Zhu, Honglei; Ou, Yongkang; Fu, Jia; Zhang, Ya; Xiong, Hao; Xu, Yaodong
2015-10-01
It has been reported that about half of patients with sudden sensorineural hearing loss (SSNHL) show high signals in the affected inner ear on three-dimensional, fluid-attenuated inversion recovery magnetic resonance imaging (3D-FLAIR MRI). These signals may reflect minor hemorrhage or an increased concentration of protein in the inner ear, which has passed through blood vessels with increased permeability. Our objective was to compare the positive ratio of the high signal in affected inner ears at different time points to determine the suitable imaging time point for 3D-FLAIR MRI in SSNHL. 3D-FLAIR MRI images were taken at three times, precontrast and approximately 10 min and 4 h after intravenous injection of a single dose of gadodiamide (Gd) (0.1 mmol/kg), in 46 patients with SNHL. We compared the positive findings of the high signals in the inner ear of patients with SNHL as well as the signal intensity ratio (SIR) between the affected cochleae and unaffected cochleae at three time points. The positive ratios of the high signals in the affected inner ear at the time points of precontrast and 10 min and 4 h after the intravenous Gd injection were 26.1, 32.6, and 41.3%, respectively. The high signal intensity ratios of affected inner ears at the three time points were 1.28, 1.31, and 1.48, respectively. The difference between the positive ratios precontrast and at 10 min after the intravenous Gd injection was statistically significant (P = 0.006); the differences between the positive ratios at 4 h after the intravenous Gd injection and precontrast and between the ratios at 4 h and 10 min after the intravenous Gd injection were not statistically significant. The time effects of the median value of SIR were not significant (P = 0.064). We do not recommend 4 h after intravenous Gd injection as a time point to image the inner ear in SNHL. We believe that imaging precontrast and at 10 min after the intravenous Gd injection are suitable time points.
Kino, Aya; Keeling, Aoife N; Farrelly, Cormac T; Sheehan, John J; Davarpanah, Amir H; Weele, Peter J; Zuehldorff, Sven; Carr, James C
2011-04-01
The purpose of this study was to compare a navigator gated free breathing 3D Phase Sensitive Inversion Recovery (PSIR) TurboFLASH to an established 2D PSIR TurboFLASH method for detecting myocardial late gadolinium hyperenhanced lesions caused by infiltrative and non-ischemic cardiomyopathy. Under an IRB approved protocol; patients with suspected non-ischemic infiltrative myocardial heart disease were examined on a 1.5T MR scanner for late enhancement after the administration of gadolinium using a segmented 2D PSIR TurboFLASH sequence followed by a navigator-gated 3D PSIR TurboFLASH sequence. Two independent readers analyzed image quality using a four point Likert scale for qualitative analysis (0 = poor, non diagnostic; 1 = fair, diagnostic may be impaired; 2 = good, some artifacts but not interfering in diagnostics, 3 = excellent, no artifacts) and also reported presence or absence of scar. Detected scars were classified based on area and location and also compared quantitatively in volume. Twenty-seven patients were scanned using both protocols. Image quality score did not differ significantly (p = 0.358, Wilcoxon signed rank test) for both technique. Scars were detected in 24 patients. Larger numbers of hyperenhanced scars were detected with 3D PSIR (200) compared to 2D PSIR (167) and scar volume were significant larger in 3D PSIR (p = 0.004). The mean scar volume over all cases was 49.95 cm(3) for 2D PSIR and 70.02 cm(3) for 3D PSIR. The navigator gated free breathing 3D PSIR approach is a suitable method for detecting myocardial late gadolinium hyperenhanced lesions caused by non-ischemic cardiomyopathy due to its complete isotropic coverage of the left ventricle, improving detection of scar lesions compared to 2D PSIR imaging.
Utility of Double Inversion Recovery Sequences in MRI.
Ryan, Maura E
2016-04-01
Investigators from the Mayo Clinic, Rochester Minnesota investigated the utility of three-dimensional (3D) double inversion recovery (DIR) sequences in magnetic resonance imaging (MRI) detection of focal cortical dysplasia (FCD) in children and young adults with epilepsy. PMID:27617491
An Inversion Recovery NMR Kinetics Experiment
ERIC Educational Resources Information Center
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…
Three-dimensional photovoltaics
NASA Astrophysics Data System (ADS)
Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.
2010-02-01
The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D structures are not simple box-like shapes, and that design attributes such as reflectivity could be optimized using three-dimensionality.
Three-dimensional photovoltaics
NASA Astrophysics Data System (ADS)
Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.
2010-03-01
The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.
Three-dimensional metamaterials
Burckel, David Bruce
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Three Dimensional Dirac Semimetals
NASA Astrophysics Data System (ADS)
Zaheer, Saad
2014-03-01
Dirac points on the Fermi surface of two dimensional graphene are responsible for its unique electronic behavior. One can ask whether any three dimensional materials support similar pseudorelativistic physics in their bulk electronic spectra. This possibility has been investigated theoretically and is now supported by two successful experimental demonstrations reported during the last year. In this talk, I will summarize the various ways in which Dirac semimetals can be realized in three dimensions with primary focus on a specific theory developed on the basis of representations of crystal spacegroups. A three dimensional Dirac (Weyl) semimetal can appear in the presence (absence) of inversion symmetry by tuning parameters to the phase boundary separating a bulk insulating and a topological insulating phase. More generally, we find that specific rules governing crystal symmetry representations of electrons with spin lead to robust Dirac points at high symmetry points in the Brillouin zone. Combining these rules with microscopic considerations identifies six candidate Dirac semimetals. Another method towards engineering Dirac semimetals involves combining crystal symmetry and band inversion. Several candidate materials have been proposed utilizing this mechanism and one of the candidates has been successfully demonstrated as a Dirac semimetal in two independent experiments. Work carried out in collaboration with: Julia A. Steinberg, Steve M. Young, J.C.Y. Teo, C.L. Kane, E.J. Mele and Andrew M. Rappe.
Three dimensional ultrasonic imaging
Thomas, G. H.; Benson, S.; Crawford, S.
1993-03-01
Ultrasonic nondestructive evaluation techniques interrogate components with high frequency acoustic energy. A transducer generates the acoustic energy and converts acoustic energy to electrical signals. The acoustic energy is reflected by abrupt changes in modulus and/or density which can be caused by a defect. Thus defects reflect the ultrasonic energy which is converted into electrical signals. Ultrasonic evaluation typically provides a two dimensional image of internal defects. These images are either planar views (C-scans) or cross-sectional views (B-scans). The planar view is generated by raster scanning an ultrasonic transducer over the component and capturing the amplitude of internal reflections. Depth information is generally ignored. The cross-sectional view is generated by scanning the transducer along a single line and capturing the amplitude and time of flight for each internal reflection. The amplitude and time of flight information is converted into an image of the cross section of the component where the scan was performed. By fusing the C-scan information with the B-scan information a three dimension image of the internal structure of the component can be produced. The three dimensional image can be manipulated by rotating and slicing to produce the optimal view of the internal structure. The high frequency ultrasonic energy requires a liquid coupling media and thus applications for imaging in liquid environments are well suited to ultrasonic techniques. Examples of potential ultrasonic imaging applications are: Inside liquid filled tanks, inside the human body, and underwater.
Dong, Hattie Z; Worters, Pauline W; Wu, Holden H; Ingle, R Reeve; Vasanawala, Shreyas S; Nishimura, Dwight G
2013-08-01
Noncontrast-enhanced renal angiography techniques based on balanced steady-state free precession avoid external contrast agents, take advantage of high inherent blood signal from the T 2 / T 1 contrast mechanism, and have short steady-state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady-state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background T 1 species while allowing for adjustable inflow times; alternating pulse repetition time steady-state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three-dimensional as well as projective two-dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Three-dimensional silicon micromachining
NASA Astrophysics Data System (ADS)
Azimi, S.; Song, J.; Dang, Z. Y.; Liang, H. D.; Breese, M. B. H.
2012-11-01
A process for fabricating arbitrary-shaped, two- and three-dimensional silicon and porous silicon components has been developed, based on high-energy ion irradiation, such as 250 keV to 1 MeV protons and helium. Irradiation alters the hole current flow during subsequent electrochemical anodization, allowing the anodization rate to be slowed or stopped for low/high fluences. For moderate fluences the anodization rate is selectively stopped only at depths corresponding to the high defect density at the end of ion range, allowing true three-dimensional silicon machining. The use of this process in fields including optics, photonics, holography and nanoscale depth machining is reviewed.
Three dimensional colorimetric assay assemblies
Charych, D.; Reichart, A.
2000-06-27
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
The Three-Dimensional Universe.
ERIC Educational Resources Information Center
Banks, Dale A.; Powell, Harry D.
1992-01-01
Provides instructions for helping students construct a three-dimensional model of a constellation. Aluminum foil spheres with various diameters are used to represent stars with various apparent magnitudes. The positions of the stars in the model are determined from constellation maps and by converting actual star distances into millimeters. (PR)
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Creating Three-Dimensional Scenes
ERIC Educational Resources Information Center
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Three dimensional colorimetric assay assemblies
Charych, Deborah; Reichart, Anke
2000-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flu virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
Three-dimensional stellarator codes
Garabedian, P. R.
2002-01-01
Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367
Facial three-dimensional morphometry.
Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G
1996-01-01
Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses. PMID:8540488
Multislice and multicoil phase-sensitive inversion-recovery imaging.
Ma, Jingfei
2005-04-01
Phase-sensitive inversion-recovery (PSIR) imaging may provide enhanced T(1) contrast. However, clinical implementation of PSIR imaging is hindered because image reconstruction with this method often lacks robustness and requires manual intervention, particularly for data acquired in multiple slices and with phased-array coils. In this paper, a new algorithm suitable for automatic PSIR image reconstruction of multislice and multicoil data is presented. This algorithm phase corrects by region-growing, employing both the magnitude and the phase information of image pixels. Specifically, phase gradients of the original complex image are first calculated and then used to determine the sequence of the region-growing. The signal direction relating to the phase error for each pixel is then determined during the region-growing using both the magnitude and the phase of the previously determined pixels that are located within a boxcar neighborhood of the pixel. Finally, the intrinsic intercoil and interslice correlation is exploited to ensure consistency in the global polarity of all of the PSIR images. The results are demonstrated with in vivo human brain images acquired at 3 Tesla with an eight-channel phased-array coil.
Three-dimensional visual stimulator
NASA Astrophysics Data System (ADS)
Takeda, Tsunehiro; Fukui, Yukio; Hashimoto, Keizo; Hiruma, Nobuyuki
1995-02-01
We describe a newly developed three-dimensional visual stimulator (TVS) that can change independently the directions, distances, sizes, luminance, and varieties of two sets of targets for both eyes. It consists of liquid crystal projectors (LCP's) that generate the flexible images of targets, Badal otometers that change target distances without changing the visual angles, and relay-lens systems that change target directions. A special control program is developed for real-time control of six motors and two LCP's in the TVS together with a three-dimensional optometer III that simultaneously measures eye movement, accommodation, pupil diameter, and head movement. distance, 0 to -20 D; direction, 16 horizontally and 15 vertically; size, 0-2 deg visual angle; and luminance, 10-2-10 2 cd/m2. The target images are refreshed at 60 Hz and speeds with which the target makes a smooth change (ramp stimuli) are size, 10 deg/s. A simple application demonstrates the performance.
[An Examination for Uterine Dynamic Study with Phase-sensitive Inversion-recovery].
Takatsu, Yasuo; Motegi, Shunichi; Miyati, Tosiaki; Yamamura, Kenichirou
2016-01-01
The depth of myometrial invasion in patients with endometrial carcinoma is recognized as an important factor that closely correlates with prognosis. Preoperative assessment of myometrial invasion is essential for planning surgery. To enhance the contrast between myometrium and endometrium including myometrial invasion with endometrial carcinoma, we optimized the sequence parameter with phase-sensitive inversion-recovery (PSIR) in gadolinium dynamic study of uterine corpus. On a 1.5-T magnetic resonance imaging (MRI), images were acquired by three-dimensional (3D) T1 -turbo field echo (TFE) with PSIR sequence and gadolinium-diethylenetriamine pentaacetic acid( Gd-DTPA) diluted phantom (0-5 mmol/L) and myometrium model (manganese chloride tetrahydrate+agar). We calculated the null point and the contrast-to-noise ratio (CNR) at multiple TFE inversion delay times, 200 ms-maximum in each combination; flip angles (FAs), 5-35 degrees; TFE factor, 20-40; and shot interval (SI), 500-1000 ms. We assumed that dynamic scanning time was 30 seconds when the sensitivity encoding factor was 2, namely, in this study, the scanning time was 1 minute with no sensitivity encoding. In addition, we compared CNR between optimized PSIR sequence ande-Thrive. We recognized a successful CNR of the 3D PSIR parameter was TFE inversion delay times, 335 ms; FA, 25 degrees; TFE factor, 20; and SI, 500 ms. In each gadolinium-DTPA diluted phantom, the average CNR of the optimized PSIR sequence was approximately 1.7 times (maximum: 3 times) higher than e-Thrive. Optimizing sequence parameter of PSIR is applicable in gadolinium dynamic study of uterine corpus.
Three-dimensional coil inductor
Bernhardt, Anthony F.; Malba, Vincent
2002-01-01
A three-dimensional coil inductor is disclosed. The inductor includes a substrate; a set of lower electrically conductive traces positioned on the substrate; a core placed over the lower traces; a set of side electrically conductive traces laid on the core and the lower traces; and a set of upper electrically conductive traces attached to the side traces so as to form the inductor. Fabrication of the inductor includes the steps of forming a set of lower traces on a substrate; positioning a core over the lower traces; forming a set of side traces on the core; connecting the side traces to the lower traces; forming a set of upper traces on the core; and connecting the upper traces to the side traces so as to form a coil structure.
Three-dimensional aromatic networks.
Toyota, Shinji; Iwanaga, Tetsuo
2014-01-01
Three-dimensional (3D) networks consisting of aromatic units and linkers are reviewed from various aspects. To understand principles for the construction of such compounds, we generalize the roles of building units, the synthetic approaches, and the classification of networks. As fundamental compounds, cyclophanes with large aromatic units and aromatic macrocycles with linear acetylene linkers are highlighted in terms of transannular interactions between aromatic units, conformational preference, and resolution of chiral derivatives. Polycyclic cage compounds are constructed from building units by linkages via covalent bonds, metal-coordination bonds, or hydrogen bonds. Large cage networks often include a wide range of guest species in their cavity to afford novel inclusion compounds. Topological isomers consisting of two or more macrocycles are formed by cyclization of preorganized species. Some complicated topological networks are constructed by self-assembly of simple building units.
Dynamic Three-Dimensional Echocardiography
NASA Astrophysics Data System (ADS)
Matsusaka, Katsuhiko; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro
2000-08-01
Conventional three-dimensional (3D) ultrasound imaging equipment for diagnosis requires much time to reconstruct 3D images or fix the view point for observing the 3D image. Thus, it is inconvenient for cardiac diagnosis. In this paper, we propose a new dynamic 3D echocardiography system. The system produces 3D images in real-time and permits changes in view point. This system consists of ultrasound diagnostic equipment, a digitizer and a computer. B-mode images are projected to a virtual 3D space by referring to the position of the probe of the ultrasound diagnosis equipment. The position is obtained by the digitizer to which the ultrasound probe is attached. The 3D cardiac image is constructed from B-mode images obtained simultaneously in the cardiac cycle. To obtain the same moment of heartbeat in the cardiac cycle, this system uses the electrocardiography derived from the diagnosis equipment. The 3D images, which show various scenes of the stage of heartbeat action, are displayed sequentially. The doctor can observe 3D images cut in any plane by pushing a button of the digitizer and zooming with the keyboard. We evaluated our prototype system by observation of a mitral valve in motion.
Three-dimensional laser microvision.
Shimotahira, H; Iizuka, K; Chu, S C; Wah, C; Costen, F; Yoshikuni, Y
2001-04-10
A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 mum; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 mum. PMID:18357177
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander A.; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2014-08-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory.
Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten
2014-08-22
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.
Three dimensional magnetic abacus memory
NASA Astrophysics Data System (ADS)
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
NASA Astrophysics Data System (ADS)
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Three-Dimensional Schlieren Measurements
NASA Astrophysics Data System (ADS)
Sutherland, Bruce; Cochrane, Andrea
2004-11-01
Schlieren systems visualise disturbances that change the index of refraction of a fluid, for example due to temperature or salinity disturbances. `Synthetic schlieren' refers to a recent advance in which these disturbances are visualised with a digital camera and image-processing technology rather than the classical use of parabolic mirrors and a knife-edge. In a typical setup, light from an image of horizontal lines or dots passes almost horizontally through the test section of a fluid to a CCD camera. Refractive index disturbances distort the image and digital comparison of successive images reveals the plan-form structure and time evolution of the disturbances. If the disturbance is effectively two-dimensional, meaning that it is uniform across the line-of-sight of the camera, then its magnitude as well as its structure can measured through simple inversion of an algebraic equation. If the structure is axisymmetric with rotation-axis perpendicular to the line of sight, the magnitude of the disturbance can be measured through inversion of a non-singular square matrix. Here we report upon the extension of this work toward measuring the magnitude of a fully three-dimensional disturbance. This is done by analysing images from two perspectives through the test section and using inversion tomography techniques to reconstruct the disturbance field. The results are tested against theoretical predictions and experimental measurements.
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
ERIC Educational Resources Information Center
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
Three-dimensional laser window formation
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1992-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.
Three Dimensional Optic Tissue Culture and Process
NASA Technical Reports Server (NTRS)
OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)
1999-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.
Three dimensional optic tissue culture and process
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)
1994-01-01
A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.
Three-Dimensional Icosahedral Phase Field Quasicrystal
NASA Astrophysics Data System (ADS)
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Vision in our three-dimensional world
2016-01-01
Many aspects of our perceptual experience are dominated by the fact that our two eyes point forward. Whilst the location of our eyes leaves the environment behind our head inaccessible to vision, co-ordinated use of our two eyes gives us direct access to the three-dimensional structure of the scene in front of us, through the mechanism of stereoscopic vision. Scientific understanding of the different brain regions involved in stereoscopic vision and three-dimensional spatial cognition is changing rapidly, with consequent influences on fields as diverse as clinical practice in ophthalmology and the technology of virtual reality devices. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269595
Three-dimensional separation and reattachment
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1982-01-01
The separation of three dimensional turbulent boundary layers from the lee of flight vehicles at high angles of attack is investigated. The separation results in dominant, large scale, coiled vortex motions that pass along the body in the general direction of the free stream. In all cases of three dimensional flow separation and reattachment, the assumption of continuous vector fields of skin friction lines and external flow streamlines, coupled with simple laws of topology, provides a flow grammar whose elemental constituents are the singular points: the nodes, spiral nodes (foci), and saddles. The phenomenon of three dimensional separation may be constrained as either a local or a global event, depending on whether the skin friction line that becomes a line of separation originates at a node or a saddle point.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Three-Dimensional Robotic Vision System
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three-Dimensional Extended Bargmann Supergravity
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric; Rosseel, Jan
2016-06-01
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques.
Three-Dimensional Extended Bargmann Supergravity.
Bergshoeff, Eric; Rosseel, Jan
2016-06-24
We show that three-dimensional general relativity, augmented with two vector fields, allows for a nonrelativistic limit, different from the standard limit leading to Newtonian gravity, that results in a well-defined action which is of the Chern-Simons type. We show that this three-dimensional "extended Bargmann gravity," after coupling to matter, leads to equations of motion allowing a wider class of background geometries than the ones that one encounters in Newtonian gravity. We give the supersymmetric generalization of these results and point out an important application in the context of calculating partition functions of nonrelativistic field theories using localization techniques. PMID:27391712
Three-Dimensional Icosahedral Phase Field Quasicrystal.
Subramanian, P; Archer, A J; Knobloch, E; Rucklidge, A M
2016-08-12
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation. PMID:27563973
Three-Dimensional Printing Surgical Applications
Griffin, Michelle F.; Butler, Peter E.
2015-01-01
Introduction: Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. Objective: To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Methods: Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Discussion: Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Conclusion: Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice. PMID:26301002
Three Dimensional Display Of Meteorological Scientific Data
NASA Astrophysics Data System (ADS)
Grotch, Stanley L.
1988-01-01
Even a cursory reading of any daily newspaper shows that we are in the midst of a dramatic revolution in computer graphics. Virtually every day some new piece of hardware or software is announced, adding to the tools available to the working scientist. Three dimensional graphics form a significant part of this revolution having become virtually commonplace in advertising and on television.
Three-Dimensional Messages for Interstellar Communication
NASA Astrophysics Data System (ADS)
Vakoch, Douglas A.
One of the challenges facing independently evolved civilizations separated by interstellar distances is to communicate information unique to one civilization. One commonly proposed solution is to begin with two-dimensional pictorial representations of mathematical concepts and physical objects, in the hope that this will provide a foundation for overcoming linguistic barriers. However, significant aspects of such representations are highly conventional, and may not be readily intelligible to a civilization with different conventions. The process of teaching conventions of representation may be facilitated by the use of three-dimensional representations redundantly encoded in multiple formats (e.g., as both vectors and as rasters). After having illustrated specific conventions for representing mathematical objects in a three-dimensional space, this method can be used to describe a physical environment shared by transmitter and receiver: a three-dimensional space defined by the transmitter--receiver axis, and containing stars within that space. This method can be extended to show three-dimensional representations varying over time. Having clarified conventions for representing objects potentially familiar to both sender and receiver, novel objects can subsequently be depicted. This is illustrated through sequences showing interactions between human beings, which provide information about human behavior and personality. Extensions of this method may allow the communication of such culture-specific features as aesthetic judgments and religious beliefs. Limitations of this approach will be noted, with specific reference to ETI who are not primarily visual.
Three-Dimensional Visualization of Particle Tracks.
ERIC Educational Resources Information Center
Julian, Glenn M.
1993-01-01
Suggests ways to bring home to the introductory physics student some of the excitement of recent discoveries in particle physics. Describes particle detectors and encourages the use of the Standard Model along with real images of particle tracks to determine three-dimensional views of tracks. (MVL)
Three-dimensional RF structure calculations
NASA Astrophysics Data System (ADS)
Cooper, R. K.; Browman, M. J.; Weiland, T.
1989-04-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described.
Three-dimensional rf structure calculations
Cooper, R.K.; Browman, M.J.; Weiland, T.
1988-01-01
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs.
Three-dimensional colorimetric assay assemblies
Charych, Deborah; Reichert, Anke
2001-01-01
A direct assay is described using novel three-dimensional polymeric assemblies which change from a blue to red color when exposed to an analyte, in one case a flue virus. The assemblies are typically in the form of liposomes which can be maintained in a suspension, and show great intensity in their color changes. Their method of production is also described.
[Development of an Optimizing Program of Scanning Parameters for Double Inversion Recovery MRI].
Hayashi, Norio; Yarita, Kazuma; Sakata, Kozue; Motegi, Shunichi; Nagase, Hiroyuki; Ujita, Kouichi; Ogura, Akio; Ogura, Toshihiro; Shimada, Takehiro; Tsushima, Yoshito
2015-06-01
The purpose of this study was to develop an optimizing program of scanning parameters for double inversion recovery (DIR) MRI. The optimization algorithm consists of the following steps: (1) obtaining the initial parameters (TR, TE, and T1 values of the two attenuated tissues); (2) iterative calculation for minimization of errors; and (3) determination of the optimized TI(1st) and TI(2nd). To evaluate the developed algorithm, we performed the phantom and simulation studies using the phantoms which were imitated T1 values of white and gray matters and cerebrospinal fluid. In addition, white matter attenuated inversion recovery (WAIR) and gray matter attenuated inversion recovery (GAIR) images were obtained by optimized scan parameters in one volunteer. The developed algorithm could calculate the optimized TI(1st) and TI(2nd) values at once. Results of summation of signal intensity (SI) of two attenuated tissues shows that the SI of the two tissues were well-attenuated using the theoretical values which were calculated using the developed algorithm. The correlation coefficient of the SI of the phantom of the gray matter between actual and simulation measurements was r=0.997. The SI obtained by actual measurements well correlated with the SI obtained by the simulation measurements. The WAIR and GAIR images in the volunteer were well enhanced gray or white matters. We thus conclude that it is possible to calculate the optimized parameters for the DIR-MRI using the developed algorithm.
Xue, Hui; Greiser, Andreas; Zuehlsdorff, Sven; Jolly, Marie-Pierre; Guehring, Jens; Arai, Andrew E; Kellman, Peter
2013-05-01
The assessment of myocardial fibrosis and extracellular volume requires accurate estimation of myocardial T1 s. While image acquisition using the modified Look-Locker inversion recovery technique is clinically feasible for myocardial T1 mapping, respiratory motion can limit its applicability. Moreover, the conventional T1 fitting approach using the magnitude inversion recovery images can lead to less stable T1 estimates and increased computational cost. In this article, we propose a novel T1 mapping scheme that is based on phase-sensitive image reconstruction and the restoration of polarity of the MR signal after inversion. The motion correction is achieved by registering the reconstructed images after background phase removal. The restored signal polarity of the inversion recovery signal helps the T1 fitting resulting in improved quality of the T1 map and reducing the computational cost. Quantitative validation on a data cohort of 45 patients proves the robustness of the proposed method against varying image contrast. Compared to the magnitude T1 fitting, the proposed phase-sensitive method leads to less fluctuation in T1 estimates.
Optimized Inversion Recovery Sequences for Quantitative T1 and Magnetization Transfer Imaging
Li, Ke; Zu, Zhongliang; Xu, Junzhong; Janve, Vaibhav A.; Gore, John C.; Does, Mark D.; Gochberg, Daniel F.
2010-01-01
Inversion recovery sequences that vary the inversion time (ti) have been employed to determine T1 and, more recently, quantitative magnetization transfer (qMT) parameters. Specifically, in previous work, the inversion recovery pulse sequences varied ti only, while maintaining a constant delay (td) between repetitions. T1 values were determined by fitting to an exponential function, and qMT parameters were then determined by fitting to a bi-exponential function with an approximate solution. In the current study, new protocols are employed, which vary both ti and td and fit the data with minimal approximations. Cramer-Rao lower bounds (CRLB) are calculated to search for acquisition schemes that will maximize the precision efficiencies of T1 and qMT parameters. This approach is supported by Monte Carlo simulations. Measurements on MnCl2 samples verified the optimal T1 schemes. The optimal qMT schemes are confirmed by measurements on a series of cross linked bovine serum albumin (BSA) phantoms of varying concentrations. The effects of varying the number of sampling data points are also explored, and a rapid acquisition scheme is demonstrated in vivo. These new optimized quantitative imaging methods provide an improved means for determining T1 and MT parameter values compared to previous inversion recovery based methods. PMID:20665793
Artifacts in three-dimensional transesophageal echocardiography.
Faletra, Francesco Fulvio; Ramamurthi, Alamelu; Dequarti, Maria Cristina; Leo, Laura Anna; Moccetti, Tiziano; Pandian, Natesa
2014-05-01
Three-dimensional (3D) transesophageal echocardiography (TEE) is subject to the same types of artifacts encountered on two-dimensional TEE. However, when displayed in a 3D format, some of the artifacts appear more "realistic," whereas others are unique to image acquisition and postprocessing. Three-dimensional TEE is increasingly used in the setting of percutaneous catheter-based interventions and ablation procedures, and 3D artifacts caused by the metallic components of catheters and devices are particularly frequent. Knowledge of these artifacts is of paramount relevance to avoid misinterpretation of 3D images. Although artifacts and pitfalls on two-dimensional echocardiography are well described and classified, a systematic description of artifacts in 3D transesophageal echocardiographic images and how they affect 3D imaging is still absent. The aim of this review is to describe the most relevant artifacts on 3D TEE, with particular emphasis on those occurring during percutaneous interventions for structural heart disease and ablation procedures.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
Three-dimensional effects on airfoils
NASA Technical Reports Server (NTRS)
Chevallier, J. P.
1983-01-01
The effects of boundary layer flows along the walls of wind tunnels were studied to validate the transfer of two dimensional calculations to three dimensional transonic flowfield calculations. Results from trials in various wind tunnels were examind to determine the effects of the wall boundary flow on the control surfaces of an airfoil. Models sliding along a groove in the wall of a channel at sub- and transonic speeds were examined, with the finding that with either nonuniformities in the groove, or even if the channel walls are uniform, the lateral boundary layer can cause variations in the central flow region or alter the onset of shock at the transition point. Models for the effects in both turbulence and in the absence of turbulence are formulated, and it is noted that the characteristics of individual wind tunnels must be studied to quantify any existing three dimensional effects.
Three-Dimensional Reconstruction of Helical Polymers
Egelman, Edward H.
2015-01-01
The field of three-dimensional electron microscopy began more than 45 years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments. PMID:25912526
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Three dimensional contact/impact methodology
Kulak, R.F.
1987-01-01
The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing. PMID:25921944
Three-dimensional reconstruction of helical polymers.
Egelman, Edward H
2015-09-01
The field of three-dimensional electron microscopy began more than 45years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments.
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
Three-dimensional Allan fault plane analysis
Hoffman, K.S.; Taylor, D.R.; Schnell, R.T.
1994-12-31
Allan fault-plane analysis is a useful tool for determining hydrocarbon migration paths and the location of possible traps. While initially developed for Gulf coast deltaic and interdeltaic environments, fault-plane analysis has been successfully applied in many other geologic settings. Where the geology involves several intersecting faults and greater complexity, many two-dimensional displays are required in the investigation and it becomes increasingly difficult to accurately visualize both fault relationships and migration routes. Three-dimensional geospatial fault and structure modeling using computer techniques, however, facilitates both visualization and understanding and extends fault-plane analysis into much more complex situations. When a model is viewed in three dimensions, the strata on both sides of a fault can be seen simultaneously while the true structural character of one or more fault surfaces is preserved. Three-dimensional analysis improves the speed and accuracy of the fault plane methodology.
Simulation of complex three-dimensional flows
NASA Technical Reports Server (NTRS)
Diewert, G. S.; Rothmund, H. J.; Nakahashi, K.
1985-01-01
The concept of splitting is used extensively to simulate complex three dimensional flows on modern computer architectures. Used in all aspects, from initial grid generation to the determination of the final converged solution, splitting is used to enhance code vectorization, to permit solution driven grid adaption and grid enrichment, to permit the use of concurrent processing, and to enhance data flow through hierarchal memory systems. Three examples are used to illustrate these concepts to complex three dimensional flow fields: (1) interactive flow over a bump; (2) supersonic flow past a blunt based conical afterbody at incidence to a free stream and containing a centered propulsive jet; and (3) supersonic flow past a sharp leading edge delta wing at incidence to the free stream.
Three-dimensional Lorentz-violating action
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu.; Wotzasek, C.; Zarro, C. A. D.
2014-03-01
We demonstrate the generation of the three-dimensional Chern-Simons-like Lorentz-breaking "mixed" quadratic action via an appropriate Lorentz-breaking coupling of vector and scalar fields to the spinor field and study some features of the scalar QED with such a term. We show that the same term emerges through a nonperturbative method, namely the Julia-Toulouse approach of condensation of charges and defects.
Three-dimensional ballistocardiography in weightlessness
NASA Technical Reports Server (NTRS)
Scano, A.
1981-01-01
An experiment is described the aim of which is to record a three dimensional ballistocardiogram under the condition of weightlessness and to compare it with tracings recorded on the same subject on the ground as a means of clarifying the meaning of ballistocardiogram waves in different physiological and perphaps pathological conditions. Another purpose is to investigate cardiovascular and possibly fluid adaptations to weightlessness from data collected almost simultaneously on the same subjects during the other cardiovascular during the other cardiovascular and metabolic experiments.
Stress tensor correlators in three dimensional gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Grumiller, Daniel; Merbis, Wout
2016-03-01
We calculate holographically arbitrary n -point correlators of the boundary stress tensor in three-dimensional Einstein gravity with negative or vanishing cosmological constant. We provide explicit expressions up to 5-point (connected) correlators and show consistency with the Galilean conformal field theory Ward identities and recursion relations of correlators, which we derive. This provides a novel check of flat space holography in three dimensions.
Three-Dimensional Dispaly Of Document Set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Lantrip, David B.; Pennock, Kelly A.; Pottier, Marc C.; Schur, Anne; Thomas, James J.; Wise, James A.; York, Jeremy
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional printing of scintillating materials.
Mishnayot, Y; Layani, M; Cooperstein, I; Magdassi, S; Ron, G
2014-08-01
We demonstrate, for the first time, the applicability of three-dimensional printing techniques to the manufacture of scintillation detectors. We report on the development of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various applications.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Mineralized three-dimensional bone constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2011-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Mineralized Three-Dimensional Bone Constructs
NASA Technical Reports Server (NTRS)
Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)
2013-01-01
The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.
Three-dimensional motor schema based navigation
NASA Technical Reports Server (NTRS)
Arkin, Ronald C.
1989-01-01
Reactive schema-based navigation is possible in space domains by extending the methods developed for ground-based navigation found within the Autonomous Robot Architecture (AuRA). Reformulation of two dimensional motor schemas for three dimensional applications is a straightforward process. The manifold advantages of schema-based control persist, including modular development, amenability to distributed processing, and responsiveness to environmental sensing. Simulation results show the feasibility of this methodology for space docking operations in a cluttered work area.
Three-dimensional adjustment of trilateration data
NASA Technical Reports Server (NTRS)
Sung, L.-Y.; Jackson, D. D.
1985-01-01
The three-dimensional locations of the monuments in the USGS Hollister trilateration network were adjusted to fit line length observations observed in 1977, using a Bayesian approach, and incorporating prior elevation estimates as data in the adjustment procedure. No significant discrepancies in the measured line lengths were found, but significant elevation adjustments (up to 1.85 m) were needed to fit the length data.
Three-dimensional photogrammetry for laboratory applications
NASA Astrophysics Data System (ADS)
Alem, Nabih M.
1994-12-01
The direct linear transformation (DLT) is a method that simplifies measurements of the three-dimensional coordinates of a point target in the laboratory using photographic two-dimensional imagery. This report describes a procedure to implement the DLT equations and gives the Fortran code of computer programs for the DLT calibration of multicamera system and 3-D reconstruction of a single point from several images.
Three-Dimensional Audio Client Library
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2005-01-01
The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.
Three-dimensional Chiral Plasmonic Oligomers
NASA Astrophysics Data System (ADS)
Hentschel, Mario
2013-03-01
We demonstrate chiral optical response in stacked arrangements of plasmonic nanostructures. We show that three-dimensional arrangements of plasmonic ``meta-atoms'' only exhibit a chiral optical response if similar plasmonic ``atoms'' are arranged in a handed fashion as we require resonant plasmonic coupling. Moreover, we demonstrate that such particle groupings, similarly to molecular systems, possess the capability to encode their three-dimensional arrangement in unique and well-modulated spectra, making them ideal candidates for a three-dimensional chiral plasmon ruler. Furthermore, we discuss the onset of a broadband chiral optical response in the wavelength regime between 700 nm and 3500 nm upon charge transfer between the nanoparticles. We show in experiment and simulation that this response is due to the ohmic contact between adjacent particles which causes a strong red-shift of the fundamental mode. The geometrical shape of the resulting fused particles allows for efficient excitation of higher order modes. Calculated spectra and field distributions confirm our interpretation and show a number of interacting plasmonic modes. Finally, we will discuss plasmonic diastereomers which consist of multiple chiral centers. We find that the chiral optical response of the composite molecules can be traced back to the properties of the constituting building blocks. We demonstrate that the optical response of complex chiral plasmonic systems can be decomposed and understood in terms of fundamental building blocks, offering simple and straightforward design rules for future applications such as chiral optical elements and enantiomer sensors.
Reconfigurable, braced, three-dimensional DNA nanostructures
NASA Astrophysics Data System (ADS)
Goodman, Russell P.; Heilemann, Mike; Doose, Sören; Erben, Christoph M.; Kapanidis, Achillefs N.; Turberfield, Andrew J.
2008-02-01
DNA nanotechnology makes use of the exquisite self-recognition of DNA in order to build on a molecular scale. Although static structures may find applications in structural biology and computer science, many applications in nanomedicine and nanorobotics require the additional capacity for controlled three-dimensional movement. DNA architectures can span three dimensions and DNA devices are capable of movement, but active control of well-defined three-dimensional structures has not been achieved. We demonstrate the operation of reconfigurable DNA tetrahedra whose shapes change precisely and reversibly in response to specific molecular signals. Shape changes are confirmed by gel electrophoresis and by bulk and single-molecule Förster resonance energy transfer measurements. DNA tetrahedra are natural building blocks for three-dimensional construction; they may be synthesized rapidly with high yield of a single stereoisomer, and their triangulated architecture conveys structural stability. The introduction of shape-changing structural modules opens new avenues for the manipulation of matter on the nanometre scale.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Three-dimensional printing of the retina
Lorber, Barbara; Hsiao, Wen-Kai; Martin, Keith R.
2016-01-01
Purpose of review Biological three-dimensional printing has received a lot of media attention over recent years with advances made in printing cellular structures, including skin and heart tissue for transplantation. Although limitations exist in creating functioning organs with this method, the hope has been raised that creating a functional retina to cure blindness is within reach. The present review provides an update on the advances made toward this goal. Recent findings It has recently been shown that two types of retinal cells, retinal ganglion cells and glial cells, can be successfully printed using a piezoelectric inkjet printer. Importantly, the cells remained viable and did not change certain phenotypic features as a result of the printing process. In addition, recent advances in the creation of complex and viable three-dimensional cellular structures have been made. Summary Some first promising steps toward the creation of a functional retina have been taken. It now needs to be investigated whether recent findings can be extended to other cells of the retina, including those derived from human tissue, and if a complex and viable retinal structure can be created through three-dimensional printing. PMID:27045545
Three-dimensional deformation of orthodontic brackets
Melenka, Garrett W; Nobes, David S; Major, Paul W
2013-01-01
Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201
NASA Astrophysics Data System (ADS)
Obara, Masaki; Yoshimori, Kyu
2015-07-01
A four-dimensional impulse response function for the digital holographic three-dimensional imaging spectrometry has been fully derived in closed form. Due to its factorizing nature of the mathematical expression of four-dimensional impulse response function, three-dimensional spatial part of impulse response function directly corresponds to threedimensional point spread function of in-line digital holography with rectangular aperture. Based on these mathematical results, this paper focuses on the investigation of spectral resolution and three-dimensional spatial resolution in digital holographic three-dimensional imaging spectrometry and digital holography. We found that the theoretical prediction agree well with the experimental results. This work suggests a new criterion and estimate method regarding threedimensional spatial resolution of in-line digital holography.
Three-dimensional nanoscopy of colloidal crystals.
Harke, Benjamin; Ullal, Chaitanya K; Keller, Jan; Hell, Stefan W
2008-05-01
We demonstrate the direct three-dimensional imaging of densely packed colloidal nanostructures using stimulated emission depletion microscopy. A combination of two de-excitation patterns yields a resolution of 43 nm in the lateral and 125 nm in the axial direction and an effective focal volume that is by 126-fold smaller than that of a corresponding confocal microscope. The mapping of a model system of spheres organized by confined convective assembly unambiguously identified face-centered cubic, hexagonal close-packed, random hexagonal close-packed, and body-centered cubic structures.
High resolution three-dimensional doping profiler
Thundat, Thomas G.; Warmack, Robert J.
1999-01-01
A semiconductor doping profiler provides a Schottky contact at one surface and an ohmic contact at the other. While the two contacts are coupled to a power source, thereby establishing an electrical bias in the semiconductor, a localized light source illuminates the semiconductor to induce a photocurrent. The photocurrent changes in accordance with the doping characteristics of the semiconductor in the illuminated region. By changing the voltage of the power source the depth of the depletion layer can be varied to provide a three dimensional view of the local properties of the semiconductor.
Three dimensional digital holographic aperture synthesis.
Crouch, Stephen; Kaylor, Brant M; Barber, Zeb W; Reibel, Randy R
2015-09-01
Aperture synthesis techniques are applied to temporally and spatially diverse digital holograms recorded with a fast focal-plane array. Because the technique fully resolves the downrange dimension using wide-bandwidth FMCW linear-chirp waveforms, extremely high resolution three dimensional (3D) images can be obtained even at very long standoff ranges. This allows excellent 3D image formation even when targets have significant structure or discontinuities, which are typically poorly rendered with multi-baseline synthetic aperture ladar or multi-wavelength holographic aperture ladar approaches. The background for the system is described and system performance is demonstrated through both simulation and experiments. PMID:26368474
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. PMID:26558661
Electrode With Porous Three-Dimensional Support
Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier
1999-07-27
Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m
Three dimensional model of the human mandible.
Muftić, O; Milcić, D; Saucha, J; Carek, V
2000-07-01
A new biomechanical three-dimensional (3D) model for the human mandible is proposed. A simple two-dimensional model cannot explain the biomechanics of the human mandible, where muscular forces through occlusion and condylar surfaces are in a state of dynamical 3D equilibrium. All forces are resolved into components according to a selected coordinate system. The muscular forces, which during clenching act on the jaw, along with the necessary force level for chewing, also act as some kind of stabilizers of the mandibular condyles preventing dislocation and loading of nonarticular tissues.
Three-dimensional ultrasonic colloidal crystals
NASA Astrophysics Data System (ADS)
Caleap, Mihai; Drinkwater, Bruce W.
2016-05-01
Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications. xml:lang="fr"
Three-dimensional echocardiography in valve disease
COLOMBO, CHIARA; TAMBORINI, GLORIA; PEPI, MAURO; ALIMENTO, MARINA; FIORENTINI, CESARE
2007-01-01
This review covers the role of three-dimensional (3D) echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic) and quantitative advantages of this technique. PMID:21977273
Three-dimensional flow about penguin wings
NASA Astrophysics Data System (ADS)
Noca, Flavio; Sudki, Bassem; Lauria, Michel
2012-11-01
Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.
Robust phase sensitive inversion recovery imaging using a Markov random field model.
Garach, Ravindra M; Ji, Jim X; Ying, Lei; Ma, Jingfei
2004-01-01
This paper presents a novel method for phase sensitive inversion recovery (PSIR) imaging for improved T/sub 1/ contrast. This method models the phase of the complex magnetic resonance image using a statistical model based on Markov random fields. A computationally efficient optimization method is developed. Computer simulations and in-vivo brain imaging experiments show that the proposed method can produce PSIR images with enhanced T/sub 1/ contrast and it is robust against high levels of data noise even when rapid phase variations are presented.
Three-dimensional television: a broadcaster's perspective
NASA Astrophysics Data System (ADS)
Jolly, S. J. E.; Armstrong, M.; Salmon, R. A.
2009-02-01
The recent resurgence of interest in the stereoscopic cinema and the increasing availability to the consumer of stereoscopic televisions and computer displays are leading broadcasters to consider, once again, the feasibility of stereoscopic broadcasting. High Definition Television is now widely deployed, and the R&D departments of broadcasters and consumer electronics manufacturers are starting to plan future enhancements to the experience of television. Improving the perception of depth via stereoscopy is a strong candidate technology. In this paper we will consider the challenges associated with the production, transmission and display of different forms of "three-dimensional" television. We will explore options available to a broadcaster wishing to start a 3D service using the technologies available at the present time, and consider how they could be improved to enable many more television programmes to be recorded and transmitted in a 3D-compatible form, paying particular attention to scenarios such as live broadcasting, where the workflows developed for the stereoscopic cinema are inapplicable. We will also consider the opportunities available for broadcasters to reach audiences with "three-dimensional" content via other media in the near future: for example, distributing content via the existing stereoscopic cinema network, or over the Internet to owners of stereoscopic computer displays.
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Three-dimensional flow in Kupffer's Vesicle.
Montenegro-Johnson, T D; Baker, D I; Smith, D J; Lopes, S S
2016-09-01
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over the ventral floor, showing how this vortical flow is stabilised by dorsal tilt of equatorial cilia, and (b) show that anterior clustering of dorsal cilia leads to around 40 % faster flow in the anterior over the posterior corner. We argue that these flow features are supportive of symmetry breaking through mechano-sensory cilia, and suggest a novel experiment to test this hypothesis. From our new understanding of the flow, we propose a further experiment to reverse the flow within KV to potentially induce situs inversus.
Three-dimensional fluorescence lifetime tomography
Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J.
2005-04-01
Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
In-lab three-dimensional printing
Partridge, Roland; Conlisk, Noel; Davies, Jamie A.
2012-01-01
The development of the microscope in 1590 by Zacharias Janssenby and Hans Lippershey gave the world a new way of visualizing details of morphogenesis and development. More recent improvements in this technology including confocal microscopy, scanning electron microscopy (SEM) and optical projection tomography (OPT) have enhanced the quality of the resultant image. These technologies also allow a representation to be made of a developing tissue’s three-dimensional (3-D) form. With all these techniques however, the image is delivered on a flat two-dimensional (2-D) screen. 3-D printing represents an exciting potential to reproduce the image not simply on a flat screen, but in a physical, palpable three-dimensional structure. Here we explore the scope that this holds for exploring and interacting with the structure of a developing organ in an entirely novel way. As well as being useful for visualization, 3-D printers are capable of rapidly and cost-effectively producing custom-made structures for use within the laboratory. We here describe the advantages of producing hardware for a tissue culture system using an inexpensive in-lab printer. PMID:22652907
Three-dimensional model of lignin structure
Jurasek, L.
1995-12-01
An attempt to build a three-dimensional model of lignin structure using a computer program is described. The program simulates the biosynthesis of spruce lignin by allowing coniferyl alcohol subunits to be added randomly by six different types of linkages, assumed to be most common. The simulated biosynthesis starts from a number of seed points within restricted space, corresponding to 50 mM initial concentration of coniferyl alcohol. Rules of three-dimensional packing of the subunits within the lignin macro-molecule are observed during the simulated biosynthetic process. Branched oligomeric structures thus generated form crosslinks at those positions where the chains grow close enough to form a link. Inter-chain crosslinking usually joins the oligomers into one macromolecule. Intra-chain crosslinks are also formed and result in closed loops. Typically, a macromolecule with molecular weight of approx. 2 x 105 is formed, with internal density of 1.35g/cm3. Various characteristics of the internal structure, such as branching, crosslinking, bond frequencies, and chain length distribution are described. Breakdown of the polymer was also simulated and the effect of closed loops on the weight average molecular weight is shown. The effect of the shape of the biosynthetic space on the degree of crosslinking is discussed and predictions of the overall molecular shape of lignin particles are made.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Three-dimensional strain analysis using Mathematica
NASA Astrophysics Data System (ADS)
Mookerjee, Matty; Nickleach, Scott
2011-10-01
A suite of geological computer programs written in Mathematica is currently available both within the online repository for the Journal of Structural Geology as well as on the first author's website ( http://www.sonoma.edu/users/m/mookerje/ProgramPage.htm). The majority of these programs focus on three-dimensional strain analysis (e.g., determining best-fit strain ellipsoids, plotting elliptical data on either a Flinn or Hsu diagram, and determining error bounds for three-dimensional strain data). This program suite also includes a ternary diagram plotting program, a rose diagram program, an equal area and equal angle projections program, and an instructional program for creating two-dimensional strain path animations. The bulk of this paper focuses on a new method for determining a best-fit ellipsoid from arbitrarily oriented sectional ellipses and methods for determining appropriate error bounds for strain parameters and orientation data. This best-fit ellipsoid method utilizes a least-squares approach and minimizes the error associated with the two-dimensional data-ellipse matrix elements with the corresponding matrix elements from sectional ellipses through a general ellipsoid. Furthermore, a kernel density estimator is utilized to yield reliable error margins for the strain parameters, octahedral shear strain, Flinn's k-value, and Lode's ratio. By assuming a gamma distribution for the simulated principal axes orientations, more realistic error bounds can be estimated for these axes orientations.
Farrell, Colleen; Fabian, Michelle; Howard, Jonathan; Riley, Claire; Miller, Aaron; Lublin, Fred; Inglese, Matilde
2016-01-01
Previous studies comparing phase sensitive inversion recovery (PSIR) to double inversion recovery (DIR) have demonstrated that use of PSIR improves cross-sectional in vivo detection of cortical lesions (CL) in multiple sclerosis. We studied the utility of PSIR in detection/characterization of accrual of CL over time in a 1-year longitudinal study in primary progressive multiple sclerosis (PPMS) compared to DIR. PSIR and DIR images were acquired with 3T magnetic resonance imaging (MRI) in 25 patients with PPMS and 19 healthy controls at baseline, and after 1 year in 20 patients with PPMS. CL were classified as intracortical, leucocortical or juxtacortical. Lesion counts and volumes were calculated for both time points from both sequences and compared. Correlations with measures of physical and cognitive disability were determined as well as new CL counts and volumes. Compared to DIR, PSIR led to detection of a higher number of CL involving a larger proportion of patients with PPMS both cross-sectionally (p = 0.006, 88%) and longitudinally (p = 0.007, 95%), and led to the reclassification of a third of CL seen on DIR at each time point. Interestingly, PSIR was more sensitive to new CL accumulation over time compared to DIR. PSIR is a promising technique to monitor cortical damage and disease progression in patients with PPMS over a short-term follow-up. PMID:27002529
Harel, Asaff; Ceccarelli, Antonia; Farrell, Colleen; Fabian, Michelle; Howard, Jonathan; Riley, Claire; Miller, Aaron; Lublin, Fred; Inglese, Matilde
2016-01-01
Previous studies comparing phase sensitive inversion recovery (PSIR) to double inversion recovery (DIR) have demonstrated that use of PSIR improves cross-sectional in vivo detection of cortical lesions (CL) in multiple sclerosis. We studied the utility of PSIR in detection/characterization of accrual of CL over time in a 1-year longitudinal study in primary progressive multiple sclerosis (PPMS) compared to DIR. PSIR and DIR images were acquired with 3T magnetic resonance imaging (MRI) in 25 patients with PPMS and 19 healthy controls at baseline, and after 1 year in 20 patients with PPMS. CL were classified as intracortical, leucocortical or juxtacortical. Lesion counts and volumes were calculated for both time points from both sequences and compared. Correlations with measures of physical and cognitive disability were determined as well as new CL counts and volumes. Compared to DIR, PSIR led to detection of a higher number of CL involving a larger proportion of patients with PPMS both cross-sectionally (p = 0.006, 88%) and longitudinally (p = 0.007, 95%), and led to the reclassification of a third of CL seen on DIR at each time point. Interestingly, PSIR was more sensitive to new CL accumulation over time compared to DIR. PSIR is a promising technique to monitor cortical damage and disease progression in patients with PPMS over a short-term follow-up.
Automatic three-dimensional underground mine mapping
Huber, D.F.; Vandapel, N.
2006-01-15
For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
Three dimensional fabric evolution of sheared sand
Hasan, Alsidqi; Alshibli, Khalid
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Three dimensional thrust chamber life prediction
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Brogren, E. W.
1976-01-01
A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.
Three-dimensional comparative analysis of bitemarks.
Lasser, Allan J; Warnick, Allan J; Berman, Gary M
2009-05-01
Historically, the inability to accurately represent bitemarks and other wound patterns has limited their evidentiary value. The development of the ABFO #2 scale by Krauss and Hyzer enabled forensic odontologists to correct for most photographic plane distortions. The technique presented here uses the ABFO #2 scale in conjunction with the evolving technologies of laser scanners and comparative software commonly used by the automobile industry for three-dimensional (3D) analysis. The 3D software comparison was performed in which measurements were analyzed of the normal distance for each point on the teeth relative to the bitemarks. It created a color-mapped display of the bitemark model, with the color indicating the deviation at each point. There was a correlation between the bitemark and the original teeth. PMID:19432742
Three-dimensional tori and Arnold tongues
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Quantum interferometry with three-dimensional geometry
Spagnolo, Nicolò; Aparo, Lorenzo; Vitelli, Chiara; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Mataloni, Paolo; Sciarrino, Fabio
2012-01-01
Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics. PMID:23181189
Towards microscale electrohydrodynamic three-dimensional printing
NASA Astrophysics Data System (ADS)
He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen
2016-02-01
It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.
Steady inviscid three-dimensional flows
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Chang, S.-C.
1985-01-01
The present analysis combines some of the theoretical concepts suggested by Hawthorne (1955) with a numerical integration procedure suggested by Martin (1978). The resulting algorithm is for inviscid subsonic flows. Thus, it is restricted to high Reynolds number flows. Chang and Adamczyk (1983) have provided a detailed derivation of the present algorithm along with a discussion of its stability bounds. The present paper represents a summary of this work. The integration of the continuity equation is considered along with an evaluation of the entropy, total temperature, and vorticity field. Attention is given to the shear-flow algorithm construction, and an application to a shear flow in a turning channel. A description of numerical results is also provided. The discussed algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows.
Three-dimensional printing physiology laboratory technology
Sulkin, Matthew S.; Widder, Emily; Shao, Connie; Holzem, Katherine M.; Gloschat, Christopher; Gutbrod, Sarah R.
2013-01-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories. PMID:24043254
Three-dimensional modular electronic interconnection system
NASA Technical Reports Server (NTRS)
Bolotin, Gary S. (Inventor); Cardone, John (Inventor)
2001-01-01
A three-dimensional connection system uses a plurality of printed wiring boards with connectors completely around the printed wiring boards, and connected by an elastomeric interface connector. The device includes internal space to allow room for circuitry. The device is formed by stacking an electronics module, an elastomeric interface board on the electronics module such that the interface board's exterior makes electrical connection with the connectors around the perimeter of the interface board, but the internal portion is open to allow room for the electrical devices on the printed wiring board. A plurality of these devices are stacked between a top stiffener and a bottom device, and held into place by alignment elements.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Ford, C. P., III
1975-01-01
The geometry of general three-dimensional bodies was generated from coordinates of points in several cross sections. Since these points may not be on smooth curves, they are divided into groups forming segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction through longitudinal curves. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines or specifying slopes at selected points. This method was used to surface fit a 70 deg slab delta wing and the HL-10 Lifting Body. The results for the delta wing were very close to the exact geometry. Although there is no exact solution for the lifting body, the surface fit generated a smooth surface with cross-sectional planes very close to prescribed coordinate points.
Magneto Transport in Three Dimensional Carbon Nanostructures
NASA Astrophysics Data System (ADS)
Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa
Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.
Three-dimensional cultured glioma cell lines
NASA Technical Reports Server (NTRS)
Gonda, Steve R. (Inventor); Marley, Garry M. (Inventor)
1991-01-01
Three-dimensional glioma spheroids were produced in vitro with size and histological differentiation previously unattained. The spheroids were grown in liquid media suspension in a Johnson Space Center (JSC) Rotating Wall Bioreactor without using support matrices such as microcarrier beads. Spheroid volumes of greater than 3.5 cu mm and diameters of 2.5 mm were achieved with a viable external layer or rim of proliferating cells, a transitional layer beneath the external layer with histological differentiation, and a degenerative central region with a hypoxic necrotic core. Cell debris was evident in the degenerative central region. The necrotics centers of some of the spheroids had hyaline droplets. Granular bodies were detected predominantly in the necrotic center.
Masking in three-dimensional auditory displays.
Doll, T J; Hanna, T E; Russotti, J S
1992-06-01
The extent to which simultaneous inputs in a three-dimensional (3D) auditory display mask one another was studied in a simulated sonar task. The minimum signal-to-noise ratio (SNR) required to detect an amplitude-modulated 500-Hz tone in a background of broadband noise was measured using a loudspeaker array in a free field. Three aspects of the 3D array were varied: angular separation of the sources, degree of correlation of the background noises, and listener head movement. Masking was substantially reduced when the sources were uncorrelated. The SNR needed for detection decreased with source separation, and the rate of decrease was significantly greater with uncorrelated sources than with partially or fully correlated sources. Head movement had no effect on the SNR required for detection. Implications for the design and application of 3D auditory displays are discussed.
Three-dimensional tori and Arnold tongues
NASA Astrophysics Data System (ADS)
Sekikawa, Munehisa; Inaba, Naohiko; Kamiyama, Kyohei; Aihara, Kazuyuki
2014-03-01
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Three-dimensional pancreas organogenesis models.
Grapin-Botton, A
2016-09-01
A rediscovery of three-dimensional culture has led to the development of organ biogenesis, homeostasis and disease models applicable to human tissues. The so-called organoids that have recently flourished serve as valuable models bridging between cell lines or primary cells grown on the bottom of culture plates and experiments performed in vivo. Though not recapitulating all aspects of organ physiology, the miniature organs generated in a dish are useful models emerging for the pancreas, starting from embryonic progenitors, adult cells, tumour cells and stem cells. This review focusses on the currently available systems and their relevance to the study of the pancreas, of β-cells and of several pancreatic diseases including diabetes. We discuss the expected future developments for studying human pancreas development and function, for developing diabetes models and for producing therapeutic cells. PMID:27615129
The Three-Dimensional EIT Wave
NASA Technical Reports Server (NTRS)
Thompson, B. J.; Biesecker, D. A.; Gilbert, H. R.; Lawrence, G. R.; Ofman, L.; Wu, S. T.; Warmuth, A.; Fisher, Richard R. (Technical Monitor)
2002-01-01
An EIT wave is an impulsive disturbance which has been observed in the EUV, Soft X-ray and white light corona, with corresponding observations in the chromosphere. The effects of these disturbances can be observed across the entire solar disk of the Sun, and throughout the inner heliosphere as well. However, the picture is not complete; observations alone do not establish a complete understanding of the nature of this three-dimensional phenomenon. A number of associated phenomena have been documented, though in most cases causality has not determined. Additionally, it is unclear which factors govern the impulse's ability to affect regions of the corona and heliosphere. We discuss the various observations and the models which provided links between the associated phenomena.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Multiscale modeling of three-dimensional genome
NASA Astrophysics Data System (ADS)
Zhang, Bin; Wolynes, Peter
The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.
Clinical application of three-dimensional echocardiography.
Morbach, Caroline; Lin, Ben A; Sugeng, Lissa
2014-01-01
Echocardiography is one of the most valuable diagnostic tools in cardiology. Technological advances in ultrasound, computer and electronics enables three-dimensional (3-D) imaging to be a clinically viable modality which has significant impact on diagnosis, management and interventional procedures. Since the inception of 3D fully-sampled matrix transthoracic and transesophageal technology it has enabled easier acquisition, immediate on-line display, and availability of on-line analysis for the left ventricle, right ventricle and mitral valve. The use of 3D TTE has mainly focused on mitral valve disease, left and right ventricular volume and functional analysis. As structural heart disease procedures become more prevalent, 3D TEE has become a requirement for preparation of the procedure, intra-procedural guidance as well as monitoring for complications and device function. We anticipate that there will be further software development, improvement in image quality and workflow.
Three dimensional fog forecasting in complex terrain
NASA Astrophysics Data System (ADS)
Mueller, M.; Masbou, M.; Bott, A.
2010-07-01
Fog in complex terrain shows large temporal and spatial variations that can only be simulated with a three-dimensional model, but more modifications than increasing the resolution are needed. For a better representation of fog we present a second moment cloud water scheme with a parametrization of the Köhler theory which is combined with the mixed phase Ferrier microphysics scheme. The more detailed microphysics produce many differences to the first moment Ferrier scheme and are responsible for reproducing the typically low liquid water content of fog. With explicitly predicted droplet number concentrations, sedimentation of cloud water can be modeled without a prescribed fall speed, which mainly affects the vertical distribution of cloud water and the end of the fogs life cycle. The complex topography of the Swiss Alps and its surroundings are used for model testing. As the focus is on the models ability to forecast the spatial distribution of fog, cloud patterns derived from high resolution MSG satellite data, rather than few point observations from ground stations are used. In a continous five day period of anticyclonic conditions, the satellite observed fog patterns showed large day to day variations with almost no fog to large areas of fog. This variability was very well simulated in the three-dimensional fog forecast. The simulations also demonstrate the need for high horizontal resolutions between 1 and 3 km. For model initialization the complex topography is actually a simplifying factor, as cold air flow and pooling are dominating the more uncertain processes of evapotranspiration or errors in the soil moisture field.
Three-dimensional image contrast using biospeckle
NASA Astrophysics Data System (ADS)
Godinho, Robson Pierangeli; Braga, Roberto A., Jr.
2010-09-01
The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.
Primary and Secondary Three Dimensional Microbatteries
NASA Astrophysics Data System (ADS)
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
Flow Fields Over Unsteady Three Dimensional Dunes
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Reesink, A.; Parsons, D. R.; Ashworth, P. J.; Best, J.
2013-12-01
The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows, over a range of both spatial and temporal scales. This is primarily through adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and the increase in flow resistance. A series of experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239μm) mobile bed was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a Large Eddy Simulation (LES) model, which provided a three dimensional time dependent prediction of flow over the four static beds. The numerical predicted flow is analyzed through a series of approaches, and included: i) standard Reynolds decomposition to the flow fields; ii) Eulerian coherent structure detection methods based on the invariants of the velocity gradient tensor; iii) Lagrangian coherent structure identification methods based upon direct Lyapunov exponents (DLE). The results show that superimposed bed forms can cause changes in the nature of the classical separated flow region in particularly the number of locations where vortices are shed and the point of flow reattachment, which may be important for
Three-dimensional Printing in the Intestine.
Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John
2016-08-01
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation. PMID:27189913
Three dimensional simulations of internal solitary waves
NASA Astrophysics Data System (ADS)
Li, Guotu; Rizzi, Francesco; Knio, Omar
2014-11-01
This study focuses on mass transport and mixing induced by mode-2 internal solitary waves (ISWs) propagating along a pycnocline between two continuously stratified fluid layers. A direct numerical simulation (DNS) model is developed for the incompressible three-dimensional Navier-Stokes equations in the Boussinesq limit. By using high order schemes in both space and time, the model is able to accurately capture the convection-dominated flow at high Reynolds and Schmidt numbers. Simulations both with and without background shear are conducted. The spatial frequency analysis of both density and vorticity fields reveals that no long range spanwise structures are present during the propagation of ISWs, which makes a relatively short spanwise depth sufficient to characterize the evolution of the flow. The growth of 3D structures during the propagation of ISWs is quantified using a spanwise roughness measure. The flow energy budget, dye transport, density mixing and vortex circulations are also analyzed. Work supported by the Office of Naval Research, Physical Oceanography Program.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-10-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.
Three dimensional structures of solar active regions
NASA Technical Reports Server (NTRS)
Kundu, M. R.
1986-01-01
Three dimensional structure of an active region is determined from observations with the Very Large Array (VLA) at 2, 6, and 20 cm. This region exhibits a single magnetic loop of length approx. 10 to the 10th power cm. The 2 cm radiation is mostly thermal bremsstrahlung and originates from the footpoints of the loop. The 6 and 20 cm radiation is dominated by the low harmonic gyroresonance radiation and originates from the upper portion of the legs or the top of the loop. The loop broadens toward the apex. The top of the loop is not found to be the hottest point, but two temperature maxima on either side of the loop apex are observed, which is consistent with the model proposed for long loops. From 2 and 6 cm observations it can be concluded that the electron density and temperature cannot be uniform in a plane perpendicular to the axis of the loop; the density should decrease away from the axis of the loop.
Three-dimensional landing zone ladar
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Burns, H. N.
2016-05-01
Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.
Three-dimensional charge coupled device
Conder, Alan D.; Young, Bruce K. F.
1999-01-01
A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.
Three-dimensional modeling of tsunami waves
Mader, C.L.
1985-01-01
Two- and three-dimensional, time-dependent, nonlinear, incompressible, viscous flow calculations of realistic models of tsunami wave formation and run up have been performed using the Los Alamos-developed SOLA-3D code. The results of the SOLA calculations are compared with shallow-water, long-wave calculations for the same problems using the SWAN code. Tsunami wave formation by a continental slope subsidence has been examined using the two numerical models. The SOLA waves were slower than the SWAN waves and the interaction with the shoreline was more complicated for the SOLA waves. In the SOLA calculation, the first wave was generated by the cavity being filled along the shoreline close to the source of motion. The second wave was generated by the cavity being filled from the deep water end. The two waves interacted along the shoreline resulting in the second wave being the largest wave with a velocity greater than the first wave. The second wave overtook the first wave at later times and greater distances from the source. In the SWAN calculation, the second wave was smaller than the first wave. 6 refs.
Three-dimensional supersonic internal flows
NASA Astrophysics Data System (ADS)
Mohan, J. A.; Skews, B. W.
2013-09-01
In order to examine the transition between regular and Mach reflection in a three-dimensional flow, a range of special geometry test pieces, and inlets, were designed. The concept is to have a geometry consisting of two plane wedges which results in regular reflection between the incident waves off the top and bottom of the inlet capped by two curved end sections causing Mach reflection. The merging of these two reflection patterns and the resulting downstream flow are studied using laser vapor screen and shadowgraph imaging supported by numerical simulation. An angled Mach disc is formed which merges with the line of regular reflection. A complex wave pattern results with the generation of a bridging shock connecting the reflected wave from the Mach reflection with the reflected waves from the regular reflection. In order to experimentally access the flow within the duct, a number of tests were conducted with one end cap removed. This resulted in a modified flow due to the expansive flow at the open end the influence of which was also studied in more detail.
Collimation and Stability of Three Dimensional Jets
NASA Astrophysics Data System (ADS)
Hardee, P. E.; Clarke, D. A.; Howell, D. A.
1993-12-01
Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.
Three-dimensional subband coding of video.
Podilchuk, C I; Jayant, N S; Farvardin, N
1995-01-01
We describe and show the results of video coding based on a three-dimensional (3-D) spatio-temporal subband decomposition. The results include a 1-Mbps coder based on a new adaptive differential pulse code modulation scheme (ADPCM) and adaptive bit allocation. This rate is useful for video storage on CD-ROM. Coding results are also shown for a 384-kbps rate that are based on ADPCM for the lowest frequency band and a new form of vector quantization (geometric vector quantization (GVQ)) for the data in the higher frequency bands. GVQ takes advantage of the inherent structure and sparseness of the data in the higher bands. Results are also shown for a 128-kbps coder that is based on an unbalanced tree-structured vector quantizer (UTSVQ) for the lowest frequency band and GVQ for the higher frequency bands. The results are competitive with traditional video coding techniques and provide the motivation for investigating the 3-D subband framework for different coding schemes and various applications. PMID:18289965
Survey Of Three-Dimensional Television
NASA Astrophysics Data System (ADS)
Butterfield, James F.
1980-06-01
Since the introduction of television, various types of three-dimensional video systems have been used for industrial, medical, educational and entertainment purposes. The systems can be divided into two classes: (1) Stereoscopic Video Systems, which require special glasses or viewing aids; (2) Autostereoscopic Video Systems, which do not require glasses and are viewed by free vision. The two or more images required for these displays are picked-up by stereo optics with a single camera and multiplexed on a single communi-cation channel or they are picked up by two or more cameras utilizing an individual channel for each camera. One or more CRT's with stereo optics are employed in the receiver. The stereoscopic display provides the viewer with added realism and spacial information not available in any other manner. For entertainment purposes, the 3D picture enhances almost any program, including sports, drama and news. Typical industrial applications are for: remote viewing in connection with the remote driving of vehicles or operating manipulators; educational studies of solid geometry and atomic structure; and medical studies of surgical procedures. Stereo video also is being used in connection with microscopic optics to provide a stereo video microscope which has numerous advantages over a conventional optical microscope.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1995-12-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.
Three-dimensional null point reconnection regimes
Priest, E. R.; Pontin, D. I.
2009-12-15
Recent advances in theory and computational experiments have shown the need to refine the previous categorization of magnetic reconnection at three-dimensional null points--points at which the magnetic field vanishes. We propose here a division into three different types, depending on the nature of the flow near the spine and fan of the null. The spine is an isolated field line which approaches the null (or recedes from it), while the fan is a surface of field lines which recede from it (or approach it). So-called torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan. The third regime, called spine-fan reconnection, is the most common in practice and combines elements of the previous spine and fan models. In this case, in response to a generic shearing motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular and there is flux transfer across both of them.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Three dimensional characterization and archiving system
Sebastian, R.L.; Clark, R.; Gallman, P.
1996-04-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.
Lattice theory of three-dimensional cracks
NASA Technical Reports Server (NTRS)
Esterling, D. M.
1976-01-01
The problem of the stability of a three-dimensional crack is analyzed within a lattice-statics approximation. The consequence of introducing a jog into the crack face as well as the effects of various nonlinear-force laws are studied. The phenomenon of lattice trapping (upper and lower bounds on the applied stress for an equilibrium crack of given length) is again obtained. It is possible to obtain some physical insight into which aspects of the force law are critical for crack stability. In particular, the inadequacy of a thermodynamic approach - which relates the critical stress to a surface energy corresponding to the area under the cohesive-force-vs-displacement curve - is demonstrated. Surface energy is a global property of the cohesive-force law. Crack stability is sensitive to much more refined aspects of the cohesive-force law. Crack healing is sensitive to the long-range portion of the cohesive force. Crack expansion is sensitive to the position of the maximum in the cohesive-force relation.
Surface fitting three-dimensional bodies
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1974-01-01
The geometry of general three-dimensional bodies is generated from coordinates of points in several cross sections. Since these points may not be smooth, they are divided into segments and general conic sections are curve fit in a least-squares sense to each segment of a cross section. The conic sections are then blended in the longitudinal direction by fitting parametric cubic-spline curves through coordinate points which define the conic sections in the cross-sectional planes. Both the cross-sectional and longitudinal curves may be modified by specifying particular segments as straight lines and slopes at selected points. Slopes may be continuous or discontinuous and finite or infinite. After a satisfactory surface fit has been obtained, cards may be punched with the data necessary to form a geometry subroutine package for use in other computer programs. At any position on the body, coordinates, slopes and second partial derivatives are calculated. The method is applied to a blunted 70 deg delta wing, and it was found to generate the geometry very well.
Magnetophotonic response of three-dimensional opals.
Caicedo, José Manuel; Pascu, Oana; López-García, Martín; Canalejas, Víctor; Blanco, Alvaro; López, Cefe; Fontcuberta, Josep; Roig, Anna; Herranz, Gervasi
2011-04-26
Three-dimensional magnetophotonic crystals (3D-MPCs) are being postulated as appropriate platforms to tailor the magneto-optical spectral response of magnetic materials and to incorporate this functionality in a new generation of optical devices. By infiltrating self-assembled inverse opal structures with monodisperse nickel nanoparticles we have fabricated 3D-MPCs that show a sizable enhancement of the magneto-optical signal at frequencies around the stop-band edges of the photonic crystals. We have established a proper methodology to disentangle the intrinsic magneto-optical spectra from the nonmagnetic optical activity of the 3D-MPCs. The results of the optical and magneto-optical characterization are consistent with a homogeneous magnetic infiltration of the opal structure that gives rise to both a red-shift of the optical bandgap and a modification of the magneto-optical spectral response due to photonic bandgap effects. The results of our investigation demonstrate the potential of 3D-MPCs fabricated following the approach outlined here and offer opportunities to adapt the magneto-optical spectral response at optical frequencies by appropriate design of the opal structure or magnetic field strength.
Two and three dimensional magnetotelluric inversion
NASA Astrophysics Data System (ADS)
Booker, J. R.
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Two and three dimensional magnetotelluric inversion
Booker, J.R.
1994-07-01
Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.
Two and three dimensional magnetotelluric inversion
Booker, J.
1993-01-01
Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.
A three-dimensional human walking model
NASA Astrophysics Data System (ADS)
Yang, Q. S.; Qin, J. W.; Law, S. S.
2015-11-01
A three-dimensional human bipedal walking model with compliant legs is presented in this paper. The legs are modeled with time-variant dampers, and the model is able to characterize the gait pattern of an individual using a minimal set of parameters. Feedback control, for both the forward and lateral movements, is implemented to regulate the walking performance of the pedestrian. The model provides an improvement over classic invert pendulum models. Numerical studies were undertaken to investigate the effects of leg stiffness and attack angle. Simulation results show that when walking at a given speed, increasing the leg stiffness with a constant attack angle results in a longer step length, a higher step frequency, a faster walking speed and an increase in both the peak vertical and lateral ground reaction forces. Increasing the attack angle with a constant leg stiffness results in a higher step frequency, a decrease in the step length, an increase in the total energy of the system and a decrease in both the peak vertical and lateral ground reaction forces.
NASA Astrophysics Data System (ADS)
Geroux, Christopher M.; Deupree, Robert G.
2015-02-01
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Geroux, Christopher M.; Deupree, Robert G.
2015-02-10
Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed. The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two- and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical and physical, are explored.
Three-dimensional structure of Theiler virus.
Grant, R A; Filman, D J; Fujinami, R S; Icenogle, J P; Hogle, J M
1992-01-01
Theiler murine encephalomyelitis virus strains are categorized into two groups, a neurovirulent group that rapidly kills the host, and a demyelinating group that causes a generally nonlethal infection of motor neurons followed by a persistent infection of the white matter with demyelinating lesions similar to those found in multiple sclerosis. The three-dimensional structure of the DA strain, a member of the demyelinating group, has been determined at 2.8 A resolution. As in other picornaviruses, the icosahedral capsid is formed by the packing of wedge-shaped eight-stranded antiparallel beta barrels. The surface of Theiler virus has large star-shaped plateaus at the fivefold axes and broad depressions spanning the twofold axes. Several unusual structural features are clustered near one edge of the depression. These include two finger-like loops projecting from the surface (one formed by residues 78-85 of VP1, and the other formed by residues 56-65 of VP3) and a third loop containing three cysteines (residues 87, 89, and 91 of VP3), which appear to be covalently modified. Most of the sequence differences between the demyelinating and neurovirulent groups that could play a role in determining pathogenesis map to the surface of the star-shaped plateau. The distribution of these sequence differences on the surface of the virion is consistent with models in which the differences in the pathogenesis of the two groups of Theiler viruses are the result of differences in immunological or receptor-mediated recognition processes. Images PMID:1549565
Three-dimensional kinematics of hummingbird flight.
Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A
2007-07-01
Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species.
Three dimensional study of Lutetia lineaments network
NASA Astrophysics Data System (ADS)
Giacomini, Lorenza; Massironi, Matteo; Aboudan, Alessio; Bistacchi, Andrea; Barbieri, Cesare
2014-05-01
The Scientific Imaging System for Rosetta, OSIRIS, acquired an imaging sequence of the Lutetia asteroid, allowing detection of a large number of lineaments distributed over most of its surface (Thomas et al., 2012, Planet. Space Sci., 66, 96-124; Massironi et al., 2012, Planet. Space Sci., 66, 125-136). In general these lineaments can be interpreted as the surface expression of discontinuities such as faults or fractures. Several categories of features has been observed, like troughs, scarps, faults, and ridges. These lineaments are generally more than 50 km long and up to 1.2 km in width, and seem to be arranged in systems (e.g. with common orientation). Moreover, in different geological regions of the asteroid a preferred orientation of lineaments can be recognized, but in all regions there are also lineaments which cross the local preferred trend. Noteworthy, lineaments radial to impact craters, that are common on other asteroidal bodies, are mostly absent on Lutetia (Thomas et al., 2012, Planet. Space Sci., 66, 96-124). However, on a non-spherical body it is not obvious to reconstruct the relationships occurring between the different lineaments. Indeed, lineations that appear to be similarly oriented on different asteroid facets could have no correlation at all (Buczkowski et al., 2007, Icarus, 193, 39-52). In this context, the 3D mapping of lineaments, that we performed directly on the Lutetia shape model, allowed us to obtain a three-dimensional model of these structures that have been reconstructed as planes cutting through the asteroid. This innovative methodology allowed us to detect several structures concentric with respect to the North Pole Crater Cluster, suggesting that these lineaments were originated by these impact events. However most lineaments can be reasonably grouped in different systems of lineaments with no obvious correlation with any impact event detected on the imaged surface. This opens new questions on the origin of these structures and
Three-dimensional ring current decay model
NASA Astrophysics Data System (ADS)
Fok, Mei Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-06-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L=2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H+ fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion diifferential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (<10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, j0(1+Ayn), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (<30 keV), both drift dispersion and charge exchange are important in determining n. ©American Geophysical 1995
Three-dimensional ring current decay model
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching; Moore, Thomas E.; Kozyra, Janet U.; Ho, George C.; Hamilton, Douglas C.
1995-01-01
This work is an extension of a previous ring current decay model. In the previous work, a two-dimensional kinetic model was constructed to study the temporal variations of the equatorially mirroring ring current ions, considering charge exchange and Coulomb drag losses along drift paths in a magnetic dipole field. In this work, particles with arbitrary pitch angle are considered. By bounce averaging the kinetic equation of the phase space density, information along magnetic field lines can be inferred from the equator. The three-dimensional model is used to simulate the recovery phase of a model great magnetic storm, similar to that which occurred in early February 1986. The initial distribution of ring current ions (at the minimum Dst) is extrapolated to all local times from AMPTE/CCE spacecraft observations on the dawnside and duskside of the inner magnetosphere spanning the L value range L = 2.25 to 6.75. Observations by AMPTE/CCE of ring current distributions over subsequent orbits during the storm recovery phase are compared to model outputs. In general, the calculated ion fluxes are consistent with observations, except for H(+) fluxes at tens of keV, which are always overestimated. A newly invented visualization idea, designated as a chromogram, is used to display the spatial and energy dependence of the ring current ion differential flux. Important features of storm time ring current, such as day-night asymmetry during injection and drift hole on the dayside at low energies (less than 10 keV), are manifested in the chromogram representation. The pitch angle distribution is well fit by the function, J(sub o)(1 + Ay(sup n)), where y is sine of the equatorial pitch angle. The evolution of the index n is a combined effect of charge exchange loss and particle drift. At low energies (less than 30 keV), both drift dispersion and charge exchange are important in determining n.
Three-dimensional carbon nanotube based photovoltaics
NASA Astrophysics Data System (ADS)
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values
Structured image reconstruction for three-dimensional ghost imaging lidar.
Yu, Hong; Li, Enrong; Gong, Wenlin; Han, Shensheng
2015-06-01
A structured image reconstruction method has been proposed to obtain high quality images in three-dimensional ghost imaging lidar. By considering the spatial structure relationship between recovered images of scene slices at different longitudinal distances, orthogonality constraint has been incorporated to reconstruct the three-dimensional scenes in remote sensing. Numerical simulations have been performed to demonstrate that scene slices with various sparse ratios can be recovered more accurately by applying orthogonality constraint, and the enhancement is significant especially for ghost imaging with less measurements. A simulated three-dimensional city scene has been successfully reconstructed by using structured image reconstruction in three-dimensional ghost imaging lidar. PMID:26072814
Advanced Three-Dimensional Display System
NASA Technical Reports Server (NTRS)
Geng, Jason
2005-01-01
A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.
Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.
The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756
Burenchev, D V; Skvortsova, V I; Guseva, O I; Shumm, B A; Fomenkov, S A; Prokhorov, A V; Khetchikov, G V; Barkova, L A
2009-01-01
A study aimed at developing the pulse consequence, the double inversion recovery (DIR), using low field magnetic tomography, and assessing its effectiveness in the detection of intracerebral hematoma. The research has been conducted at "Ellipse" MR tomograph. The new pulse sequence has been created by the modification of the regular FLAIR, its technical parameters were as follows: the first TI - 90 ms, the second TI - 1300 ms, TR - 4665 ms, echo - 3. Twenty-seven patients have been enrolled in the study. The tissue contrast coefficients on FLAIR and DIR images have been compared. It has been shown that the contrast coefficient of normal brain structures and brain lesions on the DIR images in regard to the white matter are significantly higher than on the FLAIR images. Results of the study revealed that the dynamics of MR symptoms of intracerebral hematoma is faster on the DIR images compared to the FLAIR ones. This finding can be used for detection of intracerebral hematoma in difficult clinical cases.
Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang
2012-11-01
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.
Sodium inversion recovery MRI on the knee joint at 7 T with an optimal control pulse
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Xia, Ding; Madelin, Guillaume; Regatte, Ravinder R.
2016-01-01
In the field of sodium magnetic resonance imaging (MRI), inversion recovery (IR) is a convenient and popular method to select sodium in different environments. For the knee joint, IR has been used to suppress the signal from synovial fluids, which improves the correlation between the sodium signal and the concentration of glycosaminoglycans (GAGs) in cartilage tissues. For the better inversion of the magnetization vector under the spatial variations of the B0 and B1 fields, the IR sequence usually employ adiabatic pulses as the inversion pulse. On the other hand, it has been shown that RF shapes robust against the variations of the B0 and B1 fields can be generated by numerical optimization based on optimal control theory. In this work, we compare the performance of fluid-suppressed sodium MRI on the knee joint in vivo, between one implemented with an adiabatic pulse in the IR sequence and the other with the adiabatic pulse replaced by an optimal-control shaped pulse. While the optimal-control pulse reduces the RF power deposited to the body by 58%, the quality of fluid suppression and the signal level of sodium within cartilage are similar between two implementations.
Three-dimensional image reconstruction for electrical impedance tomography.
Kleinermann, F; Avis, N J; Judah, S K; Barber, D C
1996-11-01
Very little work has been conducted on three-dimensional aspects of electrical impedance tomography (EIT), partly due to the increased computational complexity over the two-dimensional aspects of EIT. Nevertheless, extending EIT to three-dimensional data acquisition and image reconstruction may afford significant advantages such as an increase in the size of the independent data set and improved spatial resolution. However, considerable challenges are associated with the software aspects of three-dimensional EIT systems due to the requirement for accurate three-dimensional forward problem modelling and the derivation of three-dimensional image reconstruction algorithms. This paper outlines the work performed to date to derive a three-dimensional image reconstruction algorithm for EIT based on the inversion of the sensitivity matrix approach for a finite right circular cylinder. A comparison in terms of the singular-value spectra and the singular vectors between the sensitivity matrices for a three-dimensional cylinder and a two-dimensional disc has been performed. This comparison shows that the three-dimensional image reconstruction algorithm recruits more central information at lower condition numbers than the two-dimensional image reconstruction algorithm.
Three-dimensional plasma equilibrium near a separatrix
Reiman, A.H.; Pomphrey, N.; Boozer, A.H.
1988-08-01
The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in ..beta.. or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs.
Three-dimensional imaging of the myocardium with isotopes
NASA Technical Reports Server (NTRS)
Budinger, T. F.
1975-01-01
Three methods of imaging the three-dimensional distribution of isotopes in the myocardium are discussed. Three-dimensional imaging was examined using multiple Anger-camera views. Longitudinal tomographic images with compensation for blurring were studied. Transverse-section reconstruction using coincidence detection of annihilation gammas from positron emitting isotopes was investigated.
Pathogen propagation in cultured three-dimensional tissue mass
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)
2000-01-01
A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.
Secondary instability in three-dimensional magnetic reconnection
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Antiochos, S. K.; Zang, T. A.
1992-01-01
We consider the transition to turbulence in three-dimensional reconnection of a magnetic neutral sheet. We find that the transition can occur via a three-step process. First, the sheet undergoes the usual tearing instability. Second, the tearing mode saturates to form a two-dimensional quasi-steady state. Third, this secondary equilibrium is itself unstable when it is perturbed by three-dimensional disturbances. Most of this paper is devoted to the analysis and simulation of the three-dimensional linear stability properties of the two-dimensional saturated tearing layer. The numerical simulations are performed with a semi-implicit, pseudospectral-Fourier collocation algorithm. We identify a three-dimensional secondary linear stability which grows on the ideal timescale. An examination of the modal energetics reveals that the largest energy transfer is from the mean field to the three-dimensional field, with the two-dimensional field acting as a catalyst.
Occlusion-free monocular three-dimensional vision system
NASA Astrophysics Data System (ADS)
Theodoracatos, Vassilios E.
1994-10-01
This paper describes a new, occlusion-free, monocular three-dimensional vision system. A matrix of light beams (lasers, fiber optics, etc.), substantially parallel to the optic axis of the lens of a video camera, is projected onto a scene. The corresponding coordinates of the perspective image generated on the video-camera sensor, the focal length of the camera lens, and the lateral position of the projected beams of light are used to determine the 'perspective depth' z* of the three-dimensional real image in the space between the lens and the image plane. Direct inverse perspective transformations are used to reconstruct the three- dimensional real-world scene. This system can lead to the development of three-dimensional real-image sensing devices for manufacturing, medical, and defense-related applications. If combined with existing technology, it has high potential for the development of three- dimensional television.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Sodium inversion recovery MRI of the knee joint in vivo at 7T.
Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R
2010-11-01
The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na(+) ions have a restricted motion. The ions in these two compartments have therefore different T₁ and T₂ relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B₁ and B₀ inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.
Three-dimensional aerodynamic shape optimization using discrete sensitivity analysis
NASA Technical Reports Server (NTRS)
Burgreen, Gregory W.
1995-01-01
An aerodynamic shape optimization procedure based on discrete sensitivity analysis is extended to treat three-dimensional geometries. The function of sensitivity analysis is to directly couple computational fluid dynamics (CFD) with numerical optimization techniques, which facilitates the construction of efficient direct-design methods. The development of a practical three-dimensional design procedures entails many challenges, such as: (1) the demand for significant efficiency improvements over current design methods; (2) a general and flexible three-dimensional surface representation; and (3) the efficient solution of very large systems of linear algebraic equations. It is demonstrated that each of these challenges is overcome by: (1) employing fully implicit (Newton) methods for the CFD analyses; (2) adopting a Bezier-Bernstein polynomial parameterization of two- and three-dimensional surfaces; and (3) using preconditioned conjugate gradient-like linear system solvers. Whereas each of these extensions independently yields an improvement in computational efficiency, the combined effect of implementing all the extensions simultaneously results in a significant factor of 50 decrease in computational time and a factor of eight reduction in memory over the most efficient design strategies in current use. The new aerodynamic shape optimization procedure is demonstrated in the design of both two- and three-dimensional inviscid aerodynamic problems including a two-dimensional supersonic internal/external nozzle, two-dimensional transonic airfoils (resulting in supercritical shapes), three-dimensional transport wings, and three-dimensional supersonic delta wings. Each design application results in realistic and useful optimized shapes.
Three-dimensional X-ray micro-velocimetry
Lee, Wah-Keat; Fezzaa, Kamel; Uemura, Tomomasa
2011-01-01
A direct measurement of three-dimensional X-ray velocimetry with micrometer spatial resolution is presented. The key to this development is the use of a Laue crystal as an X-ray beam splitter and mirror. Three-dimensional flow velocities in a 0.4 mm-diameter tubing were recorded, with <5 µm spatial resolution and speeds of 0.7 mm s−1. This development paves the way for three-dimensional velocimetry in many cases where visible-light techniques are not effective, such as multiphase flow or flow of optically opaque liquids. PMID:21335921
NASA Astrophysics Data System (ADS)
Lu, Cunwei; Kamitomo, Hiroya; Sun, Ke; Tsujino, Kazuhiro; Cho, Genki
Three-dimensional (3-D) image measurement is a technique that uses a digital camera to determine the shape and dimensions of the surface of an object. Although it has been studied for a long time, various problems still remain to be solved for practical applications. The goal of our research is to solve these problems and to develop a 3-D camera that can be used for practical 3-D image measurements. This paper analyzes the problems associated with the conventional technology and introduces development goals for the new 3-D camera. The key techniques of this 3-D camera are explained, including techniques for optimizing the intensity-modulation pattern projection, controlling the projection pattern intensity, determining the projection position, and controlling the stripe period. The system is evaluated and some examples of applications are given. The proposed 3-D camera can automatically adjust for variations in an object's size, form, surface color, and reflection characteristics and it can measure non-stationary objects. Consequently, it has the potential to be used in a wide range of applications including product quality control, human measurement, and face recognition.
Improving Students' Sense of Three-Dimensional Shapes.
ERIC Educational Resources Information Center
Leeson, Neville J.
1994-01-01
Describes activities to be used with fifth and sixth graders to improve students' spatial sense with respect to three-dimensional shapes. Includes the use of cubes, triangular prisms, tetrahedrons, and square pyramids. (MKR)
Three-dimensional Simulation of Backward Raman Amplification
A.A. Balakin; G.M. Fraiman; N.J. Fisch
2005-11-12
Three-dimensional (3-D) simulations for the Backward Raman Amplification (BRA) are presented. The images illustrate the effects of pump depletion, pulse diffraction, non-homogeneous plasma density, and plasma ionization.
Visual Chemistry: Three-Dimensional Perception of Chemical Structures.
ERIC Educational Resources Information Center
Balaban, Alexandru T.
1999-01-01
Discusses in great detail aspects connected with the visual and mental processing of chemical images. Presents various types of conventions for translating three-dimensional objects into two-dimensional representations. (Author/CCM)
Three-Dimensional Lithium-Ion Battery Model (Presentation)
Kim, G. H.; Smith, K.
2008-05-01
Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures.
Three-dimensional reconstructions of solid surfaces using conventional microscopes.
Ficker, Tomáš; Martišek, Dalibor
2016-01-01
The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. PMID:26381761
Analysis and validation of carbohydrate three-dimensional structures
Lütteke, Thomas
2009-02-01
The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures.
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Effect of three-dimensionality on compressible mixing
Papamoschou, D. )
1992-02-01
Existing experimental data and hypotheses on the growth rates of compressible and incompressible turbulent shear layers are used to estimate the effect of three-dimensionality in the turbulent mixing enhancement in compressible shear flows that is critically important to the efficiency of scramjet powerplants. The general trend is found to be a decrease in growth rate with increasing three-dimensionality, excepting only the restricted regime, where the growth-rate increase is modest. 9 refs.
Alignment-free three-dimensional optical metamaterials.
Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea
2014-03-01
Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved.
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
Three-dimensional study of the multi-cavity FEL
Krishnagopal, S.; Kumar, V.
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Three dimensional separation effects on a simplified wind turbine blade
Soerensen, N.N.; Michelsen, J.A.
1996-10-01
A qualitative investigation of the three dimensional effects on a twisted non-rotating wing without tapering is performed, using a general purpose Navier-Stokes solver. Different location of twist center as well as different twist ratios are examined for fully attached flow. The case of a partially separated blade is investigated as well. The three dimensional effects are primarily identified by comparing the lift and C{sub p} distribution of the blade with the two dimensional counterpart.
Three-dimensional scanning microscopy through thin turbid media.
Yang, Xin; Hsieh, Chia-Lung; Pu, Ye; Psaltis, Demetri
2012-01-30
We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.
Sodium inversion recovery MRI of the knee joint in vivo at 7T
NASA Astrophysics Data System (ADS)
Madelin, Guillaume; Lee, Jae-Seung; Inati, Souheil; Jerschow, Alexej; Regatte, Ravinder R.
2010-11-01
The loss of proteoglycans (PG) in the articular cartilage is an early signature of osteoarthritis (OA). The ensuing changes in the fixed charge density in the cartilage can be directly linked to sodium concentration via charge balance. Sodium ions in the knee joint appear in two pools: in the synovial fluids or joint effusion where the ions are in free motion and bound within the cartilage tissue where the Na+ ions have a restricted motion. The ions in these two compartments have therefore different T1 and T2 relaxation times. The purpose of this study is to demonstrate the feasibility of a fluid-suppressed 3D ultrashort TE radial sodium sequence by implementing an inversion recovery (IR) preparation of the magnetization at 7T. This method could allow a more accurate and more sensitive quantification of loss of PG in patients with OA. It is shown that adiabatic pulses offer significantly improved performance in terms of robustness to B1 and B0 inhomogeneities when compared to the hard pulse sequence. Power deposition considerations further pose a limit to the RF inversion power, and we demonstrate in simulations and experiments how a practical compromise can be struck between clean suppression of fluid signals and power deposition levels. Two IR sequences with different types of inversion pulses (a rectangular pulse and an adiabatic pulse) were tested on a liquid phantom, ex vivo on a human knee cadaver and then in vivo on five healthy volunteers, with a (Nyquist) resolution of ∼3.6 mm and a signal-to-noise ratio of ∼30 in cartilage without IR and ∼20 with IR. Due to specific absorption rate limitations, the total acquisition time was ∼17 min for the 3D radial sequence without inversion or with the rectangular IR, and 24:30 min for the adiabatic IR sequence. It is shown that the adiabatic IR sequence generates a more uniform fluid suppression over the whole sample than the rectangular IR sequence.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
Advancing three-dimensional MEMS by complimentary laser micro manufacturing
NASA Astrophysics Data System (ADS)
Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.
2006-01-01
This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
Three Dimensional Probability Distributions of the Interplanetary Magnetic Field
NASA Astrophysics Data System (ADS)
Podesta, J. J.
2014-12-01
Empirical probability density functions (PDFs) of the interplanetary magnetic field (IMF) have been derived from spacecraft data since the early years of the space age. A survey of the literature shows that past studies have investigated the separate Cartesian components of the magnetic field, the vector magnitude, and the direction of the IMF by means of one-dimensional or two-dimensional PDFs. But, to my knowledge, there exist no studies which investigate the three dimensional nature of the IMF by means of three dimensional PDFs, either in (Bx,By,Bz)(B_x,B_y,B_z)-coordinates or (BR,BT,BN)(B_R,B_T,B_N)-coordinates or some other appropriate system of coordinates. Likewise, there exist no studies which investigate three dimensional PDFs of magnetic field fluctuations, that is, vector differences bmB(t+τ)-bmB(t)bm{B}(t+tau)-bm{B}(t). In this talk, I shall present examples of three dimensional PDFs obtained from spacecraft data that demonstrate the solar wind magnetic field possesses a very interesting spatial structure that, to my knowledge, has not previously been identified. Perhaps because of the well known model of Barnes (1981) in which the magnitude of the IMF remains constant, it may be commonly believed that there is nothing new to learn from a full three dimensional PDF. To the contrary, there is much to learn from the investigation of three dimensional PDFs of the solar wind plasma velocity and the magnetic field, as well as three dimensional PDFs of their fluctuations. Knowledge of these PDFs will not only improve understanding of solar wind physics, it is an essential prerequisite for the construction of realistic models of the stochastic time series measured by a single spacecraft, one of the longstanding goals of space physics research. In addition, three dimensional PDFs contain valuable information about the anisotropy of solar wind fluctuations in three dimensional physical space, information that may help identify the reason why the three
Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.
2009-01-01
Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016
A moving observer in a three-dimensional world
2016-01-01
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269608
Biodynamic profiling of three-dimensional tissue growth techniques
NASA Astrophysics Data System (ADS)
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
A moving observer in a three-dimensional world.
Glennerster, Andrew
2016-06-19
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'.
A moving observer in a three-dimensional world.
Glennerster, Andrew
2016-06-19
For many tasks such as retrieving a previously viewed object, an observer must form a representation of the world at one location and use it at another. A world-based three-dimensional reconstruction of the scene built up from visual information would fulfil this requirement, something computer vision now achieves with great speed and accuracy. However, I argue that it is neither easy nor necessary for the brain to do this. I discuss biologically plausible alternatives, including the possibility of avoiding three-dimensional coordinate frames such as ego-centric and world-based representations. For example, the distance, slant and local shape of surfaces dictate the propensity of visual features to move in the image with respect to one another as the observer's perspective changes (through movement or binocular viewing). Such propensities can be stored without the need for three-dimensional reference frames. The problem of representing a stable scene in the face of continual head and eye movements is an appropriate starting place for understanding the goal of three-dimensional vision, more so, I argue, than the case of a static binocular observer.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269608
Three-dimensional calculation of windmill surface pressures
NASA Astrophysics Data System (ADS)
Valarezo, W. O.; Liebeck, R. H.
A three-dimensional panel method capable of computing the flow about propellers is applied to the prediction of blade surface pressures for windmill configurations. Computed surface pressures at various conditions are compared to experimental data and to predictions based on Blade Element Theory (BET). The panel method is used to compute flows about complex three-dimensional geometries and to numerically predict trends not easily obtainable from experimental efforts due to the difficulty and expense of the required instrumentation. These new three-dimensional computations exhibit better agreement with experimental data than standard BET-based predictions. Also, the reported increment in lift carrying capability of rotating lifting surfaces over surfaces in rectilinear translational motion is captured by the panel method and is shown to be an inviscid effect.
Three-dimensional, three-component wall-PIV
NASA Astrophysics Data System (ADS)
Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich
2010-06-01
This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.
Coupled particle dispersion by three-dimensional vortex structures
Troutt, T.R.; Chung, J.N.; Crowe, C.T.
1996-12-31
The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.
Imaging protein three-dimensional nanocrystals with cryo-EM.
Nederlof, Igor; Li, Yao Wang; van Heel, Marin; Abrahams, Jan Pieter
2013-05-01
Flash-cooled three-dimensional crystals of the small protein lysozyme with a thickness of the order of 100 nm were imaged by 300 kV cryo-EM on a Falcon direct electron detector. The images were taken close to focus and to the eye appeared devoid of contrast. Fourier transforms of the images revealed the reciprocal lattice up to 3 Å resolution in favourable cases and up to 4 Å resolution for about half the crystals. The reciprocal-lattice spots showed structure, indicating that the ordering of the crystals was not uniform. Data processing revealed details at higher than 2 Å resolution and indicated the presence of multiple mosaic blocks within the crystal which could be separately processed. The prospects for full three-dimensional structure determination by electron imaging of protein three-dimensional nanocrystals are discussed. PMID:23633595
Radiation hardness of three-dimensional polycrystalline diamond detectors
Lagomarsino, Stefano Sciortino, Silvio; Bellini, Marco; Corsi, Chiara; Cindro, Vladimir; Kanxheri, Keida; Servoli, Leonello; Morozzi, Arianna; Passeri, Daniele; Schmidt, Christian J.
2015-05-11
The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.
Time of Closest Approach in Three-Dimensional Airspace
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Narkawicz, Anthony J.
2010-01-01
In air traffic management, the aircraft separation requirement is defined by a minimum horizontal distance and a minimum vertical distance that the aircraft have to maintain. Since this requirement defines a cylinder around each aircraft rather than a sphere, the three-dimensional Euclidean distance does not provide an appropriate basis for the definition of time of closest approach. For instance, conflicting aircraft are not necessarily in loss of separation at the time of closest three-dimensional Euclidean distance. This paper proposes a definition of time of closest approach that characterizes conflicts in a three-dimensional airspace. The proposed time is defined as the time that minimizes a distance metric called cylindrical norm. An algorithm that computes the time of closest approach between two aircraft is provided and the formal verification of its main properties is reported.
Ray tracing a three dimensional scene using a grid
Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron
2013-02-26
Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.
Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows
Liang, Litao; Zhu, Junjie; Xuan, Xiangchun
2011-01-01
Magnetic field-induced particle manipulation is a promising technique for biomicrofluidics applications. It is simple, cheap, and also free of fluid heating issues that accompany other common electric, acoustic, and optical methods. This work presents a fundamental study of diamagnetic particle motion in ferrofluid flows through a rectangular microchannel with a nearby permanent magnet. Due to their negligible magnetization relative to the ferrofluid, diamagnetic particles experience negative magnetophoresis and are repelled away from the magnet. The result is a three-dimensionally focused particle stream flowing near the bottom outer corner of the microchannel that is the farthest to the center of the magnet and hence has the smallest magnetic field. The effects of the particle’s relative position to the magnet, particle size, ferrofluid flow rate, and concentration on this three-dimensional diamagnetic particle deflection are systematically studied. The obtained experimental results agree quantitatively with the predictions of a three-dimensional analytical model. PMID:22662037
Three-dimensional epithelial morphogenesis in the developing Drosophila egg
Osterfield, Miriam; Du, XinXin; Schüpbach, Trudi; Wieschaus, Eric; Shvartsman, Stanislav Y.
2013-01-01
Morphogenesis of the respiratory appendages on eggshells of Drosophila species provides a powerful experimental system for studying how cell sheets give rise to complex three-dimensional structures. In Drosophila melanogaster, each of the two tubular eggshell appendages is derived from a primordium comprising two distinct cell types. Using live imaging and three-dimensional image reconstruction, we demonstrate that the transformation of this two-dimensional primordium into a tube involves out-of-plane bending followed by a sequence of spatially ordered cell intercalations. These morphological transformations correlate with the appearance of complementary distributions of myosin and Bazooka in the primordium. These distributions suggest that a two-dimensional pattern of line tensions along cell-cell edges on the apical side of the epithelium is sufficient to produce the observed changes in morphology. Computational modeling shows that this mechanism could explain the main features of tissue deformation and cell rearrangements observed during three-dimensional morphogenesis. PMID:23449472
Hydrofocusing Bioreactor for Three-Dimensional Cell Culture
NASA Technical Reports Server (NTRS)
Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly
2003-01-01
The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.
Senova, Suhan; Hosomi, Koichi; Gurruchaga, Jean-Marc; Gouello, Gaëtane; Ouerchefani, Naoufel; Beaugendre, Yara; Lepetit, Hélène; Lefaucheur, Jean-Pascal; Badin, Romina Aron; Dauguet, Julien; Jan, Caroline; Hantraye, Philippe; Brugières, Pierre; Palfi, Stéphane
2016-08-01
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson's disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion. METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI. RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson's Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR-guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy delivered decreased by 36.3% with the 3D-SPACE-FLAIR sequence (p < 0.05). CONCLUSIONS 3D-SPACE-FLAIR sequences at 3 T improved STN lead placement under stereotactic conditions, improved the clinical outcome of patients with PD, and increased the benefit/risk ratio of STN-DBS surgery.
Numerical simulation of three-dimensional boattail afterbody flow fields
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1980-01-01
The thin shear layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic flow over axisymmetric boattail bodies at moderate angles of attack. The plume is modeled by a solid body configuration identical to those used in experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC IV computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flow fields with moderate separation. The computed results compare favorably with three different sets of experimental data reported by Reubush, Shrewsbury, and Benek, respectively
Hydrodynamic stability of three-dimensional homogeneous flow topologies.
Mishra, Aashwin A; Girimaji, Sharath S
2015-11-01
This article examines the hydrodynamic stability of various homogeneous three-dimensional flow topologies. The influence of inertial and pressure effects on the stability of flows undergoing strain, rotation, convergence, divergence, and swirl are isolated. In marked contrast to two-dimensional topologies, for three-dimensional flows the inertial effects are always destabilizing, whereas pressure effects are always stabilizing. In streamline topologies with a negative velocity-gradient third invariant, inertial effects prevail leading to instability. Vortex-stretching is identified as the underlying instability mechanism. In flows with positive velocity-gradient third derivative, pressure overcomes inertial effects to stabilize the flow. PMID:26651773
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Flow shaping using three-dimensional microscale gas discharge
Wang, C.-C.; Roy, Subrata
2009-08-24
We introduce a flow shaping mechanism using surface compliant microscale gas discharge. A three-dimensional finite element-based multiscale ionized gas flow code is utilized to analyze charge separation, potential distribution, and flow inducement mechanism. For the case of quiescent flow, a horseshoe-shaped plasma generator is introduced. Due to its unusual shape, the three-dimensional electric force excites a pinching effect on the fluid inside selectively powered electrode arc. Such effect is capable of tripping the flow-ejecting fluid normal to the plane of the actuator and thus can be very useful for many applications.
Microperiodic structures: Direct writing of three-dimensional webs
NASA Astrophysics Data System (ADS)
Gratson, Gregory M.; Xu, Mingjie; Lewis, Jennifer A.
2004-03-01
Applications are emerging that require the creation of fine-scale structures in three dimensions - examples include scaffolds for tissue engineering, micro-fluidic devices and photonic materials that control light propagation over a range of frequencies. But writing methods such as dip-pen nanolithography and ink-jet printing are either confined to two dimensions or beset by wetting and spreading problems. Here we use concentrated polyelectrolyte inks to write three-dimensional microperiodic structures directly without using masks. Our technique enables us to write arbitrary three-dimensional patterns whose features are nearly two orders of magnitude smaller than those attained with other multilayer printing techniques.
Visualization of three-dimensional liquid flow on sieve trays
NASA Astrophysics Data System (ADS)
Wang, Xiaoling
2004-03-01
This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Angled Exposure Method for Pattering on Three-Dimensional Structures
NASA Astrophysics Data System (ADS)
Singh, Vijay Kumar; Sasaki, Minoru; Hane, Kazuhiro
2007-09-01
Photolithography on three-dimensional structures is becoming a key process for realizing new micromechanical devices. Patterning on three-dimensional structures using the conventional mask aligner is a difficult task. In this paper, we present an approach for transferring patterns on cavities prepared by anisotropic etching. A new method of angled exposing is introduced for improving the uniformity of the incident-light-power density transmitted into the resist film deposited on the cavities. This method also reduces the number of reflections coming from the sidewalls of the cavities. Polarized light is used for realizing a pattern on the narrow cavities with a high aspect ratio.
Three-dimensional analysis of partially open butterfly valve flows
Huang, C.; Kim, R.H.
1996-09-01
A numerical simulation of butterfly valve flows is a useful technique to investigate the physical phenomena of the flow field. A three-dimensional numerical analysis was carried out on incompressible fluid flows in a butterfly valve by using FLUENT, which solves difference equations. Characteristics of the butterfly valve flows at different valve disk angles with a uniform incoming velocity were investigated. Comparisons of FLUENT results with other results, i.e., experimental results, were made to determine the accuracy of the employed method. Results of the three-dimensional analysis may be useful in the valve design.
Three-dimensional echocardiography of the mitral valve: lessons learned.
Maffessanti, Francesco; Mirea, Oana; Tamborini, Gloria; Pepi, Mauro
2013-07-01
Three-dimensional echocardiography has markedly improved our understanding of normal and pathologic mitral valve (MV) mechanics. Qualitative and quantitative analysis of three-dimensional (3D) data on the mitral valve could have a clinical impact on diagnosis, patient referral, surgical strategies, annuloplasty ring design and evaluation of the immediate and long-term surgical outcome. This review covers the contribution of 3D echocardiography in the diagnosis of MV disease, its role in selecting and monitoring surgical procedures, and in the assessment of surgical outcomes. Moreover, advantages of this technique versus the standard 2D modality, as well as future applications of advanced analysis techniques, will be reviewed. PMID:23686753
Structure of turbulence in three-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
Three-dimensional boron particle loaded thermal neutron detector
Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel
2014-09-09
Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.
Nakayama, Yu
2016-04-01
Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.
Tunnicliffe, Elizabeth M.; Pavlides, Michael; Robson, Matthew D.
2016-01-01
Purpose To characterize the effect of fat on modified Look–Locker inversion recovery (MOLLI) T 1 maps of the liver. The balanced steady‐state free precession (bSSFP) sequence causes water and fat signals to have opposite phase when repetition time (TR) = 2.3 msec at 3T. In voxels that contain both fat and water, the MOLLI T 1 measurement is influenced by the choice of TR. Materials and Methods MOLLI T 1 measurements of the liver were simulated using the Bloch equations while varying the hepatic lipid content (HLC). Phantom scans were performed on margarine phantoms, using both MOLLI and spin echo inversion recovery sequences. MOLLI T 1 at 3T and HLC were determined in patients (n = 8) before and after bariatric surgery. Results At 3T, with HLC in the 0–35% range, higher fat fraction values lead to longer MOLLI T 1 values when TR = 2.3 msec. Patients were found to have higher MOLLI T 1 at elevated HLC (T 1 = 929 ± 97 msec) than at low HLC (T 1 = 870 ± 44 msec). Conclusion At 3T, MOLLI T 1 values are affected by HLC, substantially changing MOLLI T 1 in a clinically relevant range of fat content. J. Magn. Reson. Imaging 2016;44:105–111. PMID:26762615
Development of Three-Dimensional Object Completion in Infancy
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2008-01-01
Three-dimensional (3D) object completion was investigated by habituating 4- and 6-month-old infants (n = 24 total) with a computer-generated wedge stimulus that pivoted 15[degrees], providing only a limited view. Two displays, rotating 360[degrees], were then shown: a complete, solid volume and an incomplete, hollow form composed only of the sides…
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
Optimal eavesdropping in cryptography with three-dimensional quantum states.
Bruss, D; Macchiavello, C
2002-03-25
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
Assembly of Viral Hydrogels for Three-Dimensional Conducting Nanocomposites
Chen, Po-Yen; Hyder, Md Nasim; Mackanic, David; Courchesne, Noémie-Manuelle Dorval; Qi, Jifa
2014-01-01
M13 bacteriophages act as versatile scaffolds capable of organizing single-walled carbon nanotubes and fabricating three-dimensional conducting nanocomposites. The morphological, electrical, and electrochemical properties of the nanocomposites are presented, as well as its ability to disperse and utilize single-walled carbon nanotubes effectively. PMID:24782428
Three-dimensionally assembled gold nanostructures for plasmonic biosensors.
Guo, Longhua; Chen, Guonan; Kim, Dong-Hwan
2010-06-15
Three-dimensional gold nanoarchitecture was fabricated by layer-by-layer (LbL) deposition of gold nanoparticles (AuNPs) and multiwalled carbon nanotubes (MWCNTs) on a glass substrate for a highly sensitive plasmonic biosensor using a conventional UV-vis instrument. Carboxyl-functionalized MWCNTs were reacted with 3-mercaptopropyltriethoxysilane (MPTES) to introduce multiple thiol groups onto MWCNTs. A self-assembled monolayer (SAM) of AuNPs on a glass chip was sequentially dipped into MPTES-functionalized MWCNTs (MWCNT-Si-SH) and AuNPs to form multilayers of AuNPs on MWCNTs. Such three-dimensionally assembled AuNPs provided a large surface area and multiple binding sites within a few steps of modification and microporous structures of multilayered MWCNTs to allow a high accessibility of target molecules. It was shown that the bulk refractive index (RI) sensitivity of these multilayered AuNPs (three-dimensional chip) appeared to be 5.6 times better than that of a monolayer of AuNPs on a glass chip (two-dimensional chip). The three-dimensional chips were further used for a biomolecular binding study, showing a detection limit as low as 0.5 nM for streptavidin and 3.33 nM for anti-human serum albumin (HSA), both of which were approximately 20 times higher than the sensitivity of the two-dimensional chips.
Three-dimensional cell to tissue development process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2008-01-01
An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
Exciton condensation in microcavities under three-dimensional quantization conditions
Kochereshko, V. P. Platonov, A. V.; Savvidis, P.; Kavokin, A. V.; Bleuse, J.; Mariette, H.
2013-11-15
The dependence of the spectra of the polarized photoluminescence of excitons in microcavities under conditions of three-dimensional quantization on the optical-excitation intensity is investigated. The cascade relaxation of polaritons between quantized states of a polariton Bose condensate is observed.
A three dimensional calculation of elastic equilibrium for composite materials
NASA Technical Reports Server (NTRS)
Lustman, Liviu R.; Rose, Milton E.
1986-01-01
A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.
A three dimensional calculation of elastic equilibrium for composite materials
NASA Technical Reports Server (NTRS)
Lustman, Liviu R.; Rose, Milton E.
1988-01-01
A compact scheme is applied to three-dimensional elasticity problems for composite materials, involving simple geometries. The mathematical aspects of this approach are discussed, in particular the iteration method. A vector processor code implementing the compact scheme is presented, and several numerical experiments are summarized.
Interactive Multimedia and Concrete Three-Dimensional Modelling.
ERIC Educational Resources Information Center
Baxter, J. H.; Preece, Peter F. W.
1999-01-01
Compares a multimedia package for teaching about the phases of the moon to grade 8 (12-year-old) students with a conventional three-dimensional modeling approach. Results show both methods were equally effective in terms of student learning, for male and female students, and prior computer experience was not a factor in multimedia use. (Author/LRW)
Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.
Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang
2010-11-01
A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.
Three-dimensional superdiffusive chemical waves in a precipitation system.
Ayass, M M; Lagzi, I; Al-Ghoul, M
2014-12-01
We report novel results on self-organized three-dimensional spiral and target patterns exhibiting anomalous superdiffusive behaviour in a reaction-diffusion system with simultaneous precipitation and polymorphic transformation of mercuric iodide without external forcing. The superdiffusive dynamics of propagation of the targets/spirals and their breakup are presented. PMID:25219662
Two- and three-dimensional blade vortex interactions
NASA Technical Reports Server (NTRS)
Davoudzadeh, F.; Liu, N.-S; Briley, W. R.; Buggeln, R. C.; Shamroth, S. J.
1990-01-01
A three-dimensional time dependent Navier-Stokes analysis was applied to the rotor blade vortex interaction (BVI) problem. The numerical procedure is an iterative implicit procedure using three point central differences to represent spatial derivatives. A series of calculations were made to determine the time steps, pseudo-time steps, iterations, artificial dissipation level, etc. required to maintain a nondissipative vortex. Results show the chosen method to have excellent non-dissipative properties provided the correct parameters are chosen. This study was used to set parameters for both two- and three-dimensional blade vortex interaction studies. The two-dimensional study considered the interaction between a vortex and a NACA0012 airfoil. The results showed the detailed physics during the interaction including the pressure pulse propagating from the blade. The simulated flow physics was qualitatively similar to that experimentally observed. The 2-D BVI phenomena is the result of the buildup and violent collapse of the shock waves and local supersonic pockets on the blade surfaces. The resulting pressure pulse build-up appears to be centered at the blade leading edge. The three-dimensional interaction study considered the case of a vortex at 20 deg incidence to the blade leading edge. Although the qualitative results were similar to that of the two-dimensional interaction, details clearly showed the three-dimensional nature of the interaction process.
A DETERMINISTIC METHOD FOR TRANSIENT, THREE-DIMENSIONAL NUETRON TRANSPORT
Goluoglu, S.; Bentley, C.; Demeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H. L.
1998-01-14
A deterministic method for solving the time-dependent, three-dimensional Boltzmam transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement can also be modeled. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multidimensional neutronic systems.
A deterministic method for transient, three-dimensional neutron transport
Goluoglu, S.; Bentley, C.; DeMeglio, R.; Dunn, M.; Norton, K.; Pevey, R.; Suslov, I.; Dodds, H.L.
1998-05-01
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable of the neutron flux is known as the improved quasi-static (IQS) method. The position, energy, and angle-dependent neutron flux is computed deterministically by using the three-dimensional discrete ordinates code TORT. This paper briefly describes the methodology and selected results. The code developed at the University of Tennessee based on this methodology is called TDTORT. TDTORT can be used to model transients involving voided and/or strongly absorbing regions that require transport theory for accuracy. This code can also be used to model either small high-leakage systems, such as space reactors, or asymmetric control rod movements. TDTORT can model step, ramp, step followed by another step, and step followed by ramp type perturbations. It can also model columnwise rod movement. A special case of columnwise rod movement in a three-dimensional model of a boiling water reactor (BWR) with simple adiabatic feedback is also included. TDTORT is verified through several transient one-dimensional, two-dimensional, and three-dimensional benchmark problems. The results show that the transport methodology and corresponding code developed in this work have sufficient accuracy and speed for computing the dynamic behavior of complex multi-dimensional neutronic systems.
Modern cosmology and the origin of our three dimensionality.
Woodbury, M A; Woodbury, M F
1998-01-01
We are three dimensional egocentric beings existing within a specific space/time continuum and dimensionality which we assume wrongly is the same for all times and places throughout the entire universe. Physicists name Omnipoint the origin of the universe at Dimension zero, which exploded as a Big Bang of energy proceeding at enormous speed along one dimension which eventually curled up into matter: particles, atoms, molecules and Galaxies which exist in two dimensional space. Finally from matter spread throughout the cosmos evolved life generating eventually the DNA molecules which control the construction of brains complex enough to construct our three dimensional Body Representation from which is extrapolated what we perceive as a 3-D universe. The whole interconnected structures which conjure up our three dimensionality are as fragile as Humpty Dumpty, capable of breaking apart with terrifying effects for the individual patient during a psychotic panic, revealing our three dimensionality to be but "maya", an illusion, which we psychiatrists work at putting back together.
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
Three dimensional boundary layers on submarine conning towers and rudders
NASA Astrophysics Data System (ADS)
Gleyzes, C.
1988-01-01
Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.
Direct Three-Dimensional Measurement With The Reflex Instruments
NASA Astrophysics Data System (ADS)
Scott, P. J.
1986-07-01
Two instruments are described which are used for three dimensional measurement of stationary objects. Available computer software for the equipment is discussed. It is designed to run on an IBM Personal Computer and allows the user to specify his own measuring requirements from a library of standard routines. Applications to research in dentistry, medicine and anthropology are also discussed.
Three-dimensional AOTV flowfields in chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Gnoffo, P. A.; Mccandless, R. S.
1986-01-01
A technique for upwind differencing of the three-dimensional species continuity equations is presented which permits computation of steady flows in chemical equilibrium and nonequilibrium. The capabilities and shortcomings of the present approach for equilibrium and nonequilibrium flows is discussed. Modifications now being investigated to improve computational time are outlined.
Studies of origin of three-dimensionality in laminar wakes
NASA Astrophysics Data System (ADS)
Gharib, Morteza
1993-02-01
Wind tunnel experiments, using hot-wire anemometry and smoke-wire flow visualization, were conducted to study the process of transition from laminar to turbulent flow of parallel and oblique vortex streets from circular cylinders. It was found that the origin and scale of three-dimensionality which appears at Reynolds numbers just below the transition from laminar to turbulent flow are dependent on the vortex shedding geometry in the near-wake. Oblique vortex streets develop large scale three-dimensional structures and undergo an early transition, i.e. at lower Reynolds numbers, when compared to parallel vortex streets. This is due to the presence of three-dimensionality in oblique wakes at pretransition Reynolds numbers, whereas parallel wakes remain laminar until the vortices themselves develop three-dimensional features. The downstream evolution of these two wake geometries from the primary Karman vortices to the far-wake vortical structures was also investigated. The far-wake structures are parallel to the cylinder axis for parallel shedding. For oblique shedding, these structures are initially parallel to the cylinder axis, but further downstream they develop a strong spanwise modulation whose wavelength is the spanwise distance between two consecutive Karman vortices of the same sign of vorticity.
Three-dimensional analysis of condylar hyperplasia with computed tomography.
Mutoh, Y; Ohashi, Y; Uchiyama, N; Terada, K; Hanada, K; Sasaki, F
1991-02-01
Three-dimensional surface reconstruction imaging from CT scans was used to study the deformity of the mandible in six patients with mandibular asymmetry. High-resolution axial CT scans of the mandible were obtained using Somatom-DR3 (Siemens). COSMOZONE-2SA (Nikon) with PC-9801VX21 (NEC) was used to reconstruct the three-dimensional images. The six patients were divided into two groups. One group was classified as unilateral hybrid forms and the other group was classified hemimandibular elongation on the diagnostic criteria of Obwegeser and Makek (1986). In the three-dimensional surface reconstruction, exact location and the degree of the deformity in the region from the ascending ramus to the condylar head and the lingual aspect from the ascending ramus to the mandibular body were accurately represented. In addition, the three-dimensional images could be easily rotated arbitrarily, precise evaluation could be done at every part of the mandible. On diagnosis, the mandibular morphology classified into the unilateral hybrid forms was presumed to vary from case to case even in the same classification. PMID:2037691
A Three-Dimensional Extension to Zatrikean Pregeometry
NASA Astrophysics Data System (ADS)
Geroyannis, V. S.; Dallas, T. G.
2006-08-01
The zatrikean abacus was originally defined as a two-dimensional chessboard-like lattice with square geobits. In this paper we generalize the zatrikean abacus in three dimensions by using a three-dimensional lattice with cubic geobits. We then calculate the values of certain interesting pregeometric quantities for the solar system.
KOBRA3-three dimensional raytracing including space-charge effects
Spadtke, P.
1985-10-01
Using the three-dimensional computer code KOBRA3, we have simulated the behaviour of the space charge compensating electrons within the potential of ion beams and magnetic fields. Measured field maps of a solenoid and a quadrupole have been used for these simulations. The predictions of the code are compared with measurements.
Real-time construction of three-dimensional occupancy maps
Jones, J.P.
1992-01-01
This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.
Real-time construction of three-dimensional occupancy maps
Jones, J.P.
1992-12-01
This paper describes a preliminary sensory system for real-time sensor-based navigation in a three-dimensional, dynamic environment. Data from a laser range camera are processed on an iWarp parallel computer to create a 3D occupancy map. This map is rendered using raytracing. The construction and rendering consume less than 800 milliseconds.
Three-dimensional Stress Analysis Using the Boundary Element Method
NASA Technical Reports Server (NTRS)
Wilson, R. B.; Banerjee, P. K.
1984-01-01
The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.
A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy
ERIC Educational Resources Information Center
Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.
2010-01-01
Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…
Three-Dimensional Extension of a Digital Library Service System
ERIC Educational Resources Information Center
Xiao, Long
2010-01-01
Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…
Three-Dimensional Printing Using a Photoinitiated Polymer
ERIC Educational Resources Information Center
Muskin, Joseph; Ragusa, Matthew; Gelsthorpe, Thomas
2010-01-01
Printers capable of producing three-dimensional objects are becoming more common. Most of these printers are impractical for use in the chemistry classroom because of the expense incurred in fabricating a print head that must be controlled in three dimensions. We propose a simpler solution to this problem that allows the emerging technology of…
Three-Dimensional Printing: A Journey in Visualization
ERIC Educational Resources Information Center
Poetzel, Adam; Muskin, Joseph; Munroe, Anne; Russell, Craig
2012-01-01
Imagine high school students glued to computer screens--not playing video games but applying their mathematical knowledge of functions to the design of three-dimensional sculptures. Imagine these students engaging in rich discourse as they transform functions of their choosing to design unique creations. Now, imagine these students using…
The Mediation of Three-Dimensional Visualization for Isolinal Graphics.
ERIC Educational Resources Information Center
Dutton, Ronald
1978-01-01
A school-based experimental investigation concerned with contour maps is described. The results, together with those of some other related investigations, point to probable value of models, stereograms, anaglyphs, and other stereoscopic presentations in the teaching of three-dimensional subjects. (Author)
Nonaffine behavior of three-dimensional semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Hatami-Marbini, Hamed
2016-04-01
Three-dimensional semiflexible polymer networks are the structural building blocks of various biological and structural materials. Previous studies have primarily used two-dimensional models for understanding the behavior of these networks. In this paper, we develop a three-dimensional nonaffinity measure capable of providing direct comparison with continuum level homogenized quantities, i.e., strain field. The proposed nonaffinity measure is capable of capturing possible anisotropic microstructures of the filamentous networks. This strain-based nonaffinity measure is used to probe the mechanical behavior at different length scales and investigate the effects of network mechanical and microstructural properties. Specifically, it is found that although all nonaffinity measure components have a power-law variation with the probing length scale, the degree of nonaffinity decreases with increasing the length scale of observation. Furthermore, the amount of nonaffinity is a function of network fiber density, bending stiffness of the constituent filaments, and the network architecture. Finally, it is found that the two power-law scaling regimes previously reported for two-dimensional systems do not appear in three-dimensional networks. Also, unlike two-dimensional models, the exponent of the power-law relation depends weakly on the density of the three-dimensional networks.
Pupils' Perceptions of Three-Dimensional Structures in Biology Lessons.
ERIC Educational Resources Information Center
Russell-Gebbett, Jean
1984-01-01
Investigated 11 to 15 year olds' abilities to understand three-dimensional structures (including sectional views of eggs, cells, stems, and fish) studies in biology. Results indicate two skills needed for success: abstracting sectional shapes and appreciating spatial relationships of internal parts. Gives examples of students "talking through"…
A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning
ERIC Educational Resources Information Center
Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.
2007-01-01
Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually impaired…
Binocular three-dimensional measurement system using a Dammann grating
NASA Astrophysics Data System (ADS)
Liu, Kun; Zhou, Changhe; Wei, Shengbin; Wang, Shaoqing; Li, Shubin; Li, Yanyang; Wang, Jin; Lu, Yancong
2014-11-01
In this paper, we develop a binocular three-dimensional measurement system using a Dammann grating. A laser diode and a Dammann grating are employed to generate a regular and square laser spot array. Dammann array illuminator is placed between two cameras and narrowband-pass filters are embedded in the project lens to eliminate the interference of background light. During the measurement, a series of laser spot arrays are projected toward the target object and captured by two cameras simultaneously. Similar to stereo vision of human eyes, stereo matching will be performed to search the homologous spot which is a pair of image points resulting from the same object point. At first, the sub-pixel coordinates of the laser spots are extracted from the stereo images. Then stereo matching is easily performed based on a fact that laser spots with the same diffraction order are homologous ones. Because the system has been calibrated before measurement, single frame three-dimensional point cloud can be obtained using the disparity of homologous points by triangulation methods. Finally, three-dimensional point clouds belong to different frame which represent different view of the object will be registered to build up an integral three-dimensional object using ICP algorithm. On one hand, this setup is small enough to meet the portable outdoor applications. On the other hand, measurement accuracy of this system is better than 0.3 mm which can meet the measurement accuracy requirements in most situations.
Three-dimensional acousto-optic spectrum analysis
NASA Technical Reports Server (NTRS)
Ansari, Homayoon; Metscher, Brian; Lesh, James R.
1990-01-01
A three-dimensional acoustooptic spectrum analyzer with subhertz resolution is demonstrated experimentally. The first and second dimensions are the two spatial dimensions of the output detector array, and the third dimension is time as sampled by the detector array frame rate. A superfine resolution of 0.12 Hz has been achieved.
Three-dimensional ultrasound imaging of the vasculature.
Fenster, A; Lee, D; Sherebrin, S; Rankin, R; Downey, D
1998-02-01
With conventional ultrasonography, the diagnostician must view a series of two-dimensional images in order to form a mental impression of the three-dimensional anatomy, an efficient and time consuming practice prone to operator variability, which may cause variable or even incorrect diagnoses. Also, a conventional two-dimensional ultrasound image represents a thin slice of the patients anatomy at a single location and orientation, which is difficult to reproduce at a later time. These factors make conventional ultrasonography non-optimal for prospective or follow-up studies. Our efforts have focused on overcoming these deficiencies by developing three-dimensional ultrasound imaging techniques that are capable of acquiring B-mode, colour Doppler and power Doppler images of the vasculature, by using a conventional ultrasound system to acquire a series of two-dimensional images and then mathematically reconstructing them into a single three-dimensional image, which may then be viewed interactively on an inexpensive desktop computer. We report here on two approaches: (1) free-hand scanning, in which a magnetic positioning device is attached to the ultrasound transducer to record the position and orientation of each two-dimensional image needed for the three-dimensional image reconstruction; and (2) mechanical scanning, in which a motor-driven assembly is used to translate the transducer linearly across the neck, yielding a set of uniformly-spaced parallel two-dimensional images.
Three-dimensional phase matching in four-wave mixing
NASA Astrophysics Data System (ADS)
Prior, Y.
1980-06-01
Three-dimensional phase matching is considered for the case of coherent anti-Stokes Raman scattering (CARS), which can be readily generalized to any other four-wave mixing processes. Attention is given to an alignment procedure, and the fact that only two frequencies are required for this technique is emphasized.
Three-dimensional measurements of fatigue crack closure
NASA Technical Reports Server (NTRS)
Ray, S. K.; Grandt, A. F., Jr.
1984-01-01
Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.
View Factor Calculation for Three-Dimensional Geometries.
1989-06-20
Version 00 MCVIEW calculates the radiation geometric view factor between surfaces for three dimensional geometries with and without interposed third surface obstructions. It was developed to calculate view factors for input data to heat transfer analysis programs such as SCA-03/TRUMP, SCA-01/HEATING-5 and PSR-199/HEATING-6.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Three-dimensional evolution of early solar nebula
NASA Technical Reports Server (NTRS)
Boss, Alan P.
1991-01-01
The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.
Constructing Mental Representations of Complex Three-Dimensional Objects.
ERIC Educational Resources Information Center
Aust, Ronald
This exploratory study investigated whether there are differences between males and females in the strategies used to construct mental representations from three-dimensional objects in a dimensional travel display. A Silicon Graphics IRIS computer was used to create the travel displays and mathematical models were created for each of the objects…
Three-dimensional simulations of Nova capsule implosion experiments
Marinak, M.M.; Tipton, R.E.; Landen, O.L.
1995-11-01
Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values.
Video-rate three-dimensional optical coherence tomography
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Ducros, Mathieu; Karamata, Boris; Lasser, Theo; Salathe, Rene
2002-05-01
Most current optical coherence tomography systems provide two-dimensional cross-sectional or en face images. Successive adjacent images have to be acquired to reconstruct three-dimensional objects, which can be time consuming. Here we demonstrate three-dimensional optical coherence tomography (3D OCT) at video rate. A 58 by 58 smart-pixel detector array was employed. A sample volume of 210x210x80 m3 (corresponding to 58x58x58 voxels) was imaged at 25 Hz. The longitudinal and transverse resolutions are 3 m and 9 m respectively. The sensitivity of the system was 76 dB. Video rate 3D OCT is illustrated by movies of a strand of hair undergoing fast thermal damage.
Numerical Simulation of Three-Dimensional Boattail Afterbody Flowfields
NASA Technical Reports Server (NTRS)
Deiwert, G. S.
1981-01-01
The thin shear-layer approximations of the three-dimensional, compressible Navier-Stokes equations are solved for subsonic, transonic, and supersonic now over axisymmetric boattail bodies at moderate angles of attack. The plume is simulated by a solid body configuration identical to those used In experimental tests. An implicit algorithm of second-order accuracy is used to solve the equations on the ILLIAC 4 computer. The turbulence is expressed by an algebraic model applicable to three-dimensional flowfields with moderate separation. The formulation used is attractive in its independence of boundary-layer parameters. Such a simple model, however, is incapable of supporting detailed quantitative descriptions of complex shear flows. Never-the-less, good qualitative comparisons are found with three different sets of experimental date. Quantitative improvement will depend on improved turbulence transport descriptions.
Identification of Jiangxi wines by three-dimensional fluorescence fingerprints
NASA Astrophysics Data System (ADS)
Wan, Yiqun; Pan, Fengqin; Shen, Mingyue
2012-10-01
A new assay of identifying wines was developed based on fingerprints of three-dimensional fluorescence spectra, and 30 samples from different manufacturers were analyzed. The techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used to differentiate and evaluate the character parameters of wines' three-dimensional fluorescence spectra. At the same time, the back-propagation network (BPN) was applied to predict the attribution of unknown samples. The results of PCA and HCA showed that there was definite different information among the wine samples from different manufacturers. It was promising that the method could be applied to distinguish wine samples produced by different manufacturers. The proposed method could provide the criterion for the quality control of wines.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Three-dimensional potential energy surface of Ar–CO
Sumiyoshi, Yoshihiro; Endo, Yasuki
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Three-dimensional mapping of single-atom magnetic anisotropy.
Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian
2015-03-11
Magnetic anisotropy plays a key role in the magnetic stability and spin-related quantum phenomena of surface adatoms. It manifests as angular variations of the atom's magnetic properties. We measure the spin excitations of individual Fe atoms on a copper nitride surface with inelastic electron tunneling spectroscopy. Using a three-axis vector magnet we rotate the magnetic field and map out the resulting variations of the spin excitations. We quantitatively determine the three-dimensional distribution of the magnetic anisotropy of single Fe atoms by fitting the spin excitation spectra with a spin Hamiltonian. This experiment demonstrates the feasibility of fully mapping the vector magnetic properties of individual spins and characterizing complex three-dimensional magnetic systems.
Influence of stable stratification on three-dimensional isotropic turbulence
NASA Astrophysics Data System (ADS)
Metais, O.
The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.
Viscous three-dimensional analyses for nozzles for hypersonic propulsion
NASA Technical Reports Server (NTRS)
Harloff, G. J.; Reddy, D. R.; Lai, H. T.
1990-01-01
A Navier-Stokes computer code was validated using a number of two- and three-dimensional configurations for both laminar and turbulent flows. The validation data covers a range of freestream Mach numbers from 3 to 14, includes wall pressures, velocity profiles, and skin friction. Nozzle flow fields computed for a generic scramjet nozzle from Mach 3 to 20, wall pressures, wall skin friction values, heat transfer values, and overall performance are presented. In addition, three-dimensional solutions obtained for two asymmetric, single expansion ramp nozzles at a pressure ratio of 10 consists of the internal expansion region in the converging/diverging sections and the external supersonic exhaust in a quiescent ambient environment. The fundamental characteristics that were captured successfully include expansion fans; Mach wave reflections; mixing layers; and nonsymmetrical, multiple inviscid cell, supersonic exhausts. Comparison with experimental data for wall pressure distributions at the center planes shows good agreement.
COMOC: Three dimensional boundary region variant, programmer's manual
NASA Technical Reports Server (NTRS)
Orzechowski, J. A.; Baker, A. J.
1974-01-01
The three-dimensional boundary region variant of the COMOC computer program system solves the partial differential equation system governing certain three-dimensional flows of a viscous, heat conducting, multiple-species, compressible fluid including combustion. The solution is established in physical variables, using a finite element algorithm for the boundary value portion of the problem description in combination with an explicit marching technique for the initial value character. The computational lattice may be arbitrarily nonregular, and boundary condition constraints are readily applied. The theoretical foundation of the algorithm, a detailed description on the construction and operation of the program, and instructions on utilization of the many features of the code are presented.
Three dimensional graphics in the statistical analysis of scientific data
Grotch, S.L.
1986-05-01
In scientific data analysis, the two-dimensional plot has become an indispensable tool. As the scientist more commonly encounters multivariate data, three dimensional graphics will form the natural extension of these more traditional representations. There can be little doubt that as the accessibility to ever more powerful graphics tools increases, their use will expand dramatically. In using three dimensional graphics in routine data analysis for nearly a decade, they have proved to be a powerful means for obtaining insights into data simply not available with traditional 2D methods. Examples of this work, taken primarily from chemistry and meteorology, are presented to illustrate a variety of 3D graphics found to be practically useful. Some approaches for improving these presentations are also highlighted.
Covalently interconnected three-dimensional graphene oxide solids.
Sudeep, Parambath M; Narayanan, Tharangattu N; Ganesan, Aswathi; Shaijumon, Manikoth M; Yang, Hyunseung; Ozden, Sehmus; Patra, Prabir K; Pasquali, Matteo; Vajtai, Robert; Ganguli, Sabyasachi; Roy, Ajit K; Anantharaman, Maliemadom R; Ajayan, Pulickel M
2013-08-27
The creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds. These 3D architectures show promise for potential applications such as gas storage; CO2 gas adsorption measurements carried out under ambient conditions show high sorption capacity, demonstrating the possibility of creating new functional carbon solids starting with two-dimensional carbon layers.
Three-dimensional optical encryption based on ptychography
NASA Astrophysics Data System (ADS)
Zhang, Jun; Li, Tuo; Wang, Yali; Qiao, Liang; Yang, Xiubo; Shi, Yishi
2015-10-01
We propose a novel optical encryption system for three-dimension imaging combined with three-dimension Ptychography. Employing the proposed cryptosystem, a 3D object can be encrypted and decrypted successfully. Compared with the conventional three-dimensional cryptosystem, not only encrypting the pure amplitude 3D object is available, but also the encryption of complex amplitude 3D object is achievable. Considering that the probes overlapping with each other is the crucial factor in ptychography, their complex-amplitude functions can serve as a kind of secret keys that lead to the enlarged key space and the enhanced system security. Varies of simulation results demonstrate that the feasibility and robust of the cryptosystem. Furthermore, the proposed system could also be used for other potential applications, such as three-dimensional information hiding and multiple images encryption.
Three dimensional calculation of flux of low energy atmospheric neutrinos
NASA Technical Reports Server (NTRS)
Lee, H.; Bludman, S. A.
1985-01-01
Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.
Electroencephalographic (EEG) control of three-dimensional movement
NASA Astrophysics Data System (ADS)
McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.
2010-06-01
Brain-computer interfaces (BCIs) can use brain signals from the scalp (EEG), the cortical surface (ECoG), or within the cortex to restore movement control to people who are paralyzed. Like muscle-based skills, BCIs' use requires activity-dependent adaptations in the brain that maintain stable relationships between the person's intent and the signals that convey it. This study shows that humans can learn over a series of training sessions to use EEG for three-dimensional control. The responsible EEG features are focused topographically on the scalp and spectrally in specific frequency bands. People acquire simultaneous control of three independent signals (one for each dimension) and reach targets in a virtual three-dimensional space. Such BCI control in humans has not been reported previously. The results suggest that with further development noninvasive EEG-based BCIs might control the complex movements of robotic arms or neuroprostheses.
Three-dimensional collagen architecture in bovine articular cartilage.
Jeffery, A K; Blunn, G W; Archer, C W; Bentley, G
1991-09-01
The three-dimensional architecture of bovine articular cartilage collagen and its relationship to split lines has been studied with scanning electron microscopy. In the middle and superficial zones, collagen was organised in a layered or leaf-like manner. The orientation was vertical in the intermediate zone, curving to become horizontal and parallel to the articular surface in the superficial zone. Each leaf consisted of a fine network of collagen fibrils. Adjacent leaves merged or were closely linked by bridging fibrils and were arranged according to the split-line pattern. The surface layer (lamina splendens) was morphologically distinct. Although ordered, the overall collagen structure was different in each plane (anisotropic) a property described in previous morphological and biophysical studies. As all components of the articular cartilage matrix interact closely, the three-dimensional organisation of collagen is important when considering cartilage function and the processes of cartilage growth, injury and repair. PMID:1894669
Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis
NASA Astrophysics Data System (ADS)
Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min
2012-01-01
We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.
Slightly two- or three-dimensional self-similar solutions
NASA Astrophysics Data System (ADS)
Sari, Re'em; Bode, Nate; Yalinewich, Almog; MacFadyen, Andrew
2012-08-01
Self-similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one-dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form ρ(r, θ, ϕ) = r-ω[1 + σF(θ, ϕ)], where ω > 3 and σ ≪ 1. Analytical solutions are obtained by expanding the arbitrary function F(θ, ϕ) in spherical harmonics. We compare our results with two-dimensional numerical simulations, and find good agreement.
Three-dimensional modelling in magnetotelluric and magnetic variational sounding
NASA Technical Reports Server (NTRS)
Reddy, I. K.; Phillips, R. J.; Rankin, D.
1977-01-01
The Galerkin finite-element method is used to obtain approximate solutions for the three-dimensional induction problem. A rectangular conductive prism is considered as an example, and solutions are obtained for linear and circularly polarized incident plane-wave fields. Magnetotelluric tensor impedances and magnetic transfer functions are computed. Polar diagrams of the tensor impedances and magnetic transfer functions along with their amplitude contour maps are presented. The dimensionality parameter, skew, is contoured at the surface of the earth. It is shown that the relative amplitudes and shapes of the additional and principal impedance polar diagrams can be used to determine the dimensionality of geoelectrical structures. Stations with skew values greater than 0.2 are significantly influenced by the three-dimensionality of the geoelectric structure. The amplitudes of the magnetic transfer function and the orientations of its polar diagrams exhibit large anomalies in the vicinity of the intersection of the lateral contacts.
Three-dimensional radiation transfer modeling in a dicotyledon leaf
NASA Astrophysics Data System (ADS)
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Granular temperature profiles in three-dimensional vibrofluidized granular beds
Wildman, R. D.; Huntley, J. M.; Parker, D. J.
2001-06-01
The motion of grains in a three-dimensional vibrofluidized granular bed has been measured using the technique of positron emission particle tracking, to provide three-dimensional packing fraction and granular temperature distributions. The mean square fluctuation velocity about the mean was calculated through analysis of the short time mean squared displacement behavior, allowing measurement of the granular temperature at packing fractions of up to {eta}{similar_to}0.15. The scaling relationship between the granular temperature, the number of layers of grains, and the base velocity was determined. Deviations between the observed scaling exponents and those predicted by recent theories are attributed to the influence of dissipative grain-sidewall collisions.
Three Dimensional Iterative Reconstruction Techniques in Positron Tomography.
NASA Astrophysics Data System (ADS)
Sloka, Scott
The acquisition of positron tomographic data in three dimensions is an improvement over the two dimensional acquisition of data because the greater the number of measurements taken of a stochastic process, the more accurately determined the desired parameter may be. This research pursues the goal of three dimensional image reconstruction in Positron Tomography using an iterative approach. This thesis has followed a systematic approach to the exploration of a system for three dimensional iterative reconstruction. System design parameters were discussed such as the advantages and disadvantages of iterative vs analytic methods, the implementation of two, three dimensional iterative algorithms, the selection of a ray passing method, and the choice of an analytic method for comparison to the iterative methods. Several qualitative and quantitative tests were used/developed and performed to analyse and compare the results. Three dimensional reconstruction in Positron Tomography using two iterative techniques (ART and ML-EM) was demonstrated. The ML-EM algorithm was adapted to satisfy the objective of equalizing the estimates with the measurements via division of the sampling density. A new multi-objective function methodology was developed for two dimensions and its extension to three dimensions discussed. A smoothly-varying Gaussian phantom was created for comparing artifacts from different ray passing methods. The analysis of voxel trends over many iterations was used. The use of the output from a two dimensional filtered backprojection algorithm as the seed for three dimensional algorithms to accelerate the reconstruction the was explored. The importance of the selection of a good ray ordering in ART and its effects on the total squared error were explored. For the phantoms studied in this thesis, the ML -EM algorithm tended to perform better under most conditions. This algorithm is slower than ART to achieve both a low total squared error and good contrast, but the
Three-dimensional tissue culture based on magnetic cell levitation.
Souza, Glauco R; Molina, Jennifer R; Raphael, Robert M; Ozawa, Michael G; Stark, Daniel J; Levin, Carly S; Bronk, Lawrence F; Ananta, Jeyarama S; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A; Gelovani, Juri G; Killian, T C; Arap, Wadih; Pasqualini, Renata
2010-04-01
Cell culture is an essential tool in drug discovery, tissue engineering and stem cell research. Conventional tissue culture produces two-dimensional cell growth with gene expression, signalling and morphology that can be different from those found in vivo, and this compromises its clinical relevance. Here, we report a three-dimensional tissue culture based on magnetic levitation of cells in the presence of a hydrogel consisting of gold, magnetic iron oxide nanoparticles and filamentous bacteriophage. By spatially controlling the magnetic field, the geometry of the cell mass can be manipulated, and multicellular clustering of different cell types in co-culture can be achieved. Magnetically levitated human glioblastoma cells showed similar protein expression profiles to those observed in human tumour xenografts. Taken together, these results indicate that levitated three-dimensional culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and may be more feasible for long-term multicellular studies. PMID:20228788
Three-dimensional transport with variational nodal methods
Lewis, E.E.; Palmiotti, G.; Shalil, H.S.; Laurin-Kovitz, K.; Fanning, T.; Hanebutte, U.R.
1996-12-31
The development of the variational nodal method contained in the three-dimensional transport code VARIANT is reviewed. This Argonne National Laboratory code treats two- and three- dimensional multigroup problems with anisotropic scattering in hexagonal and Cartesian geometries. The methodology couples hybrid finite elements in space, which enforce nodal balance, with spherical harmonics expansions in angle. The resulting response matrix equations are solved by red-black or four-color iterations. Several enhancements to VARIANT are discussed: The simplified spherical harmonics option provides near spherical harmonic accuracy for many problems at a fraction of the cost. Adjoint and perturbation calculations are performed without the physical- and mathematical adjoint dichotomy appearing in other nodal methods. Heterogeneous node methods extend the problem classes to which the method may be applied. Computational strategies and trade-offs are discussed and possible future research directions are outlined.
Three-dimensional theory of the magneto-optical trap
Prudnikov, O. N. Taichenachev, A. V.; Yudin, V. I.
2015-04-15
The kinetics of atoms in a three-dimensional magneto-optical trap (MOT) is considered. A three-dimensional MOT model has been constructed for an atom with the optical transition J{sub g} = 0 → J{sub e} = 1 (J{sub g,} {sub e} is the total angular momentum in the ground and excited states) in the semiclassical approximation by taking into account the influence of the relative phases of light fields on the kinetics of atoms. We show that the influence of the relative phases can be neglected only in the limit of low light field intensities. Generally, the choice of relative phases can have a strong influence on the kinetics of atoms in a MOT.
Three-dimensional optical holography using a plasmonic metasurface
Huang, Lingling; Chen, Xianzhong; Mühlenbernd, Holger; Zhang, Hao; Chen, Shumei; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Cheah, Kok-Wai; Qiu, Cheng-Wei; Li, Jensen; Zentgraf, Thomas; Zhang, Shuang
2013-01-01
Benefitting from the flexibility in engineering their optical response, metamaterials have been used to achieve control over the propagation of light to an unprecedented level, leading to highly unconventional and versatile optical functionalities compared with their natural counterparts. Recently, the emerging field of metasurfaces, which consist of a monolayer of photonic artificial atoms, has offered attractive functionalities for shaping wave fronts of light by introducing an abrupt interfacial phase discontinuity. Here we realize three-dimensional holography by using metasurfaces made of subwavelength metallic nanorods with spatially varying orientations. The phase discontinuity takes place when the helicity of incident circularly polarized light is reversed. As the phase can be continuously controlled in each subwavelength unit cell by the rod orientation, metasurfaces represent a new route towards high-resolution on-axis three-dimensional holograms with a wide field of view. In addition, the undesired effect of multiple diffraction orders usually accompanying holography is eliminated.
Collective modes in three-dimensional magnonic vortex crystals
Hänze, Max; Adolff, Christian F.; Schulte, Benedikt; Möller, Jan; Weigand, Markus; Meier, Guido
2016-01-01
Collective modes in three-dimensional crystals of stacked permalloy disks with magnetic vortices are investigated by ferromagnetic resonance spectroscopy and scanning transmission X-ray microscopy. The size of the arrangements is increased step by step to identify the different contributions to the interaction between the vortices. These contributions are the key requirement to understand complex dynamics of three dimensional vortex crystals. Both vertical and horizontal coupling determine the collective modes. In-plane dipoles strongly influence the interaction between the disks in the stacks and lead to polarity-dependent resonance frequencies. Weaker contributions discern arrangements with different polarities and circularities that result from the lateral coupling of the stacks and the interaction of the core regions inside a stack. All three contributions are identified in the experiments and are explained in a rigid particle model. PMID:26932833
Recent developments in three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.; Casulli, Vincenzo
1993-01-01
For a fixed cost, computing power increases 5 to 10 times every five years. The readily available computing resources have inspired new modal formulations and innovative model applications. Significant progress has been advanced in three-dimensional numerical estuarine modeling within the past three or four years. This paper attempts to review and summarize properties of new 3-D estuarine hydrodynamic models. The emphasis of the review is placed on the formulation, numerical methods. The emphasis of the review is placed on the formulation, numerical methods, spatial and temporal resolution, computational efficiency, and turbulence closure of new models. Recent research has provided guidelines for the proper use of 3-D models involving in the σ-transformation. Other models resort to a fixed level discretization in the vertical. The semi-implicit treatment in time-stepping models appears to have gained momentum. Future research in three-dimensional numerical modeling remains to be on computational efficiency and turbulent closure.
Three Dimensional Thermal Abuse Reaction Model for Lithium Ion Batteries
2006-06-29
Three dimensional computer models for simulating thermal runaway of lithium ion battery was developed. The three-dimensional model captures the shapes and dimensions of cell components and the spatial distributions of materials and temperatures, so we could consider the geometrical features, which are critical especially in large cells. An array of possible exothermic reactions, such as solid-electrolyte-interface (SEI) layer decomposition, negative active/electrolyte reaction, and positive active/electrolyte reaction, were considered and formulated to fit experimental data frommore » accelerating rate calorimetry and differential scanning calorimetry. User subroutine code was written to implement NREL developed approach and to utilize a commercially available solver. The model is proposed to use for simulation a variety of lithium-ion battery safety events including thermal heating and short circuit.« less
High-resolution three-dimensional imaging radar
NASA Technical Reports Server (NTRS)
Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)
2010-01-01
A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.
Three-dimensional vibrations of cantilevered right triangular plates
NASA Astrophysics Data System (ADS)
McGee, O. G.; Giaimo, G. T.
1992-12-01
The first known three-dimensional continuum vibration solutions for cantilevered right triangular plates with variable thickness are obtained using the Ritz method. Assumed displacement functions are in the form of algebraic polynomials, which satisfy the fixed face conditions exactly, and which are mathematically complete. Reasonably accurate natural frequencies are calculated for low aspect ratio, right triangular thin plates having arbitrary values of thickness taper ratios in the spanwise direction. Detailed numerical studies show that a three-dimensional analysis is essential to monitoring coupled-mode sensitivities in the variation of non-dimensional natural frequencies with increasing thickness taper ratio. Upper bound results, obtained using the present method, are compared with those obtained by other investigators using ordinary beam theories, two-dimensional finite element and finite difference procedures, and experimental methods. This unified comparison of upper and lower bound solutions is presented here with the aim of 'bracketing' the exact analytical solution of the subject problem.
Surface reconstruction of a three-dimensional ultrasonic flaw
Koo, Lat S.
1992-08-01
In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.
Surface reconstruction of a three-dimensional ultrasonic flaw
Koo, Lat S.
1992-01-01
In three-dimensional inverse scattering problems, the reconstruction of a solid scatterter is often difficult, if not impossible, and computationally expensive due to the dimensionality. To obtain only the geometrical information, a surface reconstruction algorithm is naturally more desirable since no additional knowledge can be gained from doing the solid reconstruction and the computation is reduced to two dimensions. With the application of the first Born approximation, this paper proposes a simple surfaces reconstruction technique for a three-dimensional target. In general, this method is ill-posed. However, the numerical instability part of the ill-posedness is removable when the surface has a two-fold symmetry with respect to a plane. To demonstrate this approach, three analytical examples are shown. 10 refs.
Dimer problem for some three dimensional lattice graphs
NASA Astrophysics Data System (ADS)
Lin, Fenggen; Chen, Ailian; Lai, Jiangzhou
2016-02-01
Dimer problem for three dimensional lattice is an unsolved problem in statistical mechanics and solid-state chemistry. In this paper, we obtain asymptotical expressions of the number of close-packed dimers (perfect matchings) for two types of three dimensional lattice graphs. Let M(G) denote the number of perfect matchings of G. Then log(M(K2 ×C4 ×Pn)) ≈(- 1.171 ṡn-1.1223 + 3.146) n, and log(M(K2 ×P4 ×Pn)) ≈(- 1.164 ṡn-1.196 + 2.804) n, where log() denotes the natural logarithm. Furthermore, we obtain a sufficient condition under which the lattices with multiple cylindrical and multiple toroidal boundary conditions have the same entropy.
THREE-DIMENSIONAL STRUCTURE OF SOLAR WIND TURBULENCE
Chen, C. H. K.; Bale, S. D.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Wicks, R. T.
2012-10-20
We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind.
Nonisentropic unsteady three dimensional small disturbance potential theory
NASA Technical Reports Server (NTRS)
Gibbons, M. D.; Whitlow, W., Jr.; Williams, M. H.
1986-01-01
Modifications that allow for more accurate modeling of flow fields when strong shocks are present were made into three dimensional transonic small disturbance (TSD) potential theory. The Engquist-Osher type-dependent differencing was incorporated into the solution algorithm. The modified theory was implemented in the XTRAN3S computer code. Steady flows over a rectangular wing with a constant NACA 0012 airfoil section and an aspect ratio of 12 were calculated for freestream Mach numbers (M) of 0.82, 0.84, and 0.86. The obtained results are compared using the modified and unmodified TSD theories and the results from a three dimensional Euler code are presented. Nonunique solutions in three dimensions are shown to appear for the rectangular wing as aspect ratio increases. Steady and unsteady results are shown for the RAE tailplane model at M = 0.90. Calculations using unmodified theory, modified theory and experimental data are compared.
Lee, Eun Kyoung; Kim, Sungwon; Lee, Yong Seok
2016-01-01
Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions. PMID:26798225
Yoshizawa, Satoshi; Tsuchihashi, Toshio; Harashina, Satoshi; Yoshimi, Akira; Shimokawa, Kenichi; Matsumura, Yoshio
2013-04-01
This study focuses on optimization of the flip angle (FA) of phase-sensitive inversion recovery (PSIR) reconstruction (PSIR-FA) to achieve improved tissue contrast. Intensity normalization removes the larger variations in image intensity caused by falloff, thus improving the visualization of tissue contrast. We evaluated tissue contrast for images in healthy volunteers using the phantom influence of T1 relaxation and FA. T1 relaxation is improved due to the T1(*) effect and enables a high PSIR-FA to be set. The contrast-to-noise ratio (CNR) of the PSIR-FA 20° image is good, since magnetization is almost fully restored to normal. The usefulness of PSIR-FA 20 images was proved statistically. PSIR-FA 20° shows improved tissue contrast as a result of the high accuracy of intensity normalization.
Three-dimensional Analysis of Nanomaterials by Scanning Probe Nanotomography
NASA Astrophysics Data System (ADS)
Efimov, Anton E.; Agapova, Olga I.; Mochalov, Konstantin E.; Agapov, Igor I.
Micro and nanostructure of scaffolds made from fibroin of Bombyx mori silkworm by salt leaching technique was studied by scanning probe nanotomography. Nanopores with dimensions in range from 30 to 180 nm are observed in the scaffold volume. Three - dimensional analysis of obtained data shows that degree of scaffold nanoporosity is 0.5% and nanopores are not interconnected with each other. Usage of scanning probe nanotomography technique enables to obtain unique nanoscale information of 3D structure of biopolymer nanomaterials.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images. PMID:27534470
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Three-dimensional optical trapping of partially silvered silica microparticles.
Jordan, P; Cooper, J; McNay, G; Docherty, F T; Smith, W E; Sinclair, G; Padgett, M J
2004-11-01
We demonstrate three-dimensional trapping of micrometer-diameter silica particles, partially coated with silver, within conventional optical tweezers. Although metallic particles are usually repelled from the beam focus by the scattering force, we show that transparent spheres partially coated with silver can be trapped with efficiencies comparable with dielectric particles. The trapping characteristics of these particles are examined as a function of metallic coverage, and the application of these particles to surface-enhanced resonance Raman scattering is investigated.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
Three-dimensional image reconstruction in object space
Kinahan, P.E.; Rogers, J.G.; Harrop, R.; Johnson, R.R.
1988-02-01
An analytic three-dimensional image reconstruction algorithm which can utilize the cross-plane gamma rays detected by a wide solid-angle PET system is presented. Unlike current analytic algorithms it does not use Fourier transform methods, although mathematical equivalence to Fourier transform methods is proven. Results of implementing the algorithm are briefly discussed. An extension of the algorithm to utilize all measured cross-plane gamma rays is discussed.
Hydrothermal fabrication of three-dimensional secondary battery anodes.
Liu, Jinyun; Zhang, Hui Gang; Wang, Junjie; Cho, Jiung; Pikul, James H; Epstein, Eric S; Huang, Xingjiu; Liu, Jinhuai; King, William P; Braun, Paul V
2014-11-01
A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances. PMID:25195592
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
Onishi, Yasuo; Bao, Jie; Glass, Kevin A.; Eyler, L. L.; Okumura, Masahiko
2015-03-28
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Three dimensional mesh generation by triangulation of arbitrary point sets
NASA Technical Reports Server (NTRS)
Baker, Timothy J.
1987-01-01
A method for generating an unstructured mesh is described. The approach is quite general and joins an arbitrary set of points to produce a covering of three dimensional space by tetrahedra. After removing the tetrahedra that connect surface points, a mesh suitable for a finite element based flow solver is obtained. Details of the triangulation algorithm are provided together with an analysis of the algorithm efficiency and validity.
Coherent states on horospheric three-dimensional Lobachevsky space
NASA Astrophysics Data System (ADS)
Kurochkin, Yu.; Rybak, I.; Shoukavy, Dz.
2016-08-01
In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard ("conventional" according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.
Three-dimensional models. [For orbital celestial mechanics
Hunter, C. )
1990-06-01
The Schwarzschild (1979) approach to the analysis of three-dimensional galactic models is reviewed. An analysis of triaxial Staeckel models is discussed which shows that such models have a wide variety of possible distribution functions. The uniqueness that Schwarzschild first encountered in his discrete formulation of the problem of finding a three-integral distribution function for a triaxial density is real and not an artifact of the finite cell approximation. 27 refs.
Three-dimensional range imaging apparatus and method
NASA Technical Reports Server (NTRS)
Scott, Vibart Stan (Inventor); Blair, James Bryan (Inventor); Izquierdo, Luis R. (Inventor)
2011-01-01
A three-dimensional range imager includes a light source for providing a modulated light signal, a multiplexer, an optical fiber connecting the light source to the multiplexer, a plurality of optical fibers connected at first ends to the multiplexer and at second ends to a first fiber array, and a transmitter optic disposed adjacent the first fiber array for projecting a pixel pattern of the array onto a target.
Time-Domain Simulation of Three Dimensional Quantum Wires.
Sullivan, Dennis M; Mossman, Sean; Kuzyk, Mark G
2016-01-01
A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603
Simulating Photons and Plasmons in a Three-dimensional Lattice
Pletzer, A.; Shvets, G.
2002-09-03
Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented.
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space. PMID:26317707
Three-dimensional discrete ordinates reactor assembly calculations on GPUs
Evans, Thomas M; Joubert, Wayne; Hamilton, Steven P; Johnson, Seth R; Turner, John A; Davidson, Gregory G; Pandya, Tara M
2015-01-01
In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.
High-Speed Three-Dimensional Nodal Diffusion Code System.
2001-03-21
Version 00 MOSRA-Light is a three-dimensional diffusion calculation code for X-Y-Z geometry. It can be used in: validation of discontinuity factor for adjoint problem; benchmark on discontinuity factor (forward & adjoint cal.); DVP BWR Benchmark (2D,2G calculation); and void reactivity effect benchmark; etc. A utility code called More-MOSRA provides many useful functions with the file produced by MOSRA-Light.
Rapid measurement of three-dimensional diffusion tensor
NASA Astrophysics Data System (ADS)
Cho, H.; Ren, X.-H.; Sigmund, E. E.; Song, Y.-Q.
2007-04-01
In this article, the authors demonstrate a rapid NMR method to measure a full three-dimensional diffusion tensor. This method is based on a multiple modulation multiple echo sequence and utilizes static and pulsed magnetic field gradients to measure diffusion along multiple directions simultaneously. The pulse sequence was optimized using a well-known linear inversion metric (condition number) and successfully tested on both isotropic (water) and anisotropic (asparagus) diffusion systems.
Three dimensional flow computations in a turbine scroll
NASA Technical Reports Server (NTRS)
Hamed, A.; Ghantous, C. A.
1982-01-01
The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.
Three-dimensional nonparaxial beams in parabolic rotational coordinates.
Deng, Dongmei; Gao, Yuanmei; Zhao, Juanying; Zhang, Peng; Chen, Zhigang
2013-10-01
We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of different modes of these beams. The observed transverse beam patterns along the propagation direction agree well with those from our theoretical predication.
Convection Effects in Three-dimensional Dendritic Growth
NASA Technical Reports Server (NTRS)
Lu, Yili; Beckermann, C.; Karma, A.
2003-01-01
A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.
Multi-cellular, three-dimensional living mammalian tissue
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor)
1994-01-01
The present invention relates to a multicellular, three-dimensional, living mammalian tissue. The tissue is produced by a co-culture process wherein two distinct types of mammalian cells are co-cultured in a rotating bioreactor which is completely filled with culture media and cell attachment substrates. As the size of the tissue assemblies formed on the attachment substrates changes, the rotation of the bioreactor is adjusted accordingly.
Three-dimensional finite element modeling of liquid crystal devices
NASA Astrophysics Data System (ADS)
Vanbrabant, Pieter J. M.; James, Richard; Beeckman, Jeroen; Neyts, Kristiaan; Willman, Eero; Fernandez, F. Anibal
2011-03-01
A finite element framework is presented to combine advanced three-dimensional liquid crystal director calculations with a full-vector beam propagation analysis. This approach becomes especially valuable to analyze and design structures in which disclinations or diffraction effects play an important role. The wide applicability of the approach is illustrated in our overview from several examples including small pixel LCOS microdisplays with homeotropic alignment.
Three-dimensional source reconstruction with a scanned pinhole camera.
Marks, D L; Brady, D J
1998-06-01
We present a simple reconstruction algorithm for three-dimensional (3D) incoherent source distributions imaged by a laterally scanned pinhole camera. We consider digital sampling of multiple pinhole images for 3D reconstruction and implement an experimental demonstration with lateral resolution of 2x10(-3) rad and longitudinal resolution of approximately 0.14z(2) m , where z is the object-to-pinhole distance in meters.
Three-dimensional chiral skyrmions with attractive interparticle interactions
NASA Astrophysics Data System (ADS)
Leonov, A. O.; Monchesky, T. L.; Loudon, J. C.; Bogdanov, A. N.
2016-09-01
We introduce a new class of isolated three-dimensional skyrmion that can occur within the cone phase of chiral magnetic materials. These novel solitonic states consist of an axisymmetric core separated from the host phase by an asymmetric shell. These skyrmions attract one another. We derive regular solutions for isolated skyrmions arising in the cone phase of cubic helimagnets and investigate their bound states.
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Code System for Three-Dimensional Hydraulic Reactor Core Analysis.
2001-03-05
Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field,more » steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.« less
Three-dimensional stiffness of the carpal arch.
Gabra, Joseph N; Li, Zong-Ming
2016-01-01
The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (p<0.001). The principal direction of the maximum stiffness was pronated within the cross section of the carpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.
A new three-dimensional general-relativistic hydrodynamics code
NASA Astrophysics Data System (ADS)
Baiotti, L.; Hawke, I.; Montero, P. J.; Rezzolla, L.
We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.
Three-dimensional electromagnetic articulography: a measurement principle.
Kaburagi, Tokihiko; Wakamiya, Kohei; Honda, Masaaki
2005-07-01
A measurement principle of the three-dimensional electromagnetic articulographic device is presented. The state of the miniature receiver coil is described by five variables representing the position in the three-dimensional coordinate system and the rotation angles relative to it. When the receiver coil is placed in the magnetic field produced from the distributed transmitter coils, its state can be optimally estimated by minimizing the difference between the measured strength of the received signal and the predicted one using the known spatial pattern of the magnetic field. Therefore, the design and calibration of the field function inherently determine the accuracy in estimating the state of the receiver coil. The field function in our method is expressed in the form of a multivariate B spline as a function of position in the three-dimensional space. Because of the piecewise property of the basis function and the freedom in the selection of the rank and the number of basis functions, the spline field function has a superior ability to flexibly and accurately represent the actual magnetic field. Given a set of calibration data, the spline function is designed to form a smooth curved surface interpolating all of these data samples. Then, an iterative procedure is employed to solve the nonlinear estimation problem of the receiver state variables. Because the spline basis function is a polynomial, it is also shown that the calculation of the Jacobian or Hessian required to obtain updated quantities for the state variables can be efficiently performed. Finally, experimental results reveal that the measurement accuracy is about 0.2 mm for a preliminary condition, indicating that the method can achieve the degree of precision required for observing articulatory movements in a three-dimensional space. It is also experimentally shown that the Marquardt method is a better nonlinear programming technique than the Gauss-Newton or Newton-Raphson method for solving the
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.
Transverse confinement of waves in three-dimensional random media.
Cherroret, N; Skipetrov, S E; van Tiggelen, B A
2010-11-01
We study the transmission of a tightly focused beam through a thick slab of three-dimensional disordered medium in the Anderson localized regime. We show that the transverse profile of the transmitted beam exhibits clear signatures of Anderson localization and that its mean square width provides a direct measure of the localization length. For a short incident pulse, the width is independent of absorption.
Time-Domain Simulation of Three Dimensional Quantum Wires
Mossman, Sean; Kuzyk, Mark G.
2016-01-01
A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603
Three-dimensional strong Langmuir turbulence and wave collapse
NASA Technical Reports Server (NTRS)
Robinson, P. A.; Newman, D. L.; Goldman, M. V.
1988-01-01
Results from the first fully three-dimensional simulations of driven damped strong Langmuir turbulence and wave collapse are presented. Key results are that turbulence is maintained at least in part by nucleation, the cores of most collapsing objects are pancake shaped in form, and the power spectrum falls off approximately as the product of a power law and an exponential at large wave number.
On a three-dimensional implementation of the baker's transformation
NASA Astrophysics Data System (ADS)
Carrière, Philippe
2007-11-01
A three-dimensional, steady flow configuration intended to mimic the baker's map is studied by means of numerical simulation. The Poincaré sections computed from a finite element solution of the velocity field show that the behavior is dominated by chaotic advection. The value obtained for the Lyapunov exponent is very close to the theoretical value of ln2 predicted by the baker's map.
Three-dimensional compressible and stretchable conductive composites.
Yu, You; Zeng, Jifang; Chen, Chaojian; Xie, Zhuang; Guo, Ruisheng; Liu, Zhilu; Zhou, Xuechang; Yang, Yong; Zheng, Zijian
2014-02-01
Three-dimensional (3D) conductive composites with remarkable flexibility, compressibility, and stretchability are fabricated by solution deposition of thin metal coatings on chemically modified, macroscopically continuous, 3D polyurethane sponges, followed by infiltration of the metallic sponges with polydimethylsiloxane (PDMS). These low-cost conductive composites are used as high-performance interconnects for flexible and stretchable light-emitting diode (LED) arrays, even with severe surface abrasion or cutting. PMID:24307070
Wang, Jinnan; Ferguson, Marina S; Balu, Niranjan; Yuan, Chun; Hatsukami, Thomas S; Börnert, Peter
2010-11-01
Intraplaque hemorrhage in atherosclerotic plaques has been associated with accelerated plaque growth as well as exacerbation of clinical symptoms. The identification of intraplaque hemorrhage using magnetic resonance imaging primarily relies on the detection of methemoglobin on T(1) weighted images. Current techniques are limited by insufficient intraplaque hemorrhage-wall contrast and poor blood suppression. In this study, a slab-selective phase-sensitive inversion-recovery (SPI) technique is proposed by combining a phase-sensitive reconstruction with a T(1) weighted sequence specifically designed to achieve improved intraplaque hemorrhage imaging. The SPI sequence was optimized and then used on ex vivo plaque specimens for histology based validation and intraplaque hemorrhage-wall contrast-to-noise ratio comparison with magnetization-prepared 3D rapid acquisition gradient echo MP-RAGE. SPI and MP-RAGE were also tested on a group of atherosclerosis patients to compare in vivo intraplaque hemorrhage-wall contrast-to-noise ratio and blood suppression effectiveness. On ex vivo specimens SPI had better intraplaque hemorrhage identification accuracy and a significantly higher intraplaque hemorrhage-wall contrast-to-noise ratio (P = 0.01) than MP-RAGE. Similar results were found in the in vivo test: Slab-selective phase-sensitive inversion-recovery provided a significantly improved intraplaque hemorrhage-wall contrast-to-noise ratio (P < 0.01) and blood suppression efficiency (P < 0.01). In conclusion, SPI is a novel technique optimized for intraplaque hemorrhage detection and validated against histology. It has demonstrated its capability for improved in vivo intraplaque hemorrhage identification and blood suppression in atherosclerosis patients.
Can Three-Dimensional Instabilities Enable Fast Reconnection?
NASA Astrophysics Data System (ADS)
McClymont, Alexander N.
1997-05-01
Most studies of magnetic reconnection have assumed a two-dimensional geometry. Gas swept into the current sheet halts the collapse to the near-singularity required to effectively dissipate magnetic energy. The gas is squeezed out of the current sheet along the separatrices at the local sound speed (McClymont and Craig, 1996, Ap. J. 466, 487). Although this allows collapse to proceed (at a slower pace) it is not yet clear whether all the gas can be removed, particularly in a closed system. Therefore it is of interest to examine how relaxing invariance along the third dimension might allow escape of gas from the current sheet and reconnection to proceed at an explosive rate. Uchida and Sakurai (1977, Solar Phys. 51, 413) have examined the possibility of reconnection rate enhancement by the three-dimensional interchange instability. Some three-dimensional analyses (e.g. Craig and Fabling, 1995, Ap. J. 462, 969) have assumed analytic forms of solution which preclude many outcomes. Another three dimensional simulation (Strauss, 1993, Geophys. Res. Lett., 20, 325) assumes a strong magnetic field along the current sheet. We discuss ideal instabilities and other phenomena which might allow gas to escape more effectively from the current sheet, and enhance the reconnection rate.
Three-dimensional fluorescence characteristics of white chrysanthemum flowers.
Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun
2014-09-15
White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.
Three dimensional modelling of ICRF launchers for fusion devices
NASA Astrophysics Data System (ADS)
Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.
1996-02-01
The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive
Three-dimensional jamming and flows of soft glassy materials.
Ovarlez, G; Barral, Q; Coussot, P
2010-02-01
Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
Three-dimensional magnetic recording using ferromagnetic resonance
NASA Astrophysics Data System (ADS)
Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie
2016-07-01
To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.
Three-dimensional unsteady viscous flow analysis over airfoil sections
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Shamroth, S. J.
1984-01-01
A three-dimensional solution procedure for the approximate form of the Navier-Stokes equation was exercised in the two- and three-dimensional modes to compute the unsteady turbulent boundary layer on a flat plate corresponding to the data of Karlsson. The procedure is based on the use of a consistently split Linearized Block Implicit technique in conjunction with a QR operator scheme. New time-dependent upstream boundary conditions were developed that yielded realistic solutions for the interior in the vicinity of the upstream boundary. Comparisons of the computation employing these boundary conditions with the data indicate that both qualitative and quantitative agreement was obtained for the mean velocity and the in phase and out of phase components of the first harmonic of the velocity. In addition, the calculation gave results for the skin friction phase angle that had expected physical behavior for large distances downstream of the inflow boundary. For the three-dimensional case, the two-dimensional data of Karlsson was considered, but in a coordinate system skewed at 45 deg to the free stream direction. The results of the calculations were in excellent agreement with the data and the two-dimensional computations.
Three dimensional self-assembly at the nanoscale
NASA Astrophysics Data System (ADS)
Gracias, D. H.
2013-05-01
At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.
Three-dimensional fluorescence characteristics of white chrysanthemum flowers
NASA Astrophysics Data System (ADS)
Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun
2014-09-01
White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.
Joint Torque Reduction of a Three Dimensional Redundant Planar Manipulator
Yahya, Samer; Moghavvemi, Mahmoud; Almurib, Haider Abbas F.
2012-01-01
Research on joint torque reduction in robot manipulators has received considerable attention in recent years. Minimizing the computational complexity of torque optimization and the ability to calculate the magnitude of the joint torque accurately will result in a safe operation without overloading the joint actuators. This paper presents a mechanical design for a three dimensional planar redundant manipulator with the advantage of the reduction in the number of motors needed to control the joint angle, leading to a decrease in the weight of the manipulator. Many efforts have been focused on decreasing the weight of manipulators, such as using lightweight joints design or setting the actuators at the base of the manipulator and using tendons for the transmission of power to these joints. By using the design of this paper, only three motors are needed to control any n degrees of freedom in a three dimensional planar redundant manipulator instead of n motors. Therefore this design is very effective to decrease the weight of the manipulator as well as the number of motors needed to control the manipulator. In this paper, the torque of all the joints are calculated for the proposed manipulator (with three motors) and the conventional three dimensional planar manipulator (with one motor for each degree of freedom) to show the effectiveness of the proposed manipulator for decreasing the weight of the manipulator and minimizing driving joint torques. PMID:22969326
Three-dimensional, geological representation of Quaternary deposits, Goettingen, Germany
NASA Astrophysics Data System (ADS)
Thomas, Katrin; Wagner, Bianca
2010-05-01
The Quaternary unconsolidated rock in north-eastern Goettingen was newly interpreted according to current scientific expertise. Especially the deposits of the Lutter River, a tributary to the Leine River, were examined using 253 drillings previously undertaken to create 24 two-dimensional cross-sections and a three-dimensional model of the geologic underground in the study area. The interpretation of the included data (drillings, previous studies, two-dimensional cross-sections) resulted in a stratigraphic sequence with 17 Quaternary model units, which was depicted three-dimensionally. During the investigation period, open pits were limited in the entire working area. Natural outcrops of Quaternary subsurfaces are absent. For the creation of a two-dimensional and three-dimensional representation of the geologic structure, it was necessary to fall back on available information of drillings. The spatial distribution of the drilling information in the scope of work is very heterogeneous. In addition, numerous engineer-geologic surveys were used for the interpretation and interpolation within areas where no other information could be obtained by drilling within this study. The production of a three-dimensional illustration of the unconsolidated rock first required an exact investigation and homogenisation of all available information. The choice of the drillings used in the scope of work were chosen with priority according to their depth with the aid of ArcMap. Two-dimensional cross-sections of the profiles of these drillings were produced with the help of the computer program GeoDin. Using the two-dimensional cross sections, the drillings were correlated with each other and compared and discussed extensively. The sequence of the geologic unities thereby presented itself more clearly and more exactly than in linear consideration. A geologic unity could be assigned to every examined layer of each drilling. Additionally, a top and a base were assigned to each geologic
Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices
NASA Astrophysics Data System (ADS)
Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.
2008-03-01
We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.
Three-dimensional reconstruction and morphological characterization of pituitary macroadenomas
Wei, Lin; Jing, Jun-Jie; Zhang, Shang-Ming
2016-01-01
Introduction The aim was to investigate the relationship between the tumor (clinicopathologic and radiological) characteristics and the morphological parameters of pituitary macroadenoma or giant adenoma patients using a three-dimensional (3D) reconstructed model. Material and methods Magnetic resoanance imaging (MRI) was performed preoperatively; tumor grade was determined by the Knosp-Steiner classification and tumor morphology by the SIPAP classification. Pituitary adenomas and adjacent structures were reconstructed three-dimensionally by volume rendering. Results Fifty-two and 6 patients underwent surgery via the transnasal transsphenoidal or pterional approach, respectively. Knosp-Steiner grades I to IV adenomas were observed in 5.2%, 25.9%, 22.4% and 46.6% of the patients, respectively. The 3D model was reconstructed in all cases with superb delineation of tumor morphology and the spatial relationship between the tumor and adjacent tissues. Pituitary adenomas were categorized into intrasellar (13.8%), suprasellar (20.7%), infrasellar (17.2%), and lobulated adenomas (48.3%). Suprasellar adenomas had the smallest (2.27 ±3.22 cm3) and lobulated adenomas the largest volume (24.61 ±30.50 cm3). Intrasellar adenomas were all functioning, while 75%, 60% and 60.7%, respectively, of suprasellar, infrasellar and lobulated adenomas were nonfunctioning, with a significant association between tumor morphology and secretory function (p = 0.005). Conclusions Three-dimensional reconstruction of pituitary macroadenomas offers a simplified morphological classification of pituitary adenomas and may be helpful for neurosurgeons to categorize and characterize pituitary adenomas. PMID:27279851
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-01
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes. PMID:25186903
Asymmetric three-dimensional topography over mantle plumes.
Burov, Evgueni; Gerya, Taras
2014-09-01
The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.
Propagation uniqueness in three-dimensional coherent diffractive imaging
Huang Xiaojing; Harder, Ross; Xiong Gang; Shi Xiaowen; Robinson, Ian
2011-06-01
Propagation nonuniqueness in three-dimensional (3D) coherent diffractive imaging (CDI) arises from the fact that an ensemble of solutions, related by propagation, gives an identical far-field diffraction intensity. Tight support constraint and tight allowed phase range behave similarly in constraining the solution of phase retrieval process, thus removing this nonuniqueness in simple cases but not for strong-phase objects. For CDI in Bragg geometry, we introduce a two-step phasing procedure for reconstructing heavily-strained samples that balances the need to define both support and phase constraints.
Three-dimensional magnetic resonance microscopy of materials.
Botto, R E; Cody, G D; Dieckman, S L; French, D C; Gopalsami, N; Rizo, P
1996-07-01
Several aspects of magnetic resonance microscopy are examined employing three-dimensional (3D) back-projection reconstruction techniques in combination with either simple Bloch-decay methods or MREV-8 multiple-pulse line narrowing techniques in the presence of static field gradients. Applications to the areas of ceramic processing, catalyst porosity measurements and the characterization of polymeric materials are presented. The focus of the discussion centers on issues of sensitivity and resolution using this approach compared with other methods. Advantages and limitations of 3D microscopy over more commonly employed slice selection protocols are discussed, as well as potential remedies to some of the inherent limitations of the technique. PMID:8902960
Three-dimensional confocal optical imagery of precambrian microscopic organisms.
Schopf, J William; Tripathi, Abhishek B; Kudryavtsev, Anatoliy B
2006-02-01
A major difficulty that has long hindered studies of organic-walled Precambrian microbes in petrographic thin sections is the accurate documentation of their three-dimensional morphology. To address this need, we here demonstrate the use of confocal laser scanning microscopy. This technique, both non-intrusive and non-destructive, can provide data by which to objectively characterize, in situ and at submicron-scale resolution, the cellular and organismal morphology of permineralized (petrified) microorganisms. Application of this technique can provide information in three dimensions about the morphology, taphonomy, and fidelity of preservation of such fossils at a spatial resolution unavailable by any other means.
Ordinary polarization singularities in three-dimensional optical fields.
Freund, Isaac
2012-06-15
In generic three-dimensional optical fields the canonical point polarization singularities are points of circular polarization, C points on C lines, and points of linear polarization, L points on L lines. These special points are surrounded by a sea of ordinary points. In planes oriented normal to the principle axes of the polarization ellipse at the point, every ordinary point is also a singularity, here an ordinary polarization singularity, or O point. Interactions between O points, between O points and C points, and between O points and L points are described that highlight the fact that a consistent description of optical fields containing C and L lines must include O points.
Three-dimensional annihilation imaging of trapped antiprotons.
Fujiwara, M C; Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Marchesotti, M; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Riedler, P; Rotondi, A; Rouleau, G; Testera, G; Variola, A; van der Werf, D P; Yamazaki, Y
2004-02-13
We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations. PMID:14995248
Transitional Suspensions Containing Thermosensitive Dispersant for Three-Dimensional Printing.
Wang, Xiaofeng; Sun, Yuehua; Peng, Chaoqun; Luo, Hang; Wang, Richu; Zhang, Dou
2015-12-01
Tailoring the rheology of suspensions is an essential and persistent issue form many applications, especially three-dimensional (3D) printing. Colloidal suspensions of ceramic powder (Al2O3) dispersed by a special thermosensitive dispersant (poly(acrylic acid)-poly(N-isopropylacrylamide), PAA-PNIPAM) were designed, which underwent a remarkable fluid-gel transition in response to thermal stimulus due to the phase transition of the graft chains (-PNIPAM). 3D periodic structures with a fine size of 100 μm were assembled by 3D printing. PMID:26552611
Development of a three-dimensional supersonic inlet flow analysis
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.
1980-01-01
A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.
The three-dimensional crystal structure of cholera toxin
Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D.; Scott, D.L.; Westbrook, E.M.
1996-02-01
The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.
Three-dimensional simulation of a translating strut inlet
NASA Technical Reports Server (NTRS)
Singh, D. J.; Trexler, Carl A.; Hudgens, Julie A.
1992-01-01
A three-dimensional Navier-Stokes code is used to numerically simulate the flow through a translating strut scramjet inlet. The inlet has variable geometry for efficient operation over a wide speed range. Overall flow-field features such as the corner flow, topwall separation, shockwave coalescence, cowl pressure increase, and flow distortion at the throat are investigated. Comparisons are made with experimental results to provide for the assessment of the present analysis. Effects of boundary-layer ingestion on the overall flow features are also investigated.
Three-dimensional multifunctional optical coherence tomography for skin imaging
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
Spatial clustering method based on three-dimensional cloud model
NASA Astrophysics Data System (ADS)
Wang, Haijun; Wang, Li; Deng, Yu; Liu, Jia
2008-12-01
Spatial clustering is one of those major methods applying to spatial data mining and knowledge discovery. The purpose of this paper is to set forth Spatial Clustering Method Based on Multidimensional Cloud Model, which can be widely applied to the research on classification and hierarchy in realm of spatial data mining and knowledge discovery. This paper summarizes all kinds of cloud model and analyzes the optimalizing form of spatial data-three-dimensional cloud model. The limitation which sets the weighing value subjectively in traditional way and propagation of error can be avoided. The implementation procedure of this method is advanced, and the feasibility of this method is proven through experiments effectively.
Three Dimensional Sector Design with Optimal Number of Sectors
NASA Technical Reports Server (NTRS)
Xue, Min
2010-01-01
In the national airspace system, sectors get overloaded due to high traffic demand and inefficient airspace designs. Overloads can be eliminated in some cases by redesigning sector boundaries. This paper extends the Voronoi-based sector design method by automatically selecting the number of sectors, allowing three-dimensional partitions, and enforcing traffic pattern conformance. The method was used to design sectors at Fort-Worth and Indianapolis centers for current traffic scenarios. Results show that new designs can eliminate overloaded sectors, although not in all cases, reduce the number of necessary sectors, and conform to major traffic patterns. Overall, the new methodology produces enhanced and efficient sector designs.
Three-dimensional assessment of facial asymmetry: A systematic review
Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan
2015-01-01
For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries. PMID:26538893
Three-dimensional materials analysis by confocal Raman microspectroscopy.
Kador, L; Schittkowski, T; Bauer, M; Fan, Y
2001-10-01
Two- and three-dimensional spatial analysis of various composite materials was performed with a scanning confocal Raman microspectrometer. Samples include TiO(2) microparticles, mixtures of polymers, and the surface of an older Eprom computer chip. In the last case both structural and compositional information was obtained by means of comparing the signal intensity of the Rayleigh line with that of the silicon Raman line at 520 cm(-1). The spatial compositions of a pain-relief medicine and a pharmaceutical salt mixture could be visualized from characteristic Raman lines of the components.
Three-dimensional imaging techniques: A literature review
Karatas, Orhan Hakki; Toy, Ebubekir
2014-01-01
Imaging is one of the most important tools for orthodontists to evaluate and record size and form of craniofacial structures. Orthodontists routinely use 2-dimensional (2D) static imaging techniques, but deepness of structures cannot be obtained and localized with 2D imaging. Three-dimensional (3D) imaging has been developed in the early of 1990's and has gained a precious place in dentistry, especially in orthodontics. The aims of this literature review are to summarize the current state of the 3D imaging techniques and to evaluate the applications in orthodontics. PMID:24966761
Three-dimensional "Mercedes-Benz" model for water.
Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
Three-dimensional ``Mercedes-Benz'' model for water
NASA Astrophysics Data System (ADS)
Dias, Cristiano L.; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility.
A Three-Dimensional Virtual Simulator for Aircraft Flyover Presentation
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Sullivan, Brenda M.; Sandridge, Christopher A.
2003-01-01
This paper presents a system developed at NASA Langley Research Center to render aircraft flyovers in a virtual reality environment. The present system uses monaural recordings of actual aircraft flyover noise and presents these binaurally using head tracking information. The three-dimensional audio is simultaneously rendered with a visual presentation using a head-mounted display (HMD). The final system will use flyover noise synthesized using data from various analytical and empirical modeling systems. This will permit presentation of flyover noise from candidate low-noise flight operations to subjects for psychoacoustical evaluation.
Three-Dimensional Printing of Prosthetic Hands for Children.
Burn, Matthew B; Ta, Anderson; Gogola, Gloria R
2016-05-01
Children with hand reductions, whether congenital or traumatic, have unique prosthetic needs. They present a challenge because of their continually changing size due to physical growth as well as changing needs due to psychosocial development. Conventional prosthetics are becoming more technologically advanced and increasingly complex. Although these are welcome advances for adults, the concomitant increases in weight, moving parts, and cost are not beneficial for children. Pediatric prosthetic needs may be better met with simpler solutions. Three-dimensional printing can be used to fabricate rugged, light-weight, easily replaceable, and very low cost assistive hands for children. PMID:26972557
Growing Three-Dimensional Cartilage-Cell Cultures
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F.; Prewett, Tacey L.; Goodwin, Thomas J.
1995-01-01
Process for growing three-dimensional cultures of mammalian cartilage from normal mammalian cells devised. Effected using horizontal rotating bioreactor described in companion article, "Simplified Bioreactor for Growing Mammalian Cells" (MSC-22060). Bioreactor provides quiescent environment with generous supplies of nutrient and oxygen. Initiated with noncartilage cells. Artificially grown tissue resembles that in mammalian cartilage. Potential use in developing therapies for damage to cartilage by joint and back injuries and by such inflammatory diseases as arthritis and temporal-mandibular joint disease. Also used to test nonsteroid anti-inflammation medicines.
Chalcogenide glass-based three-dimensional photonic crystals
NASA Astrophysics Data System (ADS)
Feigel, A.; Kotler, Z.; Sfez, B.; Arsh, A.; Klebanov, M.; Lyubin, V.
2000-11-01
AsSeTe chalcogenide glasses are materials that are photosensitive and have a large refractive index. These properties make these glasses particularly suitable for the fabrication of photonic crystals. We present a way to build three-dimensional photonic structures from chalcogenide glasses using vapor deposition and direct holographic writing. We show that this technique is intrinsically self-aligned, providing a simple way to build layer-by-layer photonic crystals and a four-layer structure demonstrating the principle of the technique.
Multiple scattering of light in three-dimensional photonic quasicrystals.
Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2009-02-01
Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.
Three-dimensional structure of human serum albumin
NASA Technical Reports Server (NTRS)
Carter, Daniel C.; He, Xiao-Min; Munson, Sibyl H.; Twigg, Pamela D.; Gernert, Kim M.; Broom, M. Beth; Miller, Teresa Y.
1989-01-01
The three-dimensional structure of human serum albumin has been solved at 6.0 A resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 and diffracted X-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.
Three dimensional global modeling of atmospheric CO2
NASA Technical Reports Server (NTRS)
Fung, I.; Hansen, J.; Rind, D.
1983-01-01
A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2008-06-17
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Methods for preparation of three-dimensional bodies
Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Artz, Gregory J.; Gafner, Felix H.; Vaidyanathan, K. Ranji
2004-09-28
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Laser-field-free three-dimensional molecular orientation
NASA Astrophysics Data System (ADS)
Takei, Daisuke; Mun, Je Hoi; Minemoto, Shinichirou; Sakai, Hirofumi
2016-07-01
Laser-field-free three-dimensional orientation, corresponding to the complete control of spatial directions of asymmetric top molecules, is achieved with combined weak electrostatic and elliptically polarized laser fields with an 8-ns turnon and a 150-fs turnoff, which is shaped by a plasma shutter. Rotationally cold 3,4-dibromothiophene molecules are used as a sample, and their lower-lying rotational states are selected by a molecular deflector to increase the degrees of orientation. After the rapid turnoff of the pump pulse, higher degrees of orientation are maintained for 5-10 ps, which is long enough for various applications including electronic stereodynamics in molecules with femtosecond pulses.
Three dimensional separation trap based on dielectrophoresis and use thereof
Mariella, Jr., Raymond P.
2004-05-04
An apparatus is adapted to separate target materials from other materials in a flow containing the target materials and other materials. A dielectrophoretic trap is adapted to receive the target materials and the other materials. At least one electrode system is provided in the trap. The electrode system has a three-dimensional configuration. The electrode system includes a first electrode and a second electrode that are shaped and positioned relative to each such that application of an electrical voltage to the first electrode and the second electrode creates a dielectrophoretic force and said dielectrophoretic force does not reach zero between the first electrode and the second electrode.
Three-Dimensional Printing: An Enabling Technology for IR.
Sheth, Rahul; Balesh, Elie R; Zhang, Yu Shrike; Hirsch, Joshua A; Khademhosseini, Ali; Oklu, Rahmi
2016-06-01
Rapid prototyping, also known as three-dimensional (3D) printing, is a recent technologic advancement with tremendous potential for advancing medical device design. A wide range of raw materials can be incorporated into complex 3D structures, including plastics, metals, biocompatible polymers, and even living cells. With its promise of highly customized, adaptable, and personalized device design at the point of care, 3D printing stands to revolutionize medical care. The present review summarizes the methods for 3D printing and their current and potential roles in medical device design, with an emphasis on their potential relevance to interventional radiology. PMID:27117948
Single-shot afocal three-dimensional microscopy.
Feldkhun, Daniel; Wagner, Kelvin H
2016-08-01
Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D.
Three dimensional audio versus head down TCAS displays
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Pittman, Marc T.
1994-01-01
The advantage of a head up auditory display was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: Standard head down traffic collision avoidance system (TCAS) display, and three-dimensional (3-D) audio TCAS presentation. Ten commercial airline crews were tested under full mission simulation conditions at the NASA Ames Crew-Vehicle Systems Research Facility Advanced Concepts Flight Simulator. Scenario software generated targets corresponding to aircraft which activated a 3-D aural advisory or a TCAS advisory. Results showed a significant difference in target acquisition time between the two conditions, favoring the 3-D audio TCAS condition by 500 ms.
Ghost imaging for three-dimensional optical security
Chen, Wen Chen, Xudong
2013-11-25
Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.
Ventricular Septal Defect: the Three-Dimensional Point of View
Parisi, V; Ratto, E; Silvestri, C; Pastore, F
This case highlights the clinical usefulness of three-dimensional (3D) echocardiography. The diagnosis of inter-ventricular septal defect associated with aortic regurgitation has been performed in a 50-year-old man using 3D echocardiography. This advanced echocardiography could accurately reproduce the anatomy of the defect and provide further insights in the mechanisms of aortic regurgitation showing an unusual non-coronary cusp prolapse. The routinely use of 3D echocardiography in clinics might allow a better characterization of cardiac anatomy, especially of aortic valve disorders. PMID:24251244
Three dimensional thermal analysis of rocket thrust chambers
Naraghi, M.H.N.; Armstrong, E.S.
1988-06-01
A numerical model for the three dimensional thermal analysis of rocket thrust chambers and nozzles has been developed. The input to the model consists of the composition of the fuel/oxidant mixture and flow rates, chamber pressure, coolant entrance temperature and pressure, dimensions of the engine, materials and the number of nodes in different parts of the engine. The model allows for temperature variation in three dimensions: axial, radial and circumferential directions and by implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties.
Three-dimensional structure of brain tissue at submicrometer resolution
NASA Astrophysics Data System (ADS)
Saiga, Rino; Mizutani, Ryuta; Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki; Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari; Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio
2016-01-01
Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.
Teaching veterinary obstetrics using three-dimensional animation technology.
Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L
2010-01-01
In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation. PMID:20847340
A Three-dimensional Map of Milky Way Dust
NASA Astrophysics Data System (ADS)
Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf Peter; Magnier, Eugene; Metcalfe, Nigel; Price, Paul; Tonry, John; Wainscoat, Richard
2015-09-01
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 (PS1) and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3\\buildrel{ \\prime}\\over{.} 4-13\\buildrel{ \\prime}\\over{.} 7, and a maximum distance resolution of ˜ 25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings, and classifications for 800 million stars detected by PS1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck {τ }353{GHz}-based reddening map to within 0.05 {mag} in E(B-V) to a depth of 0.5 {mag}, and explore systematics at reddenings less than E(B-V)≈ 0.08 {mag}. We validate our per-star reddening estimates by comparison with reddening estimates for stars with both Sloan Digital Sky Survey photometry and Sloan Extension for Galactic Understanding and Exploration spectral classifications, finding per-star agreement to within 0.1 {mag} out to a stellar E(B-V) of 1 mag. We compare our map to two existing three-dimensional dust maps, by Marshall et al. and Lallement et al., demonstrating our finer angular resolution, and better distance resolution compared to the former within ˜ 3 {kpc}. The map can be queried or downloaded at http://argonaut.skymaps.info. We expect the three-dimensional reddening map presented here to find a wide range of uses, among them correcting for reddening and extinction for objects embedded in the plane of the Galaxy, studies of Galactic structure, calibration of future emission-based dust maps, and determining distances to
Numerical simulation of a three-dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1980-09-01
A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.
Numerical simulation of a three-dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1980-08-01
A three-dimensional unsteady separated flow over a step having a chevron planform placed in a channel, bounded by vertical walls is studied using a numerical approach in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that various improvements brought to the method, in particular concerning the vorticity emission mechanism and the interactions between the vortex-sheets and the wall, allow to describe correctly the time-evolution of the vortex-sheets and to obtain numerical results in good agreement with experiment.
Numerical simulation of a three dimensional wall separation
NASA Astrophysics Data System (ADS)
Billet, G.
1981-03-01
A three dimensional unsteady separated flow over a step having a chevron planform in a channel, bounded by vertical walls was studied. A numerical approach was used in which the walls are replaced by a surface distribution of quadrilateral vortex rings, and the vortex sheet by a discrete vortex volumic distribution. It is shown that the vorticity emission mechanism and the interactions between the vortex sheets and the wall, allow a correct description of the time evolution of the vortex sheets and show numerical results in good agreement with experiment.
Three-dimensional annihilation imaging of trapped antiprotons.
Fujiwara, M C; Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P D; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Filippini, V; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Marchesotti, M; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Riedler, P; Rotondi, A; Rouleau, G; Testera, G; Variola, A; van der Werf, D P; Yamazaki, Y
2004-02-13
We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations.
Customizing mesoscale self-assembly with three-dimensional printing
NASA Astrophysics Data System (ADS)
Poty, M.; Lumay, G.; Vandewalle, N.
2014-02-01
Self-assembly due to capillary forces is a common method for generating two-dimensional mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost three-dimensional printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new paths toward low cost microfabrication.
Self-supported three-dimensional nanoelectrodes for microbattery applications.
Cheah, Seng Kian; Perre, Emilie; Rooth, Mårten; Fondell, Mattis; Hårsta, Anders; Nyholm, Leif; Boman, Mats; Gustafsson, Torbjörn; Lu, Jun; Simon, Patrice; Edström, Kristina
2009-09-01
A nanostructured three-dimensional (3D) microbattery has been produced and cycled in a Li-ion battery. It consists of a current collector of aluminum nanorods, a uniform layer of 17 nm TiO(2) covering the nanorods made using ALD, an electrolyte and metallic lithium counter electrode. The battery is electrochemically cycled more than 50 times. The increase in total capacity is 10 times when using a 3D architecture compared to a 2D system for the same footprint area.
The three-dimensional evolution of a plane wake
NASA Technical Reports Server (NTRS)
Maekawa, H.; Moser, R. D.; Mansour, N. N.
1993-01-01
In the past three decades, linear stability analysis has led to a comprehensive understanding of the linear stages of transition in plane wakes. Our understanding of the nonlinear and turbulent stages is less developed. Nonlinear theory developed by Papageorgiou and Smith was used to study the long-wavelength regime in wakes. The nonlinear and turbulent stages were investigated experimentally, and few numerical studies examined the early nonlinear stages of forced wakes. The evolution of three dimensional disturbances in an incompressible wake is investigated using direct numerical simulations. The instantaneous three-dimaensional structures and corresponding statistics are presented.
The Electron in Three-Dimensional Momentum Space
NASA Astrophysics Data System (ADS)
Mantovani, L.; Bacchetta, A.; Pasquini, B.
2016-07-01
We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.
Numerical simulation of three-dimensional self-gravitating flow
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1993-01-01
The three-dimensional flow of a self-gravitating fluid is numerically simulated using a Fourier pseudospectral method with a logarithmic variable formulation. Two cases with zero total angular momentum are studied in detail, a 323 simulation (Run B). Other than the grid size, the primary difference between the two cases are that Run A modeled atomic hydrogen and had considerably more compressible motion initially than Run B, which modeled molecular hydrogen. The numerical results indicate that gravitational collapse can proceed in a variety of ways. In the Run A, collapse led to an elongated tube-like structure, while in the Run B, collapse led to a flatter, disklike structure.
Single-shot afocal three-dimensional microscopy.
Feldkhun, Daniel; Wagner, Kelvin H
2016-08-01
Fourier-basis agile structured illumination sensing (F-BASIS) employs acousto-optically synthesized moving interference patterns, sparse RF-encoded aperture synthesis, nonredundant spatiotemporal frequency multiplexing, and single-pixel detection to measure dense clouds of three-dimensional (3D) Fourier samples without scanning, enabling high-speed focus-free volume microscopy. We present 3D fluorescence imaging results using F-BASIS, including an unprecedented wide-field single-shot volumetric measurement in under 10 ms. The unique capabilities provided by F-BASIS could prove instrumental for capturing fleeting dynamic processes such as neuron signaling in 3D. PMID:27472599
Three-Dimensional Analysis of Frequency-Chirped FELs
Huang, Z.; Ding, Y.; Wu, J.; /SLAC
2010-09-14
Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.
Complete structural characterization of foams using three-dimensional images
NASA Astrophysics Data System (ADS)
Montminy, Matthew Dennis
Open-celled foams are three-dimensional networks of polymeric cells. The mechanical properties of a foam depend on the size and geometry of its cells. Since foams have a three-dimensional polyhedral structure, the two-dimensional imaging techniques currently used to characterize foams provide only limited accuracy. Magnetic resonance imaging (MRI) and x-ray computerized tomography (x-ray CT) methods offer opportunities for three-dimensional imaging of these polyhedral structures. This thesis involves the development of computer algorithms and software which can use digital three-dimensional images to determine structural parameters such as strut length distribution, window size distributions, and cell volume distributions. A novel set of algorithms has been designed specifically to analyze images of open-celled foams. The image processing approach uses conformal curvature flow (CCF) segmentation to find foam struts in the 3-D images. Once these struts have been detected, volume thinning is used to find the structural skeleton of the foam. This skeleton, which resembles a stick figure model of the foam, can used to determine many statistical characteristics of the foam, including strut length distributions, window size and shape distributions, and cell volume distributions. A Windows-based software package called FoamView was developed to facilitate 3D foam image processing using this specialized image analysis approach. FoamView includes a graphical user interface which allows the user to interact with visualizations of the foam structure, aiding the image analysis process. FoamView facilitates the analysis of relatively large foam samples containing 50 to 100 cells in relatively short times ranging from 1--3 hours. This software was used to analyze open-celled and closed-celled polyurethane foam samples obtained using x-ray computerized tomography. The structural schematics resulting from the analysis were used to compute strut length, interior angle, window size
Isometry groups of three-dimensional Riemannian metrics
Bona, C. ); Coll, B. )
1992-01-01
The necessary and sufficient conditions for a three-dimensional Riemannian metric to admit a group {ital G}{sub {ital r}} of isometries acting on {ital s}-dimensional orbits are given. This provides the list of (abstract) groups that can act isometrically and maximally on such metrics. The conditions are expressed in terms of the eigenvalues and eigenvectors of the Ricci tensor. In any case, the order of differentiability of these data necessary to determine the isometry group is less than 4.
Electrified magnetic catalysis in three-dimensional topological insulators
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2016-09-01
The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A different type of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground state of the system is a phase with a homogeneous surface charge density.
Three-Dimensional Computer Aided Design of a Vertical Winnower
NASA Astrophysics Data System (ADS)
Bao, Yumei; Lin, Saijia; Weng, Lijie
The research states home and abroad of the winnowing technology and winnowers are reviewed in brief. For the air duct, the core component of the winnower, the relevant technical parameters in the winnowing process are calculated based on the winnowing principle. The three-dimensional computer aided design (3D-CAD) software Solidworks is applied. The designed vertical winnower is able to separate different raw materials by adjusting the air speed and has been put into practical production to separate the Chinese traditional medicine with high separating effect.
Three-Dimensional Porous Sponges from Collagen Biowastes.
Ashokkumar, Meiyazhagan; Cristian Chipara, Alin; Tharangattu Narayanan, Narayanan; Anumary, Ayyappan; Sruthi, Radhakrishnan; Thanikaivelan, Palanisamy; Vajtai, Robert; Mani, Sendurai A; Ajayan, Pulickel M
2016-06-15
Three-dimensional, functional, and porous scaffolds can find applications in a variety of fields. Here we report the synthesis of hierarchical and interconnected porous sponges using a simple freeze-drying technique, employing collagen extracted from animal skin wastes and superparamagnetic iron oxide nanoparticles. The ultralightweight, high-surface-area sponges exhibit excellent mechanical stability and enhanced absorption of organic contaminants such as oils and dye molecules. Additionally, these biocomposite sponges display significant cellular biocompatibility, which opens new prospects in biomedical uses. The approach highlights innovative ways of transforming biowastes into advanced hybrid materials using simple and scalable synthesis techniques. PMID:27219483
Three-dimensional aerodynamic shape optimization of supersonic delta wings
NASA Technical Reports Server (NTRS)
Burgreen, Greg W.; Baysal, Oktay
1994-01-01
A recently developed three-dimensional aerodynamic shape optimization procedure AeSOP(sub 3D) is described. This procedure incorporates some of the most promising concepts from the area of computational aerodynamic analysis and design, specifically, discrete sensitivity analysis, a fully implicit 3D Computational Fluid Dynamics (CFD) methodology, and 3D Bezier-Bernstein surface parameterizations. The new procedure is demonstrated in the preliminary design of supersonic delta wings. Starting from a symmetric clipped delta wing geometry, a Mach 1.62 asymmetric delta wing and two Mach 1. 5 cranked delta wings were designed subject to various aerodynamic and geometric constraints.
Quantitative three-dimensional low-speed wake surveys
NASA Technical Reports Server (NTRS)
Brune, G. W.
1992-01-01
Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.
Seismic waves in a three-dimensional block medium
NASA Astrophysics Data System (ADS)
Aleksandrova, N. I.
2016-08-01
We study numerically the propagation of seismic waves in a three-dimensional block medium. The medium is modelled by a spatial lattice of masses connected by elastic springs and viscous dampers. We study Lamb's problem under a surface point vertical load. The cases of both step and pulse load are considered. The displacements and velocities are calculated for surface masses. The influence of the viscosity of the dampers on the attenuation of perturbations is studied. We compare our numerical results for the block medium with known analytical solutions for the elastic medium.
Waveguide circuits in three-dimensional photonic crystals
Biswas, Rana; Christensen, C.; Muehlmeier, J.; Tuttle, G.; Ho, K.-M.
2008-04-07
Waveguide circuits in three-dimensional photonic crystals with complete photonic band gaps are simulated with finite difference time domain (FDTD) simulations, and compared with measurements on microwave scale photonic crystals. The transmission through waveguide bends critically depends on the photonic crystal architecture in the bend region. We have found experimentally and theoretically, a new waveguide bend configuration consisting of overlapping rods in the bend region, that performs better than the simple waveguide bend of terminated rods, especially in the higher frequency portion of the band. Efficient beam splitters with this junction geometry are also simulated.
Modified gravity in three dimensional metric-affine scenarios
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Ghasemi-Nodehi, M.; Rubiera-Garcia, D.
2015-08-01
We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. We first study the case of f (R ) theories, finding deviations near the center as compared to the solutions of general relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.
Observation of three dimensional optical rogue waves through obstacles
Leonetti, Marco; Conti, Claudio
2015-06-22
We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.
Heat pulse propagation in chaotic three-dimensional magnetic fields
Del-Castillo-Negrete, Diego; Blazevski, Daniel
2014-06-01
Heat pulse propagation in three-dimensional chaotic magnetic fields is studied by numerically solving the parallel heat transport equation using a Lagrangian Green's function (LG) method. The main two problems addressed are: the dependence of the radial transport of heat pulses on the level of magnetic field stochasticity (controlled by the amplitude of the magnetic field perturbation, ε), and the role of reversed shear magnetic field configurations on heat pulse propagation. The role of separatrix reconnection of resonant modes in the shear reversal region, and the role of shearless Cantori in the observed phenomena are also discussed.
3D object hiding using three-dimensional ptychography
NASA Astrophysics Data System (ADS)
Zhang, Jun; Wang, Zhibo; Li, Tuo; Pan, An; Wang, Yali; Shi, Yishi
2016-09-01
We present a novel technique for 3D object hiding by applying three-dimensional ptychography. Compared with 3D information hiding based on holography, the proposed ptychography-based hiding technique is easier to implement, because the reference beam and high-precision interferometric optical setup are not required. The acquisition of the 3D object and the ptychographic encoding process are performed optically. Owing to the introduction of probe keys, the security of the ptychography-based hiding system is significantly enhanced. A series of experiments and simulations demonstrate the feasibility and imperceptibility of the proposed method.
A Three-Dimensional Vortex Sheet Method for Multiphase Flows
NASA Astrophysics Data System (ADS)
Stock, Mark; Dahm, Werner; Tryggvason, Gretar
2002-11-01
Previous work on a three-dimensional vortex-in-cell method is extended to include baroclinic vorticity generation in flows with large density ratios. A vortex sheet discretization is used both to maintain the boundary between different fluids or fluid phases, and to provide for a divergence-free vorticity field at all times. Automatic insertion and deletion of triangular elements allow the vortex sheet to maintain its connectivity and resolution during the simulation, despite extensive stretching of the material surface. The VIC grid provides regularization, and the simulation is inviscid at resolved scales. Computational results for flows with weak and strong density variations are presented.
Three dimensional amorphous silicon/microcrystalline silicon solar cells
Kaschmitter, J.L.
1996-07-23
Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.
Optical Security Card by Three-dimensional Random Phase Distribution
NASA Astrophysics Data System (ADS)
Matoba, Osamu; Nitta, Kouichi
2007-10-01
An optical security card based on a three-dimensional (3D) phase object is presented. This card enables us to develop a personal authentification system and secure data storage in a highly scattering medium. The authentification is implemented by the correlation between a speckle pattern of the 3D phase object and stored speckle patterns. For secure data storage, absorption distribution is involved in a scattering volume medium. Appropriate user can only reconstruct the absorption distribution by solving inverse problem. Experimental and numerical results are presented to show the effectiveness of the proposed system.
Three dimensional thermal analysis of rocket thrust chambers
NASA Technical Reports Server (NTRS)
Naraghi, M. H. N.; Armstrong, E. S.
1988-01-01
A numerical model for the three dimensional thermal analysis of rocket thrust chambers and nozzles has been developed. The input to the model consists of the composition of the fuel/oxidant mixture and flow rates, chamber pressure, coolant entrance temperature and pressure, dimensions of the engine, materials and the number of nodes in different parts of the engine. The model allows for temperature variation in three dimensions: axial, radial and circumferential directions and by implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties.
Creating three-dimensional lattice patterns using programmable Dammann gratings.
Davis, Jeffrey A; Moreno, Ignacio; Martínez, José Luis; Hernandez, Travis J; Cottrell, Don M
2011-07-10
We demonstrate the creation of a three dimensional (3D) lattice of focus spots using a 3D Dammann grating structure. Such a 3D lattice of focus spots can be used for probing 3D structures or for creating 3D photonic crystal structures in optically sensitive media. Experimental results are included where the patterns are encoded onto a programmable liquid crystal display. We demonstrate the generation of five planar arrays each having 6×6 points surrounding another set of four planar arrays each having 5×5 points with a single pattern. PMID:21743578
Three-dimensional illumination procedure for photodynamic therapy of dermatology
NASA Astrophysics Data System (ADS)
Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya
2014-09-01
Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.
Three dimensional reflectance properties of superconductor-dielectric photonic crystal
NASA Astrophysics Data System (ADS)
Pandey, G. N.; Pandey, J. P.; Pandey, U. K.; Sancheti, Bhagyashree; Ojha, S. P.
2016-05-01
In this present communication, we have studied the optical properties of Photonics Crystals with super conducting constituent using the TMM method for a stratified medium. We also studied the three dimensional reflectance property of superconductor-dielectric photonic crystal at different temperature and thickness. From above study we show that the superconductor-dielectric photonic crystal may be used as broad band reflector and omnidirectional reflector at low temperature below to the critical temperature. Such property may be applied to make of the reflector which can be used in low temperature region.
Three dimensional amorphous silicon/microcrystalline silicon solar cells
Kaschmitter, James L.
1996-01-01
Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.
Three-dimensional "Mercedes-Benz" model for water.
Dias, Cristiano L; Ala-Nissila, Tapio; Grant, Martin; Karttunen, Mikko
2009-08-01
In this paper we introduce a three-dimensional version of the Mercedes-Benz model to describe water molecules. In this model van der Waals interactions and hydrogen bonds are given explicitly through a Lennard-Jones potential and a Gaussian orientation-dependent terms, respectively. At low temperature the model freezes forming Ice-I and it reproduces the main peaks of the experimental radial distribution function of water. In addition to these structural properties, the model also captures the thermodynamical anomalies of water: The anomalous density profile, the negative thermal expansivity, the large heat capacity, and the minimum in the isothermal compressibility. PMID:19673572
Jamming versus caging in three dimensional jamming percolation
NASA Astrophysics Data System (ADS)
Segall, Nimrod; Teomy, Eial; Shokef, Yair
2016-05-01
We investigate a three-dimensional kinetically-constrained model that exhibits two types of phase transitions at different densities. At the jamming density $ \\rho_J $ there is a mixed-order phase transition in which a finite fraction of the particles become frozen, but the other particles may still diffuse throughout the system. At the caging density $ \\rho_C > \\rho_J $, the mobile particles are trapped in finite cages and no longer diffuse. The caging transition occurs due to a percolation transition of the unfrozen sites, and we numerically find that it is a continuous transition with the same critical exponents as random percolation.
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Observation of three dimensional optical rogue waves through obstacles
NASA Astrophysics Data System (ADS)
Leonetti, Marco; Conti, Claudio
2015-06-01
We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.
High-resolution three-dimensional imaging of dislocations.
Barnard, J S; Sharp, J; Tong, J R; Midgley, P A
2006-07-21
Dislocations and their interactions govern the properties of many materials, ranging from work hardening in metals to device pathology in semiconductor laser diodes. However, conventional electron micrographs are simply two-dimensional projections of three-dimensional (3D) structures, and even stereo microscopy cannot reveal the true 3D complexity of defect structures. Here, we describe an electron tomographic method that yields 3D reconstructions of dislocation networks with a spatial resolution three orders of magnitude better than previous work. We illustrate the method's success with a study of dislocations in a GaN epilayer, where dislocation densities of 1010 per square centimeter are common.
Three-dimensional topological insulators on the pyrochlore lattice.
Guo, H-M; Franz, M
2009-11-13
Electrons hopping on the sites of a three-dimensional pyrochlore lattice are shown to form topologically nontrivial insulating phases when the spin-orbit (SO) coupling and lattice distortions are present. Of 16 possible topological classes 9 are realized for various parameters in this model. Specifically, at half-filling an undistorted pyrochlore lattice with a SO term yields a "pristine" strong topological insulator with a Z(2) index (1;000). At quarter filling various strong and weak topological phases are obtained provided that both SO coupling and uniaxial lattice distortion are present. Our analysis suggests that many of the nonmagnetic insulating pyrochlores could be topological insulators.
Three Dimensional Periodic Table of the Elements `Elementouch'
NASA Astrophysics Data System (ADS)
Maeno, Yoshiteru
2010-03-01
A three-dimensional periodic table of the elements `Elementouch', useful in a wide variety of occasions of science education, is introduced. The element names are continuously arranged on three circular surfaces representing the electron orbits of an atom. In this way, the properties of each element in its typical ionic state can be seen more clearly than in the widely-used long period table, introduced in 1905 by Alfred Werner. The Elementouch can be readily made using the patterns downloaded from the following URL: http://www.ss.scphys.kyoto-u.ac.jp/elementouch/index-e.html .
Three-dimensional protonic conductivity in porous organic cage solids.
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y; Little, Marc A; Hasell, Tom; Aldous, Iain M; Brown, Craig M; Smith, Martin W; Morrison, Carole A; Hardwick, Laurence J; Cooper, Andrew I
2016-01-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10(-3) S cm(-1) at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores. PMID:27619230
Three-dimensional solidification and melting using magnetic field control
NASA Technical Reports Server (NTRS)
Dulikravich, George S.; Ahuja, Vineet
1993-01-01
A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.
Modeling of Unsteady Three-dimensional Flows in Multistage Machines
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)
2003-01-01
Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.
Three-dimensional analysis of MHD generators and diffusers
Vanka, S P; Ahluwalia, R K; Doss, E D
1982-03-01
The three-dimensional flow and heat transfer phenomena in MHD channels and diffusers are analyzed by solving the governing partial differential equations for flow and electrical fields. The equation set consists of the mass continuity equation, the three momentum equations, the equations for enthalpy, turbulence kinetic energy and its dissipation rate, and the Maxwell equations. This set of coupled equations is solved by the use of a finite-difference calculation procedure. The turbulence is represented by a two-equation model of turbulence in which partial differential equations are solved for the turbulence kinetic energy and its dissipation rate. Calculations have been performed for Faraday and diagonally-connected channels. Specifically, the AEDC (Faraday) and the UTSI (diagonal) channels have been analyzed, and the results are compared with experimental data. The agreement is fairly good for all the measured quantities. The effects of channel loading on the three-dimensional flow characteristics of Faraday and diagonally-connected generators have been also analyzed. A simple argument is presented to show qualitatively the role of MHD body forces in generating axial vorticity and hence secondary flows in the cross-stream. Calculations have also been made to study the flow evolution in MHD diffusers. The calculations show that the velocity overshoots and secondary flows decay along the diffusers length. Plots of velocity, skin friction and pressure recovery are presented to illustrate the flow development in MHD diffusers.
TWILIGHT: A Cellular Framework for Three-Dimensional Radiative Transfer
NASA Astrophysics Data System (ADS)
Khatami, David; Madore, Barry
2015-01-01
We describe a new framework for solving three-dimensional radiative transfer of arbitrary geometries, including a full characterisation of the wavelength-dependent anisotropic scattering, absorption, and thermal reemission of light by dust. By adopting a cellular approach to discretising the light and dust, the problem can be efficiently solved through a fully deterministic iterative process. As a proof of concept we present TWILIGHT, our implementation of the cellular approach, in order to demonstrate and benchmark the new method. TWILIGHT simultaneously renders over one hundred unique images of a given environment with no additional slowdown, enabling a close study of inclination effects of three-dimensional dust geometries. In addition to qualitative rendering tests, TWILIGHT is successfully tested against two Monte-Carlo radiative transfer benchmarks, producing similar brightness profiles at varying inclinations. With the proof-of-concept established, we describe the improvements and current developments underway using the cellular framework, including a technique to resolve the subgrid physics of dust radiative transfer from micron-scale grain models to kiloparsec-sized dust environments.
Parallel processing a three-dimensional free-lagrange code
Mandell, D.A.; Trease, H.E. )
1989-01-01
A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten version of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.
Three-Dimensional Displays In The Future Flight Station
NASA Astrophysics Data System (ADS)
Bridges, Alan L.
1984-10-01
This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.
Three-dimensional concentration mapping of organic blends
Roehling, John D.; Batenburg, Kees J.; Swain, F. B.; Moule, Adam J.; Arslan, Ilke
2013-05-06
We quantitatively measure the three-dimensional morphology of mixed organic layers using high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM) with electron tomography for the first time. The mixed organic layers used for organic photovoltaic applications have not been previously imaged using STEM tomography as there is insufficient contrast between donor and acceptor components. We generate contrast by substituting fullerenes with endohedral fullerenes that contain a Lu3N cluster within the fullerene cage. The high contrast and signal-to-noise ratio, in combination with use of the discrete algebraic reconstruction technique (DART), allowed us to generate the most detailed and accurate three-dimensional map of BHJ morphology to date. From the STEM tomography reconstructions we determined that three distinct material phases are present within the BHJs. By observation of the changes to morphology and mixing ratio that occur during thermal and solvent annealing, we are able to determine how mutual solubility and fullerene crystallization affect the formation of morphology and long term stability of the material mixture. This material/technique combination shows itself as a powerful tool for examining morphology in detail and allows for observation of nanoscopic changes in local concentration. This research was supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.
Model multilayer structures for three-dimensional cell imaging
NASA Astrophysics Data System (ADS)
Kozole, Joseph; Szakal, Christopher; Kurczy, Michael; Winograd, Nicholas
2006-07-01
The prospects for SIMS three-dimensional analysis of biological materials were explored using model multilayer structures. The samples were analyzed in a ToF-SIMS spectrometer equipped with a 20 keV buckminsterfullerene (C 60+) ion source. Molecular depth information was acquired using a C 60+ ion beam to etch through the multilayer structures at specified time intervals. Subsequent to each individual erosion cycle, static SIMS spectra were recorded using a pulsed C 60+ ion probe. Molecular intensities in sequential mass spectra were monitored as a function of primary ion fluence. The resulting depth information was used to characterize C 60+ bombardment of biological materials. Specifically, molecular depth profile studies involving dehydrated dipalmitoyl-phosphatidylcholine (DPPC) organic films indicate that cell membrane lipid materials do not experience significant chemical damage when bombarded with C 60+ ion fluences greater than 10 15 ions/cm 2. Moreover, depth profile analyses of DPPC-sucrose frozen multilayer structures suggest that biomolecule information can be uncovered after the C 60+ sputter removal of a 20 nm overlayer with no appreciable loss of underlying molecular signal. The experimental results support the potential for three-dimensional molecular mapping of biological materials using cluster SIMS.
Nanoscale Three-Dimensional Imaging of the Human Myocyte
Sulkin, Matthew S.; Yang, Fei; Holzem, Katherine M.; Van Leer, Brandon; Bugge, Cliff; Laughner, Jacob I.; Green, Karen; Efimov, Igor R.
2014-01-01
The ventricular human myocyte is spatially organized for optimal ATP and Ca2+ delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04 ± 0.01), and is composed of long transverse segments with diameters of 317 ± 24 nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50 μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement. PMID:25160725
An image retrieval system for three-dimensional image
NASA Astrophysics Data System (ADS)
Lee, Chu-Hui; Lin, Jin-Shu
2013-07-01
With the progress of the age, the popularization of the computer and the internet, the text, images, photographs and varieties of multimedia will be uploaded to groups of the network space or cloud storage space by users. Thus, the multimedia data and technology have to renew and transfer by user constantly. How to search the images economically is a significant issue. This paper will focus on 3D images for in-depth investigate. It will propose an efficient 3D searching method. The analytical object is used by three-dimensional trademark gallery of the Intellectual Property Office of the Ministry of Economic Affairs, R.O.C. One three-dimensional trademark image expresses by a set of 2D images. This paper uses Harris Corner detection and combines CPDH (contour points distribution histogram) method to extract the shape feature and uses color histogram to refine the color feature. And then, the two features help to retrieve the similar 3D images. Experiment verifies that the method we proposed is effective.
Thermally reversible colloidal gels for three-dimensional chondrocyte culture
Lapworth, James W.; Hatton, Paul V.; Goodchild, Rebecca L.; Rimmer, Stephen
2012-01-01
Healthy cells are required in large numbers to form a tissue-engineered construct and primary cells must therefore be increased in number in a process termed ‘expansion’. There are significant problems with existing procedures, including cell injury and an associated loss of phenotype, but three-dimensional culture has been reported to offer a solution. Reversible gels, which allow for the recovery of cells after expansion would therefore have great value in the expansion of chondrocytes for tissue engineering applications, but they have received relatively little attention to date. In this study, we examined the synthesis and use of thermoresponsive polymers that form reversible three-dimensional gels for chondrocyte cell culture. A series of polymers comprising N-isopropylacrylamide (NIPAM) and styrene was synthesized before studying their thermoresponsive solution behaviour and gelation. A poly(NIPAM-co-styrene-graft-N-vinylpyrrolidone) variant was also synthesized in order to provide increased water content. Both random- and graft-copolymers formed particulate gels above the lower critical solution temperature and, on cooling, re-dissolved to allow enzyme-free cell recovery. Chondrocytes remained viable in all of these materials for 24 days, increased in number and produced collagen type II and glycosaminoglycans. PMID:21775322
Three-Dimensional Turbulent Reconnection Induced by the Plasmoid Instability
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Huang, Y. M.
2014-12-01
It has been established that the Sweet-Parker current layer in high-Lundquist-number reconnection is unstable to the super-Alfvenic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime in which the Sweet-Parker current layer evolves into a chain of plasmoids connected by secondary current sheets and the averaged reconnection rate becomes nearly independent of the Lundquist number. In a three-dimensional configuration with a guide field, the additional degree of freedom allows plasmoid instabilities to grow at oblique angles [S. Baalrud et al. Phys. Plasmas 19, 022101 (2012)] and develop the complex dynamics of flux ropes which overlap, cause field-line stochasticization, and self-generate a turbulent state. Three-dimensional simulations in the high-Lundquist-number regime show the formation of cigar-shaped eddies elongated in the direction of the local magnetic field, which is a signature of anisotropic MHD turbulence. Furthermore, the energy fluctuation spectra are found to satisfy power laws in the inertial range. The averaged 3D reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfven speed, which is an order of magnitude lower than the reconnection rate reported in recent studies of externally driven 3D turbulent reconnection. The physical reasons for these differences will be discussed.
Three Dimensional Culture of Human Renal Cell Carcinoma Organoids
Batchelder, Cynthia A.; Martinez, Michele L.; Duru, Nadire; Meyers, Frederick J.; Tarantal, Alice F.
2015-01-01
Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease. PMID:26317980
Athermally photoreduced graphene oxides for three-dimensional holographic images
NASA Astrophysics Data System (ADS)
Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min
2015-04-01
The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light.
The effect of induced visual stress on three dimensional perception.
Abd-Manan, F
2000-07-01
Previous studies have shown that stress on the vergence and accommodation systems, either artificially induced or naturally occurring, results in small misalignment of the visual axes, reduces binocular visual acuity and produces symptoms of ocular discomfort. This study examines the effect of artificially induced visual stress using ophthalmic prisms on three dimensional perception on 30 optometry students ages ranging from 19 to 29 years old. 6D base-in prisms, equally divided between the eyes (3D base-in each) was used to induce stress on the visual system producing misalignment of visual axes known as fixation disparity. The fixation disparity is quantified using near vision Mallett Unit and an enlarged scaled diagram. Stereoscopic perception was measured with the TNO test, with and without the presence of stress and the results was compared. Wilcoxon's matched pair ranked tests show statistically significant difference in the stereo thresholds of both conditions, p = 0.01 for advancing stereopsis and p = 0.01 for receding stereopsis, respectively. The study concludes that visual stress induced by prisms, produce misalignment of the visual axes and thus reduces three dimensional performance. PMID:22977386
Three dimensional inelastic finite element analysis of laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. H., Jr.; Kamat, M. P.
1980-01-01
Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.
Horseshoe Drag in Three-dimensional Globally Isothermal Disks
NASA Astrophysics Data System (ADS)
Masset, F. S.; Benítez-Llambay, P.
2016-01-01
We study the horseshoe dynamics of a low-mass planet in a three-dimensional, globally isothermal, inviscid disk. We find, as reported in previous work, that the boundaries of the horseshoe region (separatrix sheets) have cylindrical symmetry about the disk’s rotation axis. We interpret this feature as arising from the fact that the whole separatrix sheets have a unique value of Bernoulli’s constant, and that this constant does not depend on altitude, but only on the cylindrical radius, in barotropic disks. We next derive an expression for the torque exerted by the horseshoe region on the planet, or horseshoe drag. Potential vorticity is not materially conserved as in two-dimensional flows, but it obeys a slightly more general conservation law (Ertel’s theorem) that allows an expression for the horseshoe drag identical to the expression in a two-dimensional disk to be obtained. Our results are illustrated and validated by three-dimensional numerical simulations. The horseshoe region is found to be slightly narrower than previously extrapolated from two-dimensional analyses with a suitable softening length of the potential. We discuss the implications of our results for the saturation of the corotation torque, and the possible connection to the flow at the Bondi scale, which the present analysis does not resolve.
Three dimensional visualisation of human facial exposure to solar ultraviolet.
Downs, Nathan; Parisi, Alfio
2007-01-01
A three dimensional computer model of the human face has been developed to represent solar ultraviolet exposures recorded by dosimeter measurements on a manikin headform under low cloud conditions and various solar zenith angles. Additionally, polysulfone dosimeters have been successfully miniaturised to provide the detailed measurements required across the face. The headform used in this research was scanned at 709 individual locations to make a wireframe mesh consisting of 18 vertical contours and 49 horizontal contours covering half the manikin's frontal facial topography. Additionally, the back of the headform and neck have also been scanned at 576 locations. Each scanned location has been used as a viable dosimeter position on the headform and represents a grid intersection point on the developed computer wireframe. A series of exposures recorded by dosimeters have been translated into three dimensional exposure ratio maps, representing ambient solar ultraviolet exposure. High dosimeter density has allowed for the development of individual topographic contour models which take into account complex variation in the face and improve upon previously employed techniques which utilise fewer dosimeters to interpolate exposure across facial contours. Exposure ratios for solar zenith angle ranges of 0 degrees -30 degrees, 30 degrees -50 degrees, and 50 degrees -80 degrees have been developed.
A deterministic method for transient, three-dimensional neutron transport
NASA Astrophysics Data System (ADS)
Goluoglu, Sedat
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable is the improved quasi-static (IQS) method. The position, energy, and angle variables of the neutron flux are computed using the three-dimensional (3-D) discrete ordinates code TORT. The resulting time-dependent, 3-D code is called TDTORT. The flux shape calculated by TORT is used to compute the point kinetics parameters (e.g., reactivity, generation time, etc.). The amplitude function is calculated by solving the point kinetics equations using LSODE (Livermore Solver of Ordinary differential Equations). Several transient 1-D, 2-D, and 3-D benchmark problems are used to verify TDTORT. The results show that methodology and code developed in this work have sufficient accuracy and speed to serve as a benchmarking tool for other less accurate models and codes. More importantly, a new computational tool based on transport theory now exists for analyzing the dynamic behavior of complex neutronic systems.
Development of Three-Dimensional DRAGON Grid Technology
NASA Technical Reports Server (NTRS)
Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.
1999-01-01
For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.
Creation of three-dimensional craniofacial standards from CBCT images
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Palomo, Martin; Hans, Mark
2006-03-01
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
Three-dimensional structure of the {gamma}-secretase complex
Ogura, Toshihiko; Mio, Kazuhiro; Hayashi, Ikuo; Miyashita, Hiroyuki; Iwastubo, Takeshi; Fukuda, Rie; Kopan, Raphael |; Kodama, Tatsuhiko; Hamakubo, Takao; Tomita, Taisuke . E-mail: taisuke@mol.f.u-tokyo.ac.jp; Sato, Chikara . E-mail: ti-sato@aist.go.jp
2006-05-05
{gamma}-Secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-{beta} precursor protein and Notch. {gamma}-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional {gamma}-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of {gamma}-secretase at a resolution of 48 A. The structure occupies a volume of 560 x 320 x 240 A and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that {gamma}-secretase activity resides within a high molecular weight complex.
Venus - Three-Dimensional Perspective View of Alpha Regio
NASA Technical Reports Server (NTRS)
1992-01-01
A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus. Alpha Regio, a topographic upland approximately 1300 kilometers across, is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar. The radar-bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs, and flat-floored fault valleys that, together, form a polygonal outline. Directly south of the complex ridged terrain is a large ovoid-shaped feature named Eve. The radar-bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Ray tracing is used to generate a perspective view from this map. The vertical scale is exaggerated approximately 23 times. Simulated color and a digital elevation map developed by the U. S. Geological Survey are used to enhance small scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall, and Myche McAuley, and is a single frame from the movie released at the March 5, 1991, press conference.
Quantification of collagen contraction in three-dimensional cell culture.
Kopanska, Katarzyna S; Bussonnier, Matthias; Geraldo, Sara; Simon, Anthony; Vignjevic, Danijela; Betz, Timo
2015-01-01
Many different cell types including fibroblasts, smooth muscle cells, endothelial cells, and cancer cells exert traction forces on the fibrous components of the extracellular matrix. This can be observed as matrix contraction both macro- and microscopically in three-dimensional (3D) tissues models such as collagen type I gels. The quantification of local contraction at the micron scale, including its directionality and speed, in correlation with other parameters such as cell invasion, local protein or gene expression, can provide useful information to study wound healing, organism development, and cancer metastasis. In this article, we present a set of tools to quantify the flow dynamics of collagen contraction, induced by cells migrating out of a multicellular cancer spheroid into a three-dimensional (3D) collagen matrix. We adapted a pseudo-speckle technique that can be applied to bright-field and fluorescent microscopy time series. The image analysis presented here is based on an in-house written software developed in the Matlab (Mathworks) programming environment. The analysis program is freely available from GitHub following the link: http://dx.doi.org/10.5281/zenodo.10116. This tool provides an automatized technique to measure collagen contraction that can be utilized in different 3D cellular systems.
Topology of Flow Separation on Three-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Chapman, Gary T.; Yates, Leslie A.
1991-01-01
In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.
Athermally photoreduced graphene oxides for three-dimensional holographic images
Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min
2015-01-01
The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676
Parallelized FVM algorithm for three-dimensional viscoelastic flows
NASA Astrophysics Data System (ADS)
Dou, H.-S.; Phan-Thien, N.
A parallel implementation for the finite volume method (FVM) for three-dimensional (3D) viscoelastic flows is developed on a distributed computing environment through Parallel Virtual Machine (PVM). The numerical procedure is based on the SIMPLEST algorithm using a staggered FVM discretization in Cartesian coordinates. The final discretized algebraic equations are solved with the TDMA method. The parallelisation of the program is implemented by a domain decomposition strategy, with a master/slave style programming paradigm, and a message passing through PVM. A load balancing strategy is proposed to reduce the communications between processors. The three-dimensional viscoelastic flow in a rectangular duct is computed with this program. The modified Phan-Thien-Tanner (MPTT) constitutive model is employed for the equation system closure. Computing results are validated on the secondary flow problem due to non-zero second normal stress difference N2. Three sets of meshes are used, and the effect of domain decomposition strategies on the performance is discussed. It is found that parallel efficiency is strongly dependent on the grid size and the number of processors for a given block number. The convergence rate as well as the total efficiency of domain decomposition depends upon the flow problem and the boundary conditions. The parallel efficiency increases with increasing problem size for given block number. Comparing to two-dimensional flow problems, 3D parallelized algorithm has a lower efficiency owing to largely overlapped block interfaces, but the parallel algorithm is indeed a powerful means for large scale flow simulations.
Horizontal biases in rats' use of three-dimensional space.
Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate
2011-09-23
Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a "layer strategy" in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk, it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part.
MAGNETIC FIELD INTENSIFICATION BY THE THREE-DIMENSIONAL 'EXPLOSION' PROCESS
Hotta, H.; Yokoyama, T.; Rempel, M.
2012-11-01
We investigate an intensification mechanism for the magnetic field near the base of the solar convection zone that does not rely on differential rotation. Such mechanism in addition to differential rotation has been suggested by studies of flux emergence, which typically require field strength in excess of those provided by differential rotation alone. We study here a process in which potential energy of the superadiabatically stratified convection zone is converted into magnetic energy. This mechanism, known as the 'explosion of magnetic flux tubes', has been previously studied in thin flux tube approximation as well as two-dimensional magnetohydrodynamic (MHD) simulations; here we expand the investigation to three-dimensional MHD simulations. Our main result is that enough intensification can be achieved in a three-dimensional magnetic flux sheet as long as the spatial scale of the imposed perturbation normal to the magnetic field is sufficiently large. When this spatial scale is small, the flux sheet tends to rise toward the surface, resulting in a significant decrease of the magnetic field amplification.
Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs
NASA Astrophysics Data System (ADS)
Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.
2006-11-01
Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.
Three-dimensional angular domain optical projection tomography
NASA Astrophysics Data System (ADS)
Ng, Eldon; Vasefi, Fartash; Roumeliotis, Michael; Kaminska, Bozena; Carson, Jeffrey J. L.
2011-03-01
Angular Domain Imaging (ADI) has been previously demonstrated to generate projection images of attenuating targets embedded within a turbid medium. The imaging system employs a silicon micro-tunnel array positioned between the sample and the detection system to reject scattered photons that have deviated from the initial propagation direction and to select for ballistic and quasi-ballistic photons that have retained their forward trajectory. Two dimensional tomographic images can be reconstructed from ADI projections collected at a multitude of angles. The objective of this work was to extend the system to three dimensions by collecting several tomographic images and stacking the reconstructed slices to generate a three dimensional volume representative of the imaging target. A diode laser (808nm, CW) with a beam expander was used to illuminate the sample cuvette. An Angular Filter Array (AFA) of 80 μm × 80 μm square-shaped tunnels 2 cm in length was used to select for image forming quasi-ballistic photons. Images were detected with a linear CCD. Our approach was to use a SCARA robot to rotate and translate the sample to collect sufficient projections to reconstruct a three dimensional volume. A custom designed 3D target consisting of 4 truncated cones was imaged and reconstructed with filtered backprojection and iterative methods. A 0.5 mm graphite rod was used to collect the forward model, while a truncated pseudoinverse was used to approximate the backward model for the iterative algorithm.
Heat transfer in a three-dimensional channel with baffles
Lopez, J.R.; Anand, N.K.; Fletcher, L.S.
1996-08-09
A numerical investigation of laminar forced convective heat transfer was performed in a three-dimensional channel with baffles in which a uniform heat flux was applied to the top and bottom walls, and the sidewalls were considered diabatic. The trade-off between heat transfer enhancement and pressure drop produced by the baffles was studied for periodically fully developed flow (PDF). The numerical analysis was performed using a finite volume approach. The computer code was validated against the experimental results of Goldstein and Kreid and Beavers et al. for a three-dimensional channel without baffles. Parametric runs were made for Reynolds numbers of 150, 250, 350, and 450 for baffle height to channel width ratios (H/D{sub y}) of 0.5, 0.6, 0.7, and 0.8. Heat transfer behavior was studied for Prandtl numbers of 0.7 and 7.0, and for wall thermal conductivity to fluid thermal conductivity ratios (K) of 1, 10, 100, and 1000.
An algebraic turbulence model for three-dimensional viscous flows
NASA Technical Reports Server (NTRS)
Chima, R. V.; Giel, P. W.; Boyle, R. J.
1993-01-01
An algebraic turbulence model is proposed for use with three-dimensional Navier-Stokes analyses. It incorporates features of both the Baldwin-Lomax and Cebeci-Smith models. The Baldwin-Lomax model uses the maximum of a function f(y) to determine length and velocity scales. An analysis of the Baldwin-Lomax model shows that f(y) can have a spurious maximum close to the wall, causing numerical problems and non-physical results. The proposed model uses integral relations to determine delta(*) u(sub e) and delta used in the Cebeci-Smith mode. It eliminates a constant in the Baldwin-Lomax model and determines the two remaining constants by comparison to the Cebeci-Smith formulation. Pressure gradient effects, a new wake model, and the implementation of these features in a three-dimensional Navier-Stokes code are also described. Results are shown for a flat plate boundary layer, an annular turbine cascade, and endwall heat transfer in a linear turbine cascade. The heat transfer results agree well with experimental data which shows large variations in endwall Stanton number contours with Reynolds number.
Direct Volume Rendering with Shading via Three-Dimensional Textures
NASA Technical Reports Server (NTRS)
Van Gelder, Allen; Kim, Kwansik
1996-01-01
A new and easy-to-implement method for direct volume rendering that uses 3D texture maps for acceleration, and incorporates directional lighting, is described. The implementation, called Voltx, produces high-quality images at nearly interactive speeds on workstations with hardware support for three-dimensional texture maps. Previously reported methods did not incorporate a light model, and did not address issues of multiple texture maps for large volumes. Our research shows that these extensions impact performance by about a factor of ten. Voltx supports orthographic, perspective, and stereo views. This paper describes the theory and implementation of this technique, and compares it to the shear-warp factorization approach. A rectilinear data set is converted into a three-dimensional texture map containing color and opacity information. Quantized normal vectors and a lookup table provide efficiency. A new tesselation of the sphere is described, which serves as the basis for normal-vector quantization. A new gradient-based shading criterion is described, in which the gradient magnitude is interpreted in the context of the field-data value and the material classification parameters, and not in isolation. In the rendering phase, the texture map is applied to a stack of parallel planes, which effectively cut the texture into many slabs. The slabs are composited to form an image.
Three-dimensional light trap for reflective particles
Neal, D.R.
1999-08-17
A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.
Three-dimensional light trap for reflective particles
Neal, Daniel R.
1999-01-01
A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.
Three-dimensional protonic conductivity in porous organic cage solids
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.
2016-01-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10−3 S cm−1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores. PMID:27619230
Building on architectural principles for three-dimensional metallosupramolecular construction.
Smulders, Maarten M J; Riddell, Imogen A; Browne, Colm; Nitschke, Jonathan R
2013-02-21
Over the last two decades the field of metallosupramolecular self-assembly has emerged as a promising research area for the development of intricate, three-dimensional structures of increasing complexity and functionality. The advent of this area of research has strongly benefited from design principles that considered the ligand geometry and metal coordination geometry, thus opening up routes towards rationally designed classical (Archimedean or Platonic) architectures. In this tutorial review, we will focus on more recent developments in the design and synthesis of three-dimensional suprastructures which have non-classical architectures (non-Archimedean/Platonic solids) and we will explicitly address the secondary effects responsible for their formation. Three classes of metallosupramolecular assemblies will be discussed: architectures formed through the combination of a single ligand and metal, heteroleptic structures and heterometallic structures. It is hoped that our exposition may suggest how different principles employed in these three classes of structures might be combined to create even greater complexity and potential for function.
Three-dimensional protonic conductivity in porous organic cage solids
NASA Astrophysics Data System (ADS)
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.
2016-09-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 S cm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
Vocal Fold Pathologies and Three-Dimensional Flow Separation Phenomena
NASA Astrophysics Data System (ADS)
Apostoli, Adam G.; Weiland, Kelley S.; Plesniak, Michael W.
2013-11-01
Polyps and nodules are two different pathologies, which are geometric abnormalities that form on the medial surface of the vocal folds, and have been shown to significantly disrupt a person's ability to communicate. Although the mechanism by which the vocal folds self-oscillate and the three-dimensional nature of the glottal jet has been studied, the effect of irregularities caused by pathologies is not fully understood. Examining the formation and evolution of vortical structures created by a geometric protuberance is important, not only for understanding the aerodynamic forces exerted by these structures on the vocal folds, but also in the treatment of the above-mentioned pathological conditions. Using a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, the present investigation considers three-dimensional flow separation induced by a model vocal fold polyp. Building on previous work using skin friction line visualization, both the velocity flow field and wall pressure measurements around the model polyp are presented and compared. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether
NASA Astrophysics Data System (ADS)
Ismail, N. A.; Cartmell, M. P.
2016-03-01
This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.
A three-dimensional structural dissection of Drosophila polytene chromosomes
1995-01-01
We have analyzed the three-dimensional structural details of Drosophila melanogaster polytene chromosome bands and interbands using three- dimensional light microscopy and a novel method of sample preparation that does not involve flattening or stretching the chromosomes. Bands have been visualized in unfixed chromosomes stained with the DNA specific dye 4,6-Diamidino-2-phenylindole (DAPI). Interbands have been visualized using fixed chromosomes that have been immunostained with an antibody to RNA polymerase II. Additionally, these structures have been analyzed using in situ hybridization with probes from specific genetic loci (Notch and white). Bands are seen to be composed of approximately 36 substructural features that measure 0.2-0.4 micron in diameter. We suggest that these substructural features are in fact longitudinal fibers made up of bundles of chromatids. Band shape can be a reproducible characteristic of a particular band and is dependent on the spatial relationship of these bundles, varying from bands with a uniform distribution of bundles to bands with a peripheral concentration of chromatin. Interbands are composed of bundles of chromatids of a similar size and number as those seen in the bands. The distribution of bundles is similar between a band and the neighboring interband, implying that there is a long range organization to the DNA that includes both the coding and the noncoding portions of genes. Finally, we note that the polytene chromosome has a circular shape when viewed in cross section, whether there are one or two homologs present. PMID:7593159
Dali/FSSP classification of three-dimensional protein folds.
Holm, L; Sander, C
1997-01-01
The FSSP database presents a continuously updated structural classification of three-dimensional protein folds. It is derived using an automatic structure comparison program (Dali) for the all-against-all comparison of over 6000 three-dimensional coordinate sets in the Protein Data Bank (PDB). Sequence-related protein families are covered by a representative set of 813 protein chains. Hierachical clustering based on structural similarities yields a fold tree that defines 253 fold classes. For each representative protein chain, there is a database entry containing structure-structure alignments with its structural neighbours in the PDB. The database is accessible online through World Wide Web browsers and by anonymous ftp (file transfer protocol). The overview of fold space and the individual data sets provide a rich source of information for the study of both divergent and convergent aspects of molecular evolution, and define useful test sets and a standard of truth for assessing the correctness of sequence-sequence or sequence-structure alignments.
Confocal fluorescence microscopy and three-dimensional reconstruction.
Wright, S J; Schatten, G
1991-05-01
Several recent technological advances have considerably improved the field of confocal fluorescence microscopy. Improvements in confocal microscope design, new fluorescent probes and indicators, more sensitive imaging devices, and computer advances which allow for data manipulation and storage provide a convenient method to acquire complex three-dimensional (3-D) architectural details which previously were difficult or impossible to obtain from biological specimens. Applications of the laser scanning and tandem scanning confocal microscopes offer the potential for gaining powerful insights into the complex relationship of cellular structure and function. Confocal microscopy generates optical sections free from out-of-focus blur. With the development of new visualization tools to render and display complex 3-D data, a set of optical sections taken at different focal planes can be three-dimensionally reconstructed to create an animated sequence which can reveal latent features of the specimen. The combination of confocal microscopy and 3-D reconstruction provides a powerful new imaging tool to advance knowledge about structural and functional cellular properties as they occur dynamically in three dimensions.
Amplitude interpretation and visualization of three-dimensional reflection data
Enachescu, M.E. )
1994-07-01
Digital recording and processing of modern three-dimensional surveys allow for relative good preservation and correct spatial positioning of seismic reflection amplitude. A four-dimensional seismic reflection field matrix R (x,y,t,A), which can be computer visualized (i.e., real-time interactively rendered, edited, and animated), is now available to the interpreter. The amplitude contains encoded geological information indirectly related to lithologies and reservoir properties. The magnitude of the amplitude depends not only on the acoustic impedance contrast across a boundary, but is also strongly affected by the shape of the reflective boundary. This allows the interpreter to image subtle tectonic and structural elements not obvious on time-structure maps. The use of modern workstations allows for appropriate color coding of the total available amplitude range, routine on-screen time/amplitude extraction, and late display of horizon amplitude maps (horizon slices) or complex amplitude-structure spatial visualization. Stratigraphic, structural, tectonic, fluid distribution, and paleogeographic information are commonly obtained by displaying the amplitude variation A = A(x,y,t) associated with a particular reflective surface or seismic interval. As illustrated with several case histories, traditional structural and stratigraphic interpretation combined with a detailed amplitude study generally greatly enhance extraction of subsurface geological information from a reflection data volume. In the context of three-dimensional seismic surveys, the horizon amplitude map (horizon slice), amplitude attachment to structure and [open quotes]bright clouds[close quotes] displays are very powerful tools available to the interpreter.