from her own and her father's educational experiences with archival materials to provide a historical context for Navajo literacy. Discusses early written Navajo; the role of schools and churches in the expansion of written Navajo; and the advancement of Navajo linguistics during John Collier's…

  5. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  6. Navajo use of native healers.

    PubMed

    Kim, C; Kwok, Y S

    1998-11-09

    Although the Indian Health Service provides extensive health care service to Navajo people, the role of native healers, or medicine men, has not been quantitatively described. To determine the prevalence of native healer use, the reasons for use, cost of use, and the nature of any conflict with conventional medicine. We conducted a cross-sectional interview of 300 Navajo patients seen consecutively in an ambulatory care clinic at a rural Indian Health Service hospital. Sixty-two percent of Navajo patients had used native healers and 39% used native healers on a regular basis; users were not distinguishable from nonusers by age, education, income, fluency in English, identification of a primary provider, or compliance, but Pentecostal patients used native healers less than patients of other faiths. Patients consulted native healers for common medical conditions such as arthritis, depression, and diabetes mellitus as well as "bad luck." Perceived conflict between native healer advice and medical provider advice was rare. Cost was the main barrier to seeking native healer care. Among the Navajo, use of native healers for medical conditions is common and is not related to age, sex, or income but is inversely correlated with the Pentecostal faith; use of healers overlaps with use of medical providers for common medical conditions. Patients are willing to discuss use of native healers and rarely perceive conflict between native healer and conventional medicine. This corroborates other research suggesting that alternative medicine is widely used by many cultural groups for common diseases.

  7. Navajo Perception of Anglo Medicine.

    ERIC Educational Resources Information Center

    Mico, Paul R.

    Understanding how the American Indian perceives the health and medical programs of the Anglo culture is the key to the United States Public Health Service in being able to raise the Indian's level of health to that of the general population. Vast differences between the American Indian, as represented by the Navajo, and the non-Indian are found in…

  8. Traditional Navajo Maps and Wayfinding

    ERIC Educational Resources Information Center

    Francis, Harris; Kelley, Klara

    2005-01-01

    An example of the way finding process when using verbal and other traditional maps among the Navajo Indians of the southwestern United States is presented. The scholarly literature on the Southwest offers examples of verbal maps that construct both linear space, such as trails, and broad geographical space, including hunting territories and large…

  9. Elementary Guidance Program. Navajo Area.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Window Rock, AZ.

    A program designed to assist guidance staff in working with Navajo elementary school students, particularly boarding school students, is presented in this booklet with emphasis directed toward meeting both individual and group needs in the areas of home living, student activities, and counseling. The first section gives 14 separate functions of…

  10. Navajos and National Nuclear Policy.

    ERIC Educational Resources Information Center

    Barry, Tom

    1979-01-01

    Describes the history of nuclear development in New Mexico, notes the cumulative detrimental effect on the Navajo Nation, and emphasizes federal inaction regarding health and safety standards and regulation in the nuclear power industry. Journal availability: see RC 503 522. (SB)

  11. Dinetah: Navajo History. Volume II.

    ERIC Educational Resources Information Center

    Roessel, Robert A., Jr.

    Using archaeological data, written chronicles of Spanish explorers and missionaries, and oral narratives and legends, the book traces the history of the Navajo people to their original homeland, Dinetah, located primarily off the present reservation in an area south and east of Farmington, New Mexico. The book discusses various theories on Navajo…

  12. Navajos and National Nuclear Policy.

    ERIC Educational Resources Information Center

    Barry, Tom

    1979-01-01

    Describes the history of nuclear development in New Mexico, notes the cumulative detrimental effect on the Navajo Nation, and emphasizes federal inaction regarding health and safety standards and regulation in the nuclear power industry. Journal availability: see RC 503 522. (SB)

  13. So Many Kinds of Navajos.

    ERIC Educational Resources Information Center

    Underhill, Ruth

    Written for both American Indian and non-Indian school children, the purpose of this book is to present a picture of the varied ways of life on the Navajo Reservation in 1970. Facts relating to health, education, employment, and living conditions are presented from the viewpoint of Denny Lincoln, a 12 year old orphan who is placed in a Navajo…

  14. Geologic features of Wudalianchi volcanic field, northeastern China: Implications for Martian volcanology

    NASA Astrophysics Data System (ADS)

    Xiao, Long; Wang, Chunzeng

    2009-05-01

    Wudalianchi volcanic field, located in northeast China, consists of 14 Quaternary volcanoes with each volcano as a steep-sided scoria cone surrounded by gently sloping lava flows. Each cone is topped with a bowl-shaped or funnel-shaped crater. The volcanic cones are constructed by the accumulation of tephra and other ejecta. In this paper, their geologic features have been investigated and compared with some Martian volcanic features at Ascraeus Mons volcanoes observed on images obtained from High-Resolution Imaging Science Experiments (HiRISE), Mars Orbiter Camera (MOC), Context Imager (CTX) and Thermal Emission Imaging System (THEMIS). The results show that both Wudalianchi and Ascraeus Mons volcanoes are basaltic, share similar eruptive and geomorphologic features and eruptive styles, and have experienced multiple eruptive phases, in spite of the significant differences in their dimension and size. Both also show a variety of eruptive styles, such as fissure and central venting, tube-fed and channel-fed lava flows, and probably pyroclastic deposits. Three volcanic events are recognized at Ascraeus Mons, including an early phase of shield construction, a middle eruptive phase forming a low lava shield, and the last stage with aprons mantling both NE and SW flanks. We suggest that magma generation at both Wudalianchi and Ascraeus Mons might have been facilitated by an upwelling mantle plume or upwelling of asthenospheric mantle, and a deep-seated fault zone might have controlled magma emplacement and subsequent eruptions in Ascraeus Mons as observed in the Wudalianchi field, where the volcanoes are constructed along the northeast-striking faults. Fumarolic cones produced by water/magma interaction at the Wudalianchi volcanic field may also serve as an analogue for the pseudocraters identified at Isidis and Cerberus Planitia on Mars, suggesting existence of frozen water in the ground on Mars during Martian volcanic eruptions.

  15. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    USGS Publications Warehouse

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  16. Geochemistry of Spencer-High Point Volcanic Field Lava Flows, Idaho

    NASA Astrophysics Data System (ADS)

    Iwahashi, G. S.; Hughes, S. S.

    2007-12-01

    Lava flows in Spencer-High Point (SHP) volcanic field, an ~1700 sq km mafic volcanic rift zone located near Yellowstone in the eastern Snake River Plain (ESRP), have been compared physically and chemically to other ESRP olivine tholeiites. Overall, SHP lavas are geochemically similar to other ESRP olivine tholeiites but their geomorphology is entirely different. The structural alignment of vents and fissures in an east-west direction in the Spencer-High Point region contrasts with most of the ESRP volcanic features aligned northwest-southeast. Numerous cinder cones at SHP, features that characterize Craters of the Moon volcanic field, are unusual on most of the eastern Snake River Plain. This study agrees with preliminary geochemical data by Leeman (1982) and Kuntz et al. (1992) suggesting that SHP lavas are typical ESRP basalts. However, a broad range of geochemical compositions exists in the SHP field that is similar to the entire range of ESRP olivine tholeiites. A few of the samples are actually closer in composition to lavas present at Craters of the Moon but only a limited number of samples from vents with physically higher relief, in the central and eastern portions of the field show these evolved chemical compositions. Typically Ta ranges 0.5-4.5ppm, La 20-90ppm, Ba 200-1100ppm and Cr 7-550ppm. Some lava flows in the central and eastern sections of SHP volcanic field also contain crustal xenoliths, implying a prolonged crustal history. These results although preliminary, suggest that the SHP system represents a possible petrologic transition between the dominant ESRP tholeiites and the evolved compositions found at Craters of the Moon.

  17. Measurements and Slope Analyses of Quaternary Cinder Cones, Camargo Volcanic Field, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Gallegos, M. I.; Espejel-Garcia, V. V.

    2012-12-01

    The Camargo volcanic field (CVF) covers ~3000 km2 and is located in the southeast part of the state of Chihuahua, within the Basin and Range province. The CVF represents the largest mafic alkali volcanic field in northern Mexico. Over a 300 cinder cones have been recognized in the Camargo volcanic field. Volcanic activity ranges from 4.7 to 0.09 Ma revealed by 40Ar/39Ar dating methods. Previous studies say that there is a close relationship between the cinder cone slope angle, due to mechanical weathering, and age. This technique is considered a reliable age indicator, especially in arid climates, such as occur in the CVF. Data were acquired with digital topographic maps (DRG) and digital elevation models (DEM) overlapped in the Global Mapper software. For each cone, the average radius (r) was calculated from six measurements, the height (h) is the difference between peak elevation and the altitude of the contour used to close the radius, and the slope angle was calculated using the equation Θ = tan-1(h/r). The slope angles of 30 cinder cones were calculated showing angles ranging from 4 to 15 degrees. A diffusion model, displayed by an exponential relationship between slope angle and age, places the ages of these 30 cones from 215 to 82 ka, within the range marked by radiometric methods. Future work include the analysis of more cinder cones to cover the whole CVF, and contribute to the validation of this technique.

  18. Analysis of well logging methods in volcanic and volcano sedimentary rocks from Pina petroleum field

    SciTech Connect

    Rodriquez, N.

    1996-09-01

    Petrophysical, petrological and geophysical methods have been applied to prospecting and well logging for several petroleum fields in Cuba. The most common reservoir in these fields are carbonate rocks. However, the Pina field, in the Central region of the island, distinguishes itself by the good quality of the oil and the volcano sedimentary and volcanic character of the reservoirs. These rocks have peculiar geophysical responses, which is why the study of these methods and the development of the interpretation methods is very important. Integrated geological and geophysical information was necessary during the drilling of wells in the Pina field in order to evaluate the hydrocarbon potential. GEONUC code permits us to use different ways to solve questions about interpretation of well logging in the volcanic sedimentary rocks. This code gives us the opportunity to analyze complex methods.

  19. The Central Sierra Nevada Volcanic Field: A Geochemical Study of a Transitional Arc

    NASA Astrophysics Data System (ADS)

    Jean, M. M.; Putirka, K.; Busby, C.; Hagan, J.

    2006-12-01

    The Central Sierra Nevada (CSN) offers evidence about the effects of an arc/post-arc transition, which occurred in the middle to late Miocene. With passage of the Mendocino Triple Junction (MTJ), there should be a reflection of this new tectonic regime in the geochemistry of the resulting volcanic rocks. We conducted a search for systematic changes in magma chemistry, with regard to time and/or geography that may yield clues regarding tectonic origin, post 6 M.a. Major oxide and trace element analysis of 42 volcanic rock samples from the Sierra Nevada have been collected to assess the characteristics of ancestral Cascade volcanism. Major oxide element variation of 35 samples displayed high total alkalis (Na2O + K2O), medium to high K calc-alkaline compositions, and lavas that range from 50-75 wt% SiO2; all key signatures for Cascade volcanism. The remaining 7 samples displayed tholeiitic affinities. We looked for distinct chemical signatures to examine whether CSN volcanism was indicative of arcs. Spider-diagrams assisted in illustrating that the CSN suite is enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE). Arcs contain Ba/Nb between 52 and 151 (Lange et. al., 1996), low Zr/Ba ratios, Y + Nb from 10 to 100 ppm, and high Sr/P2O5 ratios. The CSN volcanic field has geochemical characteristics that agree with each of these criteria that define subduction-related lavas. Two models were tested to explain the evolution of the CSN suite: fractional crystallization (FC) and combined assimilation-fractional crystallization (AFC). FC better explains both major oxide and trace element variations, compared to AFC. Our initial magma crystallized along the following liquid line of descent: ol+cpx, ol+cpx+plag, ol+cpx+plag+opx+hbl, ol+cpx+plag+opx+hbl+mag+ap.

  20. Volcano-structural analysis of La Garrotxa Volcanic Field (NE Iberia): Implications for the plumbing system

    NASA Astrophysics Data System (ADS)

    Bolós, Xavier; Martí, Joan; Becerril, Laura; Planagumà, Llorenç; Grosse, Pablo; Barde-Cabusson, Stéphanie

    2015-02-01

    The Garrotxa Volcanic Field is related to the Neogene-Quaternary European Rift system and is the youngest representation of monogenetic volcanism in the Iberian Peninsula. It encompasses over 50 eruptive vents, most of them well-preserved cones, in an area of about 600 km2 lying between the cities of Olot and Girona (NE Spain). In this paper we investigate the relationship between the Neogene extensional tectonics and the spatial distribution of the volcanoes in the area. The analysis includes the distribution of faults, fissures and vents, as well as morphostructural lineaments, and the morphometrical analysis of volcanic cones and craters. In addition, we use the location of the regional seismicity recorded since 1978 and the sites of freshwater springs and mantle-derived gases as indicators of active faults and open fractures. Finally, we consider the location of ultramafic xenoliths within volcanic deposits as a way of identifying the deepest fractures in the zone and estimating magma ascent velocities. The results obtained show that this volcanic area consists of an extensional basin delimited by two principal NW-SE faults that favoured the ascent of magma from either the source region or from shallower reservoirs located at the base of the crust. Towards the upper part of the crust, magma transport was captured by shallow secondary extensional NNW-SSE striking faults whose formation is linked to the slight transtensional movement of the main bounding faults. Our study provides evidence of how the local stress field and contrasts in substrate stratigraphy could have controlled magma migration, which suggests that precise knowledge of the stress configuration, substrate geology and structural discontinuities in such regions is crucial in the forecasting of monogenetic volcanism.

  1. Navajo Tribal Utility Authority (NTUA) Northern Edge Navajo Casino; NPDES Permit

    EPA Pesticide Factsheets

    EPA issuing notice of proposed action under Clean Water Act (CWA) to reopen NPDES permit NN0030343 issued to NTUA Northern Edge Navajo Casino Wastewater Treatment Plant, Upper Fruitland, San Juan County, New Mexico, in the Navajo Nation.

  2. Navajo Tribal Utility Authority Northern Edge Navajo Casino WWTF, Fruitland, NM: NN0030343

    EPA Pesticide Factsheets

    NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0030343) to the Navajo Tribal Utility Authority Northern Edge Navajo Casino Wastewater Treatment Facility, 2752 Indian Service Road 36, Fruitland, NM.

  3. Anomalous Geologic Setting of the Spencer-High Point Volcanic Field, Eastern Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Iwahashi, G. S.; Hughes, S. S.

    2006-12-01

    The Spencer-High Point (SHP) volcanic field comprises an ~1700 sq km mafic volcanic rift zone located near Yellowstone in the eastern Snake River Plain (ESRP). SHP lava flows are both similar to and distinct from typical olivine tholeiite lavas of the ESRP. SHP has unique physical volcanic features characterized by numerous cinder cones and short lava flows; whereas, spatter ramparts, fissures and longer flows dominate in other ESRP regions. Topography and aerial photos indicate that vents are generally aligned northwest- southeast, which is sub-parallel to adjacent Basin and Range faults in much of the ESRP. Yet individual vents and other structural elements in SHP where Basin and Range, ESRP and thrust-faulted mountain belts all intersect, are elongated in a more east-west direction. Distinct structural control is manifested in an overall southward slope over the entire volcanic field. Short lava flows tend to flow north or south off of a central topographically higher zone of overlapping lava flows and smaller vents. Several smaller vents appear to be parasitic cones adjacent to larger eruptive centers. Contrary to these relations, preliminary geochemical data by Leeman (1982) and Kuntz et al. (1992) suggest SHP lavas are typical ESRP olivine tholeiite basalts, which notably have coarsely diktytaxitic texture. The central and eastern sections of the SHP field contain lavas with large (3-8cm), clear, euhedral plagioclase phenocrysts but without diktytaxitic texture. Lava flows in the central and eastern sections of SHP volcanic field are pahoehoe. These also contain crustal xenoliths implying a prolonged crustal history. Geochemical whole rock and microprobe analyses are currently being processed for petrogenetic history.

  4. The Carrán-Los Venados volcanic field and its relationship with coeval and nearby polygenetic volcanism in an intra-arc setting

    NASA Astrophysics Data System (ADS)

    Bucchi, Francisco; Lara, Luis E.; Gutiérrez, Francisco

    2015-12-01

    Understanding the relationship between monogenetic and polygenetic volcanism has been a long-standing goal in volcanology, especially in cases where these two styles of volcanism are coeval and geographically adjacent. We studied the Carrán-Los Venados (CLV) volcanic field and made comparisons with published data on CLV's polygenetic neighbor Puyehue-Cordón Caulle (PCC) in the Southern Andean arc, using quantitative tools and recent numerical simulations of magma reservoir formation. CLV is a basaltic to basaltic andesitic volcanic field composed of 65 post-glacial scoria cones and maars and a 1-km-high Pleistocene stratovolcano, whereas PCC is a basaltic to rhyolitic composite volcano. Our results point to three main differences between CLV and PCC: (1) the CLV magmas differentiate at low-crustal reservoirs, followed by rapid ascent to the surface, while the PCC magmas stagnate and differentiate in lower- and upper-crustal reservoirs; (2) CLV is elongated in the NE direction while PCC is elongated in the NW direction. Under the current stress field (N60°E σHmax), these two volcanic alignments correspond, respectively, to local extensional and compressive deformation zones within the arc; and (3), the post-glacial CLV magma flux was estimated to be 3.1 ± 1.0 km3/ky, which is similar to the average magma flux estimated for PCC; however, the PCC magma flux is estimated at approximately twice this value during peak eruptive periods (5.5 ± 1.1 km3/ky). Based on numerical simulations, CLV is in a limit situation to create and sustain a mush-type upper-crustal reservoir containing highly crystalline magma, which is however not eruptible. The PCC volcanic system would have been able to create a stable reservoir containing eruptible silicic magma during periods of peak magma flux. We postulate that monogenetic volcanism occurs at CLV due to both low magma flux and an extensional/transtensional regime that favors rapid magma rise without storage and differentiation in

  5. A first hazard analysis of the Harrat Ash Shamah volcanic field, Syria-Jordan Borderline

    NASA Astrophysics Data System (ADS)

    Cagnan, Zehra; Akkar, Sinan; Moghimi, Saed

    2017-04-01

    The northernmost part of the Saudi Cenozoic Volcanic Fields, the 100,000 km2 Harrat Ash Shamah has hosted some of the most recent volcanic eruptions along the Syria-Jordan borderline. With rapid growth of the cities in this region, exposure to any potential renewed volcanism increased considerably. We present here a first-order probabilistic hazard analysis related to new vent formation and subsequent lava flow from Harrat Ash Shamah. The 733 visible eruption vent sites were utilized to develop a probability density function for new eruption sites using Gaussian kernel smoothing. This revealed a NNW striking zone of high spatial hazard surrounding the cities Amman and Irbid in Jordan. The temporal eruption recurrence rate is estimated to be approximately one vent per 3500 years, but the temporal record of the field is so poorly constrained that the lower and upper bounds for the recurrence interval are 17,700 yrs and 70 yrs, respectively. A Poisson temporal model is employed within the scope of this study. In order to treat the uncertainties associated with the spatio-temporal models as well as size of the area affected by the lava flow, the logic tree approach is adopted. For the Syria-Jordan borderline, the spatial variation of volcanic hazard is computed as well as uncertainty associated with these estimates.

  6. Navajo-Hopi Land Dispute: Impact of Forced Relocation on Navajo Families.

    ERIC Educational Resources Information Center

    Gilbert, Betty Beetso

    Emphasizing the fact that the Federal government has failed to recognize the inherent differences of the Hopi and Navajo lifestyles, this study examines the century-old Navajo-Hopi American Indian land dispute; the literature on forced removal of peoples; multi-dimensional stressors associated with the forced relocation of 15 Navajo families; and…

  7. Traders on the Navajo Reservation. A Report on the Economic Bondage of the Navajo People.

    ERIC Educational Resources Information Center

    Southwestern Indian Development, Inc., Window Rock, AZ.

    Conducted in 1969 by 8 Navajo students, this study investigates the Anglo trader in terms of his socioeconomic influence on the American Indians of the Navajo Reservation. Limited to 30 randomly selected trading posts located in the central and eastern portions of the Navajo Reservation, this study reflects findings derived from personal…

  8. Internal architecture of the Tuxtla volcanic field, Veracruz, Mexico, inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Espindola, Juan Manuel; Lopez-Loera, Hector; Mena, Manuel; Zamora-Camacho, Araceli

    2016-09-01

    The Tuxtla Volcanic Field (TVF) is a basaltic volcanic field emerging from the plains of the western margin of the Gulf of Mexico in the Mexican State of Veracruz. Separated by hundreds of kilometers from the Trans-Mexican Volcanic Belt to the NW and the Chiapanecan Volcanic Arc to the SE, it stands detached not only in location but also in the composition of its rocks, which are predominantly alkaline. These characteristics make its origin somewhat puzzling. Furthermore, one of the large volcanoes of the field, San Martin Tuxtla, underwent an eruptive period in historical times (CE 1793). Such volcanic activity conveys particular importance to the study of the TVF from the perspective of volcanology and hazard assessment. Despite the above circumstances, few investigations about its internal structure have been reported. In this work, we present analyses of gravity and aeromagnetic data obtained from different sources. We present the complete Bouguer anomaly of the area and its separation into regional and residual components. The aeromagnetic data were processed to yield the reduction to the pole, the analytic signal, and the upward continuation to complete the interpretation of the gravity analyses. Three-dimensional density models of the regional and residual anomalies were obtained by inversion of the gravity signal adding the response of rectangular prisms at the nodes of a regular grid. We obtained a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between the Sontecomapan and Catemaco faults, which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. These fault systems along with magma intrusion at the lower crust are necessary features to

  9. Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, Raquel; Cañón-Tapia, Edgardo; Brandle, Jose Luis; Ortega-Rivera, M. Amabel; Lee, James K. W.; Spelz, Ronald M.; Hinojosa-Corona, Alejandro

    2010-04-01

    Because of its long-lived (Late Miocene to Pleistocene) post-subduction volcanic activity and location, the San Borja volcanic field (SBVF) is a key area for understanding the physical mechanisms controlling the spatial distribution of post-subduction volcanism on the Peninsula of Baja California. In this paper, we study the distribution and general characteristics of individual eruptive centers in the SBVF, aiming to provide insight into the changing physical nature of post-subduction magmatism and the control on vent location in a very unique tectonic setting. Volcanic activity has built more than 227 high-magnesium andesites (HMA) monogenetic scoria cones and thick lava flows capping large mesas during the last 12.5 Ma. The average (mean) eruptive center in the SBVF has a height of 85 m, a basal diameter of 452 m and a slope angle of 30°. Our volcanic alignment analysis of this field is based on field data, satellite images, and a quantitative method for detecting volcanic center alignments. The morphologic data, together with new 40Ar/ 39Ar geochronology data have been used to refine our alignment analysis and to better delineate the temporal evolution of post-subduction volcanic activity in this field. The available ages vary from 3.53 ± 0.18 to 10 ± 0.23 Ma suggesting that the long-lived HMA volcanism occurred almost continuously (with some concentration of pulses) throughout Late Miocene and extending to the Pleistocene and even into the Quaternary, replacing the arc-related activity of the Comondú arc which vanished in this area around 12.5 Ma. Alignment analysis confirms a NW-SE direction as the preferred orientation of volcanic alignments and shows that vent elongations do not display a strong parallelism in any particular direction, marking the absence of matches between lineaments defined by multiple vents and orientations of vent elongation. The results of the volcanic alignment analysis allowed us to infer the direction of the maximum

  10. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  11. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    SciTech Connect

    Moll-Stalcup, E.J.; Arth, J.G. )

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ({sup 87}Sr/{sup 86}Sr){sub i}, higher ({sup 143}Nd/{sup 144}Nd){sub i}, and moderate LREE and HREE contents (group 1), and a group having higher ({sup 87}Sr/{sup 86}Sr){sub i}, lower ({sup 143}Nd/{sup 144}Nd){sub i}, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 (({sup 87}Sr/{sup 86}Sr){sub i} = 0.7033; ({sup 143}Nd/{sup 144}Nd){sub i} = 0.5129), and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian continental middle or upper crust under this part of the volcanic field. However, the ultimate source of some of the rocks in the Yukon-Koyukuk province that have high {sup 87}Sr/{sup 86}Sr and low {sup 143}Nd/{sup 144}Nd ratios may be old sub-continental mantle and/or lower crust, which was previously subducted beneath the Yukon-Koyukuk province during Early Cretaceous arc-continent collision.

  12. The Eruptive History of the Talpa-Mascota-San Sebastian Volcanic Field in Western Mexico.

    NASA Astrophysics Data System (ADS)

    Ownby, S.; Lange, R.; Carmichael, I. S.; Hall, C.

    2004-12-01

    The eruptive history of the Talpa-Mascota-San Sebastian (TMSS) volcanic field in the Jalisco Block (JB) of western Mexico is presented. The JB is bounded by the Tepic-Zacoalco and Colima grabens, as well as the Middle America Trench where the Rivera plate subducts beneath North America. The TMSS volcanic field spans ˜2030 km2 and contains ˜123 small cones and flows of minette, absarokite, basic hornblende lamprophyre, basaltic andesite, and andesite. The petrology of these lavas is described in Lange and Carmichael (1990, 1991) and Carmichael et al. (1996). Of the ˜123 distinguishable eruptive units within this volcanic field, 26 samples have been dated by the 40Ar/39Ar method, and are combined with 10 dates from a previous abstract and nine dates from the literature (for a total of 45). The oldest lavas (2.35 to 0.5 Ma) are found in the Talpa region, whereas the youngest lavas (predominantly < 0.5 Ma) are found in the Mascota and San Sebastain regions to the north. There is thus a clear trend of volcanism becoming younger to the north, away from the trench. On the basis of these ages, field mapping, and the use of ortho airphotos and DEMs, it is estimated that a combined volume of < 12 km3 erupted in the last 1 Myr. The dominant lava type is basaltic andesite ( ˜44 %), followed by minette ( ˜20 %), basic, hornblende lamprophyre ( ˜17 %), andesite ( ˜13 %), and absarokite ( ˜6 %). Thus more than half of the eruptive material (57 %) is andesite and basaltic andesite, which erupted in close spatial and temporal association with the highly potassic lavas. There is no time progression to the type of magma erupted. The volumes of the potassic lava types are dwarfed by the amount of intermediate, calc-alkaline magma ( ˜360 km3) that has erupted over the same time period (< 1 Ma) within the Tepic-Zacoalco graben in western Mexico. These age results confirm that the potassic lavas of Mascota (not unlike those erupted 3-4 Myr ago in the Sierra Nevada batholith

  13. Origin of metaluminous and alkaline volcanic rocks of the Latir volcanic field, northern Rio Grande rift, New Mexico

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.

    1988-01-01

    Volcanic rocks of the Latir volcanic field evolved in an open system by crystal fractionation, magma mixing, and crustal assimilation. Early high-SiO2 rhyolites (28.5 Ma) fractionated from intermediate compositionmagmas that did not reach the surface. Most precaldera lavas have intermediate-compositions, from olivine basaltic-andesite (53% SiO2) to quartz latite (67% SiO2). The precaldera intermediate-composition lavas have anomalously high Ni and MgO contents and reversely zoned hornblende and augite phenocrysts, indicating mixing between primitive basalts and fractionated magmas. Isotopic data indicate that all of the intermediate-composition rocks studied contain large crustal components, although xenocrysts are found only in one unit. Inception of alkaline magmatism (alkalic dacite to high-SiO2 peralkaline rhyolite) correlates with, initiation of regional extension approximately 26 Ma ago. The Questa caldera formed 26.5 Ma ago upon eruption of the >500 km3 high-SiO2 peralkaline Amalia Tuff. Phenocryst compositions preserved in the cogenetic peralkaline granite suggest that the Amalia Tuff magma initially formed from a trace element-enriched, high-alkali metaluminous magma; isotopic data suggest that the parental magmas contain a large crustal component. Degassing of water- and halogen-rich alkali basalts may have provided sufficient volatile transport of alkalis and other elements into the overlying silicic magma chamber to drive the Amalia Tuff magma to peralkaline compositions. Trace element variations within the Amalia Tuff itself may be explained solely by 75% crystal fractionation of the observed phenocrysts. Crystal settling, however, is inconsistent with mineralogical variations in the tuff, and crystallization is thought to have occurred at a level below that tapped by the eruption. Spatially associated Miocene (15-11 Ma) lavas did not assimilate large amounts of crust or mix with primitive basaltic magmas. Both mixing and crustal assimilation processes

  14. Imaging subsurface density structure in Luynnier volcanic field, Saudi Arabia, using 3D gravity inversion technique

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; El-shrief, Adel; Alqahtani, Faisal; Mogren, Saad

    2017-04-01

    On 19 May, 2009, an earthquake of magnitude (M=5.4) shocked the most volcanically active recent basaltic fields, Luynnier volcanic field, northwestern Saudi Arabia. This event was the largest recorded one since long time ago. Government evacuated the surrounding residents around the epicenter for over 3 months away from any future volcanic activity. The seismic event caused damages to buildings in the village around the epicenter and resulted in surface fissure trending in NNW-SSE direction with about 8 km length. Seismologists from Saudi Geological Survey (SGS) worked out on locating the epicenter and the cause of this earthquake. They collected seismic data from Saudi Geological Surveys Station Network as well as installed broadband seismic stations around the region of the earthquake. They finally concluded that the main cause of the M=5.4 event is dike intrusion at depth of about 5 km (not reached to the surface). In the present work, we carried out detailed ground/airborne gravity survey around the surficial fissure to image the subsurface volcanic structure where about 380 gravity stations were recorded covering the main fissure in an area of 600 km2. Gravity data was analyzed using CET edge detection tools and 3D inversion technique. The results revealed that, there is a magma chamber/body beneath the surface at 5-20 km depth and the main reason for the M=5.4 earthquake is tectonic settings of the Red Sea. Additionally, the area is characterized by set of faults trending in NW direction, parallel to the Red Sea, and most of the volcanic cones were located on faults/contacts implying that, they are structurally controlled. The 8-km surficial crack is extended SE underneath the surface.

  15. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  16. Lithologic, age group, magnetopolarity, and geochemical maps of the Springerville Volcanic Field, east-central Arizona

    USGS Publications Warehouse

    Condit, Christopher D.; Crumpler, Larry S.; Aubele, Jayne C.

    1999-01-01

    The Springerville volcanic field is one of the many late Pliocene to Holocene, mostly basaltic, volcanic fields present near the Colorado Plateau margin (fig. 1, in pamphlet). The field overlies the lithospheric transition zone between the Colorado Plateau and the Basin and Range Province (Condit and others, 1989b). Establishing relations in time, space, and composition of the rocks of these plateau-margin fields offers the possibility to integrate more fully into a regional synthesis the detailed geochemistry of these fields now being examined (for example, Perry and others, 1987; Fitton and others, 1988; Menzies and others, 1991). The work also provides baseline information for understanding mantle properties and processes at different depths and locations. Because the Springerville field is the southernmost of the plateau-margin fields, and because it contains both tholeiitic and alkalic rocks (tables 1 and 2, in pamphlet), it is a particularly important location for establishing these patterns in time, space, and composition. Our four thematic maps of the Springerville field were compiled by using digital mapping techniques so that associated petrologic and chemical data could be conveniently included in a geographic information system for one of the plateau-margin fields. Parts of these maps have been included in Condit (1995), a stand-alone Macintosh2 computer program that takes advantage of their digital format.

  17. Thermal Fracturing of Volcanic Rocks for Geothermal Field Applications

    NASA Astrophysics Data System (ADS)

    Imaro, Tulus; Deon, Fiorenza; Bakker, Richard; Barnhoorn, Auke

    2017-04-01

    Thermal fracturing is considered to be a potential mechanism to create additional fractures in geothermal fields. The injected cold water into the hot host rock suddenly cools down the host rock, causing a considerable shrinkage of the material and thus potentially increased local stresses that may potentially lead to the formation of cooling related fractures. This is likely to happen in the near wellbore environment or along existing faults or fractures, ie. areas where the hot rocks juxtaposed to cold fluids. In this research, we experiment with thermal fracturing by exposing heated granitic and basaltic samples with cold water to see the extend of the thermal microfracturing inside the samples at different temperatures. Before and after the heat treatment, the micro CT-scanner is used to get high-resolution 3D images of fracture planes and fracture network connectivity. Moreover, the porosity is measured before and after treatment by using the pycnometer to see the effect of the different temperatures. In addition, the changes in geomechanical behaviour are tested by using an unconfined compressive strength (UCS) apparatus on heat treated and non-heat treated samples. We compare the changes in Young Modulus, Poisson's Ratio and ultimate strength of the various samples and record the influence of the thermal fractures on the stress-driven fracturing behaviour in the UCS test.

  18. Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Csillag, Gábor; Németh, Károly; Sebe, Krisztina; Balogh, Kadosa; Jáger, Viktor

    2010-09-01

    Bondoró Volcanic Complex (shortly Bondoró) is one of the most complex eruption centre of Bakony-Balaton Highland Volcanic Field, which made up from basaltic pyroclastics sequences, a capping confined lava field (~4 km2) and an additional scoria cone. Here we document and describe the main evolutional phases of the Bondoró on the basis of facies analysis, drill core descriptions and geomorphic studies and provide a general model for this complex monogenetic volcano. Based on the distinguished 13 individual volcanic facies, we infer that the eruption history of Bondoró contained several stages including initial phreatomagmatic eruptions, Strombolian-type scoria cones forming as well as effusive phases. The existing and newly obtained K-Ar radiometric data have confirmed that the entire formation of the Bondoró volcano finished at about 2.3 Ma ago, and the time of its onset cannot be older than 3.8 Ma. Still K-Ar ages on neighbouring formations (e.g. Kab-hegy, Agár-teto) do not exclude a long-lasting eruptive period with multiple eruptions and potential rejuvenation of volcanic activity in the same place indicating stable melt production beneath this location. The prolonged volcanic activity and the complex volcanic facies architecture of Bondoró suggest that this volcano is a polycyclic volcano, composed of at least two monogenetic volcanoes formed more or less in the same place, each erupted through distinct, but short lived eruption episodes. The total estimated eruption volume, the volcanic facies characteristics and geomorphology also suggests that Bondoró is rather a small-volume polycyclic basaltic volcano than a polygenetic one and can be interpreted as a nested monogenetic volcanic complex with multiple eruption episodes. It seems that Bondoró is rather a "rule" than an "exception" in regard of its polycyclic nature not only among the volcanoes of the Bakony-Balaton Highland Volcanic Field but also in the Neogene basaltic volcanoes of the Pannonian

  19. Contributions to Astrogeology: Geology of the lunar crater volcanic field, Nye County, Nevada

    NASA Technical Reports Server (NTRS)

    Scott, D. H.; Trask, N. J.

    1971-01-01

    The Lunar Crater volcanic field in east-central Nevada includes cinder cones, maars, and basalt flows of probably Quaternary age that individually and as a group resemble some features on the moon. Three episodes of volcanism are separated by intervals of relative dormancy and erosion. Changes in morphology of cinder cones, degree of weathering, and superposition of associated basalt flows provide a basis for determining the relative ages of the cones. A method has been devised whereby cone heights, base radii, and angles of slope are used to determine semiquantitatively the age relationships of some cinder cones. Structural studies show that cone and crater chains and their associated lava flows developed along fissures and normal faults produced by tensional stress. The petrography of the basalts and pyroclastics suggests magmatic differentiation at depth which produced interbedded subalkaline basalts, alkali-olivine basalts, and basanitoids. The youngest flows in the field are basanitoids.

  20. New Gravity and Magnetic Maps of the San Juan Volcanic Field, Southwestern Colorado

    NASA Astrophysics Data System (ADS)

    Drenth, B. J.; Keller, G. R.

    2004-12-01

    A very large simple Bouguer anomaly gravity low, about 100 km by 150 km in map view and reaching values less than -350 mGals, lies over the Oligocene San Juan volcanic field in southwestern Colorado. Roughly 15-18 different calderas represent the eruptive sources of the andesitic-rhyolitic rocks of this large volcanic field, and most are located within two swarms: the Silverton-Lake City (western) caldera complex, and the central complex that includes the Creede, Bachelor, and La Garita calderas. The prominent gravity low over the region has been previously interpreted to be due to the presence a low-density granitic batholith that underlies the volcanic field in the upper crust. However, there are complicating issues in this interpretation. First, many of the volcanic rocks are notably less dense than the Bouguer reduction density of 2.67 g/cc used for processing of the gravity data, meaning that those rocks exposed at the surface could account for a significant portion of the gravity low. Second, the extreme topographic relief in the region requires that terrain corrections (always positive algebraically) be applied. To meet these needs, a new complete Bouguer gravity map of the volcanic field has been prepared using the new traditionally terrain corrected U. S. gravity database. Modeling these data show that the caldera fill is a major contributor to the gravity low but that an upper crustal batholith is also required to satisfy the observed data. In addition, a second map is being prepared. It is derived by applying a new complex Bouguer correction that takes geologically reasonable surface densities and digital elevation data into account, and as a result will provide a much clearer picture of the nature of the subsurface batholith. A new aeromagnetic map of the region has also been completed. This represents a significant improvement over previous merging efforts in southwestern Colorado, as numerous and previously under-utilized high-resolution aeromagnetic

  1. Rocky 7 prototype Mars rover field geology experiments 1. Lavic Lake and sunshine volcanic field, California

    USGS Publications Warehouse

    Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.

    1998-01-01

    Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.

  2. Magma evolution and ascent at the Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: implications for the evolution of polygenetic and monogenetic volcanic fields

    USGS Publications Warehouse

    Putirka, Keith D.; Kuntz, Mel A.; Unruh, Daniel M.; Vaid, Nitin

    2009-01-01

    The evolution of polygenetic and monogenetic volcanic fields must reflect differences in magma processing during ascent. To assess their evolution we use thermobarometry and geochemistry to evaluate ascent paths for neighboring, nearly coeval volcanic fields in the Snake River Plain, in south-central Idaho, derived from (1) dominantly Holocene polygenetic evolved lavas from the Craters of the Moon lava field (COME) and (2) Quaternary non-evolved, olivine tholeiites (NEOT) from nearby monogenetic volcanic fields. These data show that NEOT have high magmatic temperatures (1205 + or - 27 degrees C) and a narrow temperature range (50 degrees C). Prolonged storage of COME magmas allows them to evolve to higher 87Sr/86Sr and SiO2, and lower MgO and 143Nd/144Nd. Most importantly, ascent paths control evolution: NEOT often erupt near the axis of the plain where high-flux (Yellowstone-related), pre-Holocene magmatic activity replaces granitic middle crust with basaltic sills, resulting in a net increase in NEOT magma buoyancy. COME flows erupt off-axis, where felsic crustal lithologies sometimes remain intact, providing a barrier to ascent and a source for crustal contamination. A three-stage ascent process explains the entire range of erupted compositions. Stage 1 (40-20 km): picrites are transported to the middle crust, undergoing partial crystallization of olivine + or - clinopyroxene. COME magmas pass through unarmored conduits and assimilate 1% or less of ancient gabbroic crust having high Sr and 87Sr/86Sr and low SiO2. Stage 2 (20-10 km): magmas are stored within the middle crust, and evolve to moderate MgO (10%). NEOT magmas, reaching 10% MgO, are positively buoyant and migrate through the middle crust. COME magmas remain negatively buoyant and so crystallize further and assimilate middle crust. Stage 3 (15-0 km): final ascent and eruption occurs when volatile contents, increased by differentiation, are sufficient (1-2 wt % H2O) to provide magma buoyancy through the

  3. Records of magmatic change as preserved in zircon: examples from the Yellowstone Volcanic Field

    NASA Astrophysics Data System (ADS)

    Rivera, T. A.

    2015-12-01

    Zircon crystals have been used as proxies for their host magmatic composition and as records of the evolution and differentiation of silicic magma systems through the use of integrated techniques such as cathodoluminescence imaging, LA-ICPMS trace element analysis, thermometry, and high-precision CA-IDTIMS U/Pb dating. This petrochronologic approach can aid in identifying crystal populations arising from discrete pulses of magmatism, reconstructing the growth histories of those populations, quantifying the chemical evolution of the host magma, and determining the timing and tempo of that chemical evolution. The Yellowstone Volcanic Field hosts both large and small volume silicic eruptions whose zircon records can provide insights to magmatic processes using a petrochronologic approach. Morphological and thermochemical trends preserved in zircon grains extracted from the three Yellowstone super-eruptions and a small volume precursory eruption indicate that magmatism in the volcanic field is punctuated, characterized by numerous pulses of melting, differentiation, and solidification occurring prior to eruption. U/Pb zircon dating constrains magma assembly to geologically short timescales, with populations of earlier solidified zircon incorporated into the nascent magma just prior to eruption. This requires punctuated intervals of high magmatic flux be superimposed on longer durations of a much lower background flux. Thus super-eruptions within the Yellowstone Volcanic Field result from rapid production and evolution of magma, and preceded by periods of smaller volume magma production that undergo similar differentiation processes over comparable timescales.

  4. The Lathrop Wells volcanic center: Status of field and geochronology studies

    SciTech Connect

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1992-03-01

    The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed.

  5. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, David L.; Saucedo, George J.; Clahan, Kevin B.; Fleck, Robert J.; Langenheim, Victoria E.; McLaughlin, Robert J.; Sarna-Wojcicki, Andrei M.; Allen, James R.; Deino, Alan L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10–8 Ma), and the Sonoma Volcanics (ca. 8–2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ± 0.06 and 9.13 ± 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the Rodgers Creek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek–Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and

  6. Morphotectonic setting of maar lakes in the Campo de Calatrava Volcanic Field (Central Spain, SW Europe)

    NASA Astrophysics Data System (ADS)

    Martín-Serrano, A.; Vegas, J.; García-Cortés, A.; Galán, L.; Gallardo-Millán, J. L.; Martín-Alfageme, S.; Rubio, F. M.; Ibarra, P. I.; Granda, A.; Pérez-González, A.; García-Lobón, J. L.

    2009-12-01

    In the Campo de Calatrava Volcanic Field (CCVF, Central Spain), the eruption of Pliocene-Pleistocene maar craters into two clearly distinct types of pre-volcanic rocks allows the observation and comparison of hard-substrate and soft-substrate maar lakes. Hard-substrate maars formed when phreatomagmatic processes affected the jointed, Paleozoic igneous and metamorphic rocks (hard substrate), giving rise to funnel-like maar lake basins. Soft-substrate maars resulted from phreatomagmatic volcanic processes affecting poorly-consolidated Pliocene sediments, forming bowl-like maar lake basins. Pre-volcanic bedrock determined the post-eruptive lacustrine architecture in the craters and favored a higher preservation of hard-substrate maars in comparison to soft-substrate maars. This is because the hard-substrate maars, surrounded by a deep stable crater wall, are more capable of collecting sediments in their basins. These sediments could be preserved for longer than similar deposits in broad, shallow maars with a soft substrate. Ancient soft-substrate maars do not usually preserve their original morphology well and can be identified only by their lacustrine deposits. Carbonate lacustrine/palustrine deposits surrounding a bowl-like depression are the remnants of this second type of maar lake, and allow reconstruction of the original morphology of ancient soft-substrate maar craters. Geophysical (electrical tomography ground surveys) and geomorphologic-geologic mapping techniques were combined with fieldwork and facies analysis in order to locate and accurately characterize the Pliocene-Pleistocene soft-substrate maar volcanic structures of the CCVF.

  7. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  8. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany)

    NASA Astrophysics Data System (ADS)

    Rausch, Juanita; Grobéty, Bernard; Vonlanthen, Pierre

    2015-01-01

    The Eifel region in western central Germany is the type locality for maar volcanism, which is classically interpreted to be the result of explosive eruptions due to shallow interaction between magma and external water (i.e. phreatomagmatic eruptions). Sedimentary structures, deposit features and particle morphology found in many maar deposits of the West Eifel Volcanic Field (WEVF), in contrast to deposits in the East Eifel Volcanic Field (EEVF), lack the diagnostic criteria of typical phreatomagmatic deposits. The aim of this study was to determine quantitatively the shape of WEVF and EEVF maar ash particles in order to infer the governing eruption style in Eifel maar volcanoes. The quantitative shape characterization was done by analyzing fractal dimensions of particle contours (125-250 μm sieve fraction) obtained from Scanning electron microscopy (SEM) and SEM micro-computed tomography (SEM micro-CT) images. The fractal analysis (dilation method) and the fractal spectrum technique confirmed that the WEVF and EEVF maar particles have contrasting multifractal shapes. Whereas the low small-scale dimensions of EEVF particles (Eppelsberg Green Unit) coincide with previously published values for phreatomagmatic particles, the WEVF particles (Meerfelder Maar, Pulvermaar and Ulmener Maar) have larger values indicating more complex small-scale features, which are characteristic for magmatic particles. These quantitative results are strengthening the qualitative microscopic observations, that the studied WEVF maar eruptions are rather dominated by magmatic processes. The different eruption styles in the two volcanic fields can be explained by the different geological and hydrological settings found in both regions and the different chemical compositions of the magmas.

  9. An investigation into the utilization of HCMM thermal data for the descrimination of volcanic and Eolian geological units. [Craters of the Moon volcanic field, Idaho; San Francisco volcanic field, Arizona; High Desert, California; and the Cascade Range, California and Oregon

    NASA Technical Reports Server (NTRS)

    Head, J. W., III (Principal Investigator)

    1982-01-01

    Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.

  10. Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate" to "combined" aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article

    NASA Astrophysics Data System (ADS)

    Németh, Károly; Cronin, Shane; Haller, Miguel; Brenna, Marco; Csillag, Gabor

    2010-09-01

    The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.

  11. Cross Cultural Learning with the Navajo.

    ERIC Educational Resources Information Center

    Luckmann, Charles

    1989-01-01

    Describes the final segment of a Seattle high school anthropology course--a four-week stay on the Navajo Reservation. Examines how this immersion in Navajo culture changed the values and perspectives of White students as they were forced to confront paradoxes in their own lives. (SV)

  12. Defining Student Success through Navajo Perspectives

    ERIC Educational Resources Information Center

    Bowman, Colleen Wilma

    2013-01-01

    The purpose of this qualitative study was to determine the definition of student success as defined by the Navajo people. The data collection method used was the focus group. The data were collected from two geographical settings from two public schools located within the boundaries of the Navajo Indian Reservation. The focus group participants…

  13. Navajo Health Authority: Accomplishments--Future Goals.

    ERIC Educational Resources Information Center

    Navajo Health Authority, Window Rock, AZ.

    Accomplishments of the Navajo Health Authority (NHA) since it began in 1972 are presented in synopsis form in a report of programs underway at Window Rock and Shiprock, along with NHA goals: to promote development of Navajo Health manpower, preventive medicine, health education, and native healing sciences. After a brief review of executive and…

  14. Navajo generating plant and Grand Canyon haze

    SciTech Connect

    Norris, J.E.

    1991-01-15

    This article examines the question of whether the Navajo generating plant pollution is contributing to pollution of the air in the Grand Canyon region. The topics include the regulatory context of the plant, the experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX), the National Research Council evaluation of the WHITEX, and The Navajo Generating Station Visibility Study.

  15. Classroom Management in a Navajo Middle School

    ERIC Educational Resources Information Center

    McCarthy, Jane; Benally, Joe

    2003-01-01

    Classroom management presents a serious challenge in most schools, but especially in schools on a Navajo Reservation that have been traditionally academically low-performing schools. There appears to be a mismatch between the attitudes, skills, and behaviors Navajo children bring with them to school and the expectations schools have for their…

  16. Teacher-Aide Guide for Navajo Area.

    ERIC Educational Resources Information Center

    Dzilth-Na-O-Dith-Hle Boarding School, Bloomfield, NM.

    Results of a 1970 teacher and Navajo aide workshop, sponsored by the Navajo Area Division of Education, are compiled in this guide developed particularly for use by those who work with Indian students. Workshop curriculum content and objectives are provided, as well as a section on role identification for teacher/aide teams; checklists concerning…

  17. A Navajo Teacher Teacher-Aide Guide.

    ERIC Educational Resources Information Center

    Ammons, Madeline, Comp.; And Others

    This guide for teachers and teacher aides working with Navajo children is the product of a 3-week workshop for teachers and teacher aides given by the Bureau of Indian Affairs and Arizona Western College in June 1969. It outlines some of the basic differences between Navajo and Anglo culture and defines the liaison role that the bilingual teacher…

  18. Sovereignty: The Navajo Nation and Taxation.

    ERIC Educational Resources Information Center

    Benson, Michael

    Contending that it is wrong for the Navajo Government to continue to neglect its citizens by not implementing a taxation program, this monograph is written to generate interest in and discussion of a taxation program and the Navajo Tax Commission, created in 1974. Specifically, this booklet presents basic information re: the financing of the…

  19. An Ethnography of the Navajo Reproductive Cycle.

    ERIC Educational Resources Information Center

    Wright, Anne

    1982-01-01

    Describes the reproductive cycle (menarche, menstrual cycle, fertility and contraceptive use, and menopause) as experienced by two groups of contemporary Navajo women. Eighty Navajo women, 40 traditional and 40 acculturated, participated in the 1978 research project which focused on influences of menopause. (ERB)

  20. "1970" Inter-Agency Health Meeting (Navajo).

    ERIC Educational Resources Information Center

    Arizona Commission of Indian Affairs, Phoenix.

    An inter-agency health meeting regarding health services for Navajo Indians is reported on in this document. The meeting, sponsored by the Arizona Commission of Indian Affairs, involved agencies such as the U.S. Public Health Service, Bureau of Indian Affairs, and the Navajo Tribe. Included in the proceedings are reports and remarks by…

  1. Navajo Health Authority: Accomplishments--Future Goals.

    ERIC Educational Resources Information Center

    Navajo Health Authority, Window Rock, AZ.

    Accomplishments of the Navajo Health Authority (NHA) since it began in 1972 are presented in synopsis form in a report of programs underway at Window Rock and Shiprock, along with NHA goals: to promote development of Navajo Health manpower, preventive medicine, health education, and native healing sciences. After a brief review of executive and…

  2. An Ethnography of the Navajo Reproductive Cycle.

    ERIC Educational Resources Information Center

    Wright, Anne

    1982-01-01

    Describes the reproductive cycle (menarche, menstrual cycle, fertility and contraceptive use, and menopause) as experienced by two groups of contemporary Navajo women. Eighty Navajo women, 40 traditional and 40 acculturated, participated in the 1978 research project which focused on influences of menopause. (ERB)

  3. Navajo Art--A Way of Life.

    ERIC Educational Resources Information Center

    Clover, Faith

    This curriculum unit on Navajo art consists of three lessons, each of which can stand alone or be used in conjunction with the others. Teacher and students will explore Navajo traditions in the unit and use the insight gained to create artworks that connect people to their community and natural environment. The key artworks provide the foundation…

  4. Defining Student Success through Navajo Perspectives

    ERIC Educational Resources Information Center

    Bowman, Colleen Wilma

    2013-01-01

    The purpose of this qualitative study was to determine the definition of student success as defined by the Navajo people. The data collection method used was the focus group. The data were collected from two geographical settings from two public schools located within the boundaries of the Navajo Indian Reservation. The focus group participants…

  5. Beating the Odds: Navajo Children Becoming Literate.

    ERIC Educational Resources Information Center

    Hartle-Schutte, David

    A retrospective ethnographic study examined the sociocultural environments of fifth-grade Navajo children who have become successful readers. During the second month of school, six fifth-grade teachers at Fort Defiance Elementary School on the Navajo Reservation identified 66 of their 150 students as successful readers, a judgment that was…

  6. Sovereignty: The Navajo Nation and Taxation.

    ERIC Educational Resources Information Center

    Benson, Michael

    Contending that it is wrong for the Navajo Government to continue to neglect its citizens by not implementing a taxation program, this monograph is written to generate interest in and discussion of a taxation program and the Navajo Tax Commission, created in 1974. Specifically, this booklet presents basic information re: the financing of the…

  7. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Blanchard, Paul J.

    2002-01-01

    or intermediate potential for contamination. About 6 percent of the study area was assessed to have the least potential for contamination, mostly in areas where the slope of the land surface is more than 12 percent. Nearly all fields on the Navajo Indian Irrigation Project were assessed to have the most potential for contamination. The assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project was based on pesticide application to various crops on part of the Navajo Indian Irrigation Project during 1997-99. The assessment indicated that ground water underlying fields of beans, wheat, barley, and alfalfa was most vulnerable to pesticide contamination; ground water underlying fields of corn and potatoes was intermediately vulnerable to pesticide contamination; and ground water underlying fields of hay was least vulnerable to pesticide contamination.

  8. Melt instabilities in an intraplate lithosphere and implications for volcanism in the Harrat Ash-Shaam volcanic field (NW Arabia)

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, Klaus; Rosenbaum, Gideon; Lyakhovsky, Vladimir; Liu, Jie; Weinberg, Roberto; Segev, Amit; Weinstein, Yishai

    2015-03-01

    We investigate melt generation in a slowly extending lithosphere with the aim of understanding the spatial and temporal relationships between magmatism and preexisting rift systems. We present numerical models that consider feedback between melt generation and lithospheric deformation, and we incorporate three different damage mechanisms: brittle damage, creep damage, and melt damage. Melt conditions are calculated with a Helmholtz free energy minimization method, and the energy equation is solved self-consistently for latent heat and shear heating effects. Using a case of a slowly extending (1-1.5 mm/yr) continental lithosphere with a relatively low surface heat flow (~50 mW/m2), we show that melt-rich shear bands are nucleated at the bottom of the lithosphere as a result of shear heating and damage mechanisms. Upon further deformation, melt zones intersect creep damage zones, thus forming channels that may be used for the melt to migrate upward. If a preexisting structure resides only in the brittle crust, it does not control the path of melt migration to the surface, and melt-filled channels propagate from the bottom upwards, independently of upper crustal structures. In contrast, a preexisting weak structure that reaches a critical depth of 20 km allows fast (~2 Ma) propagation of melt-filled channels that link melt damage from the bottom of the lithosphere to near-surface structures. Our model results may explain the short time scale, volume, and magma extraction from the asthenosphere through a low surface heat flow lithosphere, such as observed, for example, in the Harrat Ash-Shaam volcanic field (northwestern Arabia), which developed in the Arabian Plate and is spatially linked to the Azraq-Sirhan Graben.

  9. Paleomagnetism and tectonic interpretations of the Taos Plateau volcanic field, Rio Grande rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.

  10. Paleomagnetism and tectonic interpretations of the Taos Plateau volcanic field, Rio Grande rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to late stage extensional environment of the Rio Grande rift was investigate using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chron. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern corner of the counter-clockwise rotating Espanola block.

  11. Spatial and Alignment Analyses for a field of Small Volcanic Vents South of Pavonis Mons Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Glaze, L. S.; Greeley, R.; Hauber, E.; Baloga, S. M.; Sakimoto, S. E. H.; Williams, D. A.; Glotch, T. D.

    2008-01-01

    The Tharsis province of Mars displays a variety of small volcanic vent (10s krn in diameter) morphologies. These features were identified in Mariner and Viking images [1-4], and Mars Orbiter Laser Altimeter (MOLA) data show them to be more abundant than originally observed [5,6]. Recent studies are classifying their diverse morphologies [7-9]. Building on this work, we are mapping the location of small volcanic vents (small-vents) in the Tharsis province using MOLA, Thermal Emission Imaging System, and High Resolution Stereo Camera data [10]. Here we report on a preliminary study of the spatial and alignment relationships between small-vents south of Pavonis Mons, as determined by nearest neighbor and two-point azimuth statistical analyses. Terrestrial monogenetic volcanic fields display four fundamental characteristics: 1) recurrence rates of eruptions,2 ) vent abundance, 3) vent distribution, and 4) tectonic relationships [11]. While understanding recurrence rates typically requires field measurements, insight into vent abundance, distribution, and tectonic relationships can be established by mapping of remotely sensed data, and subsequent application of spatial statistical studies [11,12], the goal of which is to link the distribution of vents to causal processes.

  12. Timing and nature of volcanic particle clusters based on field and numerical investigations

    NASA Astrophysics Data System (ADS)

    Bagheri, Gholamhossein; Rossi, Eduardo; Biass, Sébastien; Bonadonna, Costanza

    2016-11-01

    Aggregation processes are known to play an important role in volcanic particle dispersal and sedimentation. They are also a primary source of uncertainty in ash dispersal forecasting since fundamental questions, such as the timing and deposition dynamics of volcanic aggregates, still remain unanswered. Here, we applied a state-of-the-art combination of field and numerical strategies to characterize volcanic aggregates. We introduce a new category of aggregates observed with high-speed-high-resolution videos, namely cored clusters. Cored clusters are mostly sub-spherical fragile aggregates that have never been observed in the deposits nor on adhesive tape as they typically break at impact with the ground. They consist of a core particle (200-500μm) fully covered by a thick shell of particles < 90μm. The low preservation potential of cored clusters in ash deposits explains the poor documentation in the literature and the low consideration attributed so far. Cored clusters can also better explain the deposition of fine ash in proximal and medial regions and the polymodality observed in many ash deposits. In addition, numerical inversions show how cored clusters can rapidly form within 175s from eruption onset. Finally, our observations represent the first field-based evidence of the so-called rafting effect, in which the sedimentation of coarse ash in cored clusters is delayed due to aggregation.

  13. Internal Structure of the Tuxtla Volcanic Field, Eastern mexico, Derived from Gravity and Aeromagnetic data.

    NASA Astrophysics Data System (ADS)

    Espindola, J. M.; Lopez Loera, H.; Zamora-Camacho, A.; Mena, M.

    2016-12-01

    The TVF is a basaltic volcanic field located in the western margin of the Gulf of Mexico in the Mexican State of Veracruz, about 230 km to the SSE of the easternmost tip of the Trans-Mexican Volcanic Belt, and about the same distance from El Chichon volcano, in the Chiapanecan Volcanic Arc, to the SE. It is separated from both volcanic chains also in composition as its rocks are predominantly alkaline. These characteristics prompt questions about its origin, more so since, one of the large volcanoes of the field, San Martin Tuxtla, erupted in 1793 CE. The TVF stands out from the lowlands of the Veracruz margins and is approximately surrounded by the 100 m contour line, while the surrounding areas along the Gulf of Mexico shoreline lie below this contour. Assuming that the rocks above this contour were deposited by the volcanic activity in the area, a good estimate of its volume is obtained by calculating the amount of material contained above this contour. We performed this calculation from the digital elevation model of the area received from restitutions carried out by Mexicós National Institute of Statistics, Geography, and Informatics (Spanish acronym: INEGI). We obtained a total amount of 1300 km3 for this volume. To understand more about the volcanism that has deposited this volume of products, we analyzed the gravimetric and aeromagnetic anomalies of the area and obtained a density model of the causative body. We got a body with a somewhat flattened top at 16 km below sea level from the inversion of the regional. Three separate slender bodies with tops 6 km deep were obtained from the inversion of the residual. The gravity and magnetic anomalies, as well as the inferred source bodies that produce those geophysical anomalies, lie between two large regional faults (Sontecomapan and Catemaco faults), which are proposed as flower structures associated with an inferred deep-seated fault termed the Veracruz Fault. We suggest that the process leading to the

  14. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; Ni, Sidao; Zhang, Baolong; Bao, Feng; Zhang, Senqi; Deng, Yang; Yuen, David A.

    2016-05-01

    The Wudalianchi Volcano Field (WDF) is a typical intraplate volcano in northeast China with generation mechanism not yet well understood. As its last eruption was around 300 years ago, the present risk for volcano eruption is of particular public interest. We have carried out a high-resolution ambient noise tomography to investigate the location of magma chambers beneath the volcanic cones with a dense seismic array of 43 seismometers and ~ 6 km spatial interval. Significant low-velocity anomalies up to 10% are found at 7-13 km depth under the Weishan volcano, consistent with the pronounced high electrical-conductivity anomalies from previous magnetotelluric survey. We propose these extremely low velocity anomalies can be interpreted as partial melting in a shallow magma chamber with volume at least 200 km3 which may be responsible for most of the recent volcanic eruptions in WDF. Therefore, this magma chamber may pose a serious hazard for northeast China.

  15. Traditional versus Contemporary Navajo Views of Special Education.

    ERIC Educational Resources Information Center

    Medina, Catherine; Jones, Doris; Miller, Susan

    A survey and interviews examined the beliefs of traditional and contemporary Navajos concerning individuals with disabilities. Participants were 30 staff members from the Kayenta and Pinon Unified School Districts (Arizona), of whom 21 were Navajos, 8 Anglos, and 1 Hispanic; 1 Anglo and 8 Navajo community professionals; and 15 Navajo parents,…

  16. When Navajos Had Too Many Sheep: the 1940's.

    ERIC Educational Resources Information Center

    Boyce, George A.

    The book is the story of the Navajos during the decade of forced stock reduction on the Navajo Reservation. This decade was marked by confusion, frustration, and bitterness on the part of the Navajo Nation. It is of the 1940's, during which the Navajos faced their greatest crisis since their removal to military confinement from 1864 to 1868, that…

  17. Some Remarks on Navajo Geometry and Piagetian Genetic Theory.

    ERIC Educational Resources Information Center

    Pinxten, Rik

    1991-01-01

    Examines aspects of Navajo cosmology relevant to understanding Navajo spatial representations. Compares Navajo children's spatial knowledge with Piaget's findings about the development of geometric concepts in Swiss children. Describes classroom activities whereby Navajo children explore the geometry inherent in their cultural and physical…

  18. Improved Constraints on the Eruptive History of Northern Harrat Rahat Volcanic Field, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Stelten, M. E.; Downs, D. T.; Calvert, A. T.; Sherrod, D. R.; Hassan, K. H.; Muquyyim, F. A.; Ashur, M. S.

    2015-12-01

    Harrat Rahat is a large (~20,000 km2) alkalic volcanic field located in central western Saudi Arabia. A variety of eruptive products ranging from alkali basalt to trachyte have erupted at Harrat Rahat over the past ~10 m.y., with the most recent eruptions occurring at 641 CE (uncertain) and 1256 CE in the northern part of the volcanic field. Despite the field's young age and its close proximity to two major city centers, the eruptive history of Harrat Rahat remains poorly constrained. Previous researchers grouped the volcanic strata of northern Harrat Rahat into seven subunits based on limited K-Ar and 40Ar/39Ar dating, and on the degree of erosion displayed by the eruptive products. The youngest eruptive products (subunits Qm7 - Qm4) are thought to be ≤600 ka, whereas the older lavas (Qm3 - Qm1) are thought to be >600 ka. However, due to the sparse geochronologic control on the ages of the eruptive units, it remains unclear if the currently defined subunits accurately reflect the age distribution of lavas in northern Harrat Rahat. Additionally, the temporal relation between basaltic magmatism and the more evolved eruptive products has yet to be examined. To better constrain the eruptive history of Harrat Rahat we measured >50 new 40Ar/39Ar eruption ages for Qm1 through Qm5 lavas in northern Harrat Rahat. These new 40Ar/39Ar ages suggest that the majority of volcanism in the region occurred ≤400 ka and is significantly younger than previously thought, indicating that the magmatic system at Harrat Rahat has been more active over the past 400 kyr then previously recognized. Additionally, these new age data suggest that nearly all trachytic magmatism occurred <125 ka and was preceded by a pulse of more mafic magmatism. It is likely the magmatic system at Harrat Rahat reached an evolved state late in the history of the volcanic field due to increased and/or prolonged input of basaltic magmas into the crust.

  19. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    PubMed Central

    Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-01-01

    Abstract This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely‐operated vehicle that were analyzed for major element, trace element and Sr‐Nd‐Hf‐Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave‐bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52–60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field. PMID:27917071

  20. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc

    NASA Astrophysics Data System (ADS)

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low 206Pb/204Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  1. A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc.

    PubMed

    Klaver, Martijn; Carey, Steven; Nomikou, Paraskevi; Smet, Ingrid; Godelitsas, Athanasios; Vroon, Pieter

    2016-08-01

    This study reports the first detailed geochemical characterization of Kolumbo submarine volcano in order to investigate the role of source heterogeneity in controlling geochemical variability within the Santorini volcanic field in the central Aegean arc. Kolumbo, situated 15 km to the northeast of Santorini, last erupted in 1650 AD and is thus closely associated with the Santorini volcanic system in space and time. Samples taken by remotely-operated vehicle that were analyzed for major element, trace element and Sr-Nd-Hf-Pb isotope composition include the 1650 AD and underlying K2 rhyolitic, enclave-bearing pumices that are nearly identical in composition (73 wt.% SiO2, 4.2 wt.% K2O). Lava bodies exposed in the crater and enclaves are basalts to andesites (52-60 wt.% SiO2). Biotite and amphibole are common phenocryst phases, in contrast with the typically anhydrous mineral assemblages of Santorini. The strong geochemical signature of amphibole fractionation and the assimilation of lower crustal basement in the petrogenesis of the Kolumbo magmas indicates that Kolumbo and Santorini underwent different crustal differentiation histories and that their crustal magmatic systems are unrelated. Moreover, the Kolumbo samples are derived from a distinct, more enriched mantle source that is characterized by high Nb/Yb (>3) and low (206)Pb/(204)Pb (<18.82) that has not been recognized in the Santorini volcanic products. The strong dissimilarity in both petrogenesis and inferred mantle sources between Kolumbo and Santorini suggests that pronounced source variations can be manifested in arc magmas that are closely associated in space and time within a single volcanic field.

  2. Geomorphometric analysis of the scoria cones of the San Francisco Volcanic Field using polar coordinate transformation

    NASA Astrophysics Data System (ADS)

    Vörös, Fanni; Koma, Zsófia; Karátson, Dávid; Székely, Balázs

    2016-04-01

    Scoria cones are often studied using geomorphometric and traditional GIS methods, e.g. aspect, slope histograms, area, cone height/width ratio. In order to enhance the non-symmetric shape components in contrast to the conical forms, we used a new approach in our research: the polar coordinate transformation (PCT) introduced by Székely & Karátson (2004). The study area is the classic cluster of scoria cones at the San Francisco Volcanic Field (SFVF) encompassing roughly 600 scoria cones as well as the San Francisco stratovolcano. Our goal is to analyse the even slight asymmetric shape of the scoria cones, and to generalize our findings. The area is a well-studied volcanic field, with a great number of available geological and geomorphological information, so comparing our PCT results with the data in literature is feasible. Polar coordinate transformation, being a one-to-one transformation, maps the original Cartesian coordinates (X, Y in meters) to radial distance (m) and azimuth (°) values. Our inputs were digitized polygons. We created images in the transformed coordinate system that clearly show the asymmetrical shape of the scoria cones. This asymmetry is found to be related to some extent to denudation, and to the age of the volcanic edifice that correlates with differential erosion. However, original asymmetries related to formation (e.g. rifting, emplacement on slope, eruption variations etc.) are also reasonable. The applied technique allows to define new derivatives of volcano-geomorphological parameters. The resultant scoria cone patterns have been manually categorized, however, the results are suitable for automated classification which is our next purpose. BSz contributed as an Alexander von Humboldt Research Fellow. Székely, B. & Karátson, D. (2004): DEM-based morphometry as a tool for reconstructing primary volcanic landforms: examples from the Börzsöny Mountains, Hungary, Geomorphology 63:25-37.

  3. A Tale of Two Olivines: Magma Ascent in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Smid, E. R.; McGee, L. E.; Smith, I. E.; Lindsay, J. M.

    2013-12-01

    The Auckland Volcanic Field (AVF) is a nephelinitic to subalkali basaltic monogenetic field centered on the city of Auckland, New Zealand. Lavas are olivine-phyric, and the deposits of several volcanoes in the field contain olivine crystals with chrome spinel (Cr-spinel) inclusions. Microprobe analyses show at least two populations of olivine, categorised by their Mg# and their spinel inclusion compositions: the first has olivines that are euhedral, have compositions slightly less forsteritic than expected for whole rock Mg#, and have Cr-spinel inclusions with relatively low Cr2O3 contents of ~20%. These are interpreted as antecrysts inherited from the mantle source that yielded their host magma. The second population is characterised by olivines that are sub- to euhedral, are significantly more forsteritic than expected from their host whole rock Mg#, and have Cr-spinel inclusons with relatively high Cr2O3 contents of ~50%. These are interpreted as xenocrysts. The composition of these high Cr2O3 spinels very closely resembles the composition of spinels within olivines in dunite sampled from the Dun Mountain Ophiolite on the South Island of New Zealand. The northward extension of the Dun Mountain complex beneath the North Island is defined by the Junction Magnetic Anomaly, marking a crustal terrane boundary that underlies the Auckland Volcanic Field. These data indicate that the magmas that have risen to produce the volcanoes of the Auckland Volcanic Field have carried crystals from an underlying ultramafic crust as well as from their asthenospheric source. Euhedral olivine crystals which do not contain Cr-spinel are also present in AVF lavas and these are interpreted as true phenocrysts that crystallised directly from their host magmas. The lack of reaction textures at crystal margins suggests rapid ascent rates. A crustal origin for the xenocrysts not only has large implications for ascent rate modelling of olivines, but also for the crustal structure of the

  4. Field-trip guide to a volcanic transect of the Pacific Northwest

    USGS Publications Warehouse

    Geist, Dennis; Wolff, John; Harpp, Karen

    2017-08-01

    The Pacific Northwest region of the United States provides world-class and historically important examples of a wide variety of volcanic features. This guide is designed to give a broad overview of the region’s diverse volcanism rather than focusing on the results of detailed studies; the reader should consult the reference list for more detailed information on each of the sites, and we have done our best to recognize previous field trip leaders who have written the pioneering guides. This trip derives from one offered as a component of the joint University of Idaho- Washington State University volcanology class taught from 1995 through 2014, and it borrows in theme from the classic field guide of Johnston and Donnelly-Nolan (1981). For readers interested in using this field guide as an educational tool, we have included an appendix with supplemental references to resources that provide useful background information on relevant topics, as well as a few suggestions for field-based exercises that could be useful when bringing students to these locations in the future. The 4-day trip begins with an examination of lava flow structures of the Columbia River Basalt, enormous lava fields that were emplaced during one of the largest eruptive episodes in Earth’s recent history. On the second day, the trip turns to the High Lava Plains, a bimodal volcanic province that transgressed from southeast to northwest from the Miocene through the Holocene, at the northern margin of the Basin and Range Province. This volcanic field provides excellent examples of welded ignimbrite, silicic lavas and domes, monogenetic basaltic lava fields, and hydrovolcanic features. The third day is devoted to a circumnavigation of Crater Lake, the result of one of the world’s best-documented caldera-forming eruptions. The caldera walls also expose the anatomy of Mount Mazama, a stratovolcano of the Cascade Range. The last day is spent at Newberry Volcano, a back-arc shield volcano topped by a

  5. Evolution of a magmatic system during continental extension: The Mount Taylor volcanic field, New Mexico

    SciTech Connect

    Perry, F.V. ); Baldridge, W.S. ); DePaolo, D.J. Lawrence Berkeley Lab., Berkeley, CA ); Shafiqullah, M. )

    1990-11-10

    In this paper the authors present geologic mapping, K-Ar chronology, major and trace element data, mineral chemistry, and Nd, Sr, and O isotopic data for volcanic rocks of the Mount Taylor volcanic field (MTVF). The MTVF lies on the tectonic boundary between the Basin and Range province and the southeastern Colorado Plateau and is dominated by Mount Taylor, a composite volcano active from {approx}3 to 1.5 m.y. ago. Growth of the volcano began with eruption of rhyolite, followed by quartz latite and finally latite. Basalts erupted throughout the lifetime of the volcano. Rare mixing of evolved hy-hawaiite and rhyolite produced a few intermediate magmas, primarily in the early history of the field. Mixing may have occurred when rhyolite magmas in the lower crust ascended to upper crustal levels and were injected into the bases of mafic magma chambers. Small amounts of crustal assimilation accompanied fractional crystallization and affected all the evolved MTVF rocks. Assimilation/fractional crystallization occurred primarily in the lower crust as hy-hawaiite differentiated to mugearite or latite. Early in the history of the field, evolved lower crustal magmas ascended into the upper crust, where density filtering and a reduced tensional stress field inhibited further ascent until magmas evolved to rhyolite or quartz latite. Later in the history of the field, latite magmas ascended directly from the lower crust and erupted without further significant differentiation because of increased crustal extension.

  6. Navajo Leadership and Government: A History. Sixth-Ninth Grade Navajo Bilingual-Bicultural Social Studies Curriculum.

    ERIC Educational Resources Information Center

    McCarty, T. L.; Wallace, Stephen

    This history of Navajo leadership and government, part of the sixth-ninth grade Navajo bilingual-bicultural social studies curriculum from the Navajo Curriculum Centers, covers types of government from the animal leaders of Navajo legend to modern times. The text is divided into five chapters: "The First Leaders,""New Neighbors--New…

  7. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    NASA Astrophysics Data System (ADS)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  8. Final Report - Navajo Electrification Demonstration Project - FY2004

    SciTech Connect

    Kenneth L. Craig, Interim General Manager

    2007-03-31

    The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

  9. Investigation of the Galatian volcanic complex in the northern central Turkey using potential field data

    NASA Astrophysics Data System (ADS)

    Bilim, Funda

    2011-03-01

    The Galatia volcanic complex (GVC) is one of two important volcanic complexes located in central Anatolia, Turkey. The study of potential field data can yield useful information about the subsurface magnetisation and density distribution. In this paper, a study of the thermal structural setting of the GVC using the analysis and interpretation of aeromagnetic data is presented. Volcanic rocks are the main cause of the magnetic anomalies that occur in the study region. A Curie-point-depth (CPD) map was constructed using the azimuthally averaged power spectrum of aeromagnetic anomaly data that was reduced-to-the-pole transformed (RTP); the map shows high geothermal potential for the GVC. The Curie point depths vary from about 6.74 km to 16.9 km and are consistent with the results of previous geothermal studies. The GVC exhibits low CPD and high heat-flow values (>100 mW m -2). The CPD suggested that deep-seated magnetised sources continue downward up to 10 km (inside the upper crust). A horizontal gradient analytic signal (HGAS) map exhibits the images and locations of deep-seated magnetised sources. In addition, the CPD and average Moho depth (33 km, calculated from gravity anomaly data) are used to determine the presence of magnetic and non-magnetic crust in two cross sections taken from the GVC. The results presented should shed considerable light on some aspects of geothermal exploration in the GVC.

  10. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision

    NASA Astrophysics Data System (ADS)

    Motuza, Gediminas; Šliaupa, Saulius

    2017-10-01

    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  11. Paleomagnetism and Tectonic Interpretations of the Taos Plateau Volcanic Field, Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern

  12. Paleomagnetism and Tectonic Interpretations of the Taos Plateau Volcanic Field, Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, Laurie L.; Caffall, Nancy M.; Golombek, Matthew P.

    1993-01-01

    The tectonic response of the Taos Plateau volcanic field in the southern San Luis basin to the late stage extensional environment of the Rio Grande rift was investigated using paleomagnetic techniques. Sixty-two sites (533 samples) of Pliocene volcanic units were collected covering four major rock types with ages of 4.7 to 1.8 Ma. Twenty-two of these sites were from stratigraphic sections of the lower, middle and upper Servilleta Basalt collected in the Rio Grande gorge at two locations 19 km apart. Flows from the lower and middle members in the southern gorge record reversed polarities, while those in Garapata Canyon are normal with an excursion event in the middle of the sequence. The uppermost flows of the upper member at both sites display normal directions. Although these sections correlate chemically, they seem to represent different magnetic time periods during the Gilbert Reversed-Polarity Chiron. Alternating field demagnetization, aided by principal component analysis, yields 55 sites with stable directions representing both normal and reversed polarities, and five sites indicating transitional fields. Mean direction of the normal and inverted reversed sites is I=49.3 deg. and D=356.7 deg. (alpha(sub 95)=3.6 deg). Angular dispersion of the virtual geomagnetic poles is 16.3 deg, which is consistent with paleosecular variation model G, fit to data from the past 5 m.y. Comparison with the expected direction indicates no azimuthal rotation of the Taos Plateau volcanic field; inclination flattening for the southern part of the plateau is 8.3 deg +/- 5.3 deg. Previous paleomagnelic data indicate 10 deg- 15 deg counterclockwise rotation of die Espanola block to the south over the past 5 m.y. The data suggest the Taos Plateau volcanic field, showing no rotation and some flattening in the south and east, has acted as a stable buttress and has been downwarped by overriding of the southeastern end of the plateau by the Picuris Mountains, which make up the northern

  13. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    NASA Astrophysics Data System (ADS)

    Moll-Stalcup, Elizabeth J.; Arth, Joseph G.

    1991-12-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr /86Sr ) i, higher ( 143Nd /144Nd ) i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr /86Sr ) i, lower ( 143Sr /144Sr ) i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr /86Sr ) i = 0.7033; ( 143Nd /144Nd ) i = 0.5129] , and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr /86Sr ) i and lower ( 143Nd /144Nd ) i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr /86Sr ) i and ( 143Nd /144Nd ) i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr /86Sr ) i ≈ 0.704, ( 143Nd /144Nd ) i ≈ 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr /86Sr ) i = 0.70355-0.70499; ( 143Nd /144Nd ) i = 0.51263-0.51292] , which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require

  14. Geology and the origin of trachytes and pantellerites from the Eburru volcanic field, Kenya Rift

    NASA Astrophysics Data System (ADS)

    Velador, J. M.; Omenda, P. A.; Anthony, E. Y.

    2002-12-01

    The Eburru volcanic field is located in the Kenya Rift, where it is part of the very young axial volcanic activity. The Eburru field belongs to the complex of volcanoes -- Menegai, Eburru, Olkaria, Longonot, and Suswa -- that are centered on the Kenya Dome. All of these volcanoes are prime targets for geothermal energy, with Kenya's one geothermal plant at Olkaria.. Correlation with dated volcanism implies that the activity at Eburru is at most approximately 500,000 years. The surfaces preserved on the youngest flows suggest that they erupted within the last 1,000 years. Mapping indicates that the volcanic field is divided into an older western section, composed of pantellerites (Er1) and overlying, faulted trachytes (Et1), and a younger eastern section. The eastern section has a mapable ring structure, and is composed of trachytes (Et2) and pantellerites (Er2). Some of these flows may be contemporaneous, but the final phase of eruption is exclusively pantellerite. We have chemical data for all units except the older pantellerites. The data indicate that the trachytes and rhyolites are both pantelleritic in terms of their alumina and iron contents. This is in contradistinction to the rhyolites immediately adjacent at Olkaria, which are comenditic. Concentrations for all elements are highly elevated, except for Ba, Sr, K, P, and Ti that show deep negative anomalies. The relationship between the trachytes (Et2) and pantellerites (Er2) is one in which the pantellerites consistently have the highest concentrations in all elements, including those with negative anomalies. Correlation coefficients for pairs such as Zr and Rb support the field evidence for the western Et1 trachytes being a separate magmatic event from the Et2 and Er2 units of the eastern field. Sanidine is the principal phenocrystic phase in these rocks, and thus the elevated Sr and Ba in the pantellerites preclude simple crystal fractionation to derive pantellerite from trachyte. Bailey and Macdonald

  15. The Maars of the Tuxtla Volcanic Field: the Example of 'laguna Pizatal'

    NASA Astrophysics Data System (ADS)

    Espindola, J.; Zamora-Camacho, A.; Hernandez-Cardona, A.; Alvarez del Castillo, E.; Godinez, M.

    2013-12-01

    Los Tuxtlas Volcanic Field (TVF), also known as Los Tuxtlas massif, is a structure of volcanic rocks rising conspicuously in the south-central part of the coastal plains of eastern Mexico. The TVF seems related to the upper cretaceous magmatism of the NW part of the Gulf's margin (e.g. San Carlos and Sierra de Tamaulipas alkaline complexes) rather than to the nearby Mexican Volcanic Belt. The volcanism in this field began in late Miocene and has continued in historical times, The TVF is composed of 4 large volcanoes (San Martin Tuxtla, San Martin Pajapan, Santa Marta, Cerro El Vigia), at least 365 volcanic cones and 43 maars. In this poster we present the distribution of the maars, their size and depths. These maars span from a few hundred km to almost 1 km in average diameter, and a few meters to several tens of meters in depth; most of them filled with lakes. As an example on the nature of these structures we present our results of the ongoing study of 'Laguna Pizatal or Pisatal' (18° 33'N, 95° 16.4'W, 428 masl) located some 3 km from the village of Reforma, on the western side of San Martin Tuxtla volcano. Laguna Pisatal is a maar some 500 meters in radius and a depth about 40 meters from the surrounding ground level. It is covered by a lake 200 m2 in extent fed by a spring discharging on its western side. We examined a succession of 15 layers on the margins of the maar, these layers are blast deposits of different sizes interbedded by surge deposits. Most of the contacts between layers are irregular; which suggests scouring during deposition of the upper beds. This in turn suggests that the layers were deposited in a rapid series of explosions, which mixed juvenile material with fragments of the preexisting bedrock. We were unable to find the extent of these deposits since the surrounding areas are nowadays sugar cane plantations and the lake has overspilled in several occassions.

  16. Magmatic Mapping: A Suggested Methodology And Results From The Springerville Volcanic Field, East-Central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Mnich, M.; Condit, C.

    2016-12-01

    The Springerville Volcanic Field (SVF), located in east-central Arizona, is one of the best-characterized basaltic monogenetic volcanic fields in the world, with it's expanse of over 3000 km2 now mapped in it's entirety as a result of recent efforts in 2010 and 2011. The methods used, called "magmatic mapping" (Condit, 2007), provide a standardized, volcanic unit focused approach to characterizing volcanic fields. This approach focuses on delineating contacts between flows, completely characterizing each flow, and placing them into a temporal framework. Results of magmatic mapping in the SVF now provide a comprehensive overview of the lifespan of the field, representing a unique resource, useful not only in studying the petrogenetic evolution of this field, but in serving as a template for comparing similar volcanic fields. On Earth, several fields pose a significant risk to population centers, though these hazards are often poorly understood due to long intervals between eruptions. On other planets, remote mapping can be greatly enhanced by comparing it with a well-studied terrestrial analog that has been analyzed in detail; an area with ever heightening necessity as high-resolution data is becoming increasingly available. In the SVF, olivine phyric lavas are most abundance (22% of volcanic outcrop), followed by diktytaxitic and olivine/plagioclase phyric flows. However, lithology will vary depending on when an eruption takes place in a volcanic fields lifecycle. On the whole, the SVF is younger to the east and younger lavas are dominantly more alkalic. These trends are also displayed within individual geographic divisions, many of which correspond to temporal-geographic clusters as defined by Condit and Connor (1996). The mapping methods and patterns in geochemistry, lithology and age progression within the SVF represent a unique template for which to base basaltic mapping.

  17. Possible earthquake precursor and drumbeat signal detected at the Nirano Mud Volcanic Field, Italy

    NASA Astrophysics Data System (ADS)

    Lupi, Matteo; Suski Ricci, Barbara; Kenkel, Johannes; Ricci, Tullio; Fuchs, Florian; Miller, Stephen A.; Kemna, Andreas; Conventi, Marzia

    2016-04-01

    We used the Nirano mud volcanic field as a natural laboratory to test pre- and post-seismic effects generated by distant earthquakes. Mud volcanoes are geological systems often characterized by elevated fluid pressures at depth deviating from hydrostatic conditions. This near-critical state makes mud volcanoes particularly sensitive to external forcing induced by natural or man-made perturbations. We first characterized the subsurface structure of the Nirano mud volcanic field with a geoelectrical study. Next, we deployed a broad-band seismic station to understand the typical seismic signal generated at depth. Seismic records show a background noise below 2 s, sometimes interrupted by pulses of drumbeat-like high-frequency signals lasting from several minutes to hours. Drumbeat signal was previously discovered in geysers and at magmatic volcanoes. To date this is the first observation of drumbeat signal observed in mud volcanoes. In 2013 June we recorded a M4.7 earthquake, that occurred approximately 60 km far from our seismic station. According to empirical estimations the Nirano mud volcanic field should not have been affected by the M4.7 earthquake. Yet, before the seismic event we recorded an increasing amplitude of the signal in the 10-20 Hz frequency band. The signal emerged approximately two hours before the earthquake and lasted for about three hours. We performed an analysis of the 95th percentile of the root mean square amplitude of the waveforms for the day of the earthquake. This statistical analysis suggests the presence of a possible precursory signal about 10 minutes before the earthquake indicating the occurrence of enhanced fluid flow in the subsurface that may be related to pressure build up in the preparation zone of the earthquake.

  18. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S-70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

    NASA Astrophysics Data System (ADS)

    Salas, Pablo A.; Rabbia, Osvaldo M.; Hernández, Laura B.; Ruprecht, Philipp

    2016-06-01

    In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe-Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.

  19. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    NASA Astrophysics Data System (ADS)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  20. Scaling laws of the size-distribution of monogenetic volcanoes within the Michoacán-Guanajuato Volcanic Field (Mexico)

    NASA Astrophysics Data System (ADS)

    Pérez-López, R.; Legrand, D.; Garduño-Monroy, V. H.; Rodríguez-Pascua, M. A.; Giner-Robles, J. L.

    2011-04-01

    The Michoacán-Guanajuato Volcanic Field displays about 1040 monogenetic volcanoes mainly composed of basaltic cinder cones. This monogenetic volcanic field is the consequence of a dextral transtensive tectonic regime within the Transmexican Volcanic Belt (TMVB), the largest intra continental volcanic arc around the world, related to the subduction of the Rivera and Cocos plates underneath the North American Plate. We performed a statistical analysis for the size-distribution of the basal diameter (Wco) for cinder cones. Dataset used here was compiled by Hasenaka and Carmichael (1985). Monogenetic volcanoes obey a power-law very similar to the Gutenberg-Richter law for earthquakes, with respect to their size-distribution: log 10 ( N >= Wco ) = α - β log10( Wco), with β = 5.01 and α = 2.98. Therefore, the monogenetic volcanoes exhibit a (Wco) size-distribution empirical power-law, suggesting a self-organized criticality phenomenon.

  1. Lava-flow characterization at Pisgah Volcanic Field, California, with multiparameter imaging radar

    USGS Publications Warehouse

    Gaddis, L.R.

    1992-01-01

    Multi-incidence-angle (in the 25?? to 55?? range) radar data aquired by the NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) at three wavelengths simultaneously and displayed at three polarizations are examined for their utility in characterizing lava flows at Pisgah volcanic field, California. Pisgah lava flows were erupted in three phases; flow textures consist of hummocky pahoehoe, smooth pahoehoe, and aa (with and without thin sedimentary cover). Backscatter data shown as a function of relative age of Pisgah flows indicate that dating of lava flows on the basis of average radar backscatter may yield ambiguous results if primary flow textures and modification processes are not well understood. -from Author

  2. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Lava compositions other than various types of basalt are uncommon here. Andesite is abundant on and around Mount Adams but is very rare east of the Klickitat River. The only important nonbasaltic composition in the map area is rhyolite, which crops out in several patches around the central highland of the volcanic field, mainly in the upper canyons of Satus and Kusshi Creeks and Wilson Charley canyon. Because the rhyolites were some of the earliest lavas erupted here, they are widely concealed by later basalts and therefore crop out only in local windows eroded by canyons that cut through the overlying basalts.

  3. Volcanism inside Valles Marineris? A field of small pitted cones in Coprates Chasma

    NASA Astrophysics Data System (ADS)

    Broz, P.; Hauber, E.; Rossi, A. P.

    2014-04-01

    We present observations of a field of more than 100 pitted cones and mounds situated insight Coprates Chasma (part of Valles Marineris; Fig. 1), which bear many morphological and morphometrical similarities to terrestrial and martian scoria cones. If these cones are indeed volcanic in origin, they will significantly expand our knowledge about the morphometry of pyroclastic cones on Mars. A magmatic origin, which would necessarily post-date the opening of the main troughs, would contribute to our understanding of the volcano-tectonic evolution of Valles Marineris.

  4. A Field of Small Pitted Cones on the Floor of Coprates Chasma: Volcanism inside Valles Marineris

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Broz, P.; Rossi, A. P.; Michael, G.

    2015-10-01

    We present observations of a field of >100 pitted cones and mounds situated on the floor of Coprates Chasma (part of Valles Marineris (VM); Fig. 1), which display similarities to terrestrial and martian scoria cones. If these cones are indeed volcanic in origin, they will significantly expand our knowledge about the morphometry of pyroclastic cones on Mars. Moreover, a magmatic origin, which would necessarily post-date the opening of the main VM troughs, would contribute to our understanding of the volcano-tectonic evolution of VM.

  5. Cosmogenic exposure ages of basalt flows: Lunar crater volcanic field, Nevada

    SciTech Connect

    Shepard, M.K.; Arvidson, R.E. ); Caffee, M.; Finkel, R.; Harris, L. )

    1995-01-01

    [sup 36]Cl and [sup 10]Be cosmogenic exposure age data for the Black Rock basaltic lava flow, Lunar Crater volcanic field, Nevada, imply an emplacement age of [approximately] 38 [+-] 10 ka. [sup 36]Cl data for the 600 ka flow north of the Lunar Crater maar are consistent with (1) an apparent erosion rate of [approximately] 3 m/m.y., (2) a model of desert pavement formation in which basalt clasts eroded from the flow remain on the surface of the eolian-derived sediments that mantle the flow, and (3) the early formation of the eolian-derived sediment mantle. 20 refs., 3 figs., 2 tabs.

  6. Raton-Clayton Volcanic Field magmatism in the context of the Jemez Lineament

    NASA Astrophysics Data System (ADS)

    Schrader, C. M.; Pontbriand, A.

    2013-12-01

    The Raton-Clayton Volcanic Field (RCVF) was active from 9 Ma to approximately 50 Ka and stretches from Raton, New Mexico in the west to Clayton, New Mexico in the east. The field occurs in the Great Plains at the northeastern end of the Jemez Lineament, a major crustal feature and focus of volcanism that extends southwest to the Colorado Plateau in Arizona and encompasses five other major volcanic fields. Jemez Lineament magmatism is temporally related to Rio Grande Rift magmatism, though it extends NE and SW from the rift itself, and it has been suggested that it represents an ancient crustal suture that serves as a conduit for magmatism occurring beneath the larger region of north and central New Mexico (Magnani et al., 2004, GEOL SOC AM BULL, 116:7/8, pp. 1-6). This study extends our work into the RCVF from prior and ongoing work in the Mount Taylor Volcanic Field, where we identified different mantle sources with varying degrees of subduction alteration and we determined some of the crustal processes that contribute to the diversity of magma chemistry and eruptive styles there (e.g., AGU Fall Meeting, abst. #V43D-2884 and #V43D-2883). In the RCVF, we are analyzing multiple phases by electron microprobe and plagioclase phenocrysts and glomerocrysts by LA-ICPMS for Sr isotopes and trace elements. We are undertaking this investigation with the following goals: (1) to evaluate previous magma mixing and crustal assimilation models for Sierra Grande andesites (Zhu, 1995, unpublished Ph.D. dissertation, Rice University; Hesse, 1999, unpublished M.S. thesis, Northern Arizona University); (2) to evaluate subduction-modified mantle as the source for RCVF basanites (specifically those at Little Grande); and (3) to assess the possible role of deep crustal cumulates in buffering transitional basalts. In the larger context, these data will be used to evaluate the varying degree of subduction-modification and the effect of crustal thickness on magmatism along the Jemez

  7. Combining probabilistic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2010-05-01

    One of the main challenges of modern volcanology is to provide the public with robust and useful information for decision-making in land-use planning and in emergency management. From the scientific point of view, this translates into reliable and quantitative long- and short-term volcanic hazard assessment and eruption forecasting. Because of the complexity in characterizing volcanic events, and of the natural variability of volcanic processes, a probabilistic approach is more suitable than deterministic modeling. In recent years, two probabilistic codes have been developed for quantitative short- and long-term eruption forecasting (BET_EF) and volcanic hazard assessment (BET_VH). Both of them are based on a Bayesian Event Tree, in which volcanic events are seen as a chain of logical steps of increasing detail. At each node of the tree, the probability is computed by taking into account different sources of information, such as geological and volcanological models, past occurrences, expert opinion and numerical modeling of volcanic phenomena. Since it is a Bayesian tool, the output probability is not a single number, but a probability distribution accounting for aleatory and epistemic uncertainty. In this study, we apply BET_VH in order to quantify the long-term volcanic hazard due to base surge invasion in the region around Auckland, New Zealand's most populous city. Here, small basaltic eruptions from monogenetic cones pose a considerable risk to the city in case of phreatomagmatic activity: evidence for base surges are not uncommon in deposits from past events. Currently, we are particularly focussing on the scenario simulated during Exercise Ruaumoko, a national disaster exercise based on the build-up to an eruption in the Auckland Volcanic Field. Based on recent papers by Marzocchi and Woo, we suggest a possible quantitative strategy to link probabilistic scientific output and Boolean decision making. It is based on cost-benefit analysis, in which all costs

  8. Geology and fuel resources of the southern part of the San Juan Basin, New Mexico. Part 1, The coal field from Gallup eastward toward Mount Taylor, with a measured section of pre-Dakota(?) rocks near Navajo Church

    USGS Publications Warehouse

    Sears, Julian D.

    1934-01-01

    The report describes the geology and coal deposits of the southwestern part of the San Juan Basin, N.Mex. The field lies northeast of the town of Gallup, on the Atchison, Topeka & Santa Fe Railway, and is an irregular tract of about 630 square miles in central and west-central McKinley County; it includes the southeast corner of the Navajo Indian Reservation. Settlement is confined to the white families at a few trading posts and the Indian agency at Crown Point and to scattered Navajo Indians. The land forms, drainage, vegetation, and climate are those typical of the highland in the semiarid Southwest.The investigation disclosed complicated relations of the Mancos shale and the Mesaverde formation, of Upper Cretaceous age, and a marked variation in the stratigraphic boundary between them. At the western edge of the field, as in the adjoining Gallup coal district, the Mancos consists of about 725 feet of marine shale almost wholly of Benton (lower Colorado) age. It is overlain by about 1,800 feet of chiefly estuarine and fluviatile deposits that represent the lower part of the Mesaverde formation. In ascending order the Mesaverde here consists of the Gallup sandstone member (which includes local lenses of valuable coal), the Dilco coal member, the Bartlett barren member, the Gibson coal member, and the Allison barren member. Eastward through the field the outcrops extend obliquely across the trend of old shore lines out into the ancient basin of marine deposition, and some of the beds consequently show a progressive lateral change into rocks of littoral and marine types. The Gallup sandstone member is in part replaced by marine shale of the Mancos. The upper part of the Dilco coal member is replaced by the Dalton sandstone member, and still farther east the bottom of the Dalton and the top of the remaining Dilco are replaced by the Mulatto tongue of the Mancos shale. The Bartlett barren member becomes coal-bearing and thus merges with the Gibson. The Gibson coal

  9. The Puelche volcanic field: Extensive Pleistocene rhyolite lava flows in the Andes of central Chile

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Godoy, E.; Drake, Robert E.; Singer, B.

    1999-01-01

    A remote volcanic field in the rugged headwaters of the Rio Puelche and Rio Invernada (35.8??S) constitutes the largest cluster of Quaternary rhyolite lava flows yet identified in the Andean Southern Volcanic Zone. The Puelche Volcanic Field belongs to an intra-arc belt of silicic magmatic centers that extends, at least, 140 km north-south and lies well east of the volcanic front but nonetheless considerably west of the intraplate extensional fields of basaltic and alkaline centers of pampean Argentina. The authors' mapping has distinguished one shallow intrusive mass of early Pleistocene biotite rhyodacite (70.5% SiO2), 11 eruptive units of mid-Pleistocene high-K biotite-rhyolite lava (71.3-75.6% SiO2), and 4 eruptive units of basaltic andesite (53.95-4.9% SiO2), the conduits of which cut some of the rhyolites. Basal contacts of the rhyolite lava flows (and subjacent pyroclastic precursors) are generally scree covered, but glacial erosion has exposed internal flow structures and lithologic zonation superbly. Thicknesses of individual rhyolite lava flows range from 75 m to 400 m. Feeders for several units are well exposed. Cliff-draping unconformities and intracanyon relationships among the 11 rhyolite units show that the eruptive sequence spanned at least one glacial episode that accentuated the local relief. Lack of ice-contact features suggests, however, that all or most eruptions took place during non-glacial intervals probably between 400 ka and 100 ka. Post-eruptive glacial erosion reduced the rhyolites to several non-contiguous remnants that altogether cover 83 km2 and represent a surviving volume of about 21 km3. Consideration of slopes, lava thicknesses, and paleotopography suggest that the original area and volume were each about three times greater. Phenocryst content of the rhyolites ranges from 1 to 12%, with plagioclase>>biotite>FeTi oxides in all units and amphibole conspicuous in the least silicic. The chemically varied basaltic andesites range from

  10. Preliminary isostatic gravity map of the Sonoma volcanic field and vicinity, Sonoma and Napa Counties, California

    USGS Publications Warehouse

    Langenheim, V.E.; Roberts, C.W.; McCabe, C.A.; McPhee, D.K.; Tilden, J.E.; Jachens, R.C.

    2006-01-01

    This isostatic residual gravity map is part of a three-dimensional mapping effort focused on the subsurface distribution of rocks of the Sonoma volcanic field in Napa and Sonoma counties, northern California. This map will serve as a basis for modeling the shapes of basins beneath the Santa Rosa Plain and Napa and Sonoma Valleys, and for determining the location and geometry of faults within the area. Local spatial variations in the Earth's gravity field (after accounting for variations caused by elevation, terrain, and deep crustal structure explained below) reflect the distribution of densities in the mid to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. High-density basement rocks exposed within the northern San Francisco Bay area include those of the Mesozoic Franciscan Complex and Great Valley Sequence present in the mountainous areas of the quadrangle. Alluvial sediment and Tertiary sedimentary rocks are characterized by low densities. However, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of basement rocks. Tertiary volcanic rocks are characterized by a wide range in densities, but, on average, are less dense than the Mesozoic basement rocks. Isostatic residual gravity values within the map area range from about -41 mGal over San Pablo Bay to about 11 mGal near Greeg Mountain 10 km east of St. Helena. Steep linear gravity gradients are coincident with the traces of several Quaternary strike-slip faults, most notably along the West Napa fault bounding the west side of Napa Valley, the projection of the Hayward fault in San Pablo Bay, the Maacama Fault, and the Rodgers Creek fault in the vicinity of Santa Rosa. These gradients result from juxtaposing dense basement rocks against thick Tertiary volcanic and sedimentary rocks.

  11. Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard

    2017-04-01

    What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.

  12. Short-time electrical effects during volcanic eruption: Experiments and field measurements

    NASA Astrophysics Data System (ADS)

    Büttner, Ralf; Zimanowski, Bernd; Röder, Helmut

    2000-02-01

    Laboratory experiments on the fragmentation and expansion of magmatic melt have been performed using remelted volcanic rock at magmatic temperatures as magma simulant. A specially designed dc amplifier in combination with high speed data recording was used to detect short-time electrostatic field effects related to the fragmentation and expansion history of the experimental system, as documented by simultaneous force and pressure recording, as well as by high-speed cinematography. It was found that (1) the voltage-time ratio of electrostatic field gradients (100 to 104 V/s) reflects different physical mechanisms of fragmentation and expansion and (2) the maximum voltage measured in 1 m distance (-0.1 to -180 V) can be correlated with the intensity of the respective processes. Based on these experimental results, a field method was developed and tested at Stromboli volcano in Italy. A 0.8 m rod antenna was used to detect the dc voltage against local ground (i.e., the electrostatic field gradient), at a distance of 60 to 260 m from the respective vent. Upwind position of the detection site was chosen to prevent interference caused by contact of charged ash particles with the antenna. A standard 8 Hz geophone was used to detect the accompanying seismicity. Three types of volcanic activity occurred during the surveillance operation; two of these could be clearly related to specific electrical and seismical signals. A typical delay time was found between the electrical and the seismical signal, corresponding to the seismic velocity within the crater deposits. Using a simple first-order electrostatic model, the field measurements were recalibrated to the laboratory scale. Comparison of field and laboratory data at first approximation revealed striking similarities, thus encouraging the further development of this technique for real-time surveillance operation at active volcanoes.

  13. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Martí, Joan; Villaseñor, Antonio

    2016-04-01

    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is important to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest, forecast the occurrence and potential tectonic controls future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. For this, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation in order to obtain the orientation of the minimum and maximum horizontal stresses. Results obtained are used to develop a more regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions where a first order approach of their plate/regional stresses is essential information to be used as input data for volcanic hazard assessment models.This research was founded by the Ramón y Cajal contract (RYC-2012-11024).

  14. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Martí, J.; Villaseñor, A.

    2016-06-01

    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is fundamental to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest and potential tectonic controls of future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. In order to obtain the orientation of the minimum and maximum horizontal compressive stresses, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation. Results obtained are used to develop a regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal compressive stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions, where a first order approach of their plate/regional stresses can be essential information to be used as input data for volcanic hazard assessment models.

  15. The `Strawberry Volcanic Field' of Northeastern Oregon: Another Piece of the CRB Puzzle?

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2010-12-01

    The Mid to Late Miocene Strawberry Volcanics field (SVF) located along the southern margin of the John Day valley of NE Oregon, comprise a diverse group of volcanic rocks ranging from basalt to rhyolite. The main outcrop area of the SVF (3,400 km2) is bordered by units from the Columbia River Basalt Group (CRBG), with the main CRB units to the north, the Picture Gorge Basalt to the east and Steens Basalt to the south. The geographic position and age of the Strawberry Volcanics make a genetic relationship to CRB volcanism likely, yet little is known about this diverse volcanic field. This research aims at refining the stratigraphic and age relationships as well as the petrology and geochemistry of magmas associated with the SVF. Previous investigations (e.g. Robyn, 1977) found that the SVF was active between 20 to 10 Ma with the main pulse largely being coeval with the 15 Ma CRBG eruptions. Lavas and tuffs from the SVF are calc-alkaline with low FeO*/MgO (~ 2.56 wt. %), high Al2O3 (~ 16.4 wt. %), low TiO2 (~ 1.12 wt.%), and span the entire compositional range from basalt to rhyolite (47-78 wt. % SiO2) with andesite as the dominant lithology. Basaltic lavas from the SVF have compositional affinities to earlier Steens Basalt, and some trace element concentrations and ratios are indistinguishable from those of CRBG lavas (e.g. Zr, Ba, Sr, and Ce/Y). Andesites are calc-alkaline, but contrary to typical arc (orogenic) andesites, SVF andesites are exceedingly phenocryst poor (<3% phenocrysts with microphenocrysts of plagioclase and lesser pyroxene which occasionally occur in crystal clots instead of single crystals). In addition, some lavas (basaltic-intermediate) are phenocryst-rich (~25%), containing plagioclase, olivine, opx, and cpx. However, phenocrysts in these lavas are strongly zoned and resorbed, and in general, these lavas are volumetrically insignificant compared with the phenocrysts poor andesites. Rhyolitic lavas are also phenocryst poor (< 3%) and appear to

  16. Kinaalda: The Pathway to Navajo Womanhood.

    ERIC Educational Resources Information Center

    Ryan, Danita Begay

    1988-01-01

    Presents a personal account of the Navajo ceremony of Kinaalda, performed when a girl reaches puberty. Describes ceremonial running, corn grinding, and grooming, and admonitions and blessings received from grandmother, elderly women of the tribe, and medicine man. (SV)

  17. Navajo Indian medicine: implications for healing.

    PubMed

    Coulehan, J L

    1980-01-01

    Traditional medicine men coexist with physicians and hospitals on the 25,000 square mile Navajo Indian Reservation. Most seriously ill Navajos utilize both systems of health care. This natural experiment of coexistence emphasizes several general characteristics of all healing. Traditional ceremonies are successful because they are integrated into Navajo belief systems and meet needs of sick people not dealt with by the available Western medicine. Physicians and other healers simply remove obstacles to the body's restoration of homeostasis or, as the Navajo say, to harmony. Reductionism limits the spectrum of obstacles considered relevant (eg, causes of illness), but an alternate model might include emotional, social, or spiritual phenomena equally as significant to healing as are biochemical phenomena. In that context, nonmedical healers, as well as physicians, can potentially influence factors relevant to getting well.

  18. Navajo Nation: Cleaning Up Abandoned Uranium Mines

    EPA Pesticide Factsheets

    This site provides information about the progress of EPA's cleanup of abandoned uranium mines on Navajo and Hopi lands and in other areas of Arizona and New Mexico, including health impacts, major enforcement and removal milestones, and community actions.

  19. Kinaalda: The Pathway to Navajo Womanhood.

    ERIC Educational Resources Information Center

    Ryan, Danita Begay

    1988-01-01

    Presents a personal account of the Navajo ceremony of Kinaalda, performed when a girl reaches puberty. Describes ceremonial running, corn grinding, and grooming, and admonitions and blessings received from grandmother, elderly women of the tribe, and medicine man. (SV)

  20. Characterization of Tephra Fall Deposit at Lunar Crater Volcanic Field, Nevada

    NASA Astrophysics Data System (ADS)

    Johnson, P. J.; Tadini, A.; Valentine, G. A.

    2012-12-01

    Explosive volcanic eruptions pose well-established hazards to aviation and public health. One possible source for explosive eruptions is basaltic monogenetic scoria cones. Although generally regarded as a well-understood eruptive style, few data have been collected of tephra deposits from prehistoric scoria cone eruptions. This project focused on a 38 ka eruption at Lunar Crater Volcanic Field, NV, which produced a tephra fall deposit visible up to 6 km from the source vent. A total of 28 sample sites were characterized for depth, largest grainsmaximum grain size, and scoria texture. A sample was collected at each site for laboratory determination of deposit density and, based on that, mass per area. Field data indicate that the deposit contains two beds which were likely produced by two separate phases of the eruption. We focused on the topmost bed due to its greater lateral extent, and the consequent interpretation that resulted from a higher plume. Reconstruction of the eruption column based on mass per unit area is presently being undertaken to ascertain plume height and windspeed, but preliminary results based on grain size suggest an eruption column between 6 and 8 km in elevation with a 25 m/s wind blowing to the northeast. Modeling undertaken in subsequent months will be used to analyze hazards posed by future eruptions to downwind interests, especially aircraft.

  1. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  2. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  3. The eruption history of the quaternary Eifel volcanic fields: Implications from the ELSA - Tephra - Stack

    NASA Astrophysics Data System (ADS)

    Förster, Michael; Sirocko, Frank

    2015-04-01

    Numerous tephra layers occur in maar sediments in the quaternary Eifel volcanic fields. The sediments were systematically drilled and cored since 1998 by the Eifel Laminated Sediment Archive project (ELSA) (Sirocko et al. 2013). These maar sediments are laminated and the tephra is easily recognizeable by a coarser grain size. Additionaly, tephra layers appear dark grey to black in color. The ashes were sieved to a fraction of 250 - 100 µm and sorted into grains of: reddish and greyish sandstone, quartz, amphibole, pyroxene, scoria and pumice, sanidine, leucite and biotite. A minimum of 100 grains for each tephra layer were used for a sediment petrographic tephra characterisation (SPTC). The grain counts resemble the vol. -% of each grain species. Three types of tephra could be identified by their distinctive grain pattern: (1) phreatomagmatic tephra, rich in basement rocks like greyish/reddish sandstone and quartz. (2) Strombolian tephra, rich in scoria and mafic minerals like pyroxene. (3) evolved tephra, rich in sanidine and pumice. 16 drill-cores, covering the last 500 000 years have been examined. Younger cores were dated by 14C ages and older cores by optical stimulated luminescence. Independently from this datings, the drill-cores were cross-correlated by pollen and the occurences of specific marker-tephra layers, comprising characteristic grain-types. These marker-tephra layers are especially thick and of evolved composition with a significant abundance of sanidine and pumice. The most prominent tephra layers of this type are the Laacher See tephra, dated to 12 900 b2k by Zolitschka (1998), the 40Ar/39Ar dated tephra layers of Dümpelmaar, Glees and Hüttenberg, dated to 116 000 b2k, 151 000 b2k and 215 000 b2k by van den Bogaard & Schmincke (1990), van den Bogaard et al. (1989). These datings set the time-frame for the eruption-phases of the quaternary Eifel Volcanic Fields. Our study refines these findings and shows that phases of activity are very

  4. Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits

    NASA Astrophysics Data System (ADS)

    Rufer, Daniel; Preusser, Frank; Schreurs, Guido; Gnos, Edwin; Berger, Alfons

    2014-05-01

    The Quaternary Vakinankaratra volcanic field in the central Madagascar highlands consists of scoria cones, lava flows, tuff rings, and maars. These volcanic landforms are the result of processes triggered by intracontinental rifting and overlie Precambrian basement or Neogene volcanic rocks. Infrared-stimulated luminescence (IRSL) dating was applied to 13 samples taken from phreatomagmatic eruption deposits in the Antsirabe-Betafo region with the aim of constraining the chronology of the volcanic activity. Establishing such a chronology is important for evaluating volcanic hazards in this densely populated area. Stratigraphic correlations of eruption deposits and IRSL ages suggest at least five phreatomagmatic eruption events in Late Pleistocene times. In the Lake Andraikiba region, two such eruption layers can be clearly distinguished. The older one yields ages between 109 ± 15 and 90 ± 11 ka and is possibly related to an eruption at the Amboniloha volcanic complex to the north. The younger one gives ages between 58 ± 4 and 47 ± 7 ka and is clearly related to the phreatomagmatic eruption that formed Lake Andraikiba. IRSL ages of a similar eruption deposit directly overlying basement laterite in the vicinity of the Fizinana and Ampasamihaiky volcanic complexes yield coherent ages of 68 ± 7 and 65 ± 8 ka. These ages provide the upper age limit for the subsequently developed Iavoko, Antsifotra, and Fizinana scoria cones and their associated lava flows. Two phreatomagmatic deposits, identified near Lake Tritrivakely, yield the youngest IRSL ages in the region, with respective ages of 32 ± 3 and 19 ± 2 ka. The reported K-feldspar IRSL ages are the first recorded numerical ages of phreatomagmatic eruption deposits in Madagascar, and our results confirm the huge potential of this dating approach for reconstructing the volcanic activity of Late Pleistocene to Holocene volcanic provinces.

  5. Dual Language = Saad Ahaah Sinil. A Navajo-English Dictionary. Revised Edition.

    ERIC Educational Resources Information Center

    Austin, Martha, Ed.; Lynch, Regina, Ed.

    A dual-language Navajo-English dictionary provides a chart of the Navajo kinship system, a two-page map of the Navajo Nation, and English equivalents for Navajo words in 46 linguistic and cultural categories. Included are words for: races (Indian and other ethnic groups); Navajo clans; age groups; Navajo ceremonies; body parts; sickness; clothing;…

  6. Evolution of Rhyolite at Laguna del Maule, a Rapidly Inflating Volcanic Field in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Andersen, N. L.; Singer, B. S.; Jicha, B. R.; Hildreth, E. W.; Fierstein, J.; Rogers, N. W.

    2012-12-01

    The Laguna del Maule Volcanic Field (LdM) is host to both the foremost example of post-glacial rhyolitic volcanism in the southern Andes and rapid, ongoing crustal deformation. The flare-up of high-silica eruptions was coeval with deglaciation at 24 ka. Rhyolite and rhyodacite domes and coulees totaling 6.5 km3 form a 20 km ring around the central lake basin. This spatial and temporal concentration of rhyolite is unprecedented in the history of the volcanic field. Colinear major and trace element variation suggests these lavas share a common evolutionary history (Hildreth et al., 2010). Moreover, geodetic observations (InSAR & GPS) have identified rapid inflation centered in the western side of the rhyolite dome ring at a rate of 17 cm/year for five years, which has accelerated to 30 cm/yr since April 2012. The best fit to the geodetic data is an expanding magma body located at 5 km depth (Fournier et al., 2010; Le Mevel, 2012). The distribution of high-silica volcanism, most notably geochemically similar high-silica rhyolite lavas erupted 12 km apart of opposite sides of the lake within a few kyr of each other, raises the possibility that the shallow magma intrusion represents only a portion of a larger rhyolitic body, potentially of caldera forming dimensions. We aim to combine petrologic models with a precise geochronology to formulate a model of the evolution of the LdM magma system to its current state. New 40Ar/39Ar age determinations show rhyolitic volcanism beginning at 23 ka with the eruption of the Espejos rhyolite, followed by the Cari Launa Rhyolite at 14.5 ka, two flows of the Barrancas complex at 6.4 and 3.9 ka, and the Divisoria rhyolite at 2.2 ka. In contrast, significant andesitic and dacitic volcanism is largely absent from the central basin of LdM since the early post-glacial period suggesting a coincident basin-wide evolution from andesite to dacite to rhyolite and is consistent with a shallow body of low-density rhyolite blocking the eruption

  7. San Juan sag: A newly discovered basin beneath San Juan volcanic field of south-central Colorado

    SciTech Connect

    Gries, R.R.

    1989-09-01

    The San Juan sag is a Laramide foreland basin formerly adjacent to and west of the Laramide northern Sangre de Cristo/San Luis highland. Wrench faulting (Eocene ) and rifting (Oligocene and Miocene) split this bounding uplift and formed the San Luis basin adjacent to and east of the sag. Volcanism concealed the San Juan sag with over 10,000 ft of intermediate volcanic deposits, and its presence remained in doubt until oil in the volcanic rocks encouraged exploration for the underlying sedimentary rocks. Drilling through the volcanic field since 1984 has revealed the presence of Paleocene and Eocene( ) clastic sediments, the Cretaceous Lewis, Mancos, and Dakota formations, and the Jurassic Morrison and Junction Creek formations. Additionally, oil and gas shows abound, and minor production has been established. Exploratory drilling and geophysical acquisitions have helped to define basin geometry, reservoir rocks, source rocks, and maturation and burial history.

  8. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    USGS Publications Warehouse

    Grauch, V.J.; Sawyer, David A.; Fridrich, Chris J.; Hudson, Mark R.

    1999-01-01

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The region has been loosely divided into six domains based on structural style and overall geophysical character. For each domain, the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work has been reviewed. Where possible, abrupt changes in geophysical fields as evidence for potential structural lithologic control on ground-water flow has been noted. Inferred lithology is used to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses from regional ground-water pathways where no drill-hole information exists.

  9. The Lathrop Wells volcanic center: Status of field and geochronology studies

    SciTech Connect

    Crowe, B.; Morley, R.; Wells, S.; Geissman, J.; McDonald, E.; McFadden, L.; Perry, F.; Murrell, M.; Poths, J.; Forman, S.

    1993-03-01

    The Lathrop Wells volcanic center is located 20 km south of the potential Yucca Mountain site, at the south end of the Yucca Mountain range. It has long been recognized as the youngest basalt center in the region. However, determination of the age and eruptive history of the center has proven problematic. The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results.

  10. Differentiation of cinder cone magmas from the Michoacan-Guanajuato Volcanic Field, central Mexico

    SciTech Connect

    Hasenaka, T.

    1985-01-01

    The Michoacan-Guanajuato Volcanic Field (area:40,000 km/sup 2/) contains various small volcanic centers of 3 Ma to Recent age, including 900 cinder and lava cones, and contrast to other portions of the Mexican Volcanic Belt (MVB) with large composite volcanoes. Among 224 scoria and lava samples studied for chemistry and mineralogy, 165 samples are calc-alkaline (basalt, andesite, and dacite), 21 are alkaline (mainly basalt), and 38 are transitional between the two (mainly basalt). The majority of rocks are 01 basalt and 01 andesite with pyroxene and hornblende andesites being subordinate. Their MgO content is relatively high compared with lavas from composite volcanoes in the MVB, and indicate an earlier stage of differentiation. Four samples have Mg-number >70 and Ni content >235 ppm, a criteria of magmas equilibrated with mantle olivine. They include all the rock groups but phenocryst assemblage is always 01+Cpx+Pl. Other samples are plotted between this and 1-atmosphere Ol-Cpx-Pl cotectic. Ol-liquid, two pyroxenes, and magnetite-ilmenite temperatures decrease from 1200/sup 0/C to 900/sup 0/C with increasing FeO*/MgO ratio which also corresponds to the changing mineral assemblages. Calculated oxygen fugacities are on or slightly above Ni-NiO buffer line. Calc-alkaline and alkaline basalts are not related; both are parental. Less differentiated character of cinder cone magmas may result from their transportation under local extensional stress and absence of long-lived shallow magma reservoirs is common in composite volcanoes.

  11. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    NASA Astrophysics Data System (ADS)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  12. Origin and formation of neck in a basin landform: Examples from the Camargo volcanic field, Chihuahua (México)

    NASA Astrophysics Data System (ADS)

    Aranda-Gómez, José Jorge; Housh, Todd B.; Luhr, James F.; Noyola-Medrano, Cristina; Rojas-Beltrán, Marco Antonio

    2010-11-01

    The term "neck in a basin" (NIB) landform is proposed for volcanic structures characterized by nearly circular to elliptical open basins, located near the headwater of small streams or drainages, which contain small volcanic necks and/or erosion remnants of one (or more) cinder cones. NIB landforms are typically 400-1000 m in diameter and 30-100 m deep and are invariably surrounded by steep walls cut into one or more basaltic lava flows. NIB landforms lack evidence for a primary volcanogenic origin through either collapse or youthful eruptive activity. In the Pliocene portion (4 - 2 Ma) of the Plio-Quaternary Camargo volcanic field of Chihuahua (México), they are relatively numerous and are best developed at the margins of a gently sloping (3-5°) basaltic lava plateau and near major fault scarps. Mature NIB landforms have ring-like circular drainage patterns and central elevations marked by small volcanic necks and associated radial dikes intruded into basaltic scoria-fall and /or agglutinate deposits. We interpret NIB landforms to be erosional in origin. They develop where a cinder cone is surrounded by one or more sheet-like lava flows from one or more separate subsequent vents. Once eruptive activity ceases at the younger volcano(es), fluvial erosion gradually produces a ring-like drainage pattern along the contact between the lava and the older cinder cone. As a response to a marked contrast in resistance to erosion between lava flows and unconsolidated or poorly lithified pyroclastic deposits, the older cinder cone is preferentially eroded. In this manner, a ring-shaped, steep sided erosional basin, preformed by the scoria cone, is produced; eventually fluvial erosion exposes the central neck and dikes. The volume, relief, and age of the volcanic field are key factors in the formation and preservation of a NIB landform. They form in volcanic fields where lava emissions are sufficiently vigorous to engulf earlier cinder cones. Relief and associated high rates

  13. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.

    2014-12-01

    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  14. Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Metz, J.

    1984-01-01

    Basaltic lava flows and high-silica rhyolite domes form the Pleistocene part of the Coso volcanic field in southeastern California. The distribution of vents maps the areal zonation inferred for the upper parts of the Coso magmatic system. Subalkalic basalts (<50% SiO2) were erupted well away from the rhyolite field at any given time. Compositional variation among these basalts can be ascribed to crystal fractionation. Erupted volumes of these basalts decrease with increasing differentiation. Mafic lavas containing up to 58% SiO2, erupted adjacent to the rhyolite field, formed by mixing of basaltic and silicic magma. Basaltic magma interacted with crustal rocks to form other SiO2-rich mafic lavas erupted near the Sierra Nevada fault zone. Several rhyolite domes in the Coso volcanic field contain sparse andesitic inclusions (55-61% SiO2). Pillow-like forms, intricate commingling and local diffusive mixing of andesite and rhyolite at contacts, concentric vesicle distribution, and crystal morphologies indicative of undercooling show that inclusions were incorporated in their rhyolitic hosts as blobs of magma. Inclusions were probably dispersed throughout small volumes of rhyolitic magma by convective (mechanical) mixing. Inclusion magma was formed by mixing (hybridization) at the interface between basaltic and rhyolitic magmas that coexisted in vertically zoned igneous systems. Relict phenocrysts and the bulk compositions of inclusions suggest that silicic endmembers were less differentiated than erupted high-silica rhyolite. Changes in inferred endmembers of magma mixtures with time suggest that the steepness of chemical gradients near the silicic/mafic interface in the zoned reservoir may have decreased as the system matured, although a high-silica rhyolitic cap persisted. The Coso example is an extreme case of large thermal and compositional contrast between inclusion and host magmas; lesser differences between intermediate composition magmas and inclusions lead to

  15. Navajo Language Bibliography. Preliminary Edition, September 1973. Navajo Reading Study Progress Report No. 22.

    ERIC Educational Resources Information Center

    Kari, James

    Over the years the Navajo language has received more attention than any other American Indian language. The grammatical work represents all traditions in American Indian linguistic research, from the earliest descriptivism to the latest generative grammar. In addition, there exists a large amount of material written in Navajo and a plethora of…

  16. Geology of the Mid-Miocene Rooster Comb Caldera and Lake Owyhee Volcanic Field, eastern Oregon: Silicic volcanism associated with Grande Ronde flood basalt

    NASA Astrophysics Data System (ADS)

    Benson, Thomas R.; Mahood, Gail A.

    2016-01-01

    The Lake Owyhee Volcanic Field (LOVF) of eastern Oregon consists of rhyolitic caldera centers and lava fields contemporaneous with and spatially related to Mid-Miocene Columbia River flood basalt volcanism. Previous studies delineated two calderas in the southeastern part of LOVF near Owyhee Reservoir, the result of eruptions of two ignimbrites, the Tuff of Leslie Gulch and the Tuff of Spring Creek. Our new interpretation is that these two map units are differentially altered parts of a single ignimbrite produced in a major phreatomagmatic eruption at ~ 15.8 Ma. Areas previously mapped as Tuff of Spring Creek are locations where the ignimbrite contains abundant clinoptilolite ± mordenite, which made it susceptible to erosion. The resistant intracaldera Tuff of Leslie Gulch has an alteration assemblage of albite ± quartz, indicative of low-temperature hydrothermal alteration. Our new mapping of caldera lake sediments and pre- and post-caldera rhyolitic lavas and intrusions that are chemically similar to intracaldera Tuff of Leslie Gulch point to a single ~ 20 × 25 km caldera, which we name the Rooster Comb Caldera. Erosion of the resurgently uplifted southern half of the caldera created dramatic exposures of intracaldera Tuff of Leslie Gulch cut by post-caldera rhyolite dikes and intrusions that are the deeper-level equivalents of lava domes and flows that erupted into the caldera lake preserved in exposures to the northeast. The Rooster Comb Caldera has features in common with more southerly Mid-Miocene calderas of the McDermitt Volcanic Field and High Rock Caldera Complex, including formation in a basinal setting shortly after flood basalt eruptions ceased in the region, and forming on eruption of peralkaline ignimbrite. The volcanism at Rooster Comb Caldera postdates the main activity at McDermitt and High Rock, but, like it, begins ~ 300 ky after flood basalt volcanism begins in the area, and while flood basalts don't erupt through the silicic focus, are

  17. Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions

    NASA Astrophysics Data System (ADS)

    Colucci, M. T.; Dungan, M. A.; Ferguson, K. M.; Lipman, P. W.; Moorbath, S.

    1991-07-01

    Early intermediate composition volcanic rocks of the Oligocene (circa 34-29 Ma) southeast San Juan volcanic field, southern Colorado, comprise the Conejos Formation. Conejos lavas include both high-K calc-alkaline and alkaline magma series (54-69% SiO2) ranging in composition from basaltic andesite (basaltic trachyandesite) to dacite (trachydacite). The subsequent Platoro caldera complex (29-27 Ma) was superimposed on a cluster of broadly precursory Conejos stratocones. Precaldera volcanism occurred in three pulses corresponding to three time-stratigraphic members: (1) the Horseshoe Mountain member, (2) the Rock Creek member, and (3) the Willow Mountain member. Each member exhibits distinctive phenocryst modes and incompatible trace element contents. Horseshoe Mountain lavas (hornblende-phyric) have relatively low alkali and incompatible element abundances, Rock Creek lavas (anhydrous phenocrysts) and ash-flow tuffs have the highest abundances, and Willow Mountain lavas (diverse mineralogy) are intermediate. All Conejos lavas exhibit low ratios of lead (206Pb/204Pb = 17.5 to 18.2) and neodymium (ɛNd = -8 to -4) isotopes and high 87Sr/86Sr (0.7045 to 0.7056) compared to depleted asthenospheric mantle. These values lie between those of likely mantle compositions and the isotopic composition of Proterozoic crust of the southern Rocky Mountains. Mafic lavas of the Horseshoe Mountain member have the lowest Pb and Nd isotope ratios among Conejos members but trend toward higher isotopic values with increasing degrees of differentiation. Compositions within the Rock Creek series trend toward higher Pb and lower Nd isotope ratios with increasing SiO2. Willow mountain volcanic sequences define diverse chemical-isotopic correlations. We interpret the chemical and isotopic differences observed between mafic lavas of each member to reflect derivation from compositionally distinct mantle derived parent magmas that have experienced extensive deep level crustal contamination

  18. Magnetotelluric images of the crustal structure of Chyulu Hills volcanic field, Kenya

    NASA Astrophysics Data System (ADS)

    Sakkas, V.; Meju, M. A.; Khan, M. A.; Haak, V.; Simpson, F.

    2002-03-01

    Electromagnetic experiments were conducted in 1995 as part of a multidisciplinary research project to investigate the deep structure of the Chyulu Hills volcanic chain on the eastern flank of the Kenya Rift in East Africa. Transient electromagnetic (TEM) and broadband (120-0.0001 Hz) magnetotelluric (MT) soundings were made at eight stations along a seismic survey line and the data were processed using standard techniques. The TEM data provided effective correction for static shifts in MT data. The MT data were inverted for the structure in the upper 20 km of the crust using a 2-D inversion scheme and a variety of starting models. The resulting 2-D models show interesting features but the wide spacing between the MT stations limited model resolution to a large extent. These models suggest that there are significant differences in the physical state of the crust between the northern and southern parts of the Chyulu Hills volcanic field. North of the Chyulu Hills, the resistivity structure consists of a 10-12-km-thick resistive (up to 4000 Ω m) upper crustal layer, ca. 10-km-thick mid-crustal layer of moderate resistivity (˜50 Ω m), and a conductive substratum. The resistive upper crustal unit is considerably thinner over the main ridge (where it is ca. 2 km thick) and further south (where it may be up to 5 km thick). Below this cover unit, steep zones of low resistivity (0.01-10 Ω m) occur underneath the main ridge and at its NW and SE margins (near survey positions 100 and 150-210 km on seismic line F of Novak et al. [Novak, O., Prodehl, C., Jacob, A.W.B., Okoth, W., 1997. Crustal structure of the southern flank of the Kenya Rift deduced from wide-angle P-wave data. In: Fuchs, K., Altherr, R., Muller, B., Prodehl, C. (Eds.), Structure and Dynamic Processes in the Lithosphere of the Afro-Arabian Rift System. Tectonophysics, vol. 278, 171-186]). These conductors appear to be best developed in upper crustal (1-8 km) and middle crustal (9-18 km) zones in the areas

  19. Variability of the 0-3 Ma palaeomagnetic field observed from the Boring Volcanic Field of the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Lhuillier, Florian; Shcherbakov, Valeriy P.; Gilder, Stuart A.; Hagstrum, Jonathan T.

    2017-10-01

    The Boring Volcanic Field of the Pacific Northwest (USA), composed of more than 80 eruptive units ranging in age from 3200 to 60 ka, offers a unique possibility to investigate the variability of the Quaternary to late Neogene palaeomagnetic field. To complement previous work on palaeodirections, we conducted 240 absolute palaeointensity (API) experiments with the joint use of the continuous (Wilson) and stepwise (Thellier-Coe) double-heating protocol, along with 620 relative palaeointensity (RPI) experiments based on the pseudo-Thellier approach. We successfully determined absolute estimates for 12 independent eruptive units, as well as relative estimates for 47 out of 132 investigated sites. We compare these results with the existing database for the last 3 Myr and obtain an estimate of the relative variability in palaeointensity on the order of 40-45 per cent as a proxy for palaeosecular variation. API and RPI data suggest a possible asymmetry between normal and reverse polarities.

  20. Geology and K-Ar dating of the Tuxtla Volcanic Field, Veracruz, Mexico

    NASA Astrophysics Data System (ADS)

    Nelson, Stephen A.; Gonzalez-Caver, Erika

    1992-12-01

    The Tuxtla Volcanic Field (TVF) is located on the coast of the Gulf of Mexico in the southern part of the state of Veracruz, Mexico. Volcanism began about 7 my ago, in the Late Miocene, and continued to recent times with historical eruptions in ad 1664 and 1793. The oldest rocks occur as highly eroded remnants of lava flows in the area surrounding the historically active cone of San Martín Tuxtla. Between about 3 and 1 my ago, four large composite volcanoes were built in the eastern part of the area. Rocks from these structures are hydrothermally altered and covered with lateritic soils, and their northern slopes show extensive erosional dissection that has widened preexisting craters to form erosional calderas. The eastern volcanoes are composed of alkali basalts, hawaiites, mugearites, and benmoreites, with less common calc-alkaline basaltic andesites and andesites. In the western part of the area, San Martín Tuxtla Volcano and its over 250 satellite cinder cones and maars produced about 120 km3 of lava over the last 0.8 my. A ridge of flank cinder cones blocked drainage to the north to form Laguna Catemaco. Lavas erupted from San Martín and its flank vents are restricted to compositions between basanite and alkali basalt. The alignment of major volcanoes and flank vents along a N55°W trend suggests an extensional stress field in the crust with a minimum compressional stress orientation of N35° E. In total, about 800 km3 of lava has been erupted in the TVF in the last 7 my. This gives a magma output rate of about 0.1 km3/1000 year, a value smaller than most composite cones, but similar to cinder cone fields that occur in central Mexico. Individual eruptions over the last 5000 years had volumes on the order of 0.1km3, with average recurrence intervals of 600 years. The alkaline compositions of the TVF lavas contrast markedly with the calc-alkaline compositions erupted in the subduction-related Mexican Volcanic Belt to the west, leading previous workers to

  1. Some field observations and experimental insights on volcanic ash aggregates (Invited)

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.

    2013-12-01

    The aggregation of ash- to dust-sized pyroclasts is a well-documented process that deeply impacts the internal dynamics and atmospheric dispersal of volcanic plumes, the geometry of the resulting fallout deposits, and the nature and occurrence of associated hazards. As such, studies of the aggregation processes have been actively promoted since decades, with an escalation after the civil aviation crisis from the 2010 Ejyafiallajokull eruption. Here we illustrate the potential of high-speed imaging in the study of ash aggregation and aggregates settling both in laboratory experiments and directly in the field. Under weak eruption plumes from the Ejyafiallajokull (Iceland), Yasur (Vanuatu), and Sakurajima (Japan) volcanoes, high-speed imaging systems captured the settling of ash-sized pyroclasts, both as individual particles and as aggregates. Relevant parameters such as the size and the settling velocity of the particles and aggregates are derived directly by image analysis, within the system spatial resolution limits. Field sampling and laboratory analyses of the imaged particles is then used to investigate their overall size distribution and textural-chemical features. In addition, the same high-speed imaging system is used to record the individual volcanic explosion, if discrete, or volcanic episode, for ongoing activity, from which the settling particles originated, potentially illuminating the sources of the ash and other relevant processes (e.g., eruption style, plume rise dynamics, electrification). In order to better constrain the observed phenomena, we are currently performing two sets of laboratory experiments. The first set of experiments aims to characterize the settling properties of individual particles, in order to allow distinguishing them from the aggregates in the field-based images. Such experiments, consisting in the imaging of free-falling individual particles, will also be used in the future to assess the simultaneous settling of large numbers

  2. The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types

    NASA Astrophysics Data System (ADS)

    Lewis-Kenedi, Catherine B.; Lange, Rebecca A.; Hall, Chris M.; Delgado-Granados, Hugo

    2005-06-01

    The eruptive history of the Tequila volcanic field (1600 km2) in the western Trans-Mexican Volcanic Belt is based on 40Ar/39Ar chronology and volume estimates for eruptive units younger than 1 Ma. Ages are reported for 49 volcanic units, including Volcán Tequila (an andesitic stratovolcano) and peripheral domes, flows, and scoria cones. Volumes of volcanic units ≤1 Ma were obtained with the aid of field mapping, ortho aerial photographs, digital elevation models (DEMs), and ArcGIS software. Between 1120 and 200 kyrs ago, a bimodal distribution of rhyolite (~35 km3) and high-Ti basalt (~39 km3) dominated the volcanic field. Between 685 and 225 kyrs ago, less than 3 km3 of andesite and dacite erupted from more than 15 isolated vents; these lavas are crystal-poor and show little evidence of storage in an upper crustal chamber. Approximately 200 kyr ago, ~31 km3 of andesite erupted to form the stratocone of Volcán Tequila. The phenocryst assemblage of these lavas suggests storage within a chamber at ~2 3 km depth. After a hiatus of ~110 kyrs, ~15 km3 of andesite erupted along the W and SE flanks of Volcán Tequila at ~90 ka, most likely from a second, discrete magma chamber located at ~5 6 km depth. The youngest volcanic feature (~60 ka) is the small andesitic volcano Cerro Tomasillo (~2 km3). Over the last 1 Myr, a total of 128±22 km3 of lava erupted in the Tequila volcanic field, leading to an average eruption rate of ~0.13 km3/kyr. This volume erupted over ~1600 km2, leading to an average lava accumulation rate of ~8 cm/kyr. The relative proportions of lava types are ~22 43% basalt, ~0.4 1% basaltic andesite, ~29 54% andesite, ~2 3% dacite, and ~18 40% rhyolite. On the basis of eruptive sequence, proportions of lava types, phenocryst assemblages, textures, and chemical composition, the lavas do not reflect the differentiation of a single (or only a few) parental liquids in a long-lived magma chamber. The rhyolites are geochemically diverse and were likely

  3. Isotopic and chemical constraints on the petrogenesis of Blackburn Hills volcanic field, western Alaska

    USGS Publications Warehouse

    Moll-Stalcup, E. J.; Arth, Joseph G.

    1991-01-01

    The Blackburn Hills volcanic field is one of several Late Cretaceous and early Tertiary (75-50 Ma) volcanic fields in western Alaska that comprise a vast magmatic province extending from the Arctic Circle to Bristol Bay. It consists of andesite flows, rhyolite domes, a central granodiorite to quartz monzonite pluton, and small intrusive rhyolite porphyries, overlain by basalt and alkali-rhyolites. Most of the field consists of andesite flows which can be divided into two groups on the basis of elemental and isotopic composition: a group having lower ( 87Sr 86Sr)i, higher ( 143Nd 144Nd)i, and moderate LREE and HREE contents (group 1), and a group having higher ( 87Sr 86Sr)i, lower ( 143Sr 144Sr)i, and lower HREE contents. Basalts are restricted to the top of the stratigraphic section, comprise the most primitive part of group 1 [( 87Sr 86Sr)i = 0.7033; ( 143Nd 144Nd)i = 0.5129], and have trace-element ratios that are similar to those of oceanic island basalts (OIBs). In contrast to the basalts, group 1 andesites have higher ( 87Sr 86Sr)i and lower ( 143Nd 144Nd)i, and represent interaction of mantle-derived magmas with the lower crust of Koyukuk terrane. Group 2 andesites have ( 87Sr 86Sr)i and ( 143Nd 144Nd)i that are near bulk-earth values and probably formed by partial melting of the lower crust of Koyukuk terrane. The central pluton and rhyolite porphyries are isotopically uniform ( 87Sr 86Sr)i ??? 0.704, ( 143Nd 144Nd)i ??? 0.51275, and are interpreted to have formed by melting of young mafic to intermediate crustal rocks or by fractionation of group 1 andesites. The rhyolite domes have an isotopic range similar to that of the basalts and andesites [( 87Sr 86Sr)i = 0.70355-0.70499; ( 143Nd 144Nd)i = 0.51263-0.51292], which suggests they formed by fractionation of the and site and basalt magmas. Although some workers have suggested that the volcanic field is underlain by old continental crust, none of the data require the presence of Paleozoic or Precambrian

  4. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  5. STEM Summer Academy on the Navajo Reservation

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.

    2012-12-01

    The US Rosetta Project is the NASA contribution to the International Rosetta Mission, an ESA cornerstone mission to comet Churyumov-Gerasimenko. While the project's outreach efforts span multi-media, and a variety of age and ethnic groups, a special emphasis has been made to find a way to provide meaningful outreach to the reservation communities. Because language preservation is an issue of urgent concern to the reservation communities, and because Rosetta, uniquely among NASA missions, has been named after the notion that keys to missing understanding of elements of the ancient past were found in the language on the original Rosetta stone, the US Rosetta Project has embarked upon outreach with a focus on STEM vocabulary in ancient US languages of the Navajo, Hopi, Ojibwe, and other tribal communities as the project expands. NASA image and science are used and described in the native language, alongside lay English and scientific English curriculum elements. Additionally, science (geology/chemistry/botany/physics) elements drawn from the reservation environment, including geomorphology, geochemistry, soil physics, are included and discussed in the native language as much as possible — with their analogs in other planetary environments (such as Mars). In this paper we will report on the most recent Summer Science Academy [2012], a four week summer course for middle school children, created in collaboration with teachers and administrators in the Chinle Unified School District. The concept of the Academy was initiated in 2011, and the first Academy was conducted shortly thereafter, in June 2011 with 14 children, 3 instructors, and a NASA teacher workshop. The community requested three topics: geology, astronomy, and botany. The 2012 Academy built on the curriculum already developed with more robust field trips, addressed to specific science topics, additional quantitative measurements and activities, with more written material for the cultural components from

  6. Northern Edge Navajo Casino, Fruitland, NM: NN0030343

    EPA Pesticide Factsheets

    NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0030343) to the Navajo Tribal Utility Authority Northern Edge Navajo Casino Wastewater Treatment Facility, 2752 Indian Service Road 36, Fruitland, NM.

  7. New Contributions to the Geomagnetic Instability Time Scale: Paleomagnetic study of Tequila and Ceboruco-San Pedro-Amado Nervo Volcanic Fields (Trans Mexican Volcanic Belt)

    NASA Astrophysics Data System (ADS)

    Rodriguez Ceja, M.; Gogichaishvili, A.; Alva-Valdivia, L.; Rosas Elguera, J.; Calvo, M.; Urrutia-Fucugauchi, J.

    2005-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the largest continental volcanic arcs of the North American plate. It spans about 1000 km from the Pacific to the Gulf of Mexico. Despite the abundance of thick lava sequences with quite high extrusion rates, the TMVB have been relatively little studied from a paleomagnetic point of view. Previous studies were aimed for tectonic evolution of the region rather than documenting fluctuations of Earth's magnetic field in terms of both directions and intensity. We report a detailed paleomagnetic and rock-magnetic study of Tequila and Ceboruco-San Pedro-Amado Nervo volcanic fields. 350 oriented samples belonging to 31 independent cooling units were collected. All these sites were previously dated by means of the state-of-the-art 40Ar-39Ar geochronological method and span from 1.1 Ma to 2 Ky. Rock-magnetic experiments which included continuous susceptibility, isothermal remanence acquisition and hysteresis measurements point to simple magnetic mineralogy. In most of cases, the remanence is carried by Ti-poor titanomagnetite of pseudo-single-domain magnetic structure. The paleodirections of the flow dated as 819±25 ka correspond to a VGP latitude of 18° N. This anomalous field behaviour apparently recorded prior to the Matuyama-Brunhes reversal may coincide with the geomagnetic event, defined as M-B precursor. Two independent lava flows, dated as 623±91 and 614±16 ka respectively, yield reverse paleodirections and one lava flow dated as 690±29 yields transitional paleodirections. It is possible that these lavas erupted during the worldwide observable Big Lost or Delta events.

  8. Petrology of lower crustal and upper mantle xenoliths from the Cima Volcanic Field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.; Noller, J.S.; Turrin, B.D.

    1991-01-01

    Basaltic rocks of the Cima Volcanic Field in the southern Basin and Range province contain abundant gabbro, pyroxenite, and peridotite xenoliths. Composite xenoliths containing two or more rock types show that upper-mantle spinel peridotite was enriched by multiple dike intrusions in at least three episodes; the mantle was further enriched by intergranular and shear-zone melt infiltration in at least two episodes. Because of their high densities, the gabbros and pyroxenites can occupy the zone immediately above the present Moho (modeled on seismic data as 10-13 km thick, with Vp 6.8 km/s) only if their seismic velocities are reduced by the joints, partial melts, and fluid inclusions that occur in them. Alternatively, these xenoliths may have been derived entirely from beneath the Moho, in which case the Moho is not the local crust-mantle boundary. -from Authors

  9. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  10. Eruption style and flow emplacement in the Submarine North Arch Volcanic Field, Hawaii

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Uto, Kozo; Satake, Kenji; Davis, Alicé S.

    The North Arch Volcanic Field covers about 24,000 km2 of seafloor north of Oahu and has an estimated volume between 1,000 and 1,250 km3. The field straddles the Hawaiian flexural arch about 250 km north of the axis of the island chain and surrounds numerous Cretaceous volcanic ridges, circular flat-topped volcanoes, and low-relief regions of sediment-covered seafloor. New SeaBeam bathymetric maps that cover about 1/3 of the flow field reveal nearly 100 volcanic structures ranging from low shields to steep cones. One shield is modified by a pit crater, approximately 1.1×1.25 km and 300 m deep. A lava flow in the SE part of the volcanic field covers about 3,600 km2, has an estimated volume of 36-72 km3, and apparently erupted from a 75-km-long NNW-trending fissure system. A 108-km-long flow advanced north in a graben parallel to the Cretaceous mid-ocean ridge that formed the crust; its surface gradient is 1.9 m/km (slope of 0.1°). Shinkai 6500 submersible dive 502 explored one of the composite volcanoes and observed and collected dense alkalic basalt sheet flows erupted after vesicular basanite pillow basalts and fragmental hyaloclastite that make up the steep-sided cone. Dive 503 collected alkalic basalt sheet flows and pillow basalt from the top 122 m of the southern wall of a pit crater that formed by collapse caused by a decrease in magma volume from a shallow storage chamber located 1-2 km below the surface. The volume change may have been caused by loss of gas bubbles from the stored magma when replenishment ceased at the end of the eruption. The surficial drapery-folded sheet flow is covered by only a few cm of sediment, indicating that it is younger than the 0.5-1.5 Ma ages previously estimated for North Arch flows and vents. The near-vent constructs and flow characteristics indicate that vigorous eruption of highly vesicular lava constructed steep-sided cones of pillow basalt and hyaloclastite whereas steady eruption of dense lava that had lost its bubbles

  11. Further paleomagnetic results for the San Juan volcanic field of southern Colorado

    USGS Publications Warehouse

    Beck, M.E.; Sheriff, S.D.; Diehl, J.F.; Hailwood, E.A.; Lipman, P.W.

    1977-01-01

    Combining paleomagnetic data for 17 new sites from the northwest portion of the (Oligocene) San Juan volcanic field of southern Colorado with data for 29 sites previously published yields a paleomagnetic pole at 85??N, 114??E (with a 95% confidence circle of 7.5?? radius). A further combination of the San Juan data with the results of other studies on rocks of Oligocene age from tectonically stable parts of North America gives a mid-Tertiary reference pole located at 81??N, 132.5??E, with a confidence circle of approximately 4??. Mid-Tertiary paleomagnetic poles for the western edge of the continent diverge markedly from this reference pole. ?? 1977.

  12. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    USGS Publications Warehouse

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  13. Petrology of the alkaline rocks of the Macau Volcanic Field, NE Brazil

    NASA Astrophysics Data System (ADS)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Pimentel, Márcio Martins; de Oliveira, Diógenes Custódio

    2016-12-01

    The Macau Volcanic Field (MVF) in the Borborema Province, NE Brazil, contains multiple centres of volcanic activity of Early to Late Cenozoic ages. We present element and Sr-Nd-Pb isotope geochemical data for four of the few most prominent basalt types of this volcanic field: Serrote Preto-type, Serra Aguda-type, Pico do Cabugi-type and Serra Preta-type, in order to assess their magmatic history from source to crystallization and the evolution of the mantle beneath the Borborema Province. The basalts are basically sodic nephelinitic-basanitic-alkali olivine basalts enriched in LILE and in Nb-Ta. The Serra Preta, Cabugi and Serra Aguda types demonstrate compositions close to primitive characteristics with 10% < MgO < 15 wt.% and 200 ppm < Ni < 500 ppm, and experienced limited fractional crystallization of olivine-clinopyroxene-plagioclase-oxides with negligible wall-rock assimilation. Rb/Sr and Ba/Rb constraints support the generation of SiO2-undersaturated magmas from mantle melting of amphibole-bearing peridotites with minor phlogopite. The source for the basanites and alkali basalts is estimated to be a garnet-bearing domain around the lithosphere-asthenosphere boundary (80-93 km deep), while the nephelinites are derived from the adiabatic asthenosphere at 105 km with temperatures of 1480 °C. Their incompatible trace element patterns and Sr-Nd-Pb isotopic compositions are similar to FOZO and EM-type OIB magmas. From the comparison of data with those of the Ceará-Mirim dyke swarm we propose that there is a ubiquitous FOZO reservoir in the SCLM beneath the Borborema Province. This FOZO signature characterized the upwelling asthenosphere during the lithospheric extension and thinning at the opening of the Equatorial Atlantic and is clearly represented in the Mesozoic olivine tholeiites of Ceará-Mirim. The upwelled asthenosphere cooled as a rigid SCLM since the Cretaceous and has preserved its FOZO signature evident in the Macau Cenozoic basalts. The EM signatures

  14. Eruptive history and geochronology of the Mount Baker volcanic field, Washington

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Lanphere, M.

    2003-01-01

    Mount Baker, a steaming, ice-mantled, andesitic stratovolcano, is the most conspicuous component of a multivent Quaternary volcanic field active almost continuously since 1.3 Ma. More than 70 packages of lava flows and ~110 dikes have been mapped, ???500 samples chemically analyzed, and ~80 K-Ar and 40Ar/39Ar ages determined. Principal components are (1) the ignimbrite-filled Kulshan caldera (1.15 Ma) and its precaldera and postcaldera rhyodacite lavas and dikes (1.29-0.99 Ma); (2)~60 intracaldera, hydrothermally altered, andesite-dacite dikes and pods-remnants of a substantial early-postcaldera volcanic center (1.1-0.6 Ma); (3) unaltered intracaldera andesite lavas and dikes, including those capping Ptarmigan and Lasiocarpa Ridges and Table Mountain (0.5-0.2 Ma); (4) the long-lived Chowder Ridge focus (1.29-0.1 Ma)-an andesite to rhyodacite eruptive complex now glacially reduced to ~50 dikes and remnants of ~10 lava flows; (5) Black Buttes stratocone, basaltic to dacitic, and several contemporaneous peripheral volcanoes (0.5-0.2 Ma); and (6) Mount Baker stratocone and contemporaneous peripheral volcanoes (0.1 Ma to Holocene). Glacial ice has influenced eruptions and amplified erosion throughout the lifetime of the volcanic field. Although more than half the material erupted has been eroded, liberal and conservative volume estimates for 77 increments of known age yield cumulative curves of volume erupted vs. time that indicate eruption rates in the range 0.17-0.43 km3/k.y. for major episodes and longterm background rates of 0.02-0.07 km3/k.y. Andesite and rhyodacite each make up nearly half of the 161 ?? 56 km3 of products erupted, whereas basalt and dacite represent only a few cubic kilometers, each representing 1%-3% the total. During the past 4 m.y., the principal magmatic focus has migrated stepwise 25 km southwestward, from the edge of the Chilliwack batholith to present-day Mount Baker.

  15. Pliocene to late Pleistocene magmatism in the Aurora Volcanic Field, Nevada and California, USA

    NASA Astrophysics Data System (ADS)

    Kingdon, S.; Cousens, B.; John, D. A.; du Bray, E. A.

    2013-12-01

    The 3.9- 0.1 Ma Aurora Volcanic Field (AVF) covers 325 km2 east and southeast of the Bodie Hills, north of Mono Lake, California, USA. The AVF is located immediately northwest of the Long Valley magmatic system and adjacent and overlapping the Miocene Bodie Hills Volcanic Field (BHVF). Rock types range from trachybasalt to trachydacite, and high-silica rhyolite. The trachybasalts to trachydacites are weakly to moderately porphyritic (1-30%) with variable phenocryst assemblages that are some combination of plagioclase, hornblende, clinopyroxene, and lesser orthopyroxene, olivine, and/or biotite. Microphenocrysts are dominated by plagioclase, and include opaque oxides, clinopyroxene, and apatite. These rocks are weakly to strongly devitrified. The high-silica rhyolites are sparsely porphyritic with trace to 10% phenocrysts of quartz, sanidine, plagioclase, biotite, (+/- hornblende), accessory opaque oxide minerals, titanite, allanite, (+/-apatite, zircon), and have glassy groundmasses. Rocks in the AVF are less strongly porphyritic than those of BHVF. Plagioclase phenocrysts are often oscillatory zoned and many have sieve texture. Amphiboles have distinct black opaque rims. Xenocrystic quartz and plagioclase are rare. AVF lavas have bimodal SiO2 compositions, ranging from 49 to 78 wt%, with a gap between 65 and 75 wt%. They are high-K calc-alkaline to shoshonitic in composition, and are metaluminous to weakly peraluminous. They are enriched in rare earth elements (REE), especially light REEs, compared to the Miocene BHVF rocks. Primordial mantle-normalized incompatible element patterns show arc- or subduction-related signatures, with enrichment in Ba and Pb, and depletion in Nb and Ta. Enrichment in K and Sr and depletion in Ti are less pronounced than in the BHVF rocks. There is no correlation between lead isotope ratios and silica (initial 206Pb/204Pb ratios range from 18.974 to 19.151). Neodymium isotope ratios show a moderate negative correlation with silica

  16. Peralkaline ash flow tuffs and calderas of the McDermitt volcanic field, southeast Oregon and north central Nevada.

    USGS Publications Warehouse

    Rytuba, J.J.; McKee, E.H.

    1984-01-01

    This volcanic field covers an area of 20 000 km2 and consists of seven large-volume ash-flow sheets that vented 16.1-15 m.y. ago. The volcanic field is characterized by peralkaline, high-silica rhyolite, and all but one of the sheets are comendites. Each ash-flow sheet resulted in the formation of a large collapse caldera. Thickening of the ash-flow sheets, monoclinal warping outside the caldera ring-fault and tilting-in towards the caldera of blocks bounded by curvilinear faults all indicate regional subsidence prior to caldera collapse. The McDermitt caldera complex is highly mineralized; it contains ore deposits of Hg, Sb, Cs, Li and U. The peralkaline tuffs have high contents of these elements and were the source rocks from which metals were leached by hydrothermal systems developed during the last stage of caldera-related volcanism. (Following abstract) -W.H.B.

  17. Monogenetic volcanic fields and their geoheritage values of western Saudi Arabia and their implication to holistic geoeducation projects locally and globally (Invited)

    NASA Astrophysics Data System (ADS)

    Nemeth, K.; Moufti, R.

    2013-12-01

    Monogeneitc volcanic fields are the most common manifestation of volcanism on Earth and other planets. They composed of small volume and short lived volcanoes each of them with a relatively simple eruption history. In spite of recent researches demonstrated complex, repeated and geochemically distinct eruption histories commonly associated with te formation of small-volume volcanoes, they are still considerred as volcanoes that are in human-scale and therefore ideal to use them as educational tools or part of volcanic geoheritage projects including geopark developments. In the western margin of the Kingdom of Saudi Arabia there are at least 9 intracontinental volcanic fields subparalell with the Red Sea Rift ranging from alkaline basaltic to basalt-trachyte bimodal dispersed volcanic systems. Among these volcanic fields the geoheritage value of three fields were recently evaluated and proposed that they are suitable for further development to establish the first volcanic geoparks in the Arabian Peninsula in the area of 1) Al Madinah (AMVF) 2) Kishb (KVF) and 3) Hutaymah Volcanic Fields (HVF). The AMVF offers a natural concept based on specific volcanic precinct ordering of its volcanic geoheritages from the most accessable and most common volcanism that is historically significant (eg. scoria and lava spatter cones with extensive lava fields) toward a more adventure geotourism style approach in remote, less common but more destructive type of volcanism (eg. trachytic explosion craters). In the contrary, the KVF is a perfect site where phreatomagmatic volcanism and their consequences were identified as a major driving force for further geopark developments. The HVF with its rich archaeological and cultural sites and superbly exposed variously eroded tuff rings and maars offer a good location to develop geoeducation programs to highlight short- and long-term climatic and hydrologic changes in an area a volcanic field evolved. The three Saudi projects also demonstrate

  18. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    NASA Astrophysics Data System (ADS)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  19. Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain)

    NASA Astrophysics Data System (ADS)

    Geyer, A.; García-Sellés, D.; Pedrazzi, D.; Barde-Cabusson, S.; Marti, J.; Muñoz, J. A.

    2015-03-01

    Erosional processes (natural or anthropogenic) may partly destroy the relatively small-sized volcanic edifices characteristic of monogenetic volcanic zones, leaving their internal structure well exposed. Nevertheless, the study of these outcrops may be extremely challenging due to restricted accessibility or safety issues. Digital representations of the outcrop surface have been lately used to overcome such difficulties. Data acquired with terrestrial laser scanning instruments using Light Detection and Ranging technology enables the construction of such digital outcrops. The obtained high-precision 3-D terrain models are of greater coverage and accuracy than conventional methods and, when taken at different times, allow description of geological processes in time and space. Despite its intrinsic advantages and the proven satisfactory results, this technique has been little applied in volcanology-related studies. Here, we want to introduce it to the volcanological community together with a new and user-friendly digital outcrop analysis methodology for inexperienced users. This tool may be useful, not only for volcano monitoring purposes, but also to describe the internal structure of exposed volcanic edifices or to estimate outcrop erosion rates that may be helpful in terms of hazard assessment or preservation of volcanic landscapes. We apply it to the Croscat volcano, a monogenetic cone in the La Garrotxa Volcanic Field (Catalan Volcanic Zone, NE Spain), quarrying of which leads to a perfect view of its interior but restricts access to its uppermost parts. Croscat is additionally one of the most emblematic symbols of the La Garrotxa Volcanic Field Natural Park, and its preservation is a main target of the park administration.

  20. Gold-silver mining districts, alteration zones, and paleolandforms in the Miocene Bodie Hills Volcanic Field, California and Nevada

    USGS Publications Warehouse

    Vikre, Peter G.; John, David A.; du Bray, Edward A.; Fleck, Robert J.

    2015-09-25

      Based on volcanic stratigraphy, geochronology, remnant paleosurfaces, and paleopotentiometric surfaces in mining districts and alteration zones, present landforms in the Bodie Hills volcanic field reflect incremental construction of stratovolcanoes and large- to small-volume flow-domes, magmatic inflation, and fault displacements. Landform evolution began with construction of the 15–13 Ma Masonic and 13–12 Ma Aurora volcanic centers in the northwestern and northeastern parts of the field, respectively. Smaller volcanoes erupted at ~11–10 Ma in, between, and south of these centers as erosional detritus accumulated north of the field in Fletcher Valley. Distally sourced, 9.7–9.3 Ma Eureka Valley Tuff filled drainages and depressions among older volcanoes and was partly covered by nearly synchronous eruptives during construction of four large 10–8 Ma volcanoes, in the southern part of the field. The lack of significant internal fault displacement, distribution of Eureka Valley Tuff, and elevation estimates derived from floras, suggest that the Bodie Hills volcanic field attained present elevations mostly through volcano construction and magmatic inflation, and that maximum paleoelevations (>8,500 ft) at the end of large volume eruptions at ~8 Ma are similar to present elevations.

  1. Paleomagnetism in the Determination of the Emplacement Temperature of Cerro Colorado Tuff Cone, El Pinacate Volcanic Field, Sonora, Mexico.

    NASA Astrophysics Data System (ADS)

    Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Vidal Solano, J. R.; Garcia Amador, B.; Gonzalez-Rangel, J. A.

    2014-12-01

    Cerro Colorado Maar is located at the World Heritage Site, biosphere reserve El Pinacate and Gran Desierto del Altar, at the NNW region of Sonora, Mexico (in El Pinacate Volcanic Field). It is a tuff cone, about 1 km diameter, result of several phreatomagmatic episodes during the late Quaternary. We report paleomagnetic and rock magnetic properties from fusiform volcanic bombs obtained from the borders of Cerro Colorado. This study is based in the thermoremanent magnetization TRM normally acquired by volcanic rocks, which can be used to estimate the emplacement temperature range. We performed the experiments on 20 lithic fragments (10 cm to 20 cm approximately), taking 6-8 paleomagnetic cores from each. Rock magnetic experiments (magnetic susceptibility vs. temperature (k-T), hysteresis curves and FORC analysis, shows that the main magnetic mineral carriers of magnetization are titanomagnetite and titanohematite in different levels of intergrowth. The k-T curves suggest in many cases, only one magnetic phase, but also in other cases a second magnetic phase. Thermal demagnetization was used to demagnetize the specimens in detailed short steps and make a well-defined emplacement temperature determination ranges. We found that temperature emplacement determination range for these two magnetic phases is between 350-450 °C, and 550-580 °C, respectively. These results are consistent with those expected in an eruption of Surtsey type, showing a distinct volcanic activity compared to the other craters from El Pinacate volcanic field.

  2. An Irregularly Shaped Maar in the Lunar Crater Volcanic Field, Nevada

    NASA Astrophysics Data System (ADS)

    Amin, J.; Valentine, G. A.

    2011-12-01

    A maar is a volcanic feature that is characterized by a central crater cut into the pre-eruptive ground and that is surrounded by an ejecta ring, and underlain by a diatreme [White and Ross, 2011]. Craters are typically bowl-shaped, and the intersection of the crater and the pre-eruptive ground typically are circular to elliptical. Some maars have more complex shapes; here we describe a maar informally named Bea's Crater, in the Lunar Crater Volcanic Field, Nevada. This maar has an irregular shape. Our study seeks to address whether this shape records a complex collapse history, coalescence of multiple eruptive vents, or other processes such as post-eruptive faulting. The largest dimension of the maar in plan view is 1.2 km. The crater depth (measured from the lowest point in the crater to the highest part of its rim) is 147 m, and the crater floor is 40 m below the surrounding terrain. The crater is surrounded by scoria cones or remnants of scoria cones. A tuff breccia distributed around the crater rim provides evidence for explosive magma-water interaction. This, and the lack of clear post-volcanic faults in the vicinity of the crater, indicates that eruptive processes rather than faulting created the crater. Detailed field mapping has revealed a complete eruptive sequence. The tuff breccia overlies, and is overlain by, magmatic products. This could be related to variations in the magma-water ratio throughout the eruption, with explosive magma-water interaction only occurring when the ratio is within a certain range. Furthermore, there are many large juvenile bombs within parts of the tuff breccia sequence. The juveniles may represent switching between phreatomagmatic and magmatic activity, or they could be the result of coeval magmatic activity from a separate vent. The scoria cone on the north east flank of the crater is the likely source of any coeval activity. It is impinging upon the crater floor, with the elevation of the impinging section much lower than

  3. New Paper Words: Historical Images of Navajo Language Literacy.

    ERIC Educational Resources Information Center

    Lockard, Louise

    1995-01-01

    Presents an overview of the history of Navajo language literacy. Discusses efforts of missionaries to transcribe a written Navajo language, early native language instruction using the Bible and religious texts, the first Native teachers, development of Navajo dictionaries and grammar books, and memories of the school experiences of a present-day…

  4. Navajo Health Authority, Board of Commissioners, Annual Report, June 1975.

    ERIC Educational Resources Information Center

    Atcitty, Thomas E.

    The Navajo Health Authority (NHA) was created by the Navajo Tribal Council to guide and assist the Navajo people to improve their health and well-being. Its goals are to: (1) develop health manpower training programs appropriate to support the development of the American Indian Medical School and to meet the needs of the American Indians in…

  5. Navajo Nation Scholarship Assistance Program: Plan of Operation.

    ERIC Educational Resources Information Center

    Navajo Tribe, Window Rock, AZ. Div. of Education.

    A resolution of the Advisory Committee of the Navajo Tribal Council describes how since 1972 the Navajo Nation through its Department of Higher Education has administered both the Navajo Trust Fund (graduate and post-graduate program) and the Bureau of Indian Affairs Higher Education Funds (undergraduate program). The tribal philosophy toward…

  6. Dinetah: An Early History of the Navajo People.

    ERIC Educational Resources Information Center

    Sundberg, Lawrence D.

    Originally written for Navajo elementary school students, this book chronicles the history of the Navajo people from prehistory to 1868. The book presents a sympathetic history of a people who depended on their tenacity and creative adaptability to survive troubled times. Chapters examine how Navajo culture changed from that of an early hunting…

  7. Navajo Evaluators Look at Rough Rock Demonstration School.

    ERIC Educational Resources Information Center

    Begaye, John Y.; And Others

    Four prominent Navajo leaders evaluated Rough Rock Demonstration School by invitation of the school board. Inquiry was directed toward ascertaining the type of education Navajos desire for their children, the extent Indian culture should be included in the curriculum, and how Navajos want their schools operated. It was concluded that the student…

  8. Navajo Reading Study. Progress Report No. 4, December 1969.

    ERIC Educational Resources Information Center

    Murphy, Paul, Ed.

    A summary of the discussions of the Navajo Reading Study Conference, held on December 4-5, 1969, in Albuquerque, New Mexico, was presented in this report. A group of consultants met to discuss the collection of data and its analysis for a study on Navajo reading materials and the language of 6-year-old Navajo children. The consultants included Mr.…

  9. Family Planning Attitudes of Traditional and Acculturated Navajo Indians.

    ERIC Educational Resources Information Center

    Ackerman, Alan; And Others

    To determine whether various indices of "acculturation" would predict attitudes towards family planning was the major purpose of a survey conducted among a highly educated group of Navajo people at Navajo Community College (NCC). Owned and operated by the Navajo Tribe, NCC served as a target survey model due to its 90% population of…

  10. Family Planning Attitudes of Traditional and Acculturated Navajo Indians.

    ERIC Educational Resources Information Center

    Ackerman, Alan; And Others

    To determine whether various indices of "acculturation" would predict attitudes towards family planning was the major purpose of a survey conducted among a highly educated group of Navajo people at Navajo Community College (NCC). Owned and operated by the Navajo Tribe, NCC served as a target survey model due to its 90% population of…

  11. Health Problems of the Navajo Area and Suggested Interventions.

    ERIC Educational Resources Information Center

    Kaltenbach, Charles

    Analysis of morbidity, mortality, and demographic data on Navajo people was undertaken to identify leading health problems in the Navajo area and to suggest intervention activities. Comparisons with total U.S. population were made to provide perspective. Data on Navajo mortality showed: a ratio of male to female deaths of 2:1, more than 50 percent…

  12. Health Problems of the Navajo Area and Suggested Interventions.

    ERIC Educational Resources Information Center

    Kaltenbach, Charles

    Analysis of morbidity, mortality, and demographic data on Navajo people was undertaken to identify leading health problems in the Navajo area and to suggest intervention activities. Comparisons with total U.S. population were made to provide perspective. Data on Navajo mortality showed: a ratio of male to female deaths of 2:1, more than 50 percent…

  13. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    NASA Astrophysics Data System (ADS)

    Mueller, R. J.; Johnston, M. J. S.

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data.

  14. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1998-01-01

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.

  15. Diagnosis and distress in Navajo healing.

    PubMed

    Csordas, Thomas J; Storck, Michael J; Strauss, Milton

    2008-08-01

    In contemporary Navajo society, traditional Navajo ceremonies, Native American Church prayer meetings, and Navajo Christian faith healing are all highly sought-after resources in the everyday pursuit of health and well-being. What is the nature of affliction among patients who turn to such forms of religious healing? Are these patients typically afflicted with psychiatric disorder? In this article we discuss 84 Navajo patients who participated in the Navajo Healing Project during a period in which they consulted one of these forms of healing. We present diagnostic results obtained from the Structured Clinical Interview for DSMIV (SCID) administered to these patients. We then present an ethnographically augmented analysis comparing the research diagnosis obtained via the SCID with a clinical diagnosis, with the diagnosis given by religious healers, and with the understanding of their own distress on the part of patients. These analyses demonstrate how a cultural approach contributes to the basic science and clinical understandings of affliction as well as to discussion of the advantages and limitations of DSM categories as descriptors of distress and disorder.

  16. Geochemistry of intrusive rocks associated with the Latir volcanic field, New Mexico, and contrasts between evolution of plutonic and volcanic rocks

    USGS Publications Warehouse

    Johnson, C.M.; Czamanske, G.K.; Lipman, P.W.

    1989-01-01

    Plutonic rocks associated with the Latir volcanic field comprise three groups: 1) ???25 Ma high-level resurgent plutons composed of monzogranite and silicic metaluminous and peralkaline granite, 2) 23-25 Ma syenogranite, and alkali-feldspar granite intrusions emplaced along the southern caldera margin, and 3) 19-23 Ma granodiorite and granite plutons emplaced south of the caldera. Major-element compositions of both extrusive and intrusive suites in the Latir field are broadly similar; both suites include high-SiO2 rocks with low Ba and Sr, and high Rb, Nb, Th, and U contents. Moreover, both intermediateto siliciccomposition volcanic and plutonic rocks contain abundant accessory sphene and apatite, rich in rare-earth elements (REE), as well as phases in which REE's are essential components. Strong depletion in Y and REE contents, with increasing SiO2 content, in the plutonic rocks indicate a major role for accessory mineral fractionation that is not observed in volcanic rocks of equivalent composition. Considerations of the rheology of granitic magma suggest that accessory-mineral fractionation may occur primarily by filter-pressing evolved magmas from crystal-rich melts. More limited accessory-mineral crystallization and fractionation during evolution of the volcanic magmas may have resulted from markedly lower diffusivities of essential trace elements than major elements. Accessory-mineral fractionation probably becomes most significant at high crystallinities. The contrast in crystallization environments postulated for the extrusive and intrusive rocks may be common to other magmatic systems; the effects are particularly pronounced in highly evolved rocks of the Latir field. High-SiO2 peralkaline porphyry emplaced during resurgence of the Questa caldera represents non-erupted portions of the magma that produced the Amalia Tuff during caldera-forming eruption. The peralkaline porphyry continues compositional and mineralogical trends found in the tuff. Amphibole

  17. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific and geotectonic implications

    NASA Astrophysics Data System (ADS)

    Petterson, M. G.; Haldane, M. I.; Smith, D. J.; Billy, D.; Jordan, N. J.

    2011-08-01

    The Upper Miocene to present day Gallego Volcanic Field (GVF) is located in northwest Guadalcanal, Solomon Islands, SW Pacific, and potentially includes the offshore Savo volcano. The GVF is a multi-centred complex covering an area of ~ 800 km 2 on Guadalcanal and a further ~ 30 km 2 on the island of Savo, north of west Guadalcanal. GVF volcanism is characterised by effusive eruptions of lava, intrusion of sub-volcanic plutons, as well as pyroclastic flow and fall deposits dominated by block and ash flow deposits. Geochemical analysis of a representative suite of samples from the GVF demonstrates that the GVF comprise largely a 'main suite' of basalts to andesites and minor trachyandesites. The predominant mineralogy of the GVF comprises plagioclase, amphibole, clinopyroxene and magnetite-ilmenite. Associated with the 'main suite' are cognate nodules composed of hornblendite, gabbros, and clinopyroxenite. Interpretation of major and trace element geochemistry and petrographic studies suggests that fractionation was dominated by early clinopyroxene, and later amphibole + clinopyroxene + minor plagioclase. Geochemical features such as the incompatibility of Sr suggest that plagioclase largely crystallised en-masse late in the fractionation sequence. The presence of amphibole and late fractionation of plagioclase is suggestive of derivation from initially water-rich magmas. The region is characterised by strong geographically-related geochemical variations as evidenced by the Woodlark (and Manus) basins: basalts become more arc-like within the ocean basins with decreasing distance to the subducting trench. The GVF-Savo volcanoes are spatially and geochemically affected by deep N-S fractures that show some evidence of sympathetic geochemical variations with distance from the trench (e.g. Sr/Y ratios). Comparison with a range of international data for Th/Nb vs Pb/Nb and Dy/Yb vs SiO 2 indicate that: amphibole was indeed a strong controlling phase on magmatic evolution

  18. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  19. Field Courses for Volcanic Hazards Mapping at Parícutinand Jorullo Volcanoes (Mexico)

    NASA Astrophysics Data System (ADS)

    Victoria Morales, A.; Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Linares López, C.

    2007-05-01

    During the last decades, Mexico has suffered several geologic phenomena-related disasters. The eruption of El Chichón volcano in 1982 killed >2000 people and left a large number of homeless populations and severe economic damages. The best way to avoid and mitigate disasters and their effects is by making geologic hazards maps. In volcanic areas these maps should show in a simplified fashion, but based on the largest geologic background possible, the probable (or likely) distribution in time and space of the products related to a variety of volcanic processes and events, according to likely magnitude scenarios documented on actual events at a particular volcano or a different one with similar features to the volcano used for calibration and weighing geologic background. Construction of hazards maps requires compilation and acquisition of a large amount of geological data in order to obtain the physical parameters needed to calibrate and perform controlled simulation of volcanic events under different magnitude-scenarios in order to establish forecasts. These forecasts are needed by the authorities to plan human settlements, infrastructure, and economic development. The problem is that needs are overwhelmingly faster than the adjustments of university programs to include courses. At the Earth Science División of the Faculty of Engineering at the Universidad Nacional Autónoma de México, the students have a good background that permits to learn the methodologies for hazards map construction but no courses on hazards evaluations. Therefore, under the support of the university's Program to Support Innovation and Improvement of Teaching (PAPIME, Programa de Apoyo para la Innovación y Mejoramiento de la Enseñanza) a series of field-based intensive courses allow the Earth science students to learn what kind of data to acquire, how to record, and process in order to carry out hazards evaluations. This training ends with hazards maps that can be used immediately by the

  20. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  1. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  2. Age and petrology of the Tertiary As Sarat volcanic field, southwestern Saudi Arabia

    USGS Publications Warehouse

    du Bray, E.A.; Stoeser, D.B.; McKee, E.H.

    1991-01-01

    Harrat As Sarat forms the second smallest and southernmost of the basalt fields of western Saudi Arabia and is part of a voluminous Red Sea rift-related continental alkali basalt province. The rocks of the As Sarat were emplaced during the first stage of Red Sea rifting and represent the northernmost extension of the Tertiary Trap Series volcanics that occur mainly in the Yemen Arab Republic and Ethiopia. The field consists of up to 580 m of basalt flows, that are intruded by basaltic plugs, necks, minor dikes, and highly evolved peralkaline trachyte intrusions. K-Ar ages indicate that the As Sarat field formed between 31 and 22 Ma and contains an eruption hiatus of one million years that began about 25 Ma ago. Pre-hiatus flows are primarily hypersthene normative intersertal subalkaline basalt, whereas the majority of post-hiatus flows are nepheline normative alkali basalt and hawaiite with trachytic textures. Normative compositions of the basalts are consistent with their genesis by partial melting at varying depths. Trace element abundances in the basalt indicate that varying degrees of partial melting and fractional crystallization (or crystal accumulation) had major and minor roles, respectively, in development of compositional variation in these rocks. Modeling indicates that the pre-hiatus subalkaline basalts represent 8-10 percent mantle melting at depths of about 70 km and the post-hiatus alkali basalts represent 4-9 percent mantle melting at depths greater than 70 km. ?? 1991.

  3. Managing a Monogenetic Volcanic Field As a World Heritage Nomination: Implications for Science, Outreach, and Hazards

    NASA Astrophysics Data System (ADS)

    Olive-Garcia, C.; van Wyk de Vries, B.

    2014-12-01

    Monogenetic volcanoes form a large proportion of the world's volcanoes. They are in all tectonic environments and thus provide a significant link to understand fundamental geological processes such as plate tectonics. The Chaîne des Puys - Limagne fault World Heritage nomination is a prime example of this link where monogenetic volcanism, continental rifting, uplift and erosion are highlighted, and are made understandable to the lay person, though the actions on over 80 aligned monogenetic volcanoes. Such geoheritage is essential for monogenetic and other geological risks to be communicated to the wider public. The current scientific interest on monogenetic volcanoes is quite recent, and because of this, and probably their global distribution but small size, they have not received their due importance from a geoheritage standpoint. Some individual sites and some fields are protected and developed as attractions, but there has been no coherent global strategy for defining monogenetic heritage, or for linking sites. This is starting through the monogenetic commission of IAVCEI, and with wider participation of the IUGS and other bodies. The Chaîne des Puys - Limagne Fault UNESCO project is an example of how public awareness, at a global scale, and be increased through geoheritage. This is done integrating local stakeholders: population, industry, science, landscapers, artists, sports, government. This builds on existing protection and sustainable activities, integrating them with education programs. The result is to create a populace that 'thinks geological', and which leads visitors to also become geologically aware. This is helped by a monogenetic landscape that is easily readable and by links made to other geological sites around the world. We will explain how this process is ongoing. The project started over 35 years ago, and is a long-term vision to develop geological understanding and protection of this unique monogenetic and tectono-volcanic site.

  4. Young lava fields on the Cretaceous Pacific Plate in the Japan Trench: Non-hotspot volcanism?

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Haraguchi, S.; Yamamoto, J.; Takahashi, E.; Hirata, T.; Takahashi, A.; Ogawa, Y.

    2004-12-01

    The northwestern part of the Pacific Plate is comprised of Early Cretaceous abyssal oceanic lithosphere and Early to Late Cretaceous seamounts. Until recently, no present-day volcanic activity had been definitively documented on the cool, thick, and old Cretaceous lithosphere; however, Hirano et al. (2001) reported the presence of anomalously young alkali-basalt lavas (5.95±0.31 Ma) on the subducting, ˜130 Ma Pacific Plate. The trench-oceanward slope is characterized by trench-parallel normal faults, resulting from bending of the subducting Pacific Plate. Some hummock structures named the Kaiko Knolls can also be observed on the faulted abyssal plain using seabeam sonar bathymetric mapping. The Kaiko Knolls hummocks and some of the horst and graben fault walls are recognized in the seabeam sonar data by the presence of ocean floor with high acoustic intensity. The newly discovered lava fields include all hummocks in the Kaiko Knolls as well as the underlying sheet flow. The distinct WNW-ESE alignments of knolls are perpendicular to hinge lines of bending plate of the trench and outer-rise system. Composition of the dredged lavas shows the garnet presence in the source because the residual garnet buffered Al2O3 contents with degrees of partial melting and lowered HREE contents. Hirano et al. (2004) demonstrated that the olivine xenocrysts in this rock were entrained from the uppermost mantle. Volcanic eruption occurred ˜600 km ESE off the northern Japan Trench based on the radiometric age and the present absolute motion of the Pacific Plate. Morphological and petrological evidences show that the magma has been brought to the surface along some fissures, which can be interpreted along the direction of the maximum horizontal compression caused by the stress in the downwarping Pacific Plate at eastern edge of the outer-rise.

  5. Southwestern Athabaskan (Navajo and Apache) genetic diseases.

    PubMed

    Erickson, R P

    1999-01-01

    Four apparently unique disorders are known among the Southwestern Athabasan Amerindians, i.e., the Navajo and Apache; they are Athabaskan severe combined immunodeficiency, Navajo neuropathy, Navajo poikiloderma, and Athabaskan brainstem dysgenesis. This study reviews background information on Athabaskan groups and clinical descriptions of these recessive disorders. The major clinical findings of these four disorders are reviewed. In addition, the findings of epidemiological surveys are included where available. Although the importance of genetic bottlenecks in increasing the frequency of rare, sometimes unique, autosomal recessive disorders is known for a number of populations, similar phenomena among Native Americans seem to be less well known. As many more Native Americans move off the Reservation, the awareness of susceptibility to particular genetic diseases needs to be more widely disseminated.

  6. Pyroclastic deposits of the Mount Edgecumbe volcanic field, southeast Alaska: eruptions of a stratified magma chamber

    USGS Publications Warehouse

    Riehle, J.R.; Champion, D.E.; Brew, D.A.; Lanphere, M.A.

    1992-01-01

    The Mount Edgecumbe volcanic field in southeastern Alaska consists of 5-6 km3 (DRE) of postglacial pyroclasts that overlie Pleistocene lavas. All eleven pyroclast vents align with the long axis of the field, implying that the pyroclast magma conduits followed a crustal fissure. Most of these vents had previously erupted lavas that are compositionally similar to the pyroclasts, so a persistent magma system (chamber) had likely evolved by the onset of the pyroclastic eruptions. The pyroclastic sequence was deposited in about a millennium and is remarkable for a wide range of upward-increasing silica contents (51-72% SiO2), which is consistent with rise of coexisting magmas at different rates governed by their viscosity. Basaltic and andesitic lava flows have erupted throughout the lifetime of the field. Rhyolite erupted late; we infer that it formed early but was hindered from rising by its high viscosity. Most of the magmas-and all siliceous ones-erupted from vents on the central fissure. Basalt has not erupted from the center of the field during at least the latter part of its lifetime. Thus the field may illustrate basalt underplating: heat and mass flux are concentrated at the center of a stratified magma chamber in which a cap of siliceous melt blocks the rise of basalt. Major-element, strontium isotope, and mineral compositions of unaltered pyroclasts are broadly similar to those of older lavas of similar SiO2 content. Slightly fewer phenocrysts, inherited grains, and trace amphibole in pyroclastic magmas may be due simply to faster rise and less undercooling and degassing before eruption relative to the lavas. Dacite occurs only in the youngest deposits; the magma formed by mixing of andesitic and rhyolitic magmas erupted shortly before by the dacitic vents. ?? 1992.

  7. Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Giggenbach, W. F.; Tedesco, D.; Sulistiyo, Y.; Caprai, A.; Cioni, R.; Favara, R.; Fischer, T. P.; Hirabayashi, J.-I.; Korzhinsky, M.; Martini, M.; Menyailov, I.; Shinohara, H.

    2001-08-01

    The major purpose of field workshops on volcanic gases, organized by the IAVCEI Commission on the Chemistry of Volcanic Gases, is the collection and analysis of volcanic gas discharges with the aim to develop and improve techniques for the geochemical surveillance of active volcanoes. The fourth and fifth workshops were held at Vulcano island, Italy, in 1991 and on Java island, Indonesia, in 1994, respectively. Gas samples were collected from four gas vents by nine groups at Vulcano and from eight gas vents by eight groups on Java. The quality (e.g. scatter of the data) of most of the results, reported from these two workshops, is sufficient to permit a broad chemical classification of the discharge and meaningful thermodynamic interpretation. In most cases, the majority of the data for individual gas vents cluster closely around the median values, suggesting that the median values are the best estimates of chemical composition. There is, however, also a considerable scatter of the analytical data, and this scatter warns us to not rely too heavily on a single analytical value, in particular on a value for CH 4 and CO, because analytical data for these species often show a wide scatter. This warning is particularly relevant for chemical monitoring of volcanic activity. Further improvement of the sampling and analytical techniques as well as more detailed comparison of the techniques is required to reduce such uncertainty in order to interpret the volcanic activity and hydrothermal conditions.

  8. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    USGS Publications Warehouse

    Lipman, Peter W.

    2007-01-01

    Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.

  9. Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, Jenni L.; Wilson, Colin J. N.; Millet, Marc-Alban; Leonard, Graham S.; Timm, Christian; McGee, Lucy E.; Smith, Ian E. M.; Smith, Euan G. C.

    2017-07-01

    Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial

  10. Response of the Yellowstone Volcanic Field to the M 7.9 Denali earthquake

    NASA Astrophysics Data System (ADS)

    Husen, S.; Nava, S.; Smith, R. B.; Terra, F.; Pankow, K.

    2002-12-01

    The November 3, 2002, Alaska earthquake had a profound effect on the Yellowstone volcanic field including an unexpected increase in seismicity and pronounced changes in hydrothermal features. Following passage of the Denali main-shock surface waves, numerous earthquakes of -1< M< 2.7, were recorded throughout Yellowstone National Park. In the first four hours following the main shock, more than 130 earthquakes were recorded. The seismicity rate diminished to ~35 events per day for the next few days, but earthquake swarms continued to occur for at least ten days. Waveform and spectral analysis from broadband seismographs indicate that the initial triggered earthquakes began at the onset of the first surface waves. These had a peak dynamic stress value of ~2 bars (~2 cm/sec.) at 20 sec. periods. Seismic activity was vigorous within the first hours, including spasmodic burst-like behavior with many high-frequency events with overlapping codas. Variations in spatial and temporal seismicity in Yellowstone are not unusual as earthquake swarms dominate much of the background seismicity. However, the seismicity following the Denali earthquake was markedly different from background Yellowstone seismicity. The earthquakes were extant over the entire Yellowstone volcanic field with notable activity in the vicinity of the southeast and northwest caldera. In addition, much of the triggered seismicity was associated with areas of hydrothermal activity and with unusual variations in geothermal activity. For example, visual observations at Norris Geyser Basin revealed rapid changes in normally non-boiling hot springs that caused geysering up to 90 cm and heavy boiling. Water temperatures increased rapidly from 42°C to 93°C and accompanied increases in pH at the time of the seismic wave passage. At the Upper Geyser Basin, one geyser decreased its eruption interval from ~2 hrs to one. These observations suggest that the Yellowstone hydrothermal field responded to the same large

  11. 40Ar/39Ar Ages for the Sentinel-Arlington Volcanic Field, Southwestern Arizona

    NASA Astrophysics Data System (ADS)

    Cave, S. R.; Greeley, R.; Champion, D. E.; Turrin, B. D.

    2007-12-01

    The Sentinel Plains lava field and proximate small (<10 km diameter) shield volcanoes, collectively referred to as the Sentinel-Arlington Volcanic Field (SAVF) are composed of mostly basaltic lava flows with a small percentage of magmatic and phreatomagmatic tephra deposits. SAVF is located ~75 km southwest of Phoenix, Arizona, and covers ~600 km2. SAVF lies on the eastern terminus of the Gila River graben within the Basin and Range physiographic province. A series of northwest-trending normal faults cut across the surrounding terrain, indicating that the loci of the SAVF eruptive centers could be controlled by structural trends. The volcanic centers of SAVF erupted near the Gila River channel, damming and diverting the river at least twice, forming small ephemeral lakes. The relative timing of the SAVF eruptions was determined in order to unravel the SAVF eruptive history as well as the timing of the ancient Gila River interactions that led to the development of the Painted Rock transverse drainage. The absolute timing was determined in order datermine causal relationships with local tectonism. The SAVF basal contact is ~30 m above the Holocene surface where exposed along the current river channel; and the lavas show similar amounts mantling by aeolian dust, development of pedogenic calcium carbonate, and subsequent incision by radial ephemeral drainages. Relative timing of eruptive events was determined by stratigraphic and embayment relationships. Continuity of distal flows exposed in cross-sections to their source vents could be established using field work, and confirmed using geomagnetic secular variation and geochemical analyses. Edifices generally corresponded to discreet geomagnetic inclination, declination, and paleointensity values. Older eruptive events exhibited normal polarity, while stratigraphically younger events exhibited reversed polarity. Most lavas were alkali olivine basalt with a range of unnormalized SiO2 weight percentages ranging from 47

  12. Spatial analysis of the Los Tuxtlas Volcanic Field (LTVF) and hazard implications

    NASA Astrophysics Data System (ADS)

    Sieron, K.; Alvarez, D.

    2013-05-01

    The Tuxtlas volcanic field (LTVF) is located in the southern part of Veracruz state (Mexico) adjacent to the Gulf of Mexico and consists of 4 large volcanic edifices, 3 of them considered inactive and the active San Martin shield volcano. The monogenetic volcanoes belonging to the younger series are represented by hundreds of scoria cones and tens of maars and tuff cones, all of which show ages less than 50,000 years. In comparison to other monogenetic fields, the scoria cone density is quite elevated with 0.2 cones/km2, although the highest scoria cone density can be observed along narrow zones corresponding to the main NW-SE fault system where it reaches 0.7 cones/km2. Scoria cones occur as single edifices and in clusters and show individual edifice volumes of 0.0009 km3 to 0.2 km3, cone heights varying between 21.39 m and 299.21 m. Lava flows associated to scoria cones originate especially along the main NW-SE trending main fault and present run out distances up to 11 kilometers. Only few radiocarbon and Ar-Ar dates exist for the LTVF, mostly because of the high cone density and dense vegetation of the Los Tuxtlas region. Therefore, morphological parameters were used to estimate relative ages. In consequence, the scoria cones can be subdivided into four age groups; the members of each group do not seem to follow any particular trend and are rather scattered throughout the field. The explosive (or wet) equivalents of the mainly basaltic strombolian scoria cones are explosion craters, such as maars and tuff cones, show the highest concentration along the border of the two main geological units to the S of the area with the highest scoria cone concentration. Although the relatively small scale strombolian eruptions associated to scoria cone emplacement do not represent a considerable hazard for the surrounding population, lava flows can easily extent to the main urban zones accommodating about 262,384 inhabitants. Within the area prone to maar formation, the hazard

  13. Methods and Resources for the Construction and Maintenance of a Navajo Population Register.

    ERIC Educational Resources Information Center

    Kelly, William H.

    The most feasible method for constructing a Navajo population register was to produce a preliminary register from data contained in existing records and to perfect and extend this register either through subsequent clerical and record-accumulating operations, the existing school census operation, a special program of field enumeration, or a…

  14. Methods and Resources for the Construction and Maintenance of a Navajo Population Register.

    ERIC Educational Resources Information Center

    Kelly, William H.

    The most feasible method for constructing a Navajo population register was to produce a preliminary register from data contained in existing records and to perfect and extend this register either through subsequent clerical and record-accumulating operations, the existing school census operation, a special program of field enumeration, or a…

  15. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about

  16. Bibliography of literature pertaining to Long Valley Caldera and associated volcanic fields

    USGS Publications Warehouse

    Ewert, John W.; Harpel, Christopher J.; Brooks, Suzanna K.; Marcaida, Mae

    2011-01-01

    define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary. The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States. The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied, including extensive scientific drilling through the domes. Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights. Scientific drilling also has been done within the Casa Diablo geothermal field, which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid. Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.

  17. Mantle xenocrysts of Chompolo field of the alkaline volcanics, Aldan shield, South Yakutia.

    NASA Astrophysics Data System (ADS)

    Nikolenko, Evgeny; Tychkov, Nikolay; Afanasiev, Valentin

    2015-04-01

    New mineralogical and chemical constraints for 10 dikes, veins (360-800m) and pipes (60-110 m) of Chompolo field discovered in 1957-1958 are discussed. Feld is located within Central Aldan Archean and Paleoproterozoic granulite-orthogneiss superterrane of Aldan-Stanovoy Shield, with peak of metamorphism - 2.1-1.9 Ga (Smelov, Timofeev, 2007). Originally (Shilina and Zeitlin 1959) and later (Kostrovitsky and Garanin 1992, Ashchepkov, Vladykin et al. 2001) these rocks were classified as kimberlites by mineralogy including pyrope, Cr spinel, and Cr diopside. Panina and Vladykin (1994), Davies et al, (2006) identified them as lamprophyres and lamproites. The age of Chompolo rocks is pre-Jurassic (Vladimirov et. al., 1989) dated by 40Ar/39Ar as 164.7±1 Ma (233.7±2.2 next plato)(unpublished Ashchepkov). The Rb-Sr isochron for lamprophyre "intrusions 104" indicate later age of 131±4 Ma (Zaitsev, Smelov, 2010). Magmatic bodies (Aldanskaya, Sputnik, Gornaya, Ogonek, Perevalnaya, Kilier-E) were studied during 2012-2013 fieldworks. Most of igneous rocks occur as inequigranular volcanic breccias with micro- or crypto-crystalline groundmass of K feldspar (up to 16.3 wt.% K2O, up to 3.2 wt.% FeO), chlorite, opaque minerals, melanocratic xenocrysts and phenocrysts (garnet, pyroxene, amphibole, Cr spinel, apatite, zircon, mica), and abundant xenogenic fragments of wallrock and crystalline basement. Garnet chemistry records the presence of mantle and crustal material. Mantle garnets lack the common megacryst, wehrlite, and high-temperature lherzolite varieties. Mantle mineralization prevails in the Aldan dike and the Sputnik, Gornaya, and Ogonek pipes, while crustal and elcogitic material is in the Perevalnaya and Kilier-E pipes. The Cr spinel consists of (in wt%) 3.5 to 50.9 Al2O3, 18.6-63.5 wt% Cr2O3, 6.1 to 19.1 MgO, and 0 to 1.61 TiO2. Al and Cr in spinels are in inverse proportion. The Chompolo alkaline volcanic rocks are most similar to the Central Aldan lamproites in trace

  18. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  19. Eruptive history, petrology, and petrogenesis of the Joe Lott Tuff Member of the Mount Belknap Volcanics, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Budding, Karin E.

    1982-01-01

    The Joe Lott Tuff Member of the Mount Belknap Volcanics is the largest rhyolitic ash-flow tuff sheet in the Marysvale volcanic field. It was erupted 19 m.y. ago, shortly after the changeover from intermediate-composition calc-alkalic volcanism to bimodal basalt-rhyolite volcanism. Eruption of the tuff resulted in the formation of the Mount Belknap Caldera whose pyroclastic intracaldera stratigraphy parallels that in the outflow facies. The Joe Loft Tuff Member is a composite ash-flow sheet that changes laterally from a simple cooling unit near the source to four distinct cooling units toward the distal end. The lowest of these units is the largest and most widespread; it is 64 m thick and contains a basal vitrophyre. Eruption of the lower unit led to the initial collapse of the caldera. The lower unit is followed upward by a 43 m middle unit, a 26 m pink-colored unit which is separated by a prominent air- fall layer, and a 31 m upper unit. The Joe Loft Tuff Member is an alkali rhyolite with 75.85-77.31 wt. % silica and 8.06-9.32 wt. % K2O+Na2O; the agpaitic index (Na2O+ K2O/Al2O3) is .77-.98. The tuff contains about I% phenocrysts of quartz, sanidine, oligoclase, augite, apatite, zircon, sphene, biotite, and oxidized Fe-Ti oxides. The basal vitrophyre contains accessory allanite, chevkinite, and magnesiohastingsite. The main cooling units are chemically and mineralogically zoned indicating that the magma chamber restratified prior to each major eruption. Within each of the two thickest cooling units, the mineralogy changes systematically upwards; the Or content and relative volume of sanidine decreases and An content of plagioclase increases. The basal vitrophyre of the lower unit has a bulk composition that lies in the thermal trough near the minima of Or-Ab-Q at 1 kb PH2O. Microprobe analyses of feldspar and chemical modeling on experimental systems indicate that pre-eruption temperatures were near 750?C and that the temperature increased during the eruption of

  20. Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo Counties, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Redsteer, Margaret Hiza

    2013-01-01

    The Winslow 30’ × 60’ quadrangle encompasses approximately 5,018 km2 (1,960 mi2) within Coconino and Navajo Counties of northern Arizona. It is characterized by gently dipping Paleozoic and Mesozoic strata that dip 1° to 2° northeastward in the southwestern part of the quadrangle and become nearly flat-lying in the northeastern part of the quadrangle. In the northeastern part, a shallow Cenozoic erosional basin developed about 20 million years ago, which subsequently was filled with flat-lying Miocene and Pliocene lacustrine sediments of the Bidahochi Formation, as well as associated volcanic rocks of the Hopi Buttes Volcanic Field. The lacustrine sediments and volcanic rocks unconformably overlie Triassic, Jurassic, and Cretaceous strata. Beginning about early Pliocene time, the Little Colorado River and its tributaries began to remove large volumes of Paleozoic and Mesozoic bedrock from the map area. This erosional development has continued through Pleistocene and Holocene time. Fluvial sediments accumulated episodically throughout this erosional cycle, as indicated by isolated Pliocene(?) and Pleistocene Little Colorado River terrace-gravel deposits on Tucker Mesa and Toltec Divide west of Winslow and younger terrace-gravel deposits along the margins of the Little Colorado River Valley. These gravel deposits suggest that the ancestral Little Colorado River and its valley has eroded and migrated northeastward toward its present location and largely parallels the strike of the Chinle Formation. Today, the Little Colorado River meanders within a 5-km (3-mi) wide valley between Winslow and Leupp, where soft strata of the Chinle Formation is mostly covered by an unknown thickness of Holocene flood-plain deposits. In modern times, the Little Colorado River channel has changed its position as much as a 1.5 km (1 mi) during flood events, but for much of the year the channel is a dry river bed. Surficial alluvial and eolian deposits cover extensive parts of the

  1. Aggregation Of Volcanic Particles: Physical Constraints Provided By Field And Numerical Investigations

    NASA Astrophysics Data System (ADS)

    Rossi, E.; Bagheri, G.; Bonadonna, C.

    2014-12-01

    The characterization and parameterization of both sedimentation and aggregation of volcanic particles is necessary for an accurate description of the sink term in numerical models of tephra dispersal used for the evaluation of tephra hazards. Nonetheless, our understanding of particle fallout in various eruptive and atmospheric conditions is still limited mostly due to the lack of direct observations. A comparative investigation of sedimentation and aggregation of volcanic particles is here presented based on field experiments and numerical simulations. Field experiments are based on detailed observations of particle fallout during Vulcanian explosions and ash emissions at Sakurajima volcano (Japan) on August 3, 2013. Column height was up to about 3 km above sea level and the cloud spread with average velocity of about 7 ms-1 toward southeast direction. Aggregates that fell at a distance of about 4 km from the vent were filmed with a high-speed and high-resolution camera before depositing on collection glasses. In order to preserve and analyze particle aggregates with the Scanning Electron Microscope, collecting glasses were covered with a special adhesive tape. Dedicated trays were also used to collect the depositing tephra at five-minute intervals to investigate both accumulation rate and particle size. CILAS grain size analysis showed that mode of particles deposited on the ground decreased with time from 550 μm to 250 μm at the reference location. Aggregate size ranged between 400 and 900 μm (based on video analysis) and they mostly consist of a single or multiple particles acting as nuclei with diameter between 200 and 800 μm coated with ash particles (<90 μm). Also aggregate size decreased with time during fallout and aggregate typology changed from mostly coated particles to ash clusters. Aggregation significantly affected particle residence time in the spreading cloud by changing the associated settling velocity. Based on numerical constraints

  2. High-silica rhyolite magmatism in the Big Pine volcanic field, eastern California

    NASA Astrophysics Data System (ADS)

    Lidzbarski, M. I.; Vazquez, J. A.

    2007-12-01

    The Quaternary Big Pine volcanic field (BPVF) located in the Owens Valley of eastern California is dominated by basaltic cinder cones and associated lava flows, but contains a single rhyolite lava erupted at circa 1 Ma. Despite its uniqueness, the petrogenesis of this rhyolite is poorly known. At nearby Coso volcanic field, an abundance of rhyolite relative to basalt suggests crustal melting by mafic magmas stalled in mid to upper crustal reservoirs, whereas the paucity of rhyolite relative to basalt at BPVF suggests only brief crustal residence of ascending mafic magmas (Mordick and Glazner, 2006). In order to determine the origin of rhyolite magmatism at BPVF (e.g., crustal melting versus extreme fractionation), we have examined the geochemical and petrographic characteristics of the Fish Springs high-silica rhyolite. The Fish Springs rhyolite comprises a single thick coulee with a volume of at least 0.05 km3 (DRE) of highly evolved (~76 wt.% SiO2) magma. The outer portions of the coulee are composed of autobrecciated and felsitic rhyolite, and internal portions, as exposed by quarrying, are pumiceous perlite with local obsidian. Fish Springs rhyolite is crystal poor (~1%), with small (<0.5 mm) phenocrysts of generally euhedral to subhedral plagioclase, sanidine, quartz, orthopyroxene, clinopyroxene, biotite, hornblende, Fe-Ti oxides, apatite, pyrrhotite, and zircon, as well as apparent xenoliths and xenocrysts of metamorphic and igneous wallrocks. Orthopyroxene phenocrysts show compositional zoning, with rims that contain higher Mg and lower Fe concentrations than cores. Trace element concentrations in Fish Springs rhyolite are characterized by very low concentrations of typically compatible elements such as Ba (~15 ppm), Sr (~8 ppm), La (~10 ppm) and Zr (~80 pm), as well as a pronounced europium anomaly, comparable to other high-silica rhyolites elsewhere in the Owens Valley, and suggesting high degrees of feldspar and accessory mineral fractionation. Samples

  3. Trace Element Geochemistry of Basaltic Tephra in Maar Cores; Implications for Centre Correlation, Field Evolution, and Mantle Source Characteristics of the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Hopkins, J. L.; Leonard, G.; Timm, C.; Wilson, C. J. N.; Neil, H.; Millet, M. A.

    2014-12-01

    Establishing volcanic hazard and risk management strategies hinges on a detailed understanding of the type, timing and tephra dispersal of past eruptions. In order to unravel the pyroclastic eruption history of a volcanic field, genetic links between the deposits and eruption source centre need to be established. The Auckland Volcanic Field (AVF; New Zealand) has been active for ca. 200 kyr and comprises ca. 53 individual centres covering an area of ca. 360km2. These centres show a range of sizes and eruptive styles from maar craters and tuff rings, to scoria cones and lava flows consistent with both phreatomagmatic and magmatic eruptions. Superimposition of the metropolitan area of Auckland (ca. 1.4 million inhabitants) on the volcanic field makes it critically important to assess the characteristics of the volcanic activity, on which to base assessment and management of the consequent hazards. Here we present a geochemical approach for correlating tephra deposits to their source centres. To acquire the most complete stratigraphic record of pyroclastic events, maar crater cores from different locations, covering various depths and thus ages across the field were selected. Magnetic susceptibility and x-ray density scanning of the cores was used to identify the basaltic tephra horizons, which were sampled and in-situ analysis of individual shards undertaken for major and trace elements using EPMA and LA-ICP-MS techniques, respectively. Our results show that tephra shard trace element ratios are comparable and complementary to the AVF whole rock database. The use of specific trace element ratios (e.g. Gd/Yb vs. Zr/Yb) allows us to fingerprint and cross correlate tephra horizons between cores and, when coupled with newly acquired 40Ar-39Ar age dating and eruption size estimates, correlate horizons to their source centres. This integrated style of study can provide valuable information to help volcanic hazard management and forecasting, and mitigation of related risks.

  4. Petrology and geochemistry of high cascade volcanics in southern Washington: Mount St. Helens volcano and the Indian Heaven basalt field

    SciTech Connect

    Smith, D.R.

    1984-01-01

    Mount St. Helens volcano (Washington, USA) has been characterized by four eruptive periods during the last 2200 years. Eruptive products include a wide spectrum of rock types including basaltic to andesitic lavas, andesitic to dacitic pyroclastic flows and tephra, and dacite domes. The major and trace element compositions of some andesites and dacites are broadly consistent with their derivation from a basaltic andesite parental magma by fractional cyrstallization processes involving the observed phenocryst assemblages. However, the strontium and oxygen isotopic compositions of representative samples of the Mount St. Helens suite indicate that closed system processes cannot explain the isotopic variations. The isotopic rations are positively correlated with one another and the bulk composition (SiO/sub 2/, Mg number, etc.). The vents of the nearby Indian Heaven Quaternary volcanic field erupted several basalt types which can be defined on the basis of major and trace element composition - calcalkaline (low and high TiO/sub 2/ varieties), transitional, and tholeiitic. Several of these basalt types occur at Mount St. Helens as well, but Indian Heaven lavas are generally more primitive as indicated by higher Mg/(Mg + Fe) ratios. The distribution of volcanic rock types in relation to local structures in the Cascade Range of southern Washington and northern Oregon suggests that crustal structure may influence the degree of evolution of specific volcanic fields. Cascade arc suggests that volcanic arc magma evolution does not necessarily produce a continuous sequence from tholeiitic to calcalkaline rocks in time or space.

  5. Language Learning in the American Southwestern Borderlands: Navajo Speakers and Their Transition to Academic English Literacy.

    ERIC Educational Resources Information Center

    Dyc, Gloria

    2002-01-01

    The Navajo Nation wants a 2-year Navajo language requirement for regional colleges. At the same time, literacy in academic English is required for Navajo students wishing to enter the sciences, medicine, and law. The difficulties students face as they make the transition from English to Navajo and from Navajo to English are described. Four…

  6. The Navajo Way of Life: A Resource Unit with Activities for Grades 4-6.

    ERIC Educational Resources Information Center

    Cordova, Dahlia

    A resource unit on the Navajo way of life, for grades 4-6, contains sections on Navajo history, art, and crafts, homes, music, poetry and games; Navajo and Pueblo cookery (including recipes); traditional Navajo dress, ceremony and legends; and successful Navajos, past and present. Sections include text, vocabulary words, drawings, maps, and…

  7. Reclaiming Indigenous Intellectual, Political, and Geographic Space: A Path for Navajo Nationhood

    ERIC Educational Resources Information Center

    Lee, Lloyd L.

    2008-01-01

    For millennia, Navajo society was self-sufficient. After 1863, beginning with Kit Carson's murderous rampage among the Navajo and the subsequent removal to the Bosque Redondo reservation, Navajo nationhood changed. Navajo society began a slow transformation away from the distinct Dine way of life. In the twentieth century Navajo nationalism was…

  8. Navajo Participation in Labor Unions. Lake Powell Research Project Bulletin Number 15, December 1975.

    ERIC Educational Resources Information Center

    Robbins, Lynn A.

    Navajo participation in labor unions and Navajo labor relations have undergone rapid and fundamental changes since the development of industry around Lake Powell and on Black Mesa. Early attempts to unionize Navajo workers met with stiff resistance from employees and the Navajo Tribal Council. Union entry into the Navajo Reservation was viewed as…

  9. Reclaiming Indigenous Intellectual, Political, and Geographic Space: A Path for Navajo Nationhood

    ERIC Educational Resources Information Center

    Lee, Lloyd L.

    2008-01-01

    For millennia, Navajo society was self-sufficient. After 1863, beginning with Kit Carson's murderous rampage among the Navajo and the subsequent removal to the Bosque Redondo reservation, Navajo nationhood changed. Navajo society began a slow transformation away from the distinct Dine way of life. In the twentieth century Navajo nationalism was…

  10. Navajo Language and Culture in Adult Education.

    ERIC Educational Resources Information Center

    Lockard, Louise

    1999-01-01

    Examples of culturally relevant education for Navajo adults are described: (1) Arizona State Prison Literacy Program; (2) Dine College Teacher Preservice Program; (3) Salt Lake City East Community School; and (4) Family and Child Education Program. The examples attest to the power of native language literacy. (SK)

  11. Determinants of Blood Pressure in Navajo Adolescents.

    ERIC Educational Resources Information Center

    Coulehan, John L.; And Others

    1990-01-01

    Among 580 Navajo adolescents, 11.1 percent of males and 1.6 percent of females had high blood pressure. Blood pressure was related to age in males and to body mass index in females but was not related to level of acculturation or traditionality. Contains 17 references. (SV)

  12. Determinants of Blood Pressure in Navajo Adolescents.

    ERIC Educational Resources Information Center

    Coulehan, John L.; And Others

    1990-01-01

    Among 580 Navajo adolescents, 11.1 percent of males and 1.6 percent of females had high blood pressure. Blood pressure was related to age in males and to body mass index in females but was not related to level of acculturation or traditionality. Contains 17 references. (SV)

  13. Exploring Navajo Motivation in School Settings.

    ERIC Educational Resources Information Center

    McInerney, Dennis M.; Swisher, Karen Gayton

    1995-01-01

    Over 500 Navajo high school students completed the Inventory of School Motivation, based on the personal investment model of motivation. Results suggest that the model's most salient elements for this group were sense-of-self components and one task component, striving for excellence. Combinations of variables were useful in predicting student…

  14. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are

  15. Discriminating lava flows of different age within Nyamuragira's volcanic field using spectral mixture analysis

    NASA Astrophysics Data System (ADS)

    Li, Long; Canters, Frank; Solana, Carmen; Ma, Weiwei; Chen, Longqian; Kervyn, Matthieu

    2015-08-01

    In this study, linear spectral mixture analysis (LSMA) is used to characterize the spectral heterogeneity of lava flows from Nyamuragira volcano, Democratic Republic of Congo, where vegetation and lava are the two main land covers. In order to estimate fractions of vegetation and lava through satellite remote sensing, we made use of 30 m resolution Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Imager (ALI) imagery. 2 m Pleiades data was used for validation. From the results, we conclude that (1) LSMA is capable of characterizing volcanic fields and discriminating between different types of lava surfaces; (2) three lava endmembers can be identified as lava of old, intermediate and young age, corresponding to different stages in lichen growth and chemical weathering; (3) a strong relationship is observed between vegetation fraction and lava age, where vegetation at Nyamuragira starts to significantly colonize lava flows ∼15 years after eruption and occupies over 50% of the lava surfaces ∼40 years after eruption. Our study demonstrates the capability of spectral unmixing to characterize lava surfaces and vegetation colonization over time, which is particularly useful for poorly known volcanoes or those not accessible for physical or political reasons.

  16. Petrology and geochemistry of lower crustal granulites from the Geronimo Volcanic Field, southeastern Arizona

    SciTech Connect

    Kempton, P.D.; Hawkesworth, C.J. ); Harmon, R.S. ); Moorbath, S. )

    1990-12-01

    Mafic to intermediate composition granulite xenoliths occur in Pliocene to Recent alkali basalts from the Geronimo Volcanic Field (GVF), southeastern Arizona, USA. The range of compositions and mineral assemblages observed suggests that the ultimate derivation of these rocks is from a variety of protoliths and that more than one mechanism has operated during the geologic evolution of the lower crust in this area. Two-pyroxene, two-feldspar granulites (meta-diorites) have major and trace element characteristics similar to estimates of post-Archaen lower crust. Low {sup 143}Nd/{sup 144}Nd values and Proterozoic Nd-depleted-mantle model ages (1.2-1.4 Ga) for these rocks require that Precambrian material exists in the lower crust of southeastern Arizona, either as the meta-diorites themselves or as older crust available for melting during production of the meta-diorite protoliths. K-feldspar-free granulites have more mafic compositions and their trace element characteristics are consistent with a cumulate origin. A negative correlation of {sup 208}Pb/{sup 204}Pb vs. {sup 206}Pb/{sup 204}Pb suggests that the meta-cumulate granulites represent mixing between Basin and Range age lavas with older meta-diorite crust and is, thus, evidence for Cenozoic underplating of the lower crust beneath the Basin and Range.

  17. Marine tephrochronology of the Mt. Edgecumbe volcanic field, southeast Alaska, USA

    USGS Publications Warehouse

    Addison, Jason A.; Beget, James E.; Ager, Thomas A.; Finney, Bruce P.

    2010-01-01

    The Mt. Edgecumbe Volcanic Field (MEVF), located on Kruzof Island near Sitka Sound in southeast Alaska, experienced a large multiple-stage eruption during the last glacial maximum (LGM)-Holocene transition that generated a regionally extensive series of compositionally similar rhyolite tephra horizons and a single well-dated dacite (MEd) tephra. Marine sediment cores collected from adjacent basins to the MEVF contain both tephra-fall and pyroclastic flow deposits that consist primarily of rhyolitic tephra and a minor dacitic tephra unit. The recovered dacite tephra correlates with the MEd tephra, whereas many of the rhyolitic tephras correlate with published MEVF rhyolites. Correlations were based on age constraints and major oxide compositions of glass shards. In addition to LGM-Holocene macroscopic tephra units, four marine cryptotephras were also identified. Three of these units appear to be derived from mid-Holocene MEVF activity, while the youngest cryptotephra corresponds well with the White River Ash eruption at not, vert, similar 1147 cal yr BP. Furthermore, the sedimentology of the Sitka Sound marine core EW0408-40JC and high-resolution SWATH bathymetry both suggest that extensive pyroclastic flow deposits associated with the activity that generated the MEd tephra underlie Sitka Sound, and that any future MEVF activity may pose significant risk to local population centers.

  18. Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone plateau volcanic field.

    USGS Publications Warehouse

    Hildreth, W.; Christiansen, R.L.; O'Neil, J.R.

    1984-01-01

    This Wyoming volcanic field has undergone repeated eruption of rhyolitic magma strongly depleted in 18O. Large calderas subsided 2.0, 1.3 and 0.6 m.y. ago on eruption of ash-flow sheets. More than 60 other rhyolite lavas and tuffs permit reconstruction of the long-term chemical and isotopic evolution of the silicic system. Narrow delta 18O ranges in the ash-flow sheets contrast with wide delta 18O variation in post-caldera lavas. The earliest post-collapse lavas are 3-6per mille lighter than the preceding ash-flow sheets. The 18O depletions were short-lived events that immediately followed caldera subsidence and sequences of post-caldera lavas record partial recovery toward pre-caldera delta 18O values. Contemporaneous extra-caldera rhyolites show no effects of the repeated depletions. Although some contamination by foundering roof rocks seems to be required, water was probably the predominant contaminant.-W.H.B.

  19. Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Kinsey, James C.; German, Christopher R.

    2013-10-01

    At slow spreading mid-ocean ridges sustained submarine venting and the deposition of large seafloor massive sulfide deposits have previously been ascribed to tectonically-controlled hydrothermal circulation unrelated to young volcanic activity. Here, by contrast, we show that the Piccard Hydrothermal Field (PHF), on the ultraslow spreading Mid-Cayman Rise, represents a site of sustained fluid flow and sulfide formation hosted in a neovolcanic setting. The lateral extent and apparent longevity associated with the PHF are comparable to some of the largest tectonically-hosted vent sites known along the slow-spreading Mid-Atlantic Ridge. If such systems recur along all ultraslow ridges, which comprise ˜20% of the ˜55,000 km global ridge crest, potential implications would include (i) a higher probability of locating large, economically valuable, mineral deposits along ultraslow ridges together with (ii) larger fluxes than previously anticipated of chemicals released from high-temperature venting entering the oceans along the Atlantic-Indian Ocean sectors of the deep-ocean thermohaline conveyor.

  20. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    USGS Publications Warehouse

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-01-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  1. June 2006 seismic swarm and dike injection event beneath the Michoacan-Guanajuato volcanic field

    NASA Astrophysics Data System (ADS)

    Cox, T. F.; Gardine, M.; West, M.

    2008-12-01

    A seismic swarm of approximately 700 events, magnitude 2.5-3.5, occurred in June of 2006 approximately 15 km from the summit of the cinder cone Paricutin, in the Michoacan-Guanajuato Volcanic Field in central Mexico. The swarm was detected and located as part of an effort to develop a catalog of regional seismicity using stations fortuitously in place as part of two concurrent IRIS/PASSCAL supported projects- the Mapping of the Rivera Subduction Zone (MARS) project run by the University of Texas at Austin and New Mexico State University, and the Colima Volcano Deep Seismic Experiment (CODEX), run by the University of Alaska Fairbanks. Over a two-week period in June 2006, relocated hypocenters clearly show a shallowing trend with time, indicative of a possible dike injection event. The rate of injection appears to be 346 m/day. Following the injection, there is a period of earthquakes, which all occurred at approximately 5 km in depth, but which migrated southwards. The waveforms of all of these events show similarities within three major groupings: from May 28 to June 1, June 2 to June 9 (which marks the end of the ascent), and from June 9 to July 2.

  2. Geologic map and geothermal assessment of the Mount Adams volcanic field, Cascade Range of southern Washington

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy

    1990-01-01

    More than 60 Quaternary vents make up the basalt-to-rhyodacite Mount Adams volcanic field and have erupted scoriae and lavas with a total volume of >370 km3. The Mount Adams andesite-dacite stratocone itself is a compound edifice that includes the high cone above 2300 m (20-10 ka), remnants of at least two earlier andesite-dacite cones as old as 0.5 Ma, and 7 Holocene flank vents. Four other Holocene vents and tens of vents contemporaneous with Mount Adams are peripheral to the stratocone. All of these vents, including Mount Adams, lie within a N-S eruptive zone 55 km long and 5 km wide. The age of all known Mount Adams silicic products (>100 ka) and the heterogeneous mafic compositions of the summit cone and Holocene lavas make it unlikely that the stratocone is underlain by an upper-crustal reservoir. Rather, the stratocone at the focus is built up of fractionated hybrid magmas that rise from MASH zones (melting-assimilation-storage-homogenization). The pyroclastic core of breccia and scoria at Mount Adams has undergone acid-sulfate leaching and deposition of alunite, kaolinite, silica, gypsum, sulfur, and Fe-oxides and has been a constant source of avalanches and debris flows. Most heat supplied from depth to the fumarolically altered core is dispersed by the high precipitation rate and high permeability of the rubbly lava flows so that a hydrothermal convection pattern is not maintained. Summit-restricted fumaroles are weak and diffuse.

  3. Rhyolite thermobarometry and the shallowing of the magma reservoir, Coso volcanic field, California

    USGS Publications Warehouse

    Manley, C.R.; Bacon, C.R.

    2000-01-01

    The compositionally bimodal Pleistocene Coso volcanic field is located at the western margin of the Basin and Range province ~ 60 km north of the Garlock fault. Thirty-nine nearly aphyric high-silica rhyolite domes were emplaced in the past million years: one at 1 Ma from a transient magma reservoir, one at ~ 0.6 Ma, and the rest since ~ 0.3 Ma. Over the past 0.6 My, the depth from which the rhyolites erupted has decreased and their temperatures have become slightly higher. Pre-eruptive conditions of the rhyolite magmas, calculated from phenocryst compositions using the two-oxide thermometer and the Al-in-hornblende barometer, ranged from 740??C and 270 MPa (2.7 kbar; ~ 10 km depth) for the ~ 0.6 Ma magma, to 770??C and 140 MPa (1.4 kbar; ~ 5.5 km) for the youngest (~ 0.04 Ma) magma. Results are consistent with either a single rhyolitic reservoir moving upward through the crust, or a series of successively shallower reservoirs. As the reservoir has become closer to the surface, eruptions have become both more frequent and more voluminous.

  4. Magnetotelluric Studies of the Laguna del Maule Volcanic Field, Central Chile

    NASA Astrophysics Data System (ADS)

    Cordell, D. R.; Unsworth, M. J.; Diaz, D.; Pavez, M.; Blanco, B.

    2015-12-01

    Geodetic data has shown that the surface of the Laguna del Maule (LdM) volcanic field in central Chile has been moving upwards at rates >20 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body at ~5 km depth beneath the lake (2.8 km b.s.l.). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and included data from a geothermal exploration project. MT phase tensor analysis indicates that the resistivity structure of the region is largely three-dimensional for signals with periods longer than 1 s, which corresponds to depths >5 km. The MT data were inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model which included topography. Four primary features were identified in the model: 1) A north-south striking, 10 km by 5 km, low-resistivity zone (<5 Ωm) northwest of the inflation centre at a depth of ~5 km (2.8 km b.s.l.) is interpreted as a zone of partial melt which may be supplying material via conduits to account for the observed ground deformation; 2) A shallow low-resistivity feature ~400 m beneath the lake surface (1.8 km a.s.l.) and spatially coincident with the inflation centre is interpreted to be a zone of hydrothermal alteration; 3) A thin, low-resistivity feature to the west of LdM at a depth of ~250 m (2.2 km a.s.l.) is interpreted to be the clay cap of a potential geothermal prospect; 4) A large, low-resistivity zone beneath the San Pedro-Tatara Volcanic Complex to the west of LdM at a depth of ~10 km (8 km b.s.l.) is interpreted to be a zone of partial melt. Further MT data collection is planned for 2016 which will expand the current grid of MT stations to better constrain the lateral extent of the observed features and give greater insight into the dynamics of this restless magma system.

  5. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  6. Continued Rapid Uplift at Laguna del Maule Volcanic Field (Chile) from 2007 through 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, H.; Feigl, K. L.; Cordova, L.; DeMets, C.; Lundgren, P.

    2014-12-01

    The current rate of uplift at Laguna del Maule (LdM) volcanic field in Chile is among the highest ever observed geodetically for a volcano that is not actively erupting. Using data from interferometric synthetic aperture radar (InSAR) and the Global Positioning System (GPS) recorded at five continuously operating stations, we measure the deformation field with dense sampling in time (1/day) and space (1/hectare). These data track the temporal evolution of the current unrest episode from its inception (sometime between 2004 and 2007) to vertical velocities faster than 200 mm/yr that continue through (at least) July 2014. Building on our previous work, we evaluate the temporal evolution by analyzing data from InSAR (ALOS, TerraSAR-X, TanDEM-X) and GPS [http://dx.doi.org/ 10.1093/gji/ggt438]. In addition, we consider InSAR data from (ERS, ENVISAT, COSMO-Skymed, and UAVSAR), as well as constraints from magneto-telluric (MT), seismic, and gravity surveys. The goal is to test the hypothesis that a recent magma intrusion is feeding a large, existing magma reservoir. What will happen next? To address this question, we analyze the temporal evolution of deformation at other large silicic systems such as Yellowstone, Long Valley, and Three Sisters, during well-studied episodes of unrest. We consider several parameterizations, including piecewise linear, parabolic, and Gaussian functions of time. By choosing the best-fitting model, we expect to constrain the time scales of such episodes and elucidate the processes driving them.

  7. Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications

    SciTech Connect

    Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    2000-06-08

    Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water

  8. Stress Field and Dike Propagation within a Partially Submerged Volcanic Edifice

    NASA Astrophysics Data System (ADS)

    Tait, S.; Taisne, B.; Manga, M.; Pasquet, E.; Limare, A.; Bhat, H.

    2013-12-01

    In order to better understand dike propagation within and flank collapse on volcanic islands, we performed a set of analogue laboratory experiments. We created conic edifices of gelatin and measured their deformation under their own weight whilst we varied the level to which they were partially submerged. In most experiments the lower part of the edifice was submerged in water while the upper part was surrounded by air, but in some cases oil was used as the fluid surrounding the upper part of the edifice in order to change density differences. The gelatin was typically made of a sugar (or glycerol) solution so that it was approximately 10-30% denser than water, and its strength was varied by using different gelatin concentrations. The strain field was visualized from the birefringence pattern created by placing the gelatin between sheets of polarising film with the directions crossed. One first order feature of the strain field is an approximately elliptical shaped extensional region, centered below the summit and at approximately sea-level. The second feature is a region of strong sub-horizontal shear in the lower most part of the edifice, close to the lower, rigid no-slip boundary. We also observed the behaviour of dikes injected into the base of the edifice from below: these dikes were filled with water or salt solution so that they had variable amounts of positive buoyancy with respect to the edifice. If all, or a very large fraction, of the edifice was submerged, the dike typically propagated vertically and erupted at the summit. If the edifice was only partially submerged, however, the dikes typically switched from dominantly vertical to horizontal propagation and erupted on the flanks of the edifice, very often at sea level.

  9. Volcanic sanidinites: an example for the mobilization of high field strength elements (HFSE) in magmatic systems

    NASA Astrophysics Data System (ADS)

    Aßbichler, Donjá; Heuss-Aßbichler, Soraya; Müller, Dirk; Kunzmann, Thomas

    2016-04-01

    In earth science the mobility of high field strength elements (HFSE) is generally discussed in context of hydrothermal processes. Recent investigations mainly address processes in (late) magmatic-, metamorphic- and submarine hydrothermal systems. They have all in common that H2O is main solvent. The transport of HFSE is suggested to be favored by volatiles, like boron, fluorine, phosphate and sulfate (Jiang et al., 2005). In this study processes in magmatic system are investigated. Sanidinites are rare rocks of igneous origin and are found as volcanic ejecta of explosive volcanoes. They consist mainly of sanidine and minerals of the sodalite group. The very porous fabric of these rocks is an indication of their aggregation from a gaseous magmatic phase. The large sanidine crystals (up to several centimeters) are mostly interlocking, creating large cavities between some crystals. In these pores Zr crystallizes as oxide (baddeleyite, ZrO2) or silicate (zircon, ZrSiO4). The euhedral shape of these minerals is a further indication of their formation out of the gas phase. Furthermore, bubbles in glass observed in some samples are evidence for gas-rich reaction conditions during the formation of the sanidinites. The formation of sanidinites is suggested to be an example for solvothermal processes in natural systems. Solvothermal processes imply the solvation, transport and recrystallization of elements in a gas phase. Results obtained from whole rock analysis from sanidinites from Laacher See (Germany) show a positive correlation between LOI, sulfate, Cl, and Na with the HFSE like Zr. Na-rich conditions seem to ameliorate the solvothermal transport of Zr. All these features point to the formation of sanidinites in the upper part of a magma chamber, where fluid consisting of SO3 and Cl compounds in addition to H2O, CO2 and HFSE (high field strength elements) like Zr accumulate.

  10. Relation of compositions of deep fluids in geothermal activity of Pleistocene-Holocene volcanic fields of Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Meliksetian, Khachatur; Lavrushin, Vassily; Shahinyan, Hrach; Aidarkozhina, Altin; Navasardyan, Gevorg; Ermakov, Alexander; Zakaryan, Shushan; Prasolov, Edward; Manucharyan, Davit; Gyulnazaryan, Shushan; Grigoryan, Edmond

    2017-04-01

    It is widely accepted, that geothermal activity in the conductive heat flow processes, such as volcanism and hydrothermal activity, is manifestation of the thermal mass transfer process in the Earth's crust, where geothermal and geochemical processes are closely connected. Therefore, geochemistry and isotope compositions of thermal mineral waters within and on periphery of volcanic clusters may represent key indicators for better understanding of geothermal activity in geodynamically active zones. Geochemical features of heat and mass transport in hydrothermal systems related to active volcanic and fault systems in continental collision related orogenic elevated plateaus such as Anatolian-Armenian-Iranian highlands are still poorly understood. In this contribution we attempt to fill these gaps in our knowledge of relations of geochemical and geothermal processes in collision zones. We present new data on chemical compositions, trace element geochemistry of thermal waters of Lesser Caucasus, (Armenia) as well as isotope analysis of free gases such as {}3He/{}4He, {}40Ar/{}36Ar, δ{}13?(CO{}2), nitrogen δ{}15N(N{}2) and oxygen and hydrogen isotopes in water phases (δD, δ{}18O). To reveal some specific features of formation of fluid systems related to thermal activity in the areas of collision related active volcanism and active geodynamics a complex geochemical (SiO{}2, K-Na, Na-Li, Li-Mg) and isotope geothermometers (δ{}18O(CaCO{}3) - δ{}18O(H{}2O)) were applied. The distribution of δ{}13?(??{}2) values in free gases of mineral waters of Armenia demonstrates that gases related to Quaternary volcanic fields are characterized by relatively light δ{}13?(CO{}2) values close to mantle derived gases, while on periphery of volcanic systems relatively heavy values of δ{}13?(CO{}2) indicate strong influence of metamorphic and sedimentary derived carbon dioxide. Distribution of nitrogen isotopes δ{}15N(N{}2) demonstrate an inverse correlation with δ{}13?(CO{}2

  11. Intra-vent peperites related to the phreatomagmatic 71 Gulch Volcano, western Snake River Plain volcanic field, Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Németh, Károly; White, Craig M.

    2009-05-01

    The western Snake River Plain volcanic field in SW Idaho contains up to 400 basaltic vents and centers that produced lava shields, pahoehoe lava fields, scoria cones, and a great variety of phreatomagmatic volcanoes between late Miocene and middle Pleistocene time. Tephra deposits produced by phreatomagmatic eruptions are particularly well exposed in the walls of the Snake River canyon, where thick accumulations of pyroclastic rocks indicate widespread phreatomagmatic eruptive events throughout most of the volcanic history of the region. Previously, many of the phreatomagmatic deposits were considered to be the products of subaqueous eruptions that took place on the floor of one or more large freshwater intra-continental lakes. Recent field based observations confirm the presence of widespread phreatomagmatic pyroclastic rocks; however, some that had been interpreted as being subaqueous exhibit textural features that are more consistent with subaerial depositional environments. Intrusive and extrusive magmatic bodies with features associated with peperite formation have also been identified. Most of these peperites can be attributed to magma-sediment mixing in intra-crater/conduit or vent settings, and therefore they can only be used as widespread paleoenvironmental indicators with limitations to demonstrate magma and surface water (e.g. lake) non-explosive interaction. One of the studied sites ("71 Gulch Volcano") was previously used to indicate the presence of a shallow lake. At this site there is clear field evidence that peperitic feeder dykes contacted muddy, sandy siliciclastic sediments forming globular peperite. The peperitic feeder dykes transition to pillowed, ponded lava up section. The ponded lavas are partially surrounded by a ~ 5-m-thick unit composed of gently dipping, dune bedded, volcanic glass shard-rich, unsorted, tuff and lapilli tuff containing abundant impact sags caused by volcanic lithics. We suggest that the 3D architecture of the erosional

  12. A geologic and anthropogenic journey from the Precambrian to the new energy economy through the San Juan volcanic field

    USGS Publications Warehouse

    Yager, Douglas B.; Burchell,; Johnson, Raymond H.

    2010-01-01

    The San Juan volcanic field comprises 25,000 km2 of intermediate composition mid-Tertiary volcanic rocks and dacitic to rhyolitic calderas including the San Juan–Uncompahgre and La Garita caldera-forming super-volcanoes. The region is famous for the geological, ecological, hydrological, archeological, and climatological diversity. These characteristics supported ancestral Puebloan populations. The area is also important for its mineral wealth that once fueled local economic vitality. Today, mitigating and/or investigating the impacts of mining and establishing the region as a climate base station are the focuses of ongoing research. Studies include advanced water treatment, the acid neutralizing capacity (ANC) of propylitic bedrock for use in mine-lands cleanup, and the use of soil amendments including biochar from beetle-kill pines. Biochar aids soil productivity and revegetation by incorporation into soils to improve moisture retention, reduce erosion, and support the natural terrestrial carbon sequestration (NTS) potential of volcanic soils to help offset atmospheric CO2 emissions. This field trip will examine the volcano-tectonic and cultural history of the San Juan volcanic field as well as its geologic structures, economic mineral deposits and impacts, recent mitigation measures, and associated climate research. Field trip stops will include a visit to (1) the Summitville Superfund site to explore quartz alunite-Au mineralization, and associated alteration and new water-quality mitigation strategies; (2) the historic Creede epithermal-polymetallic–vein district with remarkably preserved resurgent calderas, keystone-graben, and moat sediments; (3) the historic mining town of Silverton located in the nested San Juan–Silverton caldera complex that exhibits base-metal Au-Ag mineralization; and (4) the site of ANC and NTS studies. En route back to Denver, we will traverse Grand Mesa, a high NTS area with Neogene basalt-derived soils and will enjoy a soak

  13. Origin of basaltic magmas of Perşani volcanic field, Romania: A combined whole rock and mineral scale investigation

    NASA Astrophysics Data System (ADS)

    Harangi, Szabolcs; Sági, Tamás; Seghedi, Ioan; Ntaflos, Theodoros

    2013-11-01

    The Perşani volcanic field is a low-volume flux monogenetic volcanic field in the Carpathian-Pannonian region, eastern-central Europe. Volcanic activity occurred intermittently from 1200 ka to 600 ka, forming lava flow fields, scoria cones and maars. Selected basalts from the initial and younger active phases were investigated for major and trace element contents and mineral compositions. Bulk compositions are close to those of the primitive magmas; only 5-12% olivine and minor spinel fractionation occurred at 1300-1350 °C, followed by clinopyroxenes at about 1250 °C and 0.8-1.2 GPa. Melt generation occurred in the depth range from 85-90 km to 60 km. The estimated mantle potential temperature, 1350-1420 °C, is the lowest in the Pannonian Basin. It suggests that no thermal anomaly exists in the upper mantle beneath the Perşani area and that the mafic magmas were formed by decompression melting under relatively thin continental lithosphere. The mantle source of the magmas could be slightly heterogeneous, but is dominantly variously depleted MORB-source peridotite, as suggested by the olivine and spinel composition. Based on the Cr-numbers of the spinels, two coherent compositional groups (0.38-0.45 and 0.23-0.32, respectively) can be distinguished that correspond to the older and younger volcanic products. This indicates a change in the mantle source region during the volcanic activity as also inferred from the bulk rock major and trace element data. The younger basaltic magmas were generated by lower degree of melting, from a deeper and compositionally slightly different mantle source compared to the older ones. The mantle source character of the Perşani magmas is akin to that of many other alkaline basalt volcanic fields in the Mediterranean close to orogenic areas. The magma ascent rate is estimated based on compositional traverses across olivine xenocrysts using variations of Ca content. Two heating events are recognized; the first one lasted about 1

  14. Initial results from the Volcanic Risk in Saudi Arabia project: Microearthquakes in the northern Harrat Rahat monogenetic volcanic field, Madinah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Alvarez, M. G.; Abdelwahed, M. F.; Aboud, E.; Lindsay, J. M.; Mokhtar, T. A.; Moufti, M. R.

    2012-12-01

    An 8-station borehole seismic research array is recording microearthquake data in northern Harrat Rahat. This recently active monogenetic volcanic field lies southeast of the Islamic holy city of Madinah, Kingdom of Saudi Arabia. The VORiSA seismographs are operated in collaboration between King Abdulaziz University in Jeddah and the Institute of Earth Science and Engineering, University of Auckland, in New Zealand. The goal of the VORiSA project is to evaluate the seismic and volcanic hazard around Madinah. To this end, we will evaluate the local earthquake activity including the extent to which local earthquakes are tectonic or volcanic. We also will use seismicity to understand the subsurface structure. The analytical goals of the seismic research array are the following: (1) Calculate a new seismic velocity model, (2) Map subsurface structures using seismic tomography, and (3) Explore for fracture zones using shear wave splitting analysis. As compared to seismographs installed on the surface, borehole seismometers detect smaller and more numerous microearthquake signals. The sensitivity and location of the borehole sensors in the VORiSA array are designed to detect these weak signals. The array has a total aperture of 17 km with station spacing at 5 - 10 km. The seismometers are housed in IESE model S21g-2.0, two Hz, 3-component borehole sondes. Sensor depths range from 107 - 121 m. The data acquisition system at each stand-alone station consists of a Reftek 130-01, 6-channel, 24 bit data logger which records at 250 samples per second. The power source is a deep cycle battery with solar recharge. Local temperatures reach extremes of 0° to 50°C, so the battery and recorder are contained in a specially designed underground vault. The vault also provides security in the remote and sparsely populated volcanic field. Recording began on 31 March 2012. An average of one earthquake every three days suggests that currently this is not a highly seismic area. However

  15. Geologic Map of Part of the Uinkaret Volcanic Field, Mohave County, Northwestern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Hamblin, W. Kenneth; Wellmeyer, Jessica L.; Dudash, Stephanie L.

    2001-01-01

    The geologic map of part of the Uinkaret Volcanic Field is one product of a cooperative project between the U.S. Geological Survey, the National Park Service, and the Bureau of Land Management to provide geologic information about this part of the Grand Canyon-Parashant Canyon National Monument of Arizona. The Uinkaret Volcanic Field is a unique part of western Grand Canyon where volcanic rocks have preserved the geomorphic development of the landscape. Most of the Grand Canyon, and parts of adjacent plateaus have already been mapped. This map completes one of the remaining areas where uniform quality geologic mapping was needed. A few dozen volcanoes and lava flows within the Grand Canyon are not included in the map area, but their geologic significance to Grand Canyon development is documented by Hamblin (1994) and mapped by Billingsley and Huntoon (1983) and Wenrich and others (1997). The geologic information in this report may be useful to resource managers of the Bureau of Land Management for range management, biological, archaeological, and flood control programs. The map area lies within the Shivwits, Uinkaret, and Kanab Plateaus, which are subplateaus of the Colorado Plateaus physiographic province (Billingsley and others, 1997), and is part of the Arizona Strip north of the Colorado River. The nearest settlement is Colorado City, Arizona, about 58 km (36 mi) north of the map area (fig. 1). Elevations range from about 2,447 m (8,029 ft) at Mount Trumbull, in the northwest quarter of the map area, to about 732 m (2,400 ft) in Cove Canyon, in the southeast quarter of the map area. Vehicle access is via the Toroweap and Mount Trumbull dirt roads (fig. 1). Unimproved dirt roads traverse other parts of the area except in designated wilderness. Extra fuel, two spare tires, and extra food and water are highly recommended for travelers in this remote area. The U.S. Bureau of Land Management, Arizona Strip Field Office, St. George, Utah manages most of the area. In

  16. Conditions of basaltic magma generation at Mount Baker Volcanic Field, North Cascades

    NASA Astrophysics Data System (ADS)

    McCallum, I. S.; Mullen, E. K.

    2011-12-01

    Significant unresolved questions remain on the processes of mantle melting throughout the wide range of thermal conditions encompassed by subduction zones. For example, subducting slabs in "hot" arc settings are thought to dehydrate at relatively shallow depths, yet volcanoes develop in locations indistinguishable from those in "cold" arcs. The northern Cascade arc is considered a classic end-member example of a "hot" subduction zone because the subducting crust is extremely young, 6-10 Ma at the trench [1], with a thick layer of insulating sediment and a relatively low convergence rate [2]. The most magmatically productive volcanic center of the northern Cascades is the Mt. Baker volcanic field (MBVF) [3], and here we glean information from the most primitive MBVF lavas to develop a petrogenetic model for basalt generation in a "hot" arc setting. Whole-rock geochemical data and the compositions of coexisting minerals are used to establish the initial water contents and redox states of the magmas, and the temperatures and pressures of segregation from the mantle. Melt silica activities indicate the MBVF magmas segregated from their residual mantle source assemblages at depths ranging from 60 to 40 km, corresponding to a few km shallower than the hot core of the mantle wedge [4] to the base of the crust. Plagioclase core compositions indicate that the initial water contents of the magmas ranged from 1.7 to 2.3 wt. % H2O, and show a good inverse correlation with segregation depths. Fe-Ti oxide pairs and spinel inclusions in olivine phenocrysts indicate redox states slightly more oxidizing than the quartz-fayalite-magnetite buffer. Segregation depths are also strongly correlated with temperatures calculated from olivine-liquid equilibria, which range from 1286°C to 1350°C. Coupled with the most recent thermal model for the subducting slab in northern Cascadia [4], we use petrologic phase equilibria for the P-T stability of mineral assemblages in the mantle and

  17. 40Ar/39Ar geochronology, paleomagnetism, and evolution of the Boring volcanic field, Oregon and Washington, USA

    USGS Publications Warehouse

    Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.

    2014-01-01

    The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.

  18. The Mantle and Basalt-Crust Interaction Below the Mount Taylor Volcanic Field, New Mexico

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Crumpler, Larry S.; Schmidt, Marick E.

    2010-01-01

    The Mount Taylor Volcanic Field (MTVF) lies on the Jemez Lineament on the southeastern margin of the Colorado Plateau. The field is centered on the Mt. Taylor composite volcano and includes Mesa Chivato to the NE and Grants Ridge to the WSW. MTVF magmatism spans approximately 3.8-1.5 Ma (K-Ar). Magmas are dominantly alkaline with mafic compositions ranging from basanite to hy-basalt and felsic compositions ranging from ne-trachyte to rhyolite. We are investigating the state of the mantle and the spatial and temporal variation in basalt-crustal interaction below the MTVF by examining mantle xenoliths and basalts in the context of new mapping and future Ar-Ar dating. The earliest dated magmatism in the field is a basanite flow south of Mt. Taylor. Mantle xenolith-bearing alkali basalts and basanites occur on Mesa Chivato and in the region of Mt. Taylor, though most basalts are peripheral to the main cone. Xenolith-bearing magmatism persists at least into the early stages of conebuilding. Preliminary examination of the mantle xenolith suite suggests it is dominantly lherzolitic but contains likely examples of both melt-depleted (harzburgitic) and melt-enriched (clinopyroxenitic) mantle. There are aphyric and crystal-poor hawaiites, some of which are hy-normative, on and near Mt. Taylor, but many of the more evolved MTVF basalts show evidence of complex histories. Mt. Taylor basalts higher in the cone-building sequence contain >40% zoned plagioclase pheno- and megacrysts. Other basalts peripheral to Mt. Taylor and at Grants Ridge contain clinopyroxene and plagioclase megacrysts and cumulate-textured xenoliths, suggesting they interacted with lower crustal cumulates. Among the questions we are addressing: What was the chemical and thermal state of the mantle recorded by the basaltic suites and xenoliths and how did it change with time? Are multiple parental basalts (Si-saturated vs. undersaturated) represented and, if so, what changes in the mantle or in the tectonic

  19. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  20. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    NASA Astrophysics Data System (ADS)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  1. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants?

    NASA Astrophysics Data System (ADS)

    Beitler, Brenda; Chan, Marjorie A.; Parry, William T.

    2003-12-01

    Spectacular color variations in the Lower Jurassic Navajo Sandstone reflect stratigraphic and structural control on the spatial distribution of fluid-driven alteration. Field observations and supervised classification of Landsat 7 Enhanced Thematic Mapper (ETM+) satellite imagery show that the most extensive regional bleaching of the Navajo Sandstone occurs on eroded crests of Laramide uplifts on the Colorado Plateau in southern Utah. Alteration patterns suggest that the blind reverse faults that core the eastern monoclines associated with these uplifts were carriers for hydrocarbons and brought the buoyant fluids to the crests of monoclines and anticlines, where they bleached the sandstone in both structural and stratigraphic traps. The extent of bleaching indicates that the Navajo Sandstone (Navajo Sandstone, Aztec Sandstone, and Nugget Sandstone) may have been one of the largest hydrocarbon reservoirs known. Rapid incision and breaching of this reservoir during Tertiary uplift and erosion of the Colorado Plateau could have released enough carbon into the atmosphere to significantly contribute to global carbon fluxes and possibly influence climate.

  2. Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Plank, Terry; Forsyth, Donald W.; Bendersky, Claire; Lee, Cin-Ty A.; Hauri, Erik H.

    2012-06-01

    Here we report the first measurements of the H2O content of magmas and mantle xenoliths from the Big Pine Volcanic Field (BPVF), California, in order to constrain the melting process in the mantle, and the role of asthenospheric and lithospheric sources in this westernmost region of the Basin and Range Province, western USA. Melt inclusions trapped in primitive olivines (Fo82-90) record surprisingly high H2O contents (1.5 to 3.0 wt.%), while lithospheric mantle xenoliths record low H2O concentrations (whole rock <75 ppm). Estimates of the oxidation state of BPVF magmas, based on V partitioning in olivine, are also high (FMQ +1.0 to +1.5). Pressures and temperatures of equilibration of the BPVF melts indicate a shift over time, from higher melting temperatures (˜1320°C) and pressures (˜2 GPa) for magmas that are >500 ka, to cooler (˜1220°C) and shallower melting (˜1 GPa) conditions in younger magmas. The estimated depth of melting correlates strongly with some trace element ratios in the magmas (e.g., Ce/Pb, Ba/La), with deeper melts having values closer to upper mantle asthenosphere values, and shallower melts having values more typical of subduction zone magmas. This geochemical stratification is consistent with seismic observations of a shallow lithosphere-asthenosphere boundary (˜55 km depth). Combined trace element and cryoscopic melting models yield self-consistent estimates for the degree of melting (˜5%) and source H2O concentration (˜1000 ppm). We suggest two possible geodynamic models to explain small-scale convection necessary for magma generation. The first is related to the Isabella seismic anomaly, either a remnant of the Farallon Plate or foundered lithosphere. The second scenario is related to slow extension of the lithosphere.

  3. Pleistocene high-silica rhyolites of the Coso volcanic field, Inyo County, California.

    USGS Publications Warehouse

    Bacon, C.R.; Macdonald, R.; Smith, R.L.; Baedecker, P.A.

    1981-01-01

    The high-silica rhyolite domes and lava flows of the bimodal Pleistocene part of the Coso volcanic field provide an example of the early stages of evolution of a silicic magmatic system of substantial size and longevity. Major and trace element compositions are consistent with derivation from somewhat less silicic parental material by liquid state differentiation processes in compositionally and thermally zoned magmatic systems. Seven chemically homogeneous eruptive groups can be distinguished on the basis of trace element and K/Ar data. The oldest two groups are volumetrically minor and geochemically distinct from the younger groups, all five of which appear to have evolved from the same magmatic system. Erupted volume-time relations suggest that small amounts of magma were bled from the top of a silicic reservoir at a nearly constant long-term rate over the last 0.24Ma. The interval of repose between eruptions appears to be proportional to the volume of the preceding eruptive group. This relationship suggests that eruptions take place when some parameter which increases at a constant rate reaches a critical value; this parameter may be extensional strain accumulated in roof rocks. Extension of the lithosphere favors intrusion of basalt into the crust, attendant partial melting, and maintenance of a long-lived silicic magmatic system. The Coso silicic system may contain a few hundred cubic kilometers of magma. The Coso magmatic system may eventually have the potential for producing voluminous pyroclastic eruptions if the safety valve provided by rapid crustal extension becomes inadequate to 1) defuse the system through episodic removal of volatile-rich magma from its top and 2) prohibit migration of the reservoir to a shallow crustal level.-from Authors

  4. The origin of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico

    NASA Astrophysics Data System (ADS)

    Bibbins, M.; Castillo, P.; Negrete-Aranda, R.; Canon-Tapia, E.; Alva-Valdivia, L. M.; Garcia-Amador, B. I.

    2014-12-01

    Baja California is a peninsula in western Mexico that was formed through a dynamic tectonic history of convergence, rifting and strike slip motion. At approximately 13 Ma, subduction along the northwestern coast of Mexico stopped, subsequently the Gulf of California opened and strike slip faults formed parallel to the ancient trench. After subduction ended, arc-related magmatism continued as the Baja peninsula was forming until about 2 Ma. The lavas erupting in the peninsula have variable compositions including calc-alkalic and tholeiitic arc basalts and bajaites. The term bajaite is a collective term for the high magnesian andesites and basaltic andesites in Baja California that have adakitic characteristics. Adakites, on the other hand, are arc lavas characterized by high silica content and Sr/Y and La/Yb ratios; these are generally believed to have formed through melting of subducted basaltic crust. The origin of bajaite is controversial. It has been proposed as product of melting of either subducted basaltic crust primarily because of its adakitic characteristics (Saunders et al, 1987) or metasomatized mantle wedge because of its arc lava-like geochemical features (Castillo, 2008); it has also been proposed as a mixture of differentiated and mafic arc lavas (Streck et al, 2007). The composition of bajaite is similar to that of the bulk continental crust and, thus, its true origin can shed light on the mechanism for continental growth. In this study, we use geochemical techniques to resolve some of the controversies surrounding the origin of bajaite. We analyze the petrographic, major element, trace element, and Sr-Nd-Pb isotopic compositions of bajaites from the San Borja Volcanic Field in Baja California Norte, Mexico to better constrain their petrogenetic history and origin.

  5. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    USGS Publications Warehouse

    Miller, J.S.; Wooden, J.L.

    2004-01-01

    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  6. Petrofabric and seismic properties of lithospheric mantle xenoliths from the Calatrava volcanic field (Central Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, P.; Ábalos, B.; Gil Ibarguchi, J. I.; Sarrionandia, F.; Carracedo, M.; Fernández-Armas, S.

    2016-06-01

    The microstructural and petrofabric study of peridotite xenoliths from the El Aprisco (Neogene Calatrava Volcanic Field) has provided new information on deformation mechanisms, ambient conditions and seismic properties of the central Iberian subcontinental mantle. Olivine, orthopyroxene, clinopyroxene, amphibole and spinel constitute the mineral assemblage in equilibrium. Their microstructure indicates that they accommodated crystal-plastic deformation under high water fugacity conditions. Crystallographic preferred orientation patterns of key minerals were determined with the EBSD technique. The xenoliths exhibit B, C and A olivine fabrics. B-type fabrics, involving the (010)[001] slip system, may develop in domains where deformation occurs under comparatively lower temperature, higher water-content and faster strain rates. They are interpreted here as the result of deformation in a suprasubduction mantle setting triggered by changing conditions imposed by a cooler subducting slab that incorporated fluids into the system. Xenoliths with olivine C-type fabrics involve activation of the dominant (100)[001] slip system, denote intracrystalline slip at higher temperatures and water-contents. They are here interpreted to sample lithospheric mantle domains where the impact of those new conditions was not so strong. Finally, the A-type fabrics, characteristic of the (010)[100] slip system, are frequent in the mantle under moderate to high temperature. These fabrics are considered here as characteristic of the mantle prior to subduction. The olivine fabrics constrain heterogeneous seismic properties. Propagation orientation of P waves (8.27-8.51 km/s) coincides with olivine [100] axis concentrations, whereas the fastest S1 waves (5.13-5.22 km/s) propagate parallel to [010] axis minima. The maximum shear wave birefringence (VS1-VS2 = 0.17-0.37 km/s) is close to the direction of the macroscopic lineation. Heterogeneity of calculated seismic properties would concur with

  7. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  8. Investigating the Mantle Source of the Lunar Crater Volcanic Field, Nevada: Evidence of a Thermal Plume?

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Roden, M.

    2016-12-01

    The Easy Chair Crater (ECC), located within the Lunar Crater Volcanic Field (LCVF) in central Nevada is particularly interesting because of the unusually high equilibrium temperatures and strain recorded by the mantle-derived xenoliths at LCVF1. In addition, a gravity and elevation anomaly suggests the possibility of an underlying thermal plume in the region2. In order to determine if the rocks at ECC are geochemically similar to rocks from other plume-related regions, we analyzed melt inclusions and olivine phenocrysts collected from basalts near the crater. Chlorine amounts in melt inclusions were normalized to the highly incompatible K to produce a ratio that is insensitive to crystallization within or along the walls of the inclusion3. Because Cl is implicated in lithosphere recycling, the Cl/K ratio can be used to differentiate magmatic source components. Initial results (Fig. 1) indicate that basalts from ECC are geochemically more similar to ocean island basalts than to MORB or arc basalts. Elemental ratios in olivine phenocrysts from basaltic magmas can be used to determine the petrology of the source rock for particular silicate melts. In turn, petrology of mantle sources is thought to correlate with source nature (e.g., plume versus upper mantle)4. Specifically, Ni and Mn amounts were evaluated in order to determine if magma sources were pyroxenite-rich. Preliminary calculations of the wt. fraction of pyroxenite in the source of ECC basalts ranged from 0.13 to 0.68 indicating the possibility of a significant amount of pyroxenite in the magmatic source which would be expected if a plume was present beneath LCVF. References:1Smith, D. (2000) JGR 105: 16769; 2Saltus, R.W. & Thompson, G.A. (1995) Tectonics 14:1235; 3Patiño Douce, A.E. & Roden, M.F. (2006) Geochim Cosmochim Acta 70: 3173; 4Gurenko et al. (2010) Contrib Mineral Petrol 159: 689

  9. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    SciTech Connect

    Ridley, W.I.; Perfit, M.R.; Smith, M.F.; Jonasson, I.R.

    1994-06-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85{degree}49 feet W and 85{degree} 55 feet W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens` equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (<10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. 50 refs., 10 figs., 4 tabs.

  10. Megacrystic pyroxene basalts sample deep crustal gabbroic cumulates beneath the Mount Taylor volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, Mariek E.; Schrader, Christian M.; Crumpler, Larry S.; Rowe, Michael C.; Wolff, John A.; Boroughs, Scott P.

    2016-04-01

    Distributed over the ~ 2.3 m.y. history of the alkaline and compositionally diverse Mount Taylor Volcanic Field (MTVF), New Mexico is a widespread texturally distinct family of differentiated basalts that contain resorbed megacrysts (up to 3 cm) of plagioclase, clinopyroxene, and olivine ± Ti-magnetite ± ilmenite ± orthopyroxene. These lavas have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. Gabbroic and megacrystic clinopyroxenes form positive linear arrays in TiO2 (0.2-2.3 wt.%) with respect to Al2O3 (0.7-9.3 wt.%). Plagioclase (An41-80) from representative thin sections analyzed for 87Sr/86Sr by laser ablation ICP-MS range from 0.7036 to 0.7048. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, the pyroxene and plagioclase megacrysts appear to track the differentiation of a gabbroic pluton (or related plutons) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. Clinopyroxene-liquid geobarometry calculations suggest that crystallization occurred near the crust-mantle transition at an average of ~ 1200 °C and 12-13 kbar. The distribution of the megacrystic pyroxene basalts suggests that a gabbroic intrusive body underlies subregions of the MTVF that have generated silicic magmas. The gabbro is interpreted to be a significant heat and mass input into the lower crust that is capable of driving the petrogenesis of diverse silicic compositions (through fractionation and crustal assimilation), including mugearites, trachytes, trachy-andesites and dacites, high-Si rhyolites, and topaz rhyolites of the MTVF.

  11. Petrochemistry of late miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia

    USGS Publications Warehouse

    Morgan, VI G.B.; London, D.; Luedke, R.G.

    1998-01-01

    Late Miocene peraluminous volcanic rocks of the Morococala field, Bolivia, define a layered stratigraphy of basal andalusite-, biotite-(?? Muscovite)-bearing rhyolite tuffs (AR), overlain by cordierite-, biotite-bearing rhyolite tuffs (CR), and capped by biotite-beanng quartz latite tuffs, lavas, and late domal flows (QL). Mineral and whole-rock compositions become more evolved from top to bottom, with differentiation reflected by decreasing Ca, Ba, Mg, Fe, and rare earth elements (REE) versus increasing F, Na/K, and aluminosity from QL to AR. Mineral, whole-rock, and glass inclusion compositions are consistent with derivation of all three rock types from a single stratified magma reservoir, but age and spatial relations between the three units make this unlikely. Genesis of the QL involved biotite-dehydration melting of an aluminous source at T > 750??C and P ??? 4-6 kbar. If not co-magmatic with QL, the other units were generated primarily by muscovite-dehydration melting at T = 730-750??C and P ??? 3??5-4??5 kbar for CR, and T ??? 750??C for AR with pre-emptive residence at low pressure (1??5-3??0 kbar). Low hematite contents (XHem ??? 0??06) of ilmenite grains in AR, CR, and early grains (as inclusions in plagioclase and sanidine cores) in QL indicate reduced conditions imposed by a graphite-bearing source. Compositional variability among texturally later oxides (ilmenite with XHem = 0??06-0??50, primary magnetite), however, apparently records progressive increases in pre-eruptive f(O2) in QL. Plagioclase-melt equilibria and electron microprobe analysis difference for quartz-hosted glass inclusions suggest pre-emptive melt H2O contents ??? 5-7 wt % for the AR, ???4-6 wt % for the CR, and ???3-5 wt % for the QL.

  12. The ~ 2000 yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Muñoz-Salinas, E.; Castillo, M.; Salinas, I.

    2015-12-01

    The Chichinautzin Volcanic Field is situated at the southern limit of the Basin of Mexico and the Metropolitan area of Mexico City, the third most populated city around the world. The Chichinautzin Volcanic field holds more than 220 monogenetic volcanoes. Xitle is the youngest of these with an estimated age of 1.6 ky BP. Xitle's eruptive activity took place during the Mesoamerican Mexican Pre-classic period and is related to the destruction of Cuicuilco Archaeological Site, the oldest civilization known in Central Mexico. However, there are still several regional cones that have not been dated. Based on 14C ages, stratigraphic and geomorphologic criteria, we conclude that the Jumento volcano, located to the west of Xitle, is one of the youngest cones of the Chichinautzin Volcanic Field. The Jumento volcano has a basaltic andesite composition, and its eruptive activity was initially hydromagmatic, followed by Strombolian and finally effusive events occurred recorded through: (1) a sequence of hydromagmatic pyroclastic surges and ashfall layers emplaced at a radius of > 5 km from the crater with charcoal fragments at its base; this activity built the Jumento's cone with slopes of 32°; and (2) lava flows that breached the southern part of the cone and flowed for up to 2.5 km from the vent. The resulting 14C ages for this volcano yielded a maximum age of 2 ky BP. Morphometric analysis indicates that the state of degradation of Jumento cone is similar to the Xitle, suggesting that the Jumento could be in the state of degradation of a volcanic structure of similar age or younger adding credence to the probable radiocarbon age of 2 ky BP for the Jumento edifice.

  13. What are volcanic passive margins? A discussion based on seismic and field examples

    NASA Astrophysics Data System (ADS)

    Zalan, Pedro

    2014-05-01

    Volcanic or magma-rich passive margins are continental margins whose underlying rift basins, developed during the stretching and thinning phases that affected the continental crust before breakup, are totally or predominantly filled by volcanic and volcanic-derived rocks. The type of magma is usually fissural tholeiitic basalts, eventually bi-modal basaltic-rhyolitic. This is in strong contrast with the definition of sedimentary or magma-poor passive margins, whose rift basins are predominantly filled with sedimentary rocks. As the name states, magma-poor margins may display a certain amount of magmatism, but which is clearly secondary with respect to the dominant sedimentary nature of the syn-rift filling. These are two end-members in the classification of passive margins, and as such, transitional members represented by passive margins displaying characteristics of both extremes are recognizable. The significant difference in the nature of the syn-rift strata gives rise to strikingly different seismic facies in seismic sections that cross the entire width of passive margins, allowing a relatively easy visual distinction between the end-members, as well as of the transitional members. Typical growth volcanic strata dip seawards and fill grabens controlled by landward dipping listric faults, giving rise to the well known laterally accreted wedges of seaward-dipping reflectors (SDR). The amount of magmatism in volcanic margins is so high that it impacts a large area surrounding the continental margin, thus, also easing the recognition of this end-member through the analysis of the neighboring surface geology. Volcanic margins are characterized by Large Igneous Provinces (LIPs) that present pre-rift (lava deltas, tabular lava flows, trap-stage), syn-rift (seaward-dipping growth strata, extrusive centers, SDR-stage) and post-rift (volcanos, punctual lava flows) magmatism. Breakup of the continental crust takes place at the climax of the SDR-stage. Volcanism is

  14. Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Le Mével, Hélène; Feigl, Kurt L.; Córdova, Loreto; DeMets, Charles; Lundgren, Paul

    2015-08-01

    The Laguna del Maule (LdM) volcanic field in the southern volcanic zone of the Chilean Andes exhibits a large volume of rhyolitic material erupted during postglacial times (20-2 ka). Since 2007, LdM has experienced an unrest episode characterized by high rates of deformation. Analysis of new GPS and Interferometric Synthetic Aperture Radar (InSAR) data reveals uplift rates greater than 190 mm/yr between January 2013 and November 2014. The geodetic data are modeled as an inflating sill at depth. The results are used to calculate the temporal evolution of the vertical displacement. The best time function for modeling the InSAR data set is a double exponential model with rates increasing from 2007 through 2010 and decreasing slowly since 2010. We hypothesize that magma intruding into an existing silicic magma reservoir is driving the surface deformation. Modeling historical uplift at Yellowstone, Long Valley, and Three Sisters volcanic fields suggests a common temporal evolution of vertical displacement rates.

  15. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  16. Petrologic Development of Wrangell Volcanic Field Basement Granitoids From White Mountain, Nabesna, Alaska

    NASA Astrophysics Data System (ADS)

    Snyder, D. C.; Hart, W. K.

    2002-12-01

    The White Mountain granitoid suite represents an isolated window into Cretaceous age magma intruded into the Wrangellia terrane basement of this region. Locally the granitoids are unconformably overlain by ~ 2.5 Ma rocks of the Skookum Creek Volcanic Complex. Although the total area of exposed granitoid at White Mountain is relatively small (~ 1 km2), significant complexities exist. Post dating the emplacement of the main granitoid bodies was a second episode marked by intrusion of intermediate composition dikes. Field evidence suggests that the granitoid was at least partially crystallized at this time. The main granitoid suite consists of six surficially isolated bodies all of which are calc-alkaline and metaluminous, ranging in composition from hornblende-biotite quartz diorite to biotite granodiorite. Two of the exposures, comprising ~ 20% of the total exposed granitoid, are enclave-bearing, with the hosts representing the most evolved material at White Mountain and the enclaves amongst the least evolved. The enclaves typically are <15 cm in size and circular to oval in shape, and are intermediate in composition (~ 54 wt.% SiO2), with significant modal clinopyroxene, amphibole and interstitial oxide. Field, chemical, and petrographic evidence indicate that the enclaves do not represent xenoliths of wall rock. 40Ar/39Ar analyses were performed on one host and two nonenclave-bearing samples (1 biotite and 2 hornblende, respectively) providing cooling ages between 113.3+/-1.3 and 117.38+/-0.54 Ma. The main granitoids range from 0.5 to 6 wt.% MgO with enclaves extending this to 9 wt.%. Most of the nonenclave-bearing granitoids fall between 4 and 5 wt.% MgO. When plotted vs. MgO, other major elements define linear trends with breaks in slope between 4 and 5 wt.% MgO. Within this same interval, Rb, Ba, Zr, and Zn exhibit a wide range in concentrations. Sub-samples from one granitoid exhibit textural and geochemical evidence for mixing at the low MgO end of the

  17. Diverse Primitive Basalts from an Extensional Back-arc Setting, Fort Rock Volcanic Field, Oregon.

    NASA Astrophysics Data System (ADS)

    Popoli, F. M., Jr.; Schmidt, M. E.

    2014-12-01

    The Pleistocene to Pliocene Fort Rock Volcanic Field (FRVF), situated in a back-arc extensional setting ~65 km east of the Central Oregon High Cascades has erupted a diverse array of basaltic magmas, including some primitive compositions with an Mg#>60. Major and trace element concentrations have been determined for 80 mafic bulk lava samples by X-ray Fluorescence (XRF) and selected minerals by electron microprobe. Petrological and geochemical data suggest three primitive basalt end-members similar to basalts in the nearby Oregon Cascade arc and High Lava Plains: high-alumina olivine tholeiite or low-K tholeiites (LKT), calc-alkaline basalts (CAB), ocean island basalts (OIB). Primitive Mg# (61-68) HAOTs are aphyric to phenocryst-poor (~2-5 %) olivine and plagioclase bearing and diktytaxitic. HAOTs are distinguished by low K2O (0.22-0.44 wt%), high Al2O3 (17.19-18.67 wt%) and CaO contents. CABs are the most dominant basalt type in the area with higher large ion lithophile element (LILE) concentrations (e.g., 170-426 ppm Ba) relative to high field strength elements (HFSE; 4.6-10.4 ppm Nb) and lower Mg#s (60-64) than HAOTs. CABs have more abundant (~5-15 %) and larger phenocrysts (~2-4 mm) of olivine and plagioclase than in HAOTs. OIBs contain higher Nb contents ranging from 11.7-18.6 ppm (vs. 3.0-7.2 ppm in HAOTs). OIBs are similar to both HAOTs and CABs, ranging from aphyric to porphyritic and diktytaxitic and may include amphibole phenocrysts. Tectonic extension associated with the Basin and Range in this area likely facilitated eruptions of primitive magmas. A comparison of the most primitive magmas (HAOTs with Mg#>65) found in eastern and western FRVF indicates that the western HAOTs contain higher incompatible element concentrations relative to eastern HAOT (Ba, Sc, Sr, Zr, Nb), which may reflect lower degrees of melting of a more enriched mantle source to the west.

  18. Megacrystic Clinopyroxene Basalts Sample A Deep Crustal Underplate To The Mount Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Schrader, C. M.; Crumpler, L. S.; Wolff, J. A.

    2012-12-01

    The alkaline and compositionally diverse (basanite to high-Si rhyolite) Mount Taylor Volcanic Field (MTVF), New Mexico comprises 4 regions that cover ~75 x 40 km2: (1) Mount Taylor, a large composite volcano and a surrounding field of basaltic vents; (2) Grants Ridge, constructed of topaz rhyolitic ignimbrite and coulees; (3) Mesa Chivato, a plateau of alkali basalts and mugearitic to trachytic domes; and (4) the Rio Puero basaltic necks. Distributed throughout its history (~3.6 to 1.26 Ma; Crumpler and Goff, 2012) and area (excepting Rio Puerco Necks) is a texturally distinct family of differentiated basalts (Mg# 43.2-53.4). These basalts contain resorbed and moth-eaten megacrysts (up to 2 cm) of plagioclase, clinopyroxene, and olivine ±Ti-magnetite ±ilmenite ±rare orthopyroxene. Some megacrystic lava flows have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. For instance, gabbroic and megacrystic clinopyroxenes form linear positive arrays in TiO2 (0.2-2.3 wt%) with respect to Al2O3 (0.7-9.3 wt%). The lowest Al clinopyroxenes are found in a gabbroic inclusion and are associated with partially melted intercumulus orthopyroxene. Megacrystic and gabbroic plagioclase (An 41-80) in 4 representative thin sections were analyzed for 87Sr/86Sr by Laser Ablation ICP-MS. 87Sr/86Sr values for the suite range from 0.7036 to 0.7047. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, these megacrysts track the differentiation of an intrusive body (or related bodies) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. The intrusive body likely underplates portions of the MTVF that have generated silicic magmas (Mount Taylor, Grants Ridge, Mesa Chivato). Although disequilibrium is implied by resorbed

  19. Determinants of blood pressure in Navajo adolescents.

    PubMed

    Coulehan, J L; Topper, M D; Arena, V C; Welty, T K

    1990-01-01

    Hypertension is becoming more common among Navajo people, especially among young men. In a group of 580 Navajo adolescents, we looked for factors associated with variations in blood pressure level. Using our criteria, 11.1% of adolescent males and 1.6% of females had an elevated screening blood pressure. In males, blood pressure was a function of age only, and not significantly related either to obesity (body mass index) or measures of acculturation and personal adjustment. In females, blood pressure was not related to age, but was associated with body mass index. Systolic pressure in females was also associated with poor personal adjustment. Level of acculturation (by our index) had no bearing on blood pressure level in this population.

  20. Vent distribution in the Quaternary Payún Matrú Volcanic Field, western Argentina: Its relation to tectonics and crustal structures

    NASA Astrophysics Data System (ADS)

    Hernando, I. R.; Franzese, J. R.; Llambías, E. J.; Petrinovic, I. A.

    2014-05-01

    The Payún Matrú Volcanic Field consists of two polygenetic and mostly trachytic volcanoes (Payún Matrú with a summit caldera and Payún Liso) along with around 220 scoria cones and basaltic lava flows. This volcanic field belongs to the Payenia Basaltic Province (33° 30‧-38° S), a Quaternary Andean back-arc basaltic province of the Southern Volcanic Zone, in western Argentina. The vent density distribution of the Payún Matrú Volcanic Field is different from the other volcanic fields within Payenia. The Payún Matrú volcano and the scoria cones are distributed in an E-W oriented fringe about 15 km wide and 70 km long, with the Payún Matrú caldera in the middle of this fringe. The structural framework in which the volcanic field is located allows to infer that this vent density distribution is strongly conditioned by pre-existing crustal anisotropies. The volcanic field is located in a transfer zone related to Jurassic extensional structures of the Neuquén Basin, which were inverted also as a transfer zone during the Miocene compressive deformation that formed the Malargüe fold and thrust belt, and, in addition, it is located in the southern margin of a Neogene syn-orogenic basin. The analysis of vent center location and vent morphology is helpful to determine basaltic vent alignments within the Payún Matrú Volcanic Field and to infer the syn-eruptive stress field. This analysis shows that vent alignments are compatible with the present-day maximum horizontal stress, as measured by break-out of oil wells.

  1. Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Jolly, Gill; Lindsay, Jan; Howe, Tracy; Marzocchi, Warner

    2012-04-01

    By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.

  2. Increasing Interaction of Alkaline Magmas with Lower Crustal Gabbroic Cumulates over the Evolution of Mt. Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Crumpler, L. S.; Schrader, C.

    2010-12-01

    The Mount Taylor Volcanic Field at the southeastern edge of the Colorado Plateau, New Mexico erupted diverse alkaline magmas from ~3.8 to 1.5 Ma (Crumpler, 1980; Perry et al., 1990). The earliest eruptions include high silica topaz rhyolites of Grants Ridge (plagioclase, quartz, biotite) and Si-under saturated basanites and trachytes at Mt Taylor stratovolcano. Mt. Taylor was later constructed of stacks of thick, trachyandesitic to rhyolitic lava flows that were subsequently eroded into a ~4-km across amphitheatre opening toward the southeast. Early Mt. Taylor rhyolitic lavas exposed within the amphitheatre contain quartz, plagioclase, hornblende, and biotite (± sanidine) phenocrysts. Later cone-building trachydacite to trachyandesite lavas are crystal-rich with plagioclase and augite megacrysts (± hornblende, ± quartz) and record an overall trend of decreasing SiO2 with time. The last eruptions ~1.5 Ma from the stratovolcano (Perry et al. 1990) produced thick (>70 m), viscous lava flows that contain up to 50% zoned plagioclase phenocrysts. While SiO2 decreased among the silicic magmas, the degree of silica saturation increased among peripheral basaltic magmas from basanite to ne-normative hawaiite to hy-normative basalts. Evidence of increasing crustal contamination within the basalts includes zoned plagioclase megacrysts, augite and plagioclase cumulate texture xenoliths with accompanying xenocrysts. These textures within the basalts combined with abundant, complex plagioclase among the cone-building silicic magmas imply interaction and mixing with gabbroic cumulate mush in the lower crust beneath Mt. Taylor Volcano. Contemporaneous basanitic to trachytitc volcanism in the northern part of the volcanic field at Mesa Chivato (Crumpler, 1980) was more widely distributed, smaller volume, and produced mainly aphyric magmas. The lower crustal gabbroic cumulates either do not extend northward beneath Mesa Chivato, or they were not accessed by lower magma flux rate

  3. Extensional Volcanism of the Taos Plateau Volcanic Field, Northern Rio Grande Rift, USA: New Insights from Geologic Mapping, 40Ar/39Ar Geochronology, Geochemistry and Geophysical Modeling

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.; Grauch, V. J. S.

    2016-12-01

    The Pliocene Taos Plateau Volcanic Field (TPVF) is the largest volcanic field of the Rio Grande rift. Deposits of the TPVF are distributed across 4500 km2 in the southern part of the 11,500 km2 San Luis Valley in southern Colorado and northern New Mexico constituting a major component of the structural San Luis Basin (SLB) fill. Exposed deposit thicknesses range from a few meters near the distal termini of basaltic lava flows to 240 m in the Rio Grande gorge near Taos, NM. New geologic mapping and 100 high-resolution 40Ar/39Ar age determinations help identify a complex distribution of >50 exposed eruptive centers ranging in composition from basalt to rhyolite. Total eruptive volume, estimated from geologic map relations, geophysical modeling of basin geometry and subsurface distribution of basaltic deposits, are approximately 300 km3; comprising 66% Servilleta Basalt (tholeiite), 3% mildly alkaline trachybasalt & trachyandesite, 12% olivine andesite, 17% dacite, and <1% rhyolite. Servilleta Basalt is preserved throughout the TPVF, ranging in age from 5.3 Ma to 2.95 Ma; maximum thickness is exposed in the Rio Grande gorge in association with the largest Pliocene sub-basin in the valley, the Taos graben. Smaller volume basalt centers as young as 2.9 Ma are spatially associated with monogenetic trachybasalt and trachyandesite centers ( 4.3 Ma to 2.8 Ma) along the uplifted footwall of a western fault-bounded sub-basin, the Las Mesitas graben. The plateau surface underlain primarily by Servilleta Basalt is punctuated by large ( 15 km3 erupted volume typical) monogenetic andesitic shield volcanoes ( 5-4.4 Ma); north-south aligned and distributed along the central axis of the SLB, parallel to major intrabasin faults. Large (up to 21 km3 erupted volume) zoned dacitic lava dome complexes ( 5 Ma Guadalupe Mountain/Cerro Negro, 3.9 Ma Ute Mountain, and 3 Ma San Antonio Mountain) reach elevations of 3300 m, 770 m above the valley floor each spatially and temporally associated

  4. Plumbing of Continental Basaltic Volcanoes from the Mantle to the Surface, 2: Geochemical Variations of the Pliocene to Recent Volcanic Products of Lunar Crater Volcanic Field (nevada, Usa)

    NASA Astrophysics Data System (ADS)

    Cortes, J. A.; Smith, E. I.; Johnsen, R. L.; Rasoazanamparany, C.; Valentine, G. A.; Widom, E.; Kuentz, D. C.

    2011-12-01

    Geochemistry of basalts provides important information about the ascent of magmas from source to surface, indirectly shedding light on the hidden volcanic plumbing system. In addition, based on whole-rock elemental and isotopic geochemistry of spatially and temporally related monogenetic volcanoes, we show that geochemistry is a powerful fingerprinting tool, and an important aid in unravelling the complex stratigraphy of basalt fields. The studied units, which we have informally named OPB (older, phenocryst-bearing unit) and YMB (younger, megacryst- and phenocryst-bearing unit) are compared with the Marcath (Black Rock) volcano. These units are defined and/or described in a separate abstract. Petrographically, samples are porphyritic basalts with phenocrysts and/or xenocrysts of olivine, ortho- and clino-pyroxene, amphibole and plagioclase, sometimes up to 4-5 cm in length, set in a groundmass containing plagioclase and pyroxene microlites. On a Total Alkalies vs. Silica diagram, samples from all of the centers are trachybasalts, basanites, and basalts with SiO2 varying from 42 to 48 wt. %, the more primitive of which erupted from Marcath volcano. Subtle but clear trace element differences are observed, although all of the samples have OIB-type signatures. Samples from the OPB unit are slightly depleted in most incompatible trace elements relative to YMB and Marcath, which have typical OIB signatures, although depleted in Zr. The subtle difference between OPB and YMB/Marcath is clearly observed in La/Yb, which ranges between 11-16 for OPB and 17-21 for YMB/Marcath. Another useful discriminant is Nb/Zr, which ranges between 0.18-0.24 and 0.26-0.30 for OPB and YMB/Marcath, respectively. These differences are also reflected in the isotopic systematics, in which 87Sr/86Sr ranges from 0.7031-0.7034 in OPB and 0.7035-0.7036 in YMB/Marcath. These small but significant compositional differences help in verifying field-based stratigraphic relationships and may reflect

  5. Incidence and prevalence of Parkinson's disease among Navajo people living in the Navajo nation.

    PubMed

    Gordon, Paul H; Mehal, Jason M; Holman, Robert C; Bartholomew, Michael L; Cheek, James E; Rowland, Andrew S

    2015-04-15

    Parkinson's disease (PD) is largely unstudied among American Indians. Unique populations might harbor clues to elusive causes. We describe the incidence and prevalence of PD among Navajo people residing in the Navajo Nation, home to the largest American Indian tribe in the United States. We analyzed 2001-2011 inpatient and outpatient visit data for Navajo people obtained from the Indian Health Service, which provides health care to American Indian people living on the Navajo Reservation. Cases were defined by at least two inpatient or outpatient visits with the diagnosis of PD. Crude and age-adjusted incidence and prevalence rates were calculated overall as well as by age, sex, region of residence, and time period. Five hundred twenty-four Navajo people with median age-at-onset of 74.0 years were diagnosed with PD during the study period, yielding an average annual crude incidence rate of 22.5/100,000. Age-specific incidence was 232.0 for patients 65 years of age or older and 302.0 for 80 years of age or older. Age-adjusted incidence was 35.9 overall (238.1 for ≥65 years), was higher in men than in women (47.5 vs. 27.7; P<0.001), varied by region (P=0.03), and was similar between time periods (2002-2004 vs. 2009-2011). The age-adjusted point prevalence rate was 261.0. The rate of PD among Navajo People appears to be as high as or higher than rates reported in many other populations. Rates increased to the highest age group, consistent with population-based studies. Further investigation is warranted to examine risk factors for PD in this remote population.

  6. NASA Desert RATS 2010: Preliminary results for science operations conducted in the San Francisco Volcanic Field, Arizona

    NASA Astrophysics Data System (ADS)

    Gruener, J. E.; Lofgren, G. E.; Bluethmann, W. J.; Abercromby, A. F.

    2013-10-01

    The National Aeronautics and Space Administration (NASA) is working with international partners to develop the space architectures and mission plans necessary for human spaceflight beyond Earth orbit. The Apollo missions to the Moon demonstrated conclusively that surface mobility is a key asset that improves the efficiency of human explorers on a planetary surface. NASA's Desert Research and Technology Studies (Desert RATS), a multi-year series of tests of hardware and operations carried out annually in the high desert of Arizona, has tested a crewed pressurized rover concept referred to as the Space Exploration Vehicle (SEV). During NASA's Desert RATS 2010, four 2-person crews driving two SEVs collectively conducted 12 days of field exploration in the San Francisco Volcanic Field in northern Arizona. They collected 461 samples, with a total mass of 161.2 kg, on 70 simulated extravehicular activities (EVAs). Each SEV crew traveled over 60 km during their field explorations. This paper illustrates where the actual field sites, or 'science stations', were located, provides a brief description of the types of samples collected at each station, and highlights some of the more interesting sites. Most of the geologic samples collected at Desert RATS 2010 were well documented at the site of collection, and upon delivery to the Johnson Space Center the samples were given a preliminary examination. The samples are available for further study by interested researchers developing scientific instruments for use on the surfaces of the Moon and Mars, or for geological investigations of the San Francisco Volcanic Field.

  7. Near Constant Composition of Calc-Alkaline Parental Magmas Over Approximately 600,000 Years, Santorini Volcanic Field

    NASA Astrophysics Data System (ADS)

    Drew, S. T.; Barton, M.

    2006-05-01

    The island of Santorini is located along the Hellenic volcanic arc, which results from northeasterly subduction of the African plate beneath the Aegean micro plate at a rate > 4 cm/yr. Quaternary calc-alkaline volcanism has occurred over the past 600,000 years. During this time the Aegean has been one of the most tectonically complex and rapidly deforming regions of continental crust on Earth. Specifically, the interaction between northeasterly subduction and westerly protrusion of Anatolia along the North Anatolian Transform fault has resulted in varying degrees and directions of both compression and extension in the Aegean. Lavas from the Akrotiri, Micro Profitis Ilias, Megalo Vouno, and Skaros volcanic centers span the age of the volcanic field and range in composition from basalt to rhyodacite. This compositional spectrum was produced by fractional crystallization combined with assimilation and magma mixing in intra-crustal magma chambers located at depths of approximately 7-14 km. Plots of K2O versus SiO2 for samples from the four volcanic centers define linear arrays reflecting the important role of mixing in magma evolution. The arrays can be described by first order polynomials that intersect at tightly constrained ranges of SiO2 (50.4-51.2 wt %) and K2O (0.49-0.60 wt %). These ranges are about equal to values expected from analytical uncertainty. The concentrations of representative LILE, HFSE, and REE calculated from the intersections of regressions versus SiO2 and/or K2O also fall within a narrow range. This indicates that evolved magmas erupted from four volcanic centers on Santorini were derived from parental magmas of virtually identical composition. Some primitive basalts erupted on Santorini have compositions similar to those of the calculated parental magmas, and it is concluded that the latter have remained essentially constant in composition over 600,000 years. This implies that the magmas produced in the mantle wedge have near invariant

  8. Incorporation processes in volcanic rockslide-debris avalanches from field observations: implications on emplacement mechanisms

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; van Wyk de Vries, Benjamin

    2010-05-01

    Rockslide-debris avalanches associated with volcanic sector collapses are highly erosive phenomena. The amount of incorporated material is hard to estimate but the few data available suggest that it can easily reach 10 vol.% of the deposit. There are two major consequences of substratum incorporation on flow behaviour: 1) loss of kinetic energy by friction and 2) gain of potential energy as the volume increase. The efficiency of the erosive processes will greatly influence flow mobility. We present field observations on several debris avalanche deposits (DADs) in Ecuador (Chimborazo and Imbabura volcanoes), Chile (Taapaca volcanoes), and France (Monts Dore volcano) to illustrate how rockslide-debris avalanches incorporate substratum. The most common process of substratum incorporation is piece-by-piece erosion. This appears as basal shearing features and has been found in most of the deposits. Nevertheless, the size of these erosion features varies greatly from place to place. We found very large sections of basal contact at Chimborazo DAD. Planar contacts on epiclastic, ash fall and fluviatile deposits in the distal region generally present minor erosion features (from several centimetres to few decimetres-long). Where the pre-avalanche topography is more rough, the shearing features are much larger (up to metres-long) and show evidence of the impact of the flow. We found pebbles from the substratum reduced to powder in the Monts Dore debris avalanche deposit about 35 km from the source. In this deposit, the presence of large megablocks (> 50 m-wide) in the mixed facies induces erosion of large blocks (> 5 m-wide) of unconsolidated conglomerate. Such erosive mechanisms appear to be energy-consuming. However, piecemeal erosion is not the unique incorporation process. We also found in most of the deposits significant evidence of substratum fluidisation. The best example of substratum fluidisation was encountered at one site at Chimborazo DAD where a large amount

  9. A geostatistical method applied to the geochemical study of the Chichinautzin Volcanic Field in Mexico

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Roberge, J.; Urbina Oviedo, C. A.

    2011-12-01

    The origin of magmatism and the role of the subducted Coco's Plate in the Chichinautzin volcanic field (CVF), Mexico is still a subject of debate. It has been established that mafic magmas of alkali type (subduction) and calc-alkali type (OIB) are produced in the CVF and both groups cannot be related by simple fractional crystallization. Therefore, many geochemical studies have been done, and many models have been proposed. The main goal of the work present here is to provide a new tool for the visualization and interpretation of geochemical data using geostatistics and geospatial analysis techniques. It contains a complete geodatabase built from referred samples over the 2500 km2 area of CVF and its neighbour stratovolcanoes (Popocatepetl, Iztaccihuatl and Nevado de Toluca). From this database, map of different geochemical markers were done to visualise geochemical signature in a geographical manner, to test the statistic distribution with a cartographic technique and highlight any spatial correlations. The distribution and regionalization of the geochemical signatures can be viewed in a two-dimensional space using a specific spatial analysis tools from a Geographic Information System (GIS). The model of spatial distribution is tested with Linear Decrease (LD) and Inverse Distance Weight (IDW) interpolation technique because they best represent the geostatistical characteristics of the geodatabase. We found that ratio of Ba/Nb, Nb/Ta, Th/Nb show first order tendency, which means visible spatial variation over a large scale area. Monogenetic volcanoes in the center of the CVF have distinct values compare to those of the Popocatepetl-Iztaccihuatl polygenetic complex which are spatially well defined. Inside the Valley of Mexico, a large quantity of monogenetic cone in the eastern portion of CVF has ratios similar to the Iztaccihuatl and Popocatepetl complex. Other ratios like alkalis vs SiO2, V/Ti, La/Yb, Zr/Y show different spatial tendencies. In that case, second

  10. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    NASA Astrophysics Data System (ADS)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption

  11. A Disequilibrium Melting Spectrum: Partially Melted Crustal Xenoliths from the Wudalianchi Volcanic Field, NE China.

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; McGee, L. E.

    2015-12-01

    Disequilibrium melting has been established as a common process occurring during crustal anatexis and thus demonstrates that crustal assimilation by ascending mantle-derived magmas is likley not a closed system. Observations of extreme compositional heterogeneity within partial melts derived from crustal xenoliths have been documented in several recent examples, however, the retention or transfer of elements to and from residues and glasses, and their relative contributions to potential crustal contaminants warrants further investigation. Sampled lavas from the Huoshaoshan volcano in the Holocene Wudalianchi volcanic field of Northeast China contain crustal xenoliths which preserve a spectrum of partial melting both petrographically and geochemically, thus providing an excellent, natural example of crustal anatexis. Correlations exist between the volume of silicic glass preserved within the xenoliths and bulk rock SiO2 (70-83 wt%), Al2O3 (16-8 wt%), glass 87Sr/86Sr (0.715-0.908), abundances of elements common in feldspars and micas (Sr, Ba, Rb) and elements common in accessory minerals (Y, Zr, Nb). These correlations are likely associated with the consumption of feldspars and micas and the varying retention of accessory phases during partial melting. The xenoliths which contain the greater volumes of silicic glass and residual quartz (interpreted as being the most melted) were found within pahoehoe lava, whilst the least melted xenoliths were found within scoria of the summit cone of Huoshaoshan; thus it is interpreted that the extent of melting is linked to the immersion time in the lava. Small-scale (mm) mingling and transfer of material from the enclosing lava to the xenolith is observed, however, modelling of potential contaminant compositions is inconsistent with crustal contamination during lava petrogenesis. It is inferred that crustal contamination in sampled lavas is localized within the open magmatic system and most likely occurs at the contact zone

  12. The questa magmatic system: Petrologic, chemical and isotopic variations in cogenetic volcanic and plutonic rocks of the latir volcanic field and associated intrusives, northern New Mexico

    SciTech Connect

    Johnson, C.M.

    1986-01-01

    Field, chemical and isotopic data demonstrate that nearly all igneous rocks at Questa resulted from interactions between mantle-derived parental magmas and the crust. Strontium, neodymium and lead isotope ratios of early andesites to rhyolites (28 to 26 Ma) indicate that these magmas assimilated > 25% lower crust. Injection of basaltic magmas extensively modified the strontium and neodymium but not the lead isotope compositions of the lower crust. Eruption of comendite magmas and the peralkaline Amalia Tuff 26 Ma is correlated with inception of regional extension. Lead isotope ratios identify different sources for the metaluminous granites and the peralkaline rocks. 26 Ma metaluminous granite to granodiorite intrusions have chemical and isotopic compositions to those of the precaldera intermediate-composition rocks, and are interpreted as representing the solidified equivalents of the precaldera magmatic episode. However, both conventional and ion-microprobe isotopic data prohibit significant assimilation of crustal rocks at the level of exposure, suggesting that the plutons were emplaced a relatively crystal-rich mushes which did not have sufficient heat to assimilate country rocks. This suggest that in some cases plutonic rocks are better than volcanic rocks in representing the isotopic compositions of their source regions, because the assimilation potential of crystal-rich magmas is significantly less than that of largely liquid magmas.

  13. Building on Decades of Research on the McMurdo Volcanic Group, Antarctica: A Geologic Field Guide to Observation Hill

    NASA Astrophysics Data System (ADS)

    Pound, K. S.; Panter, K. S.

    2008-12-01

    Based on more than four decades of research on the rocks of the Erebus Volcanic Province of the McMurdo Volcanic Group, a geologic field guide to the Observation Hill walking tracks near McMurdo Station, Antarctica has been developed. The geologic field guide was an outcome of questions generated by: (1) Teachers participating in the Andrill Research Immersion for Science Educators (ARISE) program; (2) McMurdo Station support staff, as well as (3) Geoscientists with specialties outside volcanology and petrology. Whilst these individuals are acutely aware of the more than a century of references to Observation Hill in exploration literature, there was little in the way of easily-accessible information about the geologic history of Hut Point and Observation Hill, as well as other nearby volcanoes (e.g. Mt. Erebus, White and Black Islands) and larger scale geologic features (e.g. Transantarctic Mountains) that can be seen from the vantage point of Observation Hill. Questions also focused on smaller scale features of the landscape (e.g. patterned ground) and textures and minerals observed in volcanic rocks exposed on the trails. In order to encompass the wide-ranging background of the audience and facilitate access, the field guide will be available in three formats: (1) A downloadable MP3 file, which includes the general information and stop-by- stop information; (2) A double-sided paper brochure that provides a relatively simple, easier-to-digest guide to views and geologic features; (3) A Google Earth Layer that includes access to the MP3 files and the paper brochure, as well as additional geologic information. Links to the field guide can be found at http://www.andrill.org/education.

  14. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  15. Origins and exploration significance of replacement and vein-type alunite deposits in the Marysvale volcanic field, west central Utah.

    USGS Publications Warehouse

    Cunningham, C.G.; Rye, R.O.; Steven, T.A.; Mehnert, H.H.

    1984-01-01

    Alunite in the Marysvale volcanic field forms two (three are described) different types of deposits which contrast in appearance and conditions of origin: 1) Replacement deposits are generally fine-grained and formed by near-surface replacement of intermediate-composition volcanic rocks. The deposits form a bead necklace around a monzonite stock. Each deposit is zoned horizontally from alunitic cores to kaolinitic and propylitic envelopes and zoned vertically from pyrite/propylite upward through alunite/jarosite/hematite to a silica cap. Alunite does not extend below 100 m. Sulphur isotope ratios agree with derivation from underlying Mesozoic evaporites. 2) Natroalunite of 14-m.y. age crosscuts replacement-type alunite deposits. Its S-isotope ratios are comparable with those of pyrite in the volcanics. The Na may be from underlying Mesozoic halites. 3) Veins of coarse-grained alunite of 14-m.y. age filled extension fractures above a postulated stock. S-isotope ratios indicate a probable magmatic source. The contrasting properties of the Marysvale alunite deposits preclude any simple relation to ore deposits, but serve to refine interpretations based on other geological considerations. The replacement deposits are a logical near-surface result of skarn forming processes at depth around the monzonite stock. The vein- type deposits are a logical near-surface result of porphyry metallization in an underlying stock. -G.J.N.

  16. Preliminary paragenetic interpretation of the Quaternary topaz rhyolite lava domes of the Blackfoot volcanic field, southeastern Idaho

    NASA Astrophysics Data System (ADS)

    Lochridge, W. K., Jr.; McCurry, M. O.; Goldsby, R.

    2015-12-01

    The Quaternary topaz rhyolite lava domes of the bimodal, basalt-dominated Blackfoot volcanic field (BVF), SE Idaho occur in three clusters. We refer to these as the China Hat lava dome field (southernmost; ~ 57 ka), and the 1.4 to 1.5 Ma Sheep Island and White Mountain (northernmost) lava dome fields. The rhyolites and surrounding, more voluminous basalt lavas closely resemble coeval Quaternary rocks erupted to the north along the Eastern Snake River Plain segment of the Yellowstone-Snake River Plain volcanic track. However rhyolites in BVF are distinguished by having more evolved Sr- and Nd-isotopic ratios, as well as having phenocryst assemblages that includes hydrous phases (biotite and hornblende), thorite, and vapor-phase topaz. This study seeks to improve our understanding of the unique conditions of magma evolution that led to these differences. We focus on textural features of major and accessory phenocrysts as a basis for inferring paragenesis for rhyolites from the China Hat lava dome field. Preliminary work indicates that there are three sequentially formed populations of textures among magmatic phases: 1. population of anhedral quartz and plagioclase; 2. population of euhedral grains that includes quartz, sandine, plagioclase, biotite, hornblende, Fe-Ti oxides, zircon and apatite; 3. boxy cellular (skeletal?) sanidine and quartz. We speculate that the first population are resorbed antecrysts, the second formed prior to eruption as autocrysts (at or near equilibrium?), and the third formed soon before or during eruption.

  17. Field-based study of volcanic ash via visible and thermal high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Del Bello, Elisabetta

    2015-04-01

    Subaerial explosive volcanic activity ejects a mixture of gas-ash-pyroclasts in the atmosphere. Parameterizing the physical processes responsible for ash injection and plume dynamics is crucial to constrain numerical models and forecasts of potentially hazardous ash dispersal events. In this study we present preliminary results from a new method based on visible and thermal high-speed video processing from Strombolian and Vulcanian explosions. High-speed videos were recorded by a Optronis CR600x2 camera (1280x1024 pixels definition, 500 Hz frame rate) for the visible and by a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) for the thermal. Qualitatively, different dynamics of ash injection and dispersal can be identified. High speed cameras allow us to observe all the different phases during volcanic plume dispersion with a very good time resolution. Multiple features were already observed about volcanic plumes, but this tool give a better accuracy to our observations and allow us to better define previously observed features and to be able to identify new ones. Quantitatively before using our videos a pre-processing is needed which aim is to isolate the plume from the background by using different types of filters without altering the data, to allow us to use automated procedures to track volcanic plumes. In this study we extract data from these videos (plume height, velocity, temperature, mass, volume,...) using different software tools. Doing this allow us to be able to define and constrain main parameters and processes in function of the observed volcano and explosion type, but also to find correlations between parameters and establish empirical relations. We define range of values for each parameter and their respective impact on plume dynamics and stability, to be able to obtain characteristic fields of values for each case and link it to explosions type and evolution.

  18. Paleomagnetic Study of a Miocene Deformation in a Region Close to the Camargo Volcanic Field, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Wogau-Chong, K.; Bohnel, H.; Aranda Gomez, J.

    2009-05-01

    The Sierra the Aguachile is a Miocene volcanic sequence located in the SE of Chihuahua State NW of the Camargo volcanic field and belongs to the Agua Mayo Group, which unconformably overlays Mesozoic calcareous units. The Sierra de Aguachile sequence defines a structure that may be interpreted as a plunging fold, which could be the result of a reactivation of the San Marcos Fault. This major fault is well known more to the east but may extend into the study area where it would be covered by the younger volcanic sequences; its main activity has been reported to be during the the Neocomian with reactivation phases in the Paleogene and Miocene. To test if the observed structure is the result of a tectonic deformation that happened after the emplacement of the volcanic sequence, a paleomagnetic study was carried out. A total of 14 sites were sampled from different parts of the structure, all in the capping ignimbrite layers. Site mean directions were determined using AF demagnetization. The fold test was applied to analyze if the remanence was acquired in situ or before the proposed folding. Precision parameters k before and after application of the tectonic corrections are 25.38 and 31.43, respectively. This indicates that the Sierra de Aguachile indeed was folded after emplacement of the ignimbrites, which restricts the age of the corresponding tectonic event to be younger than 31.3 +/- 0.7 Ma. Due to the gentle folding though, the difference in precision parameters is not significant at the 95% probability level.

  19. Alkaline Basalts of The Quaternary Buffalo Valley Volcanic Field, NW Fish Creek Mountains, North-central Nevada, Great Basin

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.

    2008-12-01

    The Buffalo Valley volcanic field, 5 km southwest of Battle Mountain, consists of approximately 11 cinder cones and associated flows. Youthful volcanoes are rare in the region, and thus this field offers the opportunity to investigate mantle sources currently beneath the central Great Basin. Most of the eruptive centers are distributed along the northwestern margin of the Fish Creek Mountains, a mid-Tertiary caldera complex, along a 13-km-long northeasterly trend that is perpendicular to the regional stress field (or GPS velocity field), suggesting fault control or eruption from a now-buried fissure. The cones are geomorphologically youthful, with well-defined, commonly breached craters. At least one cone, situated slightly east of the main trend, consists of only a thin mantle of scoria and bombs overlying grey Paleozoic limestone. Previous K-Ar and Ar-Ar dating indicate that the cones are between 1.29 and 0.95 Ma in age. Two other nearby Quaternary volcanic centers lie northeast of the Fish Creek Mountains (K-Ar date of 3.3 Ma) and in the center of the Fish Creek caldera (age unknown). Rare Tertiary basalts and more common Tertiary andesites lie around the margin of the caldera. Lavas from the Buffalo Valley cones have vesicular flow tops and more massive interiors. All Quaternary centers are similar petrographically, including 1-2% olivine phenocrysts and megacrysts up to 1 cm in size, and characteristic plagioclase megacrysts that are rarely up to 4 cm long, commonly in a glassy matrix. Two cone samples are alkalic basalt and tephrite with Mg numbers of 0.55, high TiO2 (2.4%), K2O (2.0%), light REE, Nb (60 ppm), but low Cr and Ni (80 ppm), Pb (2 ppm), Ba (450 ppm) and 87Sr/86Sr (0.70375) compared to Late Pliocene/Quaternary volcanic rocks from the western Great Basin near Reno/Carson City/Fallon. The Buffalo Valley cones are similar chemically to lavas from the Pliocene-Quaternary Lunar Craters volcanic field in central Nevada, and are melts of mantle that is

  20. Style of Plate Spreading Derived from the 2008-2014 Velocity Field Across the Northern Volcanic Zone of Iceland

    NASA Astrophysics Data System (ADS)

    Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.

    2015-12-01

    The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most

  1. Ground Penetrating Radar and Magnetic Investigations of Phreatomagmatic Tephra Rings in the San Francisco Volcanic Field, Northern Arizona

    NASA Astrophysics Data System (ADS)

    Marshall, A. M.; Kruse, S.; Macorps, E.; Charbonnier, S. J.

    2015-12-01

    Ground Penetrating Radar (GPR) can be a valuable geophysical tool for studying near-surface volcanic stratigraphy in areas where outcrops do not exist. Likewise, high resolution ground-based magnetic surveys have the potential to reveal significant features not exposed at the surface, especially in the case of small-volume basaltic volcanoes. Here we present the results of geophysical studies to investigate the eruptive history of deposits surrounding phreatomagmatic eruption sites, and why some may become magnetized. Magnetic surveys undertaken at basaltic phreatomagmatic sites suggest that some tuff rings carry no discernable magnetic signature, while others reveal slight to significant magnetic anomalies. Material deposited in the tephra ring could become magnetized through Thermal Remanent Magnetization - emplacement of magnetically susceptible material above 560° C. In this case tephra layers would need to be deposited in sufficient thickness to retain high temperatures long enough for the magnetic material to orient itself to the magnetic field. To test this hypothesis we examine GPR data collected at Rattlesnake Maar in the San Francisco Volcanic Field, Arizona, and we will collect GPR data at two other tephra rings in the same volcanic field. The first site, Sugarloaf Mountain, is an active quarry with excellent exposures of tephra ring stratigraphy. Although this site is rhyolitic in composition and not suitable for magnetic study, it is an excellent site to determine how well GPR reflectors correlate with actual stratigraphy. The second site, an un-named phreatomagmatic ring nearby, will then be studied by GPR and walking magnetic survey. GPR reflectors will be compared to depositional patterns defined in previous studies and correlated with magnetic survey results to determine if a correlation can be made - little to no magnetization where only thin units are recorded by GPR, and positive magnetization where thick units are recorded.

  2. Navajo Community College--The President's Report, 1979-80.

    ERIC Educational Resources Information Center

    Jackson, Dean C.

    An overview of the Navajo Community College (NCC) is presented with a message from the president and facts pertaining to both the Tsaile and Shiprock campuses. NCC President Jackson states that the uniqueness of NCC lies primarily in the instructional area which promotes the use of educational concepts contained in the Navajo culture to reinforce…

  3. Oral History Shares the Wealth of a Navajo Community.

    ERIC Educational Resources Information Center

    Begay, Sara L.; Jimmie, Mary; Lockard, Louise

    This paper describes a collaborative project in which K-3 Navajo students used oral history interviews, archival photos, and primary documents to explore the history of their communities. Participating students attended schools that were implementing the Dine (Navajo) Language and Culture teaching perspective, which is based on the premises that…

  4. Western bioethics on the Navajo reservation. Benefit or harm?

    PubMed

    Carrese, J A; Rhodes, L A

    1995-09-13

    To understand the Navajo perspective regarding the discussion of negative information and to consider the limitations of dominant Western bioethical perspectives. Focused ethnography. Navajo Indian reservation in northeast Arizona. Thirty-four Navajo informants, including patients, biomedical health care providers, and traditional healers. Informants explained that patients and providers should think and speak in a positive way and avoid thinking or speaking in a negative way; 86% of those questioned considered advance care planning a dangerous violation of traditional Navajo values. These findings are consistent with hózhó, the most important concept in traditional Navajo culture, which combines the concepts of beauty, goodness, order, harmony, and everything that is positive or ideal. Discussing negative information conflicts with the Navajo concept hózhó and was viewed as potentially harmful by these Navajo informants. Policies complying with the Patient Self-determination Act, which are intended to expose all hospitalized Navajo patients to advance care planning, are ethically troublesome and warrant reevaluation.

  5. Navajo Youth and Anglo Racism: Cultural Integrity and Resistance.

    ERIC Educational Resources Information Center

    Deyhle, Donna

    1995-01-01

    Results of a 10-year ethnographic study of Navajo youth show that racial and cultural differences intertwine with power relations and that Navajos' success or failure in school is part of the process of racial conflict. Subject to discrimination in workplaces and curricula, they are more academically successful when more secure in their…

  6. The Navajo Way: Arizona's Tale of Two CTE Programs

    ERIC Educational Resources Information Center

    Helfman, Alan

    2001-01-01

    Arizona has begun an organized effort at career planning designed to create graduates who know who they are, know where they are going and know how they are going to get there. The Navajos are well on their way to achieving these kinds of student outcomes. This article focuses on two Navajo schools: Ganado High School, a comprehensive high school…

  7. Socializing English-Speaking Navajo Children to Storytelling

    ERIC Educational Resources Information Center

    Vining, Christine B.

    2015-01-01

    Understanding how young children are socialized to the process and products of storytelling as part of everyday family life is important for language and literacy instruction. A language socialization framework was used to understand storytelling practices on the Navajo Nation. This study examined how three young English-speaking Navajo children,…

  8. Socializing English-Speaking Navajo Children to Storytelling

    ERIC Educational Resources Information Center

    Vining, Christine B.

    2015-01-01

    Understanding how young children are socialized to the process and products of storytelling as part of everyday family life is important for language and literacy instruction. A language socialization framework was used to understand storytelling practices on the Navajo Nation. This study examined how three young English-speaking Navajo children,…

  9. Mask of Black God: The Pleiades in Navajo Cosmology

    ERIC Educational Resources Information Center

    Schulz, Teresa M.

    2005-01-01

    One Navajo legend attributes the creation of the primary stars and constellations to Black God. Today, a famous star cluster--the Pleiades--often appears on the traditional mask worn by chanters impersonating Black God during special ceremonies. In this case study, students learn about the Pleiades in Navajo cosmology while honing their…

  10. Navajo Area Health and Physical Education Curriculum Guidelines.

    ERIC Educational Resources Information Center

    Tomah, Kent; And Others

    Based on health education needs of Navajo children as established by the Navajo Area health and physical education committees, this curriculum guideline for health and physical education is delineated into three phases reflecting emphasis of instructional techniques (introductory, exploration/extended learning, widened learning) and three levels…

  11. Mask of Black God: The Pleiades in Navajo Cosmology

    ERIC Educational Resources Information Center

    Schulz, Teresa M.

    2005-01-01

    One Navajo legend attributes the creation of the primary stars and constellations to Black God. Today, a famous star cluster--the Pleiades--often appears on the traditional mask worn by chanters impersonating Black God during special ceremonies. In this case study, students learn about the Pleiades in Navajo cosmology while honing their…

  12. Right after Sundown: Teaching Stories of the Navajos.

    ERIC Educational Resources Information Center

    Mabery, Marilyne Virginia

    Understanding of the traditional Navajo world view and philosophy is ultimately centered on their origin story of emergence into the present world. All stories stem from this basic one. This collection of 12 Navajo stories includes origin stories, coyote stories, and a fairly recent one that describes a recognizable place. In the Anglo sense,…

  13. Navajo Community College--The President's Report, 1979-80.

    ERIC Educational Resources Information Center

    Jackson, Dean C.

    An overview of the Navajo Community College (NCC) is presented with a message from the president and facts pertaining to both the Tsaile and Shiprock campuses. NCC President Jackson states that the uniqueness of NCC lies primarily in the instructional area which promotes the use of educational concepts contained in the Navajo culture to reinforce…

  14. "Dine Bikeya": Teaching about Navajo Citizenship and Sovereignty

    ERIC Educational Resources Information Center

    Washington, Elizabeth Yeager; van Hover, Stephanie

    2011-01-01

    The Navajo Nation, comprising the largest land area allocated mainly to a Native American jurisdiction in the United States, offers a unique opportunity to enhance students' understandings of citizenship rights and sovereignty. For example, what does sovereignty mean on the reservation? What is the relationship between the Navajo Nation and the…

  15. The Navajo Agricultural Projects Industry: Subsistence Farming to Corporate Agribusiness.

    ERIC Educational Resources Information Center

    Barry, Tom

    1979-01-01

    Originally designed to create small farms for individual Navajos, the irrigation project has grown into a single 110,000-acre corporate agribusiness, the land's management has fallen out of the grasp of individual Navajos, and the idea of subsistence farming has been plowed under for the planting of major money-making crops. (NQ)

  16. Nursing Care and Beliefs of Expectant Navajo Women (Part 1).

    ERIC Educational Resources Information Center

    Milligan, B. Carol

    1984-01-01

    Provides cultural background relevant for the delivery of health services to expectant Navajo women and their offspring including morbidity/mortality rates and trends and prevalent health problems. Reports results of a questionnaire administered to 479 expectant Navajo women and used to identify cultural practices distinguishing among traditional,…

  17. "Dine Bikeya": Teaching about Navajo Citizenship and Sovereignty

    ERIC Educational Resources Information Center

    Washington, Elizabeth Yeager; van Hover, Stephanie

    2011-01-01

    The Navajo Nation, comprising the largest land area allocated mainly to a Native American jurisdiction in the United States, offers a unique opportunity to enhance students' understandings of citizenship rights and sovereignty. For example, what does sovereignty mean on the reservation? What is the relationship between the Navajo Nation and the…

  18. Bilingual Teaching in Content Areas: Navajo/English.

    ERIC Educational Resources Information Center

    Carrillo, F. M.; Carrillo, Ida S.

    A Navajo/English bilingual program uses the student's knowledge of his first language, offers the opportunity to speak in two languages, and helps the student move from the home experience to the school experience. It gives instruction in content materials to all students either in English or in Navajo and direct language instruction in both…

  19. Effects of Boarding School on Navajo Maternal Attitudes and Behavior.

    ERIC Educational Resources Information Center

    Metcalf, Ann Rosenthal

    An investigation of long term effects of boarding school education was conducted among Navajo women who had attended boarding school on the reservation during the 1950's. Subjects were 23 Navajo mothers and, for 17 mothers, their preschool children; all lived in the San Francisco Bay Area. A series of open-ended interviews obtained information on…

  20. Solar membrane distillation: desalination for the Navajo Nation.

    PubMed

    Karanikola, Vasiliki; Corral, Andrea F; Mette, Patrick; Jiang, Hua; Arnoldand, Robert G; Ela, Wendell P

    2014-01-01

    Provision of clean water is among the most serious, long-term challenges in the world. To an ever increasing degree, sustainable water supply depends on the utilization of water of impaired initial quality. This is particularly true in developing nations and in water-stressed areas such as the American Southwest. One clear example is the Navajo Nation. The reservation covers 27,000 square miles, mainly in northeastern Arizona. Low population density coupled with water scarcity and impairment makes provision of clean water particularly challenging. The Navajos rely primarily on ground water, which is often present in deep aquifers or of brackish quality. Commonly, reverse osmosis (RO) is chosen to desalinate brackish ground water, since RO costs are competitive with those of thermal desalination, even for seawater applications. However, both conventional thermal distillation and RO are energy intensive, complex processes that discourage decentralized or rural implementation. In addition, both technologies demand technical experience for operation and maintenance, and are susceptible to scaling and fouling unless extensive feed pretreatment is employed. Membrane distillation (MD), driven by vapor pressure gradients, can potentially overcome many of these drawbacks. MD can operate using low-grade, sub-boiling sources of heat and does not require extensive operational experience. This presentation discusses a project on the Navajo Nation, Arizona (Native American tribal lands) that is designed to investigate and deploy an autonomous (off-grid) system to pump and treat brackish groundwater using solar energy. Βench-scale, hollow fiber MD experiment results showed permeate water fluxes from 21 L/m2·d can be achieved with transmembrane temperature differences between 40 and 80˚C. Tests run with various feed salt concentrations indicate that the permeate flux decreases only about 25% as the concentration increases from 0 to 14% (w/w), which is four times seawater salt