NASA Astrophysics Data System (ADS)
Joshi, Prathmesh
To enhance the surface properties of stainless steel, the substrate was coated with a 1μm thick coating of Ti-Nb-N by reactive DC magnetron sputtering at different N2 flow rates, substrate biasing and Nb-Ti ratio. The characterization of the coated samples was performed by the following techniques: hardness by Knoop micro-hardness tester, phase analysis by X-ray Diffraction (XRD), compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS) and adhesion by scratch test. The tribology testing was performed on linearly reciprocating ball-on-plate wear testing machine and wear depth and wear volume were evaluated by white light interferometer. The micro-hardness test yielded appreciable enhancement in the surface hardness with the highest value being 1450 HK. Presence of three prominent phases namely NbN, Nb2N3 and TiN resulted from the XRD analysis. EDS analysis revealed the presence of Ti, Nb and Nitrogen. Adhesion was evaluated on the basis of critical loads for cohesive (Lc1) and adhesive (Lc2) failures with values varying between 7-12 N and 16-25 N respectively, during scratch test for coatings on SS substrates.
Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio
A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less
Quench performance and field quality of FNAL twin-aperture 11 T Nb 3Sn dipole model for LHC upgrades
Stoynev, Stoyan; Andreev, Nikolai; Apollinari, Giorgio; ...
2016-12-07
A 2 m long single-aperture dipole demonstrator and two 1 m long single-aperture models based on Nb 3Sn superconductor have been built and tested at FNAL. The two 1 m long collared coils were then assembled in a twin-aperture Nb 3Sn dipole demonstrator compatible with the LHC main dipole and tested in two thermal cycles. This paper summarizes the quench performance of the FNAL twin-aperture Nb 3Sn 11 T dipole in the temperature range of 1.9-4.5 K. The results of magnetic measurements for one of the two apertures are also presented. Test results are compared to the performance of coilsmore » in a single-aperture configuration. Lastly, a summary of quench propagation studies in both apertures is given.« less
Walk test and school performance in mouth-breathing children.
Boas, Ana Paula Dias Vilas; Marson, Fernando Augusto de Lima; Ribeiro, Maria Angela Gonçalves de Oliveira; Sakano, Eulália; Conti, Patricia Blau Margosian; Toro, Adyléia Dalbo Contrera; Ribeiro, José Dirceu
2013-01-01
In recent decades, many studies on mouth breathing (MB) have been published; however, little is known about many aspects of this syndrome, including severity, impact on physical and academic performances. Compare the physical performance in a six minutes walk test (6MWT) and the academic performance of MB and nasal-breathing (NB) children and adolescents. This is a descriptive, cross-sectional, and prospective study with MB and NB children submitted to the 6MWT and scholar performance assessment. We included 156 children, 87 girls (60 NB and 27 MB) and 69 boys (44 NB and 25 MB). Variables were analyzed during the 6MWT: heart rate (HR), respiratory rate, oxygen saturation, distance walked in six minutes and modified Borg scale. All the variables studied were statistically different between groups NB and MB, with the exception of school performance and HR in 6MWT. MB affects physical performance and not the academic performance, we noticed a changed pattern in the 6MWT in the MB group. Since the MBs in our study were classified as non-severe, other studies comparing the academic performance variables and 6MWT are needed to better understand the process of physical and academic performances in MB children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlachidze, G.; et al.
2016-08-30
The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less
Sensitivity of Nb$$_3$$Sn Rutherford-Type Cables to Transverse Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, E.; Wokas, T.; Zlobin, A. V.
Fermilab is developing high field superconducting magnets for future accelerators based on Nb/sub 3/Sn strands. Testing the critical current of superconducting cables under compression is a means to appraise the performance of the produced magnet. However, these cable tests are expensive and labor-intensive. A fixture to assess the superconducting performance of a Nb/sub 3/Sn strand within a reacted and impregnated cable under pressure was designed and built at Fermilab. Several Rutherford-type cables were fabricated at Fermilab and at LBNL using multifilamentary Nb/sub 3/Sn strands. The sensitivity of Nb/sub 3/Sn to transverse pressure was measured for a number of Nb/sub 3/Snmore » technologies (Modified Jelly Roll, Powder-in-Tube, Internal Tin, and Restack Rod Process). Results on the effect of a stainless steel core in the cable are also shown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, S.; et al.
The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less
Test results of a Nb 3Al/Nb 3Sn subscale magnet for accelerator application
Iio, Masami; Xu, Qingjin; Nakamoto, Tatsushi; ...
2015-01-28
The High Energy Accelerator Research Organization (KEK) has been developing a Nb 3Al and Nb 3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb 3Al cable and the technology acquisition of magnet fabrication with Nb 3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb 3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in amore » minimum-gap common-coil configuration with two Nb 3Al coils sandwiched between two Nb 3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a “bladder and key” technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb 3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb 3Sn coil and 8.2 T in the Nb 3Al coil. The quench characteristics of the magnet were studied.« less
Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC
DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...
2016-12-12
The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.
Ferm, Inga; Lightfoot, Guy; Stevens, John
2013-06-01
To evaluate the auditory brainstem response (ABR) amplitudes evoked by tone pip and narrowband chirp (NB CE-Chirp) stimuli when testing post-screening newborns and to determine the difference in estimated hearing level correction values. Tests were performed with tone pips and NB CE-Chirps at 4 kHz or 1 kHz. The response amplitude, response quality (Fmp), and residual noise were compared for both stimuli. Thirty babies (42 ears) who passed our ABR discharge criterion at 4 kHz following referral from their newborn hearing screen. Overall, NB CE-Chirp responses were 64% larger than the tone pip responses, closer to those evoked by clicks. Fmp was significantly higher for NB CE-Chirps. It is anticipated that there could be significant reductions in test time for the same signal to noise ratio by using NB CE-Chirps when testing newborns. This effect may vary in practice and is likely to be most beneficial for babies with low amplitude ABR responses. We propose that the ABR nHL threshold to eHL correction for NB CE-Chirps should be approximately 5 dB less than the corrections for tone pips at 4 and 1 kHz.
Polarization Control with Piezoelectric and LiNbO3 Transducers
NASA Astrophysics Data System (ADS)
Bradley, E.; Miles, E.; Loginov, B.; Vu, N.
Several Polarization control transducers have appeared on the market, and now automated, endless polarization control systems using these transducers are becoming available. Unfortunately it is not entirely clear what benchmark performance tests a polarization control system must pass, and the polarization disturbances a system must handle are open to some debate. We present quantitative measurements of realistic polarization disturbances and two benchmark tests we have successfully used to evaluate the performance of an automated, endless polarization control system. We use these tests to compare the performance of a system using piezoelectric transducers to that of a system using LiNbO3 transducers.
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...
2018-01-17
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
Al Jabbari, Youssef S; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony M
2008-04-01
The aim of this study was to determine the preload and tensile fracture load values of prosthetic retaining screws after long-term use in vivo compared to unused screws (controls). Additionally, the investigation addressed whether the preload and fracture load values of prosthetic retaining screws reported by the manufacturer become altered after long-term use in vivo. For preload testing, 10 new screws (controls) from Nobel Biocare (NB) and 73 used retaining screws [58 from NB and 15 from Sterngold (SG)] were subjected to preload testing. For tensile testing, eight controls from NB and 58 used retaining screws (46 from NB and 12 from SG) were subjected to tensile testing. Used screws for both tests were in service for 18-120 months. A custom load frame, load cell, and torque wrench setup were used for preload testing. All 83 prosthetic screws were torqued once to 10 Ncm, and the produced preload value was recorded (N) using an X-Y plotter. Tensile testing was performed on a universal testing machine and the resulting tensile fracture load value was recorded (N). Preload and tensile fracture load values were analyzed with 2-way ANOVA and Tukey post-hoc tests. There was a significant difference between preload values for screws from NB and screws from SG (p < 0.001). The preload values for gold alloy screws from NB decreased as the number of years in service increased. There was a significant difference between tensile fracture values for the three groups (gold alloy screws from NB and SG and palladium alloy screws from NB) at p < 0.001. The tensile fracture values for gold alloy screws from NB and SG decreased as the number of years in service increased. In fixed detachable hybrid prostheses, perhaps as a result of galling, the intended preload values of prosthetic retaining screws may decrease with increased in-service time. The reduction of the fracture load value may be related to the increase of in-service time; however, the actual determination of this relationship is not possible from this study alone.
NASA Astrophysics Data System (ADS)
Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev
2011-09-01
This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.
Analysis of Nb 3Sn surface layers for superconducting radio frequency cavity applications
Becker, Chaoyue; Posen, Sam; Groll, Nickolas; ...
2015-02-23
Here, we present an analysis of Nb 3Sn surface layers grown on a bulk Nb coupon prepared at the same time and by the same vapor diffusion process used to make Nb 3Sn coatings on 1.3 GHz Nb cavities. Tunneling spectroscopy reveal a well developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 ± 0.4 meV and superconducting critical temperature's (T c) up to 16.3K. Transmission electron microscopy (TEM) performed on cross sections of the sample's surface shows a ~ 2 microns thick Nb 3Sn surface layer. The elemental composition map exhibitsmore » a Nb:Sn ratio of 3:1 with buried substoichiometric regions with a ratio of 5:1. Synchrotron diffraction experiments indicate a polycrystalline Nb 3Sn film and confirm the presence of Nb rich regions that occupies about a third of the coating volume. These low T c regions could play an important role in the dissipation mechanisms occurring during RF tests of Nb 3Sn -coated Nb cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.« less
The CERAD Neuropsychological Battery in Patients with Frontotemporal Lobar Degeneration
Haanpää, Ramona M.; Suhonen, Noora-Maria; Hartikainen, Päivi; Koivisto, Anne M.; Moilanen, Virpi; Herukka, Sanna-Kaisa; Hänninen, Tuomo; Remes, Anne M.
2015-01-01
Background/Aims The diagnosis of frontotemporal lobar degeneration (FTLD) is based on neuropsychological examination in addition to clinical symptoms and brain imaging. There is no simple, validated, cognitive tool available in screening for FTLD. The Consortium to Establish a Registry for Alzheimer's Disease neuropsychological battery (CERAD-NB) was originally devised to identify the early cognitive changes related to Alzheimer's disease (AD). Our aim was to investigate the utility of the CERAD-NB in FTLD. Methods Patients with FTLD (n = 95) and AD (n = 90) were assessed with the CERAD-NB, Trail Making Test parts A and B and single-letter Phonemic Fluency. Results FTLD patients were more severely impaired in the Verbal Fluency subtest in the CERAD-NB and Trail Making Test part A compared to AD patients. In addition, AD patients were more impaired in memory subtests compared to FTLD patients. Conclusion The CERAD-NB may be a useful tool in screening for FTLD. Impaired performance in Verbal Fluency with moderately well-preserved Delayed Recall and Memory Tests may help in identifying patients with probable FTLD and discriminating FTLD from AD. Adding the Trail Making Test to the battery might enhance its value as a screening instrument for FTLD. PMID:25999981
NASA Astrophysics Data System (ADS)
Johnson, Ian D.; Blagovidova, Ekaterina; Dingwall, Paul A.; Brett, Dan J. L.; Shearing, Paul R.; Darr, Jawwad A.
2016-09-01
High power, phase-pure Nb-doped LiFePO4 (LFP) nanoparticles are synthesised using a pilot-scale continuous hydrothermal flow synthesis process (production rate of 6 kg per day) in the range 0.01-2.00 at% Nb with respect to total transition metal content. EDS analysis suggests that Nb is homogeneously distributed throughout the structure. The addition of fructose as a reagent in the hydrothermal flow process, followed by a post synthesis heat-treatment, affords a continuous graphitic carbon coating on the particle surfaces. Electrochemical testing reveals that cycling performance improves with increasing dopant concentration, up to a maximum of 1.0 at% Nb, for which point a specific capacity of 110 mAh g-1 is obtained at 10 C (6 min for the charge or discharge). This is an excellent result for a high power cathode LFP based material, particularly when considering the synthesis was performed on a large pilot-scale apparatus.
Yco, Lisette P; Geerts, Dirk; Mocz, Gabor; Koster, Jan; Bachmann, André S
2015-06-21
Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively suppress tumor growth and prevent relapse with more efficacy are urgently needed. We and others previously showed that polyamines (PA) like spermidine and spermine are essential for NB tumorigenesis and that DFMO, an inhibitor of the key PA synthesis gene product ODC, is effective both in vitro and in vivo, securing its evaluation in NB clinical trials. To find additional compounds interfering with PA biosynthesis, we tested sulfasalazine (SSZ), an FDA-approved salicylate-based anti-inflammatory and immune-modulatory drug, recently identified to inhibit sepiapterin reductase (SPR). We earlier presented evidence for a physical interaction between ODC and SPR and we showed that RNAi-mediated knockdown of SPR expression significantly reduced native ODC enzyme activity and impeded NB cell proliferation. Human NB mRNA expression datasets in the public domain were analyzed using the R2 platform. Cell viability, isobologram, and combination index analyses as a result of SSZ treatment with our without DFMO were carried out in NB cell cultures. Molecular protein-ligand docking was achieved using the GRAMM algorithm. Statistical analyses were performed with the Kruskal-Wallis test, 2log Pearson test, and Student's t test. In this study, we show the clinical relevance of SPR in human NB tumors. We found that high SPR expression is significantly correlated to unfavorable NB characteristics like high age at diagnosis, MYCN amplification, and high INSS stage. SSZ inhibits the growth of NB cells in vitro, presumably due to the inhibition of SPR as predicted by computational docking of SSZ into SPR. Importantly, the combination of SSZ with DFMO produces synergistic antiproliferative effects in vitro. The results suggest the use of SSZ in combination with DFMO for further experiments, and possible prioritization as a novel therapy for the treatment of NB patients.
Round Robin Test of Residual Resistance Ratio of Nb$$_3$$Sn Composite Superconductors
Matsushita, Teruo; Otabe, Edmund Soji; Kim, Dong Ho; ...
2017-12-07
A round robin test of residual resistance ratio (RRR) was performed for Nb 3Sn composite superconductors prepared by internal tin method by six institutes with the international standard test method described in IEC 61788-4. It was found that uncertainty mainly resulted from determination of the cryogenic resistance from the intersection of two straight lines drawn to fit the voltage vs. temperature curve around the resistive transition. As a result, the measurement clarified that RRR can be measured with expanded uncertainty not larger than 5% with the coverage factor 2 by using this test method.
Round Robin Test of Residual Resistance Ratio of Nb$$_3$$Sn Composite Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Teruo; Otabe, Edmund Soji; Kim, Dong Ho
A round robin test of residual resistance ratio (RRR) was performed for Nb 3Sn composite superconductors prepared by internal tin method by six institutes with the international standard test method described in IEC 61788-4. It was found that uncertainty mainly resulted from determination of the cryogenic resistance from the intersection of two straight lines drawn to fit the voltage vs. temperature curve around the resistive transition. As a result, the measurement clarified that RRR can be measured with expanded uncertainty not larger than 5% with the coverage factor 2 by using this test method.
De la Calle, J L; Mena, M A; González-Escalada, J R; Paíno, C L
2002-11-30
Intrathecal grafting of cells as biological pumps to deliver monoamines, endorphins, and/or trophic factors, has been shown to be effective in treating chronic pain both in experimental animals and in clinical trials. We have tested whether intrathecal implantation of neuroblastoma cells reduces heat hyperalgesia and cold allodynia in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. Behavioral tests and cerebrospinal fluid (CSF) collection were performed before CCI, 1 week later (after which, vehicle or NB69 cells were intrathecally injected) and at 4, 7, and 14 days post-injection. Both CSF sampling and injection of the cells were performed by direct lumbar puncture. Intrathecal grafting of 4 x 10(6) NB69 neuroblastoma cells reduced to basal levels the nociceptive response to heat in nerve-injured hindpaws, while the response of control limbs remained unchanged. Similarly, the allodynic response to cold elicited by acetone evaporation decreased in the animals implanted with NB69 cells. An increase in the concentrations of dopamine and serotonin metabolites of around 150% was observed in the CSF of animals that received grafts of NB69 cells. These data suggest that the monoamines released by NB69 cells in the intrathecal space produce analgesia to neuropathic pain in rats. Copyright 2002 Elsevier Science Inc.
NASA Astrophysics Data System (ADS)
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-01
Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2 -•, and OH• active species dominate the photodegradation of methyl orange.
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-23
Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.
Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films
NASA Astrophysics Data System (ADS)
Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing
2017-08-01
Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.
Very high-current-density Nb/AlN/Nb tunnel junctions for low-noise submillimeter mixers
NASA Astrophysics Data System (ADS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-04-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high-current-density Nb/AlN/Nb tunnel junctions (Jc≈30 kA cm-2). The junctions have low-resistance-area products (RNA≈5.6 Ω μm2), good subgap-to-normal resistance ratios Rsg/RN≈10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that ωRNC=1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlOx/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected double-sideband receiver noise temperature of TRX=110 K at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing rf loss in the tuning circuits.
The CERAD Neuropsychological Test Battery: norms from a Yoruba-speaking Nigerian sample.
Guruje, O; Unverzargt, F W; Osuntokun, B O; Hendrie, H C; Baiyewu, O; Ogunniyi, A; Hali, K S
1995-01-01
One-hundred normal, healthy, Yoruba-speaking Nigerian men and women aged 65 and above completed the Consortium to establish a Registry for Alzheimer's Disease-Neuropsychological Battery (CERAD-NB), a cognitive screening battery used in the evaluation of elderly patients with suspected dementia. Correlational analyses indicated pervasive education-influences on test performance. Gender-effects on the CERAD-NB were accounted for by education and there were essentially no age-effects. Education-stratified normative data are presented for all tests. Factor analysis revealed a one factor solution which accounted for 54.7% of the variance.
Quench Protection Studies of 11T Nb$$_3$$Sn Dipole Models for LHC Upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred
CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.
Low-temperature mechanical properties of superconducting radio frequency cavity materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Kim, Sang-Ho; Mammosser, John
2009-01-01
Low temperature mechanical behaviors have been investigated for the constituent materials of superconducting radio frequency cavities. Test materials consist of small grain Nb, single crystal Nb, large grain Nb (bicrystal), Ti45Nb-Nb weld joint (e-beam welded), and Ti-316L bimetal joint (explosion welded). The strength of all test metals displayed strong temperature dependence and the Ti-316L bimetal showed the highest strength and lowest ductility among the test materials. The fracture toughness of the small grain Nb metals decreased with decreasing test temperature and reached the lower shelf values (30 40 MPa m) at or above 173 K. The Ti45Nb base and Ti45Nb-Nbmore » weld metals showed much higher fracture toughness than the small grain Nb. An extrapolation and comparison with existing data showed that the fracture toughness of the small grain Nb metals at 4 K was expected to be similar to those at 173 K and 77 K. The results from optical photography at a low magnification and fractography by a scanning electron microscope were consistent with corresponding mechanical properties.« less
Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong
2017-07-01
In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance such as high chemical stability, good wear resistance performance and low elastic modulus, moderate strength, it is considered an alternative material as dental implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Correlation between the oxide impedance and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys
NASA Astrophysics Data System (ADS)
Park, Sang-Yoon; Lee, Myung-Ho; Jeong, Yong-Hwan; Jung, Youn-Ho
2004-12-01
The correlation between the oxide impedance and corrosion behavior of two series of Zr-Nb-Sn-Fe-Cu alloys was evaluated. Corrosion tests were performed in a 70 ppm LiOH aqueous solution at 360°C for 300 days. The results of the corrosion tests revealed that the corrosion behavior of the alloys depended on the Nb and Sn content. The impedance characteristics for the pre- and post-transition oxide layers formed on the surface of the alloys were investigated in sulfuric acid at room temperature. From the results, a pertinent equivalent circuit model was preferably established, explaining the properties of double oxide layers. The impedance of the oxide layers correlated with the corrosion behavior; better corrosion resistance always showed higher electric resistance for the inner layers. It is thus concluded that a pertinent equivalent circuit model would be useful for evaluating the long-term corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys.
NASA Astrophysics Data System (ADS)
Cai, Song
Zr-2.5Nb is currently used for pressure tubes in the CANDU (CANada Deuterium Uranium) reactor. A complete understanding of the deformation mechanism of Zr-2.5Nb is important if we are to accurately predict the in-reactor performance of pressure tubes and guarantee normal operation of the reactors. This thesis is a first step in gaining such an understanding; the deformation mechanism of ZrNb alloys at room temperature has been evaluated through studying the effect of texture and microstructure on deformation. In-situ neutron diffraction was used to monitor the evolution of the lattice strain of individual grain families along both the loading and Poisson's directions and to track the development of interphase and intergranular strains during deformation. The following experiments were carried out with data interpreted using elasto-plastic modeling techniques: (1) Compression tests of a 100%betaZr material at room temperature. (2) Tension and compression tests of hot rolled Zr-2.5Nb plate material. (3) Compression of annealed Zr-2.5Nb. (4) Cyclic loading of the hot rolled Zr-2.5Nb. (5) Compression tests of ZrNb alloys with different Nb and oxygen contents. The experimental results were interpreted using a combination of finite element (FE) and elasto-plastic self-consistent (EPSC) models. The phase properties and phase interactions well represented by the FE model, the EPSC model successfully captured the evolution of intergranular constraint during deformation and provided reasonable estimates of the critical resolved shear stress and hardening parameters of different slip systems under different conditions. The consistency of the material parameters obtained by the EPSC model allows the deformation mechanism at room temperature and the effect of textures and microstructures of ZrNb alloys to be understood. This work provides useful information towards manufacturing of Zr-2.5Nb components and helps in producing ideal microstructures and material properties for pressure tubes. Also it is helpful in guiding the development of new materials for the next generation of nuclear reactors. Furthermore, the large data set obtained from this study can be used in evaluation and improving current and future polycrystalline deformation models.
Current Progress in Fabrication of a 14 Tesla Nb3Sn Dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie, III; Benson, Christopher; Damborsky, Kyle; Diaczenko, Nick; Elliott, Tim; Garrison, Ray; Jaisle, Andrew; McInturff, Alfred; McIntyre, Peter; Sattarov, Dior
2012-03-01
The Accelerator Technology Laboratory at Texas A&M is fabricating a model dipole magnet, TAMU3, designed to operate at a 14 Tesla bore field. The dipole employs an advanced internal-tin Nb3Sn/Cu composite strand with enhanced current density. The coils must be processed through a heat treatment after winding, during which the Sn within the heterogeneous strands diffuse into the Cu/Nb matrix to form high-performance superconducting layers. Heat treatment of the first coil assembly revealed tin leakage from the Sn cores that was caused by omission of a pre-anneal step in the heat treatment. We are evaluating the electrical properties of the coil, the microstructure and short-sample superconducting performance of cut-off samples of current leads to determine the extent of damage to the performance of the windings. Results of those tests and plans for construction of TAMU3 will be presented.
FEMCAM Analysis of SULTAN Test Results for ITER Nb3SN Cable-conduit Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhu Zhai, Pierluigi Bruzzone, Ciro Calzolaio
2013-03-19
Performance degradation due to filament fracture of Nb3 Sn cable-in-conduit conductors (CICCs) is a critical issue in large-scale magnet designs such as ITER which is currently being constructed in the South of France. The critical current observed in most SULTAN TF CICC samples is significantly lower than expected and the voltage-current characteristic is seen to have a much broader transition from a single strand to the CICC. Moreover, most conductors exhibit the irreversible degradation due to filament fracture and strain relaxation under electromagnetic cyclic loading. With recent success in monitoring thermal strain distribution and its evolution under the electromagnetic cyclicmore » loading from in situ measurement of critical temperature, we apply FEMCAM which includes strand filament breakage and local current sharing effects to SULTAN tested CICCs to study Nb3 Sn strain sensitivity and irreversible performance degradation. FEMCAM combines the thermal bending effect during cool down and the EM bending effect due to locally accumulating Lorentz force during magnet operation. It also includes strand filament fracture and related local current sharing for the calculation of cable n value. In this paper, we model continuous performance degradation under EM cyclic loading based on strain relaxation and the transition broadening upon cyclic loading to the extreme cases seen in SULTAN test data to better quantify conductor performance degradation.« less
NASA Astrophysics Data System (ADS)
Li, J.
2010-01-01
High-sensitivity superconducting SIS (superconductor-insulator-superconductor) mixers are playing an increasingly important role in the terahertz (THz) astronomical observation, which is an emerging research frontier in modern astrophysics. Superconducting SIS mixers with niobium (Nb) tunnel junctions have reached a sensitivity close to the quantum limit, but have a frequency limit about 0.7 THz (i.e., gap frequency of Nb tunnel junctions). Beyond this frequency Nb superconducting films will absorb energetic photons (i.e., energy loss) to break Cooper pairs, thereby resulting in significant degradation of the mixer performance. Therefore, it is of particular interest to develop THz superconducting SIS mixers incorporating tunnel junctions with a larger energy gap. Niobium-nitride (NbN) superconducting tunnel junctions have been long known for their large energy gap, almost double that of Nb ones. With the introduction of epitaxially grown NbN films, the fabrication technology of NbN superconducting tunnel junctions has been considerably improved in the recent years. Nevertheless, their performances are still not as good as Nb ones, and furthermore they are not yet demonstrated in real astronomical applications. Given the facts mentioned above, in this paper we systematically study the quantum mixing behaviors of NbN superconducting tunnel junctions in the THz regime and demonstrate an astronomical testing observation with a 0.5 THz superconducting SIS mixer developed with NbN tunnel junctions. The main results of this study include: (1) successful design and fabrication of a 0.4˜0.6 THz waveguide mixing circuit with the high-dielectric-constant MgO substrate; (2) successful fabrication of NbN superconducting tunnel junctions with the gap voltage reaching 5.6 mV and the quality factor as high as 15; (3) demonstration of a 0.5 THz waveguide NbN superconducting SIS mixer with a measured receiver noise temperature (no correction) as low as five times the quantum limit (5hω/kB), which is the best among NbN superconducting SIS mixers developed in this frequency band; (4) demonstration of high sensitivity for NbN superconducting SIS mixers operated at temperatures as high as 10 K, and demonstration of much less interference resulting from the Josephson effect; (5) demonstration of the first astronomical observation ever done with an NbN superconducting SIS mixer. This study has provided further understanding of the quantum mixing behaviors of NbN superconducting SIS mixers. It has been demonstrated that NbN superconducting SIS mixers can reach nearly quantum-limited sensitivity and have good stability. Furthermore, NbN superconducting SIS mixers have less stringent requirement for cooling and magnetic field compared with Nb ones. Hence they can be used in astronomical applications, especially for space-borne projects and complex systems such as multi-beam receivers.
Thermal-hydraulic analysis of the coil test facility for CFETR.
Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang
2016-01-01
Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.
Reactive eutectic brazing of nitinol
NASA Astrophysics Data System (ADS)
Low, Ke-Bin
Although NiTiNb alloys are well known as wide-hysteresis shape-memory alloys with important applications as coupling materials, the significance of one aspect of the Ni-Ti-Nb ternary system has not been fully appreciated. Based on the existence of a quasibinary NiTi-Nb eutectic isopleth in this ternary system, a novel braze method has been devised to fabricate metallurgical bonds between functional nitinol (NiTi) sections. When NiTi and pure Nb are brought into contact at temperatures above 1170°C, spontaneous melting occurs, forming a liquid that is extremely reactive and not only wets NiTi surfaces, but also apparently dissolves oxide scales, obviating the need for fluxes and providing for efficient capillary flow into joint crevices. The melting process is diffusion-controlled and rate-limited by the diffusivity of Nb in the liquid. The braze liquid will subsequently solidify into microstructures containing predominantly ordered NiTi and disordered bcc-Nb. Mechanical tests revealed that the braze joints are strong, ductile, and biocompatible. With appropriate post-braze aging, the functional performance of the parent NiTi alloy can be restored. Micro-alloying the Nb fluer metal with Zr or tungsten showed great potential for solution-strengthening of the braze joints. For applications where biocompatibility is not an issue, Nb metal can be substituted by pure vanadium as the braze filler, which is demonstrated to possess tensile strengths that can be potentially superior to the Nb counterparts.
Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers
NASA Technical Reports Server (NTRS)
Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.
2000-01-01
We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.
Effect of an applied magnetic field on the performance of a SIS receiver near 300 GHz
NASA Technical Reports Server (NTRS)
Mallison, W. H.; De Zafra, R. L.
1992-01-01
A superconductor-insulator-superconductor (SIS) receiver has been successfully constructed and tested for operation at 265 - 280 GHz using 1 micron/sq area Nb-AlO(x)-Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. It is found that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable dc bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. The improvement in the intermediate frequency output stability with progressively increasing magnetic fields is illustrated.
Sidarovich, Viktoryia; De Mariano, Marilena; Aveic, Sanja; Pancher, Michael; Adami, Valentina; Gatto, Pamela; Pizzini, Silvia; Pasini, Luigi; Croce, Michela; Parodi, Federica; Cimmino, Flora; Avitabile, Marianna; Emionite, Laura; Cilli, Michele; Ferrini, Silvano; Pagano, Aldo; Capasso, Mario; Quattrone, Alessandro; Tonini, Gian Paolo; Longo, Luca
2018-04-25
Novel druggable targets have been discovered in neuroblastoma (NB), paving the way for more effective treatments. However, children with high-risk NB still show high mortality rates prompting for a search of novel therapeutic options. Here, we aimed at repurposing FDA-approved drugs for NB treatment by performing a high-content screening of a 349 anti-cancer compounds library. In the primary screening we employed three NB cell lines, grown as 3D multicellular spheroids, which were treated with 10 μM of the library compounds for 72 hours. The viability of 3D spheroids was evaluated using a high-content imaging approach, resulting in a primary hit list of 193 compounds. We selected 60 FDA-approved molecules and prioritized drugs with multi-target activity, discarding those already in use for NB treatment or enrolled in NB clinical trials. Hence, 20 drugs were further tested for their efficacy in inhibiting NB cell viability, both in 2D and 3D models. Dose-response curves were then supplemented with the data on side-effects, therapeutic index and molecular targets, suggesting two multiple tyrosine kinase inhibitors, ponatinib and axitinib, as promising candidates for repositioning in NB. Indeed, both drugs showed induction of cell cycle block and apoptosis, as well as inhibition of colony formation. However, only ponatinib consistently affected migration and inhibited invasion of NB cells. Finally, ponatinib also proved effective inhibition of tumor growth in orthotopic NB mice, providing the rationale for its repurposing in NB therapy. Copyright ©2018, American Association for Cancer Research.
Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery.
Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S; Pusey, Marc L; Aygün, Ramazan S
2014-03-01
In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.
Jeong, Yong-Hoon; Choe, Han-Cheol
2015-01-01
The aim of this study was to investigate the electrochemical characteristics of nano crystallized Si-HA coating on Ti-Nb-Zr alloy after human osteoblast like (HOB) cell attachment. The Ti-Nb-Zr alloy was manufactured with 35 wt.% of Nb and 10 wt.% of Zr by arc melting furnace to appropriate physical properties as biomaterials. The HA and Si-substituted coatings were prepared by electron-beam physical vapor deposition method with 0.5, 0.8 and 1.2 wt.% of Si contents, and nano aging treatment was performed 500 degrees C for 1 h. The characteristics of coating surface were analyzed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. To evaluate of cell attachment on cell cultured surface, the potentiodynamic test was performed on the surface using HOB cells. The results showed that the Si-HA coating surface showed higher tendency of cell attachment than that of single HA coating, corrosion resistance value was increased by dense of cell attachment.
Development and fabrication of insulator seals for thermionic diodes
NASA Technical Reports Server (NTRS)
Poirier, V. L.
1972-01-01
Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation.
In vivo testing of porous Ti-25Nb alloy serving as a femoral stem prosthesis in a rabbit model
Weng, Xiaojun; Yang, Hailin; Xu, Jian; Li, Xiaosheng; Liao, Qiande; Wang, Jing
2016-01-01
The aim of the present study was to observe the performance of Ti-25Nb alloys with various porosities as femoral stem prostheses in a rabbit model, thus providing basic experimental evidence for the development of porous prostheses. The porous Ti-25Nb alloy prostheses were designed according to the morphology of the medullary cavity. These prostheses were placed into the femoral medullary cavities in 36 New Zealand white rabbits. Postoperative X-ray films, scanning electron microscopy (SEM) of the implant interface, energy-dispersive spectroscopy (EDS) analysis of the implant surface, pulling-out test and general observations were conducted. The specimens showed good biocompatibility; there was no obvious bone absorption in porous Ti-25Nb specimens with different porosities at different time points observed using X-ray films. Under SEM examination, calcium deposits were observed inside the pores and in the interface between bone and prostheses. The EDS analysis demonstrated that calcium deposits were present on the surface of the prostheses at the eight-week point postoperatively. The pulling-out test showed good bonding strength between bone and implant; after pulling out, the surface and inside the pores of the prostheses all presented bone mass. Porous Ti-25Nb alloy implants presents good biocompatibility as well as providing a biological fixation between the bone and implant. A porosity of 70% is more advantageous to the newborn bone ingrowth, combined with achieving a more solid bone-implant interface. PMID:27602063
Frequency optimization in the eddy current test for high purity niobium
NASA Astrophysics Data System (ADS)
Joung, Mijoung; Jung, Yoochul; Kim, Hyungjin
2017-01-01
The eddy current test (ECT) is frequently used as a non-destructive method to check for the defects of high purity niobium (RRR300, Residual Resistivity Ratio) in a superconducting radio frequency (SRF) cavity. Determining an optimal frequency corresponding to specific material properties and probe specification is a very important step. The ECT experiments for high purity Nb were performed to determine the optimal frequency using the standard sample of high purity Nb having artificial defects. The target depth was considered with the treatment step that the niobium receives as the SRF cavity material. The results were analysed via the selectivity that led to a specific result, depending on the size of the defects. According to the results, the optimal frequency was determined to be 200 kHz, and a few features of the ECT for the high purity Nb were observed.
NASA Astrophysics Data System (ADS)
Kim, Hyun Sung
Superconducting radio frequency (SRF) cavities represent a well established technology benefiting from some 40 years of research and development. An increasing demand for electron and positron accelerators leads to a continuing interest in improved cavity performance and fabrication techniques. Therefore, several seamless cavity fabrication techniques have been proposed for eliminating the multitude of electron-beam welded seams that contribute to the introduction of performance-reducing defects. Among them, hydroforming using hydraulic pressure is a promising fabrication technique for producing the desired seamless cavities while at the same time reducing manufacturing cost. This study focused on experimental and numerical analysis of hydroformed niobium (Nb) tubes for the successful application of hydroforming technique to the seamless fabrication of multi-cell SRF cavities for particle acceleration. The heat treatment, tensile testing, and bulge testing of Cu and Nb tubes has been carried out to both provide starting data for models of hydroforming of Nb tube into seamless SRF cavities. Based on the results of these experiments, numerical analyses using finite element modeling were conducted for a bulge deformation of Cu and Nb. In the experimental part of the study samples removed from representative tubes were prepared for heat treatment, tensile testing, residual resistance ratio (RRR) measurement, and orientation imaging electron microscopy (OIM). After being optimally heat treated Cu and Nb tubes were subjected to hydraulic bulge testing and the results analyzed. For numerical analysis of hydroforming process, two different simulation approaches were used. The first model was the macro-scale continuum model using the constitutive equations (stress-strain relationship) as an input of the simulation. The constitutive equations were obtained from the experimental procedure including tensile and tube bulge tests in order to investigate the influence of loading condition on deformation behavior. The second model was a multi-scale model using both macroscopic continuum model and microscopic crystal plasticity (CP) model: First, the constitutive equation was obtained from the other microscopic simulation model (CP-FEM) using the microstructural information (i.e., orientation) of materials from the OIM and simple tensile test data. Continuum FE analysis based on the obtained constitutive equation using CP model were then fulfilled. Several conclusions can be drawn on the basis of the experimental and numerical analysis as follows: 1) The stress-strain relationship from the bulge test represents a more accurate description of the deformation behavior for a hydroforming than that from tensile tests made on segments cut from the tubular materials. 2) For anisotropic material, the incorporation of anisotropic effects using anisotropy coefficient from the tensile test led to even more accurate results. 3) A multi-scale simulation strategy using combination of continuum and CP models can give high quality predictions of the deformation under hydroforming of Cu and Nb tubes.
Irradiation testing of high density uranium alloy dispersion fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, S.L.; Trybus, C.L.; Meyer, M.K.
1997-10-01
Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups ofmore » 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.« less
Test results of the LARP Nb$$_3$$Sn quadrupole HQ03a
DiMarco, J.; G. Ambrosio; Chlachidze, G.; ...
2016-03-09
The US LHC Accelerator Research Program (LARP) has been developingmore » $$Nb_3Sn$$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. Furthermore, this paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.« less
Multipacting simulation and test results of BNL 704 MHz SRF gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu W.; Belomestnykh, S.; Ben-Zvi, I.
The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab,more » and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.« less
Progressing in cable-in-conduit for fusion magnets: from ITER to low cost, high performance DEMO
NASA Astrophysics Data System (ADS)
Uglietti, D.; Sedlak, K.; Wesche, R.; Bruzzone, P.; Muzzi, L.; della Corte, A.
2018-05-01
The performance of ITER toroidal field (TF) conductors still have a significant margin for improvement because the effective strain between ‑0.62% and ‑0.95% limits the strands’ critical current between 15% and 45% of the maximum achievable. Prototype Nb3Sn cable-in-conduit conductors have been designed, manufactured and tested in the frame of the EUROfusion DEMO activities. In these conductors the effective strain has shown a clear improvement with respect to the ITER conductors, reaching values between ‑0.55% and ‑0.28%, resulting in a strand critical current which is two to three times higher than in ITER conductors. In terms of the amount of Nb3Sn strand required for the construction of the DEMO TF magnet system, such improvement may lead to a reduction of at least a factor of two with respect to a similar magnet built with ITER type conductors; a further saving of Nb3Sn is possible if graded conductors/windings are employed. In the best case the DEMO TF magnet could require fewer Nb3Sn strands than the ITER one, despite the larger size of DEMO. Moreover high performance conductors could be operated at higher fields than ITER TF conductors, enabling the construction of low cost, compact, high field tokamaks.
Understanding Irreversible Degradation of Nb3Sn Wires with Fundamental Fracture Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Yuhu; Calzolaio, Ciro; Senatore, Carmine
2014-08-01
Irreversible performance degradation of advanced Nb3Sn superconducting wires subjected to transverse or axial mechanical loading is a critical issue for the design of large-scale fusion and accelerator magnets such as ITER and LHC. Recent SULTAN tests indicate that most cable-in-conduit conductors for ITER coils made of Nb3Sn wires processed by various fabrication techniques show similar performance degradation under cyclic loading. The irreversible degradation due to filament fracture and local strain accumulation in Nb3Sn wires cannot be described by the existing strand scaling law. Fracture mechanic modeling combined with X-ray diffraction imaging of filament micro-crack formation inside the wires under mechanicalmore » loading may reveal exciting insights to the wire degradation mechanisms. We apply fundamental fracture mechanics with a singularity approach to study influence of wire filament microstructure of initial void size and distribution to local stress concentration and potential crack propagation. We report impact of the scale and density of the void structure on stress concentration in the composite wire materials for crack initiation. These initial defects result in an irreversible degradation of the critical current beyond certain applied stress. We also discuss options to minimize stress concentration in the design of the material microstructure for enhanced wire performance for future applications.« less
Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z
NASA Technical Reports Server (NTRS)
Ellis, David L.; Michal, Gary M.
1996-01-01
A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.
Evaluation of Semi-supervised Learning for Classification of Protein Crystallization Imagery
Sigdel, Madhav; Dinç, İmren; Dinç, Semih; Sigdel, Madhu S.; Pusey, Marc L.; Aygün, Ramazan S.
2015-01-01
In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset. PMID:25914518
Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.
Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng
2018-05-21
Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.
NASA Astrophysics Data System (ADS)
Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun
2018-02-01
Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.
Improvement of the thermal stability of Nb:TiO2-x samples for uncooled infrared detectors
NASA Astrophysics Data System (ADS)
Reddy, Y. Ashok Kumar; Kang, In-Ku; Shin, Young Bong; Lee, Hee Chul
2018-01-01
In order to reduce the sun-burn effect in a sample of the bolometric material Nb:TiO2-x , oxygen annealing was carried out. This effect can be examined by comparing thermal stability test results between the as-deposited and oxygen-atmosphere-annealed samples under high-temperature exposure conditions. Structural studies confirm the presence of amorphous and rutile phases in the as-deposited and annealed samples, respectively. Composition studies reveal the offset of oxygen vacancies in the Nb:TiO2-x samples through oxygen-atmosphere annealing. The oxygen atoms were diffused and seemed to occupy the vacant sites in the annealed samples. As a result, the annealed samples show better thermal stability performance than the as-deposited samples. The universal bolometric parameter (β) values were slightly decreased in the oxygen-annealed Nb:TiO2-x samples. Although bolometric performance was slightly decreased in the oxygen-annealed samples, high thermal stability would be the most essential factor in the case of special applications, such as the military and space industries. Finally, these results will be very useful for reducing the sun-burn effect in infrared detectors.
NbTiN Based SIS Multilayer Structures for SRF Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente, Anne-marie; Eremeev, Grigory; Phillips, H
2013-09-01
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor Insulator - Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures. This paper presents the results on the characteristics of NbTiNmore » films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.« less
Tuning spontaneous polarization to alter water oxidation/reduction activities of LiNbO3
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Song, Yan; Wu, Yangqing; Huang, Huiting; Fan, Guozheng; Xu, Jun; Li, Zhaosheng; Zou, Zhigang
2018-02-01
Here, we investigated the effects of spontaneous polarization on photoreactivities by using a ferroelectric material n-type congruent LiNbO3 single crystal as a model. It was found that c+ LiNbO3 was superior to c- LiNbO3 in photocatalytic water reduction, while c- LiNbO3 exhibited better performances for photoelectrochemical water oxidation than c+ LiNbO3. Using Kelvin probe force microscopy and open circuit potential methods, we observed that c- LiNbO3 generated a higher photovoltage and had a slower charge-recombination rate than c+ LiNbO3. The results of electrochemical impedance spectroscopy measurements indicated that c- LiNbO3 may favor the hole transport from the bulk to the surface compared with c+ LiNbO3, leading to the anisotropic performances of c+ and c- LiNbO3 in water oxidation/reduction. Therefore, tuning the direction of the polarization may be a strategy to dramatically prompt the photoreactivities of water oxidation or reduction.
Superconducting RF materials other than bulk niobium: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valente-Feliciano, Anne-Marie
For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less
Superconducting RF materials other than bulk niobium: a review
Valente-Feliciano, Anne-Marie
2016-09-26
For the last five decades, bulk niobium (Nb) has been the material of choice for Superconducting RF (SRF) cavity applications. Thin film alternatives such as Nb and other higher-Tc materials, mainly Nb compounds and A15 compounds, have been investigated with moderate effort in the past. In recent years, RF cavity performance has approached the theoretical limit for bulk Nb. For further improvement of RF cavity performance for future accelerator projects, research interest is renewed towards alternatives to bulk Nb. Institutions around the world are now investing renewed efforts in the investigation of Nb thin films and superconductors with higher transitionmore » temperature Tc for application to SRF cavities. Our paper gives an overview of the results obtained so far and challenges encountered for Nb films as well as other materials, such as Nb compounds, A15 compounds, MgB2, and oxypnictides, for SRF cavity applications. An interesting alternative using a Superconductor-Insulator- Superconductor multilayer approach has been recently proposed to delay the vortex penetration in Nb surfaces. This could potentially lead to further improvement in RF cavities performance using the benefit of the higher critical field Hc of higher-Tc superconductors without being limited with their lower Hc1.« less
Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade
NASA Astrophysics Data System (ADS)
Ferracin, P.
2010-04-01
The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.
Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement
NASA Astrophysics Data System (ADS)
Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun
Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.
Kelly, Daniel F; McArthur, David L; Levin, Harvey; Swimmer, Shana; Dusick, Joshua R; Cohan, Pejman; Wang, Christina; Swerdloff, Ronald
2006-06-01
Adult-onset growth hormone deficiency (GHD) has been associated with reduced quality of life (QOL) and neurobehavioral (NB) deficits. This prospective study tested the hypothesis that traumatic brain injury (TBI) patients with GHD or GH insufficiency (GHI) would exhibit greater NB/QOL impairment than patients without GHD/GHI. Complicated mild, moderate, and severe adult TBI patients (GCS score 3-14) had pituitary function and NB/QOL testing performed 6-9 months postinjury. GH-secretory capacity was assessed with a GHRH-arginine stimulation test and GHD and GHI were defined as peak GH<6 or
Electrode effects in dielectric spectroscopy measurements on (Nb+In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, D. A.; Yee, S. M. M.; Savinov, M.; Nuzhnyy, D.; Petzelt, J.; Kamba, S.; Prokeš, J.
2016-04-01
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and alternating current (ac) conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness, and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four-contact van der Pauw direct current conductivity measurements and bulk conductivity values extracted from two-contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature.
Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2
NASA Astrophysics Data System (ADS)
Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan
Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).
Start Up of a Nb-1%Zr Potassium Heat Pipe From the Frozen State
NASA Technical Reports Server (NTRS)
Glass, David E.; Merrigan, Michael A.; Sena, J. Tom
1998-01-01
The start up of a liquid metal heat pipe from the frozen state was evaluated experimentally with a Nb-1%Zr heat pipe with potassium as the working fluid. The heat pipe was fabricated and tested at Los Alamos National Laboratory. RF induction heating was used to heat 13 cm of the 1-m-long heat pipe. The heat pipe and test conditions are well characterized so that the test data may be used for comparison with numerical analyses. An attempt was made during steady state tests to calibrate the heat input so that the heat input would be known during the transient cases. The heat pipe was heated to 675 C with a throughput of 600 W and an input heat flux of 6 W/cm(exp 2). Steady state tests, start up from the frozen state, and transient variations from steady state were performed.
[Effect of niobium nitride on the bonding strength of titanium porcelain by magnetron sputtering].
Wang, Shu-shu; Zhang, La-bao; Guang, Han-bing; Zhou, Shu; Zhang, Fei-min
2010-05-01
To investigate the effect of magnetron sputtered niobium nitride (NbN) on the bonding strength of commercially pure cast titanium (Ti) and low-fusing porcelain (Ti/Vita titankeramik system). Sixty Ti specimens were randomly divided into four groups, group T1, T2, T3 and T4. All specimens of group T1 and T2 were first treated with 120 microm blasted Al2O3 particles, and then only specimens of group T2 were treated with magnetron sputtered NbN film. All specimens of group T3 and T4 were first treated with magnetron sputtered NbN film and then only specimens of group T4 were treated with 120 microm blasted Al2O3 particles. The composition of the deposits were analyzed by X-ray diffraction (XRD). A universal testing machine was used to perform the three-point bending test to evaluate the bonding strength of Ti and porcelain. The microstructure of NbN, the interface of Ti-porcelain and the fractured Ti surface were observed with scanning electron microscopy (SEM) and energy depressive spectrum (EDS), and the results were compared. The XRD results showed that the NbN deposits were cubic crystalline phases. The bonding strength of Ti and porcelain in T1 to T4 group were (27.2+/-0.8), (43.1+/-0.6), (31.4+/-1.0) and (44.9+/-0.6) MPa. These results were analyzed by one-way analysis of variance and differences between groups were compared using least significant difference test. Significant inter-group differences were found among all groups (P<0.05). The results of SEM showed that with treatment of Al2O3 or NbN, alone, pre-cracks were found in the interface of Ti-porcelain, while samples treated with both Al2O3 and NbN had better bond. EDS of Ti-porcelain interface showed oxidation occurred in T1, T2 and T3, but was well controlled in T4. Magnetron sputtered NbN can prevent Ti from being oxidized, and can improve the bonding strength of Ti/Vita titankeramik system. Al2O3 blast can also improve the bonding strength of Ti/Vita titankeramik system.
Silva, Guilherme F; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S
2015-11-01
The physicochemical properties and the tissue reaction promoted by microparticulated or nanoparticulated niobium pentoxide (Nb2O5) added to calcium silicate-based cement (CS), compared to MTA-Angelus™, were evaluated. Materials were submitted to the tests of radiopacity, setting time, pH, and calcium ion release. Polyethylene tubes filled with the materials were implanted into rats subcutaneously. After 7, 15, 30, and 60 days, the specimens were fixed and embedded in paraffin. Hematoxylin & eosin (H&E)-stained sections were used to compute the number of inflammatory cells (IC). Interleukin-6 (IL-6) detection was performed, and the number of immunolabeled cells was obtained; von Kossa method was also carried out. Data were subjected to ANOVA and Tukey test (p ≤ 0.05). Nb2O5micro and Nb2O5nano provided to the CS radiopacity values (3.52 and 3.75 mm Al, respectively) superior to the minimum recommended. Groups containing Nb2O5 presented initial setting time significantly superior than mineral trioxide aggregate (MTA). All materials presented an alkaline pH and released calcium ions. The number of IC and IL-6 immunolabeled cells in the CS + Nb2O5 groups was significantly reduced in comparison to MTA in all periods. von Kossa-positive structures were observed adjacent to implanted materials in all periods. The addition of Nb2O5 to the CS resulted in a material biocompatible and with adequate characteristics regarding radiopacity and final setting time and provides an alkaline pH to the environment. Furthermore, the particle size did not significantly affect the physicochemical and biological properties of the calcium silicate-based cement. Niobium pentoxide can be used as radiopacifier for the development of calcium silicate-based materials.
Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy
NASA Astrophysics Data System (ADS)
Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah
2016-03-01
In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.
Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed
NASA Technical Reports Server (NTRS)
1995-01-01
A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu-8 Cr-4 Nb alloy. The Rocketdyne Division of Rockwell International is conducting independent testing to analyze the properties for their projected needs in advanced rocket engine applications. Metallamics, a company based in Traverse City, Michigan, is entering into a Space Act Agreement to evaluate and test Cu-Cr-Nb alloys as materials for welding electrodes that are used in robotic welding operations. Creep rate is one of the alloy properties that determines the degree to which a welding electrode will mushroom or expand at the tip. A material with a low creep rate will resist mushrooming and give the electrode a longer life, minimizing downtime. This application holds the potential for large-scale usage of the alloy in the automotive and other industries. Success here would dramatically decrease the cost of the alloy and increase availability for aerospace applications.
Artificial neural network classifier predicts neuroblastoma patients' outcome.
Cangelosi, Davide; Pelassa, Simone; Morini, Martina; Conte, Massimo; Bosco, Maria Carla; Eva, Alessandra; Sementa, Angela Rita; Varesio, Luigi
2016-11-08
More than fifty percent of neuroblastoma (NB) patients with adverse prognosis do not benefit from treatment making the identification of new potential targets mandatory. Hypoxia is a condition of low oxygen tension, occurring in poorly vascularized tissues, which activates specific genes and contributes to the acquisition of the tumor aggressive phenotype. We defined a gene expression signature (NB-hypo), which measures the hypoxic status of the neuroblastoma tumor. We aimed at developing a classifier predicting neuroblastoma patients' outcome based on the assessment of the adverse effects of tumor hypoxia on the progression of the disease. Multi-layer perceptron (MLP) was trained on the expression values of the 62 probe sets constituting NB-hypo signature to develop a predictive model for neuroblastoma patients' outcome. We utilized the expression data of 100 tumors in a leave-one-out analysis to select and construct the classifier and the expression data of the remaining 82 tumors to test the classifier performance in an external dataset. We utilized the Gene set enrichment analysis (GSEA) to evaluate the enrichment of hypoxia related gene sets in patients predicted with "Poor" or "Good" outcome. We utilized the expression of the 62 probe sets of the NB-Hypo signature in 182 neuroblastoma tumors to develop a MLP classifier predicting patients' outcome (NB-hypo classifier). We trained and validated the classifier in a leave-one-out cross-validation analysis on 100 tumor gene expression profiles. We externally tested the resulting NB-hypo classifier on an independent 82 tumors' set. The NB-hypo classifier predicted the patients' outcome with the remarkable accuracy of 87 %. NB-hypo classifier prediction resulted in 2 % classification error when applied to clinically defined low-intermediate risk neuroblastoma patients. The prediction was 100 % accurate in assessing the death of five low/intermediated risk patients. GSEA of tumor gene expression profile demonstrated the hypoxic status of the tumor in patients with poor prognosis. We developed a robust classifier predicting neuroblastoma patients' outcome with a very low error rate and we provided independent evidence that the poor outcome patients had hypoxic tumors, supporting the potential of using hypoxia as target for neuroblastoma treatment.
Submillimeter SIS Mixers Using High Current Density Nb/AIN/Nb Tunnel Junctions and NbTiN Films
NASA Astrophysics Data System (ADS)
Kawamura, J.; Miller, D.; Chen, J.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; Leduc, H.; Stern, J.
1999-03-01
We are currently exploring ways to improve the performance of SIS mixers above 700 GHz. One approach is to use NbTiN in place of Nb for all or some of the mixer circuitry. With its high gap frequency and low losses demonstrated up to 800 GHz, it should be possible to fabricate an all-NbTiN SIS mixer with near quantum-limited noise performance up to 1.2 THz. Using a quasioptical twin-slot two-junction mixer with NbTiN ground plane and wiring and hybrid Nb/A1N/NbTiN junctions, we measured an uncorrected receiver noise temperature of TRx ~ 500 K across 790-850 GHz at 4.2 K bath temperature. Our second approach is to reduce the RC product of the mixer by employing very high current density Nb/A1N/Nb junctions. By using these we will greatly relax the requirement on tuning circuits, which is where substantial losses occur in mixers operating above the Nb gap frequency. These junctions have resistance-area products of R_N*A ~ 5.6 Ohm um2, good subgap to normal resistance ratios, R_sg/R_N ~ 10, and good run-to-run reproducibility. From FTS measurements we infer that omega*R_N*C = 1 at 270 GHz in these junctions. This is a substantial improvement over that available using Nb/Al0x/Nb technology. The sensitivity of a receiver incorporating these high current density mixers is T_Rx = 110 K at 533 GHz using a design for lower J_c mixers, which is close to the best we have measured with lower J_c Nb/Al0x/Nb mixers.
Palermo, Fernanda Gasparin; Albuquerque, Débora de Paula Soares de Medeiros; Martins, Wellington P; Araujo Júnior, Edward; Bruns, Rafael Frederico
2016-09-01
To establish a structured review process to facilitate the identification of the fetal nasal bone (NB) in the first trimester ultrasound scan to improve the quality images. We conducted a retrospective observational study in fetal NB images obtained during ultrasound exams of singleton pregnancies that underwent first trimester screening (crown-rump length 45-84 mm). When the images were obtained the examiner was not aware of the study. Audit was conducted by an examiner according criteria established by the Fetal Medicine Foundation. Fetal NB images were assessed regarding adequate magnification, mid-sagittal view and transducer held parallel to the direction of the nose. The transvaginal and transabdominal as well as anterior and posterior fetal back groups were compared using χ(2) test. We considered 874 fetal NB images for auditing. Fetal NB was considered present in 865 images (99%). During the audit process, we identified 72 (8.2%) cases of disagreement between examiner and auditor assessments. Disagreement was higher when image quality was poor (62 cases = 7%). Transvaginal approach performed better in the following criteria: adequate magnification (p < 0.001), midline (p < 0.001) and completely adequate (p < 0.001). A peer reviewed audit program for fetal NB is feasible in a clinical scenario. Image quality appears to play an important role in compliance to image standards audited and in agreement between examiner and auditor.
Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study
NASA Astrophysics Data System (ADS)
Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.
2016-01-01
Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.
NASA Astrophysics Data System (ADS)
Jian-wen, Li; Hong-yan, Liu
Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.
Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.
2002-01-01
The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.
Conjoint corrosion and wear in titanium alloys.
Khan, M A; Williams, R L; Williams, D F
1999-04-01
When considering titanium alloys for orthopaedic applications it is important to examine the conjoint action of corrosion and wear. In this study we investigate the corrosion and wear behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in phosphate buffered saline (PBS), bovine albumin solutions in PBS and 10% foetal calf serum solutions in PBS. The tests were performed under four different conditions to evaluate the influence of wear on the corrosion and corrosion on the wear behaviour as follows: corrosion without wear, wear-accelerated corrosion, wear in a non-corrosive environment and wear in a corrosive environment. The corrosion behaviour was investigated using cyclic polarisation studies to measure the ability of the surface to repassivate following breakdown of the passive layer. The properties of the repassivated layer were evaluated by measuring changes in the surface hardness of the alloys. The amount of wear that had occurred was assessed from weight changes and measurement of the depth of the wear scar. It was found that in the presence of wear without corrosion the wear behaviour of Ti-13Nb-13Zr was greater than that of Ti-6Al-7Nb or Ti-6Al-4V and that in the presence of proteins the wear of all three alloys is reduced. In the presence of corrosion without wear Ti-13Nb-13Zr was more corrosion resistant than Ti-6Al-7Nb which was more corrosion resistant than Ti-6Al-4V without proteins whereas in the presence of protein the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb was reduced and that of Ti-6Al-4V increased. In the presence of corrosion and wear the corrosion resistance of Ti-13Nb-13Zr is higher than that of Ti-6Al-7Nb or Ti-6Al-4V in PBS but in the presence of proteins the corrosion resistance of Ti-13Nb-13Zr and Ti-6Al-7Nb are very similar but higher than that of Ti-6Al-4V. The wear of Ti-13Nb-13Zr is lower than that of Ti-6Al-7Nb and Ti-6Al-4V with or without the presence of proteins in a corrosive environment. Therefore the overall degradation when both corrosion and wear processes are occurring is lowest for Ti-13Nb-13Zr and highest for Ti-6Al-4V and the presence of proteins reduces the degradation of all three alloys.
Yang, Chao; Deng, Shengjue; Lin, Chunfu; Lin, Shiwei; Chen, Yongjun; Li, Jianbao; Wu, Hui
2016-11-10
TiNb 24 O 62 is explored as a new anode material for lithium-ion batteries. Microsized TiNb 24 O 62 particles (M-TiNb 24 O 62 ) are fabricated through a simple solid-state reaction method and porous TiNb 24 O 62 microspheres (P-TiNb 24 O 62 ) are synthesized through a facile solvothermal method for the first time. TiNb 24 O 62 exhibits a Wadsley-Roth shear structure with a structural unit composed of a 3 × 4 octahedron-block and a 0.5 tetrahedron at the block-corner. P-TiNb 24 O 62 with an average sphere size of ∼2 μm is constructed by nanoparticles with an average size of ∼100 nm, forming inter-particle pores with a size of ∼8 nm and inter-sphere pores with a size of ∼55 nm. Such desirable porous microspheres are an ideal architecture for enhancing the electrochemical performances by shortening the transport distance of electrons/Li + -ions and increasing the reaction area. Consequently, P-TiNb 24 O 62 presents outstanding electrochemical performances in terms of specific capacity, rate capability and cyclic stability. The reversible capacities of P-TiNb 24 O 62 are, respectively, as large as 296, 277, 261, 245, 222, 202 and 181 mA h g -1 at 0.1, 0.5, 1, 2, 5, 10 and 20 C, which are obviously larger than those of M-TiNb 24 O 62 (258, 226, 210, 191, 166, 147 and 121 mA h g -1 ). At 10 C, the capacity of P-TiNb 24 O 62 still remains at 183 mA h g -1 over 500 cycles with a decay of only 0.02% per cycle, whereas the corresponding values of M-TiNb 24 O 62 are 119 mA h g -1 and 0.04%. These impressive results indicate that P-TiNb 24 O 62 can be a promising anode material for lithium-ion batteries of electric vehicles.
Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal
2015-11-01
The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guan, Mingzhi; Wang, Xingzhe; Zhou, Youhe
2015-01-01
During design and winding of superconducting magnets at room temperature, a pre-tension under different rate is always applied to improve the mechanical stability of the magnets. However, an inconsistency rises for superconductors usually being sensitive to strain and oversized pre-stress which results in degradation of the superconducting composites' critical performance at low temperature. The present study focused on the effects of the cold-treatment and strain-rate of tension deformation on mechanical properties of NbTi/Cu superconducting composite wires. The samples were immersed in a liquid nitrogen (LN2) cryostat for the adiabatic cold-treatment, respectively with 18-hour, 20-hour, 22-hour and 24-hour. A universal testing machine was utilized for tension tests of the NbTi/Cu superconducting composite wires at room temperature; a small-scale extensometer was used to measure strain of samples with variable strain-rate. The strength, elongation at fracture and yield strength of pre-cold-treatment NbTi/Cu composite wires were drawn. It was shown that, the mechanical properties of the superconducting wires are linearly dependent on the holding time of cold-treatment at lower tensile strain-rate, while they exhibit notable nonlinear features at higher strain-rate. The cold-treatment in advance and the strain-rate of pre-tension demonstrate remarkable influences on the mechanical property of the superconducting composite wires.
Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage.
Deng, Qinglin; Li, Mengjiao; Wang, Junyong; Jiang, Kai; Hu, Zhigao; Chu, Junhao
2018-05-04
Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has structural merit but poor electrical conductivity, limiting their applications in energy storage. Although graphene is frequently adopted to effectively improve its electrochemical properties, the ordinary modified methods cannot meet the growing demands for high-performance. Here, we demonstrate that different graphene modified routes play a vital role in affecting the electrochemical performances of T-Nb 2 O 5 . By only manual shaking within one minute, Nb 2 O 5 nano-particles can be rapidly adsorbed onto graphene, then the free-anchored T-Nb 2 O 5 @graphene three-dimensional networks can be successfully prepared based on hydrogel method. As for the application in lithium-ion batteries, it performs outstanding rate character (129 mA h g -1 (25C rate), 110 mA h g -1 (50C rate) and 90 mA h g -1 (100C rate), correspond to 79%, 67% and 55% capacity of 0.5C rate, respectively) and excellent long-term cycling feature (∼70% capacity retention after 20000 cycles). Moreover, it still maintains similar ultrafast-stable lithium storage performances when Cu foil is substituted by Al foil as current collector. In addition, relevant kinetics mechanisms are also expounded. This work provides a versatile strategy for the preparation of graphene modified Nb 2 O 5 or other types of nanoparticles.
Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage
NASA Astrophysics Data System (ADS)
Deng, Qinglin; Li, Mengjiao; Wang, Junyong; Jiang, Kai; Hu, Zhigao; Chu, Junhao
2018-05-01
Orthorhombic Nb2O5 (T-Nb2O5) has structural merit but poor electrical conductivity, limiting their applications in energy storage. Although graphene is frequently adopted to effectively improve its electrochemical properties, the ordinary modified methods cannot meet the growing demands for high-performance. Here, we demonstrate that different graphene modified routes play a vital role in affecting the electrochemical performances of T-Nb2O5. By only manual shaking within one minute, Nb2O5 nano-particles can be rapidly adsorbed onto graphene, then the free-anchored T-Nb2O5@graphene three-dimensional networks can be successfully prepared based on hydrogel method. As for the application in lithium-ion batteries, it performs outstanding rate character (129 mA h g-1 (25C rate), 110 mA h g-1 (50C rate) and 90 mA h g-1 (100C rate), correspond to 79%, 67% and 55% capacity of 0.5C rate, respectively) and excellent long-term cycling feature (˜70% capacity retention after 20000 cycles). Moreover, it still maintains similar ultrafast-stable lithium storage performances when Cu foil is substituted by Al foil as current collector. In addition, relevant kinetics mechanisms are also expounded. This work provides a versatile strategy for the preparation of graphene modified Nb2O5 or other types of nanoparticles.
Thermal coatings for titanium-aluminum alloys
NASA Technical Reports Server (NTRS)
Cunnington, George R.; Clark, Ronald K.; Robinson, John C.
1993-01-01
Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
Investigation of the effect of Anodized Duration toward Photocatalytic Performance of Nb2O5
NASA Astrophysics Data System (ADS)
Sabirin Zoolfakar, Ahmad; Atiqah Mokhtar, Nurul; Rani, Rozina Abdul; Samihah Khairir, Nur; Aqma Abu Talip, Mahzaton; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.
2018-03-01
Highly oriented Nb2O5 nanoporous network produced via anodization for photocatalytic activity of methyl orange (MO) is presented. The anodization duration was varies from 0.5 to 2 hours and the photocatalytic performance is observed by degradation of MO solution. The Nb2O5 nanoparticles were added in MO solution and were exposed to the solar simulator for 3 hours. The morphology of Nb2O5 nanoporous and the photocatalytic performance are characterized in Field Emission Scanning Electron Microscopy (FESEM) and UV-Vis spectrophotometer, respectively. The result shows that different duration of anodized produce different sizes of nanoporous diameter that will significantly affect the photocatalytic performance. The 1.5 hours of anodized has the largest diameter size of nanoporous and exhibited the best photocatalytic performance
Performance of all-NbN superconductive tunnel junctions as mixers at 205 GHz
NASA Technical Reports Server (NTRS)
Mcgrath, W. R.; Leduc, H. G.; Stern, J. A.
1990-01-01
Small-area (1x1 sq micron) high-current-density NbN-MgO-NbN tunnel junctions with I-V characteristics suitable for high frequency mixers were fabricated. These junctions are integrated with superconducting microstrip lines designed to resonate out the large junction capacitance. The mixer gain and noise performance were studied near 205 GHz as a function of the inductance provided by the microstrip. This has yielded values of junction capacitance of 85 fF/sq microns and magnetic penetration depth of 3800 angstroms. Mixer noise as low as 133 K has been obtained for properly tuned junctions. This is the best noise performance ever reported for an NbN SIS mixer.
NASA Astrophysics Data System (ADS)
Pasztor, G.; Bruzzone, P.
2004-06-01
The dc performance of a recently produced internal tin route Nb3Sn strand with enhanced specification is studied extensively and compared with predecessor wires manufactured by the suppliers for the ITER Model Coils in 1996. The wire has been selected for use in a full size, developmental cable-in-conduit conductor sample, which is being tested in the SULTAN Test Facility. The critical current, Ic, and the index of the current/voltage characteristic, n, are measured over a broad range of field and temperature, using ITER standard sample holders, made of TiAlV grooved cylinders. The behavior of Ic versus applied tensile strain is also investigated at 4.2 K and 12 T, on straight specimens. Scaling law parameters are drawn from the fit of the experimental results. The implications of the test results to the design of the fusion conductors are discussed.
Franco, Letícia P; Souki, Bernardo Q; Cheib, Paula L; Abrão, Marcel; Pereira, Tatiana B J; Becker, Helena M G; Pinto, Jorge A
2015-02-01
To test the null hypothesis that mouth-breathing (MB) children by distinct obstructive tissues present a similar cephalometric pattern. The sample included 226 prepubescent children (113 MB and 113 nasal breathing (NB) controls). An ENT clinical examination, including flexible nasal endoscopy, orthodontic clinical and cephalometric examinations, was performed on the MB population. MB children were grouped into three categories, according to the obstructive tissues: 1) adenoid group (AG), 2) tonsillar group (TG), and 3) adenotonsillar group (ATG). The NB controls were matched by gender, age, sagittal dental relationship and skeletal maturation status. Lateral cephalometric radiography provided the cephalometric pattern comparisons between the MB and NB groups. MB cephalometric measurements were significantly different from those of NB children, exception in the SNB° (P=0.056). All comparisons between the three groups of MB children with the NB children showed a significant difference. Finally, even among the three groups of MB children, a significant difference was observed in the measurements of the SNB° (P<0.036), NSGn° (P<0.028) and PFH/TAFH ratio (posterior facial height/total anterior facial height) (P<0.012). The cephalometric pattern of MB and NB children was not similar. Cephalometric measurements of the MB group differed according to the etiology of upper airway obstruction. Children with isolated hypertrophy of the palatine tonsils presented with a mandible that was positioned more forward and upward compared to children obstructed only by the enlarged adenoid. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen
We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.
Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun
2012-06-01
Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.
Machine-learning model observer for detection and localization tasks in clinical SPECT-MPI
NASA Astrophysics Data System (ADS)
Parages, Felipe M.; O'Connor, J. Michael; Pretorius, P. Hendrik; Brankov, Jovan G.
2016-03-01
In this work we propose a machine-learning MO based on Naive-Bayes classification (NB-MO) for the diagnostic tasks of detection, localization and assessment of perfusion defects in clinical SPECT Myocardial Perfusion Imaging (MPI), with the goal of evaluating several image reconstruction methods used in clinical practice. NB-MO uses image features extracted from polar-maps in order to predict lesion detection, localization and severity scores given by human readers in a series of 3D SPECT-MPI. The population used to tune (i.e. train) the NB-MO consisted of simulated SPECT-MPI cases - divided into normals or with lesions in variable sizes and locations - reconstructed using filtered backprojection (FBP) method. An ensemble of five human specialists (physicians) read a subset of simulated reconstructed images, and assigned a perfusion score for each region of the left-ventricle (LV). Polar-maps generated from the simulated volumes along with their corresponding human scores were used to train five NB-MOs (one per human reader), which are subsequently applied (i.e. tested) on three sets of clinical SPECT-MPI polar maps, in order to predict human detection and localization scores. The clinical "testing" population comprises healthy individuals and patients suffering from coronary artery disease (CAD) in three possible regions, namely: LAD, LcX and RCA. Each clinical case was reconstructed using three reconstruction strategies, namely: FBP with no SC (i.e. scatter compensation), OSEM with Triple Energy Window (TEW) SC method, and OSEM with Effective Source Scatter Estimation (ESSE) SC. Alternative Free-Response (AFROC) analysis of perfusion scores shows that NB-MO predicts a higher human performance for scatter-compensated reconstructions, in agreement with what has been reported in published literature. These results suggest that NB-MO has good potential to generalize well to reconstruction methods not used during training, even for reasonably dissimilar datasets (i.e. simulated vs. clinical).
Test of a Nb thin film superconducting detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacquaniti, V.; Maggi, S.; Menichetti, E.
1993-08-01
Results from tests of several Nb thin film microstrip superconducting detectors are reported. A preliminary measurement of critical radius of the hot spot generated by 5 MeV [alpha]-particles is compared with simple model predictions.
Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility
NASA Astrophysics Data System (ADS)
Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.
2015-03-01
The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.
Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.
Mi, Gu; Di, Yanming; Schafer, Daniel W
2015-01-01
This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-01
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants. PMID:29342864
Influence of niobium pentoxide addition on the properties of glass ionomer cements
Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Balbinot, Gabriela De Souza; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo
2016-01-01
Abstract Objective: To determine the influence of niobium pentoxide (Nb2O5) addition on the physical and chemical properties of glass ionomer cements (GICs). Materials and methods: Five, 10 or 20 wt.% of Nb2O5 were incorporated into commercial GICs (Maxxion R, Vitro Molar, Vitro Fil R) and one group of each GIC remained without Nb2O5 (control groups). The GICs were evaluated by Knoop hardness, compressive strength, acid erosion, particle size and radiopacity. Data were analyzed by two-way ANOVA followed by Tukey's test. Results: The addition of 10% and 20% reduced the microhardness of two GICs (p < .05). Compressive strength showed no difference among groups (p > .05). Nb2O5 did not influence Maxxion R and Vitro Fil R regarding the acid erosion test (p > .05). Vitro Molar increased its acid erosion with 10% of Nb2O5 (p < .05). Maxxion R presented 15.78 μm, while Vitro Molar and Vitro Fil R showed 5.14 μm and 6.18 μm, respectively. As the Nb2O5 concentration increased, the radiopacity increased for all groups. Vitro Molar and Vitro Fil R did not present significant difference to at least 1 mm aluminum (p > .05). Conclusion: The addition of 5 wt.% Nb2O5 did not affect the tested physical and chemical properties of the GICs and improved the radiopacity of one of the cements. These materials are therefore suitable for further testing of biomimetic remineralization properties. PMID:28642924
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-13
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
Novel Electrochemical Test Bench for Evaluating the Functional Fatigue Life of Biomedical Alloys
NASA Astrophysics Data System (ADS)
Ijaz, M. F.; Dubinskiy, S.; Zhukova, Y.; Korobkova, A.; Pustov, Y.; Brailovski, V.; Prokoshkin, S.
2017-08-01
The aim of the present work was first to develop and validate a test bench that simulates the in vitro conditions to which the biomedical implants will be actually subjected in vivo. For the preliminary application assessments, the strain-controlled fatigue tests of biomedically pure Ti and Ti-Nb-Zr alloy in simulated body fluid were undertaken. The in situ open-circuit potential measurements from the test bench demonstrated a strong dependence on the dynamic cycling and kind of material under testing. The results showed that during fatigue cycling, the passive oxide film formed on the surface of Ti-Nb-Zr alloy was more resistant to fatigue degradation when compared with pure Ti. The Ti-Nb-Zr alloy exhibited prolonged fatigue life when compared with pure Ti. The fractographic features of both materials were also characterized using scanning electron microscopy. The electrochemical results and the fractographic evidence confirmed that the prolonged functional fatigue life of the Ti-Nb-Zr alloy is apparently ascribable to the reversible martensitic phase transformation.
Gong, Yudong; Sun, Chunwen; Huang, Qiu-an; Alonso, Jose Antonio; Fernández-Díaz, Maria Teresa; Chen, Liquan
2016-03-21
Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) outperforms as a cathode in solid-oxide fuel cells (SOFC), at temperatures as low as 700-750 °C. The microscopical reason for this performance was investigated by temperature-dependent neutron powder diffraction (NPD) experiments. In the temperature range of 25-800 °C, Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) shows a perfectly cubic structure (a = a0), with a significant oxygen deficiency in a single oxygen site, that substantially increases at the working temperatures of a SOFC. The anisotropic thermal motion of oxygen atoms considerably rises with T, reaching B(eq) ≈ 5 Å(2) at 800 °C, with prolate cigar-shaped, anisotropic vibration ellipsoids that suggest a dynamic breathing of the octahedra as oxygen ions diffuse across the structure by a vacancies mechanism, thus implying a significant ionic mobility that could be described as a molten oxygen sublattice. The test cell with a La(0.8)Sr(0.2)Ga(0.83)Mg(0.17)O(3-δ) electrolyte (∼300 μm in thickness)-supported configuration yields a peak power density of 0.20 and 0.40 W cm(-2) at temperatures of 700 and 750 °C, respectively, with pure H2 as fuel and ambient air as oxidant. The electrochemical impedance spectra (EIS) evolution with time of the symmetric cathode fuel cell measured at 750 °C shows that the Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) cathode possesses a superior ORR catalytic activity and long-term stability. The mixed electronic-ionic conduction properties of Ba(0.9)Co(0.7)Fe(0.2)Nb(0.1)O(3-δ) account for its good performance as an oxygen-reduction catalyst.
NASA Astrophysics Data System (ADS)
Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2016-02-01
Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g-1, and good rate performance of 126.7 F g-1 at 50 A g-1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g-1 and much improved rate performance (213.4 F g-1 at 50 A g-1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g-1), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g-1 at 1 A g-1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.
Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2016-01-01
Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeritis, D.; Iwasa, Y.; Ando, T.
This paper reports on experiments conducted to determine the effect of transverse compressive stress (TCS) on the critical current of jelly-roll multifilamentary Nb{sub 3}Al wire (0.8-mm dia.) for magnetic flux densities up to 12 T. For comparison, identical experiments were performed for bronze-process Ti-alloyed multifilamentary Nb{sub 3}Sn wire (1.0-mm dia.). Although the unstressed critical current density of Nb{sub 3}Al was inferior to that of (NbTi){sub 3}Sn at high fields, under applied TCS Nb{sub 3}Al exhibited less critical current degradation than (NbTi){sub 3}Sn. For example, at 12 T and 150 MPa, TCS-induced critical current degradation was approximately 20% for Nb{sub 3}Al,more » whereas it was approximately 65% for (NbTi){sub 3}Sn. There is optimism that Nb{sub 3}Al will evolve into a useful superconductor for large-scale, high-field applications.« less
NASA Astrophysics Data System (ADS)
Burton, Matthew C.
Bulk niobium (Nb) superconducting radio frequency (SRF) cavities are currently the preferred method for acceleration of charged particles at accelerating facilities around the world. However, bulk Nb cavities have poor thermal conductance, impose material and design restrictions on other components of a particle accelerator, have low reproducibility and are approaching the fundamental material-dependent accelerating field limit of approximately 50MV/m. Since the SRF phenomena occurs at surfaces within a shallow depth of ˜1 microm, a proposed solution to this problem has been to utilize thin film technology to deposit superconducting thin films on the interior of cavities to engineer the active SRF surface in order to achieve cavities with enhanced properties and performance. Two proposed thin film applications for SRF cavities are: 1) Nb thin films coated on bulk cavities made of suitable castable metals (such as copper or aluminum) and 2) multilayer films designed to increase the accelerating gradient and performance of SRF cavities. While Nb thin films on copper (Cu) cavities have been attempted in the past using DC magnetron sputtering (DCMS), such cavities have never performed at the bulk Nb level. However, new energetic condensation techniques for film deposition, such as High Power Impulse Magnetron Sputtering (HiPIMS), offer the opportunity to create suitably thick Nb films with improved density, microstructure and adhesion compared to traditional DCMS. Clearly use of such novel technique requires fundamental studies to assess surface evolution and growth modes during deposition and resulting microstructure and surface morphology and the correlation with RF superconducting properties. Here we present detailed structure-property correlative research studies done on Nb/Cu thin films and NbN- and NbTiN-based multilayers made using HiPIMS and DCMS, respectively.
Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.
2012-07-01
To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less
NASA Astrophysics Data System (ADS)
Dong, Rui; Wang, Yuan; Wang, Ningning; Xu, Lei; He, Jie; Wu, Shanshan; Lan, Yunxiang; Hu, Jinsong
2016-09-01
Layered photocatalytic materials M1/3TiNbO5 (M = Fe, Ce) were prepared by ion-exchange of KTiNbO5 with M(NO3)3. The parent KTiNbO5 was synthesized with titanium (IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The micro-structures and spectral response features of the as-prepared samples were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), laser Raman spectroscopy (LRS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that there was a significant interaction between the interlayer cation and the terminal Nbdbnd O (Tidbnd O) bond in the NbO6 (TiO6) unit of the laminates. Photocatalytic performance was evaluated in oxidation of ethyl mercaptan under natural and UV light irradiation. It can be deduced that the photocatalytic oxidization performance can be directly affected by the characteristics of the interlayer cations.
Comparison of the Effectiveness of Subliminal Stimulation and Social Support on Anxiety Reduction.
ERIC Educational Resources Information Center
Clark, Matthew M.; Procidano, Mary E.
1987-01-01
Evaluated effectiveness of psychodynamic subliminal stimulation in reducing anxiety and facilitating performance on cognitive task, as compared to effectiveness of social support strategy. Results from 20 "high test anxious" college students suggest lack of robustness of effects obtained with either approach. (Author/NB)
Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification
NASA Astrophysics Data System (ADS)
Isasti, Nerea; Jorge-Badiola, Denis; Taheri, Mitra L.; Uranga, Pello
2013-08-01
A complete microstructural characterization and phase transformation analysis has been performed for several Nb and Nb-Mo microalloyed low-carbon steels using electron backscattered diffraction (EBSD) and dilatometry tests. Compression thermomechanical schedules were designed resulting in the undeformed and deformed austenite structures before final transformation. The effects of microalloying additions and accumulated deformation were analyzed after CCT diagram development and microstructural quantification. The resulting microstructures ranged from polygonal ferrite and pearlite at slow cooling ranges, to a combination of quasipolygonal ferrite and granular ferrite for intermediate cooling rates, and finally, to bainitic ferrite with martensite for fast cooling rates. The addition of Mo promotes a shift in the CCT diagrams to lower transformation start temperatures. When the amount of Nb is increased, CCT diagrams show little variations for transformations from the undeformed austenite and higher initial transformation temperatures in the transformations from the deformed austenite. This different behavior is due to the effect of niobium on strain accumulation in austenite and its subsequent acceleration of transformation kinetics. This article shows the complex interactions between chemical composition, deformation, and the phases formed, as well as their effect on microstructural unit sizes and homogeneity.
Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando
2017-01-01
The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C–O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K2CO3 base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven. PMID:28621710
Leo, Pedro; Orcajo, Gisela; Briones, David; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Martínez, Fernando
2017-06-16
The activity and recyclability of Cu-MOF-74 as a catalyst was studied for the ligand-free C-O cross-coupling reaction of 4-nitrobenzaldehyde (NB) with phenol (Ph) to form 4-formyldiphenyl ether (FDE). Cu-MOF-74 is characterized by having unsaturated copper sites in a highly porous metal-organic framework. The influence of solvent, reaction temperature, NB/Ph ratio, catalyst concentration, and basic agent (type and concentration) were evaluated. High conversions were achieved at 120 °C, 5 mol % of catalyst, NB/Ph ratio of 1:2, DMF as solvent, and 1 equivalent of K₂CO₃ base. The activity of Cu-MOF-74 material was higher than other ligand-free copper catalytic systems tested in this study. This catalyst was easily separated and reused in five successive runs, achieving a remarkable performance without significant porous framework degradation. The leaching of copper species in the reaction medium was negligible. The O-arylation between NB and Ph took place only in the presence of Cu-MOF-74 material, being negligible without the solid catalyst. The catalytic advantages of using nanostructured Cu-MOF-74 catalyst were also proven.
NASA Astrophysics Data System (ADS)
Morais, Nathanael Wagner Sales; Lopes, Denise Adorno; Schön, Cláudio Geraldo
2018-04-01
The present work is the second and final part of an extended investigation on Usbnd Nb - Zr alloys. It investigates the effect of mechanical processing routes on microstructure of alloys U - 3 wt % Nb - 9 wt % Zr and U - 9 wt% Nb - 3 wt% Zr, through X-ray diffraction and scanning electron microscopy, completing the investigation, which started with alloy U - 6 wt% Nb - 6 wt% Zr in part 1. Mechanical properties are determined using microhardness and bending tests and correlated with the developed microstructures. The results show that processing sequence, in particular the inclusion of a 1000 °C heat treatment step, affects significantly the microstructure and mechanical properties of these alloys alloy in different ways. Microstructural characterization shows that both alloys present significant volume fraction of precipitates of a body-centered cubic (BCC) γ-Nb-Zr rich phase in addition the uranium-rich matrix. Bending tests show that sample ductility does not correlate necessarily with hardness and that the key factor appears to be the amount of the γ-Nb-Zr precipitates, which controls the matrix microstructure. Samples with a monoclinic α″ cellular microstructure and/or with the tetragonally-distorted BCC phase (γ0), although not strictly ductile, showed the largest allowed strains-before-break and complete elastic recovery of the broken pieces, pointing out to the macroscopic observation of superelasticity.
MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria
2014-01-01
Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023
Mestieri, Leticia Boldrin; Tanomaru-Filho, Mário; Gomes-Cornélio, Ana Livia; Salles, Loise Pedrosa; Bernardi, Maria Inês Basso; Guerreiro-Tanomaru, Juliane Maria
2014-01-01
Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: (1) PC; (2) White MTA; (3) PC+30% Nbµ; (4) PC+30% Nbη. For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.
Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances
NASA Astrophysics Data System (ADS)
Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng
2015-01-01
Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.
Temperature-dependent performance of all-NbN DC-SQUID magnetometers
NASA Astrophysics Data System (ADS)
Liu, Quansheng; Wang, Huiwu; Zhang, Qiyu; Wang, Hai; Peng, Wei; Wang, Zhen
2017-05-01
Integrated NbN direct current superconducting quantum interference device (DC-SQUID) magnetometers were developed based on high-quality epitaxial NbN/AlN/NbN Josephson junctions for SQUID applications operating at high temperatures. We report the current-voltage and voltage-flux characteristics and the noise performance of the NbN DC-SQUIDs for temperatures ranging from 4.2 to 9 K. The critical current and voltage swing of the DC-SQUIDs decreased by 15% and 25%, respectively, as the temperature was increased from 4.2 to 9 K. The white flux noise of the DC-SQUID magnetometer at 1 kHz increased from 3.9 μΦ0/Hz1/2 at 4.2 K to 4.8 μΦ0/Hz1/2 at 9 K with 23% increase, corresponding to the magnetic field noise of 6.6 and 8.1 fT/Hz1/2, respectively. The results show that NbN DC-SQUIDs improve the tolerance of the operating temperatures and temperature fluctuations in SQUID applications.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.
Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei
2014-01-08
A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.
Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas; ...
2018-03-08
Here, we report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 °C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N 2-treated at 120 °C and at 140 °C, showed no degradation in accelerating gradient, however themore » accelerating gradient was reduced by ~25% with a 160 °C N 2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb 2O 5, NbO and NbN (1-x)O x within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.« less
NASA Astrophysics Data System (ADS)
Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas; Lee, Peter J.; Ciovati, Gianluigi
2018-03-01
We report the rf performance of a single cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120 - 160 °C with a nitrogen partial pressure of ˜25 m Torr . This increase in quality factor as well as the Q -rise phenomenon (anti-Q -slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2 -treated at 120 °C and at 140 °C showed no degradation in accelerating gradient, however the accelerating gradient was reduced by ˜25 % with a 160 °C N2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb2O5 , NbO and NbN(1 -x )Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Chetri, Santosh; Balachandran, Shreyas
Here, we report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 °C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N 2-treated at 120 °C and at 140 °C, showed no degradation in accelerating gradient, however themore » accelerating gradient was reduced by ~25% with a 160 °C N 2 treatment, compared to the baseline tests after electropolishing. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb 2O 5, NbO and NbN (1-x)O x within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.« less
Sub micron area Nb/AlO(x)/Nb tunnel junctions for submillimeter mixer applications
NASA Technical Reports Server (NTRS)
Leduc, Henry G.; Bumble, B.; Cypher, S. R.; Judas, A. J.; Stern, J. A.
1992-01-01
In this paper, we report on a fabrication process developed for submicron area tunnel junctions. We have fabricated Nb/AlO(x)/Nb tunnel junctions with areas down to 0.1 sq micron using these techniques. The devices have shown excellent performance in receiver systems up to 500 GHz and are currently in use in radio astronomy observatories at 115, 230, and 500 GHz.
NASA Astrophysics Data System (ADS)
D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration
2015-11-01
High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.
The physical and mechanical metallurgy of advanced O+BCC titanium alloys
NASA Astrophysics Data System (ADS)
Cowen, Christopher John
This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.
NASA Astrophysics Data System (ADS)
Miura, Seiji; Hatabata, Toru; Okawa, Takuya; Mohri, Tetsuo
2014-03-01
To find a new route for microstructure control and to find additive elements beneficial for improving high-temperature strength, a systematic investigation is performed on hypoeutectic Nb-15 at. pct Si-X ternary alloys containing a transition element, Fe, Co, Ni, Cu, Ru, Rh, Pd, Re, Os, Ir, Pt, or Au. Information on phase equilibrium is classified in terms of phase stability of silicide phases, α Nb5Si3, Nb4SiX, and Nb3Si, and the relationship between microstructure and mechanical properties both at room temperature and high temperature is investigated. All the additive elements are found to stabilize either α Nb5Si3 or Nb4SiX but destabilize Nb3Si. A microstructure of Nbss/α Nb5Si3 alloy composed of spheroidized α Nb5Si3 phase embedded in the Nbss matrix is effective for toughening, regardless of the initial as-cast microstructure. Also the plastic deformation of Nbss dendrites may effectively suppress the propagation of longer cracks. High-temperature strength of alloys is governed by the deformation of Nbss phase and increases with higher melting point additives.
Fields, Cheryl A; Borak, Jonathan; Louis, Elan D
2017-11-01
The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (<50; 50-99; 100-199; ≥200 μg/L) included tremor, impaired coordination, and abnormal reflexes on PE, and reduced performance on NB tests of tremor, manual dexterity and motor speed. The data suggest response thresholds of U Hg ≈275 μg/L for PE findings and ≈20 μg/L for NB outcomes. These results indicate that PE is of particular value for assessing workers with U Hg >200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.
NASA Astrophysics Data System (ADS)
Bagni, T.; Duchateau, J. L.; Breschi, M.; Devred, A.; Nijhuis, A.
2017-09-01
Cable-in-conduit conductors (CICCs) for ITER magnets are subjected to fast changing magnetic fields during the plasma-operating scenario. In order to anticipate the limitations of conductors under the foreseen operating conditions, it is essential to have a better understanding of the stability margin of magnets. In the last decade ITER has launched a campaign for characterization of several types of NbTi and Nb3Sn CICCs comprising quench tests with a singular sine wave fast magnetic field pulse and relatively small amplitude. The stability tests, performed in the SULTAN facility, were reproduced and analyzed using two codes: JackPot-AC/DC, an electromagnetic-thermal numerical model for CICCs, developed at the University of Twente (van Lanen and Nijhuis 2010 Cryogenics 50 139-148) and multi-constant-model (MCM) (Turck and Zani 2010 Cryogenics 50 443-9), an analytical model for CICCs coupling losses. The outputs of both codes were combined with thermal, hydraulic and electric analysis of superconducting cables to predict the minimum quench energy (MQE) (Bottura et al 2000 Cryogenics 40 617-26). The experimental AC loss results were used to calibrate the JackPot and MCM models and to reproduce the energy deposited in the cable during an MQE test. The agreement between experiments and models confirm a good comprehension of the various CICCs thermal and electromagnetic phenomena. The differences between the analytical MCM and numerical JackPot approaches are discussed. The results provide a good basis for further investigation of CICC stability under plasma scenario conditions using magnetic field pulses with lower ramp rate and higher amplitude.
Minimal In Vivo Efficacy of Iminosugars in a Lethal Ebola Virus Guinea Pig Model
Dowall, Stuart D.; Taylor, Irene; Rule, Antony; Alonzi, Dominic S.; Sayce, Andrew C.; Wright, Edward; Bentley, Emma M.; Thom, Ruth; Hall, Graham; Dwek, Raymond A.; Hewson, Roger; Zitzmann, Nicole
2016-01-01
The antiviral properties of iminosugars have been reported previously in vitro and in small animal models against Ebola virus (EBOV); however, their effects have not been tested in larger animal models such as guinea pigs. We tested the iminosugars N-butyl-deoxynojirimycin (NB-DNJ) and N-(9-methoxynonyl)-1deoxynojirimycin (MON-DNJ) for safety in uninfected animals, and for antiviral efficacy in animals infected with a lethal dose of guinea pig adapted EBOV. 1850 mg/kg/day NB-DNJ and 120 mg/kg/day MON-DNJ administered intravenously, three times daily, caused no adverse effects and were well tolerated. A pilot study treating infected animals three times within an 8 hour period was promising with 1 of 4 infected NB-DNJ treated animals surviving and the remaining three showing improved clinical signs. MON-DNJ showed no protective effects when EBOV-infected guinea pigs were treated. On histopathological examination, animals treated with NB-DNJ had reduced lesion severity in liver and spleen. However, a second study, in which NB-DNJ was administered at equally-spaced 8 hour intervals, could not confirm drug-associated benefits. Neither was any antiviral effect of iminosugars detected in an EBOV glycoprotein pseudotyped virus assay. Overall, this study provides evidence that NB-DNJ and MON-DNJ do not protect guinea pigs from a lethal EBOV-infection at the dose levels and regimens tested. However, the one surviving animal and signs of improvements in three animals of the NB-DNJ treated cohort could indicate that NB-DNJ at these levels may have a marginal beneficial effect. Future work could be focused on the development of more potent iminosugars. PMID:27880800
2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckstein, James N.; Suslick, Kenneth S.
2011-10-19
We have very recently discovered a new hydrogen-producing photocatalyst is BiNbO4. BiNbO4 powders prepared by solid state reaction were tested for photocatalytic activity in methanol solutions under UV irradiation. When the material is tested without the presence of a Pt co-catalyst, photocatalytic activity for H2 evolution is superior to that of TiO2. It was also found that BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt.more » % Pt loading, photodegradation is essentially absent. BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt. % Pt loading, photodegradation is essentially absent.« less
Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors
NASA Astrophysics Data System (ADS)
Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.
2016-10-01
The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.
Cable testing for Fermilab's high field magnets using small racetrack coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, S.; Ambrosio, G.; Andreev, N.
As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.
Investigation on hydrogenation performance of Mg{sub 2}Ni+10 wt.% NbN composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin; Han, Shumin; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
2015-01-15
The Mg{sub 2}Ni+10 wt.% NbN composite was prepared by mechanical milling and its hydrogen absorption/desorption properties and microstructure were systematically investigated. XRD results indicated that NbN was stable during ball milling process while partly decomposed into NbN{sub 0.95} and NbH during hydriding/dehydriding cycles irreversibly. The composite exhibited excellent hydrogenation/dehydrogenation kinetics performance with 2.71 wt.% hydrogen absorbed in 60 s at 423 K and 0.81 wt.% hydrogen released in 2 h at 523 K, respectively. The H diffusion constant of the composite reached 14.98×10{sup −5} s{sup −1} which was more than twice increased than that of pure Mg{sub 2}Ni powder. Themore » superior hydrogen storage properties of the composite were ascribed to the refined grain size and abundant N-defect points provided by NbN and NbN{sub 0.95} in the composite. - Graphical abstract: The Mg{sub 2}Ni+10 wt.% NbN composite displays improvements on particle size distribution as well as hydrogen storage properties compared with that of pure Mg{sub 2}Ni. - Highlights: • NbN is introduced into Mg{sub 2}Ni hydride by Ar protected ball-milling. • Surfaces of the additive NbN particle are reduced by Mg{sub 2}NiH{sub 4}. • Hydrogenation kinetic property at 423 K is double improved. • Dehydrogenation capacity at 523 K of composites is beyond double improved.« less
Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cady, C.M.; Chen, K.C.; Kotula, P.G.
A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based uponmore » temperature and microstructure.« less
Dryza, Viktoras; Gascooke, Jason R; Buntine, Mark A; Metha, Gregory F
2009-02-21
We have used photo-ionisation efficiency spectroscopy to determine the ionisation potentials (IPs) of the niobium-carbide clusters, Nb(5)C(y) (y = 0-6). Of these clusters Nb(5)C(2) and Nb(5)C(3) exhibit the lowest IPs. Complementary density functional theory calculations have been performed to locate the lowest energy isomers for each cluster. By comparing the experimental IPs with those calculated for candidate isomers, the structures of the Nb(5)C(y) clusters observed in the experiment are inferred. For all these structures, the underlying Nb(5) cluster has either a "prolate" or "oblate" trigonal bipyramid geometry. Both Nb(5)C(5) and Nb(5)C(6) are shown to contain carbon-carbon bonding in the form of one and two molecular C(2) units, respectively.
NbN/MgO/NbN edge-geometry tunnel junctions
NASA Technical Reports Server (NTRS)
Hunt, B. D.; Leduc, H. G.; Cypher, S. R.; Stern, J. A.; Judas, A.
1989-01-01
The fabrication and low-frequency testing of the first edge-geometry NbN/MgO/NbN superconducting tunnel junctions are reported. The use of an edge geometry allows very small junction areas to be obtained, while the all-NbN electrodes permit operation at 8-10 K with a potential maximum operating frequency above 1 THz. Edge definition in the base NbN film was accomplished utilizing Ar ion milling with an Al2O3 milling mask, followed by a lower energy ion cleaning step. This process has produced all-refractory-material tunnel junctions with areas as small as 0.1 sq micron, resistance-area products less than 21 ohm sq micron, and subgap to normal state resistance ratios larger than 18.
Growth of LiNbO{sub 3}:Er Crystals and concentration dependences of their properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palatnikov, M. N., E-mail: palat-mn@chemy.kolasc.net.ru; Biryukova, I. V.; Shcherbina, O. B.
2016-11-15
A series of lithium niobate (LiNbO{sub 3}) crystals of congruent and stoichiometric compositions, doped with erbium, have been grown under non-steady-state thermal conditions. A series of LiNbO{sub 3}:Zn crystals, nominally pure LiNbO{sub 3} crystals of congruent and stoichiometric compositions, and a LiNbO{sub 3}:B crystal have also been grown. Both growth conditions and concentration dependences of physicochemical, ferroelectric, and structural characteristics of LiNbO{sub 3}:Er crystals are investigated. The growth regular domain microstructures and periodic nanostructures in LiNbO{sub 3}:Er crystals are analyzed by optical microscopy and atomic force microscopy (AFM). A comparative study of the optical homogeneity and photorefractive properties of LiNbO{submore » 3}:Er crystals of congruent and stoichiometric compositions and the Raman spectra of LiNbO{sub 3} crystals of different compositions is performed.« less
Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma.
Cui, Ximao; Yang, Yili; Jia, Deshui; Jing, Ying; Zhang, Shouhua; Zheng, Shan; Cui, Long; Dong, Rui; Dong, Kuiran
2017-01-29
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In this study, we examined the expression of bone morphogenetic protein receptor 2 (BMPR2) in primary NB and adjacent non-tumor samples (adrenal gland). BMPR2 expression was significantly downregulated in NB tissues, particularly in high-grade NB, and was inversely related to the expression of the NB differentiation markers ferritin and enolase. The significance of the downregulation was further explored in cultured NB cells. While enforced expression of BMPR2 decreased cell proliferation and colony-forming activity, shRNA-mediated knockdown of BMPR2 led to increased cell growth and clonogenicity. In mice, NB cells harboring BMPR2 shRNA showed significantly increased tumorigenicity compared with control cells. We also performed a retrospective analysis of NB patients and identified a significant positive correlation between tumor BMPR2 expression and overall survival. These findings suggest that BMPR2 may play an important role in the development of NB. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of an Advanced Respirator Fit-Test Headform
Bergman, Michael S.; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K.; McDonald, Michael J.; Palmiero, Andrew J.; Shaffer, Ronald E.; Harnish, Delbert; Husband, Michael; Wander, Joseph D.
2015-01-01
Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: “Normal Breathing” (NB, 11.2 liters per min (lpm)), “Deep Breathing” (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs fitted on people. PMID:24369934
High Performance Hermetic Package For LiNbO3 Electro-Optic Waveguide Devices
NASA Astrophysics Data System (ADS)
Preston, K. R.; Macdonald, B. M.; Harmon, R. A.; Ford, C. W.; Shaw, R. N.; Reid, I.; Davidson, J. H.; Beaumont, A. R.; Booth, R. C.
1989-02-01
A high performance fibre-tailed package for LiNbO3 electro-optic waveguide devices is described. The package is based around a hermetic metal submodule which contains no epoxy or other organic materials. The LiNbO3 chip is mounted using a soldering technique, and laser welding is used for fibre fixing to give stable, low loss optical coupling to single mode fibres. Optical reflections are minimised by the use of antireflective coatings on the fibre ends and waveguide facets. High speed electrical connections are made via coplanar glass-sealed leadthroughs to LiNb03 travelling wave devices, and packaged device operation to frequencies in excess of 4GHz is demonstrated.
The characterisation of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review
NASA Astrophysics Data System (ADS)
Harte, Allan; Griffiths, Malcolm; Preuss, Michael
2018-07-01
The nature and evolution of the Fe environment in Zr-Nb and Zr-Nb-Sn-Fe systems is essential to alloy performance during corrosion, hardening and irradiation-induced growth. Unfortunately, there is ambiguity in the literature regarding the characterisation of secondary phases in these systems. The presence, or not, of Fe in β-Nb phase has been a source of disagreement. In ternary ZrNbFe intermetallics, identical compositions have been designated as Zr(Nb,Fe)2 or (Zr,Nb)3Fe. We show that while Zr(Nb,Fe)2 is commonly reported, it is not always justified. The cubic phase (Zr,Nb)2Fe is easily identified, but its composition is more variable after low temperature heat treatments. We demonstrate the need for correlative approaches in the assessment of phase composition, crystallography and local Fe environment under different heat treatment regimes. Irradiation effects allow us to draw clues regarding phase designation, but there is diverse behaviour under irradiation due to initial phase composition, irradiation dose rate and temperature.
Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário
2017-01-01
The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.
Warren, Mikako; Matsuno, Ryosuke; Tran, Henry; Shimada, Hiroyuki
2018-03-01
This study evaluated the utility of Phox2b in paediatric tumours. Previously, tyrosine hydroxylase (TH) was the most widely utilised sympathoadrenal marker specific for neural crest tumours with neuronal/neuroendocrine differentiation. However, its sensitivity is insufficient. Recently Phox2b has emerged as another specific marker for this entity. Phox2b immunohistochemistry (IHC) was performed on 159 paediatric tumours, including (group 1) 65 neural crest tumours with neuronal differentiation [peripheral neuroblastic tumours (pNT)]: 15 neuroblastoma undifferentiated (NB-UD), 10 NB poorly differentiated (NB-PD), 10 NB differentiating (NB-D), 10 ganglioneuroblastoma intermixed (GNBi), 10 GNB nodular (GNBn) and 10 ganglioneuroma (GN); (group 2) 23 neural crest tumours with neuroendocrine differentiation [pheochromocytoma/paraganglioma (PCC/PG)]; (group 3) 27 other neural crest tumours including one composite rhabdomyosarcoma/neuroblastoma; and (group 4) 44 non-neural crest tumours. TH IHC was performed on groups 1, 2 and 3. Phox2b was expressed diffusely in pNT (n = 65 of 65), strongly in NB-UD and NB-PD and with less intensity in NB-D, GNB and GN. Diffuse TH was seen in all NB-PD, NB-D, GNB and GN, but nine of 15 NB-UD and a nodule in GNBn did not express TH (n = 55 of 65). PCC/PG expressed diffuse Phox2b (n = 23 of 23) and diffuse TH, except for one tumour (n = 22 of 23). In composite rhabdomyosarcoma, TH was expressed only in neuroblastic cells and Phox2b was diffusely positive in neuroblastic cells and focally in rhabdomyosarcoma. All other tumours were negative for Phox2b (n = none of 44). Phox2b was a specific and sensitive marker for pNT and PCC/PG, especially useful for identifying NB-UD often lacking TH. Our study also presented a composite rhabdomyosarcoma/neuroblastoma of neural crest origin. © 2017 John Wiley & Sons Ltd.
Measurement of fuel corrosion products using planar laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.
1993-01-01
Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.
Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
Ozan, Sertan; Lin, Jixing; Li, Yuncang; Ipek, Rasim; Wen, Cuie
2015-07-01
A new series of beta Ti-Nb-Zr (TNZ) alloys with considerable plastic deformation ability during compression test, high elastic admissible strain, and excellent cytocompatibility have been developed for removable bone tissue implant applications. TNZ alloys with nominal compositions of Ti-34Nb-25Zr, Ti-30Nb-32Zr, Ti-28Nb-35.4Zr and Ti-24.8Nb-40.7Zr (wt.% hereafter) were fabricated using the cold-crucible levitation technique, and the effects of alloying element content on their microstructures, mechanical properties (tensile strength, yield strength, compressive yield strength, Young's modulus, elastic energy, toughness, and micro-hardness), and cytocompatibilities were investigated and compared. Microstructural examinations revealed that the TNZ alloys consisted of β phase. The alloy samples displayed excellent ductility with no cracking, or fracturing during compression tests. Their tensile strength, Young's modulus, elongation at rupture, and elastic admissible strain were measured in the ranges of 704-839 MPa, 62-65 GPa, 9.9-14.8% and 1.08-1.31%, respectively. The tensile strength, Young's modulus and elongation at rupture of the Ti-34Nb-25Zr alloy were measured as 839 ± 31.8 MPa, 62 ± 3.6 GPa, and 14.8 ± 1.6%, respectively; this alloy exhibited the elastic admissible strain of approximately 1.31%. Cytocompatibility tests indicated that the cell viability ratios (CVR) of the alloys are greater than those of the control group; thus the TNZ alloys possess excellent cytocompatibility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
High temperature fatigue behavior of a SiC/Ti-24Al-11Nb composite
NASA Technical Reports Server (NTRS)
Bartolotta, P. A.; Brindley, P. K.
1990-01-01
A series of tension-tension strain- and load-controlled tests were conducted on unidirectional SiC/Ti-24Al-11Nb (at percent) composites at 425 and 815 C. Several regimes of damage were identified using Talrega's concept of fatigue life diagrams. Issues of test technique, test control mode, and definition of failure were also addressed.
RECENT XPS STUDIES OF THE EFFECT OF PROCESSING ON NB SRF SURFACES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui Tian; Binping Xiao; Michael Kelley
XPS studies have consistently shown that Nb surfaces for SRF chiefly comprise of a few nm of Nb2O5 on top of Nb metal, with minor amounts of Nb sub-oxides. Nb samples after BCP/EP treatment with post-baking at the various conditions have been examined by using synchrotron based XPS. Despite the confounding influence of surface roughness, certain outcomes are clear. Lower-valence Nb species are always and only associated with the metal/oxide interface, but evidence for an explicit layer structure or discrete phases is lacking. Post-baking without air exposure shows decreased oxide layer thickness and increased contribution from lower valence species, butmore » spectra obtained after subsequent air exposure cannot be distinguished from those obtained prior to baking, though the SRF performance improvement remains.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, R.; Ambrosio, G.; Barzi, E.
The design study of the block type 15-Tesla RHQT Nb{sub 3}Al dipole magnet, and its merits over Nb{sub 3}Sn magnets are presented. The copper stabilized RHQT Nb{sub 3}Al strand is now becoming commercially available for the application to the accelerator magnets. A 1 mm diameter RHQT Nb{sub 3}Al strand with filament size about 50 {mu}, non-copper Jc about 1000 A/mm{sup 2} at 15 Tesla at 4.2K, copper ratio of 50%, can now be produced over several hundred meters. The stress and strain characteristics of the Nb{sub 3}Al strand are superior to the Nb{sub 3}Sn strand. Another advantage is that itmore » can tolerate a longitudinal strain up to 0.55%. The RHQT Nb{sub 3}Al Rutherford cable will have less chance of contamination of the stabilizer, compared to Nb{sub 3}Sn cable. These characteristics of the RHQT Nb{sub 3}Al will be beneficial for designing and producing 15-Tesla dipole magnets. An example 15-Tesla magnet cross section, utilizing the RHQT Nb{sub 3}Sn strand is presented. A systematic investigation on RHQT Nb{sub 3}Al strands, its Rutherford cables, and building a small racetrack magnet for cable testing are proposed.« less
Characterization of UOP IONSIV IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
NYMAN, MAY D.; NENOFF, TINA M.; HEADLEY, THOMAS J.
2001-06-01
As a participating national lab in the inter-institutional effort to resolve performance issues of the non-elutable ion exchange technology for Cs extraction, they have carried out a series of characterization studies of UOP IONSIV{reg_sign} IE-911 and its component parts. IE-911 is a bound form (zirconium hydroxide-binder) of crystalline silicotitanate (CST) ion exchanger. The crystalline silicotitanate removes Cs from solutions by selective ion exchange. The performance issues of primary concern are: (1) excessive Nb leaching and subsequent precipitation of column-plugging Nb-oxide material, and (2) precipitation of aluminosilicate on IE-911 pellet surfaces, which may be initiated by dissolution of Si from themore » IE-911, thus creating a supersaturated solution with respect to silica. In this work, they have identified and characterized Si- and Nb-oxide based impurity phases in IE-911, which are the most likely sources of leachable Si and Nb, respectively. Furthermore, they have determined the criteria and mechanism for removal from IE-911 of the Nb-based impurity phase that is responsible for the Nb-oxide column plugging incidents.« less
Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut
2017-02-13
Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.
Current-Voltage Characteristics of Nb2O5 nanoporous via light illumination
NASA Astrophysics Data System (ADS)
Samihah Khairir, Nur; Rani, Rozina Abdul; Fazlida Hanim Abdullah, Wan; Hafiz Mamat, Mohamad; Kadir, Rosmalini Abdul; Rusop, M.; Sabirin Zoolfakar, Ahmad
2018-03-01
This work discussed the effect of light on I-V characteristics of anodized niobium pentoxide (Nb2O5) which formed nanoporous structure film. The structure was synthesized by anodizing niobium foils in glycerol based solution with 10 wt% supplied by two different voltages, 5V and 10V. The anodized foils that contained Nb2O5 film were then annealed to obtain an orthorhombic phase for 30 minutes at 450°C. The metal contact used for I-V testing was platinum (Pt) and it was deposited using thermal evaporator at 30nm thickness. I-V tests were conducted under different condition; dark and illumination to study the effect of light on I-V characteristics of anodized nanoporous Nb2O5. Higher anodization voltage and longer anodization time resulted in higher pore dispersion and larger pore size causing the current to increase. The increase of conductivity in I-V behaviour of Nb2O5 device is also affected by the illumination test as higher light intensity caused space charge region width to increase, thus making it easier for electron transfer between energy band gap.
Superheating in coated niobium
NASA Astrophysics Data System (ADS)
Junginger, T.; Wasserman, W.; Laxdal, R. E.
2017-12-01
Using muon spin rotation it is shown that the field of first flux penetration {H}{entry} in Nb is enhanced by about 30% if coated with an overlayer of Nb3Sn or MgB2. This is consistent with an increase from the lower critical magnetic field {H}{{c}1} up to the superheating field {H}{sh} of the Nb substrate. In the experiments presented here coatings of Nb3Sn and MgB2 with a thickness between 50 and 2000 nm have been tested. {H}{entry} does not depend on material or thickness. This suggests that the energy barrier at the boundary between the two materials prevents flux entry up to {H}{sh} of the substrate. A mechanism consistent with these findings is that the proximity effect recovers the stability of the energy barrier for flux penetration, which is suppressed by defects for uncoated samples. Additionally, a low temperature baked Nb sample has been tested. Here a 6% increase of {H}{entry} was found, also pushing {H}{entry} beyond {H}{{c}1}.
Tunneling study of cavity grade Nb : possible magnetic scattering at the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prolier, T.; Zasadzinski, J. F.; Cooley, L.
Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap {Delta} = 1.55 meV, which is characteristic of a clean, bulk Nb. However, the tunneling density of states (DOS) was significantly broadened. The Nb pieces, which were treated with the same mild baking used to improve the Q slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained by using the Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of themore » gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Wentao; Sun, Xuguang; Yuan, Bifei
The microstructures, phase transformations and shape memory properties of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) alloys were investigated. The X-ray diffraction and transmission electron microscopy observations showed that the Ti-30Zr-5Nb, Ti-30Zr-7/9Nb and Ti-30Zr-13Nb alloys were composed of the hcp α′-martensite, orthorhombic α″-martensite and β phases, respectively. The results indicated the enhanced β-stabilizing effect of Nb in Ti-30Zr-xNb alloys than that in Ti-Nb alloys due to the high content of Zr. The differential scanning calorimetry test indicated that the Ti-30Zr-5Nb alloy displayed a reversible transformation with a high martensitic transformation start temperature of 776 K and a reverse martensiticmore » transformation start temperature (A{sub s}) of 790 K. For the Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys, the martensitic transformation temperatures decreased with the increasing Nb content. Moreover, an ω phase transformation occurred in the both alloys upon heating at a temperature lower than the corresponding A{sub s}, which is prompted by more addition of Nb. Although the critical stress in tension of the three martensitic alloys decreased with increasing Nb content, the Ti-30Zr-9Nb alloy showed a critical stress of as high as 300 MPa. Among all the alloys, the Ti-30Zr-9Nb alloy exhibited the maximum shape memory effect of 1.61%, due to the lowest critical stress for the martensite reorientation. - Highlights: •Ti-30Zr-5Nb alloy is composed of hcp α′-martensite with the M{sub s} of 776 K. •Ti-30Zr-7Nb and Ti-30Zr-9Nb alloys are predominated by orthorhombic α″-martensite. •Ti-30Zr-13Nb alloy consists of a single β phase due to the β-stabilizing effect of Nb. •The martensitic transformation temperatures decrease with increasing Nb content. •Ti-30Zr-9Nb alloy shows the maximum shape memory effect of 1.61%.« less
Pinto Torres, Joar E; Goossens, Julie; Ding, Jianzu; Li, Zeng; Lu, Shaohong; Vertommen, Didier; Naniima, Peter; Chen, Rui; Muyldermans, Serge; Sterckx, Yann G-J; Magez, Stefan
2018-06-13
Animal African trypanosomosis (AAT), a disease affecting livestock, is caused by parasites of the Trypanosoma genus (mainly T. vivax and T. congolense). AAT is widespread in Sub-Saharan Africa, where it continues to impose a heavy socio-economic burden as it renders development of sustainable livestock rearing very strenuous. Active case-finding and the identification of infected animals prior to initiation of drug treatment requires the availability of sensitive and specific diagnostic tests. In this paper, we describe the development of two heterologous sandwich assay formats (ELISA and LFA) for T. congolense detection through the use of Nanobodies (Nbs). The immunisation of an alpaca with a secretome mix from two T. congolense strains resulted in the identification of a Nb pair (Nb44/Nb42) that specifically targets the glycolytic enzyme pyruvate kinase. We demonstrate that the Nb44/Nb42 ELISA and LFA can be employed to detect parasitaemia in plasma samples from experimentally infected mice and cattle and, additionally, that they can serve as 'test-of-cure' tools. Altogether, the findings in this paper present the development and evaluation of the first Nb-based antigen detection LFA to identify active T. congolense infections.
Dynamic Detection of Malicious Code in COTS Software
2000-04-01
run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s
NASA Astrophysics Data System (ADS)
Minamikawa, Kazunori; Takahashi, Masayoshi; Makino, Tomoyuki; Tago, Kanako; Hayatsu, Masahito
2015-08-01
A remarkable feature of nanobubbles (<10-6 m in diameter) is their long lifetime in water. Supplying oxygen-nanobubbles (NBs) to continuously flooded paddy soil may retard the development of reductive conditions, thereby reducing the emission of methane (CH4), a potent greenhouse gas, and dissolution of arsenic, an environmental load. We tested this hypothesis by performing a pot experiment and measuring redox-related variables. The NBs were introduced into control water (with properties similar to those of river water) using a commercially available generator. Rice (Oryza sativa L.) growth did not differ between plants irrigated with NB water and those irrigated with control water, but NB water significantly (p < 0.05) reduced cumulative CH4 emission during the rice-growing season by 21%. The amounts of iron, manganese, and arsenic that leached into the drainage water before full rice heading were also reduced by the NB water. Regardless of the water type, weekly-measured CH4 flux was linearly correlated with the leached iron concentration during the rice-growing season (r = 0.74, p < 0.001). At the end of the experiment, the NB water significantly lowered the soil pH in the 0-5 cm layer, probably because of the raised redox potential. The population of methanogenic Archaea (mcrA copy number) in the 0-5 cm layer was significantly increased by the NB water, but we found no correlation between the mcrA copy number and the cumulative CH4 emission (r = -0.08, p = 0.85). In pots without rice plants, soil reduction was not enhanced, regardless of the water type. The results indicate that NB water reduced CH4 emission and arsenic dissolution through an oxidative shift of the redox conditions in the flooded soil. We propose the use of NB water as a tool for controlling redox conditions in flooded paddy soils.
NASA Astrophysics Data System (ADS)
Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui
2017-09-01
Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).
Strain tolerance in technical Nb3Al superconductors
NASA Astrophysics Data System (ADS)
Banno, N.; Takeuchi, T.; Kitaguchi, H.; Tagawa, K.
2006-10-01
We observed crack formation in transformation-processed Nb3Al wires at room temperature, the wire being bent with a small clamp fixture with a curvature. The polished cross-section parallel to the longitudinal axis was observed, using a high power optical microscope or a field-emission scanning electron microscope. The bend strain limit for microcrack formation is found, changing the radius of the curvature of the clamp. The bend strain limit was found to be around 0.3% for standard Nb3Al wires. This corresponds to the irreversible tensile strain limit of the Ic characteristics determined with a 0.1 µV cm-1 criterion. Reduction of the barrier thickness should be avoided to keep to the bend strain limit. A new configuration of the Nb3Al wire is demonstrated to improve the bend strain limit. The filament is divided into segments in the transverse cross-section. The wire is fabricated by a double-stacking method. The bend strain limit is enhanced to about 0.85% for the wire surface; the equivalent strain of the outermost filament location is about 0.66%. A simple react and wind test for this wire was performed, where the wire experienced 0.86% bend strain. The degradation of Jc was found to be very small.
Quench in a conduction-cooled Nb3Sn SMES magnet
NASA Astrophysics Data System (ADS)
Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine
2003-11-01
Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.
Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor
NASA Astrophysics Data System (ADS)
Shin, Hyun Wook; Son, Jong Yeog
2018-01-01
We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.
Zhang, Enren; Wang, Feng; Zhai, Wenjing; Scott, Keith; Wang, Xu; Diao, Guowang
2017-04-01
Single-chamber microbial fuel cells (S-MFCs) with bio-anodes and activated carbon (AC) air-cathodes showed high nitrobenzene (NB) tolerance and NB removal with concomitant electricity production. The maximum power over 25Wm -3 could be obtained when S-MFCs were operated in the NB loading range of 1.2-6.2molm -3 d -1 , and stable electricity production over 13.7Wm -3 could be produced in a NB loading range of 1.2-14.7molm -3 d -1 . The present S-MFCs exhibited high NB removal performance with NB removal efficiency over 97% even when the NB loading rate was increased to 17.2molm -3 d -1 . The potential NB reduced product (i.e. aniline) could also be effectively removed from influents. The findings in this study means that single-chamber MFCs assembled with pre-enriched bio-anodes and AC air-cathodes could be developed as effective bio-electrochemical systems to remove NB from wastewaters and to harvest energy instead of consuming energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Field Quality Measurements in the FNAL Twin-Aperture 11 T Dipole for LHC Upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, T.; Apollinari, G.; Apollinari, G.
2016-11-08
FNAL and CERN are developing an 11 T Nb3Sn dipole suitable for installation in the LHC to provide room for additional collimators. Two 1 m long collared coils previously tested at FNAL in single-aperture dipole configuration were assembled into the twin-aperture configuration and tested including magnet quench performance and field quality. The results of magnetic measurements are reported and discussed in this paper.
NASA Astrophysics Data System (ADS)
Sutowo, Cahya; Alhamidi, A. Ali; Basir, Muh. Idrus Abdul; Rokhmanto, Fendy
2018-05-01
The Ti-6Al-6Nb alloy has been used as bone plate in biomedical application. But, its modulus elasticity still lies above its cortical-bone, which causes stress shielding. An alternative process for reduce modulus of elasticity by means of treatment solutions with heating β-transus temperature follows with rapid cooling for obtaining high % intensity of β-phase fractions. In this study the Ti-6Al-6Nb as-cast alloys were homogenized at 1050 °C for 12 hours, then hot-rolled with a reduction 60% (from 10mm to 4 mm thickness) at 1000 °C and then dissolved at 1100 °C for 2 hours and then cooled by water, oil and air. The microstructural observations were performed with OM and SEM-EDS. The phase analyzes were observed by XRD test and mechanical properties observed by Ultrasonic test. The observation result shows the elasticity modulus value in alloys which being ST with cooling is 106,71 GPa. This is consistent with the observation of the microstructure that the presence of β-transformed and it is also in accordance with the XRD analysis and the intensity of the phase fraction, where the peak and% intensity of the β (35%) phase fraction increase in alloys which ST and oil quench.
Corrosion Behaviour in Human Stimulation Media of a High Entropy Titan-Based Alloy
NASA Astrophysics Data System (ADS)
Ghiban, B.; Popescu, G.; Lazar, C.; Rosu, L.; Constantin, I.; Olaru, M.; Carlan, B.
2018-06-01
The paper presents results on the corrosion behavior of high entropy alloys, commonly called BIOHEA in human physiological simulating media, respectively in the NaCl infusion solution and Ringer’s lactate infusion solution. Corrosion tests were performed by potendiodinamic test using AUTOLAB type potentiostat equipped with specialized corrosion software including the PGSTAT302N, BA and SCAN250 modules. Three entropy alloy systems were investigated: FeTa0.5Nb0.5Ti1.5Zr0.5 (BIOHEA 1), FeMnNb0.5TiZr0.5 (BIOHEA 3), FeTa0.5Nb0.5TiZr0.5 (BIOHEA 4), and BIOHEA alloy 2 was obtained by remelting BIOHEA 1. A comparison of the results obtained in the present tests and the data from the literature shows, on the one hand, that the global results can be compared with the different results from the literature, and, on the other hand, the results are new, in the sense that in any work there are no combinations of alloys studied here or human simulating medians used for testing. The conclusion of the experimental investigations in the present paper is the fact that regardless of the simulation test environment, all the alloys experimental alloys have similar behaviors, there is a difference between the chemical composition of the experimental alloy and the displacement of the corrosion potential values at electropositive values, decreasing of corrosion current, and corrosion rates. The experimental results allow the corrosion resistance of the investigated alloys, alloy BIOHEA 2 having the best corrosion behavior in both test media, with very low corrosion rates (respectivelly 0.067 μm/year in NaCl infusion solution, and 0.021 μm / year in Ringer’s lactate infusion solution).
Velev, G. V.; Chlachidze, G.; DiMarco, J.; ...
2016-01-06
In the past 10 years, Fermilab has been executing an intensive R&D program on accelerator magnets based on Nb 3Sn superconductor technology. This R&D effort includes dipole and quadrupole models for different programs, such as LARP and 11 T dipoles for the LHC high-luminosity upgrade. Before the Nb 3Sn R&D program, Fermilab was involved in the production of the low-beta quadrupole magnets for LHC based on the NbTi superconductor. Additionally, during the 2003-2005 campaign to optimize the operation of the Tevatron, a large number of Tevatron magnets were re-measured. As a result of this field analysis, a systematic study ofmore » the persistent current decay and snapback effect in these magnets was performed. This paper summarizes the result of this study and presents a comparison between Nb 3Sn and NbTi dipoles and quadrupoles.« less
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.; ...
2016-11-15
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farha, Ashraf Hassan; Ozkendir, Osman Murat; Elsayed-Ali, Hani E.
NbN coatings are prepared onto Nb substrate by thermal diffusion at high temperatures. The formation of NbN coating by thermal diffusion was studied in the range of 1250-1500 °C at constant nitrogen background gas pressure (1.3x10 -3 Pa) and processing time (180 min). The electronic and crystal structures of the NbN coatings were investigated. It was found that nitrogen diffuses into Nb forming the Nb-N solid solution (bcc) a-NbN phase that starts to appear above 1250 °C. Increasing the processing temperature gives richer a-phase concentration. Besides, X-ray absorption spectroscopy (XAS) was performed to study the electronic structure of the NbNmore » layer. The results of the electronic structural study corroborate the crystal structural analysis. The Nb M 3,2 edge X-ray absorption spectroscopy (XAS) spectrum shows strong temperature dependence. At the highest processing temperature (1500 °C), the number of d holes increased. Nitrogen diffusion into Nb is resulting to increase electrostatic interaction between d electron and core hole. Lastly, for the studied conditions, only the α-NbN was observed in the X-ray diffraction patterns.« less
Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components
NASA Astrophysics Data System (ADS)
Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.
2011-10-01
The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.
The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Chung, Young-Soo; Choi, Jun-Hyeok; Kim, Hong-Taek; Lee, Hacksoo
2010-03-01
The purpose of this study is to assess the confining effectiveness of shape memory alloy (SMA) wire jackets for concrete. The performance of SMA wire jackets was compared to that of steel jackets. A prestrained martensitic SMA wire was wrapped around a concrete cylinder and then heated by a heating jacket. In the process, a confining stress around the cylinder was developed in the SMA wire due to the shape memory effect; this jacketing method can increase the strength and ductility of the cylinder under an axial compressive load. In this study, NiTi and NiTiNb SMA wires of 1.0 mm in diameter were used for the confinement. Recovery tests were conducted on the wires to assess their recovery and residual stress. The confinement by SMA wire jackets increased the strength slightly and greatly increased the ductility compared to the strength and ductility of plain concrete cylinders. The NiTiNb SMA wire jacket showed better performance than that of the NiTi SMA wire jacket. The confining effectiveness of the SMA wire jackets of this study was estimated to be similar to that of the steel jackets. This study showed the potential of the SMA wire jacketing method to retrofit reinforced concrete columns and protect them from seismic risks.
QDENSITY—A Mathematica Quantum Computer simulation
NASA Astrophysics Data System (ADS)
Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank
2006-06-01
This Mathematica 5.2 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. Selected examples of the basic commands are presented here and a tutorial notebook, Tutorial.nb is provided with the package (available on our website) that serves as a full guide to the package. Finally, application is made to a variety of relevant cases, including Teleportation, Quantum Fourier transform, Grover's search and Shor's algorithm, in separate notebooks: QFT.nb, Teleportation.nb, Grover.nb and Shor.nb where each algorithm is explained in detail. Finally, two examples of the construction and manipulation of cluster states, which are part of "one way computing" ideas, are included as an additional tool in the notebook Cluster.nb. A Mathematica palette containing most commands in QDENSITY is also included: QDENSpalette.nb. Program summaryTitle of program: QDENSITY Catalogue identifier: ADXH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating systems: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Programming language used: Mathematica 5.2 No. of bytes in distributed program, including test data, etc.: 180 581 No. of lines in distributed program, including test data, etc.: 19 382 Distribution format: tar.gz Method of solution: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. QDENSITY is available at http://www.pitt.edu/~tabakin/QDENSITY.
NASA Astrophysics Data System (ADS)
Kim, Minjoong; Kwon, Chorong; Eom, Kwangsup; Kim, Jihyun; Cho, Eunae
2017-03-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2.
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-03-14
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO 2 (Nb-TiO 2 ) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO 2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb 0.25 Ti 0.75 O 2 ). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO 2 -nanofibers (Pt/Nb-TiO 2 ) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO 2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO 2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO 2 nanofiber catalyst can be attributed to high corrosion resistance of TiO 2 and strong interaction between Pt and TiO 2 .
Kim, MinJoong; Kwon, ChoRong; Eom, KwangSup; Kim, JiHyun; Cho, EunAe
2017-01-01
This study explores a facile method to prepare an efficient and durable support for Pt catalyst of polymer electrolyte membrane fuel cell (PEMFC). As a candidate, Nb-doped TiO2 (Nb-TiO2) nanofibers are simply fabricated using an electrospinning technique, followed by a heat treatment. Doping Nb into the TiO2 nanofibers leads to a drastic increase in electrical conductivity with doping level of up to 25 at. % (Nb0.25Ti0.75O2). Pt nanoparticles are synthesized on the prepared 25 at. % Nb-doped TiO2-nanofibers (Pt/Nb-TiO2) as well as on a commercial powdered carbon black (Pt/C). The Pt/Nb-TiO2 nanofiber catalyst exhibits similar oxygen reaction reduction (ORR) activity to that of the Pt/C catalyst. However, during an accelerated stress test (AST), the Pt/Nb-TiO2 nanofiber catalyst retained more than 60% of the initial ORR activity while the Pt/C catalyst lost 65% of the initial activity. The excellent durability of the Pt/Nb-TiO2 nanofiber catalyst can be attributed to high corrosion resistance of TiO2 and strong interaction between Pt and TiO2. PMID:28290503
Finite-element analysis of transverse compressive and thermal loads on Nb 3Sn wires with voids
Zhai, Y.; D'Hauthuille, L.; Barth, C.; ...
2016-02-29
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
Effects of microalloying on hot-rolled and cold-rolled Q&P steels
NASA Astrophysics Data System (ADS)
Azevedo de Araujo, Ana Luiza
Third generation advanced high strength steels (AHSS) have been a major focus in steel development over the last decade. The premise of these types of steel is based on the potential to obtain excellent combinations of strength and ductility with low-alloy compositions by forming mixed microstructures containing retained austenite (RA). The development of heat treatments able to achieve the desired structures and properties, such as quenching and partitioning (Q&P) steels, is driven by new requirements to increase vehicle fuel economy by reducing overall weight while maintaining safety and crashworthiness. Microalloying additions of niobium (Nb) and vanadium (V) in sheet products are known to provide strengthening via grain refinement and precipitation hardening and may influence RA volume fraction and transformation behavior. Additions of microalloying elements in Q&P steels have not been extensively studied to date, however. The objective of the present study was to begin to understand the potential roles of Nb and V in hot-rolled and cold-rolled Q&P steel. For that, a common Q&P steel composition was selected as a Base alloy with 0.2C-1.5Si-2.0Mn (wt. %). Two alloys with an addition of Nb (0.02 and 0.04 wt. %) and one with an addition of V (0.06 wt. %) to the Base alloy were investigated. Both hot-rolled and cold-rolled/annealed Q&P simulations were conducted. In the hot-rolled Q&P study, thermomechanical processing was simulated via hot torsion testing in a GleebleRTM 3500, and four coiling temperatures (CT) were chosen. Microstructural evaluation (including RA measurements via electron backscattered diffraction - EBSD) and hardness measurements were performed for all alloys and coiling conditions. The analysis showed that Nb additions led to overall refinement of the prior microstructure. Maximum RA fractions were measured at the 375 °C CT, and microalloying was associated with increased RA in this condition when compared to the Base alloy. A change in austenite morphology from lath-like to blocky with increasing CT was observed. Hardness generally increased with decreasing CT, consistent with the increased fraction of harder phases in the microstructure. For the cold-rolled Q&P study, several combinations of quenching temperature (QT), partitioning temperature (PT), and partitioning time (t p) were examined using heat treatments in salt baths. Uniaxial tensile tests and RA measurements via x-ray diffraction (XRD) were performed for all alloys and heat treatment conditions. Scanning electron microscope (SEM) imaging and EBSD were conducted for a few select conditions. In terms of microstructure, Nb promoted an extensive refinement of the prior austenite grain size. Additions of V and Nb also seemed to affect the morphology of the microstructural constituents. It was observed that V generally increased austenite fractions at lower t p's, and the Nb-containing alloys had greater austenite fractions in most instances when compared to the Base alloy. Carbon content in austenite was usually increased or maintained with additions of Nb and V. In terms of mechanical properties, V slightly improved strength and elongation when compared to the Base alloy for most conditions. Niobium additions were somewhat more effective in improving ductility.
Chang, L. L.; Wang, Y. D.; Ren, Y.
2015-11-04
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
Mechanism of Dynamic Strain Aging in a Niobium-Stabilized Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zhou, Hongwei; Bai, Fengmei; Yang, Lei; Wei, Hailian; Chen, Yan; Peng, Guosheng; He, Yizhu
2018-04-01
Dynamic strain aging (DSA) behavior of a niobium (Nb)-stabilized austenitic stainless steel (TP347H) was studied from room temperature (RT) to 973 K via tensile testing, transmission electron microscopy (TEM), and internal friction (IF) measurements. The DSA effect is nearly negligible from 573 K to 673 K, and it becomes significant at temperatures between 773 K and 873 K with strain rates of 3 × 10-3 s-1, 8 × 10-4 s-1, and 8 × 10-5 s-1, respectively. The results indicate that a dislocation planar slip is dominant in the strong DSA regime. The Snoek-like peak located at 625 K is highly sensitive to the diffusion of free carbon (C) atoms in solid solution. C-Nb octahedrons are formed by C chemical affinity to substitutional Nb solute atoms. Octahedron structure is very stable and captures most free C atoms and inhibits DSA at low tensile test temperatures of 573 K to 673 K. At high test temperatures in the range from 773 K to 873 K, C-Nb octahedrons break up and release free C and Nb atoms, resulting in the stronger Snoek-like peak. The interaction between C atoms and dislocations is responsible for DSA at low temperatures ranging from 573 K to 673 K. At higher temperature of 773 K to 873 K, the Cr and Nb atoms lock the dislocations, and this formation contributes to DSA.
Lou, Shuaifeng; Ma, Yulin; Cheng, Xinqun; Gao, Jinlong; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping
2015-12-18
One-dimensional nanostructured TiNb2O7 was prepared by a simple solution-based process and subsequent thermal annealing. The obtained anode materials exhibited excellent electrochemical performance with superior reversible capacity, rate capability and cyclic stability.
Stübinger, Stefan; Waser, Jasmin; Hefti, Thomas; Drechsler, Anika; Sidler, Michéle; Klein, Karina; von Rechenberg, Brigitte; Schlottig, Falko
2015-05-01
The aim of this study was to evaluate the clinical performance of local cancellous bone amelioration by a 70:30 poly-(L-lactide-co-D,L-Lacide) copolymer with two different implant designs on primary stability and after 4 and 12 weeks of healing time. In six sheep, n = 36 implants (TH) with a conditioned, sandblasted, thermal acid-etched micro-rough surface and n = 36 implants (NB) with a highly crystalline and phosphate-enriched anodized titanium oxide surface were placed in the pelvic bone. Using an ultrasound-based process named Constant Amelioration Process (CAP), half of peri-implant trabecular bone structures were locally tested with 70:30 poly-(L-lactide-co-D,L-Lacide) copolymer in both implant groups, TH and NB. The CAP technology employs ultrasonic energy to liquefy 70:30 poly-(L-lactide-co-D,L-Lacide) which enters the inter-trabecular space, leading to local reinforcement of the cancellous bone structure after solidification of the copolymer. The CAP test group was compared with reference implants placed with the conventional site preparation according to the manufacturers' description. Primary stability was assessed by the measurement of torque-in values and implant stability quotient (ISQ; n = 18 per group). Secondary stability was analyzed by biomechanical removal torque testing after 4 and 12 weeks (n = 9 per group). Insertion torque value (23.3 N cm ± 13.6) of reference TH implants demonstrated a statistically significant (P = 0.00) difference in comparison with test TH implants (41.9 N cm ± 19.5). Reference NB implants revealed a statistically significant (P = 0.03) lower insertion torque value (23.7 N cm ± 13.5) than test NB implants (39.7 N cm ± 18.6). ISQ values increased for all implants from initial implant placement until sacrifice at 12 weeks. Reference TH implants tended to result in an increase in torque values from 4 weeks (181.9 N cm ± 22.8) to 12 weeks (225.7 N cm ± 47.4). This trend could be also proven for implants of test sites (4 week: 176.8 N cm ± 24.1; 12 week: 201.5 N cm ± 53.4). For reference, NB implants a non-significant increase in removal torque values from 4 weeks (146. 7 N cm ± 18.0) to 12 weeks (170.2 N cm ± 40.4) was observed. Removal torque values of test NB implants did not increase from 4 weeks (153.3 N cm ± 21.5) to 12 weeks (146.1 N cm ± 37.5). Biomechanical data proved significantly enhanced primary stability of dental implants after local amelioration without long-term sequelae and irrespective of implant design. After 4- and 12-week healing time, removal torque of locally test implants was as high as for control implants, and osseointegration was therefore not influenced by the CAP process. No correlation between ISQ values and torque values was found. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Role of alkali carbonate and salt in topochemical synthesis of K1/2Na1/2NbO3 and NaNbO3 templates
NASA Astrophysics Data System (ADS)
Lee, Jae-Seok; Jeon, Jae-Ho; Choi, Si-Young
2013-11-01
Since the properties of lead-free piezoelectric materials have thus far failed to meet those of lead-based materials, either chemical doping or morphological texturing should be employed to improve the piezoelectric properties of lead-free piezoelectric ceramics. The goal of this study was to synthesize plate-like K1/2Na1/2NbO3 and NaNbO3 particles, which are the most favorable templates for morphological texturing of K1/2Na1/2NbO3 ceramics. To achieve this goal, Bi2.5Na3.5Nb5O18 precursors in a plate-like shape were first synthesized and subsequently converted into K1/2Na1/2NbO3 or NaNbO3 particles that retain the morphology of Bi2.5Na3.5Nb5O18. In this study, we found that sodium or potassium carbonate does not play a major role in converting the Bi2.5Na3.5Nb5O18 precursor to K1/2Na1/2NbO3 or NaNbO3, on the contrary to previous reports; however, the salt contributes to the conversion reaction. All synthesis processes have been performed via a molten salt method, and scanning electron microscopy, scanning probe microscopy, and inductively coupled plasma mass spectroscopy were used to characterize the synthesized K1/2Na1/2NbO3 or NaNbO3 templates.
NASA Astrophysics Data System (ADS)
Afonina, Natalie Petrovna
To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The high temperature results were significantly lower when compared to room temperature values. Higher creep rates were correlated with lower yield strengths.
NASA Astrophysics Data System (ADS)
Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.
2016-12-01
Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.
Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas
Zhai, Jian; Wang, Zhu; Shi, Peng; Long, Chao
2017-01-01
To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB) (< 20 g m-3 h-1) was investigated when using different empty bed residence times (EBRT) (64, 55.4 and 34 s, respectively). In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB. PMID:28114416
Reduced Dimensionality Lithium Niobate Microsystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenfield, Matt
2017-01-01
The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO 3 ). Section 1 provides an introduction to integrated LiNbO 3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO 3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbOmore » 3 structures fabricated from LiNbO 3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.« less
NASA Astrophysics Data System (ADS)
Nikulin, S. A.; Rozhnov, A. B.; Belov, V. A.; Li, E. V.; Glazkina, V. S.
2011-11-01
Exploratory investigations of the influence of alloying and impurity content in the E110 alloy cladding tubes on the behavior under conditions of Loss of Coolant Accidents (LOCA) has been performed. Three alloys of E110 type have been tested: E110 alloy of nominal composition Zr-1%Nb (E110), E110 alloy of modified composition Zr-1%Nb-0.12%Fe-0.13%O (E110M), E110 alloy of nominal composition Zr-1%Nb with reduced impurity content (E110G). Alloys E110 and E110M were manufactured on the electrolytic basis and alloy E110G was manufactured on the basis of zirconium sponge. The high temperature oxidation tests in steam ( T = 1100 °C, 18% of equivalent cladding reacted (ECR)) have been conducted, kinetics of oxidation was investigated. Quantitative research of structure and fracture macrocharacteristics was performed by means of optical and electron microscopy. The results received were compared with the residual ductility of specimens. The results of the investigation showed the existence of "breakaway oxidation" kinetics and white spalling oxide in E110 and E110M alloys while the specimen oxidation kinetics in E110G alloy was characterized by a parabolic law and specimens had a dense black oxide. Oxygen and iron alloying in the E110 alloy positively changed the macrocharacteristics of structure and fracture. However, in general, it did not improve the resistance to embrittlement in LOCA conditions apparently because of a strong impurity influence caused by electrolytic process of zirconium production.
Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels
NASA Astrophysics Data System (ADS)
Jansto, Steven G.
Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.
Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires
Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di
2016-01-01
NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025
Oxidation behavior of Al/Cr coating on Ti2AlNb alloy at 900 °C
NASA Astrophysics Data System (ADS)
Yang, Zhengang; Liang, Wenping; Miao, Qiang; Chen, Bowen; Ding, Zheng; Roy, Nipon
2018-04-01
In this paper, the Al/Cr coating was fabricated on the surface of Ti2AlNb alloy via rf magnetron sputtering and double glow treatment to enhance oxidation resistance. The protective coating with an outer layer of Al and inner layer of Cr has great bonding strength due to the in-diffusion of Cr and the inter-diffusion between Al and Cr to form Al-Cr alloyed layer which has great hardness. Acoustic emission curve which was detected via WS-2005 scratch tester indicates the bonding strength between Al/Cr coating and substrate is great. Morphology of Ti2AlNb alloy with Al/Cr coating after scratch test shows that the scratch is smooth without disbanding, and the depth and breadth of scratch are changed uniformly. The mass change was reduced after oxidation test due to the Al/Cr protective coating. Isothermal oxidation test at 900 °C was researched. Results indicate that Al/Cr coating provided oxidation resistance of Ti2AlNb alloy with prolonged air exposure at 900 °C. Al2O3 was detected by XRD patterns and SEM images, and was formed on the surface of Ti2AlNb alloy to protect substrate during oxidation test. A certain content of Cr is beneficial for the formation of Al2O3. Besides, Cr2O3 was produced under Al2O3 by outward diffusion of Cr to protect substrate sequentially, no cracks were discovered on Al/Cr protective coating. The process of Ti outward diffusion into surface was suppressive due to integration of Cr-Ti and Al-Ti intermetallics. A steady, adherent and continuous coated layer of Al/Cr on Ti2AlNb alloy increases oxidation resistance.
Enhancement web proxy cache performance using Wrapper Feature Selection methods with NB and J48
NASA Astrophysics Data System (ADS)
Mahmoud Al-Qudah, Dua'a.; Funke Olanrewaju, Rashidah; Wong Azman, Amelia
2017-11-01
Web proxy cache technique reduces response time by storing a copy of pages between client and server sides. If requested pages are cached in the proxy, there is no need to access the server. Due to the limited size and excessive cost of cache compared to the other storages, cache replacement algorithm is used to determine evict page when the cache is full. On the other hand, the conventional algorithms for replacement such as Least Recently Use (LRU), First in First Out (FIFO), Least Frequently Use (LFU), Randomized Policy etc. may discard important pages just before use. Furthermore, using conventional algorithm cannot be well optimized since it requires some decision to intelligently evict a page before replacement. Hence, most researchers propose an integration among intelligent classifiers and replacement algorithm to improves replacement algorithms performance. This research proposes using automated wrapper feature selection methods to choose the best subset of features that are relevant and influence classifiers prediction accuracy. The result present that using wrapper feature selection methods namely: Best First (BFS), Incremental Wrapper subset selection(IWSS)embedded NB and particle swarm optimization(PSO)reduce number of features and have a good impact on reducing computation time. Using PSO enhance NB classifier accuracy by 1.1%, 0.43% and 0.22% over using NB with all features, using BFS and using IWSS embedded NB respectively. PSO rises J48 accuracy by 0.03%, 1.91 and 0.04% over using J48 classifier with all features, using IWSS-embedded NB and using BFS respectively. While using IWSS embedded NB fastest NB and J48 classifiers much more than BFS and PSO. However, it reduces computation time of NB by 0.1383 and reduce computation time of J48 by 2.998.
NASA Astrophysics Data System (ADS)
Liu, Siyang; Chen, Xiang; Zhao, Jiayue; Su, Junming; Zhang, Congcong; Huang, Tao; Wu, Jianhua; Yu, Aishui
2018-01-01
Ni-rich cathode materials attract ongoing interest due to their high specific capacity (∼200 mAh g-1). However, these materials suffer rapid capacity fading when charged to a high voltage and cycled at elevated temperature. In this study, we propose a facile method to reconstruct the surface structure of LiNi0.6Co0.2Mn0.2O2 via Nb modification, which integrates the merits of partial Nb5+ doping in the pristine structure and surface Li3NbO4 coating. The obtained results from Rietveld refinement and high resolution transmission electron microscopy confirm that Nb5+ is partially doped into Li+ sites within the surface lattice. Further ex-situ powder X-ray diffraction and kinetic analysis using electrochemical impedance spectroscopy reveal that Nb modification stabilizes the layered structure and facilitates the charge transfer process. Owing to the robust surface structure, 1 mol% Nb modified LiNi0.6Co0.2Mn0.2O2 delivers a discharge capacity of 160.9 mAh g-1 with 91% capacity retention after 100 cycles at 3.0-4.5 V, whereas the discharge capacity of the pristine sample drops to 139.6 mAh g-1, corresponding to 78% of its initial value. The presence of Nb5+ in the Li layer exhibits positive effects on stability of layered structure, and the surface Li3NbO4 coating layer increases interfacial stability, which results in superior electrochemical performance.
Studies on niobium triselenide cathode material for lithium rechargeable cells
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.; Ni, C. L.; Distefano, S.; Somoano, R. B.; Bankston, C. P.
1988-01-01
NbSe3 exhibits superior characteristics such as high capacity, high volumetric and gravimetric energy densities, and high discharge rate capability, as compared to other intercalating cathodes. This paper reports the preparation, characterization, and performance of NbSe3. Several electrochemical techniques, such as cyclic voltammetry, constant-current/constant-potential discharges, dc potentiodynamic scans, ac impedance, and ac voltammetry, have been used to give insight to the mechanisms of intercalation of three lithiums with NbSe3 and also into the rate determining process in the reduction of NbSe3.
Measured losses in superconductor magnets for 60-Hertz ac operation.
NASA Technical Reports Server (NTRS)
Hamlet, I. L.; Kilgore, R. A.
1971-01-01
Results of an experimental study of electrical losses in superconductor magnets. Preliminary 60-Hz ac loss data are presented for coils constructed of Nb3Sn ribbon, Nb-Ti cable, and multifilament Nb-Ti. Losses have been measured for different size coils up to approximately 20 cm in diameter. Of the conductor types tested, Nb3Sn ribbon has the lowest losses for ac operation. In Nb3Sn-ribbon coils of different sizes, the loss per unit length of conductor is shown to decrease with a decrease in the rate of change of current and to increase, in general, with increase in coil size. An important aspect of the study is the high degree of repeatability of the data.
Effects of elastic bands on force and power characteristics during the back squat exercise.
Wallace, Brian J; Winchester, Jason B; McGuigan, Michael R
2006-05-01
Athletes commonly use elastic bands as a training method to increase strength and performance. The purpose of this study was to investigate the effect of elastic bands on peak force (PF), peak power (PP), and peak rate of force development (RFD) during the back-squat exercise (BSE). Ten recreationally resistance-trained subjects (4 women, 6 men, mean age 21.3 +/- 1.5 years) were tested for their 1 repetition maximum (1RM) in the BSE (mean 117.6 +/- 48.2 kg) on a Smith machine. Testing was performed on 2 separate days, with 2 sets of 3 repetitions being performed for each condition. Testing was conducted at 60% and 85% of 1RM with and without using elastic bands. In addition, 2 elastic band loading conditions were tested (B1 and B2) at each of the 2 resistances. No bands (NB) represents where all of the resistance was acquired from free-weights. B1 represents where approximately 80% of the resistance was provided by free-weights, and approximately 20% was provided by bands. B2 represents where approximately 65% of the resistance was provided by free-weights, and approximately 35% was provided from bands. The subjects completed the BSE under each condition, whereas PF, PP, and RFD was recorded using a force platform. There was a significant (p < 0.05) increase in PF between NB-85 and B2-85 of 16%. Between B1-85 and B2-85, PF was increased significantly by 5% (p < 0.05). There was a significant (p < 0.05) increase in PP between NB-85 and B2-85 of 24%. No significant differences were observed in RFD during the 85% conditions or for any of the measured variables during the 60% conditions (p < 0.05). The results suggest that the use of elastic bands in conjunction with free weights can significantly increase PF and PP during the BSE over free-weight resistance alone under certain loading conditions. The greatest differences are observed during the higher loading conditions, with the B1-85 condition appearing to be optimal for athletic performance of the ones we tested. The strength training professional could use variable resistance training (VRT) to increase PF and PP more than the traditional BSE can. VRT could also be used to train these 2 performance characteristics together, which might be especially useful in season, when weight-room training volume can sometimes be limited.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
Characterization of Nb Superconducting Radio Frequency Cavities Based On In-Situ STEM And EELS
NASA Astrophysics Data System (ADS)
Tao, Runzhe
Niobium, a 4d transition metal, has the highest superconducting transition temperature (Tc=9.2K) of any elemental superconductor as type II superconductor with coherent length, sigma approximately that of the penetration length, lambda. Pure niobium is grey in color and very soft, which makes this metal easily fabricable into different shapes for superconducting radio- frequency (SRF) cavities. Such cavities are used in some modern accelerators (SNS, CEBAF, XFEL), and are intended for usage in the next generation of particle accelerators, such as ILC. Since the crucial part of the cavities is top 100 nm of Nb near the inner cavity surface, considering the penetration depth is around 40 nm, it has attracted more and more attention in improving the surface process for optimizing the performance of the cavities. Nowadays, the main treatment of the Nb surface includes electro polishing (EP), buffered chemical polishing (BCP), high temperature baking (800 °C, 1000 °C and 1200 °C) and mild baking (120 °C). Firstly, the two half cells are welded together and the weld line is quite rough; there exists a lot of visible pits and defects on the inner shell of cavities. In this Ph.D. thesis, novel techniques in a scanning transmission electron microscope (STEM) that can be used to analyze the atomic scale structure-property relationship, both at room tem- perature and high/LN 2 temperature, are explored. Specifically, by using correlated Z-contrast imaging and electron energy loss spectrum (EELS), the structure, composition and bonding can be characterized directly on the atomic scale, also, light atoms, like H, O and C, are visible in ABF images. For the examining the defect behavior on the cavity surface, heating and cold stages are involved to simulate the baking treatment and low-temperature environments. These studies will serve as an important reference for qualifying different surface treatments to further improve SRF cavities' performance. The experimental results were obtained using JEOL JEM-ARM200CF STEM/TEM, having a cold-field emission gun and being operated at 200 kV. It is equipped with a probe-side Cs corrector, multiple imaging detectors (HAADF, LAADF, ABF, BF) and spectrometers (Gatan Infina EELS, Oxford Instruments XMAX EDS). This setup can achieve spatial resolution better than 70 pm and energy resolution 0.35 eV. Utilizing STEM imaging technologies, the crystal structure of Nb and even light impurities are visualized in HAADF and ABF images. Atomic- resolution EELS contains information about the local density of occupied states as the physical principle behind EELS relates to the interaction of the fast electrons with the sample to cause either collective excitations of electrons (plasmons), or discrete transitions between atomic energy levels. The study for different Nb oxides establishes a set of methodologies to quantify the Nb cavity surface oxidation state based on low-loss/core-loss EELS. Oxygen K-edge split due to orbital hybridation and Nb-M peak chemical shift work well for identifying the Nb valence in oxide. Using this method, the surface oxidation state of Nb is studied, and the effects of oxygen diffusion during the mild baking process is revealed. I suggest that this diffusion may act as an important reason for the observed Q-slope in high field region. Considering that the SRF cavities are operated inside liquid helium vessels, the behavior of surface impurity at low temperature draws more and more attention. Since NbH is conducting material with a transition temperature of 150 K and hydrogen can easily concentrate near the surface, NbH is regarded as the key for the observed Q-disease at low temperature. But the difficulty of studying Nb hydride in a TEM is obvious: the light atom (for hydrogen, Z=1) is almost impossible to visualize in STEM images; the only hydrogen peak in EELS is the H K-edge which is located at 12 eV and it is easily covered by tail of zero-loss peak or plasmon peaks. The second part of my research starts with a study of different NbH superlattices using electron beam diffraction patterns, and then careful low-loss EELS measurements to identify hydrogen concentration at the Nb cavity surface. All of these results provide strong evidence for the existence of hydrogen near the cavity surface, the diffusion of hydrogen into bulk Nb atLN2 temperature, and the relationship between hydrogen segregation and local defects. The last part of the thesis focuses on the surface deformation caused by local strain. Local strain is a common problem of Nb cavity fabrication. Nb carbon layers and particles form at the cavity surface after strain tests, and inside of such particles, smaller dislocations are found which exhibit high strain center and higher oxygen concentration. It is clear that the impurities of light atoms is unavoidable during the cavity manufacturing process, oxide is the dominant impurity and it forms a distinguishable amorphous layer around 5 nm in thickness, hydrides are present following the oxide layer and can diffusion into Nb matrix more than 20 nm. Undoubtedly, these impurities will reduce the cavities' performance, and it will be necessary to find more effective methods for post-production cavity treatments to obtain a smoother and cleaner surface. Another problem, local strain, will effect the surface structure and introduce grain boundaries and other extended defects. Potentially, these defects may interact with surface impurities, correspondingly, the hydrogen segregation increases the mobility of the defects. Such positive correlation will accelerate the degeneration of the surface structure and finally lead to catastrophic effect on the local superconductivity. In summary, various impurities of Nb are investigated with atomic resolution. Methodologies for quantifying Nb oxides and hydrides are developed. Direct observation of hydrogen atoms is realized in ABF images at room temperature, and can also serve as a promising method to identify different hydrides in Nb bulk at LN2 temperature if the cold stage is stable enough. My work on the local strain of Nb cavities points out that Nb carbides play a significant role in the performance of SRF cavities at low temperature and intermediate to high fields.
Corrias, Maria Valeria; Levreri, Isabella; Scaruffi, Paola; Raffaghello, Lizzia; Carlini, Barbara; Bocca, Paola; Prigione, Ignazia; Stigliani, Sara; Amoroso, Loredana; Ferrone, Soldano; Pistoia, Vito
2012-01-01
The high molecular weight melanoma-associated antigen (HMW-MAA) and the cytoplasmic melanoma-associated antigen (cyt-MAA/LGALS3BP) are expressed in melanoma. Their serum levels are increased in melanoma patients and correlate with clinical outcome. We investigated whether these molecules can serve as prognostic markers for neuroblastoma (NB) patients. Expression of cyt-MAA and HMW-MAA was evaluated by flow cytometry in NB cell lines, patients’ neuroblasts (FI-NB), and short-term cultures of these latter cells (cNB). LGALS3BP gene expression was evaluated by RT–qPCR on FI-NB, cNB, and primary tumor specimens. Soluble HMW-MAA and cyt-MAA were tested by ELISA. Cyt-MAA and HMW-MAA were expressed in NB cell lines, cNB, and FI-NB samples. LGALS3BP gene expression was higher in primary tumors and cNB than in FI-NB samples. Soluble cyt-MAA, but not HMW-MAA, was detected in NB cell lines and cNBs supernatants. NB patients’ serum levels of both antigens were higher than those of the healthy children. High cyt-MAA serum levels at diagnosis associated with higher incidence of relapse, independently from other known risk factors. In conclusion, both HMW-MAA and cyt-MAA antigens, and LGALS3BP gene, were expressed by NB cell lines and patients’ neuroblasts, and both antigens’ serum levels were increased in NB patients. Elevated serum levels of cyt-MAA at diagnosis correlated with relapse, supporting that cyt-MAA may serve as early serological biomarker to individuate patients at higher risk of relapse that may require a more careful follow-up, after being validated in a larger cohort of patients at different time-points during follow-up. Given its immunogenicity, cyt-MAA may also be a potential target for NB immunotherapy. PMID:21660451
Results from the first single cell Nb 3Sn cavity coatings at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory
2015-09-01
Nb 3Sn is a promising superconducting material for SRF applications and has the potential to exceed the limitations of niobium. We have used the recently commissioned Nb 3Sn coating system to investigate Nb 3Sn coatings on several single cell cavities by applying the same coating procedure on several different single cells with different history and pre-coating surface preparation. We report on our findings with four 1.5 GHz CEBAF-shape single cell and one 1.3 GHz ILC-shape single cavities that were coated, inspected, and tested.
Influence of Processing on the Microstructure and Mechanical Properties of a NbAl3-Base Alloy
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G.; Locci, Ivan E.; Raj, S. V.; Nathal, Michael V.
1992-01-01
Induction melting and rapid solidification processing, followed by grinding to 75-micron powder and P/M consolidation, have been used to produce a multiphase, NbAl3-based, oxidation-resistant alloy of Nb-67Al-7Cr-0.5Y-0.25W composition whose strength and ductility are significantly higher than those of the induction-melted alloy at test temperatures of up to 1200 K. Attention is given to the beneficial role of microstructural refinement; the major second phase, AlNbCr, improves both oxidation resistance and mechanical properties.
Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy
Cao, G. H.; Jian, G. Y.; Liu, N.; ...
2015-08-19
In this study, Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti 86.5Si 13.5) 97Nb 3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti 86.5Si 13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti 5Si 3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti 5Si 3 phases caused by the Nb addition. The crystallographic orientation relationship of Ti 5Si 3 with α-Ti is (more » $$1\\bar{1}00$$)[$$\\overline{11}$$26]Ti 5Si 3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less
Biomechanical Evaluation of Ti-Nb-Sn Alloy Implants with a Low Young’s Modulus
Takahashi, Kenta; Shiraishi, Naru; Ishiko-Uzuka, Risa; Anada, Takahisa; Suzuki, Osamu; Masumoto, Hiroshi; Sasaki, Keiichi
2015-01-01
Dental implants are widely used and are a predictable treatment in various edentulous cases. Occlusal overload may be causally related to implant bone loss and a loss of integration. Stress concentrations may be diminished using a mechanobiologically integrated implant with bone tissue. The purpose of this study was to investigate the biomechanical behavior, biocompatibility and bioactivity of a Ti-Nb-Sn alloy as a dental implant material. It was compared with cpTi. Cell proliferation and alkaline phosphatase (ALP) activity were quantified. To assess the degree of osseointegration, a push-in test was carried out. Cell proliferation and ALP activity in the cells grown on prepared surfaces were similar for the Ti-Nb-Sn alloy and for cpTi in all the experiments. A comparison between the Ti-Nb-Sn alloy implant and the cpTi implant revealed that no significant difference was apparent for the push-in test values. These results suggest that implants fabricated using Ti-Nb-Sn have a similar biological potential as cpTi and are capable of excellent osseointegration. PMID:25775158
Nb-doped rutile TiO₂: a potential anode material for Na-ion battery.
Usui, Hiroyuki; Yoshioka, Sho; Wasada, Kuniaki; Shimizu, Masahiro; Sakaguchi, Hiroki
2015-04-01
The electrochemical properties of the rutile-type TiO2 and Nb-doped TiO2 were investigated for the first time as Na-ion battery anodes. Ti(1-x)Nb(x)O2 thick-film electrodes without a binder and a conductive additive were prepared using a sol-gel method followed by a gas-deposition method. The TiO2 electrode showed reversible reactions of Na insertion/extraction accompanied by expansion/contraction of the TiO2 lattice. Among the Ti(1-x)Nb(x)O2 electrodes with x = 0-0.18, the Ti(0.94)Nb(0.06)O2 electrode exhibited the best cycling performance, with a reversible capacity of 160 mA h g(-1) at the 50th cycle. As the Li-ion battery anode, this electrode also attained an excellent rate capability, with a capacity of 120 mA h g(-1) even at the high current density of 16.75 A g(-1) (50C). The improvements in the performances are attributed to a 3 orders of magnitude higher electronic conductivity of Ti(0.94)Nb(0.06)O2 compared to that of TiO2. This offers the possibility of Nb-doped rutile TiO2 as a Na-ion battery anode as well as a Li-ion battery anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Y.; D'Hauthuille, L.; Barth, C.
High-field superconducting magnets play a very important role in many large-scale physics experiments, particularly particle colliders and fusion confinement devices such as Large Hadron Collider (LHC) and International Thermonuclear Experimental Reactor (ITER). The two most common superconductors used in these applications are NbTi and Nb 3Sn. Nb 3Sn wires are favored because of their significantly higher J c (critical current density) for higher field applications. The main disadvantage of Nb 3Sn is that the superconducting performance of the wire is highly strain sensitive and it is very brittle. This strain sensitivity is strongly influenced by two factors: plasticity and crackedmore » filaments. Cracks are induced by large stress concentrators that can be traced to the presence of voids in the wire. We develop detailed 2-D and 3-D finite-element models containing wire filaments and different possible distributions of voids in a bronze-route Nb 3Sn wire. We apply compressive transverse loads for various cases of void distributions to simulate the stress and strain response of a Nb 3Sn wire under the Lorentz force. Furthermore, this paper improves our understanding of the effect voids have on the Nb 3Sn wire's mechanical properties, and in so, the connection between the distribution of voids and performance degradation such as the correlation between irreversible strain limit and the void-induced local stress concentrations.« less
Effect of Nb on magnetic and mechanical properties of TbDyFe alloys
NASA Astrophysics Data System (ADS)
Wang, Naijuan; Liu, Yuan; Zhang, Huawei; Chen, Xiang; Li, Yanxiang
2018-03-01
The intrinsic brittleness in giant magnetostrictive material TbDyFe alloy has devastating influence on the machinability and properties of the alloy, thus affecting its applications. The purpose of this paper is to study the mechanical properties of the TbDyFe alloy by alloying with Nb element. The samples (Tb0.3Dy0.7)xFe2xNby (y = 0, 0.01, 0.04, 0.07, 0.1; 3x + y = 1) were melted in an arc melting furnace under high purity argon atmosphere. The microstructure, magnetostrictive properties and mechanical performance of the alloys were studied systematically. The results showed that NbFe2 phases were observed in the alloys with the addition of Nb. Moreover, both the NbFe2 phases and rare earth (RE)-rich phases were increased with the increasing of Nb element. The mechanical properties results revealed that the fracture toughness of the alloy with the addition of Nb enhanced 1.5-5 times of the Nb-free alloy. Both the NbFe2 phase and the RE-rich phase had the ability to prevent crack propagation, so that they can strengthen the REFe2 body. However, NbFe2 phase is a paramagnetic phase, which can reduce the magnetostrictive properties of the alloy by excessive precipitation.
Thermoelectric properties of Nb3SbxTe7-x compounds
NASA Technical Reports Server (NTRS)
Snyder, J.; Wang, S.; Caillat, T.
2002-01-01
Niobium antimony telluride, Nb3Sbx,Te7-x, was synthesized and tested for thermoelectric properties in the Thermoelectrics group at the Jet Propulsion Laboratory. The forty atoms per unit cell of Nb3Sb2Te5 and its varied mixture of atoms yield acomplicated structure, suggesting that Nb3Sb2Te5 and related compounds may exhibit low thermal conductivity and hence a higher ZT value. Nb3SbxTe7-x, compounds were synthesized and subsequently analyzed for their Seebeck voltage, heat conduction, and electrical resistivity. Results indicate that Nb3Sb2Te5 is a heavily doped semiconductor whose thermoelectric properties are compromised by compensating n-type and p-type carriers. Attempts to dope in favor of either carrier by varying the Sb:Te ratio yielded samples containing secondary metallic phases that dominated the transport properties of the resulting compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L. L.; Wang, Y. D.; Ren, Y.
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M
2018-01-01
A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Chuanyou; Wang, Qian; Sun, Yu; Wang, Huibin; Zhang, Wei; Wang, Qingfeng; Guo, Aimin; Sun, Kaiming
Extensive investigations of metallurgical roles played by Nb microalloying in advanced products of seamless steel tube have been carried out. The results show that with Nb microalloyed , the recrystallized austenite grain (RAG) and final ferrite grain of tubular steel are evidently refined even experiencing a piercing and a continuous rolling at very high temperature, and a certain quantity of (Nb,V)(C,N) and (Ti,Nb,V)(C,N) particles form on air cooling. Moreover, for quenching (Q) & tempering (T) treated tubular steels, the nanoscale particles of (Nb,V) (C,N) further precipitate on heating stage of Q at 900-1000°C, leading to a significant refinement of prior austenite grain (PAG) and final martensitic or bainitic packet/block structures, and during subsequent T at 600-700°C, producing an improved resistance to softening.
Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP
Lee, Chi-Cheng; Xu, Su-Yang; Huang, Shin-Ming; ...
2015-12-01
The family of binary compounds including TaAs, TaP, NbAs, and NbP was recently discovered as the first realization of Weyl semimetals. In order to develop a comprehensive description of the charge carriers in these Weyl semimetals, we performed detailed and systematic electronic band structure calculations which reveal the nature of Fermi surfaces and their complex interconnectivity in TaAs, TaP, NbAs, and NbP. In conclusion, our work reports a comparative and comprehensive study of Fermi surface topology and band structure details of all known members of the Weyl semimetal family and hence provides the fundamental knowledge for realizing the many predictedmore » exotic topological quantum physics of Weyl semimetals based on the TaAs class of materials.« less
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Uz, Mehmet
1996-01-01
A systematic study to evaluate the effects of thermomechanical processing on the microstructure and mechanical properties of Nb-1Zr alloy sheet containing 0.06 and 0.1 wt.%C (PWC-11) was conducted and compared to the results of Nb-1Zr. Coarse orthorhombic Nb2C precipitates were present in all the cast, extruded and cold rolled Nb-Zr samples containing C. After high temperature (greater than 0.5 T(sub m)) exposure (with or without applied stress), the Nb2C transforms to very fine and extremely stable FCC (Zr, Nb)C dispersoid, resulting in a highly creep resistant material. Only ZrO2 precipitates were found in Nb-1Zr. The creep strength of the 0.06C and the 0.1C carbide strengthened alloys were much superior to Nb-1Zr. At 1350 K the strength of the 0.06C alloy was about three times that of Nb-1Zr, while the 0.1C alloy had about five times the creep stress capability of Nb-1Zr. The tensile strength, long term creep strength, and stability of the microstructure of the PWC-11 sheet appear to be independent of the number of 1900 K extrusions performed prior to cold rolling. The microhardness of these single, double and triple extnided PWC-11 sheets also were comparable. The tensile strength of PWC-11 and Nb-1Zr at room temperature and 1350 K were comparable.
MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma.
Wu, Tingting; Lin, Yun; Xie, Zhongguo
2018-05-24
Neuroblastoma (NB) represents the most common extracranial solid tumor in children. Accumulating evidence shows that microRNAs (miRs) play an important role in the carcinogenesis of NB. Here, we investigated the biological function of miR-1247 in NB in vitro. We found miR-1247 was downregulated in NB tissues and cells using quantitative PCR analysis. Gain- and loss-of-function studies demonstrated that miR-1247 significantly suppressed cell proliferation and induced cell cycle G0/G1 phase arrest and cell apoptosis of NB cells in vitro by using MTT, colony formation assay and Flow cytometry analysis. Luciferase assay suggested ZNF346 was the target of miR-1247 and its expression could be downregulated by miR-1247 overexpression using Western blotting. Furthermore, downregulation of ZNF346 by siRNA performed similar effects with overexpression of miR-1247 in NB cells. Our findings suggested miR-1247 directly targeted to repress ZNF346 expression, thus suppressing the progression of NB, which might be a novel therapeutic target against NB.
Nb5+-Doped SrCoO3-δ Perovskites as Potential Cathodes for Solid-Oxide Fuel Cells.
Cascos, Vanessa; Alonso, José Antonio; Fernández-Díaz, María Teresa
2016-07-15
SrCoO 3- δ outperforms as cathode material in solid-oxide fuel cells (SOFC) when the three-dimensional (3C-type) perovskite structure is stabilized by the inclusion of highly-charged transition-metal ions at the octahedral positions. In a previous work we studied the Nb incorporation at the Co positions in the SrCo 1- x Nb x O 3- δ system, in which the stabilization of a tetragonal P4 / mmm perovskite superstructure was described for the x = 0.05 composition. In the present study we extend this investigation to the x = 0.10-0.15 range, also observing the formation of the tetragonal P4 / mmm structure instead of the unwanted hexagonal phase corresponding to the 2H polytype. We also investigated the effect of Nb 5+ doping on the thermal, electrical, and electrochemical properties of SrCo 1- x Nb x O 3- δ ( x = 0.1 and 0.15) perovskite oxides performing as cathodes in SOFC. In comparison with the undoped hexagonal SrCoO 3- δ phase, the resulting compounds present high thermal stability and an increase of the electrical conductivity. The single-cell tests for these compositions ( x = 0.10 and 0.15) with La 0.8 Sr 0.2 Ga 0.83 Mg 0.17 O 3- δ (LSGM) as electrolyte and SrMo 0.8 Fe 0.2 CoO 3- δ as anode gave maximum power densities of 693 and 550 mW∙cm -2 at 850 °C respectively, using pure H₂ as fuel and air as oxidant.
Optical and semiconductive properties of binary and ternary thin films from the Nb-Ti-O system
NASA Astrophysics Data System (ADS)
Aperador, W.; Yate, L.; Pinzón, M. J.; Caicedo, J. C.
2018-06-01
A study has been conducted based on the Mott-Schottky model acquisition by potentiodynamic electrochemical impedance spectroscopy, to determine the physical-chemical properties of binary TiO2, Nb2O5 and ternary Nb-Ti-O thin films (semiconductor type) based on Nb,Ti, O elements. The technique used for the study of optical properties was that of spectral transmittance, measurements were performed using a spectrophotometer. The consistency of the impedance data has been studied by calculating the Kramers-Kronig relations. The structural properties were analyzed by XRD patterns; the chemical composition measurements for all thin films were made by using XPS technique. So, in this research the transmittance values change from 72.74% for Nb2O5 to 59.68% for Ti-Nb-O with wavelength around 355 nm. The absorption coefficients for all films were analyzed from 31823.87 cm-1 for Nb2O5 to 91240.90 cm-1 for Nb-Ti-O with wavelength around 355 nm evidencing thus a 65% reduction. The direct band gap it was found that the photon energy (band gap Eg) changes in all films from 3.56 eV for Nb2O5 to 3.96 eV for Ti-Nb-O evidencing a 10% reduction. The extinction coefficient values change in all films from 0.038 cm-1 for Nb2O5 to 0.277 cm-1 for Ti-Nb-O films with wavelength around 355 nm, exhibiting an 86% increasing. Finally, it was observed by the Mott-Schottky analysis that the reference potential (Ag/AgCl) changes for all films from -2.09 V for Nb2O5 to -0.80 V for Ti-Nb-O material showing a 62% reduction.
Electromagnetic and optical characteristics of Nb5+-doped double-crossover and salmon DNA thin films
NASA Astrophysics Data System (ADS)
Babu Mitta, Sekhar; Reddy Dugasani, Sreekantha; Jung, Soon-Gil; Vellampatti, Srivithya; Park, Tuson; Park, Sung Ha
2017-10-01
We report the fabrication and physical characteristics of niobium ion (Nb5+)-doped double-crossover DNA (DX-DNA) and salmon DNA (SDNA) thin films. Different concentrations of Nb5+ ([Nb5+]) are coordinated into the DNA molecules, and the thin films are fabricated via substrate-assisted growth (DX-DNA) and drop-casting (SDNA) on oxygen plasma treated substrates. We conducted atomic force microscopy to estimate the optimum concentration of Nb5+ ([Nb5+]O = 0.08 mM) in Nb5+-doped DX-DNA thin films, up to which the DX-DNA lattices maintain their structures without deformation. X-ray photoelectron spectroscopy (XPS) was performed to probe the chemical nature of the intercalated Nb5+ in the SDNA thin films. The change in peak intensities and the shift in binding energy were witnessed in XPS spectra to explicate the binding and charge transfer mechanisms between Nb5+ and SDNA molecules. UV-visible, Raman, and photoluminescence (PL) spectra were measured to determine the optical properties and thus investigate the binding modes, Nb5+ coordination sites in Nb5+-doped SDNA thin films, and energy transfer mechanisms, respectively. As [Nb5+] increases, the absorbance peak intensities monotonically increase until ˜[Nb5+]O and then decrease. However, from the Raman measurements, the peak intensities gradually decrease with an increase in [Nb5+] to reveal the binding mechanism and binding sites of metal ions in the SDNA molecules. From the PL, we observe the emission intensities to reduce them at up to ˜[Nb5+]O and then increase after that, expecting the energy transfer between the Nb5+ and SDNA molecules. The current-voltage measurement shows a significant increase in the current observed as [Nb5+] increases in the SDNA thin films when compared to that of pristine SDNA thin films. Finally, we investigate the temperature dependent magnetization in which the Nb5+-doped SDNA thin films reveal weak ferromagnetism due to the existence of tiny magnetic dipoles in the Nb5+-doped SDNA complex.
Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing
2013-07-01
The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.
Dimensional changes of Nb 3Sn Rutherford cables during heat treatment
Rochepault, E.; Ferracin, P.; Ambrosio, G.; ...
2016-06-01
In high field magnet applications, Nb 3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb 3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. In addition, this paper summarizes measurements of dimensional changes on strands, single Rutherford cables,more » cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb 3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.« less
Wang, Xiangguo; Li, Qiucheng; Zhang, Li; Hu, Zhongli; Yu, Lianghao; Jiang, Tao; Lu, Chen; Yan, Chenglin; Sun, Jingyu; Liu, Zhongfan
2018-06-01
Sodium-ion hybrid supercapacitors (Na-HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high-energy and high-power energy-storage applications. Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has recently been recognized as a promising anode material for Na-HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T-Nb 2 O 5 -based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na-HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T-Nb 2 O 5 nanowires (denoted as Gr-Nb 2 O 5 composites) by plasma-enhanced chemical vapor deposition, targeting a highly conductive anode material for Na-HSCs. The few-layered graphene capsules with ample topological defects would enable facile electron and Na + ion transport, guaranteeing rapid pseudocapacitive processes at the Nb 2 O 5 /electrolyte interface. The Na-HSC full-cell comprising a Gr-Nb 2 O 5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg -1 /80.1 W kg -1 and 62.2 Wh kg -1 /5330 W kg -1 ), outperforming those of recently reported Na-HSC counterparts. Proof-of-concept Na-HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending-release cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Uehara, Masato; Shigemoto, Hokuto; Fujio, Yuki; Nagase, Toshimi; Aida, Yasuhiro; Umeda, Keiichi; Akiyama, Morito
2017-09-01
Aluminum nitride (AlN) is one of piezoelectric materials, which are eagerly anticipated for use in microelectromechanical systems (MEMS) applications such as communication resonators, sensors, and energy harvesters. AlN is particularly excellent in generated voltage characteristics for the MEMS rather than oxide piezoelectric materials such as lead zirconium titanate Pb(Zr, Ti)O3. However, it is necessary to improve the piezoelectric properties of AlN in order to advance the performance of the MEMS. We dramatically increased the piezoelectric coefficient d33 of AlN films by simultaneously adding magnesium (Mg) and niobium (Nb). The d33 of Mg39.3Nb25.0Al35.7N is 22 pC/N, which is about four times that of AlN. The d33 is increased by Mg and Nb simultaneous addition, and is not increased by Mg or Nb single addition. Interestingly, the Nb has multiple chemical states, and which are influenced by the Mg concentration.
Nanophase-separated Ni3Nb as an automobile exhaust catalyst.
Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-Ichi; Fujita, Takeshi; Abe, Hideki
2017-05-01
Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) ( i.e. , Ni 3 Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust ( i.e. , nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni 3 Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix ( i.e. , NbO x ( x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N 2 generation, and the NbO x matrix absorbs excessive nitrogen adatoms to retain the active Ni 0 sites at the metal/oxide interface. Furthermore, the NbO x matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours.
NASA Astrophysics Data System (ADS)
Christofidou, Katerina A.; Hardy, Mark C.; Li, Hang-Yue; Argyrakis, Christos; Kitaguchi, Hiroto; Jones, Nicholas G.; Mignanelli, Paul M.; Wilson, Alison S.; Messé, Olivier M. D. M.; Pickering, Ed J.; Gilbert, Robert J.; Rae, Cathie M. F.; Yu, Suyang; Evans, Alex; Child, Daniel; Bowen, Paul; Stone, Howard J.
2018-05-01
The effect of Nb on the properties and microstructure of two novel powder metallurgy (P/M) Ni-based superalloys was evaluated, and the results critically compared with the Rolls-Royce alloy RR1000. The Nb-containing alloy was found to exhibit improved tensile and creep properties as well as superior oxidation resistance compared with both RR1000 and the Nb-free variant tested. The beneficial effect of Nb on the tensile and creep properties was due to the microstructures obtained following the post-solution heat treatments, which led to a higher γ' volume fraction and a finer tertiary γ' distribution. In addition, an increase in the anti-phase-boundary energy of the γ' phase is also expected with the addition of Nb, further contributing to the strength of the material. However, these modifications in the γ' distribution detrimentally affect the dwell fatigue crack-growth behavior of the material, although this behavior can be improved through modified heat treatments. The oxidation resistance of the Nb-containing alloy was also enhanced as Nb is believed to accelerate the formation of a defect-free Cr2O3 scale. Overall, both developmental alloys, with and without the addition of Nb, were found to exhibit superior properties than RR1000.
NASA Technical Reports Server (NTRS)
Jones, Jeffrey A.; Carlson, Grant; Kajander, E. Olavi; Warmflash, David; Taylor, Karen; Ayala, Gustavo; Shoskes, Daniel; Everett, Meg; Feedback, Dan; Ciftcioglu, Neva
2006-01-01
Chronic diseases of the prostate such as benign prostatic hyperplasia (BPH) & chronic pelvic pain syndrome (CPPS) have associated findings of chronic inflammation, despite a lack of causal relationship. Numerous attempts to define an infectious agent responsible for the clinical findings have been inconsistent. The possibility of an infectious agent, that has not been uncovered with routine culturing methods, forms the basis for this study. Serum from 940 healthy Finnish men were compared with serum from 40 Crohn's, 40 path dx prostatitis, & 40 with path dx carcinoma, using an enzyme-linked immunosorbant assay (ELISA), to detect antigens specific to Nanobacteria(NB) utilizing monoclonal antibodies (Ab) 5/3 and 8D10. This ELISA has not been validated for detecting NB-associated with clinical prostatic disease, yet cross-reactivity with other bacterial species is low. Immunohistochemistry was performed on de-paraffinized prostatic tissue slides, de-calcified with EDTA and stained with the DAKO Catalyzed Signal Amplification kit, employing 8D10 as the primary (target/antigen-detecting) Ab. The mean (plus or minus SD) & median concentrations of NB antigen (U/50 L) were 379.59 (plus or minus 219.28) & 640.00 for patients with prostatitis (BPH) vs 3.31 (plus or minus 3.55) & 2.94 for prostate adenocarcinoma, 1.88 (plus or minus 2.94) & 0.80 for Crohn's disease, & 7.43 (plus or minus 25.57) & 0.00 for patients with no clinical prostatic disease. Unpaired t-tests revealed statistically significant differences between the prostatitis (BPH) sera & each of the other groups with p less than 0.005, but no differences between the other groups themselves. Preliminary studies with immunohistochemistry & 3-D confocal microscopy reveal 16/24 tissue sections + for NB Ag in BPH vs. only 2/22 tissue sections with prostate cancer. The preliminary findings of this serum screening study suggest that NB antigen may be commonly found in the serum of patients with the pathological diagnosis of prostatitis. Preliminary immunohistologic studies, suggest that NB may be found within the gland itself at a higher rate in patients with BPH relative to patients with adenocarcinoma, however confirmatory studies with a more specific ELISA technique, primary cultures, & with larger numbers of patients in a prospective design are required to determine if 1) NB are a causative organism for clinical hyperplastic and inflammatory disease, & if 2) serological testing can be used to discriminate patients with nanobacterial-associated prostatic disease.
Experimental results of 40-kA Nb[sub 3]Al cable-in-conduit conductor for fusion machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y.; Sugimoto, M.; Isono, T.
1994-07-01
A 40-kA Nb[sub 3]Al cable-in-conduit conductor has been developed for the toroidal field coils of fusion reactors, because Nb[sub 3]Al has excellent mechanical performance. This conductor consists of 405 copper-stabilized multifilamentary strands inserted into a CuNi case circular conduit. The Nb[sub 3]Al strands are fabricated by the Jelly-roll process with a diameter of 1.22 mm. This conductor could be operated up to a current of 46 kA at an external field of 11.2 T. Accordingly, Nb[sub 3]Al promises to soon become a useful superconductor for large-scale high-field applications, such as fusion machines.
Sheremetyev, V; Brailovski, V; Prokoshkin, S; Inaekyan, K; Dubinskiy, S
2016-01-01
Ti-22Nb-6Zr (at.%) alloy with different processing-induced microstructures (highly-dislocated partially recovered substructure, polygonized nanosubgrained (NSS) dislocation substructure, and recrystallized structure) was subjected to strain-controlled tension-tension fatigue testing in the 0.2...1.5% strain range (run-out at 10^6 cycles). The NSS alloy obtained after cold-rolling with 0.3 true strain and post-deformation annealing at 600 °C showed the lowest Young's modulus and globally superior fatigue performance due to the involvement of reversible stress-induced martensitic transformation in the deformation process. This NSS structure appears to be suitable for biomedical applications with an extended variation range of loading conditions (orthopedic implants). Copyright © 2015 Elsevier B.V. All rights reserved.
Fracture behavior of 20% Nb particulate reinforced alumina composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, S.; Biner, S.B.; Buck, O.
1993-11-01
The composites consist of alumina matrix with 0.05 wt % MgO and 20 Vol % Nb with an average particle size of 30 to 100 microns produced by dry mixing and sintering to near their theoretical densities. Fracture toughness tests were carried out in three point bending on chevron notched samples. Results indicate that R-curve of the composites exhibited more than 300% increase in crack growth resistance compared to crack growth resistance of alumina produced with the identical procedures. Crack growth resistance curve of the composites increased with increasing Nb particle size. Metallorgraph indicated that failure of Nb particles inmore » crack path ranges from full interface separation without any significant deformation of Nb particles to cleavage failure without any evidence of interface separation.« less
Fabricating with crystalline Si to improve superconducting detector performance
NASA Astrophysics Data System (ADS)
Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.
2017-05-01
We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.
Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications
NASA Technical Reports Server (NTRS)
Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.
1999-01-01
Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.
Sertel, O.; Kong, J.; Shimada, H.; Catalyurek, U.V.; Saltz, J.H.; Gurcan, M.N.
2009-01-01
We are developing a computer-aided prognosis system for neuroblastoma (NB), a cancer of the nervous system and one of the most malignant tumors affecting children. Histopathological examination is an important stage for further treatment planning in routine clinical diagnosis of NB. According to the International Neuroblastoma Pathology Classification (the Shimada system), NB patients are classified into favorable and unfavorable histology based on the tissue morphology. In this study, we propose an image analysis system that operates on digitized H&E stained whole-slide NB tissue samples and classifies each slide as either stroma-rich or stroma-poor based on the degree of Schwannian stromal development. Our statistical framework performs the classification based on texture features extracted using co-occurrence statistics and local binary patterns. Due to the high resolution of digitized whole-slide images, we propose a multi-resolution approach that mimics the evaluation of a pathologist such that the image analysis starts from the lowest resolution and switches to higher resolutions when necessary. We employ an offine feature selection step, which determines the most discriminative features at each resolution level during the training step. A modified k-nearest neighbor classifier is used to determine the confidence level of the classification to make the decision at a particular resolution level. The proposed approach was independently tested on 43 whole-slide samples and provided an overall classification accuracy of 88.4%. PMID:20161324
Flow behavior of Ti-24Al-11Nb at high strain rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harbison, L.S.; Koss, D.A.; Bourcier, R.J.
The deformation and crack initiation behavior of Ti-24Al-11Nb has been examined over a temperature range of 298 to 923 K and for strain rates from 10{sup {minus}4}/s to 10{sup 2}/s. Tests performed in compression indicate much lower strain hardening at 10{sup 2}/s than at either 10{sup {minus}1}/s or 10{sup {minus}4}/s at all temperatures. Associated with this behavior is the occurrence of non-uniform, localized deformation bands at 10{sup 2}/s. An analysis indicates that adiabatic deformation conditions predominate at 10{sup 2}/s and that these result in adiabatic softening. Furthermore, as a result of non-uniform deformation and adiabatic heating, this Ti{sub 3}-Al-based alloymore » is actually more resistant to strain-induced microcrack initiation at 10{sup 2}/s than at 10{sup {minus}4}/s during room temperature testing. 16 refs., 7 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Pashupati; Ciovati, Gianluigi; Myneni, Ganapati Rao
2012-06-15
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 Degree-Sign C) and high ({approx}800 Degree-Sign C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 Degree-Sign C with a maximum pressure of {approx}1 Multiplication-Sign 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 Degree-Sign C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 Degree-Sign C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pashupati Dhakal, Gianluigi Ciovati, Wayne Rigby, John Wallace, Ganapati Rao Myneni
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low ({approx}120 deg C) and high ({approx}800 deg C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching.more » The furnace was operated up to 1400 deg C with a maximum pressure of {approx}1 x 10{sup -5} Torr and the maximum achievable temperature is estimated to be higher than 2000 deg C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 deg C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of {approx}2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.« less
Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao
2012-06-01
Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.
Kirui, Wesley K; Wu, Shubiao; Kizito, Simon; Carvalho, Pedro N; Dong, Renjie
2016-01-15
Intermittent aeration and addition of glucose were applied to horizontal subsurface flow constructed wetlands in order to investigate the effect on pathways of nitrobenzene (NB) degradation and interactions with microbial nitrogen and sulphur transformations. The experiment was carried out in three phases A, B and C consisting of different NB loading and glucose dosing. For each phase, the effect of aeration was assessed by intermittently aerating one wetland and leaving one unaerated. Regardless of whether or not the wetland was aerated, at an influent NB concentration of 140 mg/L, both wetlands significantly reduced NB to less than 2 mg/L, a reduction efficiency of 98%. However, once the influent NB concentration was increased to 280 mg/L, the aerated wetland had a higher removal performance 82% compared to that of the unaerated wetland 71%. Addition of glucose further intensified the NB removal to 95% in the aerated wetlands and 92% in the unaerated. Aeration of wetlands enhanced NB degradation, but also resulted in higher NB volatilization of 6 mg m(-2) d(-1). The detected high concentration of sulphide 20-60 mg/L in the unaerated wetland gave a strong indication that NB may act as an electron donor to sulphate-reducing bacteria, but this should be further investigated. Aeration positively improved NB removal in constructed wetlands, but resulted in higher NB volatilization. Glucose addition induced co-metabolism to enhance NB degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zarrin, Saviz; Heshmatpour, Felora
2018-06-05
In this study, highly active titanium dioxide modified by niobium oxide (Nb 2 O 5 ), polymer (PANI) and reduced graphene oxide (RGO) were successfully prepared. The morphology, structure, surface area and light absorption properties of the present nanocomposites for removal of methylene blue (MB) and methyl orange (MO) were investigated and compared with those of TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. The characterization techniques such as XRD, FT-IR, UV-vis, SEM, EDX, BET and TEM were employed in order to identify the nanocomposites. Also, photocatalytic properties of TiO 2 /Nb 2 O 5 /PANI and TiO 2 /Nb 2 O 5 /RGO nanocomposites under visible light irradiation were studied. In this way, the obtained results were compared to each other and also compared to TiO 2 /Nb 2 O 5 and TiO 2 nanoparticles. In this context, the chemical oxygen demand (COD) removal follows the photodegradation in observed performance. The results indicate that reduced TiO 2 /Nb 2 O 5 nanocomposite is effectively modified by graphene oxide to give TiO 2 /Nb 2 O 5 /RGO composite. The TiO 2 /Nb 2 O 5 /RGO exhibits significantly higher photocatalytic activity in degradation of organic dyes under visible light rather than that of TiO 2 /Nb 2 O 5 /PANI, TiO 2 /Nb 2 O 5 and pure TiO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.
Ga Lithography in Sputtered Niobium for Superconductive Micro and Nanowires.
Henry, Michael David; Lewis, Rupert M.; Wolfley, Steven L.; ...
2014-08-18
This work demonstrates the use of FIB implanted Ga as a lithographic mask for plasma etching of Nb films. Using a highly collimated Ga beam of a FIB, Nb is implanted 12 nm deep with a 14 nm thick Ga layer providing etch selectivity better than 15:1 with fluorine based etch chemistry. Implanted square test patterns, both 10 um by and 10 um and 100 um by 100 um, demonstrate that doses above than 7.5 x 1015 cm-2 at 30 kV provide adequate mask protection for a 205 nm thick, sputtered Nb film. The resolution of this dry lithographic techniquemore » is demonstrated by fabrication of nanowires 75 nm wide by 10 um long connected to 50 um wide contact pads. The residual resistance ratio of patterned Nb films was 3. The superconducting transition temperature, Tc =7.7 K, was measured using MPMS. This nanoscale, dry lithographic technique was extended to sputtered TiN and Ta here and could be used on other fluorine etched superconductors such as NbN, NbSi, and NbTi.« less
Major enhancement of the thermoelectric performance in Pr/Nb-doped SrTiO3 under strain
NASA Astrophysics Data System (ADS)
Amin, B.; Singh, N.; Tritt, T. M.; Alshareef, H. N.; Schwingenschlögl, U.
2013-07-01
The electronic structure and thermoelectric properties of strained (biaxially and uniaxially) Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3 are investigated in the temperature range from 300 K to 1200 K. Substitutions of Pr at the Sr site and Nb at the Ti site generate n-type doping and thus improve the thermoelectric performance as compared to pristine SrTiO3. Further enhancement is achieved by the application of strain, for example, of the Seebeck coefficient by 21% for Sr0.95Pr0.05TiO3 and 10% for SrTi0.95Nb0.05O3 at room temperature in the case of 5% biaxial strain. At 1200 K, we predict figures of merit of 0.58 and 0.55 for 2.5% biaxially strained Sr0.95Pr0.05TiO3 and SrTi0.95Nb0.05O3, respectively, which are the highest values reported for rare earth doped SrTiO3.
Effect of thermo-mechanical stress during quench on Nb3Sn cable performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linda Imbasciati et al.
2002-12-09
Several high field magnets using Nb{sub 3}Sn superconductor are under development for future particle accelerators. The high levels of stored energy in these magnets can cause high peak temperatures during a quench. The thermomechanical stress generated in the winding during the fast temperature rise can result in a permanent damage of the brittle Nb{sub 3}Sn. Although there are several studies of the critical current degradation of Nb{sub 3}Sn strands due to strain, little is known about how to apply the strain limitations to define a maximum acceptable temperature in the coils during a quench. Therefore, an experimental program was launched,more » aimed at improving the understanding of the effect of thermo-mechanical stress in coils made from brittle Nb{sub 3}Sn. A first experiment, reported here, was performed on cables. The experimental results were compared to analytical and finite element models. The next step in the experimental program will be to repeat similar measurements in small racetrack coils and later in full size magnets.« less
High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding
NASA Astrophysics Data System (ADS)
Lee, Cheol Min; Mok, Yong-Kyoon; Sohn, Dong-Seong
2017-12-01
In this study, high-temperature steam oxidation experiments were performed at 1012-1207 °C on Zr-1Nb-1Sn-0.1Fe fuel cladding tubes to study their weight gains and microstructural characteristics. Many specimens were tested at each test temperature, and the results were reproducible and reliable. It is often debated whether the Zr-1Nb-1Sn-0.1Fe alloy follows the weight gain correlation developed by Cathcart and Pawel (C-P correlation) at around 1000 °C. According to our results, the C-P correlation overpredicts the weight gain at around 1000 °C, and this observation agrees well with the data reported by Westinghouse. In addition, the microstructures of the specimens were analyzed using scanning electron microscopy, and it was found that circumferential cracks are formed at the oxide-metal interface only at around 1000 °C. In previous studies, it has been postulated that cracks in the oxide promote the oxidation process, but it appears that the circumferential cracks at the oxide-metal interface decrease the oxidation rate before the breakaway oxidation occurs by disturbing the diffusion of oxygen. The oxidation rate reduction due to the circumferential cracks appears to be the reason for the overprediction of the C-P correlation at around 1000 °C.
Lin, Changyu; Zou, Ding; Liu, Tao; Djordjevic, Ivan B
2016-08-08
A mutual information inspired nonbinary coded modulation design with non-uniform shaping is proposed. Instead of traditional power of two signal constellation sizes, we design 5-QAM, 7-QAM and 9-QAM constellations, which can be used in adaptive optical networks. The non-uniform shaping and LDPC code rate are jointly considered in the design, which results in a better performance scheme for the same SNR values. The matched nonbinary (NB) LDPC code is used for this scheme, which further improves the coding gain and the overall performance. We analyze both coding performance and system SNR performance. We show that the proposed NB LDPC-coded 9-QAM has more than 2dB gain in symbol SNR compared to traditional LDPC-coded star-8-QAM. On the other hand, the proposed NB LDPC-coded 5-QAM and 7-QAM have even better performance than LDPC-coded QPSK.
NASA Astrophysics Data System (ADS)
Yamada, Hideto; Matsuoka, Takayuki; Yamazaki, Masato; Ohbayashi, Kazushige; Ida, Takashi
2018-01-01
The structures of the main (K1- x Na x )NbO3 perovskite in a high-performance lead-free piezoelectric ceramic composite (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-MgO-Fe2O3 (x = 0.52 and 0.70) with trace amounts of LiMgFeTiO4 inverse spinel and (Li,K)2(Mg,Fe,Ti,Nb)6O13 layered structure have been investigated by transmission electron microscopy (TEM) and synchrotron powder X-ray diffractometry (XRD) with varying temperatures. The bright-field TEM images have shown tetragonal 90°-domain contrasts at 80 and 40 °C, and the XRD profile has been simulated by adding an average structure of two differently oriented tetragonal structures bound by a 90°-domain wall for the x = 0.52 sample. Aggregates of tilted NbO6 nanodomains have been observed in a high-resolution TEM image, and the crossover of P4mm-Amm2 features from 60 to 20 °C and diffuse 2 × 2 × 2 superlattice reflections of the tilted NbO6 Imm2 structure have been observed in XRD data for the x = 0.70 sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, V. V.; Novitski, I.; Zlobin, A. V.
2017-05-01
High filed accelerator magnets with operating fields of 15-16 T based on themore » $$Nb_3Sn$$ superconductor are being considered for the LHC energy upgrade or a future Very High Energy pp Collider. Magnet design studies are being conducted in the U.S., Europe and Asia to explore the limits of the $$Nb_3Sn$$ accelerator magnet technology while optimizing the magnet design and performance parame-ters, and reducing magnet cost. The first results of these studies performed at Fermilab in the framework of the US-MDP are reported in this paper.« less
NASA Astrophysics Data System (ADS)
Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul
2018-03-01
The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.
Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique
NASA Astrophysics Data System (ADS)
Kilinc, B.; Durmaz, M.; Abakay, E.; Sen, U.; Sen, S.
2015-03-01
Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe12Nb5B3 and Fe2NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe2B, NbB2, NbFeB and Fe0,2 Nb0,8 phases. The hardness of the presence phases are changing between 1689±85 HV0.01, and 181±7 HV0.1. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe12Nb5B3 and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.
High rate performance supercapacitor based on Nb2O5 nanoparticles
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Ahmed, Ahsan; Rafat, M.
2018-05-01
In the present communication, we report the successful preparation of Nb2O5 nanoparticles from precursor NbCl5 using hydrothermal method, followed by thermal annealing. The surface morphology of the as-prepared material was studied using scanning electron microscopy (SEM) while crystal structure and vibrational response was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The observed results indicate the successful synthesis of Nb2O5 nanoparticles. The electrochemical properties of the material was investigated in two-electrode assembly in 1 M LiClO4 solution using the techniques of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Both EIS and CV studies show high rate performance of the assembled supercapacitor cells. Fabricated cell offers low response time (˜17.1 ms), and the shape of CV pattern remains almost rectangular, even for high scan rates (˜20 V s-1).
Do current sports brassiere designs impede respiratory function?
Bowles, Kelly-Ann; Steele, Julie R; Chaunchaiyakul, Rungchai
2005-09-01
Although sports brassieres are more effective in limiting breast motion and related breast pain when compared with standard fashion brassieres, some females do not wear sports brassieres during physical activity, as they perceive them to be too tight around the torso, possibly impeding their performance during physical activity. The purpose of this study was to determine whether breast hypertrophy, breast momentum, and/or wearing a sports brassiere impeded respiratory function at rest and during physical activity. Twenty-two active women completed standard resting spirometry maneuvers while not wearing a brassiere. All subjects then completed maximal cycle ergometer testing in two breast support conditions (sports brassiere and no brassiere (NB)), followed by submaximal treadmill exercise tests under three breast support conditions (sports brassiere, no brassiere and fashion brassiere) while standard spirometry, brassiere pressure and comfort were measured. The sports brassiere imparted significantly more pressure on smaller breasted females' torsos when compared with the fashion brassiere (0.861 +/- 0.247 and 0.672 +/- 0.254 N.cm(-2), respectively), although this increased pressure did not appear to significantly affect measured lung volumes or brassiere comfort scores. Brassiere size affected maximal exercise ability (relative VO(2peak): smaller breasted NB: 49.84 +/- 6.15 mL.kg(-1).min(-1); larger breasted NB: 40.76 +/- 4.47 mL.kg(-1).min(-1)) as well as some temporal measures of resting and submaximal respiration. However, no significant difference was found between the no brassiere and brassiere conditions in regards to measured lung volumes. As no significant restriction to exercise performance or respiratory mechanics was found when subjects wore sports brassieres, it was concluded that active females should wear a sports brassiere during physical activity to reduce breast motion and related breast pain.
Preparation and visible-light photocatalytic properties of BiNbO₄ and BiTaO₄ by a citrate method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hai-Fa, E-mail: haifazhai@126.com; Li, Ai-Dong, E-mail: adli@nju.edu.cn; Kong, Ji-Zhou
2013-06-01
Visible-light photcatalysts of BiNbO₄ and BiTaO₄ powders have been successfully synthesized by a citrate method. The formation of pure triclinic phase of BiNbO₄ and BiTaO₄ at low temperature of 700 °C can be attributed to the advantage of the citrate method. The photocatalytic activity and possible mechanism were investigated deeply. For BiNbO₄ particles, the mechanism of methyl violet (MV) degradation under visible light irradiation involves photocatalytic and photosensitization pathways and the catalyst specific surface area has dominant influence. While for BiTaO₄ particles, the dominant mechanism arises from photosensitization pathways and a trade off between high specific surface area and goodmore » crystallinity is achieved. BiNbO₄ powder calcined at 700 °C shows the best photocatalytic efficiency among these catalysts, which is ascribed to its large surface area and more positive conduction band level. The optimal catalyst loading, additive H₂O₂ concentration and pH value is around 1 g/L, 2 mmol/L and 8 mmol/L, respectively. - Graphical abstract: Photodegradation performance and adsorption ability of BiNbO₄ and BiTaO₄ powders, respectively. BNO700 with the best photocatalytic efficiency is ascribed to its large surface area and more positive conduction band level. Highlights: • Pure BiNbO₄ and BiTaO₄ powders were prepared by a citrate method. • Excellent performance of visible-light degradation of MV was observed. • Different MV degradation mechanism for BiNbO₄ and BiTaO₄ powders was proposed. • BNO700 has large surface area and more positive conduction band level.« less
Performance of Superconducting Magnet Prototypes for LCLS-II Linear Accelerator
Kashikhin, Vladimir; Andreev, Nikolai; DiMarco, Joseph; ...
2017-01-05
The new LCLS-II Linear Superconducting Accelerator at SLAC needs superconducting magnet packages installed inside SCRF Cryomodules to focus and steer an electron beam. Two magnet prototypes were built and successfully tested at Fermilab. Magnets have an iron dominated configuration, quadrupole and dipole NbTi superconducting coils, and splittable in the vertical plane configuration. Magnets inside the Cryomodule are conductively cooled through pure Al heat sinks. Both magnets performance was verified by magnetic measurements at room temperature, and during cold tests in liquid helium. Test results including magnetic measurements are discussed. Special attention was given to the magnet performance at low currentsmore » where the iron yoke and the superconductor hysteresis effects have large influence. Both magnet prototypes were accepted for the installation in FNAL and JLAB prototype Cryomodules.« less
Lower incisor inclination regarding different reference planes.
Zataráin, Brenda; Avila, Josué; Moyaho, Angeles; Carrasco, Rosendo; Velasco, Carmen
2016-09-01
The purpose of this study was to assess the degree of lower incisor inclination with respect to different reference planes. It was an observational, analytical, longitudinal, prospective study conducted on 100 lateral cephalograms which were corrected according to the photograph in natural head position in order to draw the true vertical plane (TVP). The incisor mandibular plane angle (IMPA) was compensated to eliminate the variation of the mandibular plane growth type with the formula "FMApx.- 25 (FMA) + IMPApx. = compensated IMPA (IMPACOM)". As the data followed normal distribution determined by the KolmogorovSmirnov test, parametric tests were used for the statistical analysis, Ttest, ANOVA and Pearson coefficient correlation test. Statistical analysis was performed using a statistical significance of p <0.05. There is correlation between TVP and NB line (NB) (0.8614), Frankfort mandibular incisor angle (FMIA) (0.8894), IMPA (0.6351), Apo line (Apo) (0.609), IMPACOM (0.8895) and McHorris angle (MH) (0.7769). ANOVA showed statistically significant differences between the means for the 7 variables with 95% confidence level, P=0.0001. The multiple range test showed no significant difference among means: APoNB (0.88), IMPAMH (0.36), IMPANB (0.65), FMIAIMPACOM (0.01), FMIATVP (0.18), TVPIMPACOM (0.17). There was correlation among all reference planes. There were statistically significant differences among the means of the planes measured, except for IMPACOM, FMIA and TVP. The IMPA differed significantly from the IMPACOM. The compensated IMPA and the FMIA did not differ significantly from the TVP. The true horizontal plane was mismatched with Frankfort plane in 84% of the sample with a range of 19°. The true vertical plane is adequate for measuring lower incisor inclination. Sociedad Argentina de Investigación Odontológica.
Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb3Sn model dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie Frank, III; Benson, Chris; Blackburn, Raymond; Diaczenko, Nick; Elliott, Timothy; Jaisle, Andrew; McInturff, A.; McIntyre, P.; Sattarov, Akhdiyor
2012-06-01
We report the construction and testing of components of TAMU3, a 14 Tesla Nb3Sn block-coil dipole. A primary goal in developing this model dipole is to test a method of stress management in which Lorentz stress is intercepted within the coil assembly and bypassed so that it cannot accumulate to a level that would cause strain degradation in the superconducting windings. Details of the fabrication, tooling, and results of construction and magnet component testing will be presented.
Determining gestational age and preterm birth in rural Guatemala: A comparison of methods.
Weinstein, John R; Thompson, Lisa M; Díaz Artiga, Anaité; Bryan, Joe P; Arriaga, William E; Omer, Saad B; McCracken, John P
2018-01-01
Preterm birth is the leading cause of death among children <5 years of age. Accurate determination of prematurity is necessary to provide appropriate neonatal care and guide preventive measures. To estimate the most accurate method to identify infants at risk for adverse outcomes, we assessed the validity of two widely available methods-last menstrual period (LMP) and the New Ballard (NB) neonatal assessment-against ultrasound in determining gestational age and preterm birth in highland Guatemala. Pregnant women (n = 188) were recruited with a gestational age <20 weeks and followed until delivery. Ultrasound was performed by trained physicians and LMP was collected during recruitment. NB was performed on infants within 96 hours of birth by trained study nurses. LMP and NB accuracy at determining gestational age and identifying prematurity was assessed by comparing them to ultrasound. By ultrasound, infant mean gestational age at birth was 38.3 weeks (SD = 1.6) with 16% born at less than 37 gestation. LMP was more accurate than NB (mean difference of +0.13 weeks for LMP and +0.61 weeks for NB). However, LMP and NB estimates had low agreement with ultrasound-determined gestational age (Lin's concordance<0.48 for both methods) and preterm birth (κ<0.29 for both methods). By LMP, 18% were judged premature compared with 6% by NB. LMP underestimated gestational age among women presenting later to prenatal care (0.18 weeks for each additional week). Gestational age for preterm infants was overestimated by nearly one week using LMP and nearly two weeks using NB. New Ballard neuromuscular measurements were more predictive of preterm birth than those measuring physical criteria. In an indigenous population in highland Guatemala, LMP overestimated prematurity by 2% and NB underestimated prematurity by 10% compared with ultrasound estimates. New, simple and accurate methods are needed to identify preterm birth in resource-limited settings worldwide.
Determining gestational age and preterm birth in rural Guatemala: A comparison of methods
Thompson, Lisa M.; Díaz Artiga, Anaité; Bryan, Joe P.; Arriaga, William E.; Omer, Saad B.; McCracken, John P.
2018-01-01
Background Preterm birth is the leading cause of death among children <5 years of age. Accurate determination of prematurity is necessary to provide appropriate neonatal care and guide preventive measures. To estimate the most accurate method to identify infants at risk for adverse outcomes, we assessed the validity of two widely available methods—last menstrual period (LMP) and the New Ballard (NB) neonatal assessment—against ultrasound in determining gestational age and preterm birth in highland Guatemala. Methods Pregnant women (n = 188) were recruited with a gestational age <20 weeks and followed until delivery. Ultrasound was performed by trained physicians and LMP was collected during recruitment. NB was performed on infants within 96 hours of birth by trained study nurses. LMP and NB accuracy at determining gestational age and identifying prematurity was assessed by comparing them to ultrasound. Results By ultrasound, infant mean gestational age at birth was 38.3 weeks (SD = 1.6) with 16% born at less than 37 gestation. LMP was more accurate than NB (mean difference of +0.13 weeks for LMP and +0.61 weeks for NB). However, LMP and NB estimates had low agreement with ultrasound-determined gestational age (Lin’s concordance<0.48 for both methods) and preterm birth (κ<0.29 for both methods). By LMP, 18% were judged premature compared with 6% by NB. LMP underestimated gestational age among women presenting later to prenatal care (0.18 weeks for each additional week). Gestational age for preterm infants was overestimated by nearly one week using LMP and nearly two weeks using NB. New Ballard neuromuscular measurements were more predictive of preterm birth than those measuring physical criteria. Conclusion In an indigenous population in highland Guatemala, LMP overestimated prematurity by 2% and NB underestimated prematurity by 10% compared with ultrasound estimates. New, simple and accurate methods are needed to identify preterm birth in resource-limited settings worldwide. PMID:29554145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Risskov Sørensen, Daniel; Nielsen, Ulla Gro; Skou, Eivind M., E-mail: ems@kbm.sdu.dk
2014-11-15
A systematic study of composite powders of niobium oxide phosphate (NbOPO{sub 4}) and phosphoric acid (H{sub 3}PO{sub 4}) has been performed in order to characterize the material's ability to perform as an electrolyte material in medium temperature fuel cells and electrolyzers. Powders of H{sub 3}PO{sub 4} contents between 13.1 and 74.2 M% were produced and characterized with powder X-ray diffraction, {sup 31}P MAS NMR and impedance spectroscopy. NMR revealed that a significant degree of dehydration and vaporization of H{sub 3}PO{sub 4} takes place above 200 °C, and increases with temperature. At 500 °C the NbOPO{sub 4} and H{sub 3}PO{sub 4}more » has reacted to form niobium pyrophosphate (Nb{sub 2}P{sub 4}O{sub 15}). Impedance spectroscopy showed an increase in conductivity with increasing acid concentration, whereas the conductivity decreased slightly with increasing temperature. The highest conductivity measured was 2.5·10{sup −3} S/cm for a sample containing 74.2 M% of H{sub 3}PO{sub 4}. Lastly, it was shown that NbOPO{sub 4} has no significant conductivity of its own. - Graphical abstract: Conductivity of NbOPO{sub 4}/H{sub 3}PO{sub 4} composites as a function of equivalent P{sub 2}O{sub 5} content. The conductivity is insignificant for pure NbOPO{sub 4}. - Highlights: • Composites have been made from NbOPO{sub 4} and H{sub 3}PO{sub 4}. • The composites composition has been investigated with solid state NMR. • The composites have shown clear signs of acid dehydration upon heating. • The conductivity of the composites increases for increasing acid content. • NbOPO{sub 4} has no significant conductivity of its own.« less
NASA Astrophysics Data System (ADS)
Liu, Xiaodi; Liu, Guangyin; Chen, Hao; Ma, Jianmin; Zhang, Ruixue
2017-12-01
Hierarchical 1D Nb2O5 nanobelts are successfully synthesized via a facile solvothermal method and following thermal treatment. The as-formed Nb2O5 nanobelts are characterized by XRD, FESEM, TEM, and BET, and the results indicate that they possess pseudohexagonal structure and are composed of ultranarrow nanorods with an average diameter of ca. 15 nm. When used as anodic materials for lithium ion batteries, the obtained Nb2O5 nanobelts can deliver initial discharge capacities of 209.3 mAh g-1 at the current density of 0.5 C. In addition, the Nb2O5 nanobelts exhibit a reversible capacity of 95.8 mAh g-1 after 200 cycles at relatively high current density of 5 C. The good electrochemical performance of the Nb2O5 nanobelts may be ascribed to their good monodispersity, high specific surface areas, and narrow rod-like building blocks. The Nb2O5 nanobelts can be developed as promising anodes for high-rate 2 V LIBs with good safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Huang; C. Kammerer; D. D. Keiser, Jr.
2014-04-01
U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembledmore » and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.« less
Ortiz, Tara K; Velazquez, Nermarie; Ding, Laura; Routh, Jonathan C; Wiener, John S; Seed, Patrick C; Ross, Sherry S
2018-04-20
Urinary tract infection is more common in children with spina bifida (SB) than neurologically intact children, and Escherichiacoli is the most common urinary pathogen in the general pediatric population. Less is known of the pathogens responsible for urinary tract infections (UTI) in the pediatric SB population or their evolving antimicrobial resistance patterns. The goal of this study is to determine the epidemiology and antimicrobial resistance patterns of SB-associated urinary pathogens. Between January 1996 and August 2013, 231 patients aged 1 month to 18 years were identified with a diagnosis of SB-NB and at least one symptomatic urinary tract infection (UTI) event (Table). Two-hundred and thirty-one normally voiding children with a single symptomatic UTI were age-matched based on age at diagnosis of UTI at a 1:1 ratio. Chi-square tests and Generalized Estimating Equation analysis, controlling for clinicopathological factors, were performed to compare rates of pathogen-associations with UTI between groups and likelihood of UTI with multi-drug resistant (MDR) organisms. Children in the SB-NB group had a higher rate of non-E. coli UTI compared with controls (64% vs. 41%, p < 0.01), particularly associated with Klebsiella species the SB-NB group had an overall higher infection rate with MDR organisms (21% vs. 10%, p < 0.01) and E. coli isolates, with a trend towards increased rates of antibiotic resistance to aminoglycosides, fluoroquinolones, cephalosporins, extended spectrum β-lactams, and TMP-SMZ. Additionally, patients in the SB-NB group had a 10-fold increase of urosepsis with 57% of events caused by MDR organisms. Children with SB-NB are more likely to have non-E. coli UTI, UTIs with MDR organisms, and urosepsis than the general pediatric population. Published by Elsevier Ltd.
Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process
NASA Technical Reports Server (NTRS)
Holmes, Richard; Ellis, David; McKechnie
1999-01-01
Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.
Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting
NASA Astrophysics Data System (ADS)
Roehling, John D.; Perron, Aurélien; Fattebert, Jean-Luc; Haxhimali, Tomorr; Guss, Gabe; Li, Tian T.; Bober, David; Stokes, Adam W.; Clarke, Amy J.; Turchi, Patrice E. A.; Matthews, Manyalibo J.; McKeown, Joseph T.
2018-05-01
Single-track laser melting experiments were performed on bulk Ti-Nb alloys to explore process parameters and the resultant macroscopic structure and microstructure. The microstructures in Ti-20Nb and Ti-50Nb (at.%) alloys exhibited cellular growth during rapid solidification, with average cell size of approximately 0.5 µm. Solidification velocities during cellular growth were calculated from images of melt tracks. Measurements of the composition in the cellular and intercellular regions revealed nonequilibrium partitioning and its dependence on velocity during rapid solidification. Experimental results were used to benchmark a phase-field model to describe rapid solidification under conditions relevant to additive manufacturing.
Physical and mechanical metallurgy of high purity Nb accelerator cavities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, N. T.; Bieler, T. R.; Pourgoghart , F.
2010-01-01
In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less
Physical and mechanical metallurgy of high purity Nb for accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieler, T. R.; Wright, N. T.; Pourboghrat, F.
2010-01-01
In the past decade, high Q values have been achieved in high purity Nb superconducting radio frequency (SRF) cavities. Fundamental understanding of the physical metallurgy of Nb that enables these achievements is beginning to reveal what challenges remain to establish reproducible and cost-effective production of high performance SRF cavities. Recent studies of dislocation substructure development and effects of recrystallization arising from welding and heat treatments and their correlations with cavity performance are considered. With better fundamental understanding of the effects of dislocation substructure evolution and recrystallization on electron and phonon conduction, as well as the interior and surface states, itmore » will be possible to design optimal processing paths for cost-effective performance using approaches such as hydroforming, which minimizes or eliminates welds in a cavity.« less
NASA Astrophysics Data System (ADS)
Wang, Qi; Peng, Zhijian; Wang, Yang; Fu, Xiuli
2018-06-01
SnOx-Nb2O5 thin film varistors were prepared by hot-dipping oxygen-deficient tin oxide films in Nb2O5 powder in air, and the influence of hot-dipping temperature (HDT) on the varistor performance of the samples was systematically explored. When the HDT increased from 300 to 700 °C, the nonlinear coefficient of the samples raised first and then dropped down, reaching the maximum of 14.73 at 500 °C, and the breakdown electric field exhibited a similar variation trend, gaining the peak value of 0.0201 V/nm at this temperature. Correspondingly, the leakage current decreased first and then increased with increasing HDT, reaching the minimum of 17.1 mA/cm2 at 500 °C. Besides, it was proposed that a grain-boundary defect barrier model was responsible for the nonlinear behavior of the obtained SnOx-Nb2O5 film varistors. This high-performance thin film varistor with nanoscaled thickness might be much promising in nano-devices or devices working in low voltage.
Two-Dimensional Atomic-Layered Alloy Junctions for High-Performance Wearable Chemical Sensor.
Cho, Byungjin; Kim, Ah Ra; Kim, Dong Jae; Chung, Hee-Suk; Choi, Sun Young; Kwon, Jung-Dae; Park, Sang Won; Kim, Yonghun; Lee, Byoung Hun; Lee, Kyu Hwan; Kim, Dong-Ho; Nam, Jaewook; Hahm, Myung Gwan
2016-08-03
We first report that two-dimensional (2D) metal (NbSe2)-semiconductor (WSe2)-based flexible, wearable, and launderable gas sensors can be prepared through simple one-step chemical vapor deposition of prepatterned WO3 and Nb2O5. Compared to a control device with a Au/WSe2 junction, gas-sensing performance of the 2D NbSe2/WSe2 device was significantly enhanced, which might have resulted from the formation of a NbxW1-xSe2 transition alloy junction lowering the Schottky barrier height. This would make it easier to collect charges of channels induced by molecule adsorption, improving gas response characteristics toward chemical species including NO2 and NH3. 2D NbSe2/WSe2 devices on a flexible substrate provide gas-sensing properties with excellent durability under harsh bending. Furthermore, the device stitched on a T-shirt still performed well even after conventional cleaning with a laundry machine, enabling wearable and launderable chemical sensors. These results could pave a road toward futuristic gas-sensing platforms based on only 2D materials.
A low-noise double-dipole antenna SIS mixer at 1 THz
NASA Astrophysics Data System (ADS)
Shitov, S. V.; Jackson, B. D.; Baryshev, A. M.; Markov, A. V.; Iosad, N. N.; Gao, J.-R.; Klapwijk, T. M.
2002-08-01
A quasi-optical mixer employing a Nb/Al/AlO x/Nb twin-SIS junction with a NbTiN/SiO 2/Al microstrip coupling circuit is tested at 800-1000 GHz. The receiver noise temperature TRX=250 K (DSB) is measured at 935 GHz for the bath temperature 2 K at IF=1.5 GHz; TRX remains below 350 K within the frequency range 850-1000 GHz. The integrated lens-antenna demonstrated good beam symmetry with sidelobes below -16 dB.
Campanelli, Leonardo Contri; Bortolan, Carolina Catanio; da Silva, Paulo Sergio Carvalho Pereira; Bolfarini, Claudemiro; Oliveira, Nilson Tadeu Camarinho
2017-01-01
An array of self-organized TiO 2 nanotubes with an amorphous structure was produced on the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys, and the resulting fatigue and corrosion behaviors were studied. The electrochemical response of the nanotubular oxide surfaces was investigated in Ringer physiological solution through potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The absence of transpassivation in the chloride-containing solution, in addition to the micron-scale values of the passivation current density, indicated the excellent corrosion behavior of the coating and the satisfactory protection against the creation of potential stress concentrators in the surface. Axial fatigue tests were performed in physiological solution on polished and coated conditions, with characterization of the treated surfaces by scanning electron microscopy before and after the tests. The surface modification was not deleterious to the fatigue response of both alloys mainly due to the nano-scale dimension of the nanotubes layer. An estimation based on fracture mechanics revealed that a circumferential crack in the range of 5μm depth would be necessary to affect the fatigue performance, which is far from the thickness of the studied coating, although no cracks were actually observed in the oxide surfaces after the tests. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inductance analysis of superconducting quantum interference devices with 3D nano-bridge junctions
NASA Astrophysics Data System (ADS)
Wang, Hao; Yang, Ruoting; Li, Guanqun; Wu, Long; Liu, Xiaoyu; Chen, Lei; Ren, Jie; Wang, Zhen
2018-05-01
Superconducting quantum interference devices (SQUIDs) with 3D nano-bridge junctions can be miniaturized into nano-SQUIDs that are able to sense a few spins in a large magnetic field. Among all device parameters, the inductance is key to the performance of SQUIDs with 3D nano-bridge junctions. Here, we measured the critical-current magnetic flux modulation curves of 12 devices with three design types using a current strip-line directly coupled to the SQUID loop. A best flux modulation depth of 71% was achieved for our 3D Nb SQUID. From the modulation curves, we extracted the inductance values of the current stripe-line in each design and compared them with the corresponding simulation results of InductEX. In this way, London penetration depths of 110 and 420 nm were determined for our Nb (niobium) and NbN (niobium nitride) films, respectively. Furthermore, we showed that inductances of 11 and 119 pH for Nb and NbN 3D nano-bridge junctions, respectively, dominated the total inductance of our SQUID loops which are 23 pH for Nb and 255 pH for NbN. A screening parameter being equal to one suggests optimal critical currents of 89.6 and 8.1 μA for Nb and NbN SQUIDs, respectively. Additionally, intrinsic flux noise of 110 ± 40 nΦ0/(Hz)1/2 is calculated for the Nb SQUIDs with 3D nano-bridge junctions by Langevin simulation.
Zenteno, Daniel; Bancalari, Aldo; Navarro, Ximena; Díaz, Valentina; Rodríguez-Núñez, Iván; Brockmann, Pablo
2017-12-01
Night Continuous Saturometry (CSO2) is used in Neonatal Units to detect events of hypoxemia in Newborns (NB) with apnea episodes. Polygraphy (PG) has a larger number of measuring channels. Our goal was to evaluate the diagnostic performance of CSO2 compared to Polygra phy in NB with suspected sleep apneas. Results of CSO2 and PG performed simultaneously in RN with suspected apneas were retrospectively analyzed over a three-year period. A 2-channel Masimo Radical-7® pulse oximeter and an Apnea Link Plus® polygraph with 5 simulta neous recording channels were used. Altered PG was defined as: desaturation index under 80% per hour > 1 and/or number of desaturations under 80% > 20 seconds greater than one in the whole va lidated registry and/or hypoapnea apnea index > 1 event per hour. In parallel, altered SpO2C was de fined when one or both of the 80% saturation criteria were altered. Sensitivity, specificity, predictive values and Likelihood Ratio (LLR) for CSO2 were calculated. Results were expressed in absolute value, with 95% confidence interval. Simultaneous 40 CSO2 and PG were performed; 80% (32/40) of them were preterm infants, 60% (24/40) males. 38% (15/40) of the CSO2 and 15% (6/40) of the PGs were altered (p < 0.05). CSO2 has a 100% Sensitivity, 74% Specificity, 40% VPP, 100% VPN, LLR + 3.78 and LLR-0. In the studied NB, CSO2 has a high diagnostic value, however, it may present false positives; It is suggested to use as a screening method and to perform diagnostic confirmation with another sleep test, such as PG.
Thoma, Daniel S; Hämmerle, Christoph H F; Cochran, David L; Jones, Archie A; Görlach, Christoph; Uebersax, Lorenz; Mathes, Stephanie; Graf-Hausner, Ursula; Jung, Ronald E
2011-11-01
The aim was to test, whether or not soft tissue volume augmentation with a specifically designed collagen matrix (CM), leads to ridge width gain in chronic ridge defects similar to those obtained by an autogenous subepithelial connective tissue graft (SCTG). In six dogs, soft tissue volume augmentation was performed by randomly allocating three treatment modalities to chronic ridge defects [CM, SCTG and sham-operated control (Control)]. Dogs were sacrificed at 28 (n = 3) and 84 days (n = 3). Descriptive histology and histomorphometric measurements were performed on non-decalcified sections. SCTG and CM demonstrated favourable tissue integration, and subsequent re-modelling over 84 days. The overall mean amount of newly formed soft tissue (NMT) plus bone (NB) amounted to 3.8 ± 1.2 mm (Control), 6.4 ± 0.9 mm (CM) and 7.2 ± 1.2 mm (SCTG) at 28 days. At 84 days, the mean NMT plus NB reached 2.4 ± 0.9 mm (Control), 5.6 ± 1.5 mm (CM) and 6.0 ± 2.1 mm (SCTG). Statistically significant differences were observed between CM/SCTG and Control at both time-points (p < 0.05). Within the limits of this animal model, the CM performed similar to the SCTG, based on histomorphometric outcomes combining NB and NMT. © 2011 John Wiley & Sons A/S.
The effect of Nb additions on the thermal stability of melt-spun Nd2Fe14B
NASA Astrophysics Data System (ADS)
Lewis, L. H.; Gallagher, K.; Panchanathan, V.
1999-04-01
Elevated-temperature superconducting quantum interference device (SQUID) magnetometry was performed on two samples of melt-spun and optimally annealed Nd2Fe14B; one sample contained 2.3 wt % Nb and one was Nb-free. Continuous full hysteresis loops were measured with a SQUID magnetometer at T=630 K, above the Curie temperature of the 2-14-1 phase, as a function of field (1 T⩽H⩽-1 T) and time on powdered samples sealed in quartz tubes at a vacuum of 10-6 Torr. The measured hysteresis signals were deconstructed into a high-field linear paramagnetic portion and a low-field ferromagnetic signal of unclear origin. While the saturation magnetization of the ferromagnetic signal from both samples grows with time, the signal from the Nb-containing sample is always smaller. The coercivity data are consistent with a constant impurity particle size in the Nb-containing sample and an increasing impurity particle size in the Nb-free sample. The paramagnetic susceptibility signal from the Nd2Fe14B-type phase in the Nb-free sample increases with time, while that from the Nb-containing sample remains constant. It is suggested that the presence of Nb actively suppresses the thermally induced formation of poorly crystallized Fe-rich regions that apparently exist in samples of both compositions.
Xie, Shunji; Wang, Yu; Zhang, Qinghong; Deng, Weiping; Wang, Ye
2015-02-25
We successfully synthesized SrNb2O6 with nanoplate morphology by a facile hydrothermal method. The SrNb2O6 nanoplate without any promoters or co-catalysts exhibited promising photocatalytic performance for the preferential reduction of CO2 with H2O vapour to CO and CH4 due to its high electron-hole separation and high CO2 chemisorption abilities.
Guadilla, V.; Algora, A.; Tain, J. L.; ...
2017-09-13
In this work we report on total absorption γ -ray spectroscopy measurements of the β decay of fission products that are important contributors to the antineutrino spectrum. The experiment was performed at IGISOL as a part of a campaign of measurements with the new DTAS spectrometer. Preliminary results of the analysis of the β decay of 100Nb, 100mNb and 140Cs are presented.
NASA Astrophysics Data System (ADS)
Engholm, M.; Norin, L.; Edvardsson, S.; Lashgari, K.; Westin, G.
2006-12-01
A structural investigation of a synthesized precursor in a silica glass matrix is performed. Silica soot samples are doped with the heterobimetallic precursor ErNb 2(OPr i) 13 by using a conventional solution doping technique and heat treatments to different temperatures. The precursor has also been introduced into a silica fiber preform by using the modified chemical vapor deposition technique. Analyses are made by using ultraviolet-visible-near infrared absorption spectroscopy, scanning electron microscopy, energy dispersive spectroscopy and powder X-ray diffraction. It is concluded that an immiscible system of ErNbO 4 crystallites and Nb 2O 5 is formed in the silica soot samples at high temperatures. Colloidal particles of ErNbO 4 are also formed in the silica glass fiber preform showing interesting features.
NASA Astrophysics Data System (ADS)
Zhang, Chuanfang (John); Maloney, Ryan; Lukatskaya, Maria R.; Beidaghi, Majid; Dyatkin, Boris; Perre, Emilie; Long, Donghui; Qiao, Wenming; Dunn, Bruce; Gogotsi, Yury
2015-01-01
Herein we report on the hydrothermal synthesis of niobium pentoxide on carbide-derived carbon (Nb2O5/CDC) with a layered structure. The presence of phenylphosphonic acid guides the deposition during preparation, leading to the formation of amorphous Nb2O5 particles which are 4-10 nm in diameter and homogeneously distributed on the CDC framework. Electrochemical testing of the Nb2O5/CDC electrode indicated that the highest capacitance and Coulombic efficiency occurred using an electrolyte comprised of 1 M lithium perchlorate in ethylene carbonate/dimethyl carbonate. Subsequent heat treatment of Nb2O5/CDC in CO2 environment led to crystallization of the Nb2O5, allowing reversible Li+ intercalation/de-intercalation. For sweep rates corresponding to charging and discharging in under 3 min, a volumetric charge of 180 C cm-3 and Coulombic efficiency of 99.2% were attained.
Naive Bayes Bearing Fault Diagnosis Based on Enhanced Independence of Data
Zhang, Nannan; Wu, Lifeng; Yang, Jing; Guan, Yong
2018-01-01
The bearing is the key component of rotating machinery, and its performance directly determines the reliability and safety of the system. Data-based bearing fault diagnosis has become a research hotspot. Naive Bayes (NB), which is based on independent presumption, is widely used in fault diagnosis. However, the bearing data are not completely independent, which reduces the performance of NB algorithms. In order to solve this problem, we propose a NB bearing fault diagnosis method based on enhanced independence of data. The method deals with data vector from two aspects: the attribute feature and the sample dimension. After processing, the classification limitation of NB is reduced by the independence hypothesis. First, we extract the statistical characteristics of the original signal of the bearings effectively. Then, the Decision Tree algorithm is used to select the important features of the time domain signal, and the low correlation features is selected. Next, the Selective Support Vector Machine (SSVM) is used to prune the dimension data and remove redundant vectors. Finally, we use NB to diagnose the fault with the low correlation data. The experimental results show that the independent enhancement of data is effective for bearing fault diagnosis. PMID:29401730
Mechanical Design of HD2, a 15 T Nb3Sn Dipole Magnet with a 35 mm Bore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferracin, P.; Bartlett, S.E.; Caspi, S.
2006-06-01
After the fabrication and test of HD1, a 16 T Nb{sub 3}Sn dipole magnet based on flat racetrack coil configuration, the Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) is developing the Nb{sub 3}Sn dipole HD2. With a dipole field above 15 T, a 35 mm clear bore, and nominal field harmonics within a fraction of one unit, HD2 represents a further step towards the application of block-type coils to high-field accelerator magnets. The design features tilted racetrack-type ends, to avoid obstructing the beam path, and a 4 mm thick stainless steel tube, to support the coil during themore » preloading operation. The mechanical structure, similar to the one used for HD1, is based on an external aluminum shell pretensioned with pressurized bladders. Axial rods and stainless steel plates provide longitudinal support to the coil ends during magnet excitation. A 3D finite element analysis has been performed to evaluate stresses and deformations from assembly to excitation, with particular emphasis on conductor displacements due to Lorentz forces. Numerical results are presented and discussed.« less
Mechanical Properties and Tribological Behavior of In Situ NbC/Fe Surface Composites
NASA Astrophysics Data System (ADS)
Cai, Xiaolong; Zhong, Lisheng; Xu, Yunhua
2017-01-01
The mechanical properties and tribological behavior of the niobium carbide (NbC)-reinforced gray cast iron surface composites prepared by in situ synthesis have been investigated. Composites are comprised of a thin compound layer and followed by a deep diffusion zone on the surface of gray cast iron. The graded distributions of the hardness and elastic modulus along the depth direction of the cross section of composites form in the ranges of 6.5-20.1 and 159.3-411.2 GPa, respectively. Meanwhile, dry wear tests for composites were implemented on pin-on-disk equipment at sliding speed of 14.7 × 10-2 m/s and under 5 or 20 N, respectively. The result indicates that tribological performances of composites are considerably dependent on the volume fraction and the grain size of the NbC as well as the mechanical properties of the matrices in different areas. The surface compound layer presents the lowest coefficient of friction and wear rate, and exhibits the highest wear resistance, in comparison with diffusion zone and substrate. Furthermore, the worn morphologies observed reveal the dominant wear mechanism is abrasive wear feature in compound layer and diffusion zone.
Loi, Monica; Di Paolo, Daniela; Soster, Marco; Brignole, Chiara; Bartolini, Alice; Emionite, Laura; Sun, Jessica; Becherini, Pamela; Curnis, Flavio; Petretto, Andrea; Sani, Monica; Gori, Alessandro; Milanese, Marco; Gambini, Claudio; Longhi, Renato; Cilli, Michele; Allen, Theresa M; Bussolino, Federico; Arap, Wadih; Pasqualini, Renata; Corti, Angelo; Ponzoni, Mirco; Marchiò, Serena; Pastorino, Fabio
2013-09-10
Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Wear behavior of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilinc, B., E-mail: bkilinc@sakarya.edu.tr; Durmaz, M.; Abakay, E.
Weld overlay coatings also known as hardfacing is a method which involves melting of the alloys and solidification for applied coatings. Recently hardfacing by welding has become a commonly used technique for improvement of material performance in extreme (high temperature, impact/abrasion, erosion, etc.) conditions.In the present study, the coatings were produced from a mixture of ferrous niobium, ferrous boron and iron powders in the ranges of -45µm particle size with different ratio. Fe{sub 12}Nb{sub 5}B{sub 3} and Fe{sub 2}NbBalloys were coated on the AISI 1020 steel surface by TIG welding. The phases formed in the coated layer are Fe{sub 2}B,more » NbB{sub 2}, NbFeB and Fe0,2 Nb{sub 0,8} phases. The hardness of the presence phases are changing between 1689±85 HV{sub 0.01}, and 181±7 HV{sub 0.1}. Microstructural examinations were realized by optical and scanning electron microscopy. The wear and friction behaviors of Fe{sub 12}Nb{sub 5}B{sub 3} and Fe2NbB realized on the AISI 1020 steel were investigated by the technique of TIG welding by using ball-on-disk arrangement against alumina ball.« less
Precipitation Kinetics in a Nb-stabilized Ferritic Stainless Steel
NASA Astrophysics Data System (ADS)
Labonne, M.; Graux, A.; Cazottes, S.; Danoix, F.; Cuvilly, F.; Chassagne, F.; Perez, M.; Massardier, V.
2017-08-01
The precipitation occurring in a Nb-stabilized ferritic stainless steel, containing initially Nb(C, N) carbonitrides and Fe3Nb3X precipitates, was investigated during aging treatments performed between 923 K and 1163 K (650 °C and 890 °C) by combining different techniques, (thermoelectric power (TEP), scanning/transmission electron microscopy (SEM/TEM), and atom probe tomography (APT)), in order to determine the precipitation kinetics, the nature and morphology of the newly formed precipitates as well as the chemistry of the initial Fe3Nb3X precipitates, where X stands for C or N. The following composition was proposed for these precipitates: (Fe0.81 Cr0.19)3 (Nb0.85 Si0.08 Mo0.07)3 (N0.8 C0.2), highlighting the simultaneous presence of N and C in the precipitates. With regard to the precipitation in the investigated temperature range, two main phenomena, associated with a hardness decrease, were clearly identified: (i) the precipitation of Fe2Nb precipitates from the niobium initially present in solution or coming from the progressive dissolution of the Fe3Nb3X precipitates and (ii) the precipitation of the χ-phase at grain boundaries for longer aging times. From the TEP kinetics, a time-temperature-precipitation diagram has been proposed.
Okazaki, Yoshimitsu
2012-01-01
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.
NASA Astrophysics Data System (ADS)
Zalnezhad, E.
2016-05-01
Zirconia (ZrO2) nanotube arrays were fabricated by anodizing pure zirconium (Zr) coated Ti-6Al-7Nb in fluoride/glycerol electrolyte at a constant potential of 60 V for different times. Zr was deposited atop Ti-6Al-7Nb via a physical vapor deposition magnetron sputtering (PVDMS) technique. Structural investigations of coating were performed utilizing X-ray diffraction (XRD) analysis. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the morphology and microstructure of coatings. Unannealed ZrO2 nanotube arrays were amorphous. Monoclinic and tetragonal ZrO2 appeared when the coated substrates were heat treated at 450 °C and 650 °C, while monoclinic ZrO2 was found at 850 °C and 900 °C. Mechanical properties, including nanohardness and modulus of elasticity, were evaluated at different annealing temperatures using a nanoindentation test. The nanoindentation results show that the nanohardness and modulus of elasticity for Ti-6AL-7Nb increased by annealing ZrO2 coated substrate at 450 °C. The nanohardness and modulus of elasticity for coated substrate decreased with annealing temperatures of 650, 850, and 900 °C. At an annealing temperature of 900 °C, cracks in the ZrO2 thin film coating occurred. The highest nanohardness and elastic modulus values of 6.34 and 218 GPa were achieved at an annealing temperature of 450 °C.
Kumar, Rajesh; Singh, Rajesh Kumar; Dubey, Pawan Kumar; Singh, Dinesh Pratap; Yadav, Ram Manohar
2015-07-15
Here we report the electrochemical performance of a interesting three-dimensional (3D) structures comprised of zero-dimensional (0D) cobalt oxide nanobeads, one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene, stacked hierarchically. We have synthesized 3D self-assembled hierarchical nanostructure comprised of cobalt oxide nanobeads (Co-nb), carbon nanotubes (CNTs), and graphene nanosheets (GNSs) for high-performance supercapacitor electrode application. This 3D self-assembled hierarchical nanostructure Co3O4 nanobeads-CNTs-GNSs (3D:Co-nb@CG) is grown at a large scale (gram) through simple, facile, and ultrafast microwave irradiation (MWI). In 3D:Co-nb@CG nanostructure, Co3O4 nanobeads are attached to the CNT surfaces grown on GNSs. Our ultrafast, one-step approach not only renders simultaneous growth of cobalt oxide and CNTs on graphene nanosheets but also institutes the intrinsic dispersion of carbon nanotubes and cobalt oxide within a highly conductive scaffold. The 3D:Co-nb@CG electrode shows better electrochemical performance with a maximum specific capacitance of 600 F/g at the charge/discharge current density of 0.7A/g in KOH electrolyte, which is 1.56 times higher than that of Co3O4-decorated graphene (Co-np@G) nanostructure. This electrode also shows a long cyclic life, excellent rate capability, and high specific capacitance. It also shows high stability after few cycles (550 cycles) and exhibits high capacitance retention behavior. It was observed that the supercapacitor retained 94.5% of its initial capacitance even after 5000 cycles, indicating its excellent cyclic stability. The synergistic effect of the 3D:Co-nb@CG appears to contribute to the enhanced electrochemical performances.
NASA Astrophysics Data System (ADS)
Jiao, Huanfeng; Zhao, Xiaoliang; Lv, Chunxiao; Wang, Yijun; Yang, Dongjiang; Li, Zhenhuan; Yao, Xiangdong
2016-09-01
One-dimensional γ-Al2O3 nanofibers were modified with Nb2O5 to be used as an efficient heterogeneous catalyst to catalyze biomass into 5-hydroxymethylfurfural (5-HMF). At low Nb2O5 loading, the niobia species were well dispersed on γ-Al2O3 nanofiber through Nb-O-Al bridge bonds. The interaction between Nb2O5 precursor and γ-Al2O3 nanofiber results in the niobia species with strong Lewis acid sites and intensive Brønsted acid sites, which made 5-HMF yield from glucose to reach the maximum 55.9~59.0% over Nb2O5-γ-Al2O3 nanofiber with a loading of 0.5~1 wt% Nb2O5 at 150 °C for 4 h in dimethyl sulfoxide. However, increasing Nb2O5 loading could lead to the formation of two-dimensional polymerized niobia species, three-dimensional polymerized niobia species and crystallization, which significantly influenced the distribution and quantity of the Lewis acid sites and Brönst acid sites over Nb2O5-γ-Al2O3 nanofiber. Lewis acid site Nbδ+ played a key role on the isomerization of glucose to fructose, while Brønsted acid sites are more active for the dehydration of generated fructose to 5-HMF. In addition, the heterogeneous Nb2O5-γ-Al2O3 nanofiber catalyst with suitable ratio of Lewis acid to Brönsted sites should display an more excellent catalytic performance in the conversion of glucose to 5-HMF.
do Prado, Renata Falchete; Rabêlo, Sylvia Bicalho; de Andrade, Dennia Perez; Nascimento, Rodrigo Dias; Henriques, Vinicius André Rodrigues; Carvalho, Yasmin Rodarte; Cairo, Carlos Alberto Alves; de Vasconcellos, Luana Marotta Reis
2015-11-01
Tests on titanium alloys that possess low elastic modulus, corrosion resistance and minimal potential toxicity are ongoing. This study aimed to evaluate the behavior of human osteoblastic cells cultured on dense and porous Titanium (Ti) samples comparing to dense and porous Ti-35 Niobium (Ti-35Nb) samples, using gene expression analysis. Scanning electronic microscopy confirmed surface porosity and pore interconnectivity and X-ray diffraction showed titanium beta-phase stabilization in Ti-35Nb alloy. There were no differences in expression of transforming growth factor-β, integrin-β1, alkaline phosphatase, osteopontin, macrophage colony stimulating factor, prostaglandin E synthase, and apolipoprotein E regarding the type of alloy, porosity and experimental period. The experimental period was a significant factor for the markers: bone sialoprotein II and interleukin 6, with expression increasing over time. Porosity diminished Runt-related transcription factor-2 (Runx-2) expression. Cells adhering to the Ti-35Nb alloy showed statistically similar expression to those adhering to commercially pure Ti grade II, for all the markers tested. In conclusion, the molecular mechanisms of interaction between human osteoblasts and the Ti-35Nb alloy follow the principal routes of osseointegration of commercially pure Ti grade II. Porosity impaired the route of transcription factor Runx-2.
High magnetic field behavior of NbFe2
NASA Astrophysics Data System (ADS)
Rauch, D.; Steinki, N.; Knafo, W.; Pfleiderer, C.; Duncan, W. J.; Grosche, F. M.; Süllow, S.
2018-05-01
We have carried out a high magnetic field study on single crystalline stoichiometric NbFe2, a material discussed in terms quantum criticality in itinerant ferromagnets, by means of high field resistivity experiments. Our experiments have been performed at the Laboratoire National des Champs Magnétiques Intenses in Toulouse, France. The resistivity of single crystalline NbFe2, has been investigated in external fields up to 15.5 T aligned along the c-axis in the temperature range of 1.4-55 K. The main focus of our study lies on the method to extract TN from the magnetoresistivity measurements, because TN could not be easily observed in temperature dependent resistivity for stoichiometric NbFe2.
Fabrication of multifilamentary Nb/sub 3/(Al,Ge) wires through a modified jelly roll process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachikawa, K.; Kamisada, Y.; Suzuki, E.
Recently, development of Nb/sub 3/Al multifilamentary wires has gained much interests since high-field performance superior to that of Nb/sub 3/Sn can be expected in these wires. In this study, Nb/Al-Ge alloy composites were fabricated into multifilamentary wires through a modified jelly roll (MJR) process. A Nb mesh sheet produced at the Teledyne Wah Chang Co. was used as Nb component. An Al-Ge alloy prepared by a conventional casting process was forged and rolled into a sheet of 0.2 mm in thickness. The Nb/Al-Ge composite was prepared by wrapping the Nb mesh sheet together with the Al-Ge alloy sheet around amore » Nb core into a jelly roll form. The MJR composite was encased in a Cu-Ni alloy tube of which outer diameter was 43 mm. The resulting composite was hydrostatically pressed and extruded into a rod of 18 mm in diameter. A Nb barrier was then inserted between the MJR and the Cu-Ni jacket. The composite rod was swaged and drawn into a wire without any intermediate annealing. The wire was able to be drawn down to a very small diameter of 0.1 mm. The cross-sectional configuration of the MJR composite was not much disturbed by the fabrication. Superconducting transition temperature Tc of the wire, after different heat treatment including a rapid quenching from high temperatures by a continuous electron beam irradiation, was studied, and an onset Tc of 19.3K has been achieved.« less
Growth and photo-response of NbSe2 and NbS2 crystals
NASA Astrophysics Data System (ADS)
Patel, Kunjal; Solanki, G. K.; Pataniya, Pratik; Patel, K. D.
2018-05-01
Transition metal dichalcogenides(TMDCs) have attracted intense research efforts due to their drastic properties change as we move towards ultra-thin crystalline layers from their bulk counterparts. Many well studied members of this family such as MoS2, WS2, WSe2, WS2 etc. have shown potential for flexible electronic devices including photovoltaic applications. The TMDCs like NbSe2 and NbS2 are relatively less studied layered compounds consisting of staked sandwiches of Se-Nb-Se/S-Nb-Se tri-layers with strong covalent/ionic intra layer bonds and weak Van der Waals interlayer interactions. In the present work, author have grown the crystals of NbSe2 and NbS2 by Direct Vapour Transport (DVT) technique and the material composition is confirmed using EDAX data. Photoelectrochemical (PEC) solar cell measurements are performed under monochromatic light illumination at different intensities and various solar cell parameters are calculated. These crystalline semiconductor electrodes were also analysed by photocurrent-voltage characteristics in a PEC solar cell structure (Cu/NbSe2/(0.1M K4Fe(CN)6 + 0.1M K3Fe(CN)6) and Cu/NbS2/(0.1M K4Fe(CN)6 +0.1M K3Fe(CN)6)). Blue coloured light gave the maximum efficiency. For further analysis of photodetection properties of the grown crystals, Ag painted broad low contact resistance electrical contacts were drawn from the crystals and its transient photoresponse was studied to evaluate different detector parameters.
Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma
2014-02-15
In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less
Qiu, C L; Liu, L; Sun, M; Zhang, S M
2005-12-15
Bulk metallic glasses (BMGs) of Zr(65 - x)Nb(x)- Cu(17.5)Ni(10)Al(7.5) with Nb = 0, 2, and 5 at % were prepared by copper mold casting. Compression tests reveal that the two BMGs containing Nb exhibited superior strength and plasticity to the base alloy. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. It was found that the addition of Nb significantly enhanced the corrosion resistance of the Zr-based BMG, as indicated by a remarkable increase in corrosion potential and pitting potential. XPS analysis revealed that the passive film formed after anodic polarization was enriched in aluminum oxide and depleted in phosphate ions for the BMGs containing Nb, which accounts for the improvement of corrosion resistance. On the other hand, metal-ion release of different BMGs were determined in PPb (ng/mL) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37 degrees C for 20 days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system. This is probably attributed to the promoting effect of Nb on a rapid formation of highly protective film.
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, R. H.
1993-01-01
High temperature stability of the microstructure of Nb-1Zr sheet containing 0.1 and 0.06 wt. percent C was studied as affected by processing and prolonged 1350 K exposure with and without applied stress. Sheets were fabricated by cold rolling bars that were single-, double-, or triple-extruded at 1900 K. Creep samples were double-annealed (1 h at 1755 K + 2 h at 1475 K) prior to testing at 1350 K and 10,000 - 34,500 h. The microstructures of the as-cast, extruded, rolled, DA, and crept samples were characterized using various metallographic and analytical methods. The precipitates were rather coarse Nb2C initially, but transformed to finer (less than or equal to 1 micron) carbides of (Zr, Nb)C with each subsequent high temperature process. The grain size, and the relative amount and morphology of (Zr, Nb)C were found to be affected by the number of extrusions and to some extent by C-content. However, the microstructures of all the crept samples were similar with (Zr, Nb)C distributed throughout the matrix indicating that prolonged exposure to 1350 K gave rise to complete transformation of Nb2C to (Zr, Nb)C regardless of the processing history. These and other observations are presented with the emphasis on the correlation between processing, microstructure, and creep properties.
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
Niobium Nitride Nb4N5 as a New High‐Performance Electrode Material for Supercapacitors
Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui
2015-01-01
Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb4N5, is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm−2, with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm−2) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb4N5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb4N5. Moreover, this Nb4N5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb4N5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications. PMID:27980920
NASA Astrophysics Data System (ADS)
Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang
2017-03-01
In order to comply with more stringent environmental and fuel consumption regulations, novel Nb-bearing austenitic heat-resistant cast steels that withstand exhaust temperatures as high as 1,323 K (1,050 °C) is urgently demanded from automotive industries. In the current research, the solidification behavior of these alloys with variations of N/C ratio is investigated. Directional solidification methods were carried out to examine the microstructural development in mushy zones. Computational thermodynamic calculations under partial equilibrium conditions were performed to predict the solidification sequence of different phases. Microstructural characterization of the mushy zones indicates that N/C ratio significantly influenced the stability of γ-austenite and the precipitation temperature of NbC/Nb(C,N), thereby altering the solidification path, as well as the morphology and distribution of NbC/Nb(C,N) and γ-ferrite. The solidification sequence of different phases predicted by thermodynamic software agreed well with the experimental results, except the specific precipitation temperatures. The generated data and fundamental understanding will be helpful for the application of computational thermodynamic methods to predict the as-cast microstructure of Nb-bearing austenitic heat-resistant steels.
NASA Astrophysics Data System (ADS)
Gontad, F.; Lorusso, A.; Panareo, M.; Monteduro, A. G.; Maruccio, G.; Broitman, E.; Perrone, A.
2015-12-01
We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10-5 found at 266 nm, demonstrate the potentiality of the new concept photocathode.
Niobium Nitride Nb4N5 as a New High-Performance Electrode Material for Supercapacitors.
Cui, Houlei; Zhu, Guilian; Liu, Xiangye; Liu, Fengxin; Xie, Yian; Yang, Chongyin; Lin, Tianquan; Gu, Hui; Huang, Fuqiang
2015-12-01
Supercapacitors suffer either from low capacitance for carbon or derivate electrodes or from poor electrical conductivity and electrochemical stability for metal oxide or conducting polymer electrodes. Transition metal nitrides possess fair electrical conductivity but superior chemical stability, which may be desirable candidates for supercapacitors. Herein, niobium nitride, Nb 4 N 5 , is explored to be an excellent capacitive material for the first time. An areal capacitance of 225.8 mF cm -2 , with a reasonable rate capability (60.8% retention from 0.5 to 10 mA cm -2 ) and cycling stability (70.9% retention after 2000 cycles), is achieved in Nb 4 N 5 nanochannels electrode with prominent electrical conductivity and electrochemical activity. Faradaic pseudocapacitance is confirmed by the mechanistic studies, deriving from the proton incorporation/chemisorption reaction owing to the copious +5 valence Nb ions in Nb 4 N 5 . Moreover, this Nb 4 N 5 nanochannels electrode with an ultrathin carbon coating exhibits nearly 100% capacitance retention after 2000 CV cycles, which is an excellent cycling stability for metal nitride materials. Thus, the Nb 4 N 5 nanochannels are qualified for a candidate for supercapacitors and other energy storage applications.
Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V.; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-ichi
2017-01-01
Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) (i.e., Ni3Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust (i.e., nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni3Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix (i.e., NbOx (x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N2 generation, and the NbOx matrix absorbs excessive nitrogen adatoms to retain the active Ni0 sites at the metal/oxide interface. Furthermore, the NbOx matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours. PMID:28507707
Superconductive coupling in tailored [(SnSe)1+δ ] m (NbSe2)1 multilayers
NASA Astrophysics Data System (ADS)
Trahms, Martina; Grosse, Corinna; Alemayehu, Matti B.; Hite, Omar K.; Chiatti, Olivio; Mogilatenko, Anna; Johnson, David C.; Fischer, Saskia F.
2018-06-01
Ferecrystals are a new artificially layered material system, in which the individual layers are stacked with monolayer precision and are turbostratically disordered. Here, the superconducting coupling of the NbSe2 layers in [(SnSe)1+δ ] m [NbSe2]1 ferecrystals with m between 1 and 6 are investigated. The variation of m effectively increases the distance between the superconducting NbSe2 monolayers. We find a systematic decrease of the transition temperature with an increasing number of SnSe layers per repeat unit. For m = 9 a superconducting transition can no longer be observed at temperatures above 250 mK. In order to investigate the superconducting coupling between individual NbSe2 layers, the cross-plane Ginzburg–Landau coherence lengths were determined. Electric transport measurements of the superconducting transition were performed in the presence of a magnetic field, oriented parallel and perpendicular to the layers, at temperatures closely below the transition temperature. A decoupling with increasing distance of the NbSe2 layers is observed. However, ferecrystals with NbSe2 layers separated by up to six layers of SnSe are still considered as three-dimensional superconductors.
NASA Technical Reports Server (NTRS)
Febvre, P.; Feautrier, P.; Robert, C.; Pernot, J. C.; Germont, A.; Hanus, M.; Maoli, R.; Gheudin, M.; Beaudin, G.; Encrenaz, P.
1992-01-01
The superheterodyne detection technique used for the spectrometer instrument of the PRONAOS project will provide a very high spectral resolution (delta nu/nu = 10(exp -6)). The most critical components are those located at the front-end of the receiver: their contribution dominates the total noise of the receiver. Therefore, it is important to perform accurate studies for specific components, such as mixers and multipliers working in the submillimeter wave range. Difficulties in generating enough local oscillator (LO) power at high frequencies make SIS mixers very desirable for operation above 300 GHz. The low LO power requirements and the low noise temperature of these mixers are the primary reason for building an SIS receiver. This paper reports the successful fabrication of small (less than or equal to 1 sq micron) Nb/Al-O(x)/Nb junctions and arrays with excellent I-V characteristics and very good reliability, resulting in a low noise receiver performance measured in the 368/380 GHz frequency range.
Heald, Steve M; Tarantini, Chiara; Lee, Peter J; Brown, Michael D; Sung, ZuHawn; Ghosh, Arup K; Larbalestier, David C
2018-03-19
To meet critical current density, J c , targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3 Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed Extended X-ray Absorption Fine Structure (EXAFS) to determine the lattice site location of dopants in modern high-performance Nb 3 Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.; ...
2018-03-19
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heald, Steve M.; Tarantini, Chiara; Lee, Peter J.
To meet critical current density, Jc, targets for the Future Circular Collider (FCC), the planned replacement for the Large Hadron Collider (LHC), the high field performance of Nb 3Sn must be improved, but champion J c values have remained static for the last 10 years. Making the A15 phase stoichiometric and enhancing the upper critical field H c2 by Ti or Ta dopants are the standard strategies for enhancing high field performance but detailed recent studies show that even the best modern wires have broad composition ranges. To assess whether further improvement might be possible, we employed EXAFS to determinemore » the lattice site location of dopants in modern high-performance Nb 3Sn strands with J c values amongst the best so far achieved. Although Ti and Ta primarily occupy the Nb sites in the A15 structure, we also find significant Ta occupancy on the Sn site. These findings indicate that the best performing Ti-doped stand is strongly sub-stoichiometric in Sn and that antisite disorder likely explains its high average H c2 behavior. These new results suggest an important role for dopant and antisite disorder in minimizing superconducting property distributions and maximizing high field J c properties.« less
Thermo-magnetic instabilities in Nb 3Sn superconducting accelerator magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordini, Bernardo
2006-09-01
The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb 3Sn. Several laboratories in the US and Europe are currently working on developing Nb 3Sn accelerator magnets,more » and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb 3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb 3Sn; a description of the manufacturing process of Nb 3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb 3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.« less
High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy
NASA Technical Reports Server (NTRS)
Anderson, Kenneth Reed
1996-01-01
A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.
NASA Astrophysics Data System (ADS)
Zhang, Taihong; Yun, Sining; Li, Xue; Huang, Xinlei; Hou, Yuzhi; Liu, Yanfang; Li, Jing; Zhou, Xiao; Fang, Wen
2017-02-01
Transition metal compounds (TMCs), as a representative family of functional materials, have attracted great attention in the field of renewable energy. Herein, Nb3.49N4.56O0.44 and NbN are prepared from the nitridation of NbO2 in an NH3 atmosphere. These dual-functional Nb-based compounds were applied to dye-sensitized solar cells (DSSCs) and anaerobic digestion (AD), and the efficiency and stability of these DSSCs and AD systems were systematically evaluated. The Nb3.49N4.56O0.44 counter electrode (CE) exhibited considerable electrocatalytic activity and stability in I3- reduction in DSSCs, achieving photovoltaic performance comparable with Pt (6.36% vs. 7.19%). Furthermore, as accelerants, Nb-based compounds can greatly improve the AD environment, increasing substrate utilization and decreasing the hazards in the digestate. Compared with the control sample (409.2 mL/g·VS and 29.55%), substantially higher cumulative biogas production (437.1-522.7 mL/g·VS) and chemical oxygen demand removal rates (56.08%-65.19%) were achieved using Nb-based accelerants in the AD system. The nitridation technique is an effective and general means of converting Nb-based oxides into oxynitrides and nitrides. The Nb-based compounds with high electrocatalytic activities showed promise for DSSCs applications, while greatly enhancing the biodegradability of the AD system as accelerants. These findings could pave the way for multifunctional applications of TMCs in renewable energy fields.
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.
2018-04-01
Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.
Nanoporous niobium nitride (Nb2N) with enhanced electrocatalytic performance for hydrogen evolution
NASA Astrophysics Data System (ADS)
Li, Yan; Zhang, Jianli; Qian, Xingyue; Zhang, Yue; Wang, Yining; Hu, Rudan; Yao, Chao; Zhu, Junwu
2018-01-01
The transition metal nitrides (TMNs) with nanoporous structure have shown great promise as potential electrocatalysts for the hydrogen evolution reaction (HER). Herein, self-organized nanoporous Nb2N was first successfully synthesized through the anodization of niobium in mixed oxalic acid/HF electrolyte, followed by a simple annealing treatment in the ammonia atmosphere. Due to the highly ordered nanoporous structure with abundant active sites and the enhanced electrical conductivity, the Nb2N exhibits a high catalytic current (326.3 mA cm-2) and low onset potential (96.3 mV), which is almost 3.9 times and 4.2 times better than that of Nb2O5, respectively. Meanwhile, the Nb2N also presents low Tafel slope (92 mV dec-1), and excellent cycling durability. More importantly, this study will provide more opportunities for designing and fabricating niobium compounds as an innovative HER catalysts.
McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S
2012-07-01
Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wen Hao, E-mail: wkan6795@uni.sydney.edu.au
AISI 440 stainless steels reinforced with various volume fractions of niobium carbide (NbC) particles of up to 25 vol% were fabricated in-situ using an argon arc furnace and then heat-treated to produce a martensitic matrix. Optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and electron back-scatter diffraction (EBSD) techniques were used to analyze the microstructure, phases and composition of these composites. Interestingly, it was found that Chinese-script NbC could nucleate on existing primary NbC particles creating NbC clusters with complex microstructures. Additionally, hardness tests were used to evaluate viability in mining and mineral processing applications. The increasemore » in NbC content resulted in an overall increase in the hardness of the composites while causing a marginal decrease in the amount of Cr in solid solution with the matrix, which could be a concern for corrosion resistance. The latter was due to the fact that the NbC lattice could dissolve a minor amount of Cr. Thermodynamic simulations also attributed this to a slight increase in M{sub 7}C{sub 3} precipitation. Nonetheless, these novel composites show great promise for applications in wear and corrosive environments. - Highlights: •Stainless steels reinforced with NbC particles of up to 25 vol% were fabricated. •NbC was formed in-situ in the steels using an arc melter. •Martensitic transformation of the matrix of each sample was achieved. •NbC reinforcements increased the bulk hardness values of the steels. •Dissolved Cr in the matrix of each sample was sufficient for passivity in theory.« less
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Mechanical performance of short models for MQXF, the Nb3Sn low-β quadrupole for the Hi-Lumi LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallone, Giorgio; Ambrosio, Giorgio; Anderssen, Eric
In the framework of the Hi-Lumi LHC Project, CERN and U.S. LARP are jointly developing MQXF, a 150-mm aperture high-field Nb3Sn quadrupole for the upgrade of the inner triplet of the low-beta interaction regions. The magnet is supported by a shell-based structure, providing the preload by means of bladder-key technology and differential thermal contraction of the various components. Two short models have been produced using the same cross section currently considered for the final magnet. The structures were preliminarily tested replacing the superconducting coils with blocks of aluminum. This procedure allows for model validation and calibration, and also to setmore » performance goals for the real magnet. Strain gauges were used to monitor the behavior of the structure during assembly, cool down and also excitation in the case of the magnets. The various structures differ for the shell partitioning strategies adopted and for the presence of thick or thin laminations. This study presents the results obtained and discusses the mechanical performance of all the short models produced up to now.« less
Mechanical performance of short models for MQXF, the Nb3Sn low-β quadrupole for the Hi-Lumi LHC
Vallone, Giorgio; Ambrosio, Giorgio; Anderssen, Eric; ...
2016-12-23
In the framework of the Hi-Lumi LHC Project, CERN and U.S. LARP are jointly developing MQXF, a 150-mm aperture high-field Nb3Sn quadrupole for the upgrade of the inner triplet of the low-beta interaction regions. The magnet is supported by a shell-based structure, providing the preload by means of bladder-key technology and differential thermal contraction of the various components. Two short models have been produced using the same cross section currently considered for the final magnet. The structures were preliminarily tested replacing the superconducting coils with blocks of aluminum. This procedure allows for model validation and calibration, and also to setmore » performance goals for the real magnet. Strain gauges were used to monitor the behavior of the structure during assembly, cool down and also excitation in the case of the magnets. The various structures differ for the shell partitioning strategies adopted and for the presence of thick or thin laminations. This study presents the results obtained and discusses the mechanical performance of all the short models produced up to now.« less
[Red reflex: prevention way to blindness in childhood].
de Aguiar, Adriana Sousa Carvalho; Cardoso, Maria Vera Lúcia Moreira Leitão; Lúcio, Ingrid Martins Leite
2007-01-01
This study had as objective to investigate the result and the colour gradation of red reflex test in newborns (NB). It is a exploratory, quantitative study and the sample was 180 NB from maternity ward in Fortaleza-CE. From this, 156 showed result "no altered" and 24 "suspect". About the aspect of red reflex, 144 NB showed the same coloration in the two eyes, in 35 of this, the colour was red, in 33, orange reddish, in 46 orange colour, in 24 light yellow, in 6 yellow with whitish stains central. Of the suspect cases, the reflex was light yellow with whitish stains with lines. The nurse trained to accomplish the red reflex test can have important role at Neonatal Unit with actions about the prevention of ocular alterations in the childhood.
Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B
2017-11-07
The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.
Heat Treatment Optimization of Rutherford Cables for a 15 T Nb 3Sn Dipole Demonstrator
Barzi, Emanuela; Bossert, Marianne; Field, Michael; ...
2017-01-09
FNAL has been developing a 15 T Nb 3Sn dipole demonstrator for a future Very High Energy pp Collider based on an optimized 60-mm aperture 4-layer “cos-theta” coil. In order to increase magnet efficiency, we graded the coil by using two cables with same 15 mm width and different thicknesses made of two different Restacked Rod Process (RRP®) wires. Due to the non-uniform field distribution in dipole coils the maximum field in the inner coil will reach 15-16 T, whereas the maximum field in the outer coil is 12-13 T. In preparation for the 15 T dipole coil reaction, heatmore » treatment studies were performed on strands extracted from these cables with the goal of achieving the best coil performance in the corresponding magnetic fields. Particularly, the effect of maximum temperature and time on the cable critical current was studied to take into account actual variations of these parameters during coil reaction. In parallel and in collaboration with OST, development was performed on optimizing Nb 3Sn RRP® wire design and layout. Index Terms— Accelerator magnet, critical current density, Nb 3Sn strand, Rutherford cable.« less
Measurement of a Conduction Cooled Nb3Sn Racetrack Coil
NASA Astrophysics Data System (ADS)
Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.
2017-12-01
Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.
Low-Loss NbTiN Films for THz SIS Mixer Tuning Circuits
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Stern, J. A.; Chattopadhyay, G.; LeDuc, H. G.; Bumble, B.; Zmuidzinas, J.
1998-01-01
Recent results at 1 THz using normal-metal tuning circuits have shown that SIS mixers can work well up to twice the gap frequency of the junction material (niobium). However, the performance at 1 THz is limited by the substantial loss in the normal metal films. For better performance superconducting films with a higher gap frequency than niobium and with low RF loss are needed. Niobium nitride has long been considered a good candidate material, but typical NbN films suffer from high RF loss. To circumvent this problem we are currently investigating the RF loss in NbTiN films, a 15 K Tc compound superconductor, by incorporating them into quasi-optical slot antenna SIS devices.
Wideband Waveguide Acousto-Optic Bragg Cell.
The results of an effort to improve the performance specifications of acousto - optic Bragg cells are reported. Various configurations of multiple...would provide a 700 MHz acousto - optic bandwidth. Investigated were Bragg cells fabricated on Ti diffused LiNb03 waveguides as well as Ti diffused LiNb03
Mazur, M; Kalisz, M; Wojcieszak, D; Grobelny, M; Mazur, P; Kaczmarek, D; Domaradzki, J
2015-02-01
In this paper comparative studies on the structural, mechanical and corrosion properties of Nb2O5/Ti and (NbyCu1-y)Ox/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb2O5 film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb0.75Cu0.25)Ox thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. Copyright © 2014. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachikawa, K.; Tsuyuki, T.; Hayashi, Y.
Sn-Ta based alloy buttons of different compositions were prepared by the melt diffusion process among constituent metal powders, and then pressed into plates. Meanwhile Sn-Ti based alloy plates were sliced from the melt and cast ingot. Resulting Sn-based alloy plates were rolled into thin sheets. The Sn-based alloy sheet was laminated with a Nb sheet, and wound into a Jelly Roll (JR) composite. The composite was encased in a sheath, and fabricated into a thin wire followed by the heat treatment. The application of hydrostatic extrusion is useful at the initial stage of the fabrication. The JR wires using Sn-Tamore » and Sn-Ti based alloy sheets show a non-Cu J{sub c} of {approx}250 A/mm{sup 2} and {approx}150 A/mm{sup 2} at 20 T and 22 T, respectively, at 4.2 K. It has been found that the Nb impregnates into the Sn-based alloy layers during the reaction, and Nb{sub 3}Sn layers are synthesized by the mutual diffusion between the Nb sheet and the Sn-based alloy sheet without formation of voids. Sn-Ti based alloy sheets are attractive due to their easiness of mass production. Structure and high-field performance of JR processed Nb{sub 3}Sn wires prepared from Sn-based alloy sheets with different compositions are compared in this article.« less
Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.
Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P
2016-01-01
Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Surface Chemistry of La0.99Sr0.01NbO4-d and Its Implication for Proton Conduction.
Li, Cheng; Pramana, Stevin S; Ni, Na; Kilner, John; Skinner, Stephen J
2017-09-06
Acceptor-doped LaNbO 4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO 4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO 4 (La 0.99 Sr 0.01 NbO 4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO 4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D 2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.
Neurocognitive functions and brain atrophy after proven neuroborreliosis: a case-control study.
Schmidt, Holger; Djukic, Marija; Jung, Klaus; Holzgraefe, Manfred; Dechent, Peter; von Steinbüchel, Nicole; Blocher, Joachim; Eiffert, Helmut; Schmidt-Samoa, Carsten
2015-08-19
Patients often report neurocognitive difficulties after neuroborreliosis (NB). The frequency and extent of cognitive problems in European patients have been studied incompletely. Sixty patients received a neurological and neuropsychological work-up 6 months or longer after treatment for proven NB. Quality of life, psychiatric symptom load, and brain atrophy were measured. All results were compared with a group of 30 healthy control persons adapted for age, gender and education being serologically negative for Borrelia burgdorferi senso latu. A cognitive sum score and a global sum score including cognitive, psychological results and quality of life data was calculated for both groups. Patients after NB showed a lower (i.e. more impaired) score on the Scripps Neurological rating scale (SNRS), but the observed neurological deficits were generally mild (mean ± SD: 97.1 ± 4.7 vs. 99.1 ± 2.4, p = 0.02). The mean neuropsychological domain results of the NB group were all within the normal range. However, a lower performance was found for the frontal executive function z-values (mean ± SD -0.29 ± 0.60 vs. 0.09 ± 0.60; p = 0.0059) of NB patients. Comparing the global sum score (mean ± SD 11.3 ± 4.2 NB vs. 14.3 ± 2.9 control , p = 0.001) and the cognitive sum score of the NB group with those of the control group (mean ± SD -0.15 ± 0.42 NB vs. 0.08 ± 0.31 control , p = 0.0079), both differences were statistically different. The frequencies of impaired global sum scores and those of the pathological cognitive sum scores (p = 0.07) did not differ statistically. No significant differences were found for health-related quality of life (hrQoL), sleep, psychiatric symptom load, or brain atrophy. The mean cognitive functions of patients after proven NB were in the normal range. However, we were able to demonstrate a lower performance for the domain of frontal executive functions, for the mean cognitive sum score and the global sum score as a sign of subtle but measurable sequelae of neuroborreliosis. Brain atrophy is not a common consequence of neuroborreliosis.
NASA Astrophysics Data System (ADS)
Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.
2004-05-01
For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.
Xiaopeng, Wang; Fantao, Kong; Biqing, Han; Yuyong, Chen
2017-11-01
Ti-Nb-Sn-hydroxyapatite (HA) composites were prepared by mechanical alloying for different times (unmilled, 4, 8 and 12h), followed by pulse current activated sintering. The effects of the milling time on the electrochemical corrosion resistance and bioactivity of the sintered Ti-35Nb-2.5Sn-15HA composites were investigated. Potentiodynamic polarization test results indicated that the sintered Ti-35Nb-2.5Sn-15HA composites exhibited higher corrosion resistance with increasing milling time. The corrosion potential and current of the Ti-35Nb-2.5Sn-15HA composite sintered by 12h milled powders were - 0.261V and 0.18μA/cm 2 , respectively, and this sintered composite showed a stable and wide passivation region. The hemolysis rate of the sintered Ti-35Nb-2.5Sn-15HA composites reduced with increasing milling time and the lowest hemolytic rate of the composites was 0.87%. In addition, the in vitro cell culture results indicated that the composite sintered by 12h milled powders had good biocompatibility. These results indicate the significant potential of Ti-35Nb-2.5Sn/xHA composites for biomedical implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Origin of hydrogen-inclusion-induced critical current deviation in Nb/AlOx/Al/Nb Josephson junctions
NASA Astrophysics Data System (ADS)
Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo
2010-04-01
We investigated the mechanisms that change the critical current density (Jc) of Nb/AlOx/Al/Nb Josephson junctions due to the inclusion of hydrogen in the Nb electrodes. Our investigations were performed according to three aspects: the superconductivity change, the change in thickness of the barrier layer, and the change in the barrier height due to the electronic effect. The results are as follows: (a) the hydrogen-inclusion-accompanied changes in the superconductivity parameters, such as the junction gap voltage, were much less than those of the critical current density, (b) the effect of hydrogen inclusion on Jc varied depending on the electrodes, i.e., the upper electrode above the barrier layer was the most affected, (c) the junctions with increased Ics due to hydrogen exclusion showed the identical amount of decrease in the junction resistance measured at room temperature, and (d) the hydrogen exclusion from the junction electrodes had no influence on the Nb/Al/AlOx/Al/Nb junctions, which had an extra Al layer. Based on these results we conclude that the Jc change is mainly caused by the change in junction resistance. A one order of magnitude smaller effect is caused by the superconductivity change. We believe the Jc change is caused by a Nb work function increase due to the hydrogen inclusion, resulting in an increase in barrier height.
NASA Astrophysics Data System (ADS)
Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.
2018-05-01
Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.
Fischer, M; Laheurte, P; Acquier, P; Joguet, D; Peltier, L; Petithory, T; Anselme, K; Mille, P
2017-06-01
Biocompatible beta-titanium alloys such as Ti-27.5(at.%)Nb are good candidates for implantology and arthroplasty applications as their particular mechanical properties, including low Young's modulus, could significantly reduce the stress-shielding phenomenon usually occurring after surgery. The CLAD® process is a powder blown additive manufacturing process that allows the manufacture of patient specific (i.e. custom) implants. Thus, the use of Ti-27.5(at.%)Nb alloy formed by CLAD® process for biomedical applications as a mean to increase cytocompatibility and mechanical biocompatibility was investigated in this study. The microstructural properties of the CLAD-deposited alloy were studied with optical microscopy and electron back-scattered diffraction (EBSD) analysis. The conservation of the mechanical properties of the Ti-27.5Nb material after the transformation steps (ingot-powder atomisation-CLAD) were verified with tensile tests and appear to remain close to those of reference material. Cytocompatibility of the material and subsequent cell viability tests showed that no cytotoxic elements are released in the medium and that viable cells proliferated well. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrasonic/Sonic Drill for High Temperature Application
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth
2010-01-01
Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.
The decoration of Nb-doped TiO2 microspheres by reduced graphene oxide for enhanced CO gas sensing
NASA Astrophysics Data System (ADS)
Liang, Feng; Chen, Shimin; Xie, Wei; Zou, Changwei
2018-03-01
Reduced graphene oxide (rGO) was used to improve the CO sensing properties of Nb-doped TiO2 (TiO2:Nb) microspheres by an improved ultrasonic spray pyrolysis deposition method. The responses of the sensor dramatically increased as the CO gas concentration increased from 100 to 1000 ppm, which indicated that rGO/TiO2:Nb-based sensor had a wide detection range for CO gas. Moreover, the conductivity of sensor based on the rGO/TiO2:Nb would be greatly improved than that of sensors without decoration by rGO. The enhanced gas sensing performance of the rGO/TiO2:Nb can be attributed to two reasons. Firstly, rGO could facilitate charge transport from TiO2 to graphene which provided a preferential pathway for the charge currents. Secondly, the decorated TiO2 by rGO could provide more active sites such as oxygen vacancy (VO) which could capture electrons from the conductance band and form a space-charge region.
Design of refractory high-entropy alloys
Gao, M. C.; Carney, C. S.; Dogan, O. N.; ...
2015-09-15
Here, this report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties formore » liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.« less
Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao
2014-01-30
Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC-MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jimenez, K.; Gaballah, A. E. H.; Ahmed, Nadeem; Zuppella, P.; Nicolosi, P.
2017-05-01
High brilliance sources in the EUV spectral range such as Synchrotron and Free Electron Lasers (FEL) are widely used in multiple scientific and technological applications thanks to their peculiar characteristics. One main technical problem of FEL is related to the rejection of high harmonics, seed laser, first stage photons, and diffuse light; in order to improve the quality of the beam delivered by these sources, a suitable optical system acting as band-pass filters is necessary. In this paper we discuss the optical and structure characterization of Nb/Zr and Zr/Nb self-stand transmittance filters, designed for 4.5 nm-20 nm wavelength ranges. In order to understand the properties of these bilayers filters, a campaign of measurements has been planned to be performed on Zr and Nb films on Si3N4 membrane windows and silicon substrates, deposited with e- beam deposition technique. Comparison of the results has been planned too. IMD transmittance and reflectance simulations, together with preliminary AFM and reflectance measurements will be shown in this work.
Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range
NASA Astrophysics Data System (ADS)
Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.
2017-02-01
Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.
NASA Astrophysics Data System (ADS)
Lopes, Éder Sócrates Najar; Salvador, Camilo Augusto Fernandes; Andrade, Denis Renato; Cremasco, Alessandra; Campo, Kaio Niitsu; Caram, Rubens
2016-06-01
New β metastable Ti alloys based on Ti-30Nb alloy with the addition of 1, 3, or 5 wt pct Fe have been developed using the bond order and the metal d-orbital energy level ( overline{{Bo}} {-} overline{{Md}} ) design theory. The samples were prepared by arc melting, hot working, and solution heat treatment above the β transus followed by water quenching (WQ) or furnace cooling (FC). The effect of the cooling rate on the microstructure of Ti-30Nb-3Fe wt pct was investigated in detail using a modified Jominy end quench test. The results show that Fe acts as a strong β-stabilizing alloying element. The addition of Fe also leads to a reduction in the ω and α phases volumetric fractions, although the ω phase was still detected in the WQ Ti-30Nb-5Fe samples, as shown by TEM, and α phase clusters were detected by SEM in the FC Ti-30Nb-3Fe samples. Among the WQ samples, the addition of 5 wt pct Fe improves the ultimate tensile strength (from 601 to 689 MPa), reduces the final elongation (from 28 to 16 pct), and impairs the electrochemical corrosion resistance, as evaluated by potentiodynamic polarization tests in Ringer's solution. The microstructural variation arising from the addition of Fe did not change the elastic modulus (approximately 80 GPa for all experimental WQ samples). This study shows that small Fe additions can tailor the microstructure of Ti-Nb alloys, modifying α and ω phase precipitation and improving mechanical strength.
Protective effect of n-butanol extract from Alpinia oxyphylla on learning and memory impairments.
Shi, Shao-huai; Zhao, Xu; Liu, Ai-jing; Liu, Bing; Li, Huan; Wu, Bo; Bi, Kai-shun; Jia, Ying
2015-02-01
Alzheimer's disease (AD) is one of the major neurological diseases of the elderly. How to safely and effectively remove the toxic Aβ42 peptide through blood-brain barrier (BBB) is considered to be an effective method for the prevention and treatment of AD. The compounds whose molecule weight is less than 400 Da and the number of hydrogen bonding is less than 10 are more likely to permeate BBB. In our previous study, we have several small molecule compounds which are isolated from n-butanol (NB) extract of Alpinia oxyphylla that are similar with this kind of compounds This study explored the neuroprotective effects of the NB significantly protected against learning and memory impairments induced by Aβ(1-42) in Y-maze test, active avoidance test and Morris water maze test. Besides, NB (180 mg/kg, 360 mg/kg) was able to attenuate the neuronal damage and apoptosis in the frontal cortex and hippocampus in mice. In addition, the inhibition of β-secretase and the level of Aβ(1-42) are also involved in the action mechanisms of NB in this experimental model. This study provided an experimental basis for clinical application of A. oxyphylla Miq. in AD therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Uz, Mehmet
1994-01-01
Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.
Crystal structure and superconducting properties of KSr2Nb3O10
NASA Astrophysics Data System (ADS)
Kawaguchi, T.; Horigane, K.; Itoh, Y.; Kobayashi, K.; Horie, R.; Kambe, T.; Akimitsu, J.
2018-05-01
We performed X-ray diffraction (XRD) and DC magnetic susceptibility measurements to elucidate the crystal structure and superconducting properties of KSr2Nb3O10. From the diffraction pattern indexing, it was found that KSr2Nb3O10 crystallizes with monoclinic symmetry, space group P21/m(11). We succeeded in preparing high temperature (HT) and low temperature (LT) phases of KSr2Nb3O10 powder samples synthesized by a conventional solid state reaction and an ion-exchange reaction, respectively. Superconductivity was observed at 4 K by Li intercalation and it was found that the superconducting volume fraction of the LT phase ( 1.4%) is clearly larger than that of the HT phase (0.07%).
NASA Astrophysics Data System (ADS)
de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa
2017-04-01
The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.
Enhancing UV photoconductivity of ZnO nanobelt by polyacrylonitrile functionalization
NASA Astrophysics Data System (ADS)
He, J. H.; Lin, Yen H.; McConney, Michael E.; Tsukruk, Vladimir V.; Wang, Zhong L.; Bao, Gang
2007-10-01
UV photodetector fabricated using a single ZnO nanobelt (NB) has shown a photoresponse enhancement up to 750 times higher than that of a bare ZnO NB after coating with ˜20nm plasma polymerized acrylonitrile (PP-AN) nanoscale film. The mechanism for this colossal photoconductivity is suggested as a consequence of the efficient exciton dissociation under UV illumination due to enhanced electron transfer from valence band of ZnO NB to the PP-AN and then back to the conduction band of ZnO. This process has demonstrated an easy and effective method for improving the performance of the nanowire/NB-based devices, possibly leading to supersensitive UV detector for applications in imaging, photosensing, and intrachip optical interconnects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Hou, L.G., E-mail: lghou@skl.ustb.edu.cn; Zhang, J.X.
The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, andmore » also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.« less
Liu, Han; Li, Mingqian; Cai, Shunfeng; He, Xinyi; Shao, Yongqi; Lu, Xingmeng
2016-11-01
Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Critical current density in wire drawn and hydrostatically extruded Nb-Ti superconductors
NASA Technical Reports Server (NTRS)
Alterovitz, S. A.; Woollam, J. A.; Collings, E. W.
1979-01-01
Critical current studies have been made on copper-clad Nb-Ti composite wire prepared under area reductions of 100:1 and 10,000:1 by hydrostatic extrusion (HE), wire drawing and HE plus drawing. Comparative evaluation of the thermomechanical processing equivalent of HE was performed.
Shirazi, Mohammadali; Dhavala, Soma Sekhar; Lord, Dominique; Geedipally, Srinivas Reddy
2017-10-01
Safety analysts usually use post-modeling methods, such as the Goodness-of-Fit statistics or the Likelihood Ratio Test, to decide between two or more competitive distributions or models. Such metrics require all competitive distributions to be fitted to the data before any comparisons can be accomplished. Given the continuous growth in introducing new statistical distributions, choosing the best one using such post-modeling methods is not a trivial task, in addition to all theoretical or numerical issues the analyst may face during the analysis. Furthermore, and most importantly, these measures or tests do not provide any intuitions into why a specific distribution (or model) is preferred over another (Goodness-of-Logic). This paper ponders into these issues by proposing a methodology to design heuristics for Model Selection based on the characteristics of data, in terms of descriptive summary statistics, before fitting the models. The proposed methodology employs two analytic tools: (1) Monte-Carlo Simulations and (2) Machine Learning Classifiers, to design easy heuristics to predict the label of the 'most-likely-true' distribution for analyzing data. The proposed methodology was applied to investigate when the recently introduced Negative Binomial Lindley (NB-L) distribution is preferred over the Negative Binomial (NB) distribution. Heuristics were designed to select the 'most-likely-true' distribution between these two distributions, given a set of prescribed summary statistics of data. The proposed heuristics were successfully compared against classical tests for several real or observed datasets. Not only they are easy to use and do not need any post-modeling inputs, but also, using these heuristics, the analyst can attain useful information about why the NB-L is preferred over the NB - or vice versa- when modeling data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methods to improve the PVD coatability of brass by using diffusion barriers
NASA Astrophysics Data System (ADS)
Langer, Bernd
Previous work involving PVD coatings on brass has used a combination of multilayers consisting of electroplated films like nickel or chromium and deposited decorative PVD coatings like TiN, TiAIN or ZrN systems. The disadvantages of these systems are the combination of wet electrochemistry and high tech vacuum processes. Furthermore the allergic reaction to nickel and the toxic nature of Cr(VI) must be considered.There is a need for intermediate layers to 'seal-off the brass in order to avoid the evaporation of zinc in vacuum using a diffusion barrier. Furthermore the intermediate layers are required to act as a corrosion barrier.This thesis reports on the development of PVD coatings on heat sensitive brass substrate materials utilising ABS technology with Al, CuAl8 and Nb targets as vapour sources.The brass pretreatment includes careful grinding, polishing and cleaning steps as well as steered arc metal ion etching using the above target materials. The coatings are produced at temperatures between 100 and 250°C in the unbalanced magnetron mode, including layers made from Al, Al-Nb, CuA18, CuAl8-Nb and Nb.Scratch adhesion and Rockwell indentation tests are found not to be directly applicable to the system of soft brass and ductile coating(s). Therefore a new classification for both scratch and indentation tests was defined. The best adhesion was shown by the CuA18 coatings on brass. Corrosion tests showed good results for the Al coatings and poor results for the pure Nb coatings directly applied on brass. The best corrosion result was obtained with a CuAl8-Nb layer system. This layer system also offers very good barrier behaviour concerning Zn diffusion.Other investigations like Glow Discharge Optical Emission Spectroscopy (GDOES), Scanning Electron Microscopy (SEM) imaging, Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) were undertaken to characterise the new coating systems for brass.
Entezari, Maliheh; Dabaghian, Fataneh Hashem; Hashemi, Mehrdad
2014-01-01
Cancer is one of the main causes of mortality in the world which is created by the effect of enviromental physico-chemical mutagen and carcinogen agents. In the last years, many studies have been performed on the anticancer effects of flavonoids. Echinophora platyloba DC plant (Khousharizeh) is one of the indigenous medicinal plants which is used as a food seasoning and medicine in Iran. The extract was evaluated in terms of antimutagenicity properties by a standard reverse mutation assay (Ames Test). This was performed with histidine auxotroph strain of Salmonella typhimurium (TA100). Thus, it requires histidine from a foreign supply to ensure its growth. The afore mentioned strain gives rise to reverted colonies when expose to carcinogen substance (Sodium Azide). The other objective of this study was to examine the in vitro cytotoxic activity of cell death of crude methanolic extracts prepared from Echinophora platyloba on Acute Promyelocytic Leukemia cell line (NB4). Cytotoxicity and viability of methanolic extract was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. In Ames test the extract prevented the reverted mutations and the hindrance percent was 93.4% in antimutagenicity test. Data obtained from this assay indicated that the extract significantly reduced the viability of NB4 cells and inhibited cell growth in a dose dependent manner. This study demonstrates the antimutagenicity effect of Echinophora Platyloba and suggests that it has a potential as an anticancer agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klueh, R L; Maziasz, P J; Vitek, J M
2006-09-23
Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additionalmore » elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the Cr-Mo-V-Nb combination in COST CB2. To explore this question, nine more casting test blocks, four 3Cr steels and five 11Cr steels were purchased, and microstructure and mechanical properties studies similar to those described above for the first iteration of test blocks were conducted. Experimental results from the second iteration indicated that 11 Cr steels with excellent properties are possible. The 11Cr-1.5Mo-V-Nb steels were superior to 11Cr-2W-V-Ta steels, and it appears the former class of steels can be developed to have tensile and creep properties exceeding those of COST CB2. The W-Nb combination in an 11Cr-2W-V-Nb steel had tensile and short-time creep properties at 650 C better than the 11Cr-1.5Mo-V-Nb steels, although long-time low-stress properties may not be as good because of Laves phase formation. Based on the results, the next step in the development of improved casting steels involves acquisition of 11Cr-1.5Mo-V-Nb-N-B-C and 11Cr-2W-V-Nb-N-B-C steels on which long-term creep-rupture tests (>10,000 h) be conducted. For better oxidation and corrosion resistance, development of 11Cr steels, as opposed to a 9Cr steels, such as COST CB2, are important for future turbine designs that envision operating temperatures of 650 C.« less
A high-temperature neutron diffraction study of Nb 2AlC and TiNbAlC
Bentzel, Grady W.; Lane, Nina J.; Vogel, Sven C.; ...
2014-12-16
In this paper, we report on the crystal structures of Nb 2AlC and TiNbAlC actual composition (Ti 0.45,Nb 0.55) 2AlC compounds determined from Rietveld analysis of neutron diffraction patterns in the 300-1173 K temperature range. The average linear thermal expansion coefficients of a Nb 2AlC sample in the a and c directions are, respectively, 7.9(5)x10 -6 K -1 and 7.7(5)x10 -6 K -1 on one neutron diffractometer and 7.3(3)x10 -6 K -1 and 7.0(2)x10 -6 K -1 on a second diffractometer. The respective values for the (Ti 0.45,Nb 0.55) 2AlC composition - only tested on one diffractometer - are 8.5(3)x10more » -6 K -1 and 7.5(5)x10 -6 K -1. These values are relatively low compared to other MAX phases. Like other MAX phases, however, the atomic displacement parameters show that the Al atoms vibrate with higher amplitudes than the Ti and C atoms, and 1 more along the basal planes than normal to them. In addition, when the predictions of the atomic displacement parameters obtained from density functional theory are compared to the experimental results, good quantitative agreement is found for the Al atoms. In case of the Nb and C atoms, the agreement was more qualitative.« less
Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang
2017-12-28
The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS₂, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS₂ and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr 23 C₆, and CoC x . Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS₂) were 587.3 HV 0.5 , 0.426, and 5.61 × 10 -5 mm³/N·m, respectively.
Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin
2014-09-08
Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said
2017-05-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.
RF critical field measurement of MgB2 thin films coated on Nb
NASA Astrophysics Data System (ADS)
Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.
2010-06-01
Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.
Aluminum-stabilized NB3SN superconductor
Scanlan, Ronald M.
1988-01-01
An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
NASA Astrophysics Data System (ADS)
Qiu, Jacky; Helander, Michael G.; Wang, Zhibin; Chang, Yi-Lu; Lu, ZhengHong
2012-09-01
Non-blocking Phosphorescent Organic Light Emitting Diode (NB-PHOLED) is a highly simplified device structure that has achieved record high device performance on chlorinated ITO[1], flexible substrates[2], also with Pt based phosphorescent dopants[3] and NB-PHOLED has significantly reduced efficiency roll-off[4]. The principle novel features of NB-PHOLED is the absence of blocking layer in the OLED stack, as well as the absence of organic hole injection layer, this allows for reduction of carrier accumulation in between organic layers and result in higher efficiencies.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-01
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb5+/Nb4+, Nb4+/Nb3+) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
Yan, Litao; Rui, Xianhong; Chen, Gen; Xu, Weichuan; Zou, Guifu; Luo, Hongmei
2016-04-28
For the past five years, nanostructured niobium-based oxides have emerged as one of the most prominent materials for batteries, supercapacitors, and fuel cell technologies, for instance, TiNb2O7 as an anode for lithium-ion batteries (LIBs), Nb2O5 as an electrode for supercapacitors (SCs), and niobium-based oxides as chemically stable electrochemical supports for fuel cells. Their high potential window can prevent the formation of lithium dendrites, and their rich redox chemistry (Nb(5+)/Nb(4+), Nb(4+)/Nb(3+)) makes them very promising electrode materials. Their unique chemical stability under acid conditions is favorable for practical fuel-cell operation. In this review, we summarized recent progress made concerning the use of niobium-based oxides as electrodes for batteries (LIBs, sodium-ion batteries (SIBs), and vanadium redox flow batteries (VRBs)), SCs, and fuel cell applications. Moreover, crystal structures, charge storage mechanisms in different crystal structures, and electrochemical performances in terms of the specific capacitance/capacity, rate capability, and cycling stability of niobium-based oxides are discussed. Insights into the future research and development of niobium-based oxide compounds for next-generation electrochemical devices are also presented. We believe that this review will be beneficial for research scientists and graduate students who are searching for promising electrode materials for batteries, SCs, and fuel cells.
Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal.
Connell, Justin G; Zhu, Yisi; Zapol, Peter; Tepavcevic, Sanja; Sharafi, Asma; Sakamoto, Jeff; Curtiss, Larry A; Fong, Dillon D; Freeland, John W; Markovic, Nenad M
2018-05-23
Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO 3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions that take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li 6.5 La 3 Zr 1.5 Nb 0.5 O 12 ) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.
Crystal Orientation-Dependent Reactivity of Oxide Surfaces in Contact with Lithium Metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, Justin G.; Zhu, Yisi; Zapol, Peter
Understanding ionic transport across interfaces between dissimilar materials and the intrinsic chemical stability of such interfaces is a fundamental challenge spanning many disciplines and is of particular importance for designing conductive and stable solid electrolytes for solid-state Li-ion batteries. In this work, we establish a surface science-based approach for assessing the intrinsic stability of oxide materials in contact with Li metal. Through a combination of experimental and computational insights, using Nb-doped SrTiO3 (Nb/STO) single crystals as a model system, we were able to understand the impact of crystallographic orientation and surface morphology on the extent of the chemical reactions thatmore » take place between surface Nb, Ti, and Sr upon reaction with Li. By expanding our approach to investigate the intrinsic stability of the technologically relevant, polycrystalline Nb-doped lithium lanthanum zirconium oxide (Li6.5La3Zr1.5Nb0.5O12) system, we found that this material reacts with Li metal through the reduction of Nb, similar to that observed for Nb/STO. These results clearly demonstrate the feasibility of our approach to assess the intrinsic (in)stability of oxide materials for solid-state batteries and point to new strategies for understanding the performance of such systems.« less
Large anisotropic thermoelectricity in perovskite related layered structure: SrnNbnO3n+2 (n=4,5)
NASA Astrophysics Data System (ADS)
Sakai, Akihiro; Kanno, Tsutomu; Takahashi, Kouhei; Yamada, Yuka; Adachi, Hideaki
2010-11-01
We measured the thermal and charge transport properties of perovskite-related layered structures. Strontium-Niobates, which were expressed as SrnNbnO3n+2 (n =4: Sr1.8La0.2Nb2O7, n =5: Sr5Nb5O17), to explore their thermoelectricities and thermal anisotropies. The behaviors of the thermoelectric parameters (thermal conductivity, Seebeck coefficient, resistivity) were strongly anisotropic in all crystallographic axes (a, b, and c) and large anisotropy exists even in the in-plane direction of the layered structure. Especially, along the a-axis in which corner-sharing NbO6 octahedra aligned straightly, contrastive properties were observed between Sr1.8La0.2Nb2O7 and Sr5Nb5O17. For Sr1.8La0.2Nb2O7, a thermally activated charge conduction is pronounced in the temperature dependence of Seebeck coefficient and resistivity, on the other hand, it was a metallic nature for Sr5Nb5O17. In both compounds, ZT results in anisotropic due to the anisotropic properties of thermoelectric parameters, the best performance is commonly observed in the a-axis. The respective ZT values at room temperature are 3.5×10-2 and 3.6×10-3.
NASA Astrophysics Data System (ADS)
Mazali, Italo Odone; Alves, Oswaldo Luiz
2005-01-01
This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an α-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 °C when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 °C and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthemore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions.
Synthesis of superconducting Nb 3Sn coatings on Nb substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, E.; Franz, S.; Reginato, F.
In the present work the electrochemical and thermal syntheses of superconductive Nb 3Sn films are investigated. The Nb 3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm 2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb 3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of aboutmore » 13 μm. Scanning Electron Microscopy (SEM) allowed accurately measuring the thickness of the Nb 3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb 3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained T c was 17.68 K and the B c20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less
Synthesis of superconducting Nb 3Sn coatings on Nb substrates
Barzi, E.; Franz, S.; Reginato, F.; ...
2015-12-01
In the present work the electrochemical and thermal syntheses of superconductive Nb 3Sn films are investigated. The Nb 3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm 2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb 3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of aboutmore » 13 μm. Scanning Electron Microscopy (SEM) allowed accurately measuring the thickness of the Nb 3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb 3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained T c was 17.68 K and the B c20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less
NASA Astrophysics Data System (ADS)
Aichner, Bernd; Jausner, Florian; Zechner, Georg; Mühlgassner, Rita; Lang, Wolfgang; Klimov, Andrii; Puźniak, Roman; Słysz, Wojciech; Guziewicz, Marek; Kruszka, Renata; Wegrzecki, Maciej; Sobolewski, Roman
2017-05-01
Thermodynamic fluctuations of the superconducting order parameter in NbN/NiCu and NbTiN/NiCu superconductor/ferromagnet (S/F) thin bilayers patterned to microbridges are investigated. Plain NbN and NbTiN films served as reference materials for the analyses. The samples were grown using dc-magnetron sputtering on chemically cleaned sapphire single-crystal substrates. After rapid thermal annealing at high temperatures, the superconducting films were coated with NiCu overlays, using co-sputtering. The positive magnetoresistance of the superconducting single layers is very small in the normal state but with a sharp upturn close to the superconducting transition, a familiar signature of superconducting fluctuations. The fluctuation-enhanced conductivity (paraconductivity) of the NbN and NbTiN single layer films is slightly larger than the prediction of the parameter-free Aslamazov-Larkin theory for order-parameter fluctuations in two-dimensional superconductors. The addition of a ferromagnetic top layer, however, changes the magnetotransport properties significantly. The S/F bilayers show a negative magnetoresistance up to almost room temperature, while the signature of fluctuations is similar to that in the plain films, demonstrating the relevance of both ferromagnetic and superconducting effects in the S/F bilayers. The paraconductivity is reduced below theoretical predictions, in particular in the NbTiN/NiCu bilayers. Such suppression of the fluctuation amplitude in S/F bilayers could be favorable to reduce dark counts in superconducting photon detectors and lead the way to enhance their performance.
Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.
de Andrade, Dennia Perez; de Vasconcellos, Luana Marotta Reis; Carvalho, Isabel Chaves Silva; Forte, Lilibeth Ferraz de Brito Penna; de Souza Santos, Evelyn Luzia; Prado, Renata Falchete do; Santos, Dalcy Roberto Dos; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte
2015-11-01
Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. Copyright © 2015 Elsevier B.V. All rights reserved.
Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael
2011-01-01
Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404
Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$$_3$$Sn Dipole Model for LHC Upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlachidze, G.; DiMarco, J.; Andreev, N.
2014-01-01
FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization andmore » iron yoke saturation.« less
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Farmer, S. C.; Bors, D. A.; Ray, R.; Lee, D. S.
1994-01-01
Rapid solidification techniques in combination with HIPing have been used to produce Ti-48Al-2Mn-2Nb and a Ti-48Al-2Mn-2Nb+15 wt% HfC composite. While the composite does contain several second phases within the gamma + alpha(sub 2) matrix, none was identified to be HfC. The elevated-temperature properties were determined by constant velocity compression and constant load tensile testing in air between 1000 and 1173 K. Such testing indicated that the elevated temperature strengths of the HfC-modified aluminide was superior to those of the unreinforced matrix with the best 1100 K temperature slow strain rate properties for both materials being achieved after high-temperature annealing prior to testing. Examination of the microstructures after deformation in combination with the measured stress exponents and activation energies suggest that creep resistance of the HfC-modified form is due to solid-solution strengthening from carbon and hafnium rather than the presence of second phases.
Carraro, R M; Nascimento, E C T; Szachnowicz, S; Camargo, P C L B; Campos, S V; Afonso, J E; Samano, M N; Pêgo-Fernandes, P M; Dolhnikoff, M; Teixeiraa, R H O B; Costa, A N
2017-05-01
Gastro-esophageal reflux disease (GERD) and broncho-aspiration (BA) are known to increase the risk for chronic lung allograft dysfunction (CLAD). However, specific lung injury mechanisms are not clearly known. The objective of the study was to describe histopathological findings in surveillance lung transbronchial biopsies that can be correlated with episodes of BA in the lung allograft. This retrospective analysis of surveillance transbronchial biopsies was performed in lung transplant recipients, with available data of broncho-alveolar fluid (cultures and cytology), lung function parameters, and esophageal functional tests. Were analyzed 11 patients, divided into 3 groups: (1) GERD group: 4 patients with GERD and CLAD diagnosis; (2) control group: 2 patients without GERD or CLAD; and (3) BA group: 5 patients with foreign material in lung biopsies. A histopathological pattern of neutrophilic bronchitis (NB) was present in 4 of 4 cases in the GERD group and in 1 of 5 cases in the BA group in 2 or more biopsy samples; culture samples were all negative; the 5 NB-positive patients developed CLAD and died (3/5) or needed re-transplantation (2/5). The other 3 patients in the BA group had GERD without NB or CLAD. Both patients in the control group had transient NB in biopsies with positive cultures but remained free of CLAD. Surveillance transbronchial biopsies may provide useful information other than the evaluation of acute cellular rejection and can help to identify high-risk patients for allograft dysfunction related to gastro-esophageal reflux. Copyright © 2017 Elsevier Inc. All rights reserved.
Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies.
van Pelt, A W; Weerkamp, A H; Uyen, M H; Busscher, H J; de Jong, H P; Arends, J
1985-01-01
The adhesion of the oral bacterium Streptococcus sanguis CH3 to various polymeric surfaces with surface free energies (gamma s) ranging from 22 to 141 erg cm-2 was investigated. Suspensions containing nine different bacterial concentrations (2.5 X 10(7) to 2.5 X 10(9) cells per ml) were used. After adhesion for 1 h at 21 degrees C and a standardized rinsing procedure, the number of attached bacteria per square centimeter (nb) was determined by scanning electron microscopy. The highest number of bacteria was consistently found on polytetrafluorethylene (gamma s = 22 erg cm-2), and the lowest number was found on glass (gamma s = 141 erg cm-2) at all bacterial concentrations tested. The overall negative correlation between nb and gamma s was weak. However, the slope of the line showing this decrease, calculated from an assumed linear relationship between nb and gamma s, appeared to depend strongly on the bacterial concentration and increased with increasing numbers of bacteria in the suspension. Analysis of the data for each separate polymer showed that the numbers of attached cells on polyvinyl chloride and polypropylene were higher but that those on polycarbonate were lower than would be expected on basis of a linear relationship between nb and gamma s. Desorption experiments were performed by first allowing the bacteria to attach to substrata for 1 h, after which the substrata and attached bacteria were removed to bacterial suspensions containing 10-fold lower bacterial concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:4004241
Antiproliferative and apoptotic effect of LY2090314, a GSK-3 inhibitor, in neuroblastoma in vitro.
Kunnimalaiyaan, Selvi; Schwartz, Victoriana K; Jackson, Iris Alao; Clark Gamblin, T; Kunnimalaiyaan, Muthusamy
2018-05-11
Neuroblastoma (NB) is a devastating disease. Despite recent advances in the treatment of NB, about 60% of high-risk NB will have relapse and therefore long-term event free survival is very minimal. We have reported that targeting glycogen synthase kinase-3 (GSK-3) may be a potential strategy to treat NB. Consequently, investigating LY2090314, a clinically relevant GSK-3 inhibitor, on NB cellular proliferation and may be beneficial for NB treatment. The effect of LY2090314 was compared with a previously studied GSK-3 inhibitor, Tideglusib. Colorimetric, clonogenic, and live-cell image confluency assays were used to study the proliferative effect of LY2090314 on NB cell lines (NGP, SK-N-AS, and SH-SY-5Y). Western blotting and caspase glo assay were performed to determine the mechanistic function of LY2090314 in NB cell lines. LY2090314 treatment exhibited significant growth reduction starting at a 20 nM concentration in NGP, SK-N-AS, and SH-SY-5Y cells. Western blot analysis indicated that growth suppression was due to apoptosis as evidenced by an increase in pro-apoptotic markers cleaved PARP and cleaved caspase-3 and a reduction in the anti-apoptotic protein, survivin. Further, treatment significantly reduced the level of cyclin D1, a key regulatory protein of the cell cycle and apoptosis. Functionally, this was confirmed by an increase in caspase activity. LY2090314 treatment reduced the expression levels of phosphorylated GSK-3 proteins and increased the stability of β-catenin in these cells. LY2090314 effectively reduces growth of both human MYCN amplified and non-amplified NB cell lines in vitro. To our knowledge, this is the first study to look at the effect of LY2090314 in NB cell lines. These results indicate that GSK-3 may be a therapeutic target for NB and provide rationale for further preclinical analysis using LY2090314.
Constitutional 3p26.3 terminal microdeletion in an adolescent with neuroblastoma.
Pezzolo, Annalisa; Sementa, Angela Rita; Lerone, Margherita; Morini, Martina; Ognibene, Marzia; Defferrari, Raffaella; Mazzocco, Katia; Conte, Massimo; Gigliotti, Anna Rita; Garaventa, Alberto; Pistoia, Vito; Varesio, Luigi
2017-05-04
Neuroblastoma (NB) is a common and often lethal cancer of early childhood that accounts for 10% of pediatric cancer mortality. Incidence peaks in infancy and then rapidly declines, with less than 5% of cases diagnosed in children and adolescents ≥ 10 y. There is increasing evidence that NB has unique biology and an chronic disease course in older children and adolescents, but ultimately dismal survival. We describe a rare constitutional 3p26.3 terminal microdeletion which occurred in an adolescent with NB, with apparently normal phenotype without neurocognitive defects. We evaluated the association of expression of genes involved in the microdeletion with NB patient outcomes using R2 platform. We screened NB patient's tumor cells for CHL1 protein expression using immunofluorescence. Constitutional and tumor DNA were tested by array-comparative genomic hybridization and single nucleotide-polymorphism-array analyses. Peripheral blood mononuclear cells from the patient showed a 2.54 Mb sub-microscopic constitutional terminal 3p deletion that extended to band p26.3. The microdeletion 3p disrupted the CNTN4 gene and the neighboring CNTN6 and CHL1 genes were hemizygously deleted, each of these genes encode neuronal cell adhesion molecules. Low expression of CNTN6 and CNTN4 genes did not stratify NB patients, whereas low CHL1 expression characterized 417 NB patients having worse overall survival. CHL1 protein expression on tumor cells from the patient was weaker than positive control. This is the first report of a constitutional 3p26.3 deletion in a NB patient. Since larger deletions of 3p, indicative of the presence of one or more tumor suppressor genes in this region, occur frequently in neuroblastoma, our results pave the way to the identification of one putative NB suppressor genes mapping in 3p26.3.
Performance characteristics of ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Deligiannis, F.; Shen, D.; Subbarao, S.; Whitcanack, L.; Halpert, G.
1988-01-01
State of art ambient temperature secondary lithium cells were evaluated to determine their performance capability and limitations and to assess the present status of the technology of these cells. Li-MoS2, Li-NbSe3 and Li-TiS2 cells were evaluated for their charge/discharge characteristics, rate capability, and cycle life performance. The cells evaluated have a cycle life of 100-250 cycles at moderate discharge rates (C/5). The specific energy of these cells is between 50 and 100 Wh/Kg, depending upon the system. This paper describes the details of the cell designs, the test procedures, and the results of the evaluation studies.
NASA Astrophysics Data System (ADS)
Schmidt, Alexander; Weyer, Stefan; John, Timm; Brey, Gerhard P.
2009-01-01
The depleted mantle and the continental crust are generally thought to balance the budget of refractory and lithophile elements of the Bulk Silicate Earth (BSE), resulting in complementary trace element patterns. However, the two high field strength elements (HFSE) niobium and tantalum appear to contradict this mass balance. All reservoirs of the silicate Earth exhibit subchondritic Nb/Ta ratios, possibly as a result of Nb depletion. In this study a series of nineteen orogenic MORB-type eclogites from different localities was analyzed to determine their HFSE concentrations and to contribute to the question of whether subducted oceanic crust could form a hidden reservoir to account for the mass imbalance of Nb/Ta between BSE and the chondritic reservoir. Concentrations of HFSE were analyzed with isotope dilution (ID) techniques. Additionally, LA-ICPMS analyses of clinopyroxene, garnet and rutile have been performed. Rutile is by far the major host for Nb and Ta in all analyzed eclogites. However, many rutiles revealed zoning in Nb/Ta ratios, with cores being higher than rims. Accordingly, in situ analyses of rutiles have to be evaluated carefully and rutile cores do not necessarily reflect a bulk rock Nb and Ta composition, although over 90% of these elements reside in rutile. The HFSE concentration data in bulk rocks show that the orogenic eclogites have subchondritic Nb/Ta ratios and near chondritic Zr/Hf ratios. The investigated eclogites show neither enrichment of Nb compared to similarly incompatible elements (e.g. La), nor fractionation of Nb/Ta ratios relative to MOR-basalts, the likely precursor of these rocks. This indicates that during the conversion of the oceanic crust to eclogites in most cases, (1) HFSE and REE have similar mobility on average, possibly because both element groups remain in the down going slab, and (2) no significant fractionation of Nb/Ta occurs in subducted oceanic crust. With an average Nb/Ta ratio of 14.2 ± 1.4 (2s.e.), the investigated eclogites cannot balance the differences between BSE and chondrite. Additionally, as their average Nb/Ta is indistinguishable from the Nb/Ta of MORB, they are also an unlikely candidate to balance the potentially small differences in Nb/Ta between the continental crust and the mantle.
Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji
2016-01-01
Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329
A 6-gene signature identifies four molecular subgroups of neuroblastoma
2011-01-01
Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432
Experimental study on the use of steel-decks for prefabricated reinforced concrete beams
NASA Astrophysics Data System (ADS)
Priastiwi, Y. A.; Han, A. L.; Maryoto, A.; Noor, E. S.
2017-11-01
This paper presents an experimental study on the use of steel-decks for concrete beams. The purpose of this research is to determine the beam’s capacity, and the loaddisplacement relationships due to the use of steel-decks. The failure mechanism was also studied, since the behavior differs significantly from conventional concrete members. For analysis purposes, two beam prototypes with steel-decks (GB1 and GB2), and two conventional concrete beams having the exact same material properties and dimensions (NB1 and NB2) functioning as control elements, were tested. Load was applied by a two-point loading system, creating a pure bending state. To monitor vertical deflections, two LVDTs were used. All precision instruments were connected to a data logger, and a computer. The results showed that the beams GB had a significant ultimate moment capacity increase, which is 2,3 times the control element NB. The main enhancement contribution is originated from the presence of the bottom steel-deck, which due to bonding to the concrete, functioned as additional tensile reinforcement. The deck also increased the member’s ductility performance by 1.3 times. Specimen GB2 underwent bond loss in the transition zone between the deck and the concrete, reducing the initial stiffness of the member.
Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling
NASA Astrophysics Data System (ADS)
Pusceddu, E.; Charlton, S.; Hampshire, D. P.
2008-02-01
An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.
RECENT DEVELOPMENTS IN SRF CAVITY SCIENCE AND PERFORMANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati
A recipe based on centrifugal barrel polishing (CBP) and electropolishing (EP), applied on newly designed single-cells, led to the achievement of B{sub p} values close to the thermodynamic critical field of Nb and to new records in terms of accelerating gradients The fabrication of cavities made of large-grain Nb is emerging as a viable option to reduce the material cost without sacrificing the performance. The Q-drop is not caused exclusively by losses at grain boundaries in Nb. Baking is the only known remedy against the Q-drop and its effect seems to be related to a change of the properties ofmore » the Nb up to a depth of about 20 nm. 120 C is the optimum temperature and the baking time can be reduced to 12 h. Cleaning techniques such as high-pressure rinse (HPR) are being studied in detail in order to be optimized for mass-production. Dry-ice cleaning may become a complementary cleaning method. Work is being done to better understand and to improve the EP process.« less
Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y
2015-12-08
The aim of this study was to establish a metastatic human neuroblastoma (NB) mouse model by xenograft in order to study the metastatic mechanisms of NB. A human NB cell line was obtained from a 5-year-old patient and cultured in vitro. A suspension of these cells was subcutaneously inoculated into nude mice at the right flank next to the forelimb. The biological characteristics of the developed subcutaneous and metastatic tumors were analyzed by hematoxylin and eosin staining. The expression of the tumor marker neuron-specific enolase was determined by immunohistochemistry, and the invasive ability of metastatic tumors was examined by a Matrigel invasion assay. DNA microarray analyses were performed to examine the metastasis-related gene expression. Our results showed that tumors grew in 75% of the mice injected with NB cells and the rate of metastasis was 21%. The xenograft tumors retained the morphological and biological characteristics of the NB specimen from the pediatric patient. Neuron-specific enolase was highly expressed in both subcutaneous and metastatic tumors. The metastatic tumor cells possessed a higher invasive capability than the primary NB cells. The expression of 25 metastasis-related genes was found to be significantly altered in metastatic tumors compared to primary tumors, including RECK, MMP2, VEGF, MMP3, and CXCL12. In conclusion, we successfully established a human NB xenograft model with high tumor-bearing and metastatic rates in nude mice, providing an ideal animal model for the in vivo study of NB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, R.; Ambrosio, G.; Barzi, E.
Feasibility study of 15-Tesla dipole magnets wound with a new copper stabilized RHQT Nb{sub 3}Al Rutherford cable is presented. A new practical long copper stabilized RHQT Nb{sub 3}Al strand is presented, which is being developed and manufactured at the National Institute of Material Science (NIMS) in Japan. It has achieved a non-copper J{sub c} of 1000A/mm{sup 2} at 15 Tesla at 4.2K, with a copper over non-copper ratio of 1.04, and a filament size less than 50 microns. For this design study a short Rutherford cable with 28 Nb{sub 3}Al strands of 1 mm diameter will be fabricated late thismore » year. The cosine theta magnet cross section is designed using ROXIE, and the stress and strain in the coil is estimated and studied with the characteristics of the Nb{sub 3}Al strand. The advantages and disadvantages of the Nb{sub 3}Al cable are compared with the prevailing Nb{sub 3}Sn cable from the point of view of stress-strain, J{sub c}, and possible degradation of stabilizer due to cabling. The Nb{sub 3}Al coil of the magnet, which will be made by wind and react method, has to be heat treated at 800 degree C for 10 hours. As preparation for the 15 Tesla magnet, a series of tests on strand and Rutherford cables are considered.« less
Synthesis and characterization of InNbO₄ nanopowder for gas sensors.
Balamurugan, C; Vijayakumar, E; Subramania, A
2012-01-15
Indium niobate (InNbO(4)) nanopowder was prepared by a comparatively low temperature niobium citrate complex process. The prepared InNbO(4) was characterized by thermal analysis, X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, diffuse reflectance spectroscopy (DRS), and impedance studies. It revealed that the well crystalline monoclinic InNbO(4) nanopowder was obtained at the calcination temperature of 600°C. The average particle diameter was 22nm. The optical band gap was found to be 2.66eV. The temperature dependent conductivity obeyed Arrhenius relation. The activation energy of the conductivity process was calculated to be 0.43eV. The gas sensing behaviour of the prepared InNbO(4) was studied by measuring the change in resistance of the sensor material as a function of various concentrations of the test gases such as liquid petroleum gas (LPG), ammonia (NH(3)) and ethanol (C(2)H(5)OH) at their optimized operating temperature. InNbO(4) had a better sensitivity to LPG (0.97) and NH(3) (0.70) gas than ethanol (0.46). The sensor responses of InNbO(4) as a function of gas concentrations and with recovery time were also studied in detail. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zanino, R.; Bonifetto, R.; Brighenti, A.; Isono, T.; Ozeki, H.; Savoldi, L.
2018-07-01
The ITER toroidal field insert (TFI) coil is a single-layer Nb3Sn solenoid tested in 2016-2017 at the National Institutes for Quantum and Radiological Science and Technology (former JAEA) in Naka, Japan. The TFI, the last in a series of ITER insert coils, was tested in operating conditions relevant for the actual ITER TF coils, inserting it in the borehole of the central solenoid model coil, which provided the background magnetic field. In this paper, we consider the five quench propagation tests that were performed using one or two inductive heaters (IHs) as drivers; out of these, three used just one IH but with increasing delay times, up to 7.5 s, between the quench detection and the TFI current dump. The results of the 4C code prediction of the quench propagation up to the current dump are presented first, based on simulations performed before the tests. We then describe the experimental results, showing good reproducibility. Finally, we compare the 4C code predictions with the measurements, confirming the 4C code capability to accurately predict the quench propagation, and the evolution of total and local voltages, as well as of the hot spot temperature. To the best of our knowledge, such a predictive validation exercise is performed here for the first time for the quench of a Nb3Sn coil. Discrepancies between prediction and measurement are found in the evolution of the jacket temperatures, in the He pressurization and quench acceleration in the late phase of the transient before the dump, as well as in the early evolution of the inlet and outlet He mass flow rate. Based on the lessons learned in the predictive exercise, the model is then refined to try and improve a posteriori (i.e. in interpretive, as opposed to predictive mode) the agreement between simulation and experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Gu, Meng; Nie, Zimin
Graphite felts (GFs), as typical electrode materials for all vanadium redox flow batteries (VRBs), limit the cell operation to low current density because of their poor kinetic reversibility and electrochemical activity. Here, in order to address this issue we report an electrocatalyst, Nb2O5, decorating the surface of GFs to reduce the activation barrier for redox conversion. Nb2O5 nanofibers with monoclinic phases are synthesized by hydrothermal method and deposited on GFs, which is confirmed to have catalytic effects towards redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side, and thus applied in both electrodes of VRBmore » cells. Due to the low conductivity of Nb2O5, the performance of electrodes heavily depends on the nano size and uniform distribution of catalysts on GFs surfaces. The addition of the water-soluble compounds containing W element into the precursor solutions facilitates the precipitation of nanofibers on the GFs. Accordingly, an optimal amount of W-doped Nb2O5 nanofibers with weaker agglomeration and better distribution on GFs surfaces are obtained, leading to significant improvement of the electrochemical performances of VRB cells particularly under the high power operation. The corresponding energy efficiency is enhanced by 10.7 % under the operation of high charge/discharge current density (150 mA•cm-2) owing to faster charge transfer as compared with that without catalysts. These results suggest that Nb2O5 based nanofibers-decorating GFs hold great promise as high-performance electrodes for VRB applications.« less
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu
2018-06-01
In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.
Nath, Ranjit K; Zain, M F M; Kadhum, Abdul Amir H
2013-01-01
The addition of a photocatalyst to ordinary building materials such as concrete creates environmentally friendly materials by which air pollution or pollution of the surface can be diminished. The use of LiNbO3 photocatalyst in concrete material would be more beneficial since it can produce artificial photosynthesis in concrete. In these research photoassisted solid-gas phases reduction of carbon dioxide (artificial photosynthesis) was performed using a photocatalyst, LiNbO3, coated on concrete surface under illumination of UV-visible or sunlight and showed that LiNbO3 achieved high conversion of CO2 into products despite the low levels of band-gap light available. The high reaction efficiency of LiNbO3 is explained by its strong remnant polarization (70 µC/cm(2)), allowing a longer lifetime of photoinduced carriers as well as an alternative reaction pathway. Due to the ease of usage and good photocatalytic efficiency, the research work done showed its potential application in pollution prevention.
Development of a 15 T Nb 3Sn accelerator dipole demonstrator at Fermilab
Novitski, I.; Andreev, N.; Barzi, E.; ...
2016-06-01
Here, a 100 TeV scale Hadron Collider (HC) with a nominal operation field of at least 15 T is being considered for the post-LHC era, which requires using the Nb 3Sn technology. Practical demonstration of this field level in an accelerator-quality magnet and substantial reduction of the magnet costs are the key conditions for realization of such a machine. FNAL has started the development of a 15 T Nb 3Sn dipole demonstrator for a 100 TeV scale HC. The magnet design is based on 4-layer shell type coils, graded between the inner and outer layers to maximize the performance andmore » reduce the cost. The experience gained during the Nb 3Sn magnet R&D is applied to different aspects of the magnet design. This paper describes the magnetic and structural designs and parameters of the 15 T Nb 3Sn dipole and the steps towards the demonstration model fabrication.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M.M.; Matos, J.E.
At the Reduced Enrichment for Research and Test Reactors (RERTR) meeting in September 1994, Durand reported that the maximum uranium loading attainable with U{sub 3}Si{sub 2} fuel is about 6.0 g U/cm{sup 3}. The French Commissariat a l`Energie Atomique (CEA) plan to perform irradiation tests with 5 plates at this loading. Compagnie pour L`Etude et La Realisation de Combustibles Atomiques (CERCA) has also fabricated a few uranium nitride (UN) plates with a uranium density in the fuel meat of 7.0 g/cm{sup 3} and found that UN is compatible with the aluminum matrix at temperatures below 500 C. High density dispersionmore » fuels proposed for development include U-Zr(4 wt%)-Nb(2 wt%), U-Mo(5 wt%), and U-Mo(9 wt%). The purpose of this note is to examine the relative neutronic behavior of these high density fuels in a typical light water-reflected and water-moderated MTR-type research reactor. The results show that a dispersion of the U-Zr-Nb alloy has the most favorable neutronic properties and offers the potential for uranium densities greater than 8.0 g/cm{sup 3}. On the other hand, UN is the least reactive fuel because of the relatively large {sup 14}N(n,p) cross section. For a fixed value of k{sub eff}, the required {sup 235}U loading per fuel element is least for the U-Zr-Nb fuel and steadily increases for the U-Mo(5%), U-Mo(9%), and UN fuels. Because of volume fraction limitations, the UO{sub 2} dispersions are only useful for uranium densities below 5.0 g/cm{sup 3}. In this density range, however, UO{sub 2} is more reactive than U{sub 3}Si{sub 2}.« less
NASA Astrophysics Data System (ADS)
Anees, Asim; Aryal, Jagannath; O'Reilly, Małgorzata M.; Gale, Timothy J.; Wardlaw, Tim
2016-12-01
A robust non-parametric framework, based on multiple Radial Basic Function (RBF) kernels, is proposed in this study, for detecting land/forest cover changes using Landsat 7 ETM+ images. One of the widely used frameworks is to find change vectors (difference image) and use a supervised classifier to differentiate between change and no-change. The Bayesian Classifiers e.g. Maximum Likelihood Classifier (MLC), Naive Bayes (NB), are widely used probabilistic classifiers which assume parametric models, e.g. Gaussian function, for the class conditional distributions. However, their performance can be limited if the data set deviates from the assumed model. The proposed framework exploits the useful properties of Least Squares Probabilistic Classifier (LSPC) formulation i.e. non-parametric and probabilistic nature, to model class posterior probabilities of the difference image using a linear combination of a large number of Gaussian kernels. To this end, a simple technique, based on 10-fold cross-validation is also proposed for tuning model parameters automatically instead of selecting a (possibly) suboptimal combination from pre-specified lists of values. The proposed framework has been tested and compared with Support Vector Machine (SVM) and NB for detection of defoliation, caused by leaf beetles (Paropsisterna spp.) in Eucalyptus nitens and Eucalyptus globulus plantations of two test areas, in Tasmania, Australia, using raw bands and band combination indices of Landsat 7 ETM+. It was observed that due to multi-kernel non-parametric formulation and probabilistic nature, the LSPC outperforms parametric NB with Gaussian assumption in change detection framework, with Overall Accuracy (OA) ranging from 93.6% (κ = 0.87) to 97.4% (κ = 0.94) against 85.3% (κ = 0.69) to 93.4% (κ = 0.85), and is more robust to changing data distributions. Its performance was comparable to SVM, with added advantages of being probabilistic and capable of handling multi-class problems naturally with its original formulation.
A novel approach for dimension reduction of microarray.
Aziz, Rabia; Verma, C K; Srivastava, Namita
2017-12-01
This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Origin of high thermoelectric performance of FeNb1−xZr/HfxSb1−ySny alloys: A first-principles study
Zhang, Xiwen; Wang, Yuanxu; Yan, Yuli; Wang, Chao; Zhang, Guangbiao; Cheng, Zhenxiang; Ren, Fengzhu; Deng, Hao; Zhang, Jihua
2016-01-01
The previous experimental work showed that Hf- or Zr-doping has remarkably improved the thermoelectric performance of FeNbSb. Here, the first-principles method was used to explore the possible reason for such phenomenon. The substitution of X (Zr/Hf) atoms at Nb sites increases effective hole-pockets, total density of states near the Fermi level (EF), and hole mobility to largely enhance electrical conductivity. It is mainly due to the shifting the EF to lower energy and the nearest Fe atoms around X atoms supplying more d-states to hybrid with X d-states at the vicinity of the EF. Moreover, we find that the X atoms indirectly affect the charge distribution around Nb atoms via their nearest Fe atoms, resulting in the reduced energy difference in the valence band edge, contributing to enhanced Seebeck coefficients. In addition, the further Bader charge analysis shows that the reason of more holes by Hf-doping than Zr in the experiment is most likely derived from Hf atoms losing less electrons and the stronger hybridization between Hf atoms and their nearest Fe atoms. Furthermore, we predict that Hf/Sn co-doping may be an effective strategy to further optimize the thermoelectric performance of half-Heusler (HH) compounds. PMID:27604826
Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel
NASA Astrophysics Data System (ADS)
Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong
2015-12-01
The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.
Description of a nanobody-based competitive immunoassay to detect tsetse fly exposure.
Caljon, Guy; Hussain, Shahid; Vermeiren, Lieve; Van Den Abbeele, Jan
2015-02-01
Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck.
Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin; Qu, Xuanhui
2018-03-30
A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy.
Kesani, Sheshanka; Malik, Abdul
2018-04-01
A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bias sputtered NbN and superconducting nanowire devices
NASA Astrophysics Data System (ADS)
Dane, Andrew E.; McCaughan, Adam N.; Zhu, Di; Zhao, Qingyuan; Kim, Chung-Soo; Calandri, Niccolo; Agarwal, Akshay; Bellei, Francesco; Berggren, Karl K.
2017-09-01
Superconducting nanowire single photon detectors (SNSPDs) promise to combine near-unity quantum efficiency with >100 megacounts per second rates, picosecond timing jitter, and sensitivity ranging from x-ray to mid-infrared wavelengths. However, this promise is not yet fulfilled, as superior performance in all metrics is yet to be combined into one device. The highest single-pixel detection efficiency and the widest bias windows for saturated quantum efficiency have been achieved in SNSPDs based on amorphous materials, while the lowest timing jitter and highest counting rates were demonstrated in devices made from polycrystalline materials. Broadly speaking, the amorphous superconductors that have been used to make SNSPDs have higher resistivities and lower critical temperature (Tc) values than typical polycrystalline materials. Here, we demonstrate a method of preparing niobium nitride (NbN) that has lower-than-typical superconducting transition temperature and higher-than-typical resistivity. As we will show, NbN deposited onto unheated SiO2 has a low Tc and high resistivity but is too rough for fabricating unconstricted nanowires, and Tc is too low to yield SNSPDs that can operate well at liquid helium temperatures. By adding a 50 W RF bias to the substrate holder during sputtering, the Tc of the unheated NbN films was increased by up to 73%, and the roughness was substantially reduced. After optimizing the deposition for nitrogen flow rates, we obtained 5 nm thick NbN films with a Tc of 7.8 K and a resistivity of 253 μΩ cm. We used this bias sputtered room temperature NbN to fabricate SNSPDs. Measurements were performed at 2.5 K using 1550 nm light. Photon count rates appeared to saturate at bias currents approaching the critical current, indicating that the device's quantum efficiency was approaching unity. We measured a single-ended timing jitter of 38 ps. The optical coupling to these devices was not optimized; however, integration with front-side optical structures to improve absorption should be straightforward. This material preparation was further used to fabricate nanocryotrons and a large-area imager device, reported elsewhere. The simplicity of the preparation and promising device performance should enable future high-performance devices.
Zou, Liang; Zhang, Yan; Li, Wei; Zhang, Jinming; Wang, Dan; Fu, Jia; Wang, Ping
2017-08-31
Natural borneol (NB, called "Bingpian") is an important traditional Chinese medicine to restore consciousness, remove heat and relieve pain, all of which are inflammation-related diseases. Recently, due to the limited source of NB, synthetic borneol (SB) is widely used as a substitute for NB in clinics. However, little is known about the effects of SB instead of NB. Herein, the aim of the present study was to compare NB and SB on chemical profiles by gas chromatography-mass spectrometer (GC-MS) analysis, anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) metabolomic approaches in endotoxic fever induced in rats. Results showed that, in total, 13 volatile components could be identified in NB and SB by GC-MS analysis, in which a significant difference between them still existed. The main constituents in SB were iso-borneol and borneol, while borneol contributes to 98.96% of the amount in NB. Additionally, both NB and SB exhibited remarkable anti-inflammatory effects to reduce the level of inflammatory factors including NO, TNF-α and IL-6 in LPS-induced RAW 264.7 macrophages, and lower the high body temperature in rats with endotoxic fever induced by LPS. Moreover, it seems that NB exhibited higher efficacy than SB. The unequal bioactive efficiency between NB and SB was also indicated by means of non-targeting metabolomics. Based on UPLC-Q-TOF/MS technology, 12 biomarkers in the serum of fever rats were identified. Pathway analysis revealed that the anti-fever effect of NB and SB was related to regulating the abnormal glycerophospholipid, linoleic acid and alpha-linoleic acid metabolism pathways in the fever model. Results indicated that there was still a great difference between NB and SB involving chemical constituents, anti-inflammation activity and the ability to regulate the abnormal metabolism pathways of the fever model. Certainly, further studies are warranted to better understand the replacement rationale in medicinal application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, W.; Singer, X.; Jelezov, I.
Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less
Hydroforming of elliptical cavities
Singer, W.; Singer, X.; Jelezov, I.; ...
2015-02-27
Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less
Hydroforming of elliptical cavities
NASA Astrophysics Data System (ADS)
Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.
2015-02-01
Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV /m . The advantages and disadvantages of hydroformed cavities are discussed in this paper.
MAGNET ENGINEERING AND TEST RESULTS OF THE HIGH FIELD MAGNET R AND D PROGRAM AT BNL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
COZZOLINO,J.; ANERELLA,M.; ESCALLIER,J.
2002-08-04
The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) has been carrying out design, engineering, and technology development of high performance magnets for future accelerators. High Temperature Superconductors (HTS) play a major role in the BNL vision of a few high performance interaction region (IR) magnets that would be placed in a machine about ten years from now. This paper presents the engineering design of a ''react and wind'' Nb{sub 3}Sn magnet that will provide a 12 Tesla background field on HTS coils. In addition, the coil production tooling as well as the most recent 10-turn R&D coil test resultsmore » will be discussed.« less
A Low Noise NbTiN-Based 850 GHz SIS Receiver for the Caltech Submillimeter Observatory
NASA Technical Reports Server (NTRS)
Kooi, J. W.; Kawamura, J.; Chen, J.; Chattopadhyay, G.; Pardo, J. R.; Zmuidzinas, J.; Phillips, T. G.; Bumble, B.; Stern, J.; LeDuc, H. G.
2000-01-01
We have developed a niobium titanium nitride (NbTiN) based superconductor- insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.
Fang, Liuyang; Yan, Hua; Yao, Yansong; Zhang, Peilei; Gao, Qiushi; Qin, Yang
2017-01-01
The CrS/NbC Co-based self-lubricating composite coatings were successfully fabricated on Cr12MoV steel surface by laser clad Stellite 6, WS2, and NbC mixed powders. The phase composition, microstructure, and tribological properties of the coatings ware investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS), as well as dry sliding wear testing. Based on the experimental results, it was found reactions between WS2 and Co-based alloy powder had occurred, which generated solid-lubricant phase CrS, and NbC play a key role in improving CrS nuclear and refining microstructure of Co-based composite coating during laser cladding processing. The coatings were mainly composed of γ-Co, CrS, NbC, Cr23C6, and CoCx. Due to the distribution of the relatively hard phase of NbC and the solid lubricating phase CrS, the coatings had better wear resistance. Moreover, the suitable balance of CrS and NbC was favorable for further decreasing the friction and improving the stability of the contact surfaces between the WC ball and the coatings. The microhardness, friction coefficient, and wear rate of the coating 4 (Clad powders composed of 60 wt % Stellite 6, 30 wt % NbC and 10 wt % WS2) were 587.3 HV0.5, 0.426, and 5.61 × 10−5 mm3/N·m, respectively. PMID:29283411
Atomic structures and electronic properties of 2H-NbSe2: The impact of Ti doping
NASA Astrophysics Data System (ADS)
Li, Hongping; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang
2014-09-01
Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe2. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe2 is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe2, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe2.
Research and Development of Micro-Alloying High-Strength Shipbuilding Plate
NASA Astrophysics Data System (ADS)
Chen, Zhenye
Based on the technological requirements and market demand, Nb micro-alloying D36 grade high strength shipbuilding plate has been successfully developed in HBIS. In this papers, the rational chemical compositions design, smelting and rolling process of Nb micro-alloying D36 grade high strength shipbuilding plate were introduced. Its various performance figures not only comply with the rules of nine classification societies of CCS, LR, ABS NK, DNV, BV, GL, KR and RINA but meet users' requirements. It indicates that HBIS have capacity producing Nb micro-alloying D36 grade high strength shipbuilding plate.
Aluminum-stabilized Nb/sub 3/Sn superconductor
Scanlan, R.M.
1984-02-10
This patent discloses an aluminum-stabilized Nb/sub 3/Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb/sub 3/Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.
Aluminum-stabilized Nb[sub 3]Sn superconductor
Scanlan, R.M.
1988-05-10
Disclosed are an aluminum-stabilized Nb[sub 3]Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb[sub 3]Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials. 4 figs.
Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites
NASA Astrophysics Data System (ADS)
Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.
2017-11-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.
NASA Astrophysics Data System (ADS)
Apparao, K. Ch; Birru, Anil Kumar
2018-01-01
A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.
Improvements and Performance of the Fermilab Solenoid Test Facility
Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...
2017-06-01
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
Improvements and Performance of the Fermilab Solenoid Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, Darryl; Arnold, Don; Brandt, Jeffrey
Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less
A new silver metaniobate semiconductor of Ag0.5La0.5Nb2O6 with defect-perovskite structure
NASA Astrophysics Data System (ADS)
Mi, Longqing; Feng, Yongyi; Cao, Lei; Xue, Mingqiang; Huang, Yanlin; Qin, Lin; Seo, Hyo Jin
2018-03-01
Silver-containing lanthanum metaniobate Ag0.5La0.5Nb2O6 nanoparticles were synthesized by sol-gel polymerized complex method. A typical defect-perovskite structure was confirmed by XRD Rietveld refinements. The surface characteristics of the sample were tested by SEM, TEM and EDS measurements. SEM and TEM show that the sample presents ball-like particles with the diameters of 100 nm to 400 nm. The sample shows both self-activated luminescence and photocatalytic activities. Ag0.5La0.5Nb2O6 has a direct transition with band energy of 2.85 eV. The Ag4d-O2p hybridization in the valence band contributes to the narrowed band gap. The luminescence properties of Ag0.5La0.5Nb2O6 have been investigated for the first time. The luminescence is characterized by two emission centers with maximum wavelength near 460 and 530 nm. The emission and excitation spectra, decay curves and the thermal quenching mechanism were discussed. Ag0.5La0.5Nb2O6 shows the efficient photocatalytic activities and the photodegradation rate for methylene blue dye (MB) can reach about 95% under visible light (> 420 nm) irradiation in 5 h. The trapped experiments for the active species were tested and discussed, which verified that rad OH radicals could be the major active species in photocatalysis.
NASA Astrophysics Data System (ADS)
Huang, Mian; Shoji, Mao; Shen, Yang; Nan, Ce-Wen; Munakata, Hirokazu; Kanamura, Kiyoshi
2014-09-01
Li7La3Zr2O12 (LLZ) solid electrolytes with Zr site partially substituted by Ta and Nb elements were prepared via the conventional solid-state reaction. All the compositions could lead to the cubic garnet-type structure after sintering at 1150 °C. The use of γ-Al2O3 as a sintering aid in the preparation of doped LLZ was studied. It was shown that Al could help to improve the micro-structure for Nb doping, but not necessary for Ta doping. The Ta and Nb doping enhanced the ionic conductivity at 25 °C to 4.09 × 10-4 S cm-1 and 4.50 × 10-4 S cm-1, respectively. A conductivity as high as 1.23 × 10-3 S cm-1 was obtained when measured at 50 °C in air for the Nb-doped LLZ. All-solid-state batteries with LLZTa and LLZNb solid electrolytes were assembled and tested. The cyclic voltammetry (CV) measurement indicated the successful working of the batteries.
Mechanical strength and microstructure of laser-welded Ti-6Al-7Nb alloy castings.
Srimaneepong, Viritpon; Yoneyama, Takayuki; Kobayashi, Equo; Doi, Hisashi; Hanawa, Takao
2005-12-01
Mechanical properties of laser-welded castings of Ti-6Al-7Nb alloy, CP Ti, and Co-Cr alloy were investigated and compared to the unwelded castings using a tensile test. Dumbbell-shaped specimens were cut at the center, and two halves of the specimens were welded with an Nd:YAG laser welding machine at 220 or 260 V of laser voltage. The mechanical strength of 260 V groups was higher than that of 220 V groups for Ti-6Al-7Nb and Co-Cr alloys except for CP Ti. All 260 V laser-welded castings of Ti-6Al-7Nb alloy and CP Ti, which fractured outside the welded joints, exhibited ductile characteristics, while all laser-welded Co-Cr alloy castings, which fractured within the welded joints, showed brittle characteristics. This study proved that the mechanical strength of laser-welded Ti-6Al-7Nb alloy and CP Ti castings was as high as that of unwelded castings, while the mechanical properties of laser-welded alloy joints were influenced by microstructural changes.
Structure of zinc and niobium tellurite glasses by neutron and x-ray diffraction
NASA Astrophysics Data System (ADS)
Hoppe, U.; Yousef, E.; Rüssel, C.; Neuefeind, J.; Hannon, A. C.
2004-03-01
Neutron and x-ray diffraction experiments of high resolving power with neutrons from a spallation source and high-energy photons from a synchrotron have been performed on compositional series of binary Zn, Nb and on mixed Zn/Nb tellurite glasses. The Te-O, Zn-O and Nb-O coordination numbers are determined by Gaussian fitting of the first-neighbour peaks in the neutron and x-ray data simultaneously. The transition of TeO4 to TeO3 units with increasing fraction of a second component is indicated by decreasing total Te-O coordination numbers. This transition appears different for glasses with ZnO or Nb2O5 additions. Details of the Te-O peaks suggest there are two species of Te-O bonds with lengths of {\\sim }0.19 and {\\sim }0.21 nm. The change of their fractions shows excellent agreement with the existence of TeO4 trigonal bipyramids and TeO3 trigonal pyramids. All oxygen atoms from ZnO and Nb2O5 are used for rupture of Te-O-Te bridges, which is accompanied with a change of nearly all participating TeO4 to TeO3 groups. The tendency for a {\\mathrm {TeO}}_{4} \\to {\\mathrm {TeO}}_{3} change decreases for glasses of higher second component content which is accompanied by the occurrence of TeO4 groups with non-bridging oxygens. The Nb tellurite glasses show transition to network-forming behaviour with the formation of Nb-O-Nb bridges. The fractions of TeO3 units of ternary Zn/Nb tellurite glasses agree with an additivity behaviour of the modifying effects of ZnO and Nb2O5 additions. Some of these results have already been presented in thesis work: Yousef E 2003 A study of some physical properties of tellurite glass (Al-Azhar University, Assiut Egypt).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.
1992-09-01
Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less
Performance of nanoscale metallic multilayer systems under mechanical and thermal loading
NASA Astrophysics Data System (ADS)
Economy, David Ross
Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser scanning microscopy. Strain hardening exponents for multilayers with thinner layers (2 nm: n ≈ 0.018 and 20 nm: n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that single-dislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This result indicates that both architecture strengthening and strain hardening should be considered if the coating will undergo sliding wear. Furthermore, the hardness of the worn 100 nm system was observed to exceed the as-deposited hardness of the 20 nm, a previously unreported finding, further indicating the interplay between the architecture- and strain-based strengthening mechanisms. Residual stress has been identified as a potential mechanism to cause microstructural instability in NMM architectures. To understand the factors controlling thermal stress evolution for NMMs, the stress in Cu-Nb NMM systems was determined from curvature measurements collected as the sample was cycled from 25°C to 400°C. In addition, the stress within each of the component layers was assessed by using changes in primary peak position from X-ray diffraction (XRD). The thermoelastic slope of NMM systems was shown to not only depend on thermal expansion mismatch and elastic modulus. Analysis showed that layer thickness (interfacial density) affected the magnitude of thermoelastic slope while the layer order was observed to have minimal impact on the stress-response after the initial heating segment. When comparing the monolithic stress responses to those of the Cu-Nb NMM systems, the NMMs show a similar increase in stress magnitude above 200°C to monolithic Nb. This indicates that the Nb layers play a larger role in the development of initial stresses than the Cu layers. Localized stress measurements using in-situ XRD revealed that the stress response of the Cu and Nb layers within the NMM behave similarly to their monolithic counterparts by themselves, rather than the composite stress estimate from curvature measurements. Although FCC Nb has been identified under very specific contexts (e.g. due to initial deposition conditions, appreciable impurity content), the transformation of pure Nb from BCC to FCC has not been previously observed. Through this work we identified that stress is a possible mechanism that allows this transformation to occur. During heating to 500°C, a sharp peak in the stress response of 1 microm monolithic Nb was observed at 475°C. Post-heating determination of structure revealed both the initial BCC orientation as well as peaks that coincide with a previously simulated FCC Nb structure. Due to the observation of both structures concurrently, the observed transformation did not progress to completion. The transformation coincided with an increase in the elastic modulus from 115 +/- 4 GPa to 153 +/- 4 GPa, another indication of a structural change within the Nb film. These findings have not been previously observed for pure Nb and are being further confirmed with high-resolution transmission electron microscopy (HRTEM) and selected area diffraction (SAD).
NASA Astrophysics Data System (ADS)
Sun, Meng; Yan, Qing; Shao, Yu; Wang, Changqian; Yan, Tao; Ji, Pengge; Du, Bin
2017-09-01
To enhance the separation efficiency of photo-generated carriers, a p-n junction photocatalyst BiOI/NaNbO3 has been fabricated by a facile method. The obtained samples were characterized by XRD, SEM, TEM, HRTEM, PL, N2 sorption-desorption and DRS. DRS results showed that the light absorption edges of BiOI/NaNbO3 hybrids were red-shifted with the increase of BiOI content. The SEM and TEM images revealed that the BiOI was widely decorated over the surfaces of NaNbO3 cubes. The formation of p-n heterojunction at their interfaces was proved by the HRTEM image. The visible light-driven photocatalytic activity was evaluated by the degradation of methylene blue (MB) in aqueous solution. Compared with single NaNbO3 and BiOI, the BiOI/NaNbO3 hybrid photocatalysts have exhibited significantly enhanced activities. Meanwhile, the mass ratio of BiOI/NaNbO3 displayed important influence on the MB degradation. The hybrid photocatalyst with BiOI content of 40% performed the optimal activity. This activity enhancement should be attributed to the strong visible light absorption, the high migration and separation efficiency of photo-induced carriers. The photocurrent and PL measurements confirmed that the interfacial charge separation efficiency was greatly improved by coupling BiOI with NaNbO3. Controlled experiments proved that the degradation of pollutants was mainly attributed to the oxidizing ability of the generated holes (h+), ·O2-, and ·OH radicals.
A technique for efficiently generating bimetallic clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.L.; Vann, W.D.; Castleman, A.W. , Jr.
1997-08-01
Reactivities of bimetallic clusters can be controlled by varying their composition, making them potentially valuable as catalysts and for use in elucidating the reactivities of such subnanoscale surfaces. A dual rod laser vaporization source coupled to a fast flow reactor is developed for the study of bimetallic clusters and their reactions. In order to establish the versatility of the technique, the results of studies are presented in which Nb/Al clusters are formed in two plasmas induced by the second harmonic (532 nm photons) of a single Nd:YAG laser and then detected by a quadrupole mass spectrometer. The beam from themore » laser is split and then focused onto each rod, allowing the mixing ratio within the cluster to vary by altering the laser fluence on each rod. With a low fluence on the Nb rod and a high fluence on the Al rod, an Al rich cluster distribution is formed, NbAl{sub m}{sup {minus}} (m=2{endash}20), and Al{sub m}{sup {minus}} (m=5{endash}31). By increasing the fluence on the Nb rod and decreasing the fluence on the Al rod, a Nb rich cluster distribution is formed, Nb{sub n}Al{sub m}{sup {minus}} (n=3{endash}8 and m=1{endash}3), Nb{sub n}OAl{sub m}{sup {minus}} (n=3{endash}8 and m=1{endash}5), and Nb{sub n}O{sup {minus}} (n=3{endash}8). Additional characterization is also performed on V/Al clusters. {copyright} {ital 1997 American Institute of Physics.}« less
Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage
NASA Astrophysics Data System (ADS)
Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning
2017-08-01
Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.
Diffusion studies and critical current in superconducting Nb-Ti-Ta artificial pinning center wire
NASA Astrophysics Data System (ADS)
Bormio-Nunes, C.; Gomes, P. M. N.; Tirelli, M. A.; Ghivelder, L.
2005-08-01
The diffusion between Nb-20%Ta (wt %) and pure Ti is studied at temperatures of 973, 1023, and 1073K, for duration times among 25 and 121h in an artificial pinning center (APC) wire composed of a Ti core surrounded by a Nb-20%Ta layer. The produced diffusion layer is a ternary alloy with superconducting properties, such as critical field Bc2 and critical current density JC, which intrinsically depend on the layer composition. Measurements of layer morphology and composition were performed, and the results show a preferential diffusion of Nb and Ta into Ti. There is a slight diffusion of Ti into Nb through grain boundaries. The presence of Ta also slows down the diffusion of Nb in Ti if compared to the couple formed by pure Nb and Ti. Regarding the mechanical properties of the composite wire, the use of lower temperatures to form the ternary phase is desirable in order to avoid a larger portion of the diffusion layer rich in Ti that favorites α-Ti precipitations that are detrimental to the wire ductility. The best JC value was obtained for the sample heat treated at 973K. The improvement of the flux-line pinning was associated with a sharp change of the diffusion layer composition rather than pinning by normal layer interfaces, suggesting a new source of pinning in this kind of material. Nb-Ti-Ta ternary alloys have the potential to be used in superconducting magnets when fields above 12T are required.
Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires
NASA Astrophysics Data System (ADS)
Choi, Eunsoo; Nam, Tae-Hyun; Yoon, Soon-Jong; Cho, Sun-Kyu; Park, Joonam
2010-05-01
This study used prestrained NiTiNb and NiTi shape memory alloy (SMA) wires to confine concrete cylinders. The recovery stress of the wires was measured with respect to the maximal prestrain of the wires. SMA wires were preelongated during the manufacturing process and then wrapped around concrete cylinders of 150 mm×300 mm (phi×L). Unconfined concrete cylinders were tested for compressive strength and the results were compared to those of cylinders confined by SMA wires. NiTiNb SMA wires increased the compressive strength and ductility of the cylinders due to the confining effect. NiTiNb wires were found to be more effective in increasing the peak strength of the cylinders and dissipating energy than NiTi wires. This study showed the potential of the proposed method to retrofit reinforced concrete columns using SMA wires to protect them from earthquakes.
Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics
Chevalier, Sebastian; Juzon, Pitor; Przybylski, Kazimierz; Larpin, Jean-Pierre
2009-01-01
Fe3Al intermetallics (Fe3Al, Fe3Al-Zr, Fe3Al-Zr,Mo and Fe3Al-Zr, Mo, Nb) were oxidized at 950 °C in dry and humid (11 vol% water) synthetic air. Thermogravimetric measurements showed that the oxidation rates of the tested intermetallics were lower in humid air than in dry air (especially for Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb). The addition of small amounts of Zr, Mo or Nb improved the kinetics compared with that of the undoped Fe3Al. Fe3Al showed massive spallation, whereas Fe3Al-Zr, Fe3Al-Zr, Mo and Fe3Al-Zr, Mo, Nb produced a flat, adherent oxide layer. The rapid transformation of transient alumina into alpha alumina may explain the decrease in the oxidation rate in humid air. PMID:27877306
A low noise 230 GHz heterodyne receiver employing .25 sq micron area Nb/AlO(x)/Nb tunnel junctions
NASA Technical Reports Server (NTRS)
Kooi, Jacob W.; Chan, M.; Phillips, T. G.; Bumble, B.; Leduc, H. G.
1992-01-01
Recent results for a full height rectangular waveguide mixer with an integrated IF matching network are reported. Two 0.25 sq micron Nb/AlO(x)/Nb superconducting insulating superconducting (SIS) tunnel junctions with a current density of about 8500 A/sq cm and omega RC of about 2.5 at 230 GHz have been tested. Detailed measurements of the receiver noise have been made from 200-290 GHz for both junctions at 4.2 K. The lowest receiver noise temperatures were recorded at 239 GHz, measuring 48 K DSB at 4.2 K and 40 K DSB at 2.1 K. The 230 GHz receiver incorporates a one octave wide integrated low pass filter and matching network which transforms the pumped IF junction impedance to 50 ohms over a wide range of impedances.
Fibre Optic Gyroscope Developments Using Integrated Optic Components
NASA Astrophysics Data System (ADS)
Minford, W. J.; DePaula, R. M.
1988-09-01
The sensing of rotation using counterpropagating optical beams in a fiber loop (the SAGNAC effect) has gone through extensive developments and demonstrations since first proved feasible by Vali and Shorthilll in 1976. The interferometric fiber gyroscope minimum configuration2 which uses a common input-output port and single-mode filter was developed to provide the extreme high stability necessary to reach the sensitivities at low rotation rates attainable with current state-of-the-art detectors. The simplicity and performance of this configuration has led to its acceptance and wide-spread use. In order to increase the mechanical stability of this system, all single-mode fiber components are employed and a further advancement to integrated optics has enabled most of the optical functions to be placed on a single mass-producible substrate. Recent improvements in the components (eg polarization maintaining fiber and low coherence sources) have further enhanced the performance of the minimum configuration gyro. This presentation focused on the impact of LiNbO3 integrated optic components on gyroscope developments. The use of Ti-indiffused LiNbO3 waveguide optical circuits in interferometric fiber optic gyroscopes has taken two directions: to utilize only the phase modulator, or to combine many of the minimum configuration optical functions on the electro-optic substrate. The high-bandwidth phase modulator is the driving force for using LiNbO3 waveguide devices. This device allows both biasing the gyro for maximum sensitivity and closing the loop via frequency shifting, for example, thus increasing the dynamic range of the gyro and the linearity of the scale factor. Efforts to implement most of the minimum configuration optical functions onto a single LiNbO3 substrate have been led by Thomson CSF.3 They have demonstrated an interferometric gyroscope with excellent performance using a LiNbO3 optical circuit containing a Y-splitter, phase modulator, and surface-resonant polarizer. JPL and AT&T-BL have an effort, under a NASA contract, to investigate other integrated optic gyro front-end circuits with the eventual goal of combining all minimum configuration functions on a single substrate. The performance of a gyroscope with a LiNbO3 polarizer, 3dB splitter, and phase modulator was discussed along with the waveguide device characteristics. The key advantages, future trends, and present issues involved with using LiNbO3 waveguide devices in a gyroscope were addressed.
Juchno, M.; Ambrosio, G.; Anerella, M.; ...
2016-01-26
Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb 3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structuremore » was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less
Experimental and numerical analysis of interfilament resistances in NbTi strands
NASA Astrophysics Data System (ADS)
Breschi, M.; Massimini, M.; Ribani, P. L.; Spina, T.; Corato, V.
2014-05-01
Superconducting strands are composite wires made of fine superconducting filaments embedded in a metallic matrix. The transverse resistivity among superconducting filaments affects the coupling losses during electromagnetic transients and the electro-thermal behavior of the wire in case of a quench. A direct measurement of the transverse interfilament resistance as a function of temperature in NbTi multi-filamentary wires was performed at the ENEA Frascati Superconductivity Division, Italy by means of a four-probe method. The complexity of these measurements is remarkable, due to the current distribution phenomena that occur among superconducting filaments during these tests. A two-dimensional finite element method model of the wire cross section and a three-dimensional electrical circuit model of the wire sample developed at the University of Bologna are applied here to derive qualitative and quantitative information about the transverse electrical resistance matrix. The experiment is aimed at verifying the qualitative behaviors and trends predicted by the numerical calculations, especially concerning the current redistribution length and consequent length effects of the sample under test. A fine tuning of the model parameters at the filament level allowed us to reproduce the experimental results and get quantitative information about the current distribution phenomena between filaments.
Milošev, Ingrid; Kapun, Barbara; Selih, Vid Simon
2013-01-01
Metallic materials used for manufacture of dental implants have to exhibit high corrosion resistance in order to prevent metal release from a dental implant. Oral cavity is aggressive towards metals as it represents a multivariate environment with wide range of conditions including broad range of temperatures, pH, presence of bacteria and effect of abrasion. An increasing use of various Ti-based materials for dental implants and orthodontic brackets poses the question of their corrosion resistance in the presence of fluoride ions which are present in toothpaste and mouth rinse. Corrosion behaviour of Ti metal, Ti-6Al-7Nb and Ti-6Al-4V alloys and constituent metals investigated in artificial saliva is significantly affected by the presence of fluoride ions (added as NaF), as proven by electrochemical methods. Immersion test was performed for 32 days. During that time the metal dissolution was measured by inductively coupled plasma mass spectrometry. At the end of the test the composition, thickness and morphology of the surface layers formed were investigated by X-ray photoelectron spectroscopy and scanning electron microscopy.
Lord, Dominique; Guikema, Seth D; Geedipally, Srinivas Reddy
2008-05-01
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. The objectives of this study were to evaluate the application of the COM-Poisson GLM for analyzing motor vehicle crashes and compare the results with the traditional negative binomial (NB) model. The comparison analysis was carried out using the most common functional forms employed by transportation safety analysts, which link crashes to the entering flows at intersections or on segments. To accomplish the objectives of the study, several NB and COM-Poisson GLMs were developed and compared using two datasets. The first dataset contained crash data collected at signalized four-legged intersections in Toronto, Ont. The second dataset included data collected for rural four-lane divided and undivided highways in Texas. Several methods were used to assess the statistical fit and predictive performance of the models. The results of this study show that COM-Poisson GLMs perform as well as NB models in terms of GOF statistics and predictive performance. Given the fact the COM-Poisson distribution can also handle under-dispersed data (while the NB distribution cannot or has difficulties converging), which have sometimes been observed in crash databases, the COM-Poisson GLM offers a better alternative over the NB model for modeling motor vehicle crashes, especially given the important limitations recently documented in the safety literature about the latter type of model.
Investigation of static properties of medical alloys Ti-(20-30)Nb-(10-13)Ta-5Zr
NASA Astrophysics Data System (ADS)
Sergienko, K. V.; Sevost’yanov, M. A.; Konushkin, S. V.; Nasakina, E. O.; Baikin, A. S.; Shatova, L. A.; Kolmakov, A. G.
2018-04-01
In the work, static properties of TiNbTaZr titanium alloy were carried out. The search for a NiTi alloy replacement is necessary for medical products to eliminate the negative effects of nickel on the body. Conclusions are drawn about the adequacy of the mechanical properties of the test alloy for use in stent implants.
Wang, Xisi; Wang, Lijun; Su, Yan; Yue, Zhixia; Xing, Tianyu; Zhao, Wen; Zhao, Qian; Duan, Chao; Huang, Cheng; Zhang, Dawei; Jin, Mei; Cheng, Xianfeng; Chen, Shenglan; Liu, Yi; Ma, Xiaoli
2018-06-14
To evaluate plasma cell-free DNA (cfDNA) as a promising biomarker for neuroblastoma (NB) tumor burden. Seventy-nine eligible patients with newly diagnosed NB were recruited from Beijing Children's Hospital between April 2016 and April 2017. Additionally, from September 2011 to June 2017, 79 patients with stable NB were evaluated with a median follow-up time of 21 months. Approximately 2 mL of peripheral blood was drawn upon enrollment, and plasma cfDNA levels were measured via quantitative polymerase chain reaction (qPCR). Total cfDNA analysis was performed using the long interspersed nuclear element 1 (LINE-1) 79 bp fragment, and DNA integrity was calculated by the ratio of the LINE-1 300 bp fragment to the LINE-1 79 bp fragment. A total of 79 NB patients with a median age of 36 months comprised the group of newly diagnosed NB patients. The main primary tumor site was the retroperitoneal and adrenal region (81%). Three or more metastatic sites were found in 17.7% of patients. Stable NB patients older than 18 months comprised 98.7% of the stable NB patients. Neuron-specific enolase (NSE), lactate dehydrogenase (LDH), and cfDNA levels were dramatically increased in the newly diagnosed NB patients and significantly different from those in the stable NB patients. Moreover, the concentration of cfDNA was much higher in patients with larger tumors. By analyzing the area under the receiver operator characteristic (ROC) curve (AUC), the areas of total cfDNA, NSE, and LDH levels were 0.953, 0.929, and 0.906, respectively. The sensitivity and specificity data clarified that the level of circulating cfDNA in plasma can be considered as a reliable biomarker for describing tumor load in NB. The plasma cfDNA concentration was as good as the levels of LDH and NSE to discriminate the tumor burden in children with NB. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
EZH2 regulates neuroblastoma cell differentiation via NTRK1 promoter epigenetic modifications.
Li, Zhenghao; Takenobu, Hisanori; Setyawati, Amallia Nuggetsiana; Akita, Nobuhiro; Haruta, Masayuki; Satoh, Shunpei; Shinno, Yoshitaka; Chikaraishi, Koji; Mukae, Kyosuke; Akter, Jesmin; Sugino, Ryuichi P; Nakazawa, Atsuko; Nakagawara, Akira; Aburatani, Hiroyuki; Ohira, Miki; Kamijo, Takehiko
2018-05-01
The polycomb repressor complex 2 molecule EZH2 is now known to play a role in essential cellular processes, namely, cell fate decisions, cell cycle regulation, senescence, cell differentiation, and cancer development/progression. EZH2 inhibitors have recently been developed; however, their effectiveness and underlying molecular mechanisms in many malignancies have not yet been elucidated in detail. Although the functional role of EZH2 in tumorigenesis in neuroblastoma (NB) has been investigated, mutations of EZH2 have not been reported. A Kaplan-Meier analysis on the event free survival and overall survival of NB patients indicated that the high expression of EZH2 correlated with an unfavorable prognosis. In order to elucidate the functional roles of EZH2 in NB tumorigenesis and its aggressiveness, we knocked down EZH2 in NB cell lines using lentivirus systems. The knockdown of EZH2 significantly induced NB cell differentiation, e.g., neurite extension, and the neuronal differentiation markers, NF68 and GAP43. EZH2 inhibitors also induced NB cell differentiation. We performed a comprehensive transcriptome analysis using Human Gene Expression Microarrays and found that NTRK1 (TrkA) is one of the EZH2-related suppression targets. The depletion of NTRK1 canceled EZH2 knockdown-induced NB cell differentiation. Our integrative methylome, transcriptome, and chromatin immunoprecipitation assays using NB cell lines and clinical samples clarified that the NTRK1 P1 and P2 promoter regions were regulated differently by DNA methylation and EZH2-related histone modifications. The NTRK1 transcript variants 1/2, which were regulated by EZH2-related H3K27me3 modifications at the P1 promoter region, were strongly expressed in favorable, but not unfavorable NB. The depletion and inhibition of EZH2 successfully induced NTRK1 transcripts and functional proteins. Collectively, these results indicate that EZH2 plays important roles in preventing the differentiation of NB cells and also that EZH2-related NTRK1 transcriptional regulation may be the key pathway for NB cell differentiation.
Cyclic deformation of NI/sub 3/(Al,Nb) single crystals at ambient and elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonda, N.R.
Cyclic tests were performed on Ni/sub 3/(Al,Nb) (..gamma..' phase) single crystals by using a servo-hydraulic machine under fully reversed plastic strain control at a frequency of 0.1-0.2 Hz at room temperature, 400/sup 0/C and 700/sup 0/C. Since the monotonic behavior is orientation dependent, three orientations were studied. Asymmetry in tensile and compressive stresses was observed in the cyclic hardening curves of specimens tested at these temperatures and they were discussed with regard to the model suggested by Paider et al for monotonic behavior. The stress levels in the cyclic stress-strain curves (CSSC) at room temperature depended on orientation and cyclicmore » history. No CSSCs were established at 400/sup 0/C and 700/sup 0/C. The deformation in cyclic tests at small plastic strain amplitudes was found to be different from that in monotonic tests in the microplastic regions in which the deformation is believed to be carried by a small density of edge dislocations. But in cyclic deformation, to and from motion of dislocations trap the edge dislocations into dipoles and therefore screw dislocations will be forced to participate in the deformation. Cracks on the surfaces of specimens tested at room temperature and 400/sup 0/C were found to be of stage I type, whereas at 700/sup 0/C, they were of stage II type.« less
Kumar, Madhan; Drew, Robin; Al-Aqeeli, Nasser
2017-01-01
The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF). The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscope). The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy). The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO4)2 compound (precursor of hydroxyapatite) deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material. PMID:29280956
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moraes, Paulo E.L., E-mail: pauloeduardo.leitedemoraes@gmail.com; Contieri, Rodrigo J., E-mail: contieri@fem.unicamp.br; Lopes, Eder S.N., E-mail: ederlopes@fem.unicamp.br
Ti and Ti alloys are widely used in restorative surgery because of their good biocompatibility, enhanced mechanical behavior and high corrosion resistance in physiological media. The corrosion resistance of Ti-based materials is due to the spontaneous formation of the TiO{sub 2} oxide film on their surface, which exhibits elevated stability in biological fluids. Ti–Nb alloys, depending on the composition and the processing routes to which the alloys are subjected, have high mechanical strength combined with low elastic modulus. The addition of Sn to Ti–Nb alloys allows the phase transformations to be controlled, particularly the precipitation of ω phase. The aimmore » of this study is to discuss the microstructure, mechanical properties and corrosion behavior of cast Ti–Nb alloys to which Sn has been added. Samples were centrifugally cast in a copper mold, and the microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffractometry. Mechanical behavior evaluation was performed using Berkovich nanoindentation, Vickers hardness and compression tests. The corrosion behavior was evaluated in Ringer's solution at room temperature using electrochemical techniques. The results obtained suggested that the physical, mechanical and chemical behaviors of the Ti–Nb–Sn alloys are directly dependent on the Sn content. - Graphical abstract: Effects of Sn addition to the Ti–30Nb alloy on the elastic modulus. - Highlights: • Sn addition causes reduction of the ω phase precipitation. • Minimum Vickers hardness and elastic modulus occurred for 6 wt.% Sn content. • Addition of 6 wt.% Sn resulted in maximum ductility and minimum compression strength. • All Ti–30Nb–XSn (X = 0, 2, 4, 6, 8 and 10%) alloys are passive in Ringer's solution. • Highest corrosion resistance was observed for 6 wt.% Sn content.« less
NASA Astrophysics Data System (ADS)
Okazaki, Yoshimitsu; Nagata, Hiroyuki
2012-12-01
Metal release from implantable metals and the properties of oxide films formed on alloy surfaces were analyzed, focusing on the highly biocompatible Ti-15Zr-4Nb-4Ta alloy. The thickness and electrical resistance (Rp) of the oxide film on such an alloy were compared with those of other implantable metals. The quantity of metal released during a 1-week immersion test was considerably smaller for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy. The potential (E10) indicating a current density of 10 μA cm-2 estimated from the anodic polarization curve was significantly higher for the Ti-15Zr-4Nb-4Ta than the Ti-6Al-4V alloy and other metals. Moreover, the oxide film (4-7 nm thickness) formed on the Ti-15Zr-4Nb-4Ta surface is electrochemically robust. The oxide film mainly consisted of TiO2 with small amounts of ZrO2, Nb2O5 and Ta2O5 that made the film electrochemically stable. The Rp of Ti-15Zr-4Nb-4Ta was higher than that of Ti-6Al-4V, i.e. 0.9 Ω cm2 in 0.9% NaCl and 1.3 Ω cm2 in Eagle's medium. This Rp was approximately five-fold higher than that of stainless steel, which has a history of more than 40 years of clinical use in the human body. Ti-15Zr-4Nb-4Ta is a potential implant material for long-term clinical use. Moreover, E10 and Rp were found to be useful parameters for assessing biological safety.
Badini, Claudio; Deambrosis, Silvia M.; Padovano, Elisa; Fabrizio, Monica; Ostrovskaya, Oxana; Miorin, Enrico; D’Amico, Giuseppe C.; Montagner, Francesco; Biamino, Sara; Zin, Valentina
2016-01-01
A High Power Impulse Magnetron Sputtering (HiPIMS) method for depositing TiAlN environmental barrier coatings on the surface of Ti-48Al-2Cr-2Nb alloy was developed in view of their exploitation in turbine engines. Three differently engineered TiAlN films were processed and their performance compared. Bare intermetallic alloy coupons and coated specimens were submitted to thermal cycling under oxidizing atmosphere up to 850 °C or 950 °C, at high heating and cooling rates. For this purpose, a burner rig able to simulate the operating conditions of the different stages of turbine engines was used. Microstructures of the samples were compared before and after each test using several techniques (microscopy, XRD, and XPS). Coating-intermetallic substrate adhesion and tribological properties were investigated too. All the TiAlN films provided a remarkable increase in oxidation resistance. Good adhesion properties were observed even after repeated thermal shocks. HiPIMS pretreatments of the substrate surfaces performed before the coating deposition significantly affected the oxidation rate, the oxide layer composition and the coating/substrate adhesion. PMID:28774082
Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP
Ambrosio, G.; Andreev, N.; Anerella, M.; ...
2011-11-14
After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled inmore » the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less
Jia, Jia; Wang, Hong; Lu, Zhuole; O'Brien, Paul G.; Ghoussoub, Mireille; Duchesne, Paul; Zheng, Ziqi; Li, Peicheng; Qiao, Qiao; Wang, Lu; Gu, Alan; Jelle, Abdinoor A.; Dong, Yuchan; Wang, Qiang; Ghuman, Kulbir Kaur; Wood, Thomas; Qian, Chenxi; Shao, Yue; Qiu, Chenyue; Ye, Miaomiao; Zhu, Yimei; Lu, Zheng‐Hong; Zhang, Peng; Helmy, Amr S.; Singh, Chandra Veer; Kherani, Nazir P.; Perovic, Doug D.
2017-01-01
Abstract This study has designed and implemented a library of hetero‐nanostructured catalysts, denoted as Pd@Nb2O5, comprised of size‐controlled Pd nanocrystals interfaced with Nb2O5 nanorods. This study also demonstrates that the catalytic activity and selectivity of CO2 reduction to CO and CH4 products can be systematically tailored by varying the size of the Pd nanocrystals supported on the Nb2O5 nanorods. Using large Pd nanocrystals, this study achieves CO and CH4 production rates as high as 0.75 and 0.11 mol h−1 gPd −1, respectively. By contrast, using small Pd nanocrystals, a CO production rate surpassing 18.8 mol h−1 gPd −1 is observed with 99.5% CO selectivity. These performance metrics establish a new milestone in the champion league of catalytic nanomaterials that can enable solar‐powered gas‐phase heterogeneous CO2 reduction. The remarkable control over the catalytic performance of Pd@Nb2O5 is demonstrated to stem from a combination of photothermal, electronic and size effects, which is rationally tunable through nanochemistry. PMID:29051865
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis
The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed atmore » understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
G. Ciovati; Myneni, G.; Stevie, F.; ...
2010-02-22
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati; Myneni, G.; Stevie, F.
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
Jia, Jia; Wang, Hong; Lu, Zhuole; ...
2017-07-25
This study has designed and implemented a library of hetero-nanostructured catalysts, denoted as Pd@Nb 2O 5, comprised of size-controlled Pd nanocrystals interfaced with Nb 2O 5 nanorods. This study also demonstrates that the catalytic activity and selectivity of CO 2 reduction to CO and CH 4 products can be systematically tailored by varying the size of the Pd nanocrystals supported on the Nb 2O 5 nanorods. Using large Pd nanocrystals, this study achieves CO and CH 4 production rates as high as 0.75 and 0.11 mol h –1 gPd –1, respectively. By contrast, using small Pd nanocrystals, a CO productionmore » rate surpassing 18.8 mol h –1 gPd –1 is observed with 99.5% CO selectivity. These performance metrics establish a new milestone in the champion league of catalytic nanomaterials that can enable solar-powered gas-phase heterogeneous CO 2 reduction. In conclusion, the remarkable control over the catalytic performance of Pd@Nb 2O 5 is demonstrated to stem from a combination of photothermal, electronic and size effects, which is rationally tunable through nanochemistry.« less
A Pairwise Naïve Bayes Approach to Bayesian Classification.
Asafu-Adjei, Josephine K; Betensky, Rebecca A
2015-10-01
Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a "pairwise naïve" Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers.
NASA Astrophysics Data System (ADS)
Homsher-Ritosa, Caryn Nicole
Microalloying elements are added to plate steels to improve the mechanical properties through grain refinement and precipitation strengthening. In industrial practice, such refinement is obtained by controlling the rolling near critical temperatures in austenite. Generally, a large amount of hot deformation is desired below the no-recrystallization temperature (TNR) to increase the grain boundary area to promote fine ferrite grains upon transformation during cooling. Ideally, a high TNR is desired for increased deformation below TNR at minimal rolling loads and minimal loss of productivity. To increase TNR, microalloying elements such as Nb, V, and Ti are used. The primary purpose of the current study was to determine the effect of multiple microalloying elements on the mechanically determined via torsion testing no-recrystallization temperature (TNR_Tor) in Nb-bearing plate steel. This project focused on the influence of alloying elements and deformation parameters on TNR_Tor. The main objective was to experimentally determine the TNR_Tor for various laboratory-grade steels with systematically varying amounts of Nb, V, and Ti, with C and N held constant. The synergistic effects of these microalloying elements were evaluated. Another objective was to determine the TNR_Tor with systematically varied deformation parameters for the same set of steels. Comparisons of the measured TNR through two different mechanical tests were conducted. Finally, a microstructural evaluation around the mechanically determined TNR_Tor via multistep hot torsion testing was made. To accomplish these objectives six Nb-bearing steels were laboratory produced with 0.065 wt pct C, 0.044 wt pct N, and varying amounts of Nb, V, and Ti. Multistep hot torsion tests were conducted using the GleebleRTM 3500 thermomechanical simulator between the temperatures of 1200 and 750 °C. The mean flow stress was calculated for each deformation step and plotted against the inverse absolute temperature. The TNR_Tor was determined by finding the intersection point of two linear regressions fit to the data. The TNR_Tor values were compared with measured TNR values from double-hit compression tests and with predicted values using empirical equations from the literature. Light optical micrographs and electron backscatter diffraction scans were examined for samples quenched from just above and just below the experimentally determined values of TNR_Tor for the high Nb, low Ti, and commercially produced 10V45 alloys to help verify the prior austenite grain morphology. For all processing conditions, the low Nb alloy was the least effective in increasing TNR_Tor and the high additions of Ti were the most effective at increasing TNR_Tor. The additions of V were not significantly effective in altering TNR_Tor and it is believed the Nb overpowered any influence the V additions may have had on TNR_Tor. An increase in strain or an increase strain rate decreased TNR_Tor. The T NR values measured from multistep hot torsion testing were lower than the TNR values measured from double-hit compression tests. The use of the mean flow stress versus inverse temperature curve to determine TNR_Tor does not correlate to the microstructural meaning of T NR (i.e. no recrystallization). The transition from completely recrystallized grains to less than complete recrystallization is not properly modeled by the intersection of two linear regions and is more gradual than the mechanical test implies. From the microstructural analysis of a10V45 steel, there is evidence of recrystallization at temperatures 200 °C below the measured TNR_Tor. The slope change on the mean flow stress versus inverse temperature curves is believed to be, in part, accumulated strain as well as refinement of continuously recrystallized grains causing a Hall-Petch type strength increase.
Effect of lithium and sodium salt on the performance of Nb2O5/rGO nanocomposite based supercapacitor
NASA Astrophysics Data System (ADS)
Ahmed, Sultan; Rafat, M.
2018-03-01
The present work reports the synthesis of Nb2O5/rGO composite using hydrothermal method and thermal annealing process. The prepared composite was found to have suitable characteristics necessary to be used as electrode material in supercapacitors. These characteristics were ascertained employing the techniques of scanning electron microscopy (SEM), x-ray diffraction (XRD), Raman spectroscopy and N2 adsorption-desorption isotherm. Further, the electrochemical performance of the prepared composite was compared in two different organic electrolytes, of lithium and sodium salt using the techniques of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and charge-discharge measurements. The organic electrolyte solutions were prepared by dispersing 1 M LiClO4/NaClO4 in a mixture of ethylene carbonate/propylene carbonate (1:1 by volume). The observed results indicate that the composite of Nb2O5/rGO offers higher value of specific capacitance in sodium salt electrolyte and higher cyclic stability in lithium salt electrolyte. This is probably due to ion properties of electrolyte. Specific capacitance is observed according to efficient ion/charge diffusion/exchange and relaxation time (Li+ < Na+), while the cyclic stability is observed according to cation size (Na+ > Li+). Thus, the present study reveals the significant effect of electrolyte ions on electrochemical performance of Nb2O5/rGO composite.
2001-03-15
The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.
Creep properties of PWC-11 base metal and weldments as affected by heat treatment
NASA Technical Reports Server (NTRS)
Titran, R. H.; Moore, T. J.; Grobstein, T. L.
1986-01-01
In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.
2001-03-15
The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.
NASA Astrophysics Data System (ADS)
Höbel, Frank; Bandara, Athula; Rupprechter, Günther; Freund, Hans-Joachim
2006-02-01
Structural changes that occur on Pd-Nb 2O 5/Cu 3Au(1 0 0) model catalysts upon thermal annealing were followed by sum frequency generation (SFG) and temperature-programmed desorption (TPD) using CO as probe molecule. SFG experiments were performed both under ultrahigh vacuum and mbar pressure. Heating the catalyst to temperatures above 300 K lead to an irreversible 50% decrease in the CO adsorption capacity and modified the remaining adsorption sites. Alterations of the phase between resonant and non-resonant SFG signals upon annealing indicate a change in the electronic structure of the surface, which excludes Pd sintering or migration of Nb 2O 5 over Pd particles to cause the observed effect and rather suggests the formation of "mixed Pd-NbO x" sites. The same changes in surface properties also occur during CO hydrogenation at 1 bar and high temperature, pointing to an involvement of "mixed Pd-NbO x" sites in catalytic reactions.
High-field specific heats of A15 V3Si and Nb3Sn
NASA Astrophysics Data System (ADS)
Stewart, G. R.; Brandt, B. L.
1984-04-01
In order to further understand the anomalous behavior of the specific heat of Nb3Sn in an 18-T magnetic field discovered by Stewart, Cort, and Webb
NASA Astrophysics Data System (ADS)
Da Silva, L. B. S.; Rodrigues, C. A.; Oliveira, N. F., Jr.; Bormio-Nunes, C.; Rodrigues, D., Jr.
2010-11-01
Since the discovery of Nb3Sn superconductors many efforts have been expended to improve the transport properties in these materials. In this work, the heat treatment profiles for Nb3Sn superconductor wires with Cu(Sn) artificial pinning centers (APCs) with nanometric-scale sizes were analyzed in an attempt to improve the critical current densities and upper critical magnetic field. The methodology to optimize the heat treatment profiles in respect to the diffusion, reaction and formation of the superconducting phases is described. Microstructural characterization, transport and magnetic measurements were performed in an attempt to relate the microstructure to the pinning mechanisms acting in the samples. It was concluded that the maximum current densities occur due to normal phases (APCs) that act as the main pinning centers in the global behavior of the Nb3Sn superconducting wire. The APC technique was shown to be very powerful because it permitted mixing of the pinning mechanism. This achievement was not possible in other studies in Nb3Sn wires reported up to now.
Ishizuka, Yoshiaki; Koshinaga, Tsugumichi; Hirano, Takayuki; Nagasaki-Maeoka, Eri; Watanabe, Yosuke; Hoshi, Reina; Yoshizawa, Shinsuke; Sugito, Kiminobu; Kawashima, Hiroyuki; Uekusa, Shota; Fukuda, Noboru; Soma, Masayoshi; Fujiwara, Kyoko
2018-07-01
Neuropilin 1 (NRP1) is a transmembrane glycoprotein, which regulates many aspects of cellular function by functioning as co-receptor of various ligands. Recent studies have suggested that NRP1 promotes tumorigenesis, not only by activating the growth of tumor vessels, but also by activating the growth or migration of tumor cells themselves. The present study was performed to elucidate the roles of NRP1 in the development and/or progression of neuroblastoma (NB). In contrast to previous observations in various types of cancer, the analysis of public datasets indicated that lower levels of NRP1 expression were significantly associated with a shorter survival period of patients with NB. Consistent with this finding, wound-healing assay and Matrigel invasion assay revealed that NB cells in which NRP1 was knocked down exhibited increased migratory and invasive abilities. Further analyses indicated that β1 integrin expression was markedly increased in NB cells in which NRP1 was knocked down, and NB cells in which β1 integrin was knocked down exhibited decreased migratory and invasive abilities. The results presented herein indicate that NRP1 exerts tumor suppressive effects in NB, at least in part by regulating the expression of β1 integrin.
Pershina, V; Anton, J
2012-01-21
Fully relativistic, four-component density functional theory electronic structure calculations were performed for MBr(5), MOBr(3), MBr(6)(-), KMBr(6), and MBr(5)Cl(-) of group-5 elements Nb, Ta, and element 105, Db, with the aim to predict adsorption behaviour of the bromides in gas-phase chromatography experiments. It was shown that in the atmosphere of HBr/BBr(3), the pentabromides are rather stable, and their stability should increase in the row Nb < Db < Ta. Several mechanisms of adsorption were considered. In the case of adsorption by van der Waals forces, the sequence in volatility of the pentabromides should be Nb < Ta < Db, being in agreement with the sublimation enthalpies of the Nb and Ta pentabromides. In the case of adsorption by chemical forces (on a quartz surface modified with KBr∕KCl), formation of the MBr(5)L(-) (L = Cl, Br) complex should occur, so that the volatility should change in an opposite way, i.e., Nb > Ta > Db. This sequence is in agreement with the one observed in the "one-atom-at-a-time" chromatography experiments. Some other scenarios, such as surface oxide formation were also considered but found to be irrelevant. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Guo, Heng; Yang, Jian; Pu, Bingxue; Zhang, Haiyan; Niu, Xiaobin
2018-01-01
Organo-lead perovskites as light harvesters have represented a hot field of research on high-efficiency perovskite solar cells. Previous approaches to increasing the solar cell efficiency have focused on optimization of the morphology of perovskite film. In fact, the electron transporting layer (ETL) also has a significant impact on solar cell performance. Herein, we introduce a facile and low temperature solution-processing method to deposit Nb2O5 film as ETL for PSCs. Based on Nb2O5 ETL, we investigate the effect of the annealing time for the perovskite films via different solution processing, relating it to the perovskite film morphology and its influence on the device working mechanisms. These results shed light on the origin of photovoltaic performance voltage in perovskite solar cells, and provide a path to further increase their efficiency.
Thermal-Independent Properties of PIN-PMN-PT Single-Crystal Linear-Array Ultrasonic Transducers
Chen, Ruimin; Wu, Jinchuan; Lam, Kwok Ho; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K. Kirk
2013-01-01
In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In1/2Nb1/2)–Pb(Mg1/3Nb2/3)–PbTiO3 (PIN-PMN-PT) and binary Pb(Mg1/3Nb2/3)–PbTiO3 (PMN-PT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a −6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising. PMID:23221227
Yan, Z. B.; Liu, J. -M.
2013-01-01
The Au/DyMnO3/Nb:SrTiO3/Au stack was demonstrated to be not only a high performance memristor but also a good memcapacitor. The switching time is below 10 ns, the retention is longer than 105 s, and the change ratio of resistance (or capacitance) is larger than 100 over the 108 switching cycles. Moreover, this stack has a broad range of intermediate states that are tunable by the operating voltages. It is indicated that the memory effects originate from the Nb:SrTiO3/Au junction where the barrier profile is electrically modulated. The serial connected Au/DyMnO3/Nb:SrTiO3 stack behaves as a high nonlinear resistor paralleling with a capacitor, which raises the capacitance change ratio and enhances the memory stability of the device. PMID:23963467
Odongo, Steven; Sterckx, Yann G J; Stijlemans, Benoît; Pillay, Davita; Baltz, Théo; Muyldermans, Serge; Magez, Stefan
2016-02-01
Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb)-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system. An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B) was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA) was shown to detect experimental infections with high Positive Predictive Value (98%), Sensitivity (87%) and Specificity (94%). Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i) T. congolense soluble proteome, (ii) T. congolense secretome preparation and (iii) sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase. The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious diseases.
NASA Astrophysics Data System (ADS)
Dohmae, Takeshi; Umemori, Kensei; Yamanaka, Masashi; Watanabe, Yuichi; Inoue, Hitoshi
2017-12-01
The first in-house, 9-cell, superconducting radio-frequency cavity made of large grain Nb was fabricated at KEK. Some characteristic techniques were employed for the fabrication that were not used for fine grain (FG) Nb. Even though a penetrated hole was created during electron beam welding, it was successfully repaired and did not affect the cavity performance. The completed cavity then underwent vertical tests (VTs) via several surface treatment processes. A defect that caused quenches was found after a VT at 25 mm from the equator where the typical local grinding machine developed at KEK could not be utilized. A new local grinding machine using a 3D printer was thus developed for the first time, and it completely removed this defect. Finally, the cavity achieved a maximum Q0 value of 3.8 ×1010 and accelerating gradient of 38 MV/m. The obtained Q0 value is about 1.5 times higher than that for the KEK in-house FG cavity.
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
Characterization System of Multi-pixel Array TES Microcalorimeter
NASA Astrophysics Data System (ADS)
Yoshimoto, Shota; Maehata, Keisuke; Mitsuda, Kazuhisa; Yamanaka, Yoshihiro; Sakai, Kazuhiro; Nagayoshi, Kenichiro; Yamamoto, Ryo; Hayashi, Tasuku; Muramatsu, Haruka
We have constructed characterization system for 64-pixel array transition-edge sensor (TES) microcalorimeter using a 3He-4He dilution refrigerator (DR) with the cooling power of 60 µW at a temperature of 100 mK. A stick equipped with 384 of Manganin wires was inserted into the refrigerator to perform characteristic measurements of 64-pixel array TES microcalorimeter and superconducting quantum interference device (SQUID) array amplifiers. The stick and Manganin wires were thermally anchored at temperatures of 4 and 1 K with sufficient thermal contact. The cold end of the Manganin wires were thermally anchored and connected to CuNi clad NbTi wires at 0.7 K anchor. Then CuNi clad NbTi wires were wired to connectors placed on the holder mounted on the cold stage attached to the base plate of the mixing chamber. The heat flow to the cold stage through the installed wires was estimated to be 0.15 µW. In the operation test the characterization system maintained temperature below 100 mK.
NASA Astrophysics Data System (ADS)
Zhi, Ya'nan; Qu, Weijuan; Liu, De'an; Sun, Jianfeng; Yan, Aimin; Liu, Liren
2008-08-01
Laser-induced domain inversion is a promising technique for domain engineering in LiNbO3 and LiTaO3. The ultraviolet-infrared laser induced domain inversions in MgO-doped congruent LiNbO3 and near stoichiometric LiTaO3 crystals are investigated for the first time here. Within the wavelength range from 351 to 799 nm, the different reductions of nucleation field induced by the focused continuous laser irradiation are systematically investigated in the MgO-doped congruent LiNbO3 crystals. The investigation of ultrashort-pulse laser-induced domain inversion in MgO-doped congruent LiNbO3 is performed with 800 nm wavelength irradiation. The focused continuous ultraviolet laser-induced ferroelectric domain inversion in the near stoichiometric LiTaO3 is also investigated. The different physical explanations, based on space charge field and defect formation, are presented for the laser-induced domain inversion, and the solid experimental proofs are also presented. The results provide the solid experimental proofs and feasible schemes for the further investigation of laser-induced domain engineering in MgO-doped LiNbO3 and near stoichiometric LiTaO3 crystals. The important characteristics of domain inversion, including domain wall and internal field, in LiNbO3 crystals are also investigated by the digital holographic interferometry with an improved reconstruction method, and some creative experimental results and conclusions are achieved.
Al Jabbari, Youssef; Fournelle, Raymond; Ziebert, Gerald; Toth, Jeffrey; Iacopino, Anthony
2008-04-01
This study involved testing and analyzing multiple retrieved prosthetic retaining screws after long-term use in vivo to: (1) detect manufacturing defects that could affect in-service behavior; (2) characterize the microstructure and alloy composition; and (3) further characterize the wear mechanism of the screw threads. Two new (control) screws from Nobel Biocare (NB) and 18 used (in service 18-120 months) retaining screws [12 from NB and 6 from Sterngold (SG)] were: (1) metallographically examined by light microscopy and scanning electron microscopy (SEM) to determine the microstructure; (2) analyzed by energy dispersive X-ray (EDX) microanalysis to determine the qualitative and semiquantitative average alloy and individual phase compositions; and (3) tested for Vickers microhardness. Examination of polished longitudinal sections of the screws using light microscopy revealed a significant defect in only one Group 4 screw. No significant defects in any other screws were observed. The defect was considered a "seam" originating as a "hot tear" during original casting solidification of the alloy. Additionally, the examination of longitudinal sections of the screws revealed a uniform homogeneous microstructure in some groups, while in other groups the sections exhibited rows of second phase particles. The screws for some groups demonstrated severe deformation of the lower threads and the bottom part of the screw leading to the formation of crevices and grooves. Some NB screws were comprised of Au-based alloy with Pt, Cu, and Ag as alloy elements, while others (Groups 4 and 19) were Pd-based with Ga, Cu, and Au alloy elements. The microstructure was homogeneous with fine or equiaxed grains for all groups except Group 4, which appeared inhomogeneous with anomalous grains. SG screws demonstrated a typical dendritic structure and were Au-based alloy with Cu and Ag alloy elements. There were differences in the microhardness of gold alloy screws from NB and SG as well as palladium alloy screws from NB. Significant differences within NB retaining screws and between NB and SG screws were found for microstructure, major alloy constituents, and microhardness.
A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)
NASA Astrophysics Data System (ADS)
Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem
2015-11-01
Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Taniguchi, Hiroki; Ando, Kako; Terasaki, Ichiro
2017-10-01
Dielectric measurements are performed on (Nb1/2In1/2)0.02Ti0.98O2 (NITO-2.0) single crystals grown by a floating zone method to address the nature of the colossal permittivity recently reported in (Nb + In) co-doped TiO2 ceramics. The colossal permittivity of the order of 105, which is also observed in the NITO-2.0 single crystals, disappears in the lowest temperature region, indicating an extrinsic contribution from thermally excited carriers to the colossal permittivity. Even at low temperatures where the thermally excited carriers are expected to be frozen out, a high permittivity of the order of 103 remains. This finding suggests that an intrinsic contribution from electron-pinned defect dipoles boosts the dielectric permittivity of TiO2.
Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts
Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun
2015-01-01
Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed. PMID:26087374
Research and Development of Wires and Cables for High-Field Accelerator Magnets
Barzi, Emanuela; Zlobin, Alexander V.
2016-02-18
The latest strategic plans for High Energy Physics endorse steadfast superconducting magnet technology R&D for future Energy Frontier Facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV scale proton-protonmore » $(pp)$ collider. This paper describes the multi-decade R&D investment in the $$Nb_3Sn$$ superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting $$Nb_3Sn$$ wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the $$Nb_3Sn$$ technology to its limits for future $pp$ colliders.« less
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.
1974-01-01
Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.
Sabbahi, Sonia; Ben Ayed, Layla; Boudabbous, Abdellatif
2013-12-01
The aim of this study was to evaluate the photobactericidal effect of four photosensitizers (PSs) with different structural and physico-photochemical properties, namely mesotetracationic porphyrin (T4MPyP), dianionic rose Bengal (RB), monocationic methylene blue (MB) and neutral red (NR). Their photokilling activity was tested in vitro on pathogenic bacteria such as Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) suspended in nutrient broth (NB) and in phosphate buffered saline (PBS) through following their influence on the PSs antimicrobial efficacy. Photodynamic inactivation (PDI) experiments were performed using visible light (L) and different PSs concentrations (20-70 μM). The ability of these PSs to mediate bacterial photodynamic inactivation was investigated as a function of type of PS and its concentrations, spectral and physico-chemical properties, bacterial strain, irradiation time and suspending medium. Indeed, they showed antibacterial effects against S. aureus and P. aeruginosa with significant difference in potency. Staphylococcus aureus suspended in NB showed 0.92 log units reduction in viable count in the presence of T4MPyP at 20 μM. Changing the suspending medium from NB to PBS, S. aureus was successfully photoinactivated by T4MPyP (20 μM) when suspended in PBS at least time exposure (10 and 30 min), followed by MB and RB.
NASA Astrophysics Data System (ADS)
Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel
2016-11-01
A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.
Development of nanostructured PVD coatings for total knee replacement joints using HIPIMS
NASA Astrophysics Data System (ADS)
Sugumaran, Arunprabhu A.
The aim of this study was to develop thin film coatings for total knee replacement joints using high power impulse magnetron sputtering (HIPIMS). An industrial size four cathode magnetron sputtering system equipped with direct current (DC) and HIPIMS power supplies was used for this purpose. Initially, Plasma diagnostics were carried out using optical emission spectroscopy (OES) while sputtering Ti target in Ar + N2 atmosphere by utilizing various HIP IMS/conventional DCMS (henceforth UBM) source combinations by varying the process parameters such as coil current and N2 flow. Then, single layer titanium nitride (TiN) coating was deposited by varying the degree of HIPIMS utilisation and the process parameters such as bias voltage and coil current to thoroughly understand the effect of degree of HIPIMS utilisation on the microstructure, residual stress, texture, mechanical, tribological and corrosion properties of such coatings. The degree of HIPIMS utilisation was altered by increasing the number of HIPIMS targets used for the deposition. Four different source combinations were used for this purpose, as follows: 4 cathodes in conventional DCMS mode to deposit pure UBM coating, 1 HIPIMS + 3UBM and 2HIPIMS + 2UBM cathodes to deposit combined HIPIMS/UBM coatings and 2HIPIMS cathodes to deposit pure HIPIMS coatings. TiN/NbN, TiCN/NbCN and CrN/NbN multilayer coatings were deposited on CoCr alloy test buttons along with other (HSS, SS and Si) substrates since our intended application is on total knee replacement joints made of CoCr alloy. The knowledge gained by investigating the TiN (Ar + N[2]) plasma and the properties of TiN was used to determine the process parameters for depositing the multilayer coatings. X- ray diffraction (XRD) technique was used for calculating the texture, residual stress and bilayer thickness of the coatings. Nanoindentation method was used to determine the nano hardness of the coatings. The adhesion strength of the coatings was estimated by scratch and Rockwell indentation tests. Pin on disc method was used for the tribological studies such as coefficient of friction and coefficient of wear. Surface roughness measurements were carried out using a surface profiler. Microstructural characterisation of the coatings was carried out using scanning electron microscope (SEM) and transmission electron microscope (TEM). Potentiodynamic polarisation method was utilised to study the corrosion performance of the coatings. Raman spectroscopy was used to study the constituents of the corrosion products and evaluate the corrosion damage. OES measurements revealed that the degree of metal ions (Ti[1+]) increased with increasing degree of HIPIMS utilisation. The hardness, tribological and corrosion properties of TiN coatings improved with increasing degree of HIPIMS utilisation. TiN and multilayer coatings deposited by HIPIMS exhibited a smooth columnar microstructure without any voided region along the column boundaries. TiN/NbN, TiCN/NbCN and CrN/NbN multilayer coatings deposited on CoCr alloy, HSS and SS test buttons exhibited superior mechanical, tribological and corrosion properties as compared to the underlying substrate.
The effects of nail rigidity on fracture healing in rats with osteoporosis
Sha, Mo; Fu, Jun; Li, Jing; Fan Yuan, Chao; Shi, Lei; Jun Li, Shu
2009-01-01
Background and purpose Stress shielding from rigid internal fixation may lead to refracture after removal of the osteosynthesis material. We investigated the effect of a low-rigidity (Ti-24Nb-4Zr-7.9Sn) intramedullary nail regarding stress shielding and bone healing of osteoporotic fractures in the rat. Methods 40 female Sprague-Dawley rats, aged 3 months, were divided into the following groups: sham-operation (SHAM) (n = 10), ovariectomized (OVX) (n = 10) and OVX-fracture (n = 20). 10 SHAM rats and 10 OVX rats were killed after 12 weeks to provide biomechanical data. Ovariectomy was performed 12 weeks before fracturing both femurs in 20 rats. The left fracture was stabilized with a high-rigidity titanium alloy pin (Ti-6Al-4V; elastic modulus 110 GPa) and the right with a low-rigidity (Ti-24Nb-4Zr-7.9Sn; elastic modulus 33 GPa). The bony calluses were examined by micro-CT at 6 and 12 weeks after fracture, bone volume (BV) and total volume (TV) were determined at the callus region (ROI1) and the total femur (ROI2). Subsequently, the bones were tested mechanically by a three-point bending test. Results In the low-rigidity group, TV (ROI1) increased at 6 weeks, but BV (ROI1), BV (ROI2) were similar but maximum load increased. At 12 weeks, the maximum load and also BV (ROI1, ROI2) were increased in the low-rigidity group. Interpretation The low-rigidity nail manufactured from Ti-24Nb-4Zr-7.9Sn showed better external callus formation, seemed to reduce effects of stress shielding, and reduced bone resorption better than the stiffer nail. The low-rigidity nail was strong enough to maintain alignment of the fracture in the osteoporotic rat model without delayed union. PMID:19297794
NASA Technical Reports Server (NTRS)
Okoro, Chika L.
2004-01-01
GRCop-84 was developed to meet the mechanical and thermal property requirements for advanced regeneratively cooled rocket engine main combustion chamber liners. It is a ternary Cu- Cr-Nb alloy having approximately 8 at% Cr and 4 at% Nb. The chromium and niobium constituents combine to form 14 vol% Cr2Nb, the strengthening phase. The alloy is made by producing GRCop-84 powder through gas atomization and consolidating the powder using extrusion, hot isostatic pressing (HIP) or vacuum plasma spraying (VPS). GRCop-84 has been selected by Rocketdyne, Ratt & Wlutney and Aerojet for use in their next generation of rocket engines. GRCop-84 demonstrates favorable mechanical and thermal properties at elevated temperatures. Compared to NARloy-Z, the currently used inaterial in the Space Shuttle, GRCop-84 has approximately twice the yield strength, 10-1000 times the creep life, and 1.5-2.5 times the low cycle fatigue life. The thermal expansion of GRCop-84 is 7515% less than NARloy-Z which minimizes thermally induced stresses. The thermal conductivity of the two alloys is comparable at low temperature but NARloy-Z has a 20-50 W/mK thermal conductivity advantage at typical rocket engine hot wall temperatures. GRCop-84 is also much more microstructurally stable than NARloy-Z which translates into better long term stability of mechanical properties. Previous research into metal alloys fabricated by means of powder metallurgy (PM), has demonstrated that initial powder size can affect the microstructural development and mechanical properties of such materials. Grain size, strength, ductility, size of second phases, etc., have all been shown to vary with starting powder size in PM-alloys. This work focuses on characterizing the effect of varying starting powder size on the microstructural evolution and mechanical properties of as- extruded GRCop-84. Tensile tests and constant load creep tests were performed on extrusions of four powder meshes: +140 mesh (great3er than l05 micron powder size), -140 mesh (less than or equal to 105 microns), -140 plus or minus 270 (53 - 105 microns), and - 270 mesh (less than or equal to 53 microns). Samples were tested in tension at room temperature and at 500 C (932 F). Creep tests were performed under vacuum at 500 C using a stress of 111 MPa (16.1 ksi). The fracture surfaces of selected samples from both tests were studied using a Scanning Electron Microscope (SEM). The as-extruded materials were also studied, using both optical microscopy and SEM analysis, to characterize changes within the microstructure.
[Economic impact of nosocomial bacteraemia. A comparison of three calculation methods].
Riu, Marta; Chiarello, Pietro; Terradas, Roser; Sala, Maria; Castells, Xavier; Knobel, Hernando; Cots, Francesc
2016-12-01
The excess cost associated with nosocomial bacteraemia (NB) is used as a measurement of the impact of these infections. However, some authors have suggested that traditional methods overestimate the incremental cost due to the presence of various types of bias. The aim of this study was to compare three assessment methods of NB incremental cost to correct biases in previous analyses. Patients who experienced an episode of NB between 2005 and 2007 were compared with patients grouped within the same All Patient Refined-Diagnosis-Related Group (APR-DRG) without NB. The causative organisms were grouped according to the Gram stain, and whether bacteraemia was caused by a single or multiple microorganisms, or by a fungus. Three assessment methods are compared: stratification by disease; econometric multivariate adjustment using a generalised linear model (GLM); and propensity score matching (PSM) was performed to control for biases in the econometric model. The analysis included 640 admissions with NB and 28,459 without NB. The observed mean cost was €24,515 for admissions with NB and €4,851.6 for controls (without NB). Mean incremental cost was estimated at €14,735 in stratified analysis. Gram positive microorganism had the lowest mean incremental cost, €10,051. In the GLM, mean incremental cost was estimated as €20,922, and adjusting with PSM, the mean incremental cost was €11,916. The three estimates showed important differences between groups of microorganisms. Using enhanced methodologies improves the adjustment in this type of study and increases the value of the results. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Hynowska, A; Blanquer, A; Pellicer, E; Fornell, J; Suriñach, S; Baró, M D; Gebert, A; Calin, M; Eckert, J; Nogués, C; Ibáñez, E; Barrios, L; Sort, J
2015-11-01
The microstructure, mechanical behaviour, and biocompatibility (cell culture, morphology, and cell adhesion) of nanostructured Ti45 Zr15 Pd35- x Si5 Nbx with x = 0, 5 (at. %) alloys, synthesized by arc melting and subsequent Cu mould suction casting, in the form of rods with 3 mm in diameter, are investigated. Both Ti-Zr-Pd-Si-(Nb) materials show a multi-phase (composite-like) microstructure. The main phase is cubic β-Ti phase (Im3m) but hexagonal α-Ti (P63/mmc), cubic TiPd (Pm3m), cubic PdZr (Fm3m), and hexagonal (Ti, Zr)5 Si3 (P63/mmc) phases are also present. Nanoindentation experiments show that the Ti45 Zr15 Pd30 Si5 Nb5 sample exhibits lower Young's modulus than Ti45 Zr15 Pd35 Si5 . Conversely, Ti45 Zr15 Pd35 Si5 is mechanically harder. Actually, both alloys exhibit larger values of hardness when compared with commercial Ti-40Nb, (HTi-Zr-Pd-Si ≈ 14 GPa, HTi-Zr-Pd-Si-Nb ≈ 10 GPa and HTi-40Nb ≈ 2.7 GPa). Concerning the biological behaviour, preliminary results of cell viability performed on several Ti-Zr-Pd-Si-(Nb) discs indicate that the number of live cells is superior to 94% in both cases. The studied Ti-Zr-Pd-Si-(Nb) bulk metallic system is thus interesting for biomedical applications because of the outstanding mechanical properties (relatively low Young's modulus combined with large hardness), together with the excellent biocompatibility. © 2014 Wiley Periodicals, Inc.
Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran
2016-10-01
The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications
NASA Astrophysics Data System (ADS)
Pauline, S. Anne; Rajendran, N.
2014-01-01
Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.
Superelasticity, corrosion resistance and biocompatibility of the Ti-19Zr-10Nb-1Fe alloy.
Xue, Pengfei; Li, Yan; Li, Kangming; Zhang, Deyuan; Zhou, Chungen
2015-05-01
Microstructure, mechanical properties, superelasticity and biocompatibility of a Ti-19Zr-10Nb-1Fe alloy are investigated. X-ray diffraction spectroscopy and transmission electron microscopy observations show that the as-cast Ti-19Zr-10Nb-1Fe alloy is composed of α' and β phases, but only the β phase exists in the as-rolled and as-quenched alloys. The tensile stress-strain tests indicate that the as-quenched alloy exhibits a good combination of mechanical properties with a large elongation of 25%, a low Young's modulus of 59 GPa and a high ultimate tensile stress of 723 MPa. Superelastic recovery behavior is found in the as-quenched alloy during tensile tests, and the corresponding maximum of superelastic strain is 4.7% at the pre-strain of 6%. A superelastic recovery of 4% with high stability is achieved after 10 cyclic loading-unloading training processes. Potentiodynamic polarization and ion release measurements indicate that the as-quenched alloy shows a lower corrosion rate in Hank's solution and a much less ion release rate in 0.9% NaCl solution than those of the NiTi alloys. Cell culture results indicate that the osteoblasts' adhesion and proliferation are similar on both the Ti-19Zr-10Nb-1Fe and NiTi alloys. A better hemocompatibility is confirmed for the as-quenched Ti-19Zr-10Nb-1Fe alloy, attributed to more stable platelet adhesion and small activation degree, and a much lower hemolysis rate compared with the NiTi alloy. Copyright © 2015 Elsevier B.V. All rights reserved.
Laminated NbTi-on-Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics
NASA Astrophysics Data System (ADS)
Walter, Alex B.; Bockstiegel, Clinton; Mazin, Benjamin A.; Daal, Miguel
2017-11-01
Large arrays of superconducting devices such as microwave kinetic inductance detectors require high density interconnects from higher temperatures with minimal heat load, low loss, and negligible crosstalk capable of carrying large and overlapping bandwidth signals. We report the fabrication of superconducting 53 wt% Nb-47 wt% Ti (Nb-47Ti) microstrip transmission lines laminated onto flexible polyimide substrates with lengths up to 40 cm and up to ten traces. The 50 Ω traces terminate in G3PO coaxial push-on connectors. We found transmission losses of 2.5 dB and a nearest-neighbor forward crosstalk of -25 dB at 8 GHz on a typical 5 trace, 1.8-cm-wide, 0.198-mm-thick, 22-cm-long flex cable at 30 mK. A simple two-port analytical model and subsequent Sonnet simulations indicate that this loss is mainly due to a complex impedance mismatch from wirebonds at the end connector without which the insertion loss would be < 2.7 dB/m. This is about six times worse than the transmission measured in Coax Company, Ltd.'s smallest ( 0.86 mm) Nb-47Ti coaxial cables, possibly from differences in the low temperature loss properties of polyimide laminates versus PTFE or from unaccounted resistive losses in the copper adapter coaxes of our tested device. Heat flow calculations from literature data show that the 0.198-mm-thick flex cables tested have roughly equivalent thermal conductance per trace below 4 K compared to the 0.86 mm Nb-47Ti coaxial cables.
Tian, Ruicheng; Chen, Jing; Gao, Hongxiang; Xie, Chenjie; Shan, Yuhua; Zhang, Zhen; Gu, Song; Xu, Min
2018-01-01
The proto-oncogene MYC can trigger the unfolded protein response (UPR). The double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), one of three primary branches of the UPR, is a key regulator of autophagy, promoting tumorigenesis. Upon activation of PERK, there is an increase in phosphorylation of the eukaryotic initiation factor-2 alpha (eIF2α), which in turn, activates the transcription factor-4 (ATF4), responsible for an increased expression of LC3, a common autophagy marker. PERK is repressed upon GLI1 and GLI2 induction. GANT-61 is an inhibitor of GLI1 and GLI2, known to reduce autophagy in MYCN non-amplified, but not in MYCN amplified neuroblastoma (NB) cells. In our study, we tested the effect of the joint administration of a PERK inhibitor (GSK2606414) and the GLI inhibitor GANT-61 to MYCN amplified and MYCN non-amplified NB cells. Our results suggest that inhibition of PERK impairs GANT-61 induced autophagy in NB cells with MYCN amplification, but had no effect on the MYCN non-amplified NB cells. In summary, PERK seems to be a good therapeutic target for NB. Inhibition of PERK reduces autophagy in MYCN amplified NB cells, thus amplifying the efficacy of the GLI inhibitor GANT-61 in reducing proliferation of this type of cancer cells. PMID:29581853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Wentao, E-mail: wtqu@xsyu.edu.cn
The phase transformation and microstructures of the deformed Ti-30Zr-5Nb shape memory alloy were investigated. The X-ray diffraction measurements indicated that the Ti-30Zr-5Nb alloy was composed of a single orthorhombic α″-martensite phase. The alloy exhibited one yielding behavior in the tensile test, with a critical stress of ~ 600 MPa and a tensile strain of approximately 15%. A shape memory recovery accompanied by a permanent strain was exhibited in the deformed alloys when heated at 873 K. The permanent strain increased with increasing pre-strain. The microstructure evolution of the deformed alloy was investigated by transmission electron microscopy. The results showed thatmore » the martensite reorientation occurred and the dislocations were generated during deformation. The alloy displayed a reversible martensite transformation start temperature as high as 763 K. However, no strain-induced martensite stabilization was found in the deformed alloy with different pre-strain levels, potentially because the large chemical energy of the Ti-30Zr-5Nb alloy depressed the effects of the elastic energy and the dissipative energy. - Highlights: • Ti-30Zr-5Nb alloy is composed of single orthorhombic α″-martensite phase with M{sub s} of 721 K. • No martensite stabilization has been found in Ti-30Zr-5Nb alloy with different pre-strain. • Ti-30Zr-5Nb shows the maximum shape memory effect of 2.75% with a pre-strain of 8%.« less
NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qirong; Li, Yuexing; Hernquist, Lars
2015-02-10
We study the convergence properties of smoothed particle hydrodynamics (SPH) using numerical tests and simple analytic considerations. Our analysis shows that formal numerical convergence is possible in SPH only in the joint limit N → ∞, h → 0, and N{sub nb} → ∞, where N is the total number of particles, h is the smoothing length, and N{sub nb} is the number of neighbor particles within the smoothing volume used to compute smoothed estimates. Previous work has generally assumed that the conditions N → ∞ and h → 0 are sufficient to achieve convergence, while holding N{sub nb} fixed.more » We demonstrate that if N{sub nb} is held fixed as the resolution is increased, there will be a residual source of error that does not vanish as N → ∞ and h → 0. Formal numerical convergence in SPH is possible only if N{sub nb} is increased systematically as the resolution is improved. Using analytic arguments, we derive an optimal compromise scaling for N{sub nb} by requiring that this source of error balance that present in the smoothing procedure. For typical choices of the smoothing kernel, we find N{sub nb} ∝N {sup 0.5}. This means that if SPH is to be used as a numerically convergent method, the required computational cost does not scale with particle number as O(N), but rather as O(N {sup 1} {sup +} {sup δ}), where δ ≈ 0.5, with a weak dependence on the form of the smoothing kernel.« less
Nb 3Sn RRP® strand and Rutherford cable development for a 15 T dipole demonstrator
Barzi, E.; Andreev, N.; Li, P.; ...
2016-03-16
Keystoned Rutherford cables made of 28 strands and with a stainless steel core were developed and manufactured using 1 mm Nb3Sn composite wires produced by Oxford Superconducting Technology with 127 and 169 restacks using the Restacked-Rod-Process ®. Furthermore, the performance and properties of these cables were studied to evaluate possible candidates for 15 T accelerator magnets.
Kim, Eun Kyung; Kim, Sewha
2016-03-17
Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.
Kim, Eun Kyung; Kim, Sewha
2017-01-01
Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.
Predicting stem borer density in maize using RapidEye data and generalized linear models
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Elfatih M.; Landmann, Tobias; Kyalo, Richard; Ong'amo, George; Mwalusepo, Sizah; Sulieman, Saad; Ru, Bruno Le
2017-05-01
Average maize yield in eastern Africa is 2.03 t ha-1 as compared to global average of 6.06 t ha-1 due to biotic and abiotic constraints. Amongst the biotic production constraints in Africa, stem borers are the most injurious. In eastern Africa, maize yield losses due to stem borers are currently estimated between 12% and 21% of the total production. The objective of the present study was to explore the possibility of RapidEye spectral data to assess stem borer larva densities in maize fields in two study sites in Kenya. RapidEye images were acquired for the Bomet (western Kenya) test site on the 9th of December 2014 and on 27th of January 2015, and for Machakos (eastern Kenya) a RapidEye image was acquired on the 3rd of January 2015. Five RapidEye spectral bands as well as 30 spectral vegetation indices (SVIs) were utilized to predict per field maize stem borer larva densities using generalized linear models (GLMs), assuming Poisson ('Po') and negative binomial ('NB') distributions. Root mean square error (RMSE) and ratio prediction to deviation (RPD) statistics were used to assess the models performance using a leave-one-out cross-validation approach. The Zero-inflated NB ('ZINB') models outperformed the 'NB' models and stem borer larva densities could only be predicted during the mid growing season in December and early January in both study sites, respectively (RMSE = 0.69-1.06 and RPD = 8.25-19.57). Overall, all models performed similar when all the 30 SVIs (non-nested) and only the significant (nested) SVIs were used. The models developed could improve decision making regarding controlling maize stem borers within integrated pest management (IPM) interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hmila, Issam; Cosyns, Bernard; Tounsi, Hayfa
2012-10-15
Scorpions represent a significant threat to humans and animals in various countries throughout the world. Recently, we introduced Nanobodies (Nbs) to combat more efficiently scorpion envenoming and demonstrated the performance of NbAahIF12 and NbAahII10 to neutralize scorpion toxins of Androctonus australis hector venom. A bispecific Nb construct (NbF12-10) comprising these two Nbs is far more protective than the classic Fab′{sub 2} based therapy and is the most efficient antivenom therapy against scorpion sting in preclinical studies. Now we investigate the biodistribution and pharmacokinetics of {sup 99m}Tc labeled Nbs by in vivo imaging in rodents and compared these data with thosemore » of the Fab′{sub 2} product (PAS). The pharmacodynamics of the Nbs was investigated in rats by in vivo echocardiography and it is shown that NbF12-10 prevents effectively the hemodynamic disturbances induced by a lethal dose of venom. Moreover, even a late injection of NbF12-10 restores the heart rate and brings the blood pressure to baseline values. Histology confirms that NbF12-10 prevents lung and heart lesions of treated mice after envenoming. In conjunction, in this preclinical study, we provide proof of concept that NbF12-10 prevents effectively the fatal disturbances induced by Androctonus venom, and that the Nanobody based therapeutic has a potential to substitute the classic Fab′{sub 2} based product as immunotherapeutic in scorpion envenoming. Further clinical study using larger cohorts of animals should be considered to confirm the full protecting potential of our NbF12-10. -- Highlights: ► Nanobody therapy prevents the hemodynamic disturbances induced by a lethal dose. ► Late injection of Nanobody restores hemodynamic parameters to baseline values. ► Nanobody therapy prevents lung and heart lesions of treated mice after envenoming. ► Labeled Nanobody and Fab’2 pharmacokinetics curves reach plateau in favour of Nanobody.« less
NASA Astrophysics Data System (ADS)
Nishimura, A.; Takeuchi, T.; Nishijima, S.; Ochiai, K.; Nishijima, G.; Watanabe, K.; Shikama, T.
2010-04-01
To investigate the effect of neutron irradiation on superconducting properties, a collaboration network was established among superconducting material engineering and neutronics fields. Within the framework, irradiation test of Nb3Sn and Nb3Al wires by 14 MeV fusion neutron was planned and carried out at Fusion Neutronics Source in Japan Atomic Energy Agency. After the irradiation, critical current and critical magnetic field were measured with 28 T hybrid magnet at Institute for Metals Research in Tohoku University. The irradiation to 3.52×1020 n/m2 showed a slight increase of the critical current of the Nb3Sn wire, and the irradiation to 1.78×1021 n/m2 made the critical current appreciably larger. Regarding the critical magnetic field, no clear change was observed. In the case of Nb3Al wire, a sample irradiated to 1.78×1021 n/m2 showed no increase of the critical current below 200 A which was the limit of the power supply. As for the critical magnetic field, there was no clear improvement similar to the Nb3Sn wire. The increase of the critical current would be caused by knock-on effect of the fast neutron.
Description of a Nanobody-based Competitive Immunoassay to Detect Tsetse Fly Exposure
Caljon, Guy; Hussain, Shahid; Vermeiren, Lieve; Van Den Abbeele, Jan
2015-01-01
Background Tsetse flies are the main vectors of human and animal African trypanosomes. The Tsal proteins in tsetse fly saliva were previously identified as suitable biomarkers of bite exposure. A new competitive assay was conceived based on nanobody (Nb) technology to ameliorate the detection of anti-Tsal antibodies in mammalian hosts. Methodology/Principal Findings A camelid-derived Nb library was generated against the Glossina morsitans morsitans sialome and exploited to select Tsal specific Nbs. One of the three identified Nb families (family III, TsalNb-05 and TsalNb-11) was found suitable for anti-Tsal antibody detection in a competitive ELISA format. The competitive ELISA was able to detect exposure to a broad range of tsetse species (G. morsitans morsitans, G. pallidipes, G. palpalis gambiensis and G. fuscipes) and did not cross-react with the other hematophagous insects (Stomoxys calcitrans and Tabanus yao). Using a collection of plasmas from tsetse-exposed pigs, the new test characteristics were compared with those of the previously described G. m. moristans and rTsal1 indirect ELISAs, revealing equally good specificities (> 95%) and positive predictive values (> 98%) but higher negative predictive values and hence increased sensitivity (> 95%) and accuracy (> 95%). Conclusion/Significance We have developed a highly accurate Nb-based competitive immunoassay to detect specific anti-Tsal antibodies induced by various tsetse fly species in a range of hosts. We propose that this competitive assay provides a simple serological indicator of tsetse fly presence without the requirement of test adaptation to the vertebrate host species. In addition, the use of monoclonal Nbs for antibody detection is innovative and could be applied to other tsetse fly salivary biomarkers in order to achieve a multi-target immunoprofiling of hosts. In addition, this approach could be broadened to other pathogenic organisms for which accurate serological diagnosis remains a bottleneck. PMID:25658871
Xu, Wei; Li, Ming; Wen, Cuie; Lv, Shaomin; Liu, Chengcheng; Lu, Xin
2018-01-01
A biocompatible Ti-28Nb-35.4Zr alloy used as bone implant was fabricated through the powder metallurgy process. The effects of mechanical milling and sintering temperatures on the microstructure and mechanical properties were investigated systematically, before in vitro biocompatibility of full dense Ti-28Nb-35.4Zr alloy was evaluated by cytotoxicity tests. The results show that the mechanical milling and sintering temperatures have significantly effects on the density and mechanical properties of the alloys. The relative density of the alloy fabricated by the atomized powders at 1500 °C is only 83 ± 1.8%, while the relative density of the alloy fabricated by the ball-milled powders can rapidly reach at 96.4 ± 1.3% at 1500 °C. When the temperature was increased to 1550 °C, the alloy fabricated by ball-milled powders achieve full density (relative density is 98.1 ± 1.2%). The PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C can achieve a wide range of mechanical properties, with a compressive yield strength of 1058 ± 35.1 MPa, elastic modulus of 50.8 ± 3.9 GPa, and hardness of 65.8 ± 1.5 HRA. The in vitro cytotoxicity test suggests that the PM-fabricated Ti-28Nb-35.4Zr alloy by ball-milled powders at 1550 °C has no adverse effects on MC3T3-E1 cells with cytotoxicity ranking of 0 grade, which is nearly close to ELI Ti-6Al-4V or CP Ti. These properties and the net-shape manufacturability makes PM-fabricated Ti-28Nb-35.4Zr alloy a low-cost, highly-biocompatible, Ti-based biomedical alloy. PMID:29601517
Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in ‘Thatcher’ Wheat
Hiebert, Colin W.; Kolmer, James A.; McCartney, Curt A.; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N.; Spielmeyer, Wolfgang
2016-01-01
Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. ‘Thatcher’ wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in ‘Thatcher’ and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for ‘Thatcher’-derived APR in several environments and this resistance was enhanced in the presence of Lr34. PMID:27309724
Major Gene for Field Stem Rust Resistance Co-Locates with Resistance Gene Sr12 in 'Thatcher' Wheat.
Hiebert, Colin W; Kolmer, James A; McCartney, Curt A; Briggs, Jordan; Fetch, Tom; Bariana, Harbans; Choulet, Frederic; Rouse, Matthew N; Spielmeyer, Wolfgang
2016-01-01
Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effective stem rust resistance genes. 'Thatcher' wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was to examine APR in 'Thatcher' and look for genetic interactions with Lr34. A RIL population was tested for stem rust resistance in field nurseries in Canada, USA, and Kenya. BSA was used to find SNP markers associated with reduced stem rust severity. A major QTL was identified on chromosome 3BL near the centromere in all environments. Seedling testing showed that Sr12 mapped to the same region as the QTL for APR. The SNP markers were physically mapped and the region carrying the resistance was searched for sequences with homology to members of the NB-LRR resistance gene family. SNP marker from one NB-LRR-like sequence, NB-LRR3 co-segregated with Sr12. Two additional populations, including one that lacked Lr34, were tested in field nurseries. NB-LRR3 mapped near the maximum LOD for reduction in stem rust severity in both populations. Lines from a population that segregated for Sr12 and Lr34 were tested for seedling Pgt biomass and infection type, as well as APR to field stem rust which showed an interaction between the genes. We concluded that Sr12, or a gene closely linked to Sr12, was responsible for 'Thatcher'-derived APR in several environments and this resistance was enhanced in the presence of Lr34.
Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.
Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S
2010-02-01
Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water-pressurized bladders, and we analyze the expected coil stresses with a two-dimensional finite element mechanical model.
Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses
Qin, Chunling; Zhao, Weimin; Inoue, Akihisa
2011-01-01
This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni) and Cu–Zr–Ag–Al–(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance. PMID:21731441
High pressure transport and structural studies on Nb 3Ga superconductor
Mkrtcheyan, Vahe; Kumar, Ravhi; Baker, Jason; ...
2014-11-24
We investigated the crystal structure of A-15 superconductor Nb 3Ga with a critical temperature T c = 16.5 K by high pressure x-ray diffraction (HPXRD) using synchrotron x-rays and a diamond anvil cell under Ne pressure medium. Furthermore, the high pressure structural results indicate that Nb 3Ga is stable up to 41 GPa. The P-V plot shows an anomaly around 15 GPa even though there are no pressure induced structural transitions are observed. High pressure resistance measurements were performed up to 0.5 GPa to understand the variation of T c under pressure. Finally, our results show a positive pressure effectmore » on T c.« less
Integrated Microphotonic Receiver for Ka-Band
NASA Technical Reports Server (NTRS)
Levi, A. F. J.
2005-01-01
This report consists of four main sections. Part I: LiNbO3 microdisk resonant optical modulator. Brief review of microdisk optical resonator and RF ring resonator. Microwave and photonic design challenges for achieving simultaneous RF-optical resonance are addressed followed by our solutions. Part II: Experimental demonstration of LiNbO3 microdisk modulator performance in wired and wireless RF-optical links. Part III: Microphotonic RF receiver architecture that exploits the nonlinear modulation in the LiNbO3 microdisk modulator to achieve direct photonic down-conversion from RF carrier without using any high-speed electronic elements. Part IV: Ultimate sensitivity of the microdisk photonic receiver and the future road map toward a practical device.
Mohamed, Mona A; Hasan, Menna M; Abdullah, Ibrahim H; Abdellah, Ahmed M; Yehia, Ali M; Ahmed, Nashaat; Abbas, Walaa; Allam, Nageh K
2018-08-01
A strategy for trace-level carbon-based electrochemical sensors is investigated via exploring the interesting properties of BaNb 2 O 6 nanofibers (NFs). Utilizing adsorptive stripping square wave voltammetry (ASSWV), an electrochemical sensing platform was developed based on BaNb 2 O 6 nanofibers-modified carbon paste electrode (CPE) for the sensitive detection of lornoxicam (LOR). Different techniques were used to characterize the fabricated BaNb 2 O 6 perovskite NFs. The obtained data show the feasibility to electro-oxidize LOR and paracetamol (PAR) on the surface of the fabricated sensor. The amount of nanofiber and testing conditions were optimized using response surface methodology and ASSWV technique. The optimized BaNb 2 O 6 /CPE sensor exhibits low detection limit of 6.39 × 10 -10 mol L -1 , even in the presence of the co-formulated drug paracetamol (PAR). The sensor was successfully applied for biological applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of swabs and transport media for the recovery of Yersinia pestis.
Gilbert, Sarah E; Rose, Laura J; Howard, Michele; Bradley, Meranda D; Shah, Sanjiv; Silvestri, Erin; Schaefer, Frank W; Noble-Wang, Judith
2014-01-01
The Government Accountability Office report investigating the surface sampling methods used during the 2001 mail contamination with Bacillus anthracis brought to light certain knowledge gaps that existed regarding environmental sampling with biothreat agents. Should a contamination event occur that involves non-spore forming biological select agents, such as Yersinia pestis, surface sample collection and processing protocols specific for these organisms will be needed. Two Y. pestis strains (virulent and avirulent), four swab types (polyester, macrofoam, rayon, and cotton), two pre-moistening solutions, six transport media, three temperatures, two levels of organic load, and four processing methods (vortexing, sonicating, combined sonicating and vortexing, no agitation) were evaluated to determine the conditions that would yield the highest percent of cultivable Y. pestis cells after storage. The optimum pre-moistening agent/transport media combination varied with the Y. pestis strain and swab type. Directly inoculated macrofoam swabs released the highest percent of cells into solution (93.9% recovered by culture) and rayon swabs were considered the second best swab option (77.0% recovered by culture). Storage at 4°C was found to be optimum for all storage times and transport media. In a worst case scenario, where the Y. pestis strain is not known and sample processing and analyses could not occur until 72h after sampling, macrofoam swabs pre-moistened with PBS supplemented with 0.05% Triton X-100 (PBSTX), stored at 4°C in neutralizing buffer (NB) as a transport medium (PBSTX/NB) or pre-moistened with NB and stored in PBSTX as a transport medium (NB/PBSTX), then vortexed 3min in the transport medium, performed significantly better than all other conditions for macrofoam swabs, regardless of strain tested (mean 12 - 72h recovery of 85.9-105.1%, p<0.001). In the same scenario, two combinations of pre-moistening medium/transport medium were found to be optimal for rayon swabs stored at 4°C (p<0.001), then sonicated 3min in the transport medium; PBSTX/PBSTX and NB/PBSTX (mean 12-72h recovery of 83.7-110.1%). © 2013.
Bénard, Jean; Raguénez, Gilda; Kauffmann, Audrey; Valent, Alexander; Ripoche, Hugues; Joulin, Virginie; Job, Bastien; Danglot, Gisèle; Cantais, Sabrina; Robert, Thomas; Terrier-Lacombe, Marie-José; Chassevent, Agnès; Koscielny, Serge; Fischer, Matthias; Berthold, Frank; Lipinski, Marc; Tursz, Thomas; Dessen, Philippe; Lazar, Vladimir; Valteau-Couanet, Dominique
2008-10-01
Stage 4 neuroblastoma (NB) are heterogeneous regarding their clinical presentations and behavior. Indeed infants (stage 4S and non-stage 4S of age <365days at diagnosis) show regression contrasting with progression in children (>365days). Our study aimed at: (i) identifying age-based genomic and gene expression profiles of stage 4 NB supporting this clinical stratification; and (ii) finding a stage 4S NB signature. Differential genome and transcriptome analyses of a learning set of MYCN-non amplified stage 4 NB tumors at diagnosis (n=29 tumors including 12 stage 4S) were performed using 1Mb BAC microarrays and Agilent 22K probes oligo-microarrays. mRNA chips data following filtering yielded informative genes before supervised hierarchical clustering to identify relationship among tumor samples. After confirmation by quantitative RT-PCR, a stage 4S NB's gene cluster was obtained and submitted to a validation set (n=22 tumors). Genomic abnormalities of infant's tumors (whole chromosomes gains or loss) differ radically from that of children (intra-chromosomal rearrangements) but could not discriminate infants with 4S from those without this presentation. In contrast, differential gene expression by looking at both individual genes and whole biological pathways leads to a molecular stage 4S NB portrait which provides new biological clues about this fascinating entity.
Tunneling study of SRF cavity-grade niobium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proslier, T.; Zasadzinski, J.; Cooley, L.
Niobium, with its very high H{sub C1}, has been used in superconducting radio frequency (SRF) cavities for accelerator systems for 40 years with continual improvement. The quality factor of cavities (Q) is governed by the surface impedance R{sub BCS}, which depends on the quasiparticle gap, delta, and the superfluid density. Both of these parameters are seriously affected by surface imperfections (metallic phases, dissolved oxygen, magnetic impurities). Loss mechanism and surface treatments of Nb cavities found to improve the Q factor are still unsolved mysteries. We present here an overview of the capabilities of the point contact tunneling spectroscopy and Atomicmore » layer deposition methods and how they can help understanding the High field Q-drop and the mild baking effect. Tunneling spectroscopy was performed on Nb pieces from the same processed material used to fabricate SRF cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Delta = 1.55 meV, characteristic of clean, bulk Nb, however the tunneling density of states (DOS) was broadened significantly. Nb pieces treated with the same mild baking used to improve the Q-slope in SRF cavities revealed a much sharper DOS. Good fits to the DOS are obtained using Shiba theory suggesting that magnetic scattering of quasiparticles is the origin of the degraded surface superconductivity and the Q-slope problem of Nb SRF cavities.« less
Di Pietro, Cinzia; Ragusa, Marco; Barbagallo, Davide; Duro, Laura R; Guglielmino, Maria R; Majorana, Alessandra; Giunta, Veronica; Rapisarda, Antonella; Tricarichi, Elisa; Miceli, Marco; Angelica, Rosario; Grillo, Agata; Banelli, Barbara; Defferari, Isabella; Forte, Stefano; Laganà, Alessandro; Bosco, Camillo; Giugno, Rosalba; Pulvirenti, Alfredo; Ferro, Alfredo; Grzeschik, Karl H; Di Cataldo, Andrea; Tonini, Gian P; Romani, Massimo; Purrello, Michele
2008-01-01
Background The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. Results To verify our hypothesis, we analyzed the involvement in Neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2β (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2α (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2β mRNA had also genomic deletions at the corresponding locus. Conclusion Our data show that NC2β is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2β, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells. PMID:18538002
NASA Astrophysics Data System (ADS)
Schmidt, E.; Ritter, K.; Gärtner, K.; Wendler, E.
2017-10-01
Differently oriented LiNbO3 crystals were implanted at room temperature with 1 MeV iodine ions to fluences between 2 × 1013 and 1 × 1014 cm-2, which cover the transition from a low damage level up to complete amorphisation. The aim of this work was to explore the use of nuclear reaction analysis (NRA) in combination with Rutherford backscattering spectrometry (RBS) in channelling configuration for studying the damage evolution as a function of the ion fluence in both the Li and Nb sublattice. Protons with energies between 1.4 and 1.6 MeV and a standard RBS setup were used. Scattering events detected at low energies result from Rutherford backscattering of protons on Nb and O atoms. At high energies alpha particles are registered, which result from the nuclear reaction between protons and Li atoms. Along different low-index crystallographic directions channelling effects within both the RBS and NRA part of the spectra are observed. However, the strength of channeling within the NRA part depends on the crystallographic direction investigated. These effects are explained by the nature of ion-channelling with respect to the small atomic number of Li and is supported by calculations of minimum yields (ratio of scattering yield in aligned and random direction) applying the computer code DICADA. The consequence is that damage studies with NRA can be only performed in Z-direction of LiNbO3. In this case, the Li and Nb sublattice were found to be similarly damaged after 1 MeV iodine implantation.
Yáñez, Yania; Hervás, David; Grau, Elena; Oltra, Silvestre; Pérez, Gema; Palanca, Sarai; Bermúdez, Mar; Márquez, Catalina; Cañete, Adela; Castel, Victoria
2016-03-01
In metastatic neuroblastoma (NB) patients, accurate risk stratification and disease monitoring would reduce relapse probabilities. This study aims to evaluate the independent prognostic significance of detecting tyrosine hydroxylase (TH) and doublecortin (DCX) mRNAs by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in peripheral blood (PB) and bone marrow (BM) samples from metastatic NB patients. RT-qPCR was performed on PB and BM samples from metastatic NB patients at diagnosis, post-induction therapy and at the end of treatment for TH and DCX mRNAs detection. High levels of TH and DCX mRNAs when detected in PB and BM at diagnosis independently predicted worse outcome in a cohort of 162 metastatic NB. In the subgroup of high-risk metastatic NB, TH mRNA detected in PB remained as independent predictor of EFS and OS at diagnosis. After the induction therapy, high levels of TH mRNA in PB and DCX mRNA in BM independently predicted poor EFS and OS. Furthermore TH mRNA when detected in BM predicted worse EFS. TH mRNA in PB samples at the end of treatment is an independent predictor of worse outcome. TH and DCX mRNAs levels in PB and BM assessed by RT-qPCR should be considered in new pre-treatment risk stratification strategies to reliable estimate outcome differences in metastatic NB patients. In those high-risk metastatic NB, TH and DCX mRNA quantification could be used for the assessment of response to treatment and for early detection of progressive disease or relapses.
NASA Astrophysics Data System (ADS)
Chen, Wei; Hu, Yin; Ba, Mingwei
2018-03-01
Ru nanoparticles supported on perovskite NaNbO3 with cubic crystal structure and nanoflower-like morphology was prepared by a convenient solvothermal method combined with photo-deposition technique. Crystal structure, chemical component and surface valence states determined by XRD, XPS, TEM and SEM demonstrated the metastable cubic phase of perovskite NaNbO3, and its modified surface by Ru species. Optical and electrochemical analysis, such as UV-vis DRS, OTCS and EIS, indicated the excellent photoelectrochemical properties and the efficient electron transfer of the composites. Compared with naked and Ru-doped NaNbO3, the composite photocatalyst exhibited outstanding performance for the degradation of RhB under visible light irradiation due to the dye self-photosensitization and the surface interaction between Ru metal nanoparticles and semiconductor. In-situ reduction of surface Ru oxide species in the photocatalytic process assisted the further improvement of the photocatalytic activity and stability. Investigation of the main active species during the photocatalysis confirmed the efficient transfer of the photo-generated electrons and the positive effect of oxygen defects in NaNbO3. Finally, possible mechanism of the present visible-light driven photocatalysis was proposed in detail. This work provided an alternative strategy to enhance the visible-light photocatalytic efficiency of the catalyst with wide band gap on the basis of the synergistic effect of dye self-photosensitization, interaction between NaNbO3 and its surface Ru nanoparticles, and the "self-doping" of oxygen defects in NaNbO3.
Di Pietro, Cinzia; Ragusa, Marco; Barbagallo, Davide; Duro, Laura R; Guglielmino, Maria R; Majorana, Alessandra; Giunta, Veronica; Rapisarda, Antonella; Tricarichi, Elisa; Miceli, Marco; Angelica, Rosario; Grillo, Agata; Banelli, Barbara; Defferari, Isabella; Forte, Stefano; Laganà, Alessandro; Bosco, Camillo; Giugno, Rosalba; Pulvirenti, Alfredo; Ferro, Alfredo; Grzeschik, Karl H; Di Cataldo, Andrea; Tonini, Gian P; Romani, Massimo; Purrello, Michele
2008-06-06
The General Transcription Apparatus (GTA) comprises more than one hundred proteins, including RNA Polymerases, GTFs, TAFs, Mediator, and cofactors such as heterodimeric NC2. This complexity contrasts with the simple mechanical role that these proteins are believed to perform and suggests a still uncharacterized participation to important biological functions, such as the control of cell proliferation. To verify our hypothesis, we analyzed the involvement in neuroblastoma (NB) pathogenesis of GTA genes localized at 1p, one of NB critical regions: through RT-PCR of fifty eight NB biopsies, we demonstrated the statistically significant reduction of the mRNA for NC2beta (localized at 1p22.1) in 74% of samples (p = 0.0039). Transcripts from TAF13 and TAF12 (mapping at 1p13.3 and 1p35.3, respectively) were also reduced, whereas we didn't detect any quantitative alteration of the mRNAs from GTF2B and NC2alpha (localized at 1p22-p21 and 11q13.3, respectively). We confirmed these data by comparing tumour and constitutional DNA: most NB samples with diminished levels of NC2beta mRNA had also genomic deletions at the corresponding locus. Our data show that NC2beta is specifically involved in NB pathogenesis and may be considered a new NB biomarker: accordingly, we suggest that NC2beta, and possibly other GTA members, are physiologically involved in the control of cell proliferation. Finally, our studies unearth complex selective mechanisms within NB cells.
Li Storage of Calcium Niobates for Lithium Ion Batteries.
Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won
2015-10-01
New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.
Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb
NASA Technical Reports Server (NTRS)
Devletian, J. H.; Stephens, J. R.; Witzke, W. R.
1977-01-01
Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.