Science.gov

Sample records for navigational satellites

  1. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  2. Introductory Course on Satellite Navigation

    ERIC Educational Resources Information Center

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  3. Automated Satellite Image Navigation

    DTIC Science & Technology

    1992-12-01

    3b TIME . Master’s Thesis I . December 1992 16 SUPPIEMENoARY NOATIO; The views expressed in this thesis are those of the author and do not reflect...demand greater navigational accuracy. At the same time there is an increasing operational requirement to attain this greater accuracy via a method that is...resolution of Advanced Very High Resolution Radiometer (AVHRR) images (1.1 km) can be achieved. This "optimal" navigation has been achieved by the

  4. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  5. Satellite camera image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Graul, Donald W. (Inventor); Savides, John (Inventor); Hanson, Charles W. (Inventor)

    1987-01-01

    Pixels within a satellite camera (1, 2) image are precisely located in terms of latitude and longitude on a celestial body, such as the earth, being imaged. A computer (60) on the earth generates models (40, 50) of the satellite's orbit and attitude, respectively. The orbit model (40) is generated from measurements of stars and landmarks taken by the camera (1, 2), and by range data. The orbit model (40) is an expression of the satellite's latitude and longitude at the subsatellite point, and of the altitude of the satellite, as a function of time, using as coefficients (K) the six Keplerian elements at epoch. The attitude model (50) is based upon star measurements taken by each camera (1, 2). The attitude model (50) is a set of expressions for the deviations in a set of mutually orthogonal reference optical axes (x, y, z) as a function of time, for each camera (1, 2). Measured data is fit into the models (40, 50) using a walking least squares fit algorithm. A transformation computer (66 ) transforms pixel coordinates as telemetered by the camera (1, 2) into earth latitude and longitude coordinates, using the orbit and attitude models (40, 50).

  6. Satellite Navigation Backup Study

    DTIC Science & Technology

    2007-09-19

    Stakeholder 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Ov era ll All AC All G A Go v/S tnd s To tal U S US AC US G A US G ov /St nd s To tal E uro pe Eu rop...Engineering and Technology of Ohio University, Jacob L. Campbell contains a good survey of TRN technology history, applications, and component trade...71 Honeywell Precision Terrain Aided Navigation (PTAN) summary found in Jacob L. Campbell citation. NGATS Institute

  7. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  8. The satellite configuration of satellite-TV navigation system

    NASA Astrophysics Data System (ADS)

    Gao, Yu-Ping

    2001-02-01

    The positioning accuracy and availability of navigation system are affected directly by the quality of satellite configuration. The possible satellite configurations for satellite-TV navigation system are discussed and estimated in this paper. The results show that a well setted configuration or a resonable integration of satellite-TV navigation system and Chinese Loran-C will improve the positioning accuracy and availability of the system.

  9. Uses of navigation satellites by oil explorers

    SciTech Connect

    Morgan, J.G.

    1982-03-01

    The Navy Navigation Satellite System (Transit) was released for civil and commercial use in the late 1960's. Oil explorers use Transit in most offshore exploration operation. Sometimes the Transit position fires are used to confirm other position data, or often it is integrated with other navigation equipment to form a system which maximizes the benefits of all the individual sensors. Differential navigation and positioning is currently in use with Transit and in use with the radionavigation systems Loran C and Omega. Navstar GPS if made available to the oil exploration industry with its full capability, would provide a solution to many of the positioning problems. If there is a cost effective and accurate way to use US government funded navigation satellites within the constraints imposed on the civil community, the oil exploration industry and its supporting manufacturing and service companies will find it. (DP)

  10. A computer system for geosynchronous satellite navigation

    NASA Technical Reports Server (NTRS)

    Koch, D. W.

    1980-01-01

    A computer system specifically designed to estimate and predict Geostationary Operational Environmental Satellite (GOES-4) navigation parameters using Earth imagery is described. The estimates are needed for spacecraft maneuvers while prediction provide the capability for near real-time image registration. System software is composed of four functional subsystems: (1) data base management; (2) image processing; (3) navigation; and (4) output. Hardware consists of a host minicomputer, a cathode ray tube terminal, a graphics/video display unit, and associated input/output peripherals. System validity is established through the processing of actual imagery obtained by sensors on board the Synchronous Meteorological Satellite (SMS-2). Results indicate the system is capable of operationally providing both accurate GOES-4 navigation estimates and images with a potential registration accuracy of several picture elements (pixels).

  11. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  12. Introduction to Global Navigation Satellite System

    NASA Technical Reports Server (NTRS)

    Moreau, Michael

    2005-01-01

    This viewgraph presentation reviews the fundamentals of satellite navigation, and specifically how GPS works. It presents an overview and status of Global Positioning System, for both the current GPS, and plans to modernize it in the future. There is also a overview and status of other Global Navigation Satellite System (GNSS), specifically GLONASS, Galileo, and QZSS. There is also a review of Satellite based time transfer techniques. The topic is of interest to the Time and Frequency Community, because the Global Positioning system has become the primary system for distributing Time and frequency globally, and because it allows users to synchronize clocks and calibrate and control oscillators in any location that has a GPS antenna.

  13. Satellites bring new precision to navigation

    NASA Astrophysics Data System (ADS)

    Logsdon, T.

    1982-08-01

    The Navstar satellite navigation system is discussed. With this system, users anywhere on earth can, within seconds, pinpoint their location to an average accuracy of 16 meters, or roughly 20 times better than the next best global navigation system. Although all current users are military, large corporations are attemping to crack the civilian market. Navstar employs a passive triangulation system whereby the receiver uses an autocorrelation function to compare a string of bits received from four satellites with an identical, internally generated string. Corrections are made for propagation delay and general relativistic effects. The system is now being used to study the accuracy of SLBM's, while potential uses include improved timing in military missions, accurate positioning of oil exploration vessels and icebergs, and pinpointing the location of police cars and ambulances. Potential problems include Congressional budget-cutting and masking of the signal during military emergencies.

  14. Dual RF Astrodynamic GPS Orbital Navigator Satellite

    NASA Technical Reports Server (NTRS)

    Kanipe, David B.; Provence, Robert Steve; Straube, Timothy M.; Reed, Helen; Bishop, Robert; Lightsey, Glenn

    2009-01-01

    Dual RF Astrodynamic GPS Orbital Navigator Satellite (DRAGONSat) will demonstrate autonomous rendezvous and docking (ARD) in low Earth orbit (LEO) and gather flight data with a global positioning system (GPS) receiver strictly designed for space applications. ARD is the capability of two independent spacecraft to rendezvous in orbit and dock without crew intervention. DRAGONSat consists of two picosatellites (one built by the University of Texas and one built by Texas A and M University) and the Space Shuttle Payload Launcher (SSPL); this project will ultimately demonstrate ARD in LEO.

  15. Star sightings by satellite for image navigation

    NASA Technical Reports Server (NTRS)

    Kamel, Ahmed A. (Inventor); Ekman, Donald E. (Inventor); Savides, John (Inventor); Zwirn, Gerald J. (Inventor)

    1988-01-01

    Stars are sensed by one or more instruments (1, 2) on board a three-axis stabilized satellite, for purposes of assisting in image navigation. A star acquistion computer (64), which may be located on the earth, commands the instrument mirror (33, 32) to slew just outside the limb of the earth or other celestial body around which the satellite is orbiting, to look for stars that have been cataloged in a star map stored within the computer (64). The instrument (1, 2) is commanded to dwell for a period of time equal to a star search window time, plus the maximum time the instrument (1, 2) takes to complete a current scan, plus the maximum time it takes for the mirror (33, 32) to slew to the star. When the satellite is first placed in orbit, and following first stationkeeping and eclipse, a special operation is performed in which the star-seeking instrument (1, 2) FOV is broadened. The elevation dimension can be broadened by performing repetitive star seeks; the azimuth dimension can be broadened by lengthening the commanded dwell times.

  16. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  17. Econosats - Toward an affordable global navigation satellite system?

    NASA Astrophysics Data System (ADS)

    McDonald, Keith

    1993-09-01

    The needs and capabilities of small, low-cost satellites, or Econosats, are assessed in the context of a future civil global navigation satellite system (GNSS). The differences and requirements of the military Global Positioning system and GNSS are compared. Results indicate that a civil navigation satellite system using small, low-cost Econosats are technically feasible and economically attractive compared to the robust, defense-oriented GPS, because Econosats are less complex and functionally limited to satisfying civil requirements.

  18. Timation 3 satellite. [artificial satellite for navigation, space radiation, and time transfer applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, C. A.

    1972-01-01

    The characteristics of the Timation 3 satellite are discussed. A diagram of the basic structure is provide to show the solar panels, navigation and telemetry antennas, gravity gradient booms, and solar cell experiments. The specific application of the satellite for time management or time transfer for navigation purposes is reported. Various measurements and experiments conducted by the satellite are described.

  19. Determination of the number of navigation satellites within satellite acquisition range

    SciTech Connect

    Kurenkov, Vladimir I. E-mail: ask@ssau.ru; Kucherov, Alexander S. E-mail: ask@ssau.ru; Gordeev, Alexey I.; Shilov, Lev B.

    2014-12-10

    The problem of determination of the number of navigation satellites within acquisition range with regard to antenna systems configuration and stochastic land remote sensing satellite maneuvers is the subject considered in the paper. Distribution function and density function of the number of navigation satellites within acquisition range are obtained.

  20. Development of standards for aeronautical satellite navigation system [rapid communication

    NASA Astrophysics Data System (ADS)

    Iatsouk, Victor

    2004-06-01

    One of the work objectives of the International Civil Aviation Organisation (ICAO) is the development of the standards and procedures necessary to support transition to the CNS/ATM systems, which include Global Navigation Satellite System (GNSS). The Global Navigation Satellite System Panel (GNSSP) was established by the ICAO Air Navigation Commission in 1993 with the basic objective to develop ICAO standards and recommended practices (SARPs) and guidance material as required to support aeronautical GNSS applications world-wide. The first package of GNSS SARPs was adopted and published by ICAO in 2001, and further work is under way to introduce new satellite constellations and system elements in an evolutionary fashion.

  1. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  2. Architecture analysis of the simplified libration point satellite navigation system

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xu, Bo

    2016-10-01

    The libration point satellite navigation system is a novel navigation architecture that consists of satellites located in periodic orbits around the Earth-Moon libration points. Superiorities of the proposed system lie in its autonomy and extended navigation capability, which have been proved in our previous works. Based on the candidate architectures obtained before, a detailed analysis of the simplified libration point satellite navigation system, i.e. the Earth-Moon L1,2 two-satellite constellation, is conducted in this work. Firstly, relation between orbits amplitude is derived for the candidate two-satellite constellations to ensure continuous crosslink measurements between libration point satellites. Then, with the use of a reference lunar exploration mission scenario, navigation performances of different constellation configurations are evaluated by Monte-Carlo simulations. The simulation results indicate that the amplitude and initial phase combinations of libration point orbits have direct effect on the performance of the two-satellite constellations. By using a cooperative evolutionary algorithm for configuration parameter optimization, some optimal constellations are finally obtained for the simplified navigation architecture. The results obtained in this paper may be a reference for future system design.

  3. Recent developments with the Soviet Union's VHF satellite navigation system

    NASA Astrophysics Data System (ADS)

    Daly, P.; Perry, G. E.

    1986-03-01

    A description of the Soviet Union's VHF satellite navigation system is presented. The system utilizes constellations of satellites and position-fixing is achieved by low-orbiting satellites in near-polar orbit. The military satellites have orbital spacing intervals of 3 deg with satellite identification numbers 1-9 and civilian satellites have a 45 deg with identification numbers from 11-14. The satellite position data transmitted by the navigation system are examined. Each satellite transmits two coherent frequencies of 150 and 400 MHz and three tone modulations (3, 5, and 7 kHz). The data consist of time indications and orbital information encoded in final 32 bits in each second; a single frame of data lasts 1 min and two sets of four blocks of seven words provide satellite alerts. The launch schedule for the navigation system and the use of identification numbers are discussed. On-board problems with the Cosmos 1333 are analyzed. The COSPAS/SARSAT system is employed to locate ships and aircraft in distress. The code words utilized in the navigation system are studied.

  4. Fuzzy Logic Controller for Small Satellites Navigation

    DTIC Science & Technology

    2005-07-13

    tracking of the ground station) 3 PLATFORM DEFINITION The satellite structure is simply a parallelepiped and the platform is customised according to...the mission type in order to accomplish the different mission objectives (see Figure 1). Satellite mass and volume were chosen without reference to a...Solar Panels (two) 2*0.4 m2 Total satellite mass 120 kg Satellite Dimensions 0.6*0.6*0.8 m Propulsion System N/A Orbital State GPS receiver Attitude

  5. Autonomous satellite navigation by stellar refraction

    NASA Technical Reports Server (NTRS)

    Gounley, R.; White, R.; Gai, E.

    1983-01-01

    This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.

  6. Radio occultation based on BeiDou satellite navigation

    NASA Astrophysics Data System (ADS)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min; Gong, Wenbin; Zhang, Yonghe

    2014-11-01

    With the development of GNSS systems, it has become a tendency that radio occultation is used to sense the Earth's atmosphere. By this means, the moisture, temperature, pressure, and total electron content can be derived. Based on the sensing results, more complicated models for atmosphere might come into being. Meteorology well benefits from this technology. As scheduled, the BD satellite navigation system will have a worldwide coverage by the end of 2020. Radio occultation studies in China have been highlighted in the recent decade. More and more feasibilities reports have been published in either domestic or international journals. Herein, some scenarios are proposed to assess the coverage of radio occultation based on two different phases of BD satellite navigation system. Phase one for BD is composed of GEO,IGSO and several MEO satellites. Phase two for BD consists mostly of 24 MEO satellites, some GEO and IGSO satellites. The characteristics of radio occultation based on these two phases are presented respectively.

  7. Feasibility of satellite interferometry for surveillance, navigation, and traffic control

    NASA Technical Reports Server (NTRS)

    Gopalapillai, S.; Ruck, G. T.; Mourad, A. G.

    1976-01-01

    The feasibility of using a satellite borne interferometry system for surveillance, navigation, and traffic control applications was investigated. The evaluation was comprised of: (1) a two part systems analysis (software and hardware); (2) a survey of competitive navigation systems (both experimental and planned); (3) a comparison of their characteristics and capabilities with those of an interferometry system; and (4) a limited survey of potential users to determine the variety of possible applications for the interferometry system and the requirements which it would have to meet. Five candidate or "strawman" interferometry systems for various applications with various capabilities were configured (on a preliminary basis) and were evaluated. It is concluded that interferometry in conjunction with a geostationary satellite has an inherent ability to provide both a means for navigation/position location and communication. It offers a very high potential for meeting a large number of user applications and requirements for navigation and related functions.

  8. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  9. Navigation study for low-altitude Earth satellites

    NASA Technical Reports Server (NTRS)

    Pastor, P. R.; Fang, B. T.; Yee, C. P.

    1985-01-01

    This document describes several navigation studies for low-altitude Earth satellites. The use of Global Positioning System Navigation Package data for LANDSAT-5 orbit determination is evaluated. In addition, a navigation analysis for the proposed Tracking and Data Aquisition System is presented. This analysis, based on simulations employing one-way Doppler data, is used to determine the agreement between the Research and Development Goddard Trajectory Determination System and the Sequential Error Analysis Program results. Properties of several geopotential error models are studied and an exploratory study of orbit smoother process noise is presented.

  10. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  11. Satellite communication and navigation for mobile users

    NASA Technical Reports Server (NTRS)

    Bernstein, S. L.

    1972-01-01

    Efforts made to utilize space technology for solving communication and navigation problems faced by mobile users in earth orientated situations are outlined. Applications include transoceanic airline communications, reliable long range ship-shore communications, emergency communications in regions with rough terrain, and military operations.

  12. Modern Inertial and Satellite Navigation Systems

    DTIC Science & Technology

    1994-05-02

    Error .......................................................... 96 Figure 37 GPS Interferometry ..................................................................................... 96...Figure 38. To Satellite displacement vector, or "baseline" Figure 38 GPS Interferometry Such measurements are subject to the phase ambiguity problem

  13. Influence of satellite geometry, range, clock, and altimeter errors on two-satellite GPS navigation

    NASA Astrophysics Data System (ADS)

    Bridges, Philip D.

    Flight tests were conducted at Yuma Proving Grounds, Yuma, AZ, to determine the performance of a navigation system capable of using only two GPS satellites. The effect of satellite geometry, range error, and altimeter error on the horizontal position solution were analyzed for time and altitude aided GPS navigation (two satellites + altimeter + clock). The east and north position errors were expressed as a function of satellite range error, altimeter error, and east and north Dilution of Precision. The equations for the Dilution of Precision were derived as a function of satellite azimuth and elevation angles for the two satellite case. The expressions for the position error were then used to analyze the flight test data. The results showed the correlation between satellite geometry and position error, the increase in range error due to clock drift, and the impact of range and altimeter error on the east and north position error.

  14. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  15. Visibility of satellite navigation systems in urban area

    NASA Astrophysics Data System (ADS)

    Januszewski, Jacek

    In open area the accuracy of the observer's position obtained from the satellite navigation systems depends on a number of satellites (ls) visible above masking elevation angle (Hmin) and the geometry of systems - GDOP coefficient. The detailed distributions of satellite azimuths Az (8 intervals, each 45° wide) for different angles Hmin and the distribution of satellite elevations angles for different observer's latitudes φ (9 zones, each 10° wide) calculated for GPS system and the future system Galileo are presented in this paper. It was considered 27 satellites fully operational for both systems. In restricted area (coastal navigation, urban area) the number of satellites visible by the observer depends on the parameters mentioned for open area and the dimensions and position of the obstacles additionally. The calculations were made for the observer situated in the middle of the street for different widths of the street and the heights of obstacles. Street parameters were: the angle between the North and street axis and latitude φ. The number of satellites visible above angle (Hmin) is for Galileo system greater than for GPS system.

  16. Global Navigation Satellite System Software Defined Radio

    DTIC Science & Technology

    2010-03-01

    8 CDMA Code Division Multiple Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 FDMA Frequency...transmits at multiple frequencies in its bands because it was originally designed using a Frequency Division Multiple Access ( FDMA ) technique. L5, E5A E5B L2...known by the receiver, which allows it to acquire and track the specific 8 satellites. Second, GLONASS currently uses the FDMA technique. This type of

  17. Towards navigation based on 120 satellites: Analyzing the new signals

    NASA Astrophysics Data System (ADS)

    Gao, Grace Xingxin

    Global Navigation Satellite Systems (GNSS) are experiencing a new era. The US Global Positioning System (GPS) now serves over 300 million users in a bewildering breadth of applications. The Russian GLONASS is enjoying a startling renaissance based on the recovery of the Russian economy. In addition, the European Union is developing the Galileo system that promises to place 30 more satellites in medium Earth orbit. If that is not enough, China has started their Compass system project that promises a rich combination of satellites in medium and geostationary earth orbit. All of these satellites will broadcast at least three civil signals in a multiplicity of frequency bands. If all of these new satellites are launched, we will have 120 satellites and over 300 signals in space for global navigation by 2020. So far, two test satellites of the European Galileo and one satellite from the Chinese Compass have been launched. The new satellites and new signals create a great opportunity for GNSS receivers to gain more redundancy and accuracy. On the other hand, the new GNSS signals could interfere with each other since their frequency bands overlap. Moreover, when the satellites were put into orbit, the signal specifications were not available to the public. This mystery made it impossible for GNSS receivers to acquire and track the new satellites. It was also impossible to analyze the interference among GNSS satellites. Thus, there was an urgent and great need for discovering the unknown signal characteristics. The contribution of this work is to design algorithms for deciphering all the new test satellite signals from the Galileo and Compass satellite programs. We reveal the spread spectrum codes for all the signals on the prototype satellites listed above. In addition, we derive the underlying code generators based on a modification of the Berlekamp-Massey algorithm for solving systems of equations over finite fields. Several receiver companies, such as Trimble

  18. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  19. Visibility and Geometry of Global Satellite Navigation Systems Constellations

    NASA Astrophysics Data System (ADS)

    Januszewski, Jacek

    2015-12-01

    Nowadays (November 2015) there are two global fully operational satellite navigation systems, American GPS and Russian GLONASS. Two next are under construction, Galileo in Europe and BeiDou in China. As the error of observer's position obtained from these systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by this observer above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the observer at different latitudes for different Hmin, the percentage of satellites visible above angle H (9 intervals, each 10O wide), distributions (in per cent) of satellites azimuths (8 intervals, each 45O wide) and GDOP coefficient values (8 intervals) for Hmin = 5O for all these four systems at different observer's latitudes (9 intervals, each wide 10O wide) are presented in the paper. Additionally the lowest elevation for which the number of satellites visible at different latitudes by the observer in open area above this angle is equal 4 or 3 and the distributions (in per cent) of GDOP coefficient values for different Hmin at observer's latitudes 50-60O for the same four systems are showed. All calculations were made for constellation of GPS 27 satellites, GLONASS 24, Galileo 30 and BeiDou 27 MEO satellites.

  20. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  1. Interoperability of satellite-based augmentation systems for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  2. ATS-1/ATS-3 dual satellite navigation study

    NASA Technical Reports Server (NTRS)

    Hoover, W. M.

    1971-01-01

    A study which illustrated the feasibility of implementing an on-board aircraft navigation system based on using the ATS-1 and ATS-3 satellites, the modified Omega Position Location Equipment (OPLE) Control Center, and a suitable aircraft terminal was conducted. The report provides: (1) a consideration of the problems of satellite navigation and an objective definition of the optimum system under the constraints of its specified components, (2) a description of the necessary modifications to the OPLE Control Center, the design of an aircraft terminal, and the design of ground reference terminals, and (3) an outline of an experiment plan and an estimate of the cost to be expected in conducting the program.

  3. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  4. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  5. Superconducting tensor gravity gradiometer for satellite geodesy and inertial navigation

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    A sensitive gravity gradiometer can provide much needed gravity data of the earth and improve the accuracy of inertial navigation. Superconductivity and other properties of materials at low temperatures can be used to obtain a sensitive, low-drift gravity gradiometer; by differencing the outputs of accelerometer pairs using superconducting circuits, it is possible to construct a tensor gravity gradiometer which measures all the in-line and cross components of the tensor simultaneously. Additional superconducting circuits can be provided to determine the linear and angular acceleration vectors. A tensor gravity gradiometer with these features is being developed for satellite geodesy. The device constitutes a complete package of inertial navigation instruments with angular and linear acceleration readouts as well as gravity signals.

  6. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  7. Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)

    NASA Astrophysics Data System (ADS)

    Hesar, Siamak G.; Parker, Jeffrey S.; Leonard, Jason M.; McGranaghan, Ryan M.; Born, George H.

    2015-12-01

    We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth-Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters.

  8. Wetland monitoring with Global Navigation Satellite System reflectometry.

    PubMed

    Nghiem, Son V; Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T; Mannucci, Anthony J; Cardellach, Estel; Brakenridge, G Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS-R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales.

  9. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  10. Metrological control of global navigation satellite system (GNSS) equipment

    NASA Astrophysics Data System (ADS)

    Fernández, T.; de Vicente, J.

    2012-04-01

    In recent years various measurement systems have been developed in geomatic applications, all of them based on massive data acquisition in real-time with high metrological quality. New measuring systems provide abundant spatial information and offer significant advantages in many applications in the field of aerospace, automotive, reverse engineering, deformations control, etc. The use of some or other systems will depend on requirements that work or project demands, but in all cases, the measurement systems must regularly have a metrological checking in order to estimate measurement uncertainty and assured its traceability. It could be argued that Global Navigation Satellite System (GNSS) is the main tool used both in those geomatic applications that we must achieve the maximum accuracy. This paper presents the necessity of metrological control of a kind of equipment as specific as that used in the GNSS.

  11. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  12. The changing world of global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Dow, John M.; Neilan, Ruth E.; Higgins, Matt; Arias, Felicitas

    The world of global navigation satellite systems (GNSS) has been changing very rapidly during the last years. New constellations are being developed in Europe (Galileo), India (IRNSS), Japan (QZNSS) and China (Compass), while both the US GPS and the Russian GLONASS programmes are engaged in very significant mediumto long-term improvements, which will make them even more valuable in the coming years to an ever wider range of civilian users. In addition, powerful regional augmentation systems are becoming (or have already become) operational, providing users with important real time information concerning the integrity of the signals being broadcast by those two systems: these include the US WAAS, the European EGNOS, the Japanese MSAS, the Indian GAGAN and others. Following a number of United Nations sponsored regional workshops, a report by an ad hoc UN "GNSS Action Team" and several preparatory meetings, the International Committee on GNSS (ICG) was established in December 2005 in Vienna, Austria. The ICG is an informal body with the main objective of promoting cooperation on matters of mutual interest related to civil satellite-based positioning, navigation, timing, and value-added services, as well as compatibility and interoperability among the GNSS systems. A further important objective is to encourage the use of GNSS to support sustainable development, particularly in the developing countries. The United Nations Office for Outer Space Affairs (UNOOSA) plays a key role in facilitating the work of the ICG. The members of the Committee are GNSS system providers, while international organisations representing users of GNSS can qualify for participation in the work of the Committee as associate members or observers. The interests of the space geodetic, mapping and timing communities are represented in particular through ICG associate membership of the IGS, IAG, FIG, IERS, while BIPM is an ICG observer. This paper will highlight the background of these developments

  13. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: Recent progress and new applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-02-01

    Nowadays, the new China's BeiDou Navigation Satellite System (BDS) has been developed well. At the end of 2016, over 23 BDS satellites were launched, including five geostationary Earth orbit (GEO) satellites, five inclined geosynchronous orbit (IGSO) satellites and nine medium Earth orbit (MEO) satellites. The current BDS service covers China and most Asia-Pacific regions with accuracy of better than 10 m in positioning, 0.2 m/s in velocity and 50 ns in timing. The BDS with global coverage will be completely established by 2020 with five GEO satellites and 30 MEO satellites. The main function of BDS is the positioning, navigation and timing (PNT) as well as short message communications. Together with the United States' GPS, Russia's GLONASS and the European Union's Galileo system as well as other regional augmentation systems, more new applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the next decades.

  14. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations

    PubMed Central

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun

    2016-01-01

    Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft. PMID:27548181

  15. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations.

    PubMed

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun

    2016-08-19

    Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft.

  16. The signal design of present satellite navigation system and its inspiration

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangwe; Wang, Feixue

    2005-11-01

    Navigation signals are the basis of satellite navigation systems, which determine the navigation systems' performance (such as tracking accuracy, anti-interference capability etc.), and are determined by some constraints (such as radio frequency resources, construction cost, technology level etc.). The aim of signal design is to select "proper" signals considering these above factors and make tradeoffs between performance and constraints. This paper will summarize the signal structure evolution of present satellite navigation and conclude some principles and issues which will be greatly valuable to our 2nd satellite navigation system. There's four main satellite positioning systems presently, the U.S. Global Positioning System (GPS), the Russian Global Navigation Satellite System (GLONASS), the Europe Galileo satellite navigation system and the Chinese BD-1 satellite positioning system. Among these systems, the signal characteristics of GPS and Galileo are good reference to our 2nd satellite navigation system. The improvement of GPS signals is a main aspect of GPS modernization. The aim of GPS modernization is mainly to modernize its signal structure so as to improve the whole systems' performance. The signal structure of Galileo has been revised for several times, and its present signal is the results of long time signal design. From GPS modernization and Galileo signals status, we can summarize some key specifications of navigation signals and some technologies to support these specifications. Based on this, we'll discuss some problems which should be attentive in our country's 2nd satellite navigation system and give some suggestions. This paper is organized into five sections. The first section will give a brief introduction of present satellite navigation system and their main features. Section two will review the GPS and Galileo signals structure evolution, including GPS modernization, Galileo signals status and the comparison of two systems' signals. In the

  17. Instrumentation for one-way satellite PTTI applications. [calibration and synchronization of clocks from navigation satellite

    NASA Technical Reports Server (NTRS)

    Osborne, A. E.

    1973-01-01

    A review of general principles and operational procedures illustrates how the typical passive user and omni receiving antenna can recover Precise Time and Time Interval (PTTI) information from a low altitude navigation satellite system for clock calibration and synchronization. Detailed discussions of concepts and theory of the receiver design are presented. The importance of RF correlation of the received and local PN encoded sequences is emphasized as a means of reducing delay uncertainties of the instrumentation to values compatible with nanosecond to submicrosecond PTTI objectives. Two receiver configurations were fabricated for use in satellite-to-laboratory experiments. In one receiver the delay-locked loop for PN signals synchronization used a dithered amplitude detection process while the second receiver used a complex sums phase detection method for measurement of delay error. The necessity for compensation of Doppler shift is discussed. Differences in theoretical signal acquisition and tracking performance of the design concepts are noted.

  18. Impact of space weather events on satellite-based navigation

    NASA Astrophysics Data System (ADS)

    Roy, B.; DasGupta, A.; Paul, A.

    2013-12-01

    effects of the equatorial ionospheric irregularities on satellite-based communication and navigation systems have been studied over the past few decades as space weather events have the potential to seriously disturb the technological infrastructure of modern society. The present paper tries to understand operational compliance of Global Positioning System (GPS) receivers to International Civil Aviation Organization (ICAO) standards under scintillation conditions by recording the received phase of the L1(1575.42 MHz) signal from two stations, namely Calcutta situated near the northern crest of the Equatorial Ionization Anomaly and Siliguri, situated beyond the northern crest, at a subionospheric latitude separation of 4° along the same meridian. A causative approach is adopted whereby GPS phase scintillations have been monitored and receiver performance prior to loss of lock and cycle slips have been analyzed during August-October 2011 at Calcutta and September 2011 at Siliguri. The received phase at GPS-L1 frequency has often been found to fluctuate at kilohertz, often megahertz rates, thereby causing carrier-tracking loop malfunctions. It should be borne in mind that normal GPS receivers' carrier-tracking loops have a typical dynamic range of 14-18 Hz. Cycle slips have been observed with durations far exceeding ICAO specified levels for high dynamic platforms like aircrafts. Differences in cycle slips between Calcutta and Siliguri indicate possible evolution of irregularity structures even across small subionospheric swath. Significant improvement in present understanding of GPS phase scintillations should be developed and implemented in receiver designs prior to application of Satellite Based Augmentation System services for civil aviation, particularly in the geophysically sensitive equatorial region.

  19. The impact of navigation satellite ephemeris error on common-view time transfer.

    PubMed

    Sun, Hongwei; Yuan, Haibo; Zhang, Hong

    2010-01-01

    The impact of navigation satellite ephemeris error on satellite common-view time transfer was analyzed. The impact varies depending on the angle in view of a satellite relative to a user (elevation) and the baseline distance between 2 users. Some extents of the impact were figured out for several elevations and different baseline. As an example, results from several common-view time transfer links in China via Compass satellite were given.

  20. Multifunctional astronomical self-organizing system of autonomous navigation and orientation for artificial Earth satellites

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. I.; Danilova, T. V.

    2017-03-01

    We describe the methods and algorithms of a multifunctional astronomical system of the autonomous navigation and orientation for artificial Earth satellites based on the automatization of the system approach to the design and programming problems of the subject area.

  1. Constellation design and performance analysis for regional satellite navigation system in China area

    NASA Astrophysics Data System (ADS)

    Du, Yuling; Zhang, Xuejun; Huang, Zhigang

    2005-11-01

    Based on the idea of covering China area, a novel constellation is proposed, consisting of one geostationary satellite and five inclined elliptic orbit geosynchronous satellites in this paper. Through a number of simulation tests, the orbital elements of each satellite are designed concretely. Moreover, its coverage performance is also evaluated under some factors, such as the geometric dilution of precision (GDOP), orbital perturbation, space transmission loss and eclipse. What's more, this constellation is compared with other constellations. Finally, Simulation results show, in this constellation, the number of satellites is small, and the navigation precision is relatively high. Therefore, this is a kind of high performance and economic regional navigation system for China.

  2. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  3. Applications of two-way satellite time and frequency transfer in the BeiDou navigation satellite system

    NASA Astrophysics Data System (ADS)

    Zhou, ShanShi; Hu, XiaoGong; Liu, Li; Guo, Rui; Zhu, LingFeng; Chang, ZhiQiao; Tang, ChengPan; Gong, XiuQiang; Li, Ran; Yu, Yang

    2016-10-01

    A two-way satellite time and frequency transfer (TWSTFT) device equipped in the BeiDou navigation satellite system (BDS) can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination (MPOD) method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service (IGS) analysis centers (ACs) show that the reference time difference between BeiDou time (BDT) and golbal positoning system (GPS) time (GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10-12, which is similar to the GPS IIR.

  4. Linear and Nonlinear Relative Navigation Strategies for Small Satellite Formation Flying Based on Relative Position Measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomin; Zheng, You

    Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.

  5. Observation of Wetland Dynamics with Global Navigation Satellite Signals Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Shah, R.; Nghiem, S. V.; Cardellach, E.; Chew, C. C.

    2015-12-01

    Wetland dynamics is crucial to changes in both atmospheric methane and terrestrial water storage. The Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5) highlights the role of wetlands as a key driver of methane (CH4) emission, which is more than one order of magnitude stronger than carbon dioxide as a greenhouse gas in the centennial time scale. Among the multitude of methane emission sources (hydrates, livestock, rice cultivation, freshwaters, landfills and waste, fossil fuels, biomass burning, termites, geological sources, and soil oxidation), wetlands constitute the largest contributor with the widest uncertainty range of 177-284 Tg(CH4) yr-1 according to the IPCC estimate. Wetlands are highly susceptible to climate change that might lead to wetland collapse. Such wetland destruction would decrease the terrestrial water storage capacity and thus contribute to sea level rise, consequently exacerbating coastal flooding problems. For both methane change and water storage change, wetland dynamics is a crucial factor with the largest uncertainty. Nevertheless, a complete and consistent map of global wetlands still needs to be obtained as the Ramsar Convention calls for a wetlands inventory and impact assessment. We develop a new method for observations of wetland change using Global Navigation Satellite Signals Reflectometry (GNSS-R) signatures for global wetland mapping in synergy with the existing capability, not only as a static inventory but also as a temporal dataset, to advance the capability for monitoring the dynamics of wetland extent relevant to addressing the science issues of CH4 emission change and terrestrial water storage change. We will demonstrate the capability of the new GNSS-R method over a rice field in the Ebro Delta wetland in Spain.

  6. Augmentation of Indian Regional Navigation Satellite System to Improve Dilution of Precision

    NASA Astrophysics Data System (ADS)

    Sarma, Achanta D.; Sultana, Quddusa; Srinivas, Vemuri Satya

    The Indian Regional Navigation Satellite System (IRNSS) is an autonomous and independent navigational system being developed by India. IRNSS will provide position, navigation and timing services for national applications. To improve accuracy, it can be augmented using GPS and pseudolites (pseudo-satellites). In this paper, the effect on DOP (Dilution of Precision) due to augmentation of the proposed constellation of IRNSS with pseudolites is investigated. GDOP is reduced to 163 (max) due to augmentation of IRNSS with two airport pseudolites (APLs). Due to augmentation of IRNSS with GPS, GDOP is reduced to 265 (max). The regional effect on DOP due to IRNSS is also investigated at different locations in the Indian region.

  7. Improvement of orbit determination accuracy for Beidou Navigation Satellite System with Two-way Satellite Time Frequency Transfer

    NASA Astrophysics Data System (ADS)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Guo, Rui; He, Feng; Liu, Li; Zhu, Lingfeng; Li, Xiaojie; Wu, Shan; Zhao, Gang; Yu, Yang; Cao, Yueling

    2016-10-01

    The Beidou Navigation Satellite System (BDS) manages to estimate simultaneously the orbits and clock offsets of navigation satellites, using code and carrier phase measurements of a regional network within China. The satellite clock offsets are also directly measured with Two-way Satellite Time Frequency Transfer (TWSTFT). Satellite laser ranging (SLR) residuals and comparisons with the precise ephemeris indicate that the radial error of GEO satellites is much larger than that of IGSO and MEO satellites and that the BDS orbit accuracy is worse than GPS. In order to improve the orbit determination accuracy for BDS, a new orbit determination strategy is proposed, in which the satellite clock measurements from TWSTFT are fixed as known values, and only the orbits of the satellites are solved. However, a constant systematic error at the nanosecond level can be found in the clock measurements, which is obtained and then corrected by differencing the clock measurements and the clock estimates from orbit determination. The effectiveness of the new strategy is verified by a GPS regional network orbit determination experiment. With the IGS final clock products fixed, the orbit determination and prediction accuracy for GPS satellites improve by more than 50% and the 12-h prediction User Range Error (URE) is better than 0.12 m. By processing a 25-day of measurement from the BDS regional network, an optimal strategy for the satellite-clock-fixed orbit determination is identified. User Equivalent Ranging Error is reduced by 27.6% for GEO satellites, but no apparent reduction is found for IGSO/MEO satellites. The SLR residuals exhibit reductions by 59% and 32% for IGSO satellites but no reductions for GEO and MEO satellites.

  8. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    PubMed

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  9. GPS Cycle Slip Detection Considering Satellite Geometry Based on TDCP/INS Integrated Navigation

    PubMed Central

    Kim, Younsil; Song, Junesol; Kee, Changdon; Park, Byungwoon

    2015-01-01

    This paper presents a means of carrier phase cycle slip detection for an inertial-aided global positioning system (GPS), which is based on consideration of the satellite geometry. An integrated navigation solution incorporating a tightly coupled time differenced carrier phase (TDCP) and inertial navigation system (INS) is used to detect cycle slips. Cycle-slips are detected by comparing the satellite-difference (SD) and time-difference (TD) carrier phase measurements obtained from the GPS satellites with the range estimated by the integrated navigation solution. Additionally the satellite geometry information effectively improves the range estimation performance without a hardware upgrade. And the covariance obtained from the TDCP/INS filter is used to compute the threshold for determining cycle slip occurrence. A simulation and the results of a vehicle-based experiment verify the cycle slip detection performance of the proposed algorithm. PMID:26437412

  10. Navigation and Control Based on LOS Angle of Space Robot to Approach the Target Satellite

    NASA Astrophysics Data System (ADS)

    Sugahara, Masayuki; Masutani, Yasuhiro; Miyazaki, Fumio

    This paper presents a method of navigation and control for a space robot (chaser) flying around a troubled satellite (target) on a circular orbit around the earth to approach the target satellite. Orbital dynamics of the chaser is represented by the Hill’s equation. The technique based on LOS angle of approaching the target is proposed. We prove the validity of the technique on the situation that the chaser approach the target satellite after the circular trajectory, which is periodically free motion.

  11. New Projects Planed/launched By Cei Wg On Satellite Navigation Systems

    NASA Astrophysics Data System (ADS)

    Oszczak, S.; Manzoni, G.

    In the paper a short description of main projects on satellite positioning and naviga- tion in CEI countries is given. Special attention is devoted to the activity of members of Working Group on Satellite Navigation Systems. The projects in which they are involved and results of performed experiments can be specified as follows: - EGNOS positioning - the first results in CEI area, - application of various transmission tech- niques to diffusion of DGPS/RTK data from reference stations (SWIFT/DARC, RDS, radiobeacons, UHF transmission), - development of integrated GPS/INS methods for car navigation and GIS purposes, - development of software for integration of satellite vehicle position with numerical maps for car navigation, monitoring and acquisition of terrestrial data for GIS, - elaboration of method and software development for nav- igation and monitoring of aircraft during approaching and landing phase of flight, - elaboration of methods and software for integration of 3D satellite positions of user with Digital Terrain Model (DTM), - development of digital technology for bathy- metric survey with satellite positioning technique; mapping of shallow waters, lakes, rivers and inland water reservoirs, The recently planned studies and experiments cover land, marine and aircraft satellite navigation with EGNOS system in CEI countries. The project of extension of the EGNOS system to the Central and East European region is under preparation. Other important research is conducted on mapping of roads and rails tracks using integrated DGPS/INS techniques.

  12. Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data

    NASA Astrophysics Data System (ADS)

    Fernández, Francisco Amarillo

    2011-03-01

    Recently the European Space Agency (ESA) has initiated a number of exploratory Projects, within the General Studies Programme (GSP), to analyze what potential improvements on a GNSS system navigation determination and dissemination performance could be brought by introducing inter-satellite ranging & inter-satellite communication-links. The key improvements targeted by these Projects are the enhancement of the orbit and clock prediction accuracy and the reduction of the dependency from ground infrastructure. Both projects adopted the Galileo system architecture as the initial working point.The first exploratory Project, which was labelled as GNSS+ (Amarillo and Gerner, 2007; Amarillo et al., 2008), indicated the practical difficulty to implement these new on-board functionalities except at the price of a visible increase of the payload mass and power (e.g. relative to mass and power of the Galileo IOV navigation payload) (Sánchez and Pulido, 2008); it allowed to define a preliminary system architecture, and it also allowed to identify the technological problems that in practise would likely be encountered.A second exploratory Project, which was labelled as ADVISE, continued the research, targeting a visible simplification of the GNSS+ architecture and an overall consolidation of the design of the most demanding constituents from technology perspective.This article describes the results of the GNSS+ Project as well as the improvements proposed in the frame of the ADVISE Project. As result of the ADVISE Project it has been possible to low very visibly the payload maximum RF power, and to keep the orbit and clock estimation accuracy, which was already on the few cm level.

  13. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2017-02-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. To understand the underlying dynamics that affect the BDS IGSO, we study this problem from two aspects. In this paper, we first theoretically analyze the problem using the simplified models with 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  14. The influence of different types of satellite exiting in system RAIM performance in BeiDou Satellite Navigation System

    NASA Astrophysics Data System (ADS)

    Wang, Shi-tai; Peng, Jun-huan

    2015-12-01

    The space constellation of BeiDou Navigation Satellite System(BDS)has three main components, Geostationary Earth Orbits (GEOs), Medium Earth Orbits (MEOs) and Inclined Geosynchronous Satellite Orbits(IGSOs).This paper selected 6 satellite respectively in three types to simulate their exiting service, and used the statistical methods to assess receiver autonomous integrity monitoring RAIM availability and fault detection FD capability of BeiDou14 Phase with 14 satellites under the circumstances. This paper assessed RAIM availability performance from satellites and constellation geometry configuration by the number of visible satellites (NVS, NVS>~5) and position dilution of precision (PDOP, PDOP<=6) together. The FD capability of RAIM is assessed by the maximum minimal detectable bias (MDB) and the maximum minimal detectable effect (MDE). The analyses of simulation results testify that the exiting of single MEO or IGSO satellite have no obvious effect on RAIM availability and error detection ability. However GEO satellite's exiting can make the number of points in where the constellation geometry is not available and maximum minimum detectable deviation and maximum minimum detectable influence significantly increase. Relative to other two satellites, GEO satellites' health have a significant impact on the RAIM performance of BDS.

  15. Phase Compensation Sensor for Ranging Consistency in Inter-Satellite Links of Navigation Constellation

    PubMed Central

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Hu, Mei

    2017-01-01

    The performance of the global navigation satellite system (GNSS) can be enhanced significantly by introducing the inter-satellite links (ISL) of a navigation constellation. In particular, the improvement of the position, velocity, and time accuracy, and the realization of autonomous functions require the ISL distance measurement data as the original input. For building a high-performance ISL, the ranging consistency between navigation satellites becomes a crucial problem to be addressed. Considering the frequency aging drift and the relativistic effect of the navigation satellite, the frequency and phase adjustment (FPA) instructions for the 10.23 MHz must be injected from the ground station to ensure the time synchronization of the navigation constellation. Moreover, the uncertainty of the initial phase each time the onboard clock equipment boots also results in a pseudo-range offset. In this Ref., we focus on the influence of the frequency and phase characteristics of the onboard clock equipment on the ranging consistency of the ISL and propose a phase compensation sensor design method for the phase offset. The simulation and experimental results show that the proposed method not only realized a phase compensation for the pseudo-range jitter, but, when the 1 PPS (1 pulse per second) falls in the 10.23 MHz skip area, also overcomes the problem of compensating the ambiguous phase by directly tracking the 10.23 MHz to ensure consistency in the ranging. PMID:28245572

  16. Optimal orbits for space constellations of Mars navigation satellites

    NASA Technical Reports Server (NTRS)

    Ely, T. A.

    2000-01-01

    Recent scientific discoveries at Mars have heralded an unprecedented commitment and focus by NASA and its international partners toward further exploration of Mars. As part of this effort NASA has an on-going project, called the Mars Network, to examine communication and navigation infrastructure requirements needed to support Mars exploration.

  17. Accurate Coordinates and Predicted Position of Navigation Satellites NNSS,

    DTIC Science & Technology

    1980-11-28

    orbital elements of satellites No.s 13 , 14, 12, 19 and 20. The elements of SN-18 were given in Table 2. All these data refer to satellites operating in...December 1975. Table 4 lists transmitted orbital elements of satellites No.s 20, 14, 13 , 12 and 19 observed in January 1976. In Tables 3 and 4, the...equation 0s) - M*) + ( -mhI) (( 13 ) Let the longitude of the node Xw be its longitude at the first transit of the SN through the equator from South to

  18. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  19. Precise point positioning with the BeiDou navigation satellite system.

    PubMed

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-08

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems.

  20. Auxiliary subprograms for calculating the navigational parameters of artificial Earth satellites. FORTRAN IV

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1981-01-01

    Subprograms for transforming coordinates and time, for determining the position of the Moon and Sun, and for calculating the atmosphere and disturbances, which are specified by anomalies of the Earth's gravitational field are described. The subprograms are written in FORTRAN IV and form a major part of the package of applied programs for calculating the navigational parameters of artificial Earth satellites.

  1. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    PubMed

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source.

  2. Satellite images for land cover monitoring - Navigating through the maze

    USGS Publications Warehouse

    Künzer, Claudia; Fosnight, Gene

    2001-01-01

    The focus of this publication is satellite systems for land cover monitoring. On the reverse is a table that compares a selection of these systems, whose data are globally available in a form suitable for land cover analysis. We hope the information presented will help you assess the utility of remotely sensed image to meet your needs.

  3. GPS/Magnetometer Based Satellite Navigation and Attitude Determination

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    In recent years algorithms were developed for orbit, attitude and angular-rate determination of Low Earth Orbiting (LEO) satellites. Those algorithms rely on measurements of magnetometers, which are standard, relatively inexpensive, sensors that are normally installed on every LEO satellite. Although magnetometers alone are sufficient for obtaining the desired information, the convergence of the algorithms to the correct values of the satellite orbital parameters, position, attitude and angular velocity is very slow. The addition of sun sensors reduces the convergence time considerably. However, for many LEO satellites the sun data is not available during portions of the orbit when the spacecraft (SC) is in the earth shadow. It is here where the GPS space vehicles (SV) can provide valuable support. This is clearly demonstrated in the present paper. Although GPS measurements alone can be used to obtain SC position, velocity, attitude and angular-rate, the use of magnetometers improve the results due to the synergistic effect of sensor fusion. Moreover, it is possible to obtain these results with less than three SVs. In this paper we introduce an estimation algorithm, which is a combination of an Extended Kalman Filter (EKF) and a Pseudo Linear Kalman Filter (PSELIKA).

  4. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  5. Navigation Solution for a Multiple Satellite and Multiple Ground Architecture

    DTIC Science & Technology

    2014-09-14

    completing the right-hand-rule, is the North Pole . The principal direction of the coordinate system is the vernal equinox when the Earth is aligned...derived from the equations of motion and the equations of variation for the non-spherical Earth and air drag effects. The algorithm determines the...15 2.4.3 Communications Range for Collector Satellite . . . . . . . . . . . 15 2.4.4 Earth

  6. Global Positioning System Satellite Selection Evaluation for Aided Inertial Navigation.

    DTIC Science & Technology

    1983-12-01

    SQRT (TRACE(HTR-IH) - ) (13) The study’s conclusions of the performance of WGDOP versus GDOP in a GPS /INS computer simulation determined that (6:152...minimizing WGDOP may not in fact result in the smallest a- posteriori error covariance P In March 1981, a short study on GPS UE satellite selec- tion...Tables...... . . . . . .... . .. viii I. Introduction...... . ...... . . . 1 II. NAVSTAR GPS Program Review...... . . . . . 6 Introduction . . . . . e a

  7. Phase Compensation Sensor for Ranging Consistency in Inter-Satellite Links of Navigation Constellation.

    PubMed

    Meng, Zhijun; Yang, Jun; Guo, Xiye; Hu, Mei

    2017-02-24

    Theperformanceoftheglobalnavigationsatellitesystem(GNSS)canbeenhancedsignificantly by introducing the inter-satellite links (ISL) of a navigation constellation. In particular, the improvement of the position, velocity, and time accuracy, and the realization of autonomous functions require the ISL distance measurement data as the original input. For building a high-performance ISL, the ranging consistency between navigation satellites becomes a crucial problem to be addressed. Considering the frequency aging drift and the relativistic effect of the navigation satellite, the frequency and phase adjustment (FPA) instructions for the 10.23 MHz must be injected from the ground station to ensure the time synchronization of the navigation constellation. Moreover, the uncertainty of the initial phase each time the onboard clock equipment boots also results in a pseudo-range offset. In this Ref., we focus on the influence of the frequency and phase characteristics of the onboard clock equipment on the ranging consistency of the ISL and propose a phase compensation sensor design method for the phase offset. The simulation and experimental results show that the proposed method not only realized a phase compensation for the pseudo-range jitter, but, when the 1 PPS (1 pulse per second) falls in the 10.23 MHz skip area, also overcomes the problem of compensating the ambiguous phase by directly tracking the 10.23 MHz to ensure consistency in the ranging.

  8. Insect-Inspired Navigation Algorithm for an Aerial Agent Using Satellite Imagery

    PubMed Central

    Gaffin, Douglas D.; Dewar, Alexander; Graham, Paul; Philippides, Andrew

    2015-01-01

    Humans have long marveled at the ability of animals to navigate swiftly, accurately, and across long distances. Many mechanisms have been proposed for how animals acquire, store, and retrace learned routes, yet many of these hypotheses appear incongruent with behavioral observations and the animals’ neural constraints. The “Navigation by Scene Familiarity Hypothesis” proposed originally for insect navigation offers an elegantly simple solution for retracing previously experienced routes without the need for complex neural architectures and memory retrieval mechanisms. This hypothesis proposes that an animal can return to a target location by simply moving toward the most familiar scene at any given point. Proof of concept simulations have used computer-generated ant’s-eye views of the world, but here we test the ability of scene familiarity algorithms to navigate training routes across satellite images extracted from Google Maps. We find that Google satellite images are so rich in visual information that familiarity algorithms can be used to retrace even tortuous routes with low-resolution sensors. We discuss the implications of these findings not only for animal navigation but also for the potential development of visual augmentation systems and robot guidance algorithms. PMID:25874764

  9. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications

    NASA Astrophysics Data System (ADS)

    Dong, Danan; Chen, Wen; Cai, Miaomiao; Zhou, Feng; Wang, Minghua; Yu, Chao; Zheng, Zhengqi; Wang, Yuanfei

    2016-12-01

    The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase windup calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

  10. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes.

  11. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-08-22

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield.

  12. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. Following up the study on the specific BDS IGSO satellites in the previous COSPAR Scientific Assembly, we now extend the study to understand the underlying dynamics and discuss the long-term evolution of such orbits from a more general perspective. In this paper, we first theoretically analyze the problem using simplified models of 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  13. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield

    PubMed Central

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%–36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  14. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  15. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  16. A Leo Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack

    2001-01-01

    The Global Positioning System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of a GPS receiver as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system that takes advantage of the estimation qualities of both measurements. Ultimately, a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development of a technique to eliminate numerical differentiation of the GPS phase measurements and also compares the use of one versus two GPS satellites.

  17. Attitude guidance and control of the navigation satellites at passage of singular orbit sites

    NASA Astrophysics Data System (ADS)

    Fateev, Alexey; Vassilyev, Alexander; Somov, Sergey

    2017-01-01

    The solar-terrestrial reference frame is applied during a navigation satellite flight using onboard measured units of directions on the Sun and Earth, which are beginning in the satellite (Object) mass center. The angle between these units traditionally is named as the angle SOE (Sun - Object - Earth). We consider problems of attitude guidance and control at the spacecraft operation on specific parts of the orbit (singular orbit sites) at following values of the SOE angles — close to 0 deg (small SOE angles) and close to 180 deg (large SOE angles) with a view to minimizing the impact of solar pressure forces on the SC mass center motion.

  18. Integrated user equipment of satellite and hyperbolic radio-navigation systems

    NASA Astrophysics Data System (ADS)

    Iarlykov, M. S.; Bazarov, A. A.

    1992-04-01

    An approach based on the Markov theory of random-process estimation is used to synthesize algorithms for an onboard system of complex data processing applicable to radio signals of satellite and hyperbolic navigation systems, using INS data. Based on these algorithms, the structure of an onboard system of complex data processing is elucidated, and a quantitative estimation of its noise immunity and accuracy is obtained.

  19. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  20. Constellation Design of Geosynchronous Navigation Satellites Which Maximizes Availability and Accuracy Over a Specified Region of the Earth

    DTIC Science & Technology

    2008-03-01

    01 Abstract Currently, there are four Global Navigation Satellite Systems (GNSS) either being developed or in existence- GPS , GLONASS, Compass, and...126 viii List of Figures Figure Page 1.1. The candidate region for the navigation service . . . . . . . . . 7 2.1. Nominal GPS ...50 Cf Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . 51 WGDOP GDOP Weight . . . . . . . . . . . . . . . . . . . . . . . . 51

  1. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Khon, Vyacheslav C.; Mokhov, Igor I.; Semenov, Vladimir A.

    2017-02-01

    Rapid Arctic sea ice decline over the last few decades opens new perspectives for Arctic marine navigation. Further warming in the Arctic will promote the Northern Sea Route (NSR) as an alternative to the conventional Suez or Panama Canal routes for intercontinental shipping. Here we use both satellite data and CMIP5 ensemble of climate models to estimate the NSR transit window allowing intercontinental navigation between Atlantic and Pacific regions. To this end, we introduce a novel approach to calculate start and end dates of the navigation season along the NSR. We show that modern climate models are able to reproduce the mean time of the NSR transit window and its trend over the last few decades. The selected models demonstrate that the rate of increase of the NSR navigation season will slow down over the next few decades with the RCP4.5 scenario. By the end of the 21st century ensemble-mean estimates show an increase of the NSR transit window by about 4 and 6.5 months according to RCP4.5 and 8.5, respectively. Estimated trends for the end date of the navigation season are found to be stronger compared to those for the start date.

  2. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert

    1991-01-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  3. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Astrophysics Data System (ADS)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  4. Optimization of communication network topology for navigation sharing among distributed satellites

    NASA Astrophysics Data System (ADS)

    Dang, Zhaohui; Zhang, Yulin

    2013-01-01

    Navigation sharing among distributed satellites is quite important for coordinated motion and collision avoidance. This paper proposes optimization methods of the communication network topology to achieve navigation sharing. The whole communication network constructing by inter-satellite links are considered as a topology graph. The aim of this paper is to find the communication network topology with minimum communication connections' number (MCCN) in different conditions. It has found that the communication capacity and the number of channels are two key parameters affecting the results. The model of MCCN topology for navigation sharing is established and corresponding method is designed. Two main scenarios, viz., homogeneous case and heterogeneous case, are considered. For the homogeneous case where each member has the same communication capacity, it designs a construction method (Algorithm 1) to find the MCCN topology. For the heterogeneous case, it introduces a modified genetic algorithm (Algorithm 2) to find the MCCN topology. When considering the fact that the number of channels is limited, the Algorithm 2 is further modified by adding a penalized term in the fitness function. The effectiveness of these algorithms is all proved in theoretical. Three examples are further tested to illustrate the methods developed in this paper.

  5. The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System

    PubMed Central

    Jan, Shau-Shiun; Tao, An-Lin

    2014-01-01

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance. PMID:25195848

  6. The open service signal in space navigation data comparison of the Global Positioning System and the BeiDou Navigation Satellite System.

    PubMed

    Jan, Shau-Shiun; Tao, An-Lin

    2014-08-19

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance.

  7. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    NASA Astrophysics Data System (ADS)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  8. Experimental study on the precise orbit determination of the BeiDou navigation satellite system.

    PubMed

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-03-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better.

  9. Experimental Study on the Precise Orbit Determination of the BeiDou Navigation Satellite System

    PubMed Central

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-01-01

    The regional service of the Chinese BeiDou satellite navigation system is now in operation with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Besides the standard positioning service with positioning accuracy of about 10 m, both precise relative positioning and precise point positioning are already demonstrated. As is well known, precise orbit and clock determination is essential in enhancing precise positioning services. To improve the satellite orbits of the BeiDou regional system, we concentrate on the impact of the tracking geometry and the involvement of MEOs, and on the effect of integer ambiguity resolution as well. About seven weeks of data collected at the BeiDou Experimental Test Service (BETS) network is employed in this experimental study. Several tracking scenarios are defined, various processing schemata are designed and carried out; and then, the estimates are compared and analyzed in detail. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. The involvement of MEOs and ambiguity-fixing also make the orbits better. PMID:23529116

  10. Attitude determination for three-axis stabilized geostationary meteorological satellite image navigation

    NASA Astrophysics Data System (ADS)

    Wu, Yaguang; Wang, Zhigang

    2005-11-01

    To achieve the high accuracy of attitude determination for three-axis stabilized geostationary meteorological satellite image navigation, a new approach combined gyro with star trackers is proposed, and a real-time algorithm for attitude estimation is designed. This algorithm begins with a prediction for angular rate model errors induced by gyro drifting error, and ends with the extended Kalman filtering (EKF) for attitude estimation of three-axis. A Matlab-based time domain simulation model is developed to evaluate the attitude determination performance. Simulation results demonstrate that the proposed algorithm has characteristics of high accuracy, rapid convergence and strong robustness.

  11. The effect of different Global Navigation Satellite System methods on positioning accuracy in elite alpine skiing.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-10-03

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications.

  12. The Effect of Different Global Navigation Satellite System Methods on Positioning Accuracy in Elite Alpine Skiing

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Limpach, Philippe; Geiger, Alain; Müller, Erich

    2014-01-01

    In sport science, Global Navigation Satellite Systems (GNSS) are frequently applied to capture athletes' position, velocity and acceleration. Application of GNSS includes a large range of different GNSS technologies and methods. To date no study has comprehensively compared the different GNSS methods applied. Therefore, the aim of the current study was to investigate the effect of differential and non-differential solutions, different satellite systems and different GNSS signal frequencies on position accuracy. Twelve alpine ski racers were equipped with high-end GNSS devices while performing runs on a giant slalom course. The skiers' GNSS antenna positions were calculated in three satellite signal obstruction conditions using five different GNSS methods. The GNSS antenna positions were compared to a video-based photogrammetric reference system over one turn and against the most valid GNSS method over the entire run. Furthermore, the time for acquisitioning differential GNSS solutions was assessed for four differential methods. The only GNSS method that consistently yielded sub-decimetre position accuracy in typical alpine skiing conditions was a differential method using American (GPS) and Russian (GLONASS) satellite systems and the satellite signal frequencies L1 and L2. Under conditions of minimal satellite signal obstruction, valid results were also achieved when either the satellite system GLONASS or the frequency L2 was dropped from the best configuration. All other methods failed to fulfill the accuracy requirements needed to detect relevant differences in the kinematics of alpine skiers, even in conditions favorable for GNSS measurements. The methods with good positioning accuracy had also the shortest times to compute differential solutions. This paper highlights the importance to choose appropriate methods to meet the accuracy requirements for sport applications. PMID:25285461

  13. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    NASA Astrophysics Data System (ADS)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  14. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-01-01

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments. PMID:25659949

  15. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Li, Xingxing; Zhang, Xiaohong; Ren, Xiaodong; Fritsche, Mathias; Wickert, Jens; Schuh, Harald

    2015-02-09

    The world of satellite navigation is undergoing dramatic changes with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs). At the moment more than 70 satellites are already in view, and about 120 satellites will be available once all four systems (BeiDou + Galileo + GLONASS + GPS) are fully deployed in the next few years. This will bring great opportunities and challenges for both scientific and engineering applications. In this paper we develop a four-system positioning model to make full use of all available observations from different GNSSs. The significant improvement of satellite visibility, spatial geometry, dilution of precision, convergence, accuracy, continuity and reliability that a combining utilization of multi-GNSS brings to precise positioning are carefully analyzed and evaluated, especially in constrained environments.

  16. A study of autonomous satellite navigation methods using the global positioning satellite system

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.

    1980-01-01

    Special orbit determination algorithms were developed to accommodate the size and speed limitations of on-board computer systems of the NAVSTAR Global Positioning System. The algorithms use square root sequential filtering methods. A new method for the time update of the square root covariance matrix was also developed. In addition, the time update method was compared with another square root convariance propagation method to determine relative performance characteristics. Comparisions were based on the results of computer simulations of the LANDSAT-D satellite processing pseudo range and pseudo range-rate measurements from the phase one GPS. A summary of the comparison results is presented.

  17. Testing General Relativity with the Galileo 5 and 6 navigation satellites

    NASA Astrophysics Data System (ADS)

    Laemmerzahl, Claus

    2016-07-01

    Einstein's theory of general relativity leads to various predictions that have already been verified by experiments with high precision, such as the perihelion shift of Mercury or the gravitational redshift. The best measurement of the gravitational redshift has been achieved with the Gravity Probe A experiment in 1976 with an uncertainty of 1.4 times 10^{-4}. Today, two of the Galileo navigation satellites provide us with an excellent opportunity to improve this uncertainty. GSAT0201 and GSAT0202 have accidentally been injected onto an eccentric orbit, so that the accurate, stable atomic clocks onboard experience a daily modulation of the gravitational potential resulting in a measurable dilation of time. Through an analysis of the data obtained by the satellites and by employing a sophisticated model for the influence of solar radiation pressure on the satellites' orbits we aim to determine the time dilation to an improved accuracy. We are also investigating if further effects on the clocks of the satellites might be in the range of detection. This project is supported by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50 WM 1548.

  18. Improving capabilities of broadband differential satellite navigation systems via radio occultation technology

    NASA Astrophysics Data System (ADS)

    Myslivtsev, T. O.; Nikiforov, S. V.; Pogoreltsev, A. I.; Savochkin, P. V.; Sakhno, I. V.; Semenov, A. A.; Troitsky, B. V.

    2016-07-01

    The existent satellite system for radio occultation monitoring the Earth's neutral atmosphere and ionosphere (COSMIC) provides data to consumers in the regions with limited possibilities of constructing dense measurement networks (e.g., in the World Ocean area). A forthcoming increase of LEO small spacecrafts and the deployment of new satellite radio navigation systems will result in a pronounced increase in the efficiency of radio occultation method and its space resolution. As a result, the Space-Based Augmentation Systems (SBAS) broadband differential system will become global, or the quality of corrections delivered to single-frequency consumers of individual systems, e.g., the Augmentation and Monitoring System, will be improved. Therefore, the methods for processing and analyzing obtained radio occultation data should be improved. A simple method to reconstruct the electron density profile at radio occultation points, based on the total electron content measurement on the satellite-satellite path and the IRI-type ionospheric model has been proposed. The method needs initial information, it does not require refraction measurements, and it is free of the assumption that the ionosphere is spherically stratified in the occultation region. Verification of the proposed method based on data for 121 radio occultation cases across Europe in May 2013 demonstrated good agreement with the vertical sounding data.

  19. CPM Signals for Satellite Navigation in the S and C Bands.

    PubMed

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-06-05

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands' demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes.

  20. CPM Signals for Satellite Navigation in the S and C Bands

    PubMed Central

    Xue, Rui; Sun, Yanbo; Zhao, Danfeng

    2015-01-01

    Frequency allocations in the L band suitable for global navigation satellite system (GNSS) services are getting crowded and system providers face an ever tougher job when they try to bring in new signals and services while maintaining radio frequency compatibility. With the successive opening of the S and C bands to GNSS service, the multi-band combined navigation is predicted to become a key technology for future high-precision positioning navigation systems, and a single modulation scheme satisfying the requirements in each band is a promising solution for reducing user terminal complexity. A universal modulation scheme based on the continuous phase modulation (CPM) family suitable for the above bands’ demands is proposed. Moreover, this paper has put forward two specific CPM signals for the S and C bands, respectively. Then the proposed modulation schemes, together with existing candidates, are comprehensively evaluated. Simulation results show that the proposed CPM signals can not only satisfy the constraint condition of compatibility in different bands well and reduce user terminal complexity, but also provide superior performance in terms of tracking accuracy, multi-path mitigation and anti-jamming compared to other candidate modulation schemes. PMID:26057035

  1. T and F comparisons via broadcasting satellite and navigation technology satellite

    NASA Technical Reports Server (NTRS)

    Saburi, Y.; Yasuda, Y.; Kobayashi, S.; Sato, T.

    1979-01-01

    The preliminary time/frequency dissemination experiments were made using the BSE. In order to establish the technique of the doppler shift canceling, the phase control servo including the satellite link and the precompensating frequency control using the measured values or using the orbital data of the satellite are tested. The amount of the residual doppler shift at the control station can be reduced to the order of 1 part in 10 to the 12th power or less by use of the first and the second methods. The method using the orbit data is expected to give a control capability of a few parts in 10 to 11th power. Thus, the maximum value of the doppler shift at the farther most place of the country is estimated to be + or - 2 x 10 to the -10 power without any correction. The experiment of the international time comparison via the NTS 1 was made for about one year since October 1978. The data of time difference between UTC(USNO) and UTC(RRL) are in good agreement with those via the portable clock of the USNO. By applying the correction for ionospheric delay the standard deviation of the data can be reduced to about one-half.

  2. The onset of dynamical instability and chaos in navigation satellite orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay; Daquin, Jérôme; Alessi, Elisa Maria; Valsecchi, Giovanni B.; Rossi, Alessandro; Deleflie, Florent

    2015-05-01

    Orbital resonances are ubiquitous in the Solar System and are harbingers for the onset of dynamical instability and chaos. It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Here we will show that the same underlying physical mechanism, the overlapping of secular resonances, responsible for the eventual destabilization of Mercury and recently proposed to explain the orbital architecture of extrasolar planetary systems (Lithwick Y., Wu Y., 2014, PNAS; Batygin K., Morbidelli A., Holman M.J., 2015, ApJ) is at the heart of the orbital instabilities of seemingly more mundane celestial bodies---the Earth's navigation satellites. We will demonstrate that the occurrence and nature of the secular resonances driving these dynamics depend chiefly on one aspect of the Moon's perturbed motion, the regression of the line of nodes. This talk will present analytical models that accurately reflect the true nature of the resonant interactions, and will show how chaotic diffusion is mediated by the web-like structure of secular resonances. We will also present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. The obtained results have remarkable practical applications for space debris mitigation and for satellite technology, and are both of essential dynamical and theoretical importance, with broad implications for planetary science.

  3. GPS-Based Navigation and Orbit Determination for the AMSAT Phase 3D Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Carpenter, Russell; Moreau, Michael; Bauer, Frank H.; Long, Anne; Kelbel, David; Martin, Thomas

    2002-01-01

    This paper summarizes the results of processing GPS data from the AMSAT Phase 3D (AP3) satellite for real-time navigation and post-processed orbit determination experiments. AP3 was launched into a geostationary transfer orbit (GTO) on November 16, 2000 from Kourou, French Guiana, and then was maneuvered into its HEO over the next several months. It carries two Trimble TANS Vector GPS receivers for signal reception at apogee and at perigee. Its spin stabilization mode currently makes it favorable to track GPS satellites from the backside of the constellation while at perigee, and to track GPS satellites from below while at perigee. To date, the experiment has demonstrated that it is feasible to use GPS for navigation and orbit determination in HEO, which will be of great benefit to planned and proposed missions that will utilize such orbits for science observations. It has also shown that there are many important operational considerations to take into account. For example, GPS signals can be tracked above the constellation at altitudes as high as 58000 km, but sufficient amplification of those weak signals is needed. Moreover, GPS receivers can track up to 4 GPS satellites at perigee while moving as fast as 9.8 km/sec, but unless the receiver can maintain lock on the signals long enough, point solutions will be difficult to generate. The spin stabilization of AP3, for example, appears to cause signal levels to fluctuate as other antennas on the satellite block the signals. As a result, its TANS Vectors have been unable to lock on to the GPS signals long enough to down load the broadcast ephemeris and then generate position and velocity solutions. AP3 is currently in its eclipse season, and thus most of the spacecraft subsystems have been powered off. In Spring 2002, they will again be powered up and AP3 will be placed into a three-axis stabilization mode. This will significantly enhance the likelihood that point solutions can be generated, and perhaps more

  4. Ionosphere Delay Calibration and Calibration Errors for Satellite Navigation of Aircraft

    NASA Technical Reports Server (NTRS)

    Harris, Ian; Manucci, Anthony; Iijima, Byron; Lindqwister, Ulf; Muna, Demitri; Pi, Xiaoqing; Wilson, Brian

    2000-01-01

    The Federal Aviation Administration (FAA) is implementing a satellite-based navigation system for aircraft using the Global Positioning System (GPS). Positioning accuracy of a few meters will be achieved by broadcasting corrections to the direct GPS signal. These corrections are derived using the wide-area augmentation system (WAAS), which includes a ground network of at least 24 GPS receivers across the Continental US (CONUS). WAAS will provide real-time total electron content (TEC) measurements that can be mapped to fixed grid points using a real-time mapping algorithm. These TECs will be converted into vertical delay corrections for the GPS L1 frequency and broadcast to users every five minutes via geosynchronous satellite. Users will convert these delays to slant calibrations along their own lines-of-sight (LOS) to GPS satellites. Uncertainties in the delay calibrations will also be broadcast, allowing users to estimate the uncertainty of their position. To maintain user safety without reverting to excessive safety margins an empirical model of user calibration errors has been developed. WAAS performance depends on factors that include geographic location (errors increase near WAAS borders), and ionospheric conditions, such as the enhanced spatial electron density gradients found during ionospheric storms.

  5. Signal Strength-Based Global Navigation Satellite System Performance Assessment in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The second phase of that increasing complexity and fidelity analysis initiative is based on augmenting the Phase 1 pure geometrical approach with signal strength-based limitations to determine if access is valid. The second phase of analysis has been completed, and the results are documented in this paper.

  6. Chaos in navigation satellite orbits caused by the perturbed motion of the Moon

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Alessi, Elisa Maria; Rossi, Alessandro; Valsecchi, Giovanni B.

    2015-06-01

    Numerical simulations carried out over the past decade suggest that the orbits of the Global Navigation Satellite Systems are unstable, resulting in an apparent chaotic growth of the eccentricity. Here, we show that the irregular and haphazard character of these orbits reflects a similar irregularity in the orbits of many celestial bodies in our Solar system. We find that secular resonances, involving linear combinations of the frequencies of nodal and apsidal precession and the rate of regression of lunar nodes, occur in profusion so that the phase space is threaded by a devious stochastic web. As in all cases in the Solar system, chaos ensues where resonances overlap. These results may be significant for the analysis of disposal strategies for the four constellations in this precarious region of space.

  7. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  8. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System †

    PubMed Central

    Jan, Shau-Shiun; Tao, An-Lin

    2016-01-01

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region. PMID:27187403

  9. Comprehensive Comparisons of Satellite Data, Signals, and Measurements between the BeiDou Navigation Satellite System and the Global Positioning System.

    PubMed

    Jan, Shau-Shiun; Tao, An-Lin

    2016-05-13

    The Chinese BeiDou navigation satellite system (BDS) aims to provide global positioning service by 2020. The combined use of BDS and Global Positioning System (GPS) is proposed to provide navigation service with more stringent requirements. Actual satellite data, signals and measurements were collected for more than one month to analyze the positioning service qualities from both BDS and GPS. In addition to the conversions of coordinate and timing system, five data quality analysis (DQA) methods, three signal quality analysis (SQA) methods, and four measurement quality analysis (MQA) methods are proposed in this paper to improve the integrated positioning performance of BDS and GPS. As shown in the experiment results, issues related to BDS and GPS are resolved by the above proposed quality analysis methods. Thus, the anomalies in satellite data, signals and measurements can be detected by following the suggested resolutions to enhance the positioning performance of the combined use of BDS and GPS in the Asia Pacific region.

  10. Safety Cases for Global Navigation Satellite Systems' Safety of Life(SOL) Applications

    NASA Astrophysics Data System (ADS)

    Johnson, C. W.; Yepez, Amaya Atencia

    2010-09-01

    Global Navigation Satellite Systems(GNSS) have recently been enhanced to provide additional guarantees for the accuracy, integrity, reliability and coverage of their services. These infrastructures are intended to be robust against jamming. They support real-time self-diagnostic error detection and provide end-users with detailed information about precision and integrity. In consequence, they are gradually being introduced into safety-related applications. This paper argues that greater attention needs to be paid to the ways in which these navigation infrastructures are being integrated into the safety cases that support Safety of Life(SoL) applications. In particular, we contrast the significant investments that have been made in analysing the safety of GNSS aviation applications, such as en-route operations and non-precision approaches, with the relative lack of progress in other industries. There is also a need for greater consistency between the safety arguments that support similar GNSS applications. This helps to ensure that safety managers and regulators consider a similar set of hazards when seeking to integrate these new navigation infrastructures into SoL systems. While international aviation organisations have taken important steps to establish communication mechanisms within their industry, the same cannot be said for other industries. The ad hoc nature of the safety arguments supporting many recent proposals creates a danger that technological innovation will outstrip our commitment to mitigate or avoid future hazards. Unless these issues are addressed then accidents involving the first wave of SoL applications will further jeopardise the development of GNSS infrastructures.

  11. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  12. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications.

    PubMed

    Supej, Matej; Cuk, Ivan

    2014-12-08

    Global Navigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a  smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements.

  13. The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States

    NASA Technical Reports Server (NTRS)

    Craigie, J. H.; Otten, D. D.; Garabedian, A.; Morrison, D. D.; MALLINCKRODT; ZIPPER

    1970-01-01

    The objective was to determine on a priority basis the satellite applications to communications, navigation, and surveillance requirements for aircraft operating beyond 1975 over the contiguous United States and adjacent oceanic transition regions, and to determine if and how satellite technology can meet these requirements in a reliable, efficient, and economical manner. Major results and conclusions are as follows: (1) The satellite applications of greatest importance are surveillance and rapid collision warning communications; and (2) The necessary technology is available as demonstrated by an attractive system concept.

  14. A software radio approach to global navigation satellite system receiver design

    NASA Astrophysics Data System (ADS)

    Akos, Dennis Matthew

    1997-12-01

    The software radio has been described as the most significant evolution in receiver design since the development of the superheterodyne concept in 1918. The software radio design philosophy is to position an analog-to-digital converter (ADC) as close to the antenna as possible and then process the samples using a combination of software and a programmable microprocessor. There are a number of important advantages to be gained through full exploitation of the software radio concept. The most notable include: (1) The removal of analog signal processing components and their associated nonlinear, temperature-based, and age-based performance characteristics. (2) A single antenna/front-end configuration can be used to receive and demodulate a variety of radio frequency (RF) transmissions. (3) The software radio provides the ultimate simulation/testing environment. Global Navigation Satellite Systems (GNSSs) are the latest and most complex radionavigation systems in widespread use. The United States' Global Positioning System (GPS) and, to a lesser extent, the Russian Global Orbiting Navigation Satellite System (GLONASS) are being targeted for use as next generation aviation navigation systems. As a result, it is critical that a GNSS achieve the reliability and integrity necessary for use within the aerospace system. The receiver design is a key element in achieving the high standards required. This work presents the complete development of a GNSS software radio. A GNSS receiver front end has been constructed, based on the software radio design goals, and has been evaluated against the traditional design. Trade-offs associated with each implementation are presented along with experimental results. Novel bandpass sampling front end designs have been proposed, implemented and tested for the processing of multiple GNSS transmissions. Finally, every aspect of GNSS signal processing has been implemented in software from the necessary spread spectrum acquisition algorithms to

  15. Global Navigation Satellite Systems and Space Weather: Building upon the International Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Gadimova, S. H.; Haubold, H. J.

    2014-01-01

    Globally there is growing interest in better unders tanding solar-terrestrial interactions, particularly patterns and trends in space weather. This is not only for scientific reasons, but also because the reliable operation of ground-based and space-based assets and infrastructures is increasingly dependent on their robustness against the detrimental effects of space weather. Consequently, in 2009, the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) proposed the International Space Weather Initiative (ISWI), as a follow-up activity to the International Heliophysical Year 2007 (IHY2007), to be implemented under a three-year workplan from 2010 to 2012 (UNGA Document, A/64/20). All achievements of international cooperation and coordination for ISWI, including instrumentation, data analysis, modelling, education, training and public outreach, are made a vailable through the ISWI Newsletter and the ISWI Website (http://www.iswi-secretariat.org/). Since the last solar maximum in 2000, societal dependence on global navigation satellite system (GNSS) has increased substantially. This situation has brought increasing attention to the subject of space weather and its effects on GNSS systems and users. Results concerning the impact of space weather on GNSS are made available at the Information Portal (www.unoosa.org) of the International Committee on Global Navigati on Satellite Systems (ICG). This paper briefly reviews the curre nt status of ISWI with regard to GNSS.

  16. Research on long-term autonomous orbit determination for navigation constellation using inter-satellite orientation observation information

    NASA Astrophysics Data System (ADS)

    Li, Bo; Xu, Bo; Wang, Hai-Hong

    2009-12-01

    Long-term autonomous orbit determination is one of the key techniques of autonomous navigation for navigation constellation. Based only on cross-link range observation, which is not able to overcome the defect of entire constellation rotation and translation relative to inertial reference frame, the accuracy of autonomous orbit determination is reduced with time. In order to solve this problem, the approach of using inter-satellite orientation observation is put forward to estimate the constellation rotation and translation with the benefit of absolute position information provided by stars. In view of the fact that most navigation satellites moving in near circular orbits, and also in order to reduce the calculation burden of onboard computer, nonsingular orbital elements are chosen as state variables and analytical method is used to calculate the transition matrix in this paper. In addition, the extended Kalman filter is designed to fuse information of satellite dynamic model, cross-link range observation and inter-satellite orientation observation to determine the orbit. The simulation results based on the IGS Final Products of GPS constellation indicate that, at the certain error condition of range and orientation measurement, the URE of constellation is better than 2 meters within 120 days.

  17. Precision Navigation of Cassini Images Using Rings, Icy Satellites, and Fuzzy Bodies

    NASA Astrophysics Data System (ADS)

    French, Robert S.; Showalter, Mark R.; Gordon, Mitchell K.

    2016-10-01

    Before images from the Cassini spacecraft can be analyzed, errors in the published pointing information (up to ~110 pixels for the Imaging Science Subsystem Narrow Angle Camera) must be corrected so that the line of sight vector for each pixel is known. This complicated and labor-intensive process involves matching the image contents with known features such as stars, rings, or moons. Metadata, such as lighting geometry or ring radius and longitude, must be computed for each pixel as well. Both steps require mastering the SPICE toolkit, a highly capable piece of software with a steep learning curve. Only after these steps are completed can the actual scientific investigation begin.We have embarked on a three-year project to perform these steps for all 400,000+ Cassini ISS images as well as images taken by the VIMS, UVIS, and CIRS instruments. The result will be a series of SPICE kernels that include accurate pointing information and a series of backplanes that include precomputed metadata for each pixel. All data will be made public through the PDS Ring-Moon Systems Node (http://www.pds-rings.seti.org). We expect this project to dramatically decrease the time required for scientists to analyze Cassini data.In a previous poster (French et al. 2014, DPS #46, 422.01) we discussed our progress navigating images using stars, simple ring models, and well-defined icy bodies. In this poster we will report on our current progress including the use of more sophisticated ring models, navigation of "fuzzy" bodies such as Titan and Saturn, and use of crater matching on high-resolution images of the icy satellites.

  18. Ionospheric TEC Estimations with the Signals of Various Geostationary Navigational Satellites

    NASA Astrophysics Data System (ADS)

    Kurbatov, G. A.; Padokhin, A. M.; Kunitsyn, V.; Yasyukevich, Y.

    2015-12-01

    The development of GNSS and SBAS systems provides the possibility to retrieve ionospheric TEC from the dual frequency observations from a number of geostationary satellites using the same approach as for dual frequency GPS/GLONASS observations. In this connection, the quality of geostationary data, first of all the level of noise in TEC estimations is of great interest and importance. In this work we present the results of the comparison of the noise patterns in TEC estimations using signals of geostationary satellites of augumentation systems - indian GAGAN, european EGNOS and american WAAS, as well as the signals of chinees COMPASS/Beidou navigational system. We show that among above mentioned systems geostationary COMPASS/Beidou satellites provide best noise level in TEC estimations (RMS~0.1TECU), which corresponds to those of GPS/GLONASS, while GAGAN and WAAS TEC RMS could reach up to 1.5 TECU with typical values of 0.25-0.5 TECU which is up to one order greater than for common GPS/GLONASS observations. EGNOS TEC estimations being even more noisy (TEC RMS up to 10TECU) than WAAS and GAGAN ones at present time are not suitable for ionospheric studies. We also present geostationary TEC response to increasing solar X-Ray and EUV ionizing radiation during several recent X-class flares. Good correlation was found between TEC and EUV flux for the stations at the sunlit hemisphere. We also present geostationary TEC response to geomagnetic field variations during strong and moderate geomagnetic storms (including G4 St. Patricks Day Storm of 2015) showing examples of both positive and negative TEC anomalies of order of tens of TECU during main storm phase. Our results show the capability of geostationary GNSS and SBAS observations for continuous monitoring of ionospheric TEC. Intensively growing networks of dedicated receivers (for example MGEX network) and increasing number of dual-frequency geostationary satellites in SBAS and GNSS constellations potentially make it a

  19. A LEO Satellite Navigation Algorithm Based on GPS and Magnetometer Data

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.; Harman, Rick

    2000-01-01

    The Global Position System (GPS) has become a standard method for low cost onboard satellite orbit determination. The use of GPS as an attitude and rate sensor has also been developed in the recent past. Additionally, focus has been given to attitude and orbit estimation using the magnetometer, a low cost, reliable sensor. Combining measurements from both GPS and a magnetometer can provide a robust navigation system which takes advantage of the estimation qualities of both measurements. Ultimately a low cost, accurate navigation system can result, potentially eliminating the need for more costly sensors, including gyroscopes. This work presents the development and preliminary testing of a unified navigation algorithm which produces estimates of attitude, angular rate, position, and velocity for a low earth orbit (LEO) spacecraft. The system relies on GPS phase, range, and range rate data as well as magnetometer data. The algorithm used is an extended Kalman filter (EKF) developed to provide LEO attitude, orbit, and rate estimates using magnetometer and sun sensor data. Incorporating sun sensor data into the EKF improved the attitude and rate estimates. For many LEO spacecraft the sun data is available during only a portion of the orbit. However, GPS data is available continuously throughout the orbit. GPS can produce accurate orbit estimates and combining GPS and magnetometer data improves the attitude and rate estimates. The magnetometer based EKF can converge from large initial errors in position, velocity, and 3 attitude . Combining the magnetometer and GPS data into a single EKF will provide a more robust and accurate system. The EKF is based on an existing EKF. The GPS measurement models for phase, range, and range rate are incorporated into the existing structure of the filter. The original EKF produced the orbit estimates in terms of Keplerian elements. Due to the nature of the GPS measurements and ease of computation, the orbit estimates are converted to

  20. Can global navigation satellite system signals reveal the ecological attributes of forests?

    NASA Astrophysics Data System (ADS)

    Liu, Jingbin; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Zhu, Lingli; Wang, Yunsheng; Hyyppä, Hannu

    2016-08-01

    Forests have important impacts on the global carbon cycle and climate, and they are also related to a wide range of industrial sectors. Currently, one of the biggest challenges in forestry research is effectively and accurately measuring and monitoring forest variables, as the exploitation potential of forest inventory products largely depends on the accuracy of estimates and on the cost of data collection. A low-cost crowdsourcing solution is needed for forest inventory to collect forest variables. Here, we propose global navigation satellite system (GNSS) signals as a novel type of observables for predicting forest attributes and show the feasibility of utilizing GNSS signals for estimating important attributes of forest plots, including mean tree height, mean diameter at breast height, basal area, stem volume and tree biomass. The prediction accuracies of the proposed technique were better in boreal forest conditions than those of the conventional techniques of 2D remote sensing. More importantly, this technique provides a novel, cost-effective way of collecting large-scale forest measurements in the crowdsourcing context. This technique can be applied by, for example, harvesters or persons hiking or working in forests because GNSS devices are widely used, and the field operation of this technique is simple and does not require professional forestry skills.

  1. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  2. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  3. GLONASS-R: GNSS reflectometry with a Frequency Division Multiple Access-based satellite navigation system

    NASA Astrophysics Data System (ADS)

    Hobiger, T.; Haas, R.; Löfgren, J. S.

    2014-04-01

    The information from reflected Global Navigation Satellite System (GNSS) signals can become a valuable data source, from which geophysical properties can be deduced. This approach, called GNSS Reflectometry (GNSS-R), can be used to develop instruments that act like an altimeter when arrival times of direct and reflected signals are compared. Current GNSS-R systems usually entirely rely on signals from the Global Positioning Service (GPS), and field experiments could demonstrate that information from such systems can measure sea level with an accuracy of a few centimeters. However, the usage of the Russian GLONASS system has the potential to simplify the processing scheme and to allow handling of direct and reflected signals like a bistatic radar. Thus, such a system has been developed and deployed for test purposes at the Onsala Space Observatory, Sweden, that has an operational GPS-based GNSS-R system. Over a period of 2 weeks in October 2013, GPS-based GNSS-R sea level monitoring and measurements with the newly developed GLONASS-R system were carried out in parallel. In addition, data from colocated tide gauge measurements were available for comparison. It can be shown that precision and accuracy of the GLONASS-based GNSS-R system is comparable to, or even better than, conventional GPS-based GNSS-R solutions. Moreover, the simplicity of the newly developed GLONASS-R system allows to make it a cheap and valuable tool for various remote sensing applications.

  4. Comparison of Global Navigation Satellite System Devices on Speed Tracking in Road (Tran)SPORT Applications

    PubMed Central

    Supej, Matej; Čuk, Ivan

    2014-01-01

    Global Naavigation Satellite Systems (GNSS) are, in addition to being most widely used vehicle navigation method, becoming popular in sport-related tests. There is a lack of knowledge regarding tracking speed using GNSS, therefore the aims of this study were to examine under dynamic conditions: (1) how accurate technologically different GNSS measure speed and (2) how large is latency in speed measurements in real time applications. Five GNSSs were tested. They were fixed to a car's roof-rack: a smart phone, a wrist watch, a handheld device, a professional system for testing vehicles and a high-end Real Time Kinematics (RTK) GNSS. The speed data were recorded and analyzed during rapid acceleration and deceleration as well as at steady speed. The study produced four main findings. Higher frequency and high quality GNSS receivers track speed at least at comparable accuracy to a vehicle speedometer. All GNSS systems measured maximum speed and movement at a constant speed well. Acceleration and deceleration have different level of error at different speeds. Low cost GNSS receivers operating at 1 Hz sampling rate had high latency (up to 2.16 s) and are not appropriate for tracking speed in real time, especially during dynamic movements. PMID:25494349

  5. Determination of External Forces in Alpine Skiing Using a Differential Global Navigation Satellite System

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Müller, Erich

    2013-01-01

    In alpine ski racing the relationships between skier kinetics and kinematics and their effect on performance and injury-related aspects are not well understood. There is currently no validated system to determine all external forces simultaneously acting on skiers, particularly under race conditions and throughout entire races. To address the problem, this study proposes and assesses a method for determining skier kinetics with a single lightweight differential global navigation satellite system (dGNSS). The dGNSS kinetic method was compared to a reference system for six skiers and two turns each. The pattern differences obtained between the measurement systems (offset ± SD) were −26 ± 152 N for the ground reaction force, 1 ± 96 N for ski friction and −6 ± 6 N for the air drag force. The differences between turn means were small. The error pattern within the dGNSS kinetic method was highly repeatable and precision was therefore good (SD within system: 63 N ground reaction force, 42 N friction force and 7 N air drag force) allowing instantaneous relative comparisons and identification of discriminative meaningful changes. The method is therefore highly valid in assessing relative differences between skiers in the same turn, as well as turn means between different turns. The system is suitable to measure large capture volumes under race conditions. PMID:23917257

  6. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  7. TRAN*STAR 2 evaluation for NOAA data buoy office, part A. [utilizing the US Navy Navigation Satellite System

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The capability of the TRAN*STAR 2 receiver equipment utilizing the U.S. Navy Navigation Satellite System to provide reliable position locations with reasonable accuracy and frequency was evaluated. Two receivers, an antenna, and a test set were procured, and position fix data collected at NSTL from a fixed known location during the months of May and June. The data were processed through a computer program and analyzed. The results of the evaluation are summarized.

  8. Hardware-in-the-loop simulations of GPS-based navigation and control for satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Jae-Ik; Park, Han-Earl; Park, Sang-Young; Choi, Kyu-Hong

    2010-12-01

    A relative navigation and formation control algorithm for satellite formation flying was developed, and a hardware-in-the-loop (HIL) simulation testbed was established and configured to evaluate this algorithm. The algorithm presented is a relative navigation estimation algorithm using double-difference carrier-phase and single-difference code measurements based on the extended Kalman filter (EKF). In addition, a state-dependent Riccati equation (SDRE) technique is utilized as a nonlinear controller for the formation control problem. The state-dependent coefficient (SDC) form is formulated to include nonlinearities in the relative dynamics. To evaluate the relative navigation and control algorithms developed, a closed-loop HIL testbed is configured. To demonstrate the performance of the testbed, a test formation flying scenario comprising formation acquisition and keeping in a low earth orbit (LEO) has been established. The relative navigation results from the closed-loop simulations show that a 3D RMS of 0.07 m can be achieved for position accuracy. The targeted leader-follower formation flying in the along-track separation of 100 m was maintained with a mean position error of approximately 0.2 m and a standard deviation of 0.9 m. The simulation results show that the HIL testbed is capable of successful demonstration of the GPS-based satellite autonomous formation flying mission.

  9. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  10. Implementation of a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    LaBrecque, John

    2016-04-01

    The Global Geodetic Observing System has issued a Call for Participation to research scientists, geodetic research groups and national agencies in support of the implementation of the IUGG recommendation for a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems. The call seeks to establish a working group to be a catalyst and motivating force for the definition of requirements, identification of resources, and for the encouragement of international cooperation in the establishment, advancement, and utilization of GNSS for Tsunami Early Warning. During the past fifteen years the populations of the Indo-Pacific region experienced a series of mega-thrust earthquakes followed by devastating tsunamis that claimed nearly 300,000 lives. The future resiliency of the region will depend upon improvements to infrastructure and emergency response that will require very significant investments from the Indo-Pacific economies. The estimation of earthquake moment magnitude, source mechanism and the distribution of crustal deformation are critical to rapid tsunami warning. Geodetic research groups have demonstrated the use of GNSS data to estimate earthquake moment magnitude, source mechanism and the distribution of crustal deformation sufficient for the accurate and timely prediction of tsunamis generated by mega-thrust earthquakes. GNSS data have also been used to measure the formation and propagation of tsunamis via ionospheric disturbances acoustically coupled to the propagating surface waves; thereby providing a new technique to track tsunami propagation across ocean basins, opening the way for improving tsunami propagation models, and providing accurate warning to communities in the far field. These two new advancements can deliver timely and accurate tsunami warnings to coastal communities in the near and far field of mega-thrust earthquakes. This presentation will present the justification for and the details of the GGOS Call for

  11. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  12. Global Navigation Satellite Systems Data Handling, Archiving, Preservation, and Distribution Through the UNAVCO Data Center

    NASA Astrophysics Data System (ADS)

    Boler, F.; Stolte, C.; Riley, J.; Davis, J.; Estey, L.; Beldyk, M.

    2007-12-01

    The UNAVCO Data Center in Boulder, Colorado, archives for preservation and distributes freely accessible high- precision Global Navigation Satellite System (GNSS) data and products to the scientific and education community. The data, which are useful for geodesy, tectonic, volcanological, ice mass, glacial isostatic adjustment, meteorological and other studies, come from 1500 continuously operating stations and 8000 survey- mode observation points around the globe that are operated by over 100 U.S. and international members of the UNAVCO Consortium. These data represent the efforts of individual investigator research projects, large networks such as the NASA Global GNSS Network, the U.S. Geological Survey southern California network, and the very large EarthScope Plate Boundary Observatory that is funded by the U.S. National Science Foundation. By policy, all permanent GNSS station data from UNAVCO are freely available. The Data Center archives, catalogs, and delivers millions of GNSS data products annually. The Data Center also archives for preservation and distributes spaceborne SAR data that are in many ways complementary to the GNSS data collection. SAR data holdings are being acquired in concert with the WInSAR Consortium activities and the GeoEarthScope project and are subject to data distribution restrictions. The metadata for UNAVCO's GNSS data holdings are stored in an Oracle database that supports a rich set of web-based interactions to allow data search, access, and delivery. A metadata exchange with other GNSS data archives has been in place for nearly ten years allowing participants to show each other's holdings as a seamless archive. Efforts are underway to expand and modernize this type of data and metadata exchange through webservices, Open Geospatial Consortium WFS/WMS services, and to maximize the utilization of freely available spatial display technologies such as GoogleEarth. Many users access the UNAVCO GNSS data archives through automated

  13. The design and implementation of a rescue terminal with vital signs telemonitoring based on Beidou 1 navigation satellite system.

    PubMed

    Zhao, Junping; Zheng, Bing; Zhang, Xuan; Wang, Jun; Zhou, Yubin; Chen, Shifu; Zhang, Meikui; Zhou, Li; Chen, Xiaohong; Liu, Tongze

    2011-03-01

    This article presents the design and applications of a rescue terminal with positioning, vital signs sensing, and communicating function for special environment. The terminal provides three-dimensional positioning functionality via China's Beidou 1 Navigation Satellite (BD1) System and can collect users' vital signs with a set of wireless sensors. A controller of the terminal is in charge of processing data collected from the wireless sensors and communicating with the monitoring platform. With features such as small sizing, low power consumption, and accurate positioning, this terminal is very helpful in special circumstances such as disaster relief, dangerous outdoor sports and adventure monitoring, and antiterrorism activities.

  14. The Fixed-bias Langmuir Probe on the Communication-navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, Jeffrey H.; Rowland, Douglas E.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasmadensity is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future xed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  15. The Fixed-Bias Langmuir Probe on the Communication-Navigation Outage Forecast System Satellite: Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; Rowland, D.

    2012-01-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication Navigation Outage Forecast System (CNOFS) satellite.CNOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H+ and O+. The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the CNOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on CNOFS.

  16. Lightning-Generated Whistler Waves Observed by Probes On The Communication/Navigation Outage Forecast System Satellite at Low Latitudes

    NASA Technical Reports Server (NTRS)

    Holzworth, R. H.; McCarthy, M. P.; Pfaff, R. F.; Jacobson, A. R.; Willcockson, W. L.; Rowland, D. E.

    2011-01-01

    Direct evidence is presented for a causal relationship between lightning and strong electric field transients inside equatorial ionospheric density depletions. In fact, these whistler mode plasma waves may be the dominant electric field signal within such depletions. Optical lightning data from the Communication/Navigation Outage Forecast System (C/NOFS) satellite and global lightning location information from the World Wide Lightning Location Network are presented as independent verification that these electric field transients are caused by lightning. The electric field instrument on C/NOFS routinely measures lightning ]related electric field wave packets or sferics, associated with simultaneous measurements of optical flashes at all altitudes encountered by the satellite (401.867 km). Lightning ]generated whistler waves have abundant access to the topside ionosphere, even close to the magnetic equator.

  17. The fixed-bias Langmuir probe on the Communication/Navigation Outage Forecast System satellite: calibration and validation.

    PubMed

    Klenzing, J; Rowland, D

    2012-11-01

    A fixed-bias spherical Langmuir probe is included as part of the Vector Electric Field Instrument (VEFI) suite on the Communication/Navigation Outage Forecast System (C/NOFS) satellite. C/NOFS gathers data in the equatorial ionosphere between 400 and 860 km, where the primary constituent ions are H(+) and O(+). The ion current collected by the probe surface per unit plasma density is found to be a strong function of ion composition. The calibration of the collected current to an absolute density is discussed, and the performance of the spherical probe is compared to other in situ instruments on board the C/NOFS satellite. The application of the calibration is discussed with respect to future fixed-bias probes; in particular, it is demonstrated that some density fluctuations will be suppressed in the collected current if the plasma composition rapidly changes along with density. This is illustrated in the observation of plasma density enhancements on C/NOFS.

  18. Accuracy analysis of continuous deformation monitoring using BeiDou Navigation Satellite System at middle and high latitudes in China

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Xi, Ruijie; Chen, Hua; Xiao, Yugang

    2017-02-01

    As BeiDou Navigation Satellite System (BDS) has been operational in the whole Asia-Pacific region, it means a new GNSS system with a different satellite orbit structure will become available for deformation monitoring in the future. Conversely, GNSS deformation monitoring data are always processed with a regular interval to form displacement time series for deformation analysis, where the interval can neither be too long from the time perspective nor too short from the precision of determined displacements angle. In this paper, two experimental platforms were designed, with one being at mid-latitude and another at higher latitude in China. BDS data processing software was also developed for investigating the accuracy of continuous deformation monitoring using current in-orbit BDS satellites. Data over 20 days at both platforms were obtained and were processed every 2, 4 and 6 h to generate 3 displacement time series for comparison. The results show that with the current in-orbit BDS satellites, in the mid-latitude area it is easy to achieve accuracy of 1 mm in horizontal component and 2-3 mm in vertical component; the accuracy could be further improved to approximately 1 mm in both horizontal and vertical directions when combined BDS/GPS measurements are employed. At higher latitude, however, the results are not as good as expected due to poor satellite geometry, even the 6 h solutions could only achieve accuracy of 4-6 and 6-10 mm in horizontal and vertical components, respectively, which implies that it may not be applicable to very high-precision deformation monitoring at high latitude using the current BDS. With the integration of BDS and GPS observations, however, in 4-h session, the accuracy can achieve 2 mm in horizontal component and 4 mm in vertical component, which would be an optimal choice for high-accuracy structural deformation monitoring at high latitude.

  19. GPS-Based Navigation And Orbit Determination for the AMSAT AO-40 Satellite

    NASA Technical Reports Server (NTRS)

    Davis, George; Moreau, Michael; Carpenter, Russell; Bauer, Frank

    2002-01-01

    The AMSAT OSCAR-40 (AO-40) spacecraft occupies a highly elliptical orbit (HEO) to support amateur radio experiments. An interesting aspect of the mission is the attempted use of GPS for navigation and attitude determination in HEO. Previous experiences with GPS tracking in such orbits have demonstrated the ability to acquire GPS signals, but very little data were produced for navigation and orbit determination studies. The AO-40 spacecraft, flying two Trimble Advanced Navigation Sensor (TANS) Vector GPS receivers for signal reception at apogee and at perigee, is the first to demonstrate autonomous tracking of GPS signals from within a HEO with no interaction from ground controllers. Moreover, over 11 weeks of total operations as of June 2002, the receiver has returned a continuous stream of code phase, Doppler, and carrier phase measurements useful for studying GPS signal characteristics and performing post-processed orbit determination studies in HEO. This paper presents the initial efforts to generate AO-40 navigation solutions from pseudorange data reconstructed from the TANS Vector code phase, as well as to generate a precise orbit solution for the AO-40 spacecraft using a batch filter.

  20. Satellite-station time synchronization information based real-time orbit error monitoring and correction of navigation satellite in Beidou System

    NASA Astrophysics Data System (ADS)

    He, Feng; Zhou, ShanShi; Hu, XiaoGong; Zhou, JianHua; Liu, Li; Guo, Rui; Li, XiaoJie; Wu, Shan

    2014-07-01

    Satellite-station two-way time comparison is a typical design in Beidou System (BDS) which is significantly different from other satellite navigation systems. As a type of two-way time comparison method, BDS time synchronization is hardly influenced by satellite orbit error, atmosphere delay, tracking station coordinate error and measurement model error. Meanwhile, single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination (MPOD) with pseudo-range and carrier phase of monitor receiver. It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison, and that may lead to a substitute for orbit evaluation by SLR. In this article, the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS. Considering the all-weather and real-time operation mode of two-way time comparison, the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization. In addition, the orbit error can be predicted and corrected in a short time based on its periodic characteristic. It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message, and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%. Though it is still hard to make accuracy improvement for Precision Orbit Determination (POD) and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization, in this paper, a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.

  1. Estimating and assessing Galileo navigation system satellite and receiver differential code biases using the ionospheric parameter and differential code bias joint estimation approach with multi-GNSS observations

    NASA Astrophysics Data System (ADS)

    Xue, Junchen; Song, Shuli; Liao, Xinhao; Zhu, Wenyao

    2016-04-01

    With the increased number of Galileo navigation satellites joining the Global Navigation Satellite Systems (GNSS) service, there is a strong need for estimating their differential code biases (DCBs) for high-precision GNSS applications. There have been studies for estimating DCBs based on an external global ionospheric model (GIM) proposed by Montenbruck et al. (2014). In this study, we take a different approach by joining the construction of a GIM and estimating DCB together with multi-GNSS observations, including GPS, the BeiDou navigation system, and the Galileo navigation system (GAL). This approach takes full advantage of the collective strength of the individual systems while maintaining high solution consistency. Daily GAL DCBs were estimated simultaneously with ionospheric model parameters from 3 months' multi-GNSS observations. The stability of the resulting GAL DCB estimates was analyzed in detail. It was found that the standard deviations (STDs) of all satellite DCBs were less than 0.17 ns. For GAL receivers, the STDs were greater than for the satellites, with most values <2 ns. Comparison of the statistics of time-ranged stability of satellite DCBs over different time intervals revealed that the difference in STD between 28 and 7 day intervals was small, with the maximum not exceeding 0.01 ns. In almost all cases, the difference in GAL satellite DCBs between two consecutive days was <0.8 ns. The main conclusion is that based on the stability of the GAL DCBs, only occasional calibration is required. Furthermore, the 30 day-averaged satellite DCBs may satisfy the requirement of high-precision applications depending on the GAL satellite DCBs.

  2. Inter-satellite links: A versatile tool for geodesy and planetary and interplanetary navigation

    NASA Astrophysics Data System (ADS)

    Schlicht, Anja; Hugentobler, Urs; Hauk, Markus; Murböck, Michael; Pail, Roland

    2016-07-01

    With the use of low-low satellite-to-satellite tracking gravity field recovery made a big step forward. Based on this technique the Gravity Recovery And Climate Experiment (GRACE) mission delivers monthly gravity field with high precision, allowing to measure effects in Earth water storage basins and variations in ice mass in Greenland and Antarctica from space. GRACE is using a Ka-band inter-satellite ranging technique, GRACE Follow-On will in addition test optical ranging. In fundamental physics high-precision optical inter-satellite tracking will be used to detect gravitational waves in space, as a first step LISA Pathfinder was launched recently. Inter-satellite links are not only used for ranging, also data transfer in space is based on such links. ESA's European Data Relay System will be established in up-coming years to collect data from the low orbiting Sentinel satellites and transfer the high data rate to ground. The same link may be used for ranging, data transfer and time transfer, a functionality that is discussed for next generation Galileo satellites. But to exploit this synergy a common concept for all three tasks has to be developed. In this paper we show that with inter-satellite ranging techniques with µm accuracy the limited accuracy of GNSS based orbit determination of low Earth orbiters (LEO), which is due to the limitations of one-way microwave tracking (unsynchronized clocks, phase center variations and offsets of the sending and receiving antennas) can be overcome. In the ESA study GETRIS the following question is answered: How can a highly accurate and precise GEO-based two-way ranging method support GNSS tracking? The reduction of systematic errors in LEO precise orbit determination (POD) by exploiting the synergy between ranging, data- and time-transfer is assessed in a concept consisting of precise two-way GEO-LEO tracking (as used for data transfer) and an ultra-stable oscillator on-board of the geostationary satellite (GEO

  3. Submicrosecond comparisons of time standards via the Navigation Technology Satellites (NTS)

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Mccaskill, T.; Oaks, J.; Lynch, D.; Wardrip, S. C.; Whitworth, G.

    1978-01-01

    An interim demonstration was performed of the time transfer capability of the NAVSTAR GPS system using a single NTS satellite. Measurements of time difference (pseudo-range) are made from the NTS tracking network and at the participating observatories. The NTS network measurements are used to compute the NTS orbit trajectory. The central NTS tracking station has a time link to the Naval Observatory UTC (USNO,MC1) master clock. Measurements are used with the NTS receiver at the remote observatory, the time transfer value UTC (USNO,MC1)-UTC (REMOTE, VIA NTS) is calculated. Intercomparisons were computed using predicted values of satellite clock offset and ephemeus.

  4. Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation

    DTIC Science & Technology

    2015-06-01

    printed using the Fortus 400mc 3D rapid- prototyping printer of the NPS Space Systems Academic Group, while the internal structure is made of aluminum...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VISION-BASED 3D ...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE VISION-BASED 3D MOTION ESTIMATION FOR ON-ORBIT PROXIMITY SATELLITE TRACKING

  5. A robust TEC depletion detector algorithm for satellite based navigation in Indian zone and depletion analysis for GAGAN

    NASA Astrophysics Data System (ADS)

    Dashora, Nirvikar

    2012-07-01

    Equatorial plasma bubble (EPB) and associated plasma irregularities are known to cause severe scintillation for the satellite signals and produce range errors, which eventually result either in loss of lock of the signal or in random fluctuation in TEC, respectively, affecting precise positioning and navigation solutions. The EPBs manifest as sudden reduction in line of sight TEC, which are more often called TEC depletions, and are spread over thousands of km in meridional direction and a few hundred km in zonal direction. They change shape and size while drifting from one longitude to another in nighttime ionosphere. For a satellite based navigation system, like GAGAN in India that depends upon (i) multiple satellites (i.e. GPS) (ii) multiple ground reference stations and (iii) a near real time data processing, such EPBs are of grave concern. A TEC model generally provides a near real-time grid based ionospheric vertical errors (GIVEs) over hypothetically spread 5x5 degree latitude-longitude grid points. But, on night when a TEC depletion occurs in a given longitude sector, it is almost impossible for any system to give a forecast of GIVEs. If loss-of-lock events occur due to scintillation, there is no way to improve the situation. But, when large and random depletions in TEC occur with scintillations and without loss-of-lock, it affects low latitude TEC in two ways. (a) Multiple satellites show depleted TEC which may be very different from model-TEC values and hence the GIVE would be incorrect over various grid points (ii) the user may be affected by depletions which are not sampled by reference stations and hence interpolated GIVE within one square would be grossly erroneous. The most general solution (and the far most difficult as well) is having advance knowledge of spatio-temporal occurrence and precise magnitude of such depletions. While forecasting TEC depletions in spatio-temporal domain are a scientific challenge (as we show below), operational systems

  6. Satellites

    SciTech Connect

    Burns, J.A.; Matthews, M.S.

    1986-01-01

    The present work is based on a conference: Natural Satellites, Colloquium 77 of the IAU, held at Cornell University from July 5 to 9, 1983. Attention is given to the background and origins of satellites, protosatellite swarms, the tectonics of icy satellites, the physical characteristics of satellite surfaces, and the interactions of planetary magnetospheres with icy satellite surfaces. Other topics include the surface composition of natural satellites, the cratering of planetary satellites, the moon, Io, and Europa. Consideration is also given to Ganymede and Callisto, the satellites of Saturn, small satellites, satellites of Uranus and Neptune, and the Pluto-Charon system.

  7. The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry.

    PubMed Central

    Luschi, P; Hays, G C; Del Seppia, C; Marsh, R; Papi, F

    1998-01-01

    Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues. PMID:9881473

  8. The second-order Rytov approximation and residual error in dual-frequency satellite navigation systems

    NASA Astrophysics Data System (ADS)

    Kim, B. C.; Tinin, M. V.

    The second-order Rytov approximation has been used to determine ionospheric corrections for the phase path up to third order. We show the transition of the derived expressions to previous results obtained within the ray approximation using the second-order approximation of perturbation theory by solving the eikonal equation. The resulting equation for the phase path is used to determine the residual ionospheric first-, second- and third-order errors of a dual-frequency navigation system, with diffraction effects taken into account. Formulas are derived for the biases and variances of these errors, and these formulas are analyzed and modeled for a turbulent ionosphere. The modeling results show that the third-order error that is determined by random irregularities can be dominant in the residual errors. In particular, the role of random irregularities is enhanced for small elevation angles. Furthermore, in the case of small angles the role of diffraction effects increases. It is pointed out that a need to pass on to diffraction formulas arises when the Fresnel radius exceeds the inner scale of turbulence.

  9. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the

  10. Electron content of the ionosphere and the plasma sphere on the basis of ATS-6-Data, NNSS-data, and ionograms. [Navy Navigation Satellite System

    NASA Technical Reports Server (NTRS)

    Leitinger, R.; Hartmann, G. K.; Davies, K.

    1976-01-01

    The reported investigation takes into account data obtained with the aid of the geostationary satellite ATS-6, the satellites of the U.S. navy navigation system (NNSS) at an altitude between 900 and 1200 km, and the satellites ISIS 1 and ISIS 2. The altitude range between ground and ATS-6 is divided into two regions, including the 'ionosphere', involving the region with an upper limit of 2000 km, and the 'plasma sphere', involving the region above an altitude of 2000 km. Data concerning the electron content obtained from different sources are compared, taking into account discrepancies between ionogram-derived values and values computed on the basis of satellite measurements. Attention is also given to the vertical electron content of the ionosphere on the basis of a combination of data obtained with the aid of the ATS-6 and the NNSS.

  11. Variability of the Tropospheric-Delay Temporal Structure Function of Radio Signals from the Global Navigation Satellite Systems Versus Tropospheric Surface Layer Parameters

    NASA Astrophysics Data System (ADS)

    Khutorov, V. E.; Teptin, G. M.; Zhuravlev, A. A.; Khutorova, O. G.

    2016-11-01

    We present the results of a four-year (2009-2012) study of the decimeter radio wave propagation using signals from the global navigation satellite system (GNSS) and simultaneous measurements of the tropospheric surface layer parameters in the city of Kazan. Inter- and intra-annual variabilities of the temporal structure functions of the zenith tropospheric delay (ZTD) of decimeter radio waves are analyzed. It has been found that the contribution of irregularities with time scales of up to 24 h to the ZTD fluctuation variance varies, depending on the surface weather parameters (temperature and pressure). Correlation coefficient between the approximation exponents of the ZTD temporal structure function of decimeter radio waves and surface temperature reaches 0.77 for fluctuations with time scales of up to 8 h. It has been established that synoptic processes and the underlying surface affect the formation of mesoscale fluctuations on the phase path of radio signals from the navigation satellite systems.

  12. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas.

    PubMed

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-08-28

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N₀) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N₀. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N₀. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area.

  13. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Qian, Xiaodong; Wu, X.

    2017-02-01

    Sea level changes affect human living environments, particularly ocean coasts. The tide gauges (TG) can measure sea level change, while it is the relative variations with respect to the land. Recently, GPS-Reflectometry (GPS-R) has been demonstrated to measure sea level change as an altimetry. With the rapid development of China's BeiDou Navigation Satellite System (BDS), it may provide a new possible opportunity to monitor sea level changes with three frequencies (L2, L6 and L7). In this paper, BDS-Reflectometry (BDS-R) is the first time used to estimate the sea level changes based on Signal-to-Noise Ratio (SNR) data and triple-frequency phase and code combinations, which are compared to tide gauge observations. Results show that sea level changes from BDS SNR and phase combination have a good agreement with correlation coefficients of 0.83-0.91 and RMSEs of less than 0.6 m, while BDS code combination is not as good as others. Furthermore, a new negative linear model between phase and code peak frequencies and tide gauge observations is further obtained and analyzed, which improves the results from three-frequency phase and code combinations with the RMSE of about 10 cm and 18 cm.

  14. Force Modeling and State Propagation for Navigation and Maneuver Planning for the Proximity Operations Nano-Satellite Flight Demonstration Mission

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Griesbach, J.; Westphal, J.; Hawes, D.; Carrico, J.

    2013-09-01

    The state propagation accuracy resulting from different choices of gravitational force models and orbital perturbations is investigated for a pair of CubeSats flying in formation in low Earth orbit (LEO). Accurate on-board state propagation is necessary to autonomously plan maneuvers and perform proximity operations and docking safely. The ability to perform high-precision navigation is made especially challenging by the limited computer processing power available on-board the spacecraft. Propagation accuracy is investigated both in terms of the absolute (chief) state and the relative (deputy relative to chief) state. Different perturbing effects are quantified and related directly to important mission factors such as maneuver accuracy, fuel use (mission lifetime), and collision prediction/avoidance (mission safety). The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The primary orbital perturbation affecting spacecraft in low Earth orbit (LEO) is the Earth oblateness, or J2, perturbation. Provided that a spacecraft does not have an extremely high area-to-mass ratio or is not flying at a very low altitude, the effect of J2 will usually be greater than that of atmospheric drag, which will typically be the next largest perturbing force in LEO. After these perturbations, factors such as higher-order Earth gravitational parameters, third-body perturbations, and solar radiation pressure will follow in magnitude but will have much less noticeable effects than J2 and drag. For spacecraft formations, where relative dynamics and not

  15. Modeling and characterization of multipath in global navigation satellite system ranging signals

    NASA Astrophysics Data System (ADS)

    Weiss, Jan Peter

    The Global Positioning System (GPS) provides position, velocity, and time information to users in anywhere near the earth in real-time and regardless of weather conditions. Since the system became operational, improvements in many areas have reduced systematic errors affecting GPS measurements such that multipath, defined as any signal taking a path other than the direct, has become a significant, if not dominant, error source for many applications. This dissertation utilizes several approaches to characterize and model multipath errors in GPS measurements. Multipath errors in GPS ranging signals are characterized for several receiver systems and environments. Experimental P(Y) code multipath data are analyzed for ground stations with multipath levels ranging from minimal to severe, a C-12 turboprop, an F-18 jet, and an aircraft carrier. Comparisons between receivers utilizing single patch antennas and multi-element arrays are also made. In general, the results show significant reductions in multipath with antenna array processing, although large errors can occur even with this kind of equipment. Analysis of airborne platform multipath shows that the errors tend to be small in magnitude because the size of the aircraft limits the geometric delay of multipath signals, and high in frequency because aircraft dynamics cause rapid variations in geometric delay. A comprehensive multipath model is developed and validated. The model integrates 3D structure models, satellite ephemerides, electromagnetic ray-tracing algorithms, and detailed antenna and receiver models to predict multipath errors. Validation is performed by comparing experimental and simulated multipath via overall error statistics, per satellite time histories, and frequency content analysis. The validation environments include two urban buildings, an F-18, an aircraft carrier, and a rural area where terrain multipath dominates. The validated models are used to identify multipath sources, characterize signal

  16. Supporting Development of Satellite's Guidance Navigation and Control Software: A Product Line Approach

    NASA Technical Reports Server (NTRS)

    McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis

  17. Industry leading satellite based GNSS (Global Navigation Satellite System) positioning and monitoring solutions with real-time CORS (Continuously Operating Reference Station) networks

    NASA Astrophysics Data System (ADS)

    Janousek, Martin

    2010-05-01

    Real-Time CORS (Continuously Operating Reference Station Networks) today are typically GNSS networks for positioning and monitoring purposes. Real-Time networks can consist of a few stations for a local network up to nation- or continental wide networks with several hundred CORS stations. Such networks use wide area modeling of GNSS error sources including ionospheric, tropospheric and satellite orbit correction parameters to produce highest precision and efficiency method of positioning using GNSS. In 1998 Trimble Navigation Ltd. introduced a method of surveying with a non-physical or computed base station, called VRS (Virtual Reference Station). It is the most widely supported method of producing a network solution for precise carrier phase positioning in the industry. Surveying historically required one base as the fixed point of reference, and one or multiple rovers using that point of reference to compute their location by processing a vector result, either in real-time or in a postprocessed sense. Real-time survey is often referred to as RTK, short for real-time kinematic, and as the name suggests the results are in real time and you can move. The power of VRS is in the ability to compute a real-time wide-area solution to the factors that cause single base methods to degrade with distance. Namely, ionospheric and tropospheric modeling, and satellite orbit corrections. This is achieved by the reference network of CORS. A wide scattering of CORS across a state, typically 50-70km in mid-latitudes, creates a ground based sampling which significantly reduces the distance dependent errors that accumulate in the single base-rover relationship described early. Furthermore, GNSS networks can be used for real-time monitoring purposes at various distance range. Trimble Integrity Manager software provides a suite of motion engines designed to detect and quantify any movement in a range of scales from slow, creeping movement like subsidence, through sudden events such as

  18. Personal Navigation System

    DTIC Science & Technology

    2005-10-31

    the capabilities of prototype hardware for navigation in GPS - denied and significantly challenged environments. Two technologies, developed at...building operational navigation sequence: GPS position initialization, handover to Deep Integration tracking, GPS - denied navigation, and finally satellite...Vertical Gait CEP relative to entry Max Relative Error Position error at entry Entry to exit Time GPS denied or challenged Draper Indoor Course

  19. Adaptive Correlation Space Adjusted Open-Loop Tracking Approach for Vehicle Positioning with Global Navigation Satellite System in Urban Areas

    PubMed Central

    Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng

    2015-01-01

    For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683

  20. Modeling Navigation System Performance of a Satellite-Observing Star Tracker Tightly Integrated with an Inertial Measurement Unit

    DTIC Science & Technology

    2015-03-26

    comes into question. Many research areas seek to compensate for perceived GPS vulnerabilities. Some of those are video- aided navigation [87], [86], [88...celestial navigation aids in the sense of using stars for reference. This dissertation seeks to investigate the pertinent parameter space and antic...Cramér-Rao lower bound. Northrop Grumman developed the LN-120G Stellar-Inertial-GPS system that uses a star tracker to aid aircraft navigation [26]. This

  1. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  2. Real-Time seismic waveforms monitoring with BeiDou Navigation Satellite System (BDS) observations for the 2015 Mw 7.8 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Geng, T.

    2015-12-01

    Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).

  3. Navigation by Satellite.

    ERIC Educational Resources Information Center

    Visich, Marian, Jr.

    Technological advances during the past few decades have revolutionized many complex systems that influence human activity. As the rate of technological progress accelerates, these systems will become more complex, and new ones will evolve. Citizens in a technological society need to be able to make intelligent choices about how technology will…

  4. GLORI (GLObal navigation satellite system Reflectometry Instrument): A New Airborne GNSS-R receiver for land surface applications

    NASA Astrophysics Data System (ADS)

    Motte, Erwan; Zribi, Mehrez; Fanise, Pascal

    2015-04-01

    GLORI (GLObal navigation satellite system Reflectometry Instrument) is a new receiver dedicated to the airborne measurement of surface parameters such as soil moisture and biomass above ground and sea state (wave height and direction) above oceans. The instrument is based on the PARIS concept [Martin-Neira, 1993] using both the direct and surface-reflected L-band signals from the GPS constellation as a multistatic radar source. The receiver is based on one up-looking and one down-looking dual polarization hemispherical active antennas feeding a low-cost 4-channel SDR direct down-conversion receiver tuned to the GPS L1 frequency. The raw measurements are sampled at 16.368MHz and stored as 2-bit, IQ binary files. In post-processing, GPS acquisition and tracking are performed on the direct up-looking signal while the down-looking signal is processed blindly using tracking parameters from the direct signal. The obtained direct and reflected code-correlation waveforms are the basic observables for geophysical parameters inversion. The instrument was designed to be installed aboard the ATR42 experimental aircraft from the French SAFIRE fleet as a permanent payload. The long term goal of the project is to provide real-time continuous surface information for every flight performed. The aircraft records attitude information through its Inertial Measurement Unit and a commercial GPS receiver records additional information such as estimated doppler and code phase, receiver location, satellites azimuth and elevation. A series of test flights were performed over both the Toulouse and Gulf of Lion (Mediterranean Sea) regions during the period 17-21 Nov 2014 together with the KuROS radar [Hauser et al., 2014]. Using processing methods from the literature [Egido et al., 2014], preliminary results demonstrate the instrument sensitivity to both ground and ocean surface parameters estimation. A dedicated scientific flight campaign is planned at the end of second quarter 2015 with

  5. Estimation of differential code biases for Beidou navigation system using multi-GNSS observations: How stable are the differential satellite and receiver code biases?

    NASA Astrophysics Data System (ADS)

    Xue, Junchen; Song, Shuli; Zhu, Wenyao

    2016-04-01

    Differential code biases (DCBs) are important parameters that must be estimated accurately and reliably for high-precision GNSS applications. For optimal operational service performance of the Beidou navigation system (BDS), continuous monitoring and constant quality assessment of the BDS satellite DCBs are crucial. In this study, a global ionospheric model was constructed based on a dual system BDS/GPS combination. Daily BDS DCBs were estimated together with the total electron content from 23 months' multi-GNSS observations. The stability of the resulting BDS DCB estimates was analyzed in detail. It was found that over a long period, the standard deviations (STDs) for all satellite B1-B2 DCBs were within 0.3 ns (average: 0.19 ns) and for all satellite B1-B3 DCBs, the STDs were within 0.36 ns (average: 0.22 ns). For BDS receivers, the STDs were greater than for the satellites, with most values <2 ns. The DCBs of different receiver families are different. Comparison of the statistics of the short-term stability of satellite DCBs over different time intervals revealed that the difference in STD between 28- and 7-day intervals was small, with a maximum not exceeding 0.06 ns. In almost all cases, the difference in BDS satellite DCBs between two consecutive days was <0.8 ns. The main conclusion is that because of the stability of the BDS DCBs, they only require occasional estimation or calibration. Furthermore, the 30-day averaged satellite DCBs can be used reliably for the most demanding BDS applications.

  6. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  7. COST Action ES1206 : Advanced Global Navigation Satellite Systems Tropospheric Products for Monitoring Severe Weather Events and Climate (GNSS4SWEC)

    NASA Astrophysics Data System (ADS)

    Jones, Jonathan; Guerova, Guergana; Dousa, Jan; de Haan, Siebren; Bock, Olivier; Dick, Galina; Pottiaux, Eric; Pacione, Rosa

    2014-05-01

    Global Navigation Satellite Systems (GNSS) have revolutionised positioning, navigation, and timing, becoming a common part of our everyday life. Aside from these well-known civilian and commercial applications, GNSS is now an established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is under-sampled in the current meteorological and climate observing systems, obtaining and exploiting more high-quality humidity observations is essential to weather forecasting and climate monitoring. The new COST Action, ES1206, will address new and improved capabilities from con-current developments in both the GNSS and meteorological communities. For the first time, the synergy of the three GNSS systems (GPS, GLONASS and Galileo) will be used to develop new, advanced tropospheric products, exploiting the full potential of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time monitoring and forecasting of severe weather, to climate research. In addition the Action will promote the use of meteorological data in GNSS positioning, navigation, and timing services. The Action will stimulate knowledge transfer and data sharing throughout Europe.

  8. Model of a neural network inertial satellite navigation system capable of estimating the earth's gravitational field gradient

    NASA Astrophysics Data System (ADS)

    Devyatisil'nyi, A. S.

    2016-09-01

    A model for recognizing inertial and satellite data on an object's motion that are delivered by a set of distributed onboard sensors (newtonmeters, gyros, satellite receivers) has been described. Specifically, the model is capable of estimating the parameters of the gravitational field.

  9. PAU/GNSS-R: Implementation, Performance and First Results of a Real-Time Delay-Doppler Map Reflectometer Using Global Navigation Satellite System Signals.

    PubMed

    Marchan-Hernandez, Juan Fernando; Camps, Adriano; Rodriguez-Alvarez, Nereida; Bosch-Lluis, Xavier; Ramos-Perez, Isaac; Valencia, Enric

    2008-05-06

    Signals from Global Navigation Satellite Systems (GNSS) were originally conceived for position and speed determination, but they can be used as signals of opportunity as well. The reflection process over a given surface modifies the properties of the scattered signal, and therefore, by processing the reflected signal, relevant geophysical data regarding the surface under study (land, sea, ice…) can be retrieved. In essence, a GNSS-R receiver is a multi-channel GNSS receiver that computes the received power from a given satellite at a number of different delay and Doppler bins of the incoming signal. The first approaches to build such a receiver consisted of sampling and storing the scattered signal for later post-processing. However, a real-time approach to the problem is desirable to obtain immediately useful geophysical variables and reduce the amount of data. The use of FPGA technology makes this possible, while at the same time the system can be easily reconfigured. The signal tracking and processing constraints made necessary to fully design several new blocks. The uniqueness of the implemented system described in this work is the capability to compute in real-time Delay-Doppler maps (DDMs) either for four simultaneous satellites or just one, but with a larger number of bins. The first tests have been conducted from a cliff over the sea and demonstrate the successful performance of the instrument to compute DDMs in real-time from the measured reflected GNSS/R signals. The processing of these measurements shall yield quantitative relationships between the sea state (mainly driven by the surface wind and the swell) and the overall DDM shape. The ultimate goal is to use the DDM shape to correct the sea state influence on the L-band brightness temperature to improve the retrieval of the sea surface salinity (SSS).

  10. The NASA Cyclone Global Navigation Satellite System (CYGNSS): A Constellation of Bi-static Ocean Scatterometer Microsatellites to Probe the Inner Core of Hurricanes

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.

    2014-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.

  11. Volumetrically-Derived Global Navigation Satellite System Performance Assessment from the Earths Surface through the Terrestrial Service Volume and the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user from the Earth's surface through the Terrestrial Service Volume (TSV) to the edge of the Space Service Volume (SSV), when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative was recently expanded to compare nadir-facing and zenith-facing user hemispherical antenna coverage with omnidirectional antenna coverage at different distances of 8,000 km altitude and 36,000 km altitude. This report summarizes the performance using these antenna coverage techniques at distances ranging from 100 km altitude to 36,000 km to be all encompassing, as well as the volumetrically-derived system availability metrics.

  12. Spatial variability of nutrients (N, P) in a deep, temperate lake with a low trophic level supported by global navigation satellite systems, geographic information system and geostatistics.

    PubMed

    Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel

    2014-01-01

    We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.

  13. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  14. Integrated multisensor navigation systems

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1988-01-01

    The multisensor navigation systems research evolved from the availability of several stand alone navigation systems and the growing concern for aircraft navigation reliability and safety. The intent is to develop a multisensor navigation system during the next decade that will be capable of providing reliable aircraft position data. These data will then be transmitted directly, or by satellite, to surveillance centers to aid the process of air traffic flow control. In order to satisfy the requirements for such a system, the following issues need to be examined: performance, coverage, reliability, availability, and integrity. The presence of a multisensor navigation system in all aircraft will improve safety for the aviation community and allow for more economical operation.

  15. Using the Global Navigation Satellite System (GNSS) data for Hazard Estimation in Some Active Regions in Egypt

    NASA Astrophysics Data System (ADS)

    Sayed Mohamed, Abdel-Monem

    2016-07-01

    Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GNSS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.

  16. Spatial and temporal characteristics of optimum process noise values of tropospheric parameters for kinematic analysis of Global Navigation Satellite System (GNSS) sites in Japan

    NASA Astrophysics Data System (ADS)

    Hirata, Yu'ichiro; Ohta, Yusaku

    2016-12-01

    Kinematic analysis of Global Navigation Satellite System (GNSS) data is useful for the extraction of crustal deformation phenomena occurring over short timescales ranging from seconds to 1 day, such as coseismic and postseismic deformation following large earthquakes. However, a fundamental challenge in kinematic GNSS analysis is to separate unknown parameters, such as site coordinate and tropospheric parameters, due to the strong correlation between them. In this study, we assessed the spatial and temporal characteristics of process noise for unknown tropospheric parameters such as zenith wet tropospheric delay and tropospheric gradient by means of kinematic precise point positioning analysis using Kalman filtering across the Japanese nationwide continuous GNSS network. We estimated kinematic site coordinate time series under different process noise combinations of zenith wet tropospheric delay and tropospheric gradient. The spatial distribution of the optimum process noise value for the zenith wet tropospheric parameter with vertical site coordinate time series clearly showed regional characteristics. In comparison with the wet tropospheric parameter, the spatial characteristics of the tropospheric gradient parameter are less well defined within the scale of the GNSS network. The temporal characteristics of the optimum process noise parameters for each site coordinate component at specific sites indicated a clear annual pattern in the tropospheric gradient parameter for the horizontal components. Finally, we assessed the effects on the kinematic GNSS site coordinate time series of optimizing tropospheric parameter process noise. Compared with recommended process noise values from previous studies, the use of estimated "common" optimum process noise values improved the standard deviation of coordinate time series for the majority of stations. These results clearly indicate that the use of appropriate process noise values is important for kinematic GNSS analysis

  17. Methods of practice and guidelines for using survey-grade global navigation satellite systems (GNSS) to establish vertical datum in the United States Geological Survey

    USGS Publications Warehouse

    Rydlund, Jr., Paul H.; Densmore, Brenda K.

    2012-01-01

    Geodetic surveys have evolved through the years to the use of survey-grade (centimeter level) global positioning to perpetuate and post-process vertical datum. The U.S. Geological Survey (USGS) uses Global Navigation Satellite Systems (GNSS) technology to monitor natural hazards, ensure geospatial control for climate and land use change, and gather data necessary for investigative studies related to water, the environment, energy, and ecosystems. Vertical datum is fundamental to a variety of these integrated earth sciences. Essentially GNSS surveys provide a three-dimensional position x, y, and z as a function of the North American Datum of 1983 ellipsoid and the most current hybrid geoid model. A GNSS survey may be approached with post-processed positioning for static observations related to a single point or network, or involve real-time corrections to provide positioning "on-the-fly." Field equipment required to facilitate GNSS surveys range from a single receiver, with a power source for static positioning, to an additional receiver or network communicated by radio or cellular for real-time positioning. A real-time approach in its most common form may be described as a roving receiver augmented by a single-base station receiver, known as a single-base real-time (RT) survey. More efficient real-time methods involving a Real-Time Network (RTN) permit the use of only one roving receiver that is augmented to a network of fixed receivers commonly known as Continually Operating Reference Stations (CORS). A post-processed approach in its most common form involves static data collection at a single point. Data are most commonly post-processed through a universally accepted utility maintained by the National Geodetic Survey (NGS), known as the Online Position User Service (OPUS). More complex post-processed methods involve static observations among a network of additional receivers collecting static data at known benchmarks. Both classifications provide users

  18. TDRSS Augmentation System for Satellites

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems(GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  19. Post-disposal orbital evolution of satellites and upper stages used by the GPS and GLONASS navigation constellations: The long-term impact on the Medium Earth Orbit environment

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2012-08-01

    The long-term evolution and environmental impact in MEO of all the abandoned spacecraft and upper stages associated with the GPS and GLONASS navigation constellations were analyzed. The orbits of the disposed objects, as of 1 May 2011, were propagated for 200 years and snapshots of their evolving distribution were obtained, together with an estimation of the changing collision probability with the spacecraft of the operational navigation systems existing or planned in MEO, i.e., GLONASS, GPS, Beidou and Galileo. The probability that the abandoned objects considered will collide with the operational spacecraft of the navigation constellations is very low, even taking into account the intrinsic eccentricity instability of the disposal orbits. Assuming the present or envisaged configuration of the constellations in MEO, the probability of collision, integrated over 200 years, would be <1/300 with a GLONASS spacecraft, <1/15,000 with a GPS or Beidou spacecraft, and <1/250,000 with a Galileo spacecraft. The worst disposal strategy consists in abandoning satellites and upper stages close to the altitude of the operational constellation (GLONASS), while a re-orbiting a few hundred km away (GPS) is able to guarantee an effective long-term dilution of the collision risk, irrespective of the eccentricity instability due to geopotential and luni-solar perturbations. The disposal strategies applied so far to the GPS satellites should be able to guarantee for at least a few centuries a sustainable MEO environment free of collisions among intact objects. Consequently, there would be no need to adopt disposal schemes targeting also the optimal value of the eccentricity vector. However, it should be pointed out that the GPS disposal strategy was devised well in advance of the Beidou constellation announcement, so most of the abandoned satellites were re-orbited fairly close to the altitude of the new Chinese system. A new re-orbiting approach will be therefore needed in the future.

  20. On-board satellite radionavigation systems

    NASA Astrophysics Data System (ADS)

    Kudriavtsev, Igor'v.; Mishchenko, Igor'n.; Volynkin, Anatolii I.; Shebshaevich, V. S.; Dubinko, Iu. S.

    Recent developments in the radionavigation equipment of ships are reviewed with particular reference to on-board satellite radionavigation systems. The Navstar navigation network is briefly characterized, and the general principles underlying the design of on-board navigation systems are reviewed. Particular attention is given to the software of on-board satellite navigation systems and their noise immunity characteristics. The accuracy of a navigation session is estimated, and some aspects of navigation equipment testing are discussed.

  1. AUTOMATIC NAVIGATION.

    DTIC Science & Technology

    NAVIGATION, REPORTS), (*CONTROL SYSTEMS, *INFORMATION THEORY), ABSTRACTS, OPTIMIZATION, DYNAMIC PROGRAMMING, GAME THEORY, NONLINEAR SYSTEMS, CORRELATION TECHNIQUES, FOURIER ANALYSIS, INTEGRAL TRANSFORMS, DEMODULATION, NAVIGATION CHARTS, PATTERN RECOGNITION, DISTRIBUTION THEORY , TIME SHARING, GRAPHICS, DIGITAL COMPUTERS, FEEDBACK, STABILITY

  2. Inertial Navigation

    DTIC Science & Technology

    also been well-known for some time. However, inertial navigation systems (called inertial guidance systems in rocket technology) which are composed of... navigation technology has developed rapidly, and the precision of inertial navigation has increased greatly. In 1944, the ’V-2’ rocket made the first...gyroscopes, accelerometers, and electronic computers have only been on the market for a little over twenty years. In the past twenty years, inertial

  3. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  4. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  5. PATIENT NAVIGATION

    PubMed Central

    Wells, Kristen J.; Battaglia, Tracy A.; Dudley, Donald J.; Garcia, Roland; Greene, Amanda; Calhoun, Elizabeth; Mandelblatt, Jeanne S.; Paskett, Electra D.; Raich, Peter C.

    2008-01-01

    Background First implemented in 1990, patient navigation interventions are emerging as an approach to reduce cancer disparities. However, there is lack of consensus about how patient navigation is defined, what patient navigators do, and what their qualifications should be. Little is known about the efficacy and cost effectiveness of patient navigation. Methods We conducted a qualitative synthesis of published literature on cancer patient navigation. Using the keywords “navigator” or “navigation” and “cancer,” we identified 45 articles from Pubmed and reference searches that were published or in press through October 2007. 16 provided data on efficacy of navigation in improving timeliness and receipt of cancer screening, diagnostic follow-up care, and treatment. Patient navigation services are defined and differentiated from other outreach services. Results Overall there is evidence for some degree of efficacy for patient navigation in increasing participation in cancer screening and adherence to diagnostic follow-up care following an abnormality, with increases in screening ranging from 10.8% to 17.1% and increases in adherence to diagnostic follow-up care ranging from 21% to 29.2%, when compared to control patients. There is less evidence regarding efficacy of patient navigation in reducing either late stage cancer diagnosis or delays in initiation of cancer treatment or improving outcomes during cancer survivorship. There were methodological limitations in most studies, such as lack of control groups, small sample sizes, and contamination with other interventions. Conclusions Although cancer-related patient navigation interventions are being increasingly adopted across the U.S. and Canada, further research is necessary to evaluate their efficacy and cost-effectiveness in improving cancer care. PMID:18780320

  6. TDRSS Augmentation Service for Satellites (TASS)

    NASA Technical Reports Server (NTRS)

    Heckler, Gregory W.; Gramling, Cheryl; Valdez, Jennifer; Baldwin, Philip

    2016-01-01

    In 2015, NASA Goddard Space Flight Center (GSFC) reinvigorated the development of the TDRSS Augmentation Service for Satellites (TASS). TASS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). TASS leverages the existing TDRSS to provide an S-band beacon radio navigation and messaging source to users at orbital altitudes 1400 km and below.

  7. British American satellite time transfer experiment

    NASA Technical Reports Server (NTRS)

    EASTON R. L.

    1972-01-01

    The use of the Timation satellite for navigation purposes is discussed. The advantages of the satellite for navigation and time transfer are defined as: (1) well-known position, (2) line-of-sight signal which allows use of ultrahigh frequency signals, (3) worldwide coverage, and (4) celestial navigation solution similar to the conventional celestial navigation practices. A diagram of range measurement by phase measure is provided. The application of an intercept chart for determining position using the navigation satellite is demonstrated. The results of a ground based time transfer experiment are reported.

  8. Satellites at work (Space in the seventies)

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1971-01-01

    The use of satellites in the areas of communications, meteorology, geodesy, navigation, air traffic control, and earth resources technology is discussed. NASA contributions to various programs are reviewed.

  9. One-way return-link Doppler navigation with the Tracking and Data Satellite System (TDRSS) - The ultrastable oscillator (USO) experiment on the Cosmic Background Explorer (COBE)

    NASA Astrophysics Data System (ADS)

    Dunham, J. B.; Nemesure, M.; Teles, J.; Brown-Conwell, E. R.; Jackson, J. A.; Reamy, V. L.; Maher, M. J.; Elrod, B. D.

    The principal objectives of the USO experiment on the COBE spacecraft are defined, and results of space qualification studies for the COBE USO experiment are summarized. The principal objectives of the experiment are: (1) to determine flight performance of the USO coupled to the second-generation TDRSS transponder; (2) space qualify TDRSS noncoherent one-way return-link Doppler tracking; and (3) analyze algorithms for one-way navigation with real data. The three objectives of the experiment have been met in the first stage of the experiment analysis.

  10. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver

    PubMed Central

    Qian, Chuang; Liu, Hui; Zhang, Ming; Shu, Bao; Xu, Longwei; Zhang, Rufei

    2016-01-01

    As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system. PMID:27929390

  11. A Geometry-Based Cycle Slip Detection and Repair Method with Time-Differenced Carrier Phase (TDCP) for a Single Frequency Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) Receiver.

    PubMed

    Qian, Chuang; Liu, Hui; Zhang, Ming; Shu, Bao; Xu, Longwei; Zhang, Rufei

    2016-12-05

    As the field of high-precision applications based on carriers continues to expand, the development of low-cost, small, modular receivers and their application in diverse scenarios and situations with complex data quality has increased the requirements of carrier-phase data preprocessing. A new geometry-based cycle slip detection and repair method based on Global Position System (GPS) + BeiDou Navigation Satellite System (BDS) is proposed. The method uses a Time-differenced Carrier Phase (TDCP) model, which eliminates the Inner-System Bias (ISB) between GPS and BDS, and it is conducive to the effective combination of GPS and BDS. It avoids the interference of the noise of the pseudo-range with cycle slip detection, while the cycle slips are preserved as integers. This method does not limit the receiver frequency number, and it is applicable to single-frequency data. The process is divided into two steps to detect and repair cycle slip. The first step is cycle slip detection, using the Improved Local Analysis Method (ILAM) to find satellites that have cycle slips; The second step is to repair the cycle slips, including estimating the float solution of changes in ambiguities at the satellites that have cycle slips with the least squares method and the integer solution of the cycle slips by rounding. In the process of rounding, in addition to the success probability, a decimal test is carried out to validate the result. Finally, experiments with filed test data are carried out to prove the effectiveness of this method. The results show that the detectable cycle slips number with GPS + BDS is much greater than that with GPS. The method can also detect the non-integer outliers while fixing the cycle slip. The maximum decimal bias in repair is less than that with GPS. It implies that this method takes full advantages of multi-system.

  12. Almanac services for celestial navigation

    NASA Astrophysics Data System (ADS)

    Nelmes, S.; Whittaker, J.

    2015-08-01

    Celestial navigation remains a vitally important back up to Global Navigation Satellite Systems (GNSS) and relies on the use of almanac services. HM Nautical Almanac Office (HMNAO) provides a number of these services. The printed book, The Nautical Almanac, produced yearly and now available as an electronic publication, is continuously being improved, making use of the latest ideas and ephemerides to provide the user with their required data. HMNAO also produces NavPac, a software package that assists the user in calculating their position as well as providing additional navigational and astronomical tools. A new version of NavPac will be released in 2015 that will improve the user experience. The development of applications for mobile devices is also being considered. HMNAO continues to combine the latest improvements and theories of astrometry with the creation of books and software that best meet the needs of celestial navigation users.

  13. 76 FR 37261 - Establishment of Helicopter Area Navigation (RNAV) Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ... Federal Aviation Administration 14 CFR Part 71 Establishment of Helicopter Area Navigation (RNAV) Routes...-approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment. The FAA is... reliability of satellite navigation and other advanced RNAV systems. Additionally, it was determined that...

  14. Detecting changes in reflected Global Navigation Satellite System signals over land using a spaceborne receiver: Results from the TechDemoSat Mission

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Mannucci, A. J.; Zuffada, C.; Shah, R.; Hajj, G. A.

    2015-12-01

    Spaceborne GPS and GNSS receivers can be used to retrieve information about changes on the Earth's surface. Both experimental and modeling efforts have shown that these receivers can detect changes in reflected GNSS signals that are indicative of changes in sea state. Numerous studies using GNSS receivers flown on aircraft have also shown that the reflected signals are sensitive to changes in soil moisture and vegetation cover. However, the only analysis of the detection of GNSS reflected signals over land using spaceborne receivers has been limited to the small amount of data recorded nearly 10 years ago by the UK-DMC satellite. Last year's launch of the TechDemoSat (TDS) satellite, carrying an instrument similar to that planned for NASA's CYGNSS mission, represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land surface, including soil moisture and flood-inundated areas. With a revisit time of only a few hours, the observations from the CYGNSS constellation could provide data with a temporal resolution that would be unmatched by traditional remote sensing satellites. Here, we present data collected over land by the receiver onboard TDS and report its sensitivity to changes in surface roughness, vegetation parameters, and open water (lakes and rivers), as well as standing water beneath vegetation (marshes and wetlands). In particular, we investigate how the normalized peak power of the delay-Doppler maps that are recorded by the receiver is affected by changes in the land surface. Preliminary results indicate that the signal is strongly affected by changes in topography. However, once this effect is removed using digital elevation models, the influence of rivers, lakes, and wetlands on the signal is clearly seen. Examples of large signal changes coming from areas of likely-saturated ground lend credence to the idea that these data could also be sensitive to changes in surface soil moisture.

  15. An Integrity Framework for Image-Based Navigation Systems

    DTIC Science & Technology

    2010-06-01

    AN INTEGRITY FRAMEWORK FOR IMAGE-BASED NAVIGATION SYSTEMS DISSERTATION Craig D. Larson, Captain, USAF AFIT/DEE/ENG/ 10 -03 DEPARTMENT OF THE AIR FORCE...United States AFIT/DEE/ENG/ 10 -03 AN INTEGRITY FRAMEWORK FOR IMAGE-BASED NAVIGATION SYSTEMS DISSERTATION Presented to the Faculty Graduate School of...UNLIMITED AFIT/DEE/ENG/ 10 -03 Abstract The value of Global Navigation Satellite Systems (GNSS) in a multitude of both military and civilian navigation and

  16. The meteoroid hazard for space navigation

    NASA Astrophysics Data System (ADS)

    Foschini, L.

    Thanks to post-flight analyses of several artificial satellites carried out during last years, the meteoroids hazard for space navigation and in-orbit satellites permanence is now clear. Even if catastrophic impact is a rare event, high meteoroids fluxes can erode and weaken the satellite or space station main structures. However, the main danger seems to be the impact-generated plasma, which can produce electromagnetic interferences, disturbing the on-board electronics.

  17. Optical navigation during the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Riedel, J. E.; Owen, W. M., Jr.; Stuve, J. A.; Synnott, S. P.; Vaughan, R. M.

    1990-01-01

    Optical navigation techniques were required to successfully complete the planetary exploration phase of the NASA deep-space Voyager mission. The last of Voyager's planetary encounters, with Neptune, posed unique problems from an optical navigation standpoint. In this paper we briefly review general aspects of the optical navigation process as practiced during the Voyager mission, and discuss in detail particular features of the Neptune encounter which affected optical navigation. New approaches to the centerfinding problem were developed for both stars and extended bodies, and these are described. Results of the optical navigation data analysis are presented, as well as a description of the optical orbit determination system and results of its use during encounter. Partially as a result of the optical navigation processing, results of scientific significance were obtained. These results include the discovery and orbit determination of several new satellites of Neptune and the determination of the size of Triton, Neptune's largest moon.

  18. Antenna Measurement and Design for the CanX-7 Nanosatellite and the Development of a Global Navigation Satellite System Based Attitude Determination System

    NASA Astrophysics Data System (ADS)

    Ang, Paris Yen-Jun

    This thesis describes and presents solutions to various challenges small satellites may encounter during design and operation, particularly in the areas of communications and attitude determination. The first section of this thesis presents simulation and measurement of communications antennas on a nanosatellite to verify that the antennas have sufficient gain and polarization to enable near-omnidirectional operation. Near-omnidirectional antennas are essential to ensure reliable communication with the spacecraft regardless of its attitude, especially when fine pointing ability is unavailable or inadequate. Next, the following section covers the design of a circularly polarized patch antenna for use on an aircraft tracking payload. Lastly, the final section of this thesis presents the development and analysis of a technique for augmenting a single GPS antenna on a spacecraft to estimate attitude. It is possible for GPS measurements to partially supplement an existing attitude sensor that has been denied operation.

  19. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  20. Reference earth orbital research and applications investigations (blue book). Volume 5: Communications/navigation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The design and development of a communications/navigation facility for operation aboard space stations and space shuttles are discussed. The objectives of the facility are as follows: (1) to develop and demonstrate satellite and spacecraft technology applicable to space communications, navigation, and traffic control, (2) to optimize the use of the electromagnetic spectrum for communications and navigation satellite systems, and (3) to provide fundamental understanding of the space communications and navigation sciences to permit application of this discipline to government and industry.

  1. Error Characterization of Vision-Aided Navigation Systems

    DTIC Science & Technology

    2013-03-01

    iv EKF Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . iv GNSS Global Navigation Satellite System...Satellite Systems ( GNSS ), of which GPS is an example, suffer from availability restrictions when satellite signals are physically blocked in areas...ION GNSS 2006, 1093–1103. Sep 2006. [24] Veth, M., J. Raquet, and M. Pachter. “Stochastic Constraints for Efficient Image Correspondence Search”. IEEE

  2. Viking navigation

    NASA Technical Reports Server (NTRS)

    Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.

    1979-01-01

    A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.

  3. Radio determination satellite service

    NASA Astrophysics Data System (ADS)

    Briskman, Robert D.

    1990-07-01

    The capabilities and measured performance of a geosynchronous satellite-based service called the radio determination satellite service (RDSS), which operates at radio frequencies allocated by the International Telecommunications Union (ITU) and is licensed in the United States by the Federal Communications Commission (FCC), are discussed. Plans for both improvement in capability and expansion to nearly global coverage are described. Since RDSS can also provide radio navigation, some comparisons of this service with the Global Positioning System (GPS) are made.

  4. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    1983-12-01

    The U. S. Air Force is developing satellite-borne sensors to enable autonomous navigation of spacecraft in the near future. This study compares the observations from several medium-accuracy space sensors, such as the existing telescopic space sextant, with those of future matrix-type sensors. The large field of view of matrix sensors will allow them to determine the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by consider covariance analysis and by processing corrupted data through a reduced-order onboard Sequentially Partitioned Algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  5. Galileo satellite antenna modeling

    NASA Astrophysics Data System (ADS)

    Steigenberger, Peter; Dach, Rolf; Prange, Lars; Montenbruck, Oliver

    2015-04-01

    The space segment of the European satellite navigation system Galileo currently consists of six satellites. Four of them belong to the first generation of In-Orbit Validation (IOV) satellites whereas the other two are Full Operational Capability (FOC) satellites. High-precision geodetic applications require detailed knowledge about the actual phase center of the satellite and receiver antenna. The deviation of this actual phase center from a well-defined reference point is described by phase center offsets (PCOs) and phase center variations (PCVs). Unfortunately, no public information is available about the Galileo satellite antenna PCOs and PCVs, neither for the IOV, nor the FOC satellites. Therefore, conventional values for the IOV satellite antenna PCOs have been adopted for the Multi-GNSS experiment (MGEX) of the International GNSS Service (IGS). The effect of the PCVs is currently neglected and no PCOs for the FOC satellites are available yet. To overcome this deficiency in GNSS observation modeling, satellite antenna PCOs and PCVs are estimated for the Galileo IOV satellites based on global GNSS tracking data of the MGEX network and additional stations of the legacy IGS network. Two completely independent solutions are computed with the Bernese and Napeos software packages. The PCO and PCV values of the individual satellites are analyzed and the availability of two different solutions allows for an accuracy assessment. The FOC satellites are built by a different manufacturer and are also equipped with another type of antenna panel compared to the IOV satellites. Signal transmission of the first FOC satellite has started in December 2014 and activation of the second satellite is expected for early 2015. Based on the available observations PCO estimates and, optionally PCVs of the FOC satellites will be presented as well. Finally, the impact of the new antenna model on the precision and accuracy of the Galileo orbit determination is analyzed.

  6. Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test S

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Communications, Navigation, and Network Reconfigurable Test-bed Flight Hardware Compatibility Test Sets and Networks Integration Management Office Testing for the Tracking and Data Relay Satellite System

  7. Space optical navigation techniques: an overview

    NASA Astrophysics Data System (ADS)

    Rebordão, J. M.

    2013-11-01

    Optical or vision-based navigation is an enabling technology for satellite autonomous navigation associated to different navigation approaches such as cruising, fly-by, terrain relative navigation, landing, rendezvous and docking between spacecrafts, rigidity of multi-satellite constellations. Since 2001, in many different ESA projects, the author and his team (at INETI and currently at FCUL) have been associated to most of the developments of the optical components of autonomous navigation, in cooperation with space primes or GNC subsystems suppliers. A unique experience related to seemingly simple photonic concepts associated to computational vision, photonic noises, camera tradeoffs and system concepts has emerged, and deserves a synthesis especially because some of these concepts are being implemented in the ESA Proba 3 mission and ESA is currently updating the technology in view of forthcoming planetary missions to Jupiter, Jupiter moons and asteroids. It is important to note that the US have already flown several missions relying on autonomous navigation and that NASA experience is at least one decade old. System approaches, sources of difficulty, some tradeoffs in both (and between) hardware and software, critical interface issues between the imaging and GNC (Guidance, Navigation and Control) subsystems, image processing techniques, utilization of apriori or to be estimated information, uncertainties, simulation of the imaging chain and non-cooperative environments will be addressed synthetically for both passive (optical) and active (lidar) systems.

  8. Navigation for IUS deployment. TDRSS navigation accuracy in support of IUS deployment, phase 1

    NASA Technical Reports Server (NTRS)

    Wylie, A. D.

    1977-01-01

    The navigation accuracy for tracking the orbiter prior to interim upper stage (IUS) deployment using the tracking data relay satellite system (TDRSS) was studied. The orbiter navigation accuracy for both one and two TDRSS satellites, for short and long data arcs, and for Doppler-only and Doppler-plus range solutions was examined. All test cases were run with the orbiter in a 150-n. mi. circular orbit, 28.5 degree inclination, at the time interval from the completion of the orbital maneuvering system (OMS)-2 maneuver to OMS-2 plus 2 hours (approximate time for IUS deployment). The data used were simulated by the simulation navigation (SIMNAV) program. The software tool used to process the TDRS data was the Shuttle Navigation Analysis Program (SNAP), a Kalman filter tool used to solve for the orbiter position and velocity. Results summarize the expected navigation accuracy using the TDRS system. It was concluded that: (1) data from both TDRS satellites were essential for accurate navigation results: (2) range data were essential for the short arc test case but were not needed for the long arc test case; and (3) with Doppler and range data from both TDRS satellites, the results converged to a reasonable solution after 5 to 10 minutes of data.

  9. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  10. 76 FR 12643 - Proposed Establishment of Helicopter Area Navigation (RNAV) Routes; Northeast United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Satellite System (GNSS) equipment. Additionally, the FAA is proposing to establish two such routes in the... number along with a Global Navigation Satellite System (GNSS) Minimum Enroute Altitude (MEA) to...

  11. Research on the airborne SINS/CNS integrated navigation system assisted by BD navigation system

    NASA Astrophysics Data System (ADS)

    Xie, Mei-lin; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Yue, Peng; Deng, Xiao-guo; Huang, Wei

    2016-01-01

    When the star navigation system working during the day, the strong sky background radiation lead to a result that the detect target light is too weak, in the field of view, because of the limitation on the number of the navigation star, usually choose the single star navigation work mode. In order to improve the reliability of the airborne SINS/CNS integrated navigation system, meet the demand of the long-endurance and high precision navigation, use the tight combination way, single star patrol algorithm to get the position and attitude. There exists filtering divergence problem because of the model error and the system measurement noise is uncertain, put forward a new fuzzy adaptive kalman filtering algorithm. Adjust the size of measurement noise to prevent the filter divergence; the positioning accuracy of integrated navigation system can be improved through BeiDou satellite. Without the information of BeiDou satellite, based on the level of the virtual reference, the navigation precision of integrated navigation system can be ensured over a period of time.

  12. Earth satellites: A first look by the United States Navy

    NASA Technical Reports Server (NTRS)

    Hall, R. C.

    1977-01-01

    Immediately following World War II, the U.S. Navy considered the possibility of launching an earth satellite for navigational, communications, and meteorological applications. The technical feasibility of the satellite was based on extensions of German V-2 technology.

  13. Optical Navigation Preparations for New Horizons Pluto Flyby

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.; Dumont, Philip J.; Jackman, Coralie D.

    2012-01-01

    The New Horizons spacecraft will encounter Pluto and its satellites in July 2015. As was the case for the Voyager encounters with Jupiter, Saturn, Uranus and Neptune, mission success will depend heavily on accurate spacecraft navigation, and accurate navigation will be impossible without the use of pictures of the Pluto system taken by the onboard cameras. We describe the preparations made by the New Horizons optical navigators: picture planning, image processing algorithms, software development and testing, and results from in-flight imaging.

  14. Libration Point Navigation Concepts Supporting the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.

    2004-01-01

    This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.

  15. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  16. Aiding GPS With Additional Satellite Navigation Services

    DTIC Science & Technology

    2010-03-01

    10 FDMA Frequency Division Multiple Access . . . . . . . . . . . . . 10 GBCC Ground Based Control Complex . . . . . . . . . . . . . . . 11...Precision Service (HPS), which is like PPS in GPS. GLONASS uses Frequency Division Multiple Access ( FDMA ) unlike the CDMA used in GPS. Every GLONASS...GLONASS uses FDMA , its receiver design is more costly compared to GPS. The GLONASS user segment is small and located primarily in Russia. There are

  17. Navigation signal structure based on complex carrier modulation

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Yuan, Hong

    2011-06-01

    Signal structure design is an important part of satellite navigation system research, which directly affects navigation performance. Signal performance parameters are analyzed and performances of BPSK modulated signals and BOC modulated signals are compared. Aiming at requirements of high navigation precision and high anti-jamming ability, a new navigation signal structure based on complex carrier modulation is proposed and performances of the signal are researched with different parameters. A synchronization algorithm is put forward according to the signal characteristics, and the synchronization performance is qualitatively analyzed. Next, the applications of the complex carrier modulated signal are discussed, which include anti-jamming, navigation enhancement, power combing and so on. Simulations and analysis show that the proposed navigation signal structure based on complex carrier modulation has good navigation capabilities and anti-jamming abilities, which deserves further study.

  18. Active-imaging-based underwater navigation

    NASA Astrophysics Data System (ADS)

    Monnin, David; Schmitt, Gwenaël.; Fischer, Colin; Laurenzis, Martin; Christnacher, Frank

    2015-10-01

    Global navigation satellite systems (GNSS) are widely used for the localization and the navigation of unmanned and remotely operated vehicles (ROV). In contrast to ground or aerial vehicles, GNSS cannot be employed for autonomous underwater vehicles (AUV) without the use of a communication link to the water surface, since satellite signals cannot be received underwater. However, underwater autonomous navigation is still possible using self-localization methods which determines the relative location of an AUV with respect to a reference location using inertial measurement units (IMU), depth sensors and even sometimes radar or sonar imaging. As an alternative or a complementary solution to common underwater reckoning techniques, we present the first results of a feasibility study of an active-imaging-based localization method which uses a range-gated active-imaging system and can yield radiometric and odometric information even in turbid water.

  19. Private Graphs - Access Rights on Graphs for Seamless Navigation

    NASA Astrophysics Data System (ADS)

    Dorner, W.; Hau, F.; Pagany, R.

    2016-06-01

    After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  20. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  1. Broadcast satellite service: The international dimension

    NASA Technical Reports Server (NTRS)

    Samara, Noah

    1991-01-01

    The dawn of the 1990's has witnessed the birth of a new satellite service - satellite sound broadcasting. This new service is characterized by digital transmission at data rates up to 256 kb/s from satellites in geostationary orbit to small, low-cost, mobile and portable receivers. The satellite sound broadcasting service is a logical step beyond navigation satellite service, such as that provided by the GPS Navstar system. The mass market appeal of satellite sound broadcasting in the area of lightsat technology and low-cost digital radios has greatly facilitated the financing of this type of space service.

  2. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  3. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  4. The Study and Applications of Satellite and Satellite Constellation Autonomous Orbit Determination Using Star Sensor

    NASA Astrophysics Data System (ADS)

    Gan, Q. B.

    2012-07-01

    Autonomous satellite orbit determination is a key technique in autonomous satellite navigation. Many kinds of technologies have been proposed to realize the autonomous satellite navigation, such as the star sensor, the Earth magnetometer, the occultation time survey, and the phase measurement of X-ray pulsar signals. This dissertation studies a method of autonomous satellite orbit determination using star sensor. Moreover, the method is extended to the autonomous navigation of satellite constellation and the space-based surveillance. In chapters 1 and 2, some usual time and reference systems are introduced. Then the principles of several typical autonomous navigation methods, and their merits and shortcomings are analyzed. In chapter 3, the autonomous satellite orbit determination using star sensor and infrared Earth sensor (IRES) is specifically studied, which is based on the status movement simulation, the stellar background observation from star sensor, and the Earth center direction survey from IRES. By simulating the low Earth orbit satellites and pseudo Geostationary Earth orbit (PGEO) satellites, the precision of position and speed with autonomous orbit determination using star sensor is obtained. Besides, the autonomous orbit determination using star sensor with double detectors is studied. According to the observation equation's characters, an optimized type of star sensor and IRES initial assembly model is proposed. In the study of the PGEO autonomous orbit determination, an efficient sampling frequency of measurements is promoted. The simulation results confirm that the autonomous satellite orbit determination using star sensor is feasible for satellites with all kinds of altitudes. In chapter 4, the method of autonomous satellite orbit determination using star sensor is extended to the autonomous navigation of mini-satellite constellation. Combining with the high-accuracy inter satellite links data, the precision of the determined orbit and

  5. NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER

    NASA Technical Reports Server (NTRS)

    Bamford, William; Naasz, Bo; Moreau, Michael C.

    2006-01-01

    NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.

  6. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    Observations from several medium-accuracy space sensors, such as the existing telescopic space sextant are compared with those of future matrix-type sensors. The large field of view of matrix sensors should permit determining the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by considering covariance analysis and by processing corrupted data through a reduced-order onboard sequentially partitioned algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  7. Coastal Navigation Portfolio Management

    DTIC Science & Technology

    2015-02-19

    CIRP.aspx Coastal Inlets Research Program Coastal Navigation Portfolio Management The Coastal Navigatoin Portfolio Management work unit...across the vast coastal navigation portfolio of projects. The USACE maintains a vast infrastructure portfolio of deep-draft coastal entrance...the Corps needs to be able to direct resources at the navigation projects that are most critical to overall marine transportation system performance

  8. Stereotaxy, navigation and the temporal concatenation.

    PubMed

    Apuzzo, M L; Chen, J C

    1999-01-01

    Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation.

  9. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  10. Federal Research and Development for Satellite Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report of the Committee on Satellite Communications (COSC) reviews a number of future communication needs which could be satisfied by satellite systems, including needs in fields such as education, health care delivery, hazard warning, navigation aids, search and rescue, electronic mail delivery, time and frequency dissemination, and…

  11. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  12. Space Shuttle navigation validation

    NASA Astrophysics Data System (ADS)

    Ragsdale, A.

    The validation of the guidance, navigation, and control system of the Space Shuttle is explained. The functions of the ascent, on-board, and entry mission phases software of the navigation system are described. The common facility testing, which evaluates the simulations to be used in the navigation validation, is examined. The standard preflight analysis of the operational modes of the navigation software and the post-flight navigation analysis are explained. The conversion of the data into a useful reference frame and the use of orbit parameters in the analysis of the data are discussed. Upon entry the data received are converted to flags, ratios, and residuals in order to evaluate performance and detect errors. Various programs developed to support navigation validation are explained. A number of events that occurred with the Space Shuttle's navigation system are described.

  13. Space Shuttle navigation validation

    NASA Technical Reports Server (NTRS)

    Ragsdale, A.

    1985-01-01

    The validation of the guidance, navigation, and control system of the Space Shuttle is explained. The functions of the ascent, on-board, and entry mission phases software of the navigation system are described. The common facility testing, which evaluates the simulations to be used in the navigation validation, is examined. The standard preflight analysis of the operational modes of the navigation software and the post-flight navigation analysis are explained. The conversion of the data into a useful reference frame and the use of orbit parameters in the analysis of the data are discussed. Upon entry the data received are converted to flags, ratios, and residuals in order to evaluate performance and detect errors. Various programs developed to support navigation validation are explained. A number of events that occurred with the Space Shuttle's navigation system are described.

  14. Space Weather Effects on Aircraft Navigation

    NASA Astrophysics Data System (ADS)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  15. Orbit Determination Using GPS Navigation Solution

    NASA Astrophysics Data System (ADS)

    Gomes, V. M.; Kuga, H. K.; Chiaradia, A. P.; Prado, A. F.

    The Global Positioning System (GPS) is a satellite navigation system that allows the users to determine position, velocity and the time with high precision. Its main purposes are aid to radionavigation in three dimensions with high precision positioning, navigation in real time, global coverage and quick acquisition of data sent by the GPS satellites. The purpose of this work is to compute in real time a state vector composed of position, velocity, GPS receiver clock bias and drift of the TOPEX/POSEIDON satellite by filtering the raw navigation solutions obtained by the on-board receiver. In this work the Kalman filter is used to estimate the state vector based on the incoming observations from the receiver. Such a computational algorithm processes measurements to produce minimum variance estimates of the system using knowledge of the dynamics and of the measurements, statistics of the measurement errors, and information about initial conditions. The Kalman filter is used due to its robustness in real time applications, without unnecessary storage of observations, as they can be processed while being collected. The filter dynamic model includes perturbation due to geopotential and the bias and drift are modeled as random walk processes. The observations include the raw navigation solution composed of position and bias. The velocity components of the navigation solution are not used due to its low accuracy. Several simulations are done comprising three days of observations of TOPEX/POSEINDON receiver, which are processed by the proposed algorithm. A comparison is done between the estimated state vector and the precise orbit ephemeris (POE) produced by JPL/NASA. Other characteristics are also analyzed, including effects of truncated dynamic model, step-size of integration, SA effect, to show the impact on the procedure in terms of accuracy and computational burden.

  16. The transmission link of CAPS navigation and communication system

    NASA Astrophysics Data System (ADS)

    Cui, Junxia; Shi, Huli; Chen, Jibin; Pei, Jun

    2009-03-01

    The Chinese Area Positioning System (CAPS) is based on communication satellites with integrated capability, which is different from the Global Positioning System (GPS), the International Maritime Satellite Organization (Inmarsat) and so on. CAPS works at C-band, and its navigation information is not directly generated from the satellite, but from the master control station on the ground and transmitted to users via the satellite. The slightly inclined geostationary-satellite orbit (SIGSO) satellites are adopted in CAPS. All of these increase the difficulty in the design of the system and terminals. In this paper, the authors study the CAPS configuration parameters of the navigation master control station, information transmission capability, and the selection of the antenna aperture of the communication center station, as well as the impact of satellite parameters on the whole communication system from the perspective of the transmission link budget. The conclusion of availability of the CAPS navigation system is achieved. The results show that the CAPS inbound communication system forms a new low-data-rate satellite communication system, which can accommodate mass communication terminals with the transmission rate of no more than 1 kbps for every terminal. The communication center station should be configured with a large-aperture antenna (about 10-15 m); spread spectrum communication technology should be used with the spreading gain as high as about 40 dB; reduction of the satellite transponder gain attenuation is beneficial to improving the signal-to-noise ratio of the system, with the attenuation value of 0 or 2 dB as the best choice. The fact that the CAPS navigation system has been checked and accepted by the experts and the operation is stable till now clarifies the rationality of the analysis results. The fact that a variety of experiments and applications of the satellite communication system designed according to the findings in this paper have been

  17. Addressing the Influence of Space Weather on Airline Navigation

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  18. Viewing Phobos and Deimos for navigating Mariner 9.

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Born, G. H.; Jerath, N.

    1972-01-01

    A new on-board optical navigation data technique has been successfully demonstrated on Mariner 9. Science TV pictures of Phobos and Deimos against star fields were used in the real time navigation process to insert Mariner 9 into orbit about Mars. Real time and post flight evaluation results have shown that the satellite/star data taken by Mariner 9 was more accurate than preflight analysis indicated. In fact the orbital insertion phase of the mission could have been achieved using only optical data to determine encounter parameters. The use of a science TV camera to obtain this data was successfully demonstrated. Stars as dim as 9th magnitude were detected and measurement accuracies of 3 arc sec (1 sigma) were achieved. The success of the optical navigation techniques developed for Mariner 9 has placed a new class of demanding missions (e.g., multiple outer planet, satellite tour, etc) within realized navigation capability.

  19. Satellite Communication.

    ERIC Educational Resources Information Center

    Technology Teacher, 1985

    1985-01-01

    Presents a discussion of communication satellites: explains the principles of satellite communication, describes examples of how governments and industries are currently applying communication satellites, analyzes issues confronting satellite communication, links mathematics and science to the study of satellite communication, and applies…

  20. The onboard control system of "Navigator" platform

    NASA Astrophysics Data System (ADS)

    Syrov, A. S.; Smirnov, V. V.; Sokolov, V. N.; Iodko, G. S.; Mischikhin, V. V.; Kosobokov, V. N.; Shatskii, M. A.; Dobrynin, D. A.

    2016-12-01

    A brief description of the design concept, structure and performance of the onboard control system (AOCS) of the "Navigator" satellite platform, on the basis of which the spacecraft "Electro-L' and "Spektr-R" are designed, is presented. The test-flight results of the AOCS attitude accuracy are given. Approaches to the further development of the onboard control equipment for advanced spacecraft are determined and presented.

  1. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  2. Liaison-Supplemented Navigation of a Crewed Vehicle in a Lunar Halo Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Leonard, Jason M.; Anderson, Rodney L.; Born, George H.

    2013-01-01

    This paper offers an early examination of the challenges of navigating a crewed vehicle, with all of the associated unmodeled accelerations that arise from the crew's activities, in an orbit about the Earth-Moon L2 point. The combination of the unstable nature of libration orbits with the lack of acceleration knowledge makes the station keeping strategy challenging. It is found that a combination of ground tracking and satellite-to-satellite tracking produces the most favorable navigation accuracy. This paper examines the costs and benefits of applying LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) to a crewed mission in an unstable L2 orbit.

  3. Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.

    2012-01-01

    Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.

  4. Principles of X-ray Navigation

    SciTech Connect

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  5. Planetary quarantine: Space research and technology. [satellite quarantine constraints on outer planet mission

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The impact of satisfying satellite quarantine constraints on current outer planet mission and spacecraft designs is considered. Tools required to perform trajectory and navigation analyses for determining satellite impact probabilities are developed.

  6. FAA navigation program

    NASA Technical Reports Server (NTRS)

    Blake, N. A.

    1978-01-01

    The FAA navigation program, which includes two major activity areas: those associated with certification of navigation systems to meet current requirements and those associated with building the data base needed to define future system improvements is examined. The near term activities, including the VORTAC upgrading program, the development of the technical data base needed for certification of LORAN C and OMEGA as a part of the current air navigation system, and the development of area navigation standards are examined in regard to cost factors and user requirements. Future system activities discussed include analysis of alternative system configurations made up of system elements including VORTAC VOR-DME, OMEGA and differential OMEGA, LORAN C, and GPS. The interrelationships between the near and far term programs are discussed. A helicopter IFR program which includes an assessment of the operational suitability of several navigation system alternatives for meeting helicopter navigation requirements for CONUS and offshore operations is reported.

  7. 76 FR 5068 - Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T-288...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... (IFR) approved Global Positioning System (GPS)/Global Navigation Satellite System (GNSS) equipment... by GPS/GNSS equipped aircraft. This action enhances safety and facilitates the efficient use...

  8. Optimal Constellation Design for Satellite Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Kawano, Isao

    Global Positioning System (GPS) is widely utilized in daily life, for instance car navigation. Wide Area Augmentation System (WAAS) and Local Area Augmentation System (LAAS) are proposed so as to provide GPS better navigation accuracy and integrity capability. Satellite Based Augmentation System (SBAS) is a kind of WAAS and Multi-functional Transportation Satellite (MTSAT) has been developed in Japan. To improve navigation accuracy most efficiently, augmentation satellites should be so placed that minimize Geometric Dilution of Precision (GDOP) of constellation. In this paper the result of optimal constellation design for SBAS is shown.

  9. Civil Navigation Signal Status

    DTIC Science & Technology

    2015-04-29

    2015 04 29 _GPS Civil Navigation Signal Status UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE UNCLASSIFIED/APPROVED FOR PUBLIC RELEASE Space and Missile...Systems Center Maj Michael Zollars 29 Apr 15 Civil Navigation Signal Status Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...2015 4. TITLE AND SUBTITLE Civil Navigation Signal Status 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  10. Concept of the Development of the Ukrainian Navigation Service System

    NASA Astrophysics Data System (ADS)

    Vereshak, A. P.; Piskorzh, V. V.; Zhalilo, A. A.; Litvinov, V. A.; Voloh, K. F.

    The Ukrainian national navigation service is supposed to be based on the signals from the global navigational GPS and GLONASS systems and the geostationary INMARSAT-3 satellites. The differential navigation in Ukraine will be provided by the multifunctional network of reference stations (RS) which is supposed to be integrated into the European segment of the international GNSS-1 system. The basis of the Ukrainian differential system will be a ground-based segment including the main network of regional RS network and local RS networks. The regional RS network (12 RS) will be built on the principles of wide-area navigation using the complex processing of code and carrier-phase L1, L2 observations. The observations will be transmitted to the European GNSS-1 processing data centre for the information and transmission of DCI and integrity through the INMARSAT-3 geostationary satellite. The local RS networks will operate jointly. The possibilities of DCI transmission through a national geostationary communication satellite with a board navigation transponder are also discussed. The injection of this satellite into orbit will give a possibility of increasing the reliability and potentialities of GNSS-1.

  11. Mixing navigation on networks

    NASA Astrophysics Data System (ADS)

    Zhou, Tao

    2008-05-01

    In this article, we propose a mixing navigation mechanism, which interpolates between random-walk and shortest-path protocol. The navigation efficiency can be remarkably enhanced via a few routers. Some advanced strategies are also designed: For non-geographical scale-free networks, the targeted strategy with a tiny fraction of routers can guarantee an efficient navigation with low and stable delivery time almost independent of network size. For geographical localized networks, the clustering strategy can simultaneously increase efficiency and reduce the communication cost. The present mixing navigation mechanism is of significance especially for information organization of wireless sensor networks and distributed autonomous robotic systems.

  12. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  13. Navigation Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS) Experiment

    NASA Technical Reports Server (NTRS)

    Haas, Lin; Massey, Christopher; Baraban, Dmitri

    2003-01-01

    This paper presents the Global Positioning System (GPS) navigation results from the Communications and Navigation Demonstration on Shuttle (CANDOS) experiment flown on STS-107. This experiment was the initial flight of a Low Power Transceiver (LPT) that featured high capacity space- space and space-ground communications and GPS- based navigation capabilities. The LPT also hosted the GPS Enhanced Orbit Determination Experiment (GEODE) orbit determination software. All CANDOS test data were recovered during the mission using LPT communications links via the Tracking and Data Relay Satellite System (TDRSS). An overview of the LPT s navigation software and the GPS experiment timeline is presented, along with comparisons of test results to the NASA Johnson Space Center (JSC) real-time ground navigation vectors and Best Estimate of Trajectory (BET).

  14. Aerocapture - Guidance, navigation, and control

    NASA Astrophysics Data System (ADS)

    Mease, K. D.; Weidner, R. J.; Kechichian, J. A.; Wood, L. J.; Cruz, M. I.

    1982-08-01

    Aerocapture is a concept for inserting a spacecraft into orbit about a target planet. The energy required for orbit insertion is obtained from natural resources present at or near the target body, thereby reducing the amount of propellant which must be carried onboard. Specifically, the transfer from a hyperbolic flyby trajectory to a desired bound orbit is effected by aerodynamic lift and drag forces acting on the spacecraft during controlled flight through the atmosphere of either the target planet or a nearby satellite. A survey is provided of the trajectory guidance, navigation, and control aspects of aerocapture, and a summary is given of the results of a number of preliminary studies concerning certain of these aspects. The investigation has additional significance in connection with the current interest in aeroassisted orbital transfer vehicles, which may be used in conjunction with the Space Shuttle.

  15. Aerocapture - Guidance, navigation, and control

    NASA Technical Reports Server (NTRS)

    Mease, K. D.; Weidner, R. J.; Kechichian, J. A.; Wood, L. J.; Cruz, M. I.

    1982-01-01

    Aerocapture is a concept for inserting a spacecraft into orbit about a target planet. The energy required for orbit insertion is obtained from natural resources present at or near the target body, thereby reducing the amount of propellant which must be carried onboard. Specifically, the transfer from a hyperbolic flyby trajectory to a desired bound orbit is effected by aerodynamic lift and drag forces acting on the spacecraft during controlled flight through the atmosphere of either the target planet or a nearby satellite. A survey is provided of the trajectory guidance, navigation, and control aspects of aerocapture, and a summary is given of the results of a number of preliminary studies concerning certain of these aspects. The investigation has additional significance in connection with the current interest in aeroassisted orbital transfer vehicles, which may be used in conjunction with the Space Shuttle.

  16. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  17. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  18. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  19. Augmenting the Global Positioning System with Foreign Navigation Systems and Alternative Sensors

    DTIC Science & Technology

    2012-03-01

    17 GLONASS Global Navigation Satellite System . . . . . . . . . . . . . . . . . . . . 18 FDMA Frequency Division Multiple... FDMA ). The frequency spectrum is broken down into two sub-bands from which the GLONASS channels derive their specific frequencies. The channels are

  20. Mathematical specifications of the Onboard Navigation Package (ONPAC) simulator (revision 1)

    NASA Technical Reports Server (NTRS)

    Dunham, J. B.; Long, A. C.; Wooden, W.

    1981-01-01

    The mathematical theory of the computational algorithms employed in the onboard navigation package system is described. This system, which simulates an onboard navigation processor, was developed to aid in the design and evaluation of onboard navigation software. The mathematical formulations presented include the factorized UDU(T) form of the extended Kalman filter, the equations of motion of the user satellite, the user clock equations, the observation equations and their partial derivatives, the coodinate transformations, and the matrix decomposition algorithms.

  1. Angles-Only Navigation: Position and Velocity Solution from Absolute Triangulation

    DTIC Science & Technology

    2011-01-01

    for automated farming. A specific proposed application for open-sea ship navigation would use the angular posi- tions of Earth satellites observed...navigation would use the angular positions of Earth satellites observed optically against a star background. Such a system could provide a supplement to... Earth , so that observations can be col- lected over extended tracks. The paper is organized by sections as follows. First, some possible applications

  2. Coast Guard/NOAA/NASA Great Lakes Project Icewarn. [ice mapping for winter navigation

    NASA Technical Reports Server (NTRS)

    Brennan, T. D.; Gedney, R. T.

    1975-01-01

    The operational feasibility of using remote sensing to provide all weather ice formation for Great Lakes winter navigation is explored. A combination airborne pulsed radar system to measure actual ice thickness, a satellite data link system, and a hand drawn interpretive ice chart proved valuable for extending winter navigation through the icepack.

  3. The amendment of the optimum geometry based on four satellites

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Y.; Huang, C.; Feng, C. G.; Zhang, F. P.

    2003-08-01

    In some special GPS navigation and positioning applications, it can be synchronously obtained site's positions and clock biases from four visible satellites. The selections of these four satellites have influence on the accuracy of navigation and positioning. The minimum GDOP can be realized for four symmetric distributed satellites with respect to the sites. The GDOP is inversely proportional to the volume of the tetrahedron formed by unit vectors from sites toward the satellites. In this paper, based on the work of Kihara, the amendment of the optimum geometry on tetrahedron is discussed deeply and induced the formula of tetrahedron, it is demonstrated that is more reasonable and precisely in example.

  4. Autonomous Navigation of Small Uavs Based on Vehicle Dynamic Model

    NASA Astrophysics Data System (ADS)

    Khaghani, M.; Skaloud, J.

    2016-03-01

    This paper presents a novel approach to autonomous navigation for small UAVs, in which the vehicle dynamic model (VDM) serves as the main process model within the navigation filter. The proposed method significantly increases the accuracy and reliability of autonomous navigation, especially for small UAVs with low-cost IMUs on-board. This is achieved with no extra sensor added to the conventional INS/GNSS setup. This improvement is of special interest in case of GNSS outages, where inertial coasting drifts very quickly. In the proposed architecture, the solution to VDM equations provides the estimate of position, velocity, and attitude, which is updated within the navigation filter based on available observations, such as IMU data or GNSS measurements. The VDM is also fed with the control input to the UAV, which is available within the control/autopilot system. The filter is capable of estimating wind velocity and dynamic model parameters, in addition to navigation states and IMU sensor errors. Monte Carlo simulations reveal major improvements in navigation accuracy compared to conventional INS/GNSS navigation system during the autonomous phase, when satellite signals are not available due to physical obstruction or electromagnetic interference for example. In case of GNSS outages of a few minutes, position and attitude accuracy experiences improvements of orders of magnitude compared to inertial coasting. It means that during such scenario, the position-velocity-attitude (PVA) determination is sufficiently accurate to navigate the UAV to a home position without any signal that depends on vehicle environment.

  5. Algorithm for navigated ESS.

    PubMed

    Baudoin, T; Grgić, M V; Zadravec, D; Geber, G; Tomljenović, D; Kalogjera, L

    2013-12-01

    ENT navigation has given new opportunities in performing Endoscopic Sinus Surgery (ESS) and improving surgical outcome of the patients` treatment. ESS assisted by a navigation system could be called Navigated Endoscopic Sinus Surgery (NESS). As it is generally accepted that the NESS should be performed only in cases of complex anatomy and pathology, it has not yet been established as a state-of-the-art procedure and thus not used on a daily basis. This paper presents an algorithm for use of a navigation system for basic ESS in the treatment of chronic rhinosinusitis (CRS). The algorithm includes five units that should be highlighted using a navigation system. They are as follows: 1) nasal vestibule unit, 2) OMC unit, 3) anterior ethmoid unit, 4) posterior ethmoid unit, and 5) sphenoid unit. Each unit has a shape of a triangular pyramid and consists of at least four reference points or landmarks. As many landmarks as possible should be marked when determining one of the five units. Navigated orientation in each unit should always precede any surgical intervention. The algorithm should improve the learning curve of trainees and enable surgeons to use the navigation system routinely and systematically.

  6. Bayesian statistics and information fusion for GPS-denied navigation

    NASA Astrophysics Data System (ADS)

    Copp, Brian Lee

    It is well known that satellite navigation systems are vulnerable to disruption due to jamming, spoofing, or obstruction of the signal. The desire for robust navigation of aircraft in GPS-denied environments has motivated the development of feature-aided navigation systems, in which measurements of environmental features are used to complement the dead reckoning solution produced by an inertial navigation system. Examples of environmental features which can be exploited for navigation include star positions, terrain elevation, terrestrial wireless signals, and features extracted from photographic data. Feature-aided navigation represents a particularly challenging estimation problem because the measurements are often strongly nonlinear, and the quality of the navigation solution is limited by the knowledge of nuisance parameters which may be difficult to model accurately. As a result, integration approaches based on the Kalman filter and its variants may fail to give adequate performance. This project develops a framework for the integration of feature-aided navigation techniques using Bayesian statistics. In this approach, the probability density function for aircraft horizontal position (latitude and longitude) is approximated by a two-dimensional point mass function defined on a rectangular grid. Nuisance parameters are estimated using a hypothesis based approach (Multiple Model Adaptive Estimation) which continuously maintains an accurate probability density even in the presence of strong nonlinearities. The effectiveness of the proposed approach is illustrated by the simulated use of terrain referenced navigation and wireless time-of-arrival positioning to estimate a reference aircraft trajectory. Monte Carlo simulations have shown that accurate position estimates can be obtained in terrain referenced navigation even with a strongly nonlinear altitude bias. The integration of terrain referenced and wireless time-of-arrival measurements is described along with

  7. Evaluation of Galileo navigation system positioning performance in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Hong, Zhonghua; Han, Yanling; Xu, Lijun; Song, Yushi; Zhang, Kun

    2015-01-01

    European Galileo global navigation system's four in-orbit validation (IOV) satellites (E11, E12, E19, and E20) are able to calculate position accurately. The analysis of the IOV satellites' measurements can provide insight into the performance of the Galileo system. To evaluate the performance of IOV satellites using measurements in the Shanghai, China, area signal-to-noise ratio (SNR) and multipath are used. We also suggest a method to calculate the four frequencies' multipath error. When compared with global positioning system (GPS) satellites' SNR, IOV satellites' signal strength is stronger. In the aspect of multipath error, the IOV satellite is also less than GPS. The accuracy of single point positioning under open sky, under trees, and between tall buildings of a combined GPS/Galileo system is analyzed in the Shanghai area. The positioning result shows that the positioning accuracy of the combined GPS/Galileo system is better than the GPS system alone.

  8. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  9. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  10. Navigating Our Way through the Research-Teaching Nexus

    ERIC Educational Resources Information Center

    Speake, Janet

    2015-01-01

    This article explores some of the synergetic relationships between research and teaching which can help shape geography undergraduate students' understandings of research. Through the experience of investigating students' attitudes towards, and engagement with, satellite navigation technologies, it considers ways in which learning can be achieved…

  11. Navigating Ski Slopes Safely

    MedlinePlus

    ... medlineplus.gov/news/fullstory_162902.html Navigating Ski Slopes Safely National Ski Areas Association offers advice on ... 2017 (HealthDay News) -- Many people head for the slopes at the first sign of snow, but it's ...

  12. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  13. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  14. Spacecraft formation flying: Dynamics, control and navigation

    NASA Astrophysics Data System (ADS)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  15. Odometry and insect navigation.

    PubMed

    Wolf, Harald

    2011-05-15

    Animals have needed to find their way about almost since a free-living life style evolved. Particularly, if an animal has a home--shelter or nesting site--true navigation becomes necessary to shuttle between this home and areas of other activities, such as feeding. As old as navigation is in the animal kingdom, as diverse are its mechanisms and implementations, depending on an organism's ecology and its endowment with sensors and actuators. The use of landmarks for piloting or the use of trail pheromones for route following have been examined in great detail and in a variety of animal species. The same is true for senses of direction--the compasses for navigation--and the construction of vectors for navigation from compass and distance cues. The measurement of distance itself--odometry--has received much less attention. The present review addresses some recent progress in the understanding of odometers in invertebrates, after outlining general principles of navigation to put odometry in its proper context. Finally, a number of refinements that increase navigation accuracy and safety are addressed.

  16. Relative Navigation for Formation Flying of Spacecraft

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Du, Ju-Young; Hughes, Declan; Junkins, John L.; Crassidis, John L.

    2001-01-01

    This paper presents a robust and efficient approach for relative navigation and attitude estimation of spacecraft flying in formation. This approach uses measurements from a new optical sensor that provides a line of sight vector from the master spacecraft to the secondary satellite. The overall system provides a novel, reliable, and autonomous relative navigation and attitude determination system, employing relatively simple electronic circuits with modest digital signal processing requirements and is fully independent of any external systems. Experimental calibration results are presented, which are used to achieve accurate line of sight measurements. State estimation for formation flying is achieved through an optimal observer design. Also, because the rotational and translational motions are coupled through the observation vectors, three approaches are suggested to separate both signals just for stability analysis. Simulation and experimental results indicate that the combined sensor/estimator approach provides accurate relative position and attitude estimates.

  17. Uplink Scheduling of Navigation Constellation Based on Immune Genetic Algorithm

    PubMed Central

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun; Li, Xianbin

    2016-01-01

    The uplink of navigation data as satellite ephemeris is a complex satellite range scheduling problem. Large–scale optimal problems cannot be tackled using traditional heuristic methods, and the efficiency of standard genetic algorithm is unsatisfactory. We propose a multi-objective immune genetic algorithm (IGA) for uplink scheduling of navigation constellation. The method focuses on balance traffic and maximum task objects based on satellite-ground index encoding method, individual diversity evaluation and memory library. Numerical results show that the multi–hierarchical encoding method can improve the computation efficiency, the fuzzy deviation toleration method can speed up convergence, and the method can achieve the balance target with a negligible loss in task number (approximately 2.98%). The proposed algorithm is a general method and thus can be used in similar problems. PMID:27736986

  18. Uplink Scheduling of Navigation Constellation Based on Immune Genetic Algorithm.

    PubMed

    Tang, Yinyin; Wang, Yueke; Chen, Jianyun; Li, Xianbin

    2016-01-01

    The uplink of navigation data as satellite ephemeris is a complex satellite range scheduling problem. Large-scale optimal problems cannot be tackled using traditional heuristic methods, and the efficiency of standard genetic algorithm is unsatisfactory. We propose a multi-objective immune genetic algorithm (IGA) for uplink scheduling of navigation constellation. The method focuses on balance traffic and maximum task objects based on satellite-ground index encoding method, individual diversity evaluation and memory library. Numerical results show that the multi-hierarchical encoding method can improve the computation efficiency, the fuzzy deviation toleration method can speed up convergence, and the method can achieve the balance target with a negligible loss in task number (approximately 2.98%). The proposed algorithm is a general method and thus can be used in similar problems.

  19. Dilution of Precision-Based Lunar Navigation Assessment for Dynamic Position Fixing

    NASA Technical Reports Server (NTRS)

    Sands, Obed S.; Connolly, Joseph W.; Welch, Bryan W.; Carpenter, James R.; Ely, Todd A.; Berry, Kevin

    2006-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the moon, missions under the Exploration Systems Initiative will require navigation on the moon's limb and far-side. As these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this paper, a Dilution of Precision (DoP) based analysis of the performance of a network of Moon orbiting satellites is provided. The analysis extends previous analysis of a Lunar Network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions are with regard to the navigation receiver and satellite visibility. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP (i.e., GDoP, PDoP, etc.) are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  20. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B and Class C). The FAA has also published two GPS TSOs augmented by the satellite-based augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  1. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  2. Satellite Geodesy—Foundations, Methods, and Applications

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    This text is an updated English translation of Satellitengeodasie, a book that was published in German in 1989. The text is the first in many years that attempts to cover the broad spectrum of methods, applications, and systems, both classical and current, that have developed in the field of satellite geodesy.The material is presented in a structure that follows the major observational methods used in satellite geodesy: classical techniques, Doppler, GPS, laser, altimetry, and special methods including satellite-to-satellite tracking, satellite radiometry, and VLBI. Before introducing these observational techniques in detail, the author provides the fundamentals on reference frames, time signal propagation, orbital mechanics and basic applications of satellite geodesy in positioning, gravity field modeling, navigation, marine geodesy, kinematics, and geodynamics. An excellent reference list completes the text.

  3. Satellite RNAs and Satellite Viruses.

    PubMed

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA.

  4. Aerocapture navigation at Neptune

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.

    2003-01-01

    A proposed Neptune orbiter Aerocapture mission will use solar electric propulsion to send an orbiter to Neptune. Navigation feasibility of direct-entry aerocapture for orbit insertion at Neptune is shown. The navigation strategy baselines optical imaging and (delta)VLBI measurement in order to satisfy the flight system's atmosphere entry flight path angle, which is targeted to enter Neptune with an entry flight path angle of -11.6 . Error bars on the entry flight path angle of plus/minus0.55 (3(sigma)) are proposed. This requirement can be satisfied with a data cutoff 3.2 days prior to arrival. There is some margin in the arrival template to tighten (i.e. reduce) the entry corridor either by scheduling a data cutoff closer to Neptune or alternatively, reducing uncertainties by increasing the fidelity of the optical navigation camera.

  5. Integrating Communication and Navigation: Next Generation Broadcast Service (NGBS)

    NASA Technical Reports Server (NTRS)

    Donaldson, Jennifer

    2017-01-01

    NASA Goddard has been investing in technology demonstrations of a beacon service, now called Next Generation Broadcast Services (NGBS). NGBS is a global, space-based, communications and navigation service for users of Global Navigation Satellite Systems (GNSS) and the Tracking and Data Relay Satellite System (TDRSS). NGBS will provide an S-band beacon messaging source and radio navigation available to users at orbital altitudes 1400 km and below, increasing the autonomy and resiliency of onboard communication and navigation. NGBS will deliver both one-way radiometric (Doppler and pseudorange) and fast forward data transport services to users. Portions of the overall forward data volume will be allocated for fixed message types while the remaining data volume will be left for user forward command data. The NGBS signal will reside within the 2106.43 MHz spectrum currently allocated for the Space Networks multiple access forward (MAF) service and a live service demonstration is currently being planned via the 2nd and 3rd generation TDRS satellites.

  6. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  7. Mariner 9 navigation

    NASA Technical Reports Server (NTRS)

    Neil, W. J.; Jordan, J. F.; Zielenbach, J. W.; Wong, S. K.; Mitchell, R. T.; Webb, W. A.; Koskela, P. E.

    1973-01-01

    A final, comprehensive description of the navigation of Mariner 9-the first U.S. spacecraft to orbit another planet is provided. The Mariner 9 navigation function included not only precision flight path control but also pointing of the spacecraft's scientific instruments mounted on a two degree of freedom scan platform. To the extent appropriate, each section describes the perflight analyses on which the operational strategies and performance predictions were based. Inflight results are then discussed and compared with the preflight predictions. Postflight analyses, which were primarily concerned with developing a thorough understanding of unexpected in-flight results, are also presented.

  8. Cassini tour navigation strategy

    NASA Technical Reports Server (NTRS)

    Roth, Duane; Alwar, Vijay; Bordi, John; Goodson, Troy; Hahn, Yungsun; Ionasescu, Rodica; Jones, Jeremy; Owen, William; Pojman, Joan; Roundhill, Ian; Santos, Shawna; Strange, Nathan; Wagner, Sean; Wong, Mau

    2003-01-01

    The Cassini-Huygens spacecraft was launched on October 15, 1997 as a joint NASA/ESA mission to explore Saturn. After a 7 year cruise the spacecraft will enter orbit around Saturn on 1 July 2004 for a 4 year investigation of the Saturnian system. The Cassini Navigation Team is responsible for designing the reference trajectory and conducting operations to realize this design. This paper describes the strategy for achieving project requirements, the characteristics of the Cassini navigation challenge, and the underlying assumptions.

  9. Navigational Planning in Orienteering

    NASA Astrophysics Data System (ADS)

    Murakoshi, Shin

    Navigation is a human activity with the aim being to arrive at a predetermined destination. In order to find the way to the destination, the use of current input from the actual environment while travelling is needed as well as stored and organized knowledge of the local geography. Although the knowledge requirement has been studied extensively in the form of cognitive maps or other spatial representation, few studies deal with how the knowledge is used together with the input from the actual environment while navigating.

  10. Satellites at Work, Space in the Seventies.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication in the "Space in the Seventies" series describes current status and future plans for "working" spacecraft, also called "application satellites." These spacecraft serve the needs of communications, meteorology, geodesy, and navigation. They also enable us to study earth resources from space. Many scientific and technical concepts…

  11. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  12. GPS computer navigators to shorten EMS response and transport times.

    PubMed

    Ota, F S; Muramatsu, R S; Yoshida, B H; Yamamoto, L G

    2001-05-01

    GPS (global positioning satellite system to determine one's position on earth) units have become inexpensive and compact. The purpose of this study is to assess the effectiveness of a GPS enhanced computer street map navigator to improve the ability of EMS drivers in an urban setting to locate their destination and shorten response times. For part I, residential addresses in the city were randomly selected from a telephone directory. Two driver/navigator teams were assigned to drive to the address adhering to speed limits. One team used a standard street map, whereas the other team used a GPS computer navigator. The travel time and distance of the runs were compared. For part II, the computer GPS navigator was placed on an ambulance to supplement their normal methods of navigation to find the address requesting EMS. After the run was completed, EMS providers were interviewed to determine their opinion of whether the GPS navigator was helpful. For part I the results showed that in the 29 initial test runs, comparing the GPS team versus the standard map team, the mean distances traveled were 8.7 versus 9.0 kilometers (not significant) and the mean travel times were 13.5 versus 14.6 minutes (P=.02), respectively. The GPS team arrived faster in 72% runs. For part II the results showed that most EMS providers surveyed noted that the GPS computer navigator enhanced their ability to find the destination and all EMS providers acknowledged that it would enhance their ability to find a destination in an area in which they were unfamiliar. These results suggest that a portable GPS computer navigator system is helpful and can enhance the ability of prehospital care providers to locate their destination. Because these units are accurate and inexpensive, GPS computer navigators may be a valuable tool in reducing pre-hospital transport times.

  13. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  14. Satellite and ground radiotracking of elk

    NASA Technical Reports Server (NTRS)

    Craighead, F. C., Jr.; Craighead, J. J.; Cote, C. E.; Buechner, H. K.

    1972-01-01

    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth.

  15. Inertial Navigation Components and Systems.

    DTIC Science & Technology

    INERTIAL NAVIGATION , SYMPOSIA, INERTIAL GUIDANCE, INSTRUMENTATION, GYROSCOPES, OPTIMIZATION, STABILIZED PLATFORMS, GYRO COMPASSES, ALIGNMENT, CALIBRATION, COST EFFECTIVENESS, AIR TO SURFACE MISSILES.

  16. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  17. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  18. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  19. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  20. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  1. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  2. Navigating between the Dimensions

    ERIC Educational Resources Information Center

    Fleron, Julian F.; Ecke, Volker

    2011-01-01

    Generations have been inspired by Edwin A. Abbott's profound tour of the dimensions in his novella "Flatland: A Romance of Many Dimensions" (1884). This well-known satire is the story of a flat land inhabited by geometric shapes trying to navigate the subtleties of their geometric, social, and political positions. In this article, the authors…

  3. Inertial Navigation Sensors

    DTIC Science & Technology

    2010-03-01

    In theory, this means that atom interferometers could make the most accurate gyroscopes, accelerometers, gravity gradiometers , and precision clocks...improve navigation accuracy, which is ultimately limited by imperfect knowledge of the gravity vector. A superconducting gravity gradiometer (comprising...Interferometry, Physics, May 2001 [44] Moody M. and Ho Jung Paik, Canavan E., Three-Axis Superconducting Gravity Gradiometer for Sensitive Gravity

  4. Navigating the System

    MedlinePlus

    ... of Care Navigating The System Related Topics on AIDS.gov Civil Rights Insurance Types of Lab Tests ... InTouch TeleVox OnTimeRx Last revised: 06/01/2012 AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  5. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  6. Natural Satellite Ephemerides at JPL

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Brozovic, Marina

    2015-08-01

    There are currently 176 known natural planetary satellites in the solar system; 150 are officially recognized by the IAU and 26 have IAU provisional designations. We maintain ephemerides for all of the satellites at NASA's Jet Propulsion Laboratory (JPL) and make them available electronically through the On-Line Solar System Data Service known as Horizons(http://ssd.jpl.nasa.gov/horizons) and in the form of generic Spice Kernels (SPK files) from NASA's Navigation and Ancillary Information Facility (http://naif.jpl.nasa.gov/naif). General satellite information such as physical constants and descriptive orbital elements can be found on the JPL Solar System Dynamics Website (http://ssd.jpl.nasa.gov). JPL's ephemerides directly support planetary spacecraft missions both in navigation and science data analysis. They are also used in general scientific investigations of planetary systems. We produce the ephemerides by fitting numerically integrated orbits to observational data. Our model for the satellite dynamics accounts for the gravitational interactions within a planetary system and the external gravitational perturbations from the Sun and planets. We rely on an extensive data set to determine the parameters in our dynamical models. The majority of the observations are visual, photographic, and CCD astrometry acquired from Earthbased observatories worldwide and the Hubble Space Telescope. Additional observations include optical and photoelectric transits, eclipses, occultations, Earthbased radar ranging, spacecraft imaging,and spacecraft radiometric tracking. The latter data provide information on the planet and satellite gravity fields as well as the satellite position at the times of spacecraft close encounters. In this paper we report on the status of the ephemerides and our plan for future development, specifically that in support of NASA's Juno, Cassini, and New Horizons missions to Jupiter, Saturn, and Pluto, respectively.

  7. Coastal Piloting & Charting: Navigation 101.

    ERIC Educational Resources Information Center

    Osinski, Alison

    This curriculum guide for a beginning course on marine navigation describes marine navigation (the art of and science of determining position of a ship and its movement from one position to another in order to keep track of where the ship is and where it is going) and defines dead reckoning, piloting, electronic navigation, and celestial…

  8. User manual and programmer reference manual for the ATS-6 navigation model AOIPS and McIDAS versions, part 2

    NASA Technical Reports Server (NTRS)

    Chatters, G. C.; Kuhlow, W. W.

    1977-01-01

    Development of a navigation system for a given satellite is reported. An algorithm for converting a satellite picture element location to earth location and vice versa was defined as well as a procedure for measuring the set of constants needed by the algorithm. A user manual briefly describing the current version of the navigation model and how to use the computer programs developed for it is presented.

  9. 76 FR 63714 - Technical Standard Order (TSO)-C129a, Airborne Supplemental Navigation Equipment Using the Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    .... Background On September 21, 2009, the FAA published TSO-C196, Airborne Supplemental Navigation Sensors for... standard for GPS sensors not augmented by satellite-based or ground- based systems (i.e., TSO-C129a Class B... augmentation system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented...

  10. Synchronized Position Hold, Engage, Reorient, Experimental Satellites

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Wilson, Edward; How, Jonathan; Sanenz-Otero, Alvar; Chamitoff, Gregory

    2009-01-01

    Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized spherical satellites. They will be used inside the space station to test a set of well-defined instructions for spacecraft performing autonomous rendezvous and docking maneuvers. Three free-flying spheres will fly within the cabin of the station, performing flight formations. Each satellite is self-contained with power, propulsion, computers and navigation equipment. The results are important for satellite servicing, vehicle assembly and formation flying spacecraft configurations. SPHERES is a testbed for formation flying by satellites, the theories and calculations that coordinate the motion of multiple bodies maneuvering in microgravity. To achieve this inside the ISS cabin, bowling-ball-sized spheres perform various maneuvers (or protocols), with one to three spheres operating simultaneously . The Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) experiment will test relative attitude control and station-keeping between satellites, re-targeting and image plane filling maneuvers, collision avoidance and fuel balancing algorithms, and an array of geometry estimators used in various missions. SPHERES consists of three self-contained satellites, which are 18 sided polyhedrons that are 0.2 meter in diameter and weigh 3.5 kilograms. Each satellite contains an internal propulsion system, power, avionics, software, communications, and metrology subsystems. The propulsion system uses CO2, which is expelled through the thrusters. SPHERES satellites are powered by AA batteries. The metrology subsystem provides real-time position and attitude information. To simulate ground station-keeping, a laptop will be used to transmit navigational data and formation flying algorithms. Once these data are uploaded, the satellites will perform autonomously and hold the formation until a new command is given.

  11. Satellite Vulnerabilities

    DTIC Science & Technology

    2008-02-18

    per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...allies. 8  Satellites and Intelligence , Surveillance, and Reconnaissance We have become dependent also on our satellite surveillance assets...uninterrupted ISR”, with “space intelligence , surveillance, and reconnaissance (ISR) systems…fundamental to air power—especially to the execution

  12. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. Since these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this report, a dilution-of-precision (DoP)-based analysis of the performance of a network of Moon orbiting satellites is provided. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum surface user elevation angle and a total single satellite failure in the lunar network. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometric DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  13. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  14. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  15. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  16. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  17. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  18. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  19. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  20. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  1. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  2. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  3. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  4. Meteorological satellites

    NASA Technical Reports Server (NTRS)

    Allison, L. J. (Editor); Schnapf, A.; Diesen, B. C., III; Martin, P. S.; Schwalb, A.; Bandeen, W. R.

    1980-01-01

    An overview is presented of the meteorological satellite programs that have been evolving from 1958 to the present, and plans for the future meteorological and environmental satellite systems that are scheduled to be placed into service in the early 1980's are reviewed. The development of the TIROS family of weather satellites, including TIROS, ESSA, ITOS/NOAA, and the present TIROS-N (the third generation operational system) is summarized. The contribution of the Nimbus and ATS technology satellites to the development of the operational-orbiting and geostationary satellites is discussed. Included are descriptions of both the TIROS-N and the DMSP payloads currently under development to assure a continued and orderly growth of these systems into the 1980's.

  5. Libration Point Navigation Concepts Supporting Exploration Vision

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Gramling, Cheryl J.

    2004-01-01

    Farquhar described several libration point navigation concepts that would appear to support NASA s current exploration vision. One concept is a Lunar Relay Satellite operating in the vicinity of Earth-Moon L2, providing Earth-to-lunar far-side and long- range surface-to-surface navigation and communications capability. Reference [ 1] lists several advantages of such a system in comparison to a lunar orbiting relay satellite constellation. Among these are one or two vs. many satellites for coverage, simplified acquisition and tracking due to very low relative motion, much longer contact times, and simpler antenna pointing. An obvious additional advantage of such a system is that uninterrupted links to Earth avoid performing critical maneuvers "in the blind." Another concept described is the use of Earth-Moon L1 for lunar orbit rendezvous, rather than low lunar orbit as was done for Apollo. This rendezvous technique would avoid large plane change and high fuel cost associated with high latitude landing sites and long stay times. Earth-Moon L1 also offers unconstrained launch windows from the lunar surface. Farquhar claims this technique requires only slightly higher fuel cost than low lunar orbit rendezvous for short-stay equatorial landings. Farquhar also describes an Interplanetary Transportation System that would use libration points as terminals for an interplanetary shuttle. This approach would offer increased operational flexibility in terms of launch windows, rendezvous, aborts, etc. in comparison to elliptical orbit transfers. More recently, other works including Folta[3] and Howell[4] have shown that patching together unstable trajectories departing Earth-Moon libration points with stable trajectories approaching planetary libration points may also offer lower overall fuel costs than elliptical orbit transfers. Another concept Farquhar described was a Deep Space Relay at Earth-Moon IA and/or L5 that would serve as a high data rate optical navigation and

  6. Global Positioning System Satellite Selection Method

    NASA Technical Reports Server (NTRS)

    Niles, Frederick A. (Inventor)

    2001-01-01

    The satellite selection method as utilized by the spaceborne Global Positioning System receiver provides navigational solutions and is designed for use in low Earth orbit. The satellite selection method is a robust algorithm that can be used a GPS receiver to select appropriate GPS satellites for use in calculating point solutions or attitude solutions. The method is takes into account the difficulty of finding a particular GPS satellite phase code, especially when the search range in greatly increased due to Doppler shifts introduced into the carrier frequency. The method starts with an update of the antenna pointing and spacecraft vectors to determine the antenna backplane direction. Next, the GPS satellites that will potentially be in view of the antenna are ranked on a list, whereby the list is generated based on the estimated attitude and position of each GPS satellite. Satellites blocked by the Earth are not entered on this list. A second list is created, whereby the GPS satellites are ranked according to their desirability for use in attitude determination. GPS satellites are ranked according to their orthogonality to the antenna backplane, and according to geometric dilution of precision considerations. After the lists are created, the channels of the spaceborne GPS receiver are assigned to various GPS satellites for acquisition and lock. Preliminary Doppler frequencies for searching are assigned to the various channels.

  7. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  8. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  9. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  10. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  11. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  12. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  13. Navigating care management.

    PubMed

    Albert, Ben

    2012-12-01

    Developing a care navigation model involves a five-step process: Determine areas of risk, such as high readmission rates and patient populations that pose a financial challenge for the organization (e.g., patients with congestive heart failure). Decide which patient populations will serve as the target populations. Find the right staff to support the model. Outline protocols and best practices. Expand the scale of the program.

  14. Giotto navigation support

    NASA Technical Reports Server (NTRS)

    Mottinger, N. A.; Premkumar, R. I.

    1986-01-01

    Cooperative efforts between NASA and the European Space Agency (ESA) in supporting the flight of Giotto to Halley's Comet included prelaunch checks of ESA navigation software and delivery of validated DSN radio metric tracking data during the mission. Effects of drag from passing through the coma are seen in data received pre and post encounter. The post encounter Giotto trajectory provides a solar occultation in January 1988, prior to returning to the Earth in 1990 for possible retargeting to yet another comet.

  15. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  16. TDRSS Augmentation for Launch and Ascent High Speed Navigation Filter

    NASA Technical Reports Server (NTRS)

    Holt, Greg .

    2007-01-01

    An investigation was performed to evaluate the feasibility and possible advantages of augmenting the High Speed Trajectory Determination (HSTD) ground navigation filter with measurements from the Tracking & Data Relay Satellite System (TDRSS) constellation. The proposed communications system strategy for Constellation uses TDRSS rather than ground S-band, so the capability of replacing the S-band navigation capability with TDRSS was considered. HSTD simulations were performed with combinations of S-band, C-band, and TDRSS measurements. Several assumptions are made with regard to measurement biases and signal noise characteristics to produce first-look level accuracies. Preliminary results show that solutions using TDRSS instead of S-band have similar or improved performance from the view of filter covariance and may be a feasible alternative. These results also show that TDRSS tracking alone gives poorer observations and resulting performance Operational and other constraints to the use of TDRSS in a high-speed ground navigation filter are not addressed.

  17. Navigation of the 1982 Jupiter Orbiter Probe mission

    NASA Technical Reports Server (NTRS)

    Rourke, K. H.

    1977-01-01

    A new NASA interplanetary flight project, called Jupiter Orbiter Probe (JOP), has been recently approved by Congress. JOP involves a dual mission intended to explore the planet Jupiter and its environment with an atmospheric probe and a planetary orbiter spacecraft. The probe and orbiter vehicles are to be launched in tandem as a single spacecraft during the time from December 1981 to January 1982. The spacecraft will arrive at Jupiter at the earliest on November 14, 1984. Navigating the JOP spacecraft will be a critical task for the JOP mission. Attention is given to aspects of probe and orbiter delivery, Jupiter orbit insertion and perijove raise, the Satellite Tour, navigation development and the navigation system, the probe delivery, example orbits, velocity perturbation and correction, orbit determination characteristics, orbit determination and control profile, and the correction velocity requirements.

  18. Systems and Methods for Determining Inertial Navigation System Faults

    NASA Technical Reports Server (NTRS)

    Bharadwaj, Raj Mohan (Inventor); Bageshwar, Vibhor L. (Inventor); Kim, Kyusung (Inventor)

    2017-01-01

    An inertial navigation system (INS) includes a primary inertial navigation system (INS) unit configured to receive accelerometer measurements from an accelerometer and angular velocity measurements from a gyroscope. The primary INS unit is further configured to receive global navigation satellite system (GNSS) signals from a GNSS sensor and to determine a first set of kinematic state vectors based on the accelerometer measurements, the angular velocity measurements, and the GNSS signals. The INS further includes a secondary INS unit configured to receive the accelerometer measurements and the angular velocity measurements and to determine a second set of kinematic state vectors of the vehicle based on the accelerometer measurements and the angular velocity measurements. A health management system is configured to compare the first set of kinematic state vectors and the second set of kinematic state vectors to determine faults associated with the accelerometer or the gyroscope based on the comparison.

  19. Low earth orbit navigation in the TDAS era

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.

    1984-01-01

    It is pointed out that by the 1990s projected increases in scientific data volume and spacecraft engineering data will require an extension of the Tracking and Data Relay Satellite System (TDRSS). There will also be requirements with respect to improvements related to navigation. The Tracking Data Acquisition System (TDAS) is defined as the heir to TDRSS for the 1990s and beyond. A pre-Phase A TDAS concept definition study has recently been completed. The study covers a 15 year planning period extending from 1990 to 2005. The present investigation is concerned with TDAS-based alternatives, taking into account aspects of orbit and time determination. Attention is given an overview of TDRSS capabilities, pertiment TDAS architecture options, potential user navigation accuracy requirements, and some results of preliminary navigation performance evaluations.

  20. Global positioning system pseudolite-based relative navigation.

    SciTech Connect

    Monda, Eric W.

    2004-03-01

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  1. Operational considerations of using GPS for spacecraft navigation

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Hartman, Kathy R.

    1995-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) has provided operational spacecraft orbit support for many years, currently generating orbit products for about 20 satellites. To date, operational orbit determination in the FDF has been performed on the ground using data from ground-based or space-based tracking systems. Current development of spaceborne Global Positioning System (GPS) receivers is projected to have a significant effect on the support needed for operational satellite navigation. This paper identifies the functions performed in spacecraft navigation and examines and quantifies how the functions and support levels will be affected as onboard GPS receivers are implemented on spacecraft. Cases are considered spacecraft using or not using NASA ground and space networks resources.

  2. Relative Navigation Strategies for the Magnetopheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, Russell; Lee, Taesul; Long, Anne

    2004-01-01

    This paper evaluates several navigation approaches for the Magnetospheric Multiscale (MMS) mission, which consists of a tetrahedral formation of satellites flying in highly eccentric Earth orbits. For this investigation, inter-satellite separations of approximately 10 kilometers near apogee are used for the first two phases of the MMS mission. Navigation approaches were studied using ground station two-way Doppler measurements, Global Positioning System (GPS) pseudorange measurements, and cross-link range measurements between the members of the formation. An absolute position accuracy of 15 kilometers or better can be achieved with most of the approaches studied, and a relative position accuracy of 100 meters or better can be achieved at apogee in several cases.

  3. Space Communication and Navigation Testbed Communications Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard

    2013-01-01

    NASA developed and launched an experimental flight payload (referred to as the Space Communication and Navigation Test Bed) to investigate software defined radio, networking, and navigation technologies, operationally in the space environment. The payload consists of three software defined radios each compliant to NASAs Space Telecommunications Radio System Architecture, a common software interface description standard for software defined radios. The software defined radios are new technology developed by NASA and industry partners. The payload is externally mounted to the International Space Station truss and available to NASA, industry, and university partners to conduct experiments representative of future mission capability. Experiment operations include in-flight reconfiguration of the SDR waveform functions and payload networking software. The flight system communicates with NASAs orbiting satellite relay network, the Tracking, Data Relay Satellite System at both S-band and Ka-band and to any Earth-based compatible S-band ground station.

  4. Performance Evaluation of the New Compound-Carrier-Modulated Signal for Future Navigation Signals

    PubMed Central

    Luo, Ruidan; Xu, Ying; Yuan, Hong

    2016-01-01

    Navigation Signal based on Compound Carrier (NSCC), is proposed as the potential future global navigation satellite system (GNSS) signal modulation scheme. NSCC, a kind of multi-carrier (MC) signal, is generated by superposition and multi-parameter adjustment of sub-carriers. Therefore, a judious choice of parameter configation is needed. The main objective of this paper is to investigate the performance of the NSCC which is influenced by these parameters and to demonstrate its structure characteristics and superiority, employing a comprehensive evaluation system. The results show that the proposed NSCC signal processes full spectral efficiency and limited out of band (OOB) emissions, satisfying the demands of crowed frequency resources. It also presents better performance in terms of spectral separation coefficients (SSCs), tracking accuracy, multipath mitigation capability and anti-jamming reduction compared with the legacy navigation signals. NSCC modulation represents a serious candidate for navigation satellite augmentation systems, especially for signals applied in challenging environments. PMID:26828494

  5. Satellite Videoconferences

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA is helping thousands of teachers to learn more about aerospace matters, improve their classroom skills, and expand significantly the content of their aerospace education curricula by means of live educational satellite videoconferences. The 1 1/2 hour 'Update for Teachers' programs originate at Oklahoma State University (OSU) Telecommunications Center. The television signals are transmitted to the WESTAR IV communications satellite, which remits them to participating schools across the U.S. and in parts of Mexico and Canada. The schools are equipped with small home style satellite reception dishes. Education Satellite Videoconference programs are conducted four times yearly, covering a variety of aerospace subjects. Teachers can call toll-free and have questions answered after the speaker's presentations. Information about NASA educational resources and how to obtain them will be provided.

  6. Satellite (Natural)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    In its most general sense, any celestial object in orbit around a similar larger object. Thus, for example, the Magellanic Clouds are satellite galaxies of our own Milky Way galaxy. Without qualification, the term is used to mean a body in orbit around a planet; an alternative term is moon. The term natural satellite distinguishes these bodies from artificial satellites—spacecraft placed in orbi...

  7. Method and apparatus for relative navigation using reflected GPS signals

    NASA Technical Reports Server (NTRS)

    Cohen, Ian R. (Inventor); Boegner, Jr., Gregory J. (Inventor)

    2010-01-01

    A method and system to passively navigate an orbiting moving body towards an orbiting target using reflected GPS signals. A pair of antennas is employed to receive both direct signals from a plurality of GPS satellites and a second antenna to receive GPS signals reflected off an orbiting target. The direct and reflected signals are processed and compared to determine the relative distance and position of the orbiting moving body relative to the orbiting target.

  8. GPS navigation experiment using high precision GPS timing receivers

    NASA Technical Reports Server (NTRS)

    Buisson, J. A.; Oaks, O. J.; Lister, M. J.; Wardrip, S. C.; Leschiutta, S.; Galliano, P. G.; Cordara, D.; Pettiti, V.; Detoma, E.; Dachel, P.

    1985-01-01

    Global Positioning System (GPS) Time Transfer receivers were developed by the Naval Research Laboratory (NRL) to provide synchronization for the NASA Global Laser Tracking Network (GLTN). The capabilities of the receiver are being expanded mainly through software modification to: Demonstrate the position location capabilities of a single channel receiver unsign the GPS C/A code; and Demonstrate the time/navigation capability of the receiver onboard a moving platform, by sequential tracking of GPS satellites.

  9. Satellite Tracking Astrometric Network (STAN)

    NASA Astrophysics Data System (ADS)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  10. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  11. Principles of JTIDS Relative Navigation

    NASA Astrophysics Data System (ADS)

    Ranger, J. F. O.

    This paper describes one of the key features of the JTIDS/Link 16 tactical data-link, namely its relative navigation facility. A brief overview of the general features of the JTIDS system is given to provide the necessary background to the navigation aspects, and some mention is made of the message-exchange facilities. The main part of the paper describes how the JTIDS system provides the capability to perform accurate navigation, and discusses the basic principles of its operation. Some applications of the navigation function which enhance operational effectiveness are then described. The following topics are covered:(ii) JTIDS Architecture(i) Definition of JTIDS/Link 16(iii) Principles of Relative Navigation(iv) Source Selection(v) The Kalman Filter(vi) Time Synchronization(vii) The Use of Relative Navigation(viii) The Relative Grid

  12. Sole means navigation and integrity through hybrid Loran-C and NAVSTAR GPS

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1990-01-01

    A sole means navigation system does not only call for integrity, but also for coverage, reliability, availability and accuracy. Even though ground monitored GPS will provide integrity, availability is still not sufficient. One satellite outage can affect a large service area for several hours per day. The same holds for differential GPS; a total satellite outage cannot be corrected for. To obtain sufficient coverage, extra measurements are needed, either in the form of extra GPS satellites (expensive) or through redundant measurements from other systems. LORAN-C is available and will, hybridized with GPS, result in a system that has the potential to satisfy the requirements for a sole means navigation system for use in the continental United States. Assumptions are made about the qualification sole means, mainly based on current sole means systems such as VOR/DME. In order to allow for system design that will satisfy sole means requirements, it is recommended that a definition of a sole means navigation system be established. This definition must include requirements for availability, reliability, and integrity currently not specified. In addition to the definition of a sole means navigation system, certification requirements must be established for hybrid navigation systems. This will allow for design and production of a new generation of airborne navigation systems that will reduce overall system costs and simplify training procedures.

  13. An NNSS satellite timing receiver

    NASA Technical Reports Server (NTRS)

    Jain, C. L.; Kumar, K.; Andharia, H. I.; Singh, M.; Dsouza, V.; Goel, V. K.; Sisodia, A. K.

    1982-01-01

    The U.S. Navy Navigation Satellite System, NNSS, offers a unique worldwide facility for precise time synchronization. Space Applications Centre (SAC) developed a simple timing receiver. Using this timing receiver first the internal time consistency of NNSS was studied and then its performance to synchronize time was compared with that of National Time Standard. The methodology of data analysis, results, and various sources of error which affect the time transfer accuracy were studied and described. The main source of error was found to be the receiver delay which varies with signal strength. It is possible to apply that this delay correction empirically provided signal strength is recorded.

  14. Satellite Application for Disaster Management Information Systems

    NASA Astrophysics Data System (ADS)

    Okpanachi, George

    Abstract Satellites are becoming increasingly vital to modern day disaster management activities. Earth observation (EO) satellites provide images at various wavelengths that assist rapid-mapping in all phases of the disaster management cycle: mitigation of potential risks in a given area, preparedness for eventual disasters, immediate response to a disaster event, and the recovery/reconstruction efforts follo wing it. Global navigation satellite systems (GNSS) such as the Global Positioning System (GPS) assist all the phases by providing precise location and navigation data, helping manage land and infrastructures, and aiding rescue crews coordinate their search efforts. Effective disaster management is a complex problem, because it involves many parameters, which are usually not easy to measure and even identify: Analysis of current situation, planning, optimum resource management, coordination, controlling and monitoring current activities and making quick and correct decisions are only some of these parameters, whose complete list is very long. Disaster management information systems (DMIS) assist disaster management to analyse the situation better, make decisions and suggest further actions following the emergency plans. This requires not only fast and thorough processing and optimization abilities, but also real-time data provided to the DMIS. The need of DMIS for disaster’s real-time data can be satisfied by small satellites data utilization. Small satellites can provide up-to-data, plus a better media to transfer data. This paper suggests a rationale and a framework for utilization of small Satellite data by DMIS. DMIS should be used ‘’before’’, ‘’during’’ and ‘’after’’ the disasters. Data provided by the Small Satellites are almost crucial in any period of the disasters, because early warning can save lives, and satellite data may help to identify disasters before they occur. The paper also presents’ ‘when’’,

  15. Loran-C in a European Navigation Perspective

    NASA Astrophysics Data System (ADS)

    Forssell, Börje

    1998-09-01

    After a brief overview of Loran-C system operation and performance, the present situation of the system in Europe is described. Loran-C is now in operation under the NELS agreement in north-western Europe in newly established chain configurations with old and new transmitter positions. Parallel to Loran-C the Russian equivalent, Chayka, is also operating, with three chains in Europe. There is an agreement between Norway and Russia concerning cooperation and possibly joint chain operations between the two system providers in the north; similar agreements in the Baltic and Mediterranean/Black Sea areas are being worked on. The situation around the Iberian peninsula has not yet been clarified. Being the only long/medium-range terrestrial system in Europe in the 2000+ time frame, Loran-C could be seen as a supplement to satellite systems. Due to the good penetration properties of its low-frequency signals, it can be used in many circumstances where satellite systems fail because of limited satellite visibility. Integration of Loran-C and (differential) satellite receivers, where Loran-C is calibrated by the satellite system as long as there are enough visible satellites, could in fact give the best of both worlds. For this reason, Loran-C is being considered in the perspective of a future international, civil satellite navigation system, initiated in Europe.

  16. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s ( CMS ) wave model CMS -Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq-type nonlinear wave...provided by this work unit address these critical needs of the Corps’ navigation mission. Description Issue Addressed CMS -Wave application at Braddock...Bay, NY WaveNet application in Gulf of Mexico CMS -Wave and BOUSS-2D are two numerical wave models, and WaveNet and TideNet are two web-based

  17. Supporting Crewed Missions using LiAISON Navigation in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Leonard, Jason M.

    Crewed navigation in certain regions of the Earth-Moon system provides a unique challenge due to the unstable dynamics and observation geometry relative to standard Earth-based tracking systems. The focus of this thesis is to advance the understanding of navigation precision in the Earth-Moon system, analyzing the observability of navigation data types frequently used to navigate spacecraft, and to provide a better understanding of the influence of a crewed vehicle disturbance model for future manned missions in the Earth-Moon system. In this research, a baseline for navigation performance of a spacecraft in a Lagrange point orbit in the Earth-Moon system is analyzed. Using operational ARTEMIS tracking data, an overlap analysis of the reconstructed ARTEMIS trajectory states is conducted. This analysis provides insight into the navigation precision of a spacecraft traversing a Lissajous orbit about the Earth-Moon L1 point. While the ARTEMIS analysis provides insight into the navigation precision using ground based tracking methods, an examination of the benefits of introducing Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is investigated. This examination provides insight into the benefits and disadvantages of LiAISON range and range-rate measurements for trajectories in the Earth-Moon system. In addition to the characterization of navigation precision for spacecraft in the Earth-Moon system, an analysis of the uncertainty propagation for noisy crewed vehicles and quiet robotic spacecraft is given. Insight is provided on the characteristics of uncertainty propagation and how it is correlated to the instability of the Lagrange point orbit. A crewed vehicle disturbance model is provided based on either Gaussian or Poisson assumptions. The natural tendency for the uncertainty distribution in a Lagrange point orbit is to align with the unstable manifold after a certain period of propagation. This behavior is influenced directly by the unstable

  18. A Kalman Approach to Lunar Surface Navigation using Radiometric and Inertial Measurements

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.; Sands, O. Scott; Nguyen, Binh V.

    2009-01-01

    Future lunar missions supporting the NASA Vision for Space Exploration will rely on a surface navigation system to determine astronaut position, guide exploration, and return safely to the lunar habitat. In this report, we investigate one potential architecture for surface navigation, using an extended Kalman filter to integrate radiometric and inertial measurements. We present a possible infrastructure to support this technique, and we examine an approach to simulating navigational accuracy based on several different system configurations. The results show that position error can be reduced to 1 m after 5 min of processing, given two satellites, one surface communication terminal, and knowledge of the starting position to within 100 m.

  19. Integration Of GPS And GLONASS Systems In Geodetic Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Maciuk, Kamil

    2015-12-01

    The article shows the results of satellites measurements elaborations using GPS & GLONASS signals. The aim of this article is to define the influence of adding GLONASS signals on position determination accuracy. It especially concerns areas with big horizon coverages. Object of the study were analysis of DOP coefficients, code and RTK solutions, and usage of satellite techniques in levelling. The performed studies and analysis show that integrated GPS-GLONASS satellite measurements provide possibility to achieve better results than measurements using single navigation satellite system (GPS).

  20. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  1. Algorithm Research on Orbit Determination for Low Orbit Satellites Using GPS,

    DTIC Science & Technology

    2007-11-02

    calculate GDOP values in order to precisely specify four navigation satellites used for navigational positioning. 2 DATA PREPROCESSING GPS systems are...associated with pseudo range measurements; GDOP is the geometrical error factor. It is possible to see that positioning errors are dependent on

  2. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  3. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  4. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  5. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  6. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  7. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  8. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  9. Satellite Coordination

    NASA Astrophysics Data System (ADS)

    Cohen, R. J.

    2004-06-01

    The Radio Regulations set out complex procedures to ensure that when new systems start to use the frequency bands allocated to them there is minimal disruption to existing systems using the same bands. The process of satellite coordination is described, and the issues for radio astronomy are discussed. In order to be protected by the ITU-R machinery radio telescopes need to be officially registered. The issue of paper satellites highlights the need for early registration to gain priority over incoming systems. Modern developments including the use of complex Monte-Carlo simulations to predict interference levels, and the issue of adjacent band interference, are discussed.

  10. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  11. Atomic and Quartz Clock Hardware for Communication and Navigation Satellites

    DTIC Science & Technology

    2007-11-01

    S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) The Boeing Company,Los Angeles,CA...90009 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR...MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES

  12. Calculating foraging area using gloal navigation satellite system (GNSS) technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adjusting stocking rate to changing forage conditions is a critical part of pro-active range management. In general stocking rate approaches tend to assume more optimal landscape use patterns than will actually occur. Today we can monitor spatio-temporal landscape use on a 24/7 basis using animals...

  13. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain.

  14. NAVO MSRC Navigator. Fall 2007

    DTIC Science & Technology

    2007-01-01

    investigations; ocean engineering and marine acoustics; marine geology and geophysics; and bathymetric surveying. 11FALL 007NAVO MSRC NAVIGATOR As...MSRC NAVIGATOR HiPC 2007International Conference on High Performance Computing December 18-21, 2007Goa, India , http://www.hipc.org/ i I i l i

  15. Navigating the Seas of Policy.

    ERIC Educational Resources Information Center

    Cunningham, Stephanie; Kennedy, Steve; McAlonan, Susan; Hotchkiss, Heather

    As the sun, moon, and stars helped sea captains to navigate, policy (defined as a formalized idea to encourage change) indicates general direction and speed but does not establish a specific approach to achieve implementation. Formal and informal policies have advantages and disadvantages. These are steps in navigating policy formation: identify…

  16. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  17. 75 FR 47252 - Proposed Establishment of Low Altitude Area Navigation Routes (T-281, T-283, T-285, T-286, and T...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ...)/Global Navigation Satellite System (GNSS) equipment. This action would enhance safety and improve the... on the appropriate IFR En Route Low Altitude charts and would only be intended for use by...

  18. NES: How to Navigate the Virtual Campus

    NASA Video Gallery

    This video describes how to navigate the NASA Explorer Schools public website. Information includes descriptions of the left navigation, using the breadcrumbs, understanding the various announcemen...

  19. Stardust Navigation Covariance Analysis

    NASA Technical Reports Server (NTRS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  20. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  1. Optimetrics for Precise Navigation

    NASA Technical Reports Server (NTRS)

    Yang, Guangning; Heckler, Gregory; Gramling, Cheryl

    2017-01-01

    Optimetrics for Precise Navigation will be implemented on existing optical communication links. The ranging and Doppler measurements are conducted over communication data frame and clock. The measurement accuracy is two orders of magnitude better than TDRSS. It also has other advantages of: The high optical carrier frequency enables: (1) Immunity from ionosphere and interplanetary Plasma noise floor, which is a performance limitation for RF tracking; and (2) High antenna gain reduces terminal size and volume, enables high precision tracking in Cubesat, and in deep space smallsat. High Optical Pointing Precision provides: (a) spacecraft orientation, (b) Minimal additional hardware to implement Precise Optimetrics over optical comm link; and (c) Continuous optical carrier phase measurement will enable the system presented here to accept future optical frequency standard with much higher clock accuracy.

  2. Cyber security with radio frequency interferences mitigation study for satellite systems

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wei, Sixiao; Chen, Genshe; Tian, Xin; Shen, Dan; Pham, Khanh; Nguyen, Tien M.; Blasch, Erik

    2016-05-01

    Satellite systems including the Global Navigation Satellite System (GNSS) and the satellite communications (SATCOM) system provide great convenience and utility to human life including emergency response, wide area efficient communications, and effective transportation. Elements of satellite systems incorporate technologies such as navigation with the global positioning system (GPS), satellite digital video broadcasting, and information transmission with a very small aperture terminal (VSAT), etc. The satellite systems importance is growing in prominence with end users' requirement for globally high data rate transmissions; the cost reduction of launching satellites; development of smaller sized satellites including cubesat, nanosat, picosat, and femtosat; and integrating internet services with satellite networks. However, with the promising benefits, challenges remain to fully develop secure and robust satellite systems with pervasive computing and communications. In this paper, we investigate both cyber security and radio frequency (RF) interferences mitigation for satellite systems, and demonstrate that they are not isolated. The action space for both cyber security and RF interferences are firstly summarized for satellite systems, based on which the mitigation schemes for both cyber security and RF interferences are given. A multi-layered satellite systems structure is provided with cross-layer design considering multi-path routing and channel coding, to provide great security and diversity gains for secure and robust satellite systems.

  3. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  4. Utilization of modernized global navigation satellite systems for aircraft-based navigation integrity

    NASA Astrophysics Data System (ADS)

    Ene, Alexandru

    The objective of this dissertation is to assess whether or not two particular biocomposite materials, made from hemp fabric and cellulose acetate or polyhydroxybutyrate matrices, are capable of being used for structural and/or construction purposes within in the construction and building industry. The objective of this dissertation was addressed by conducting research to meet the following three goals: (1) to measure the basic mechanical properties of hemp/cellulose acetate and hemp/PHB biocomposites and evaluate if they suitable for use in construction applications, (2) to determine how quickly moisture diffuses into the biocomposite materials and how the moisture affects the mechanical behavior, and (3) to determine how well simple models can predict behavior of structural scale laminates in tension and flexure using biocomposite ply behavior. Compression molding was used to manufacturing the biocomposites from hemp fabric and the themoplastic matrices: cellulose acetate and polyhydroxybutyrate. Four methods for determining the fiber volume fraction were evaluated, and the dissolution method, using different solvents for each matrix type, was used to determine the fiber volume fraction for each composite plate manufactured. Both types of biocomposite were tested in tension, compression, shear, and flexure and the measured properties were compared to wood and engineered wood products to assess whether the biocomposite properties are suitable for use in the construction industry. The biocomposites were conditioned in a humid environment to determine the rate of moisture diffusion into the materials. Then saturated specimens and specimens that were saturated and then dried were tested in tension to evaluate how moisture absorption affects the mechanical behavior of the biocomposites. Finally, simple models of laminate behavior based on laminate plate theory were evaluated to determine if ply level behavior could be used to predict structural scale laminate behavior. While the biocomposite strengths in flexure, compression, and shear were comparable to the strengths of wood and wood-based products parallel to grain, the biocomposite strengths exceeded the strengths perpendicular to the wood grain, as would be expected with fabric reinforcement. The biocomposite moduli of elasticity were between 35% and 75% of the wood moduli parallel to grain. While structural shape of the biocomposites could be manipulated to achieve a comparable structural stiffness to replace wood and short fiber FRPs, the biocomposites have comparable stiffness to the engineered wood-products. Thus, in terms of mechanical properties, the biocomposites can be used in place of engineered-wood products. Yet, the higher densities of the biocomposites as compared to wood and engineered-wood products may limit their implementation in construction. The diffusion coefficients for both biocomposites were comparable to wood and higher than the coefficients for synthetic composites as expected due to the hydrophilicity of the natural fibers. Significantly greater moisture absorption of the hemp/cellulose acetate composite as compared to the hemp/PHB composite was attributed to the cellulose acetate itself being hydrophilic whereas PHB is hydrophobic. The rate of diffusion for both materials was found to increase with increasing temperature. Moisture absorption negatively affected the biocomposites as shown through lower initial stiffnesses and higher strains at failure of saturated specimens. The hemp/cellulose acetate composites were much more affected by moisture absorption than the hemp/PHB composites likely because the moisture plasticized the cellulose acetate and also weakened the interfacial fiber-matrix bond. Moisture was assumed to cause permanent damage because the stress-strain behavior did not return to the unconditioned behavior upon drying of the saturated specimens. The degradation of mechanical properties upon introduction to humid environments limits the potential applications of these biocomposites. For these biocomposites to be used widely within the construction industry, they must therefore be protected from moisture for example through sealants and/or fiber treatments. Classical laminate plate theory was shown to be effective in predicting the initial linear behavior of all of the laminates in tension and flexure, but did not capture stiffness degradation or the full nonlinear stress-strain response of the biocomposites because the model was for linear elastic materials. Use of this model would be appropriate for design of deflection-limited applications within certain stress ranges. The modified nonlinear laminate plate theory predicted the initial stress-strain response well, but at higher strains overestimated the strength and stiffness. The overestimation was attributed to the constitutive model assuming uncoupled stress-strain behavior for each strain component and, additionally in flexure, to the use of tensile behavior as the constitutive behavior in compression. While the simple models provided an adequate prediction of laminate behavior at low strains, to predict behavior at higher strains, it is recommended instead to evaluate the use of finite element analysis to predict response using experimental stress-strain as models for orthotropic materials and non-linear behavior are well-established. (Abstract shortened by UMI.)

  5. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  6. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  7. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  8. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  9. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  10. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  11. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  12. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  13. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  14. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  15. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  16. The introduction to GNOS instrument for FY-3 satellite

    NASA Astrophysics Data System (ADS)

    Du, Qifei

    2016-07-01

    Global Navigation Satellite System (GNSS) Radio occultation (RO) has become a major atmospheric and ionospheric remote sensing technique and been widely used for numerical weather prediction and global climate monitoring applications. The first GNSS Occultation Sounder (GNOS) developed and manufactured by National Space Science Center (NSSC), Chinese Academy of Science is a RO payload, which has been onboard Fengyun-3 C (FY-3C) satellite and been launched on September 23, 2013. FY-3 series satellites are the Chinese second generation polar-orbiting meteorological satellites with sun-synchronous orbits. During RO events, the GNOS instruments measure the phase delay caused by the Earth's atmospheric and ionospheric refraction between the GNSS satellites and FY-3 satellites, as the relative position between the GNSS satellites and the FY-3 satellites varying, vertical profiles of RO observations (i.e. phase and amplitude) will be obtained, which can be used to derived the atmospheric and ionospheric physical properties such as press, temperature, humidity and ionospheric electron density. In my presentation, we present the characteristics of GNOS instruments for FY-3 series satellites and the result by the instrument in orbit. Firstly, we present the characteristics of GNOS instrument for FY-3C satellite and its precision of atmosphere occultation data. Additionally, we introduce the characteristics of GNOS instrument for FY-3D satellite which will be launched in 2016. Finally, we show the next generation GNOS instrument and its characteristics for the following FY-3 satellites.

  17. Predicting Solar Disturbance Effects on Navigation Systems

    NASA Astrophysics Data System (ADS)

    Lockwood, M.; Wild, M. N.; Stamper, R.; Davis, C. J.; Grande, M.

    A variety of operational systems are vulnerable to disruption by solar disturbances brought to the Earth by the solar wind. Of particular importance to navigation systems are energetic charged particles which can generate temporary malfunctions and permanent damage in satellites. Modern spacecraft technology may prove to be particularly at risk during the next maximum of the solar cycle. In addition, the associated ionospheric disturbances cause phase shifts of transionospheric and ionosphere-reflected signals, giving positioning errors and loss of signal for GPS and Loran-C positioning systems and for over-the-horizon radars. We now have sufficient understanding of the solar wind, and how it interacts with the Earth's magnetic field, to predict statistically the likely effects on operational systems over the next solar cycle. We also have a number of advanced ways of detecting and tracking these disturbances through space but we cannot, as yet, provide accurate forecasts of individual disturbances that could be used to protect satellites and to correct errors. In addition, we have recently discovered long-term changes in the Sun, which mean that the number and severity of the disturbances to operational systems are increasing.

  18. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  19. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  20. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-03

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  1. Navigable networks as Nash equilibria of navigation games

    NASA Astrophysics Data System (ADS)

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  2. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  3. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  4. Modelling group navigation: transitive social structures improve navigational performance.

    PubMed

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-07-06

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements.

  5. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  6. Precise Orbit Determination of Low Earth Satellites at AIUB

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Thaller, D.; Dach, R.; Beutler, G.; Prange, L.; Meyer, U.

    2010-12-01

    Many low Earth orbiting (LEO) satellites are nowadays equipped with on-board receivers to collect the observations from Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS), or with retro-reflectors for Satellite Laser Ranging (SLR). At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for satellites at very different altitudes. The classical numerical integration techniques used for dynamic orbit determination of LEO satellites at high altitudes are extended by pseudo-stochastic orbit modeling techniques for satellites at low altitudes to efficiently cope with force model deficiencies. Accuracies of a few centimeters are achieved by pseudo-stochastic orbit modeling, e.g., for the Gravity field and steady-state Ocean Circulation Explorer (GOCE).

  7. Albatross Long-Distance Navigation: Comparing Adults And Juveniles

    NASA Astrophysics Data System (ADS)

    Åkesson, Susanne; Weimerskirch, Henri

    2005-09-01

    Albatrosses are known for their extreme navigation performance enabling them to locate isolated breeding islands after long-distance migrations across open seas. Little is known about the migration of young albatrosses and how they reach the adults' navigation and foraging skills during the period of immaturity lasting several years and spent permanently flying across the open ocean. We tracked by satellite telemetry the dispersal and migration of 13 juvenile wandering albatrosses from the Crozet Islands during their first year at sea. The young albatrosses covered an average distance of 184,000 km during the first year, restricting their dispersal movement to the unproductive and low wind subtropical Indian Ocean and Tasman Sea. The juveniles initiated the migration by an innate phase of rapid dispersal encoded as a fixed flight direction assisted by southerly winds towards north and northeast. Thereafter each individual restricted its movement to a particular zone of the ocean that will possibly be used until they start breeding 7 10 years later and return in contact with breeding adults. This dispersal in young birds corresponds well with movements observed for adult non-breeding wandering albatrosses. The results show clearly an inherited ability to navigate back to already visited areas in young wandering albatrosses. The juvenile dispersal behaviour and migration at sea suggest a genetically based migration program, encoding navigation to a destination area used throughout the life.

  8. Juvenile Osprey Navigation during Trans-Oceanic Migration

    PubMed Central

    Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  9. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  10. STEPPING - Smartphone-Based Portable Pedestrian Indoor Navigation

    NASA Astrophysics Data System (ADS)

    Lukianto, C.; Sternberg, H.

    2011-12-01

    Many current smartphones are fitted with GPS receivers, which, in combination with a map application form a pedestrian navigation system for outdoor purposes. However, once an area with insufficient satellite signal coverage is entered, these navigation systems cease to function. For indoor positioning, there are already several solutions available which are usually based on measured distances to reference points. These solutions can achieve resolutions as low as the sub-millimetre range depending on the complexity of the set-up. STEPPING project, developed at HCU Hamburg Germany aims at designing an indoor navigation system consisting of a small inertial navigation system and a new, robust sensor fusion algorithm running on a current smartphone. As this system is theoretically able to integrate any available positioning method, it is independent of a particular method and can thus be realized on a smartphone without affecting user mobility. Potential applications include --but are not limited to: Large trade fairs, airports, parking decks and shopping malls, as well as ambient assisted living scenarios.

  11. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    PubMed

    Horton, Travis W; Bierregaard, Richard O; Zawar-Reza, Peyman; Holdaway, Richard N; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean.

  12. High-precision image aided inertial navigation with known features: observability analysis and performance evaluation.

    PubMed

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-10-17

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference.

  13. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  14. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  15. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation Rules, except that a vessel of...

  16. 32 CFR 644.3 - Navigation Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... channel improvements, navigation pools, navigation aids, and spoil disposal areas for future...

  17. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... channel improvements, navigation pools, navigation aids, and spoil disposal areas for future...

  18. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee... for channel improvements, navigation pools, navigation aids, and spoil disposal areas for...

  19. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation...

  20. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation Rules, except that a vessel of...

  1. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation...

  2. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... channel improvements, navigation pools, navigation aids, and spoil disposal areas for future...

  3. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation Rules, except that a vessel of...

  4. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation...

  5. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation...

  6. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee... for channel improvements, navigation pools, navigation aids, and spoil disposal areas for...

  7. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with the applicable sections of the International and Inland Navigation Rules, except that a vessel of...

  8. SEXTANT: Navigating by Cosmic Beacon

    NASA Video Gallery

    Imagine a technology that would allow space travelers to transmit gigabytes of data per second over interplanetary distances or to navigate to Mars and beyond using powerful beams of light emanatin...

  9. Orion Cislunar Guidance and Navigation

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Crain, Timothy; Clark, Fred C.

    2007-01-01

    The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. Design of guidance and navigation algorithms to perform maneuvers in support of these functions is dependent on the support provided by navigation infrastructure, the performance of the onboard GN&C system, and the choice of trajectory maneuver methodology for outbound and return mission phases. This paper documents the preliminary integrated analyses performed by members of the Orion Orbit GN&C System team investigating the navigation update accuracy of a modern equivalent to the Apollo era ground tracking network and the expected onboard dispersion and navigation errors during a lunar mission using a linear covariance error analysis technique.

  10. Navigating the Rockets Educator Guide

    NASA Video Gallery

    In this brief video overview, learn how to navigate the Rockets Educator Guide. Get a glimpse of the resources available in the guide, including a pictorial history, an overview of the physics cont...

  11. Navigator program: exploring new worlds

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.

    2006-01-01

    NASA's Navigator Program is a series of interrelated missions to explore and characterize new worlds. Each successive mission provides an essential step toward the ultimate goal of discovering habitable planets and life around nearby stars.

  12. LITERATURE FORENSICS: NAVIGATING THROUGH ...

    EPA Pesticide Factsheets

    Intimidation and bewilderment are but two feelings scientists often confront when facing the ever- expanding universe of the published scientific literature. With the birth of any hypothesis, all fantasies of a one-way freeway for a scientific endeavor evaporate when the journey abruptly confronts a forked-road dilemma. One direction (what is known and what was known) leads back in time. A twisted, rutted, convoluted course, it can reveal how, and from where, pioneers from other, unrelated journeys arrived at the same juncture; but it can make for a punishing and, at first thought, boring ride. The other (what is unknown or pretends to be the unknown) quickly recedes into what at least appears to be the unexplored horizon - and its seductive siren can easily win our attention. Proper navigation of this juncture of old vs. new, past vs. future, dull vs. exciting, known vs. unknown is critical in avoiding a morass of ill fates, including reinventions duplication, and attendant ridicule or censure by our colleagues for failing to build upon or acknowledge what those before us have done. Following the siren of exploration without investigating where others have traveled is fraught with risks - the worst being when the fork's two branches loop back on one another, revealing that they are one continuum. What had seemed to be uncharted territory is unveiled as a Mobius path towards the fool's gold of rediscovery. Much like the disoriented spelunker seeking a

  13. The navigation of space probes

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Ohandley, D. A.; Zielenbach, J. W.

    1974-01-01

    A new navigational method combining electronic measurement procedures and celestial mechanics makes it possible to conduct a space probe very close to a desired point in the neighborhood of a remote planet. Approaches for the determination of the position of the space probe in space are discussed, giving attention to the effects of errors in the employed data. The application of the navigational methods in a number of space missions is also considered.

  14. NAVO MSRC Navigator. Spring 2008

    DTIC Science & Technology

    2008-01-01

    CFD), Climate/Weather/Ocean Modeling and Simulation (CWO), Environmental Quality Modeling and Simulation (EQM), Computational Electromagnetic...EINSTEIN and DAVINCI Come to the MSRC The Porthole 19 Visitors to the Naval Oceanographic Office Major Shared Resource Center Navigator Tools and...Events 5SPRING 2008NAVO MSRC NAVIGATOR IntroductIon Higher-altitude missile and re-entry vehicle flowfield simulations often require the

  15. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  16. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  17. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  18. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  19. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... SECURITY Coast Guard 33 CFR Parts 84 and 115 RIN 1625-AB86 Navigation and Navigable Waters; Technical... 21, 2012 (77 FR 37305), the Coast Guard published a final rule entitled ``Navigation and Navigable... of Subjects 33 CFR Part 84 Navigation (water), Waterways. 33 CFR Part 115 Administrative practice...

  20. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  1. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  2. SpaceNav - A high accuracy navigation system for space applications

    NASA Astrophysics Data System (ADS)

    Evers, H.-H.

    The technology of the SpaceNav-system is based on research performed by the Institute of Flight Guidance and Control at the Technical University of Braunschweig, Germany. In 1989 this institute gave the worlds first public demonstration of a fully automatic landing of an aircraft, using inertial and satellite informations exclusively. The SpaceNav device components are: Acceleration-/Gyro Sensor Package; Global Positioning System (GPS) Receiver/optional more than one; Time Reference Unit; CPU; Telemetry (optional); and Differential GPS (DGPS) Receiver (optional). The coupling of GPS receivers with inertial sensors provides an extremely accurate navigation data set in real time applications even in phases with high dynamic conditions. The update rate of this navigation information is up to 100 Hz with the same accuracy in 3D-position, velocity, acceleration, attitude and time. SpaceNav is an integrated navigation system, which operates according to the principle of combining the longterm stability and accuracy of GPS, and the high level of dynamic precision of conventional inertial navigation system (INS) strapdown systems. The system's design allows other aiding sensors e.g. GLONASS satellite navigation system, distance measuring equipment (DME), altimeter (radar and/or barometric), flux valve etc. to be connected, in order to increase the redundancy of the system. The advantage of such an upgraded system is the availability of more sensor information than necessary for a navigation solution. The resulting redundancy in range measurement allows real-time detection and identification of sensor signals that are incompatible with the other information. As a result you get Receiver Autonomous Integrity Monitoring (RAIM) as described in 'A Multi-Sensor Approach to Assuring GPS Integrity', presented by Alison Brown in the March/April 1990 issue of 'GPS World'. In this paper the author presents information about the principles of the Satellite Navigation System GPS, and

  3. America in Space: The First Decade. Putting Satellites to Work

    NASA Technical Reports Server (NTRS)

    Corliss, William R.

    1968-01-01

    This pamphlet series reviews NASA's first decade of exploration of space. This volume reviews the importance of satellites in weather forecasting, relaying television programs and other commercial and military communication from distant places, studying the shape and gravitational fields of the Earth, assisting in aircraft and naval navigation and more applications that can be assisted by studying the Earth from 100 miles or more.

  4. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  5. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; Attiyah, Ahlam A.

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  6. Integration of Spacecraft Telemetry into Navigation Operations for the Cassini-Huygens Mission

    NASA Technical Reports Server (NTRS)

    Ardalan, S.M.; Antreasian, P.G.; Criddle, K.E.; Ionasescu, R.; Jacobson, R.A.; Jones, J.B.; MacKenzie, R.A.; Parcher, D.W.; Pelletier, F.J.; Roth, D.C.; Thompson, P.F.; Vaughan, A.T.

    2008-01-01

    The Cassini orbiter is the largest and most complex interplanetary spacecraft ever built. Since attaining orbit around Saturn in the summer of 2004, Cassini, along with its Huygens probe, have been continually improving our understanding Saturn, its satellites, its enigmatic rings system, and of the solar system. One of the hallmarks of the Cassini- Huygens Project is the close working relationship between the many teams required to operate such a sophisticated spacecraft. Their ingenuity has enabled them to find new and different ways to improve their processes during Cassini's prime 4-year orbital tour. This paper will discuss the relationship between Cassini's Navigation and Spacecraft Teams and the work required to properly configure Cassini's telemetry system for Navigation. A detailed explanation of how the Navigation Team utilizes spacecraft telemetry and analysis demonstrating the benefits will also be provided. Finally, telemetry requirements for Navigation for future missions will be addressed.

  7. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  8. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  9. Deep-space navigation applications of improved ground-based optical astrometry

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Improvements in ground-based optical astrometry will eventually be required for navigation of interplanetary spacecraft when these spacecraft communicate at optical wavelengths. Although such spacecraft may be some years off, preliminary versions of the astrometric technology can also be used to obtain navigational improvements for the Galileo and Cassini missions. This article describes a technology-development and observational program to accomplish this, including a cooperative effort with U.S. Naval Observatory Flagstaff Station. For Galileo, Earth-based astrometry of Jupiter's Galilean satellites may improve their ephemeris accuracy by a factor of 3 to 6. This would reduce the requirements for onboard optical navigation pictures, so that more of the data transmission capability (currently limited by high-gain antenna deployment problems) can be used for science data. Also, observations of European Space Agency (ESA) Hipparcos stars with asteroid 243 Ida may provide significantly improved navigation accuracy for a planned August 1993 Galileo spacecraft encounter.

  10. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  11. A new quick algorithm for GPS/Galileo/BD satellite selection

    NASA Astrophysics Data System (ADS)

    Zhang, Miaoyan; Zhang, Jun; Qin, Yong

    2007-11-01

    There will be 70-90 navigation satellites in the sky at the same time when GALILEO and BD reach full operation capability, and the visible satellite number can reach 30. Then satellite selection will be very important to decrease computing time for many applications whose processing capability and time are limited such as aviation. The classical optimal algorithm selects a n-satellite subset from m visible satellites with the minimum GDOP. It requires a long time for computing especially for much many satellites. This paper proposes a quickly satellite selection algorithm which is more adaptive when the number of visible satellites is very large. The computer simulation results show that the quickly satellite selection algorithm has much lower computation load, shortens the computation time greatly than the optimal algorithm and the increased GDOP is less than 10%.

  12. Bore hole navigator

    SciTech Connect

    Hoffman, G.J.

    1987-09-29

    A bore hole navigator is described comprising a two axis platform for lowering down a bore hole on a cable with its longitudinal axis parallel to the local bore hole direction. The two axis platform has an outer gimbal, bearing supported on the outer gimbal axis for rotation about the longitudinal axis of the platform, and an inner gimbal axis orthogonal the the outer gimbal axis. The inner gimbal axis has multiple axis segments spaced along the longitudinal axis of the platform and each bearing supported on the outer gimbal. The inner gimbal axis segment has a two axis gyro mounted thereon with its spin axis orthogonal to the respective inner gimbal axis segment, a first gyro sensitive axis parallel to the respective inner gimbal axis segment and a second gyro sensitive axis orthogonal to the spin axis. The second inner gimbal axis segment has a pitch torquer thereon operative to provide a controllable torque about the respective inner gimbal axis segment. The third inner gimbal axis segment has a pitch resolver thereon operative to measure rotation of the respective inner gimbal axis segment with respect to the outer gimbal. The first, second and third inner gimbal axis segments are coupled to rotate together. The outer gimbal has a yaw torquer thereon to provide a controllable torque about the outer gimbal axis, and a yaw resolver thereon to measure rotation of the outer gimbal about the outer gimbal axis. The outer gimbal also has a single axis accelerometer therein having its sensitive axis orthogonal to the outer gimbal axis and the inner gimbal axis segments.

  13. ICE navigation support

    NASA Astrophysics Data System (ADS)

    Efron, L.; Muellerschoen, R. J.; Premkumar, R. I.

    1986-08-01

    The International Cometary Explorer (ICE) encounter with Comet Giacobini-Zinner took place 7 years after the spacecraft's original launch on 12 August 1978 as the International Sun Earth Explorer 3 (ISEE-3), part of a three-spacecraft project to study the interaction between the solar wind and the Earth's magnetosphere. Transfer to an interplanetary trajectory was performed via a 119-km-altitute, gravity-assist, lunar swingby on December 1983. Navigation support during interplanetary cruise and comet encounter was provided by orbit determination utilizing radio metric data from the DSN 64-meter antennas in Goldstone, California and Madrid, Spain. Orbit solutions yielding predictions of 50-km geocentric delivery accuracy in the target aim plane were achieved during interplanetary cruise and at comet encounter using 6-to-12-week data arcs between periodic attitude-change maneuvers. One-sigma two-way range and range rate residuals were consistently 40 meters and 0.2 mm/s or better, respectively. Non-gravitational forces affected the comet's motion during late August and early September 1985 and caused a 2300-km shift in the orbit of the comet relative to the spacecraft. This necessitated a final ICE orbit trim maneuver 3 days prior to encounter. Near-real-time assessment of two-way 2-GHz (S-band) Doppler pseudo-residuals during the June and July 1985 trajectory change maneuvers aided in calibration of the spacecraft's thrusters in preparation for this final critical maneuver. Post-flight analysis indicates tail centerline passage was achieved within 10 seconds of the predicted time and geocentric position uncertainty at encounter was less than 40 km.

  14. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  15. GNSS satellite geometry and attitude models

    NASA Astrophysics Data System (ADS)

    Montenbruck, O.; Schmid, R.; Mercier, F.; Steigenberger, P.; Noll, C.; Fatkulin, R.; Kogure, S.; Ganeshan, A. S.

    2015-09-01

    This article discusses the attitude modes employed by present Global (and Regional) Navigation Satellite Systems (GNSSs) and the models used to describe them along with definitions of the constellation-specific spacecraft body frames. A uniform convention for the labeling of the principal spacecraft axes is proposed by the International GNSS Service (IGS), which results in a common formulation of the nominal attitude of all GNSS satellites in yaw-steering mode irrespective of their specific orbit and constellation. The conventions defined within this document provide the basis for the specification of antenna phase center offsets and variations in a multi-GNSS version of the IGS absolute phase center model in the ANTEX (antenna exchange) format. To facilitate the joint analysis of GNSS observations and satellite laser ranging measurements, laser retroreflector array coordinates consistent with the IGS-specific spacecraft frame conventions are provided in addition to representative antenna offset values for all GNSS constellations.

  16. The 'Geostar' radio determination satellite system

    NASA Astrophysics Data System (ADS)

    Oneill, G. K.

    1986-05-01

    The proposed Geostar system which links portable and mobile terminals directly through satellite relays to a ground-based computer is capable of providing the following services in a variety of transportation modes: (1) navigational positioning, (2) terrain warning to pilots and hazard warning to mariners, (3) approach guidance for aircraft and (4) two-way digital message service. Able to operate in a supplementary or advisory mode, the Geostar system combines the existing technologies of orbital satellites, computers and integrated circuits. It consists of the following: (1) a ground station with a computer, two or more satellites at fixed locations in earth orbit, and terminals carried by aircraft, surface vehicles, etc. Geostar's practical implications are discussed as well as the fitting of its necessary radio frequencies in the ITU table of allocations.

  17. Service outages in GPS associated with satellite failures

    NASA Astrophysics Data System (ADS)

    Kalafus, R. M.

    The planned NAVSTAR/GPS satellite constellation of 18 satellites plus 3 active spares will provide excellent coverage over the CONUS if all are operating properly. This report examines the coverage under conditions of one satellite failure. It turns out that the failure of any satellie results in service outages of up to half an hour somewhere in the CONUS. While altimeter aiding eliminates most of these outages, there still remain 14 outage events each day. Furthermore, 'coasting' the navigation solution with a stable clock is not effective in handling these outages. The one technique that does appear effective is using a mask angle of 5 degrees or less.

  18. 75 FR 36273 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... forces reserves. 33 CFR Part 13 Decorations, medals, awards. 33 CFR Part 19 Navigation (water), Vessels... and procedure, Military personnel. ] 33 CFR Part 67 Continental shelf, Navigation (water), Reporting and recordkeeping requirements. 33 CFR Part 81 Navigation (water), Reporting and...

  19. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Earth-Based Assets

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. These regions are known to have poor Earth visibility, but unknown is the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in these areas. This report presents a dilution-of-precision (DoP)-based analysis of the performance of a network of Earth-based assets. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum provider elevation angle, nadir and zenith beam widths, and a total single failure in one of the Earth-based assets. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometrical DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  20. Guidance and adaptive-robust attitude & orbit control of a small information satellite

    NASA Astrophysics Data System (ADS)

    Somov, Ye.; Butyrin, S.; Somov, S.; Somova, T.; Testoyedov, N.; Rayevsky, V.; Titov, G.; Yakimov, Ye.; Ovchinnikov, A.; Mathylenko, M.

    2017-01-01

    We consider a small information satellite which may be placed on an orbit with altitude from 600 up to 1000 km. The satellite attitude and orbit control system contains a strap-down inertial navigation system, cluster of four reaction wheels, magnetic driver and a correcting engine unit with eight electro-reaction engines. We study problems on design of algorithms for spatial guidance, in-flight identification and adaptive-robust control of the satellite motion on sun-synchronous orbit.

  1. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  2. 33 CFR 164.15 - Navigation bridge visibility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation bridge visibility. 164.15 Section 164.15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.15 Navigation bridge...

  3. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation...

  4. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  5. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  6. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  7. 33 CFR 207.800 - Collection of navigation statistics.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Collection of navigation statistics. 207.800 Section 207.800 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.800 Collection of navigation statistics....

  8. 33 CFR 164.15 - Navigation bridge visibility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation bridge visibility. 164.15 Section 164.15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.15 Navigation bridge...

  9. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  10. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  11. 33 CFR 207.800 - Collection of navigation statistics.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Collection of navigation statistics. 207.800 Section 207.800 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.800 Collection of navigation statistics....

  12. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation...

  13. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  14. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  15. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation...

  16. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  17. 33 CFR 164.15 - Navigation bridge visibility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation bridge visibility. 164.15 Section 164.15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.15 Navigation bridge...

  18. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation...

  19. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  20. 33 CFR 207.800 - Collection of navigation statistics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Collection of navigation statistics. 207.800 Section 207.800 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.800 Collection of navigation statistics....