Science.gov

Sample records for ncfm bifidobacterium bifidum

  1. Bifidobacterium bifidum Actively Changes the Gene Expression Profile Induced by Lactobacillus acidophilus in Murine Dendritic Cells

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Nielsen Fink, Lisbeth; Jarmer, Hanne; Nøhr Nielsen, Birgit; Frøkiær, Hanne

    2010-01-01

    Dendritic cells (DC) play a pivotal regulatory role in activation of both the innate as well as the adaptive immune system by responding to environmental microorganisms. We have previously shown that Lactobacillus acidophilus induces a strong production of the pro-inflammatory and Th1 polarizing cytokine IL-12 in DC, whereas bifidobacteria do not induce IL-12 but inhibit the IL-12 production induced by lactobacilli. In the present study, genome-wide microarrays were used to investigate the gene expression pattern of murine DC stimulated with Lactobacillus acidophilus NCFM and Bifidobacterium bifidum Z9. L. acidophilus NCFM strongly induced expression of interferon (IFN)-β, other virus defence genes, and cytokine and chemokine genes related to the innate and the adaptive immune response. By contrast, B. bifidum Z9 up-regulated genes encoding cytokines and chemokines related to the innate immune response. Moreover, B. bifidum Z9 inhibited the expression of the Th1-promoting genes induced by L. acidophilus NCFM and had an additive effect on genes of the innate immune response and Th2 skewing genes. The gene encoding Jun dimerization protein 2 (JDP2), a transcription factor regulating the activation of JNK, was one of the few genes only induced by B. bifidum Z9. Neutralization of IFN-β abrogated L. acidophilus NCFM-induced expression of Th1-skewing genes, and blocking of the JNK pathway completely inhibited the expression of IFN-β. Our results indicate that B. bifidum Z9 actively inhibits the expression of genes related to the adaptive immune system in murine dendritic cells and that JPD2 via blocking of IFN-β plays a central role in this regulatory mechanism. PMID:20548777

  2. Genome Sequence of the Immunomodulatory Strain Bifidobacterium bifidum LMG 13195

    PubMed Central

    Gueimonde, Miguel; Ventura, Marco; Margolles, Abelardo

    2012-01-01

    In this work, we report the genome sequences of Bifidobacterium bifidum strain LMG13195. Results from our research group show that this strain is able to interact with human immune cells, generating functional regulatory T cells. PMID:23209243

  3. Bifidobacterium bifidum PRL2010 Modulates the Host Innate Immune Response

    PubMed Central

    Turroni, Francesca; Taverniti, Valentina; Ruas-Madiedo, Patricia; Duranti, Sabrina; Guglielmetti, Simone; Lugli, Gabriele Andrea; Gioiosa, Laura; Palanza, Paola; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Here, we describe data obtained from transcriptome profiling of human cell lines and intestinal cells of a murine model upon exposure and colonization, respectively, with Bifidobacterium bifidum PRL2010. Significant changes were detected in the transcription of genes that are known to be involved in innate immunity. Furthermore, results from enzyme-linked immunosorbent assays (ELISAs) showed that exposure to B. bifidum PRL2010 causes enhanced production of interleukin 6 (IL-6) and IL-8 cytokines, presumably through NF-κB activation. The obtained global transcription profiles strongly suggest that Bifidobacterium bifidum PRL2010 modulates the innate immune response of the host. PMID:24242237

  4. Mupirocin-mucin agar for selective enumeration of Bifidobacterium bifidum.

    PubMed

    Pechar, Radko; Rada, Vojtech; Parafati, Lucia; Musilova, Sarka; Bunesova, Vera; Vlkova, Eva; Killer, Jiri; Mrazek, Jakub; Kmet, Vladimir; Svejstil, Roman

    2014-11-17

    Bifidobacterium bifidum is a bacterial species exclusively found in the human intestinal tract. This species is becoming increasingly popular as a probiotic organism added to lyophilized products. In this study, porcine mucin was used as the sole carbon source for the selective enumeration of B. bifidum in probiotic food additives. Thirty-six bifidobacterial strains were cultivated in broth with mucin. Only 13 strains of B. bifidum utilized the mucin to produce acids. B. bifidum was selectively enumerated in eight probiotic food supplements using agar (MM agar) containing mupirocin (100 mg/L) and mucin (20 g/L) as the sole carbon source. MM agar was fully selective if the B. bifidum species was presented together with Bifidobacterium animalis subsp. lactis, Bifidobacterium breve, and Bifidobacterium longum subsp. longum species and with lactic acid bacteria (lactobacilli, streptococci). Isolated strains of B. bifidum were identified using biochemical, PCR, MALDI-TOF procedures and 16S rRNA gene sequencing. The novel selective medium was also suitable for the isolation of B. bifidum strains from human fecal samples.

  5. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07.

    PubMed

    Larsen, Nadja; Vogensen, Finn K; Gøbel, Rikke; Michaelsen, Kim F; Abu Al-Soud, Waleed; Sørensen, Søren J; Hansen, Lars H; Jakobsen, Mogens

    2011-03-01

    The effect of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 on the composition of the Lactobacillus group, Bifidobacterium and the total bacterial population in feces from young children with atopic dermatitis was investigated. The study included 50 children randomized to intake of one of the probiotic strain or placebo. Microbial composition was characterized by denaturing gradient gel electrophoresis, quantitative PCR and, in a subset of subjects, by pyrosequencing of the 16S rRNA gene. The core population of the Lactobacillus group was identified as Lactobacillus gasseri, Lactobacillus fermentum, Lactobacillus oris, Leuconostoc mesenteroides, while the bifidobacterial community included Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium longum and Bifidobacterium catenulatum. The fecal numbers of L. acidophilus and B. lactis increased significantly after intervention, indicating survival of the ingested bacteria. The levels of Bifidobacterium correlated positively (P=0.03), while the levels of the Lactobacillus group negatively (P=0.01) with improvement of atopic eczema evaluated by the Severity Scoring of Atopic Dermatitis index. This correlation was observed across the whole study cohort and not attributed to the probiotic intake. The main conclusion of the study is that administration of L. acidophilus NCFM and B. lactis Bi-07 does not affect the composition and diversity of the main bacterial populations in feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Factors affecting viability of Bifidobacterium bifidum during spray drying.

    PubMed

    Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz

    2015-01-25

    There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing

  7. Feruloyl oligosaccharides stimulate the growth of Bifidobacterium bifidum.

    PubMed

    Yuan, Xiaoping; Wang, Jing; Yao, Huiyuan

    2005-08-01

    Insoluble dietary fiber from wheat bran contains some feruloyl groups linked to the arabinose residues in the cell wall arabinoxylan. Treatment of wheat bran insoluble dietary fiber with xylanase from Bacillus subtilis yielded feruloyl oligosacchairdes, which were purified with Amberlite XAD-2. Saponification of the feruloyl oligosaccharides released ferulic acid and arabinoxylan oligosaccharides which consist of arabinose and xylose. The effect of the feruloyl oligosacchairdes on the growth of Bifidobacterium bifidum F-35 was investigated in vitro. The B. bifidum produced acid when cultivated anaerobically in TPY broth with 0.5% feruloyl oligosacchairdes as the carbohydrate source. The biomass yield of the B. bifidum increased with increasing the concentration of feruloyl oligosaccharides in TPY broth. The maximum cell growth was increased by 50% in TPY broth supplemented with 0.1% feruloyl oligosaccharides compared to TPY broth. These results indicated that the growth of B. bifidum F-35 was promoted by the feruloyl oligosaccharides from wheat bran insoluble dietary fiber, and not suppressed by the ferulic acid moiety of them.

  8. Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010

    PubMed Central

    Ferrario, Chiara; Duranti, Sabrina; Milani, Christian; Mancabelli, Leonardo; Lugli, Gabriele A.; Turroni, Francesca; Mangifesta, Marta; Viappiani, Alice; Ossiprandi, Maria C.; van Sinderen, Douwe; Ventura, Marco

    2015-01-01

    The acquisition and assimilation strategies followed by members of the infant gut microbiota to retrieve nitrogen from the gut lumen are still largely unknown. In particular, no information on these metabolic processes is available regarding bifidobacteria, which are among the first microbial colonizers of the human intestine. Here, evaluation of amino acid auxotrophy and prototrophy of Bifidobacterium bifidum, with particular emphasis on B. bifidum strain PRL2010 (LMG S-28692), revealed a putative auxotrophy for cysteine. In addition, we hypothesized that cysteine plays a role in the oxidative stress response in B. bifidum. The use of glutathione as an alternative reduced sulfur compound did not alleviate cysteine auxotrophy of this strain, though it was shown to stimulate expression of the genes involved in cysteine biosynthesis, reminiscent of oxidative stress response. When PRL2010 was grown on a medium containing complex substrates, such as whey proteins or casein hydrolysate, we noticed a distinct growth-promoting effect of these compounds. Transcriptional analysis involving B. bifidum PRL2010 cultivated on whey proteins or casein hydrolysate revealed that the biosynthetic pathways for cysteine and methionine are modulated by the presence of casein hydrolysate. Such findings support the notion that certain complex substrates may act as potential prebiotics for bifidobacteria in their ecological niche. PMID:26635786

  9. Analysis of Predicted Carbohydrate Transport Systems Encoded by Bifidobacterium bifidum PRL2010

    PubMed Central

    Turroni, Francesca; Strati, Francesco; Foroni, Elena; Serafini, Fausta; Duranti, Sabrina; van Sinderen, Douwe

    2012-01-01

    The Bifidobacterium bifidum PRL2010 genome encodes a relatively small set of predicted carbohydrate transporters. Growth experiments and transcriptome analyses of B. bifidum PRL2010 revealed that carbohydrate utilization in this microorganism appears to be restricted to a relatively low number of carbohydrates. PMID:22562993

  10. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    PubMed Central

    2012-01-01

    Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC) lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant bifidobacteria with improved adhesive

  11. Role of Extracellular Transaldolase from Bifidobacterium bifidum in Mucin Adhesion and Aggregation

    PubMed Central

    González-Rodríguez, Irene; Sánchez, Borja; Ruiz, Lorena; Turroni, Francesca; Ventura, Marco; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2012-01-01

    The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell line HT29 was determined for a collection of 12 B. bifidum strains. In four of them—B. bifidum LMG13195, DSM20456, DSM20239, and A8—the involvement of surface-exposed macromolecules in the aggregation phenomenon was determined. The aggregation of B. bifidum A8 and DSM20456 was abolished after treatment with proteinase K, this effect being more pronounced for the strain A8. Furthermore, a mucin binding assay of B. bifidum A8 surface proteins showed a high adhesive capability for its transaldolase (Tal). The localization of this enzyme on the surface of B. bifidum A8 was unequivocally demonstrated by immunogold electron microscopy experiments. The gene encoding Tal from B. bifidum A8 was expressed in Lactococcus lactis, and the protein was purified to homogeneity. The pure protein was able to restore the autoaggregation phenotype of proteinase K-treated B. bifidum A8 cells. A recombinant L. lactis strain, engineered to secrete Tal, displayed a mucin- binding level more than three times higher than the strain not producing the transaldolase. These findings suggest that Tal, when exposed on the cell surface of B. bifidum, could act as an important colonization factor favoring its establishment in the gut. PMID:22447584

  12. Bifidobacterium bifidum as an example of a specialized human gut commensal

    PubMed Central

    Turroni, Francesca; Duranti, Sabrina; Bottacini, Francesca; Guglielmetti, Simone; Van Sinderen, Douwe; Ventura, Marco

    2014-01-01

    Bifidobacteria are considered dominant and for this reason key members of the human gut microbiota, particularly during the first one to two years following birth. A substantial proportion of the bifidobacterial population in the intestine of infants belong to the Bifidobacterium bifidum taxon, whose members have been shown to display remarkable physiological and genetic features involving adhesion to epithelia, as well as utilization of host-derived glycans. Here, we reviewed the current knowledge on the genetic features and associated adaptations of B. bifidum to the human gut. PMID:25191315

  13. Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism

    PubMed Central

    Ku, Seockmo; Park, Myeong Soo; Ji, Geun Eog; You, Hyun Ju

    2016-01-01

    Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole. PMID:27649150

  14. Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism.

    PubMed

    Ku, Seockmo; Park, Myeong Soo; Ji, Geun Eog; You, Hyun Ju

    2016-09-14

    Bifidobacterium bifidum BGN4 is a probiotic strain that has been used as a major ingredient to produce nutraceutical products and as a dairy starter since 2000. The various bio-functional effects and potential for industrial application of B. bifidum BGN4 has been characterized and proven by in vitro (i.e., phytochemical bio-catalysis, cell adhesion and anti-carcinogenic effects on cell lines, and immunomodulatory effects on immune cells), in vivo (i.e., suppressed allergic responses in mouse model and anti-inflammatory bowel disease), and clinical studies (eczema in infants and adults with irritable bowel syndrome). Recently, the investigation of the genome sequencing was finished and this data potentially clarifies the biochemical characteristics of B. bifidum BGN4 that possibly illustrate its nutraceutical functionality. However, further systematic research should be continued to gain insight for academic and industrial applications so that the use of B. bifidum BGN4 could be expanded to result in greater benefit. This review deals with multiple studies on B. bifidum BGN4 to offer a greater understanding as a probiotic microorganism available in functional food ingredients. In particular, this work considers the potential for commercial application, physiological characterization and exploitation of B. bifidum BGN4 as a whole.

  15. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging

    PubMed Central

    Turroni, Francesca; Bottacini, Francesca; Foroni, Elena; Mulder, Imke; Kim, Jae-Han; Zomer, Aldert; Sánchez, Borja; Bidossi, Alessandro; Ferrarini, Alberto; Giubellini, Vanessa; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Oggioni, Marco; Fitzgerald, Gerald F.; Mills, David; Margolles, Abelardo; Kelly, Denise; van Sinderen, Douwe; Ventura, Marco

    2010-01-01

    The human intestine is densely populated by a microbial consortium whose metabolic activities are influenced by, among others, bifidobacteria. However, the genetic basis of adaptation of bifidobacteria to the human gut is poorly understood. Analysis of the 2,214,650-bp genome of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a nutrient-acquisition strategy that targets host-derived glycans, such as those present in mucin. Proteome and transcriptome profiling revealed a set of chromosomal loci responsible for mucin metabolism that appear to be under common transcriptional control and with predicted functions that allow degradation of various O-linked glycans in mucin. Conservation of the latter gene clusters in various B. bifidum strains supports the notion that host-derived glycan catabolism is an important colonization factor for B. bifidum with concomitant impact on intestinal microbiota ecology. PMID:20974960

  16. Bifidobacterium bifidum Extracellular Sialidase Enhances Adhesion to the Mucosal Surface and Supports Carbohydrate Assimilation.

    PubMed

    Nishiyama, Keita; Yamamoto, Yuji; Sugiyama, Makoto; Takaki, Takashi; Urashima, Tadasu; Fukiya, Satoru; Yokota, Atsushi; Okada, Nobuhiko; Mukai, Takao

    2017-10-03

    Bifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. We studied the role of the extracellular sialidase (SiaBb2, 835 amino acids [aa]) from Bifidobacterium bifidum ATCC 15696 in mucosal surface adhesion and carbohydrate catabolism. Human milk oligosaccharides (HMOs) or porcine mucin oligosaccharides as the sole carbon source enhanced B. bifidum growth. This was impaired in a B. bifidum ATCC 15696 strain harboring a mutation in the siabb2 gene. Mutant cells in early to late exponential growth phase also showed decreased adhesion to human epithelial cells and porcine mucin relative to the wild-type strain. These results indicate that SiaBb2 removes sialic acid from HMOs and mucin for metabolic purposes and may promote bifidobacterial adhesion to the mucosal surface. To further characterize SiaBb2-mediated bacterial adhesion, we examined the binding of His-tagged recombinant SiaBb2 peptide to colonic mucins and found that His-SiaBb2 as well as a conserved sialidase domain peptide (aa 187 to 553, His-Sia) bound to porcine mucin and murine colonic sections. A glycoarray assay revealed that His-Sia bound to the α2,6-linked but not to the α2,3-linked sialic acid on sialyloligosaccharide and blood type A antigen [GalNAcα1-3(Fucα1-2)Galβ] at the nonreducing termini of sugar chains. These results suggest that the sialidase domain of SiaBb2 is responsible for this interaction and that the protein recognizes two distinct carbohydrate structures. Thus, SiaBb2 may be involved in Bifidobacterium-mucosal surface interactions as well as in the assimilation of a variety of sialylated carbohydrates.IMPORTANCE Adhesion to the host mucosal surface and carbohydrate assimilation are important for bifidobacterium colonization and survival in the host gastrointestinal tract. In this study, we investigated the mechanistic basis for B. bifidum extracellular sialidase (SiaBb2)-mediated adhesion. SiaBb2 cleaved sialyl-human milk oligosaccharides and mucin

  17. Effect of microencapsulation methods on the survival of freeze-dried Bifidobacterium bifidum.

    PubMed

    Zhang, Fan; Li, Xiao Yan; Park, Hyun Jin; Zhao, Min

    2013-01-01

    Six kinds of Bifidobacterium bifidum microcapsules were prepared by extrusion methods, emulsion methods and coacervation methods. Effects of preparation methods on the survival of encapsulated B. bifidum were examined. Results showed that microcapsules prepared by emulsion method with alginate and chitosan exhibited the best protection for B. bifidum. The diameter was 10-20 µm, encapsulation efficiency was 90.36% and the live cell amount was 3.01 × 10₉ cfu/g after freeze-drying. Encapsulated cells exhibited significantly higher resistance to artificial gastrointestinal juice and the cell numbers were above 10₉ cfu/g after exposure to simulated gastric (pH 1.2) and bile salt (1%, w/v). Cell numbers of microencapsulated B. bifidum was 8.61 × 10₈ cfu/g after storage at 37°C, relative humidity 60%-65% for 3 months. Results indicated microcapsules prepared with alginate and chitosan by emulsion method could successfully protect B. bifidum against adverse conditions and it might be useful in the delivery of probiotic cultures as a functional food.

  18. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions

    PubMed Central

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U.; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  19. Influence of Bifidobacterium bifidum on release of minerals from bread with differing bran content.

    PubMed

    Nalepa, Beata; Siemianowska, Ewa; Skibniewska, Krystyna Anna

    2012-01-01

    Bread is considered an important source of minerals; however, the presence of fiber and phytic acid reduces bioavailability of minerals from cereal products. It is well established that activity of microorganisms in human gut increases the amount of nutrients released during digestion. The aim of this study was to determine the influence of Bifidobacterium bifidum on release of some minerals from bread using an in vitro process of enzymatic digestion. White bread and with addition of 15, 30, or 45% of bran was baked in a bakery by traditional methods, with addition of yeasts and rye leaven, from flour made of wheat, Tonacja variety. Concentrations of calcium, magnesium, manganese, zinc, copper, and iron were determined by atomic absorption spectrometry. Bread was enzymatically digested in vitro without and with the addition of Bifidobacterium bifidum KD6 (inoculum 10(6) CFU/cm(3)) and percentages of minerals released were determined. The concentration of minerals released during enzymatic digestion varied depending upon the element, quantity of bran, and presence of bacteria. Increase in bran content decreased release of elements. Bifidobacterium bifidum KD6 enhanced amounts of magnesium and zinc released from all types of bread, while manganese and copper rose only from white bread with 15% bran addition. Bacteria decreased amounts of calcium and iron released from bread. Data indicate that diets rich in beneficial bacteria (probiotics) but not balanced with minerals might increase mineral deficiency.

  20. Efficacy of oral Bifidobacterium bifidum ATCC 29521 on microflora and antioxidant in mice.

    PubMed

    Wang, Bao-gui; Xu, Hai-bo; Xu, Feng; Zeng, Zhe-ling; Wei, Hua

    2016-03-01

    This study aimed to examine whether Bifidobacterium bifidum ATCC 29521, a species of colonic microflora in humans, is involved in the intestinal tract of mice. This study was also conducted to determine the antioxidant activity of this species by evaluating different microbial populations and reactive oxygen species isolated from feces and intestinal contents for 28 days of oral administration. Microbial diversities were assessed through bacterial culture techniques, PCR-DGGE, and real-time PCR. This study showed that the intake of B. bifidum ATCC 29521 significantly (p < 0.05) improved the ecosystem of the intestinal tract of BALB/c mice by increasing the amount of probiotics (Lactobacillus intestinalis and Lactobacillus crispatus) and by reducing unwanted bacterial populations (Enterobacter, Escherichia coli). Antioxidative activities of incubated cell-free extracts were evaluated through various assays, including the scavenging ability of DPPH radical (64.5% and 67.54% (p < 0.05), respectively, at 21 days in nutrients and 28 days in MRS broth), superoxide anion, and hydroxyl radical (85% and 61.5% (p < 0.05), respectively, at intestinal contents in nutrients and 21 days in MRS broth). Total reducing power (231.5 μmol/L (p < 0.05), 14 days in MRS broth) and mRNA level of genes related to oxidative stress were also determined. Results indicated that B. bifidum ATCC 29521 elicits a beneficial effect on murine gut microbiota and antioxidant activities compared with the control samples. This species can be considered as a potential bioresource antioxidant to promote health. Bifidobacterium bifidum ATCC 29521 may also be used as a promising material in microbiological and food applications.

  1. Effect of Bifidobacterium bifidum containing yoghurt on dental plaque bacteria in children.

    PubMed

    Caglar, Esber

    2014-01-01

    The aim of the present study is to determine the possible effect of Bifidobacterium bifidum DN-173 010 on dental plaque of children. 52 children (25 F and 27 M), between the ages of 8-10, participated in the present study. The study had a double blind, randomized crossover design and the experimental period consisted of four consecutive time periods. During periods 2 and 4 (2 weeks each), children consumed 110 g probiotic fruit yogurt (Bifidobacterium DN-173 010 (1 x 10(10) cfu/g)), or a placebo fruit yogurt per day. Available supragingival plaque (24 h later) was collected from teeth 16, 11, 36 and 31 at baseline and at the end of periods 2 and 4. The counts of dental plaque mutans streptococci (MS) were evaluated using Dentocult SM (Strep Mutans). Changes of pre- and post-treatment levels of dental plaque MS were recorded for four consecutive sampling sites. There were no statistically differences between transition scores of test and placebo groups regarding different dental plaque sampling sites (p > 0.05) (unpaired t-test). Within the limitations of the present study, Bifidobacterium bifidum DN-173 010 has no effect on dental plaque MS levels in children.

  2. Health benefits of fermented milk containing Bifidobacterium bifidum YIT 10347 on gastric symptoms in adults.

    PubMed

    Gomi, A; Iino, T; Nonaka, C; Miyazaki, K; Ishikawa, F

    2015-04-01

    We conducted a preliminary open trial (trial 1) and a double-blind, placebo-controlled, crossover trial (trial 2) to examine how fermented milk containing the probiotic Bifidobacterium bifidum YIT 10347 affects gastric and lower abdominal symptoms in adults taking no medication. In trial 1, subjects with or without gastric and lower abdominal symptoms ingested fermented milk containing B. bifidum YIT 10347 daily for 2 wk. In trial 2, subjects with gastric symptoms ingested fermented milk containing B. bifidum YIT 10347 (active preparation) or placebo daily for 2 wk, followed by crossover for 3 wk after a washout period. Before (baseline) and 1 and 2 wk after ingestion, subjects completed a questionnaire. In trial 1 (305 subjects), the prevalence of gastric and lower abdominal symptoms was 46 and 58%, respectively, at baseline. Ingestion of B. bifidum YIT 10347 significantly decreased the prevalence of gastric and lower abdominal symptoms from 45 to 33% at 1 wk and to 28% at 2 wk, and from 57 to 40% at 2 wk, respectively. In subjects with gastric symptoms at baseline, the average gastric symptom score per subject significantly decreased by 0.9 at 1 wk and 1.2 at 2 wk. In trial 2 (27 subjects), ingestion of the active preparation significantly decreased the average gastric symptoms score per subject by 1.0 at 1 wk and 1.1 at 2 wk, but ingestion of placebo milk had no effect. No side effects were reported by any subjects in either trial. We conclude that fermented milk containing B. bifidum YIT 10347 has the potential to provide health benefits by alleviating gastric symptoms in subjects taking no medication. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus

    PubMed Central

    Ghazvini, Roshanak Daie; Kouhsari, Ebrahim; Zibafar, Ensieh; Hashemi, Seyed Jamal; Amini, Abolfazl; Niknejad, Farhad

    2016-01-01

    Food and feedstuff contamination with aflatoxins (AFTs) is a serious health problem for humans and animals, especially in developing countries. The present study evaluated antifungal activities of two lactic acid bacteria (LAB) against growth and aflatoxin production of toxigenic Aspergillus parasiticus. The mycelial growth inhibition rate of A. parasiticus PTCC 5286 was investigated in the presence of Bifidobacterium bifidum PTCC 1644 and Lactobacillus fermentum PTCC 1744 by the pour plate method. After seven days incubation in yeast extract sucrose broth at 30°C, the mycelial mass was weighed after drying. The inhibitory activity of LAB metabolites against aflatoxin production by A. parasiticus was evaluated using HPLC method. B. bifidum and L. fermentum significantly reduced aflatoxin production and growth rate of A. parasiticus in comparison with the controls (p≤0.05). LAB reduced total aflatoxins and B1, B2, G1 and G2 fractions by more than 99%. Moreover, LAB metabolites reduced the level of standard AFB1, B2, G1 and G2 from 88.8% to 99.8% (p≤0.05). Based on these findings, B. bifidum and L. fermentum are recommended as suitable biocontrol agents against the growth and aflatoxin production by aflatoxigenic Aspergillus species. PMID:28077976

  4. Implication of an Outer Surface Lipoprotein in Adhesion of Bifidobacterium bifidum to Caco-2 Cells▿

    PubMed Central

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-01-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity. PMID:18539800

  5. Study of the adhesion of Bifidobacterium bifidum MIMBb75 to human intestinal cell lines.

    PubMed

    Guglielmetti, Simone; Tamagnini, Isabella; Minuzzo, Mario; Arioli, Stefania; Parini, Carlo; Comelli, Elena; Mora, Diego

    2009-08-01

    The aim of this study was to investigate the adhesive phenotype of the human intestinal isolate Bifidobacterium bifidum MIMBb75 to human colon carcinoma cell lines. We have previously shown that the adhesion of this strain to Caco-2 cells is mediated by an abundant surface lipoprotein named BopA. In this study, we found that this strain adheres to Caco-2 and HT-29 cells, and that its adhesion strongly depends on the environmental conditions, including the presence of sugars and bile salts and the pH. Considerably more adhesion to a Caco-2 monolayer occurred in the presence of fucose and mannose and less when MIMBb75 grew in Oxgall bile salts compared to standard environmental conditions. In particular, growth in Oxgall bile salts reduced the adhesion ability of MIMBb75 and modified the SDS-PAGE profile of the cell wall associated proteins of the strain. The pH markedly affected both adhesion to Caco-2 and bacterial autoaggregation. Finally, experiments with sodium metaperiodate suggested that not only proteinaceous determinants are involved in the adhesion process of B. bifidum. In conclusion, it seems that the colonization strategy of this bacterium can be influenced by factors varying along the gastrointestinal tract, such as the presence of specific sugars and bile salts and the pH, possibly limiting the adhesion of B. bifidum to only restricted distal sites of the gut.

  6. Implication of an outer surface lipoprotein in adhesion of Bifidobacterium bifidum to Caco-2 cells.

    PubMed

    Guglielmetti, Simone; Tamagnini, Isabella; Mora, Diego; Minuzzo, Mario; Scarafoni, Alessio; Arioli, Stefania; Hellman, Jukka; Karp, Matti; Parini, Carlo

    2008-08-01

    We found that the human intestinal isolate Bifidobacterium bifidum MIMBb75 strongly adhered to Caco-2 cells. Proteinase K and lithium chloride treatments showed that proteins play a key role in MIMBb75 adhesion to Caco-2 cells. By studying the cell wall-associated proteins, we identified a surface protein, which we labeled BopA. We purified the protein chromatographically and found that it functioned as an adhesion promoter on Caco-2 cells. In silico analysis of the gene coding for this protein and globomycin experiments showed that BopA is a cysteine-anchored lipoprotein expressed as a precursor polypeptide. A database search indicated that BopA appears to function biologically as an oligopeptide/tripeptide-solute-binding protein in the ABC transport system. We discovered a protein corresponding to BopA and its gene in eight other highly adherent B. bifidum strains. Finally, we found that B. bifidum MIMBb75 and BopA affected the production of interleukin-8 in Caco-2 epithelial cells. BopA is the first protein described to date to be directly involved in the adhesion of bifidobacteria to Caco-2 cells and to show immunomodulatory activity.

  7. Administration of Lactobacillus casei and Bifidobacterium bifidum Ameliorated Hyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats

    PubMed Central

    Sharma, Poonam; Bhardwaj, Priyanka; Singh, Rambir

    2016-01-01

    Background: The present work was planned to evaluate the antihyperglycemic, lipid-lowering, and antioxidant effect of Lactobacillus casei and Bifidobacterium bifidum in streptozotocin (STZ)-induced diabetic rats. Methods: Single daily dose of 1 × 107 cfu/ml of L. casei and B. bifidum alone and in combination of both was given to Wistar rats orally by gavaging for 28 days. Glucose tolerance test, fasting blood glucose (FBG), lipid profile, and glycosylated hemoglobin (HbA1c) were measured from blood. Glycogen from thigh muscles and liver and oxidative stress parameters from pancreas were analyzed. Results: Administration of L. casei and B. bifidum alone and in combination of both to diabetic rats decreased serum FBG (60.47%, 55.89%, and 56.49%, respectively), HbA1c (28.11%, 28.61%, and 28.28%), total cholesterol (171.69%, 136.47%, and 173.58%), triglycerides (9.935%, 8.58%, and 7.91%), low-density lipoproteins (53.27%, 53.35%, and 52.91%) and very low-density lipoproteins (10%, 8.58%, and 11.15%, respectively) and increased high-density lipoproteins (13.73%, 15.47%, and 15.47%), and insulin (19.50%, 25.80%, and 29.47%, respectively). The treatment also resulted in increase in muscle (171.69%, 136.47%, and 173.58%) and liver (25.82%, 6.63%, and 4.02%) glycogen level. The antioxidant indexes in pancreas of diabetic rats returned to normal level with reduction in lipid peroxidation (30.89%, 46.46%, and 65.36%) and elevation in reduced glutathione (104.5%, 161.34%, and 179.04%), superoxide dismutase (38.65%, 44.32%, and 53.35%), catalase (13.08%, 27%, and 31.52%), glutathione peroxidase (55.56%, 72.23%, and 97.23%), glutathione reductase (49.27%, 88.40%, and 110.86%), and glutathione-S-transferase (140%, 220%, and 246.6%, respectively) on treatment with L. casei, B. bifidum, and combination treatment. Conclusions: Administration of L. casei and B. bifidum alone and in combination of both ameliorated hyperglycemia, dyslipidemia, and oxidative stress in STZ

  8. Mutual growth-promoting effect between Bifidobacterium bifidum WBBI03 and Listeria monocytogenes CMCC 54001.

    PubMed

    Yang, Dong; Wu, Xiaoli; Yu, Xiaomin; He, Lihua; Shah, Nagendra P; Xu, Feng

    2017-05-01

    In this study, Bifidobacterium bifidum WBBI03 and Listeria monocytogenes CMCC 54001 were selected to detect the changes in their growth pattern after mutual interaction between them. The proteomic changes after the interaction between the 2 bacteria were detected by the isobaric tags for relative and absolute quantitation method. The proteins related to the biosynthesis and cell reproduction were selected, and their changes at the transcriptional level were monitored by fluorescent quantitative PCR. Also, 3 other types of probiotic organisms and opportunistic pathogens were used to verify the results mentioned above. The results showed that growing the 2 organisms together could promote the growth of each other, resulting in earlier entry into the logarithmic phase. The results also showed that the expression of these proteins mostly tended to be upregulated at the translational and transcriptional level. The increase in the expression of these proteins might help promote the growth and reproduction of B. bifidum WBBI03 and L. monocytogenes CMCC 54001. One aspect of the biological significance of their presence in the normal intestine may be that the opportunistic pathogens promote the growth of the probiotics. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions

    PubMed Central

    Turroni, Francesca; Serafini, Fausta; Foroni, Elena; Duranti, Sabrina; O’Connell Motherway, Mary; Taverniti, Valentina; Mangifesta, Marta; Milani, Christian; Viappiani, Alice; Roversi, Tommaso; Sánchez, Borja; Santoni, Andrea; Gioiosa, Laura; Ferrarini, Alberto; Delledonne, Massimo; Margolles, Abelardo; Piazza, Laura; Palanza, Paola; Bolchi, Angelo; Guglielmetti, Simone; van Sinderen, Douwe; Ventura, Marco

    2013-01-01

    Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity. PMID:23776216

  10. Effects of growth conditions on the lipid composition of Bifidobacterium bifidum subsp. pennsylvanicum.

    PubMed

    Veerkamp, J H

    1977-01-01

    Lipid-phosphorus and lipid-galactose content and phospholipid and fatty acid composition of Bifidobacterium bifidum subsp. pennsylvanicum were examined under a wide variety of growth conditions. Cells from 29-C cultures contained less lipid-phosphorus than did cells from 37-C cultures, but their lipid-galactose content and phospholipid composition did not differ. At both temperatures, the growth phase influenced the lipid composition similarly. Phosphate, Mg2+ and K+ concentrations in the medium did neither significantly change the cellular lipid-phosphorus content nor the phospholipid composition. Only Mg2+-deficiency markedly reduced growth and lowered the content of cellular lipid-galactose. Omission of Tween 80 from the medium did not affect growth, but lowered the content of lipid-galactose and augmented those of lipid-phosphorus and diphosphatidylglycerol in the cell. Increased osmolarity and substitution of other Tween for Tween 80 caused the same changes in lipid composition, and besides inhibited growth. Omitting Tween 80 and replacing it by other Tweens dramatically reduced the percentage of unsaturated fatty acids. C12- and C14-fatty acids made up about 50% of total fatty acids in cells from Tween 20 cultures and 12-14% in cells from Tween 40 and Tween 60 cultures. The differences in the decline of unsaturated fatty acids and in the degree of replacement of these acids by C12- and C14-fatty acids may be related to the variations in growth in cultures with various Tweens by way of changes in the physical state of the membrane lipids.

  11. Modifications of mice gut microflora following oral consumption ofLactobacillus acidophilus and Bifidobacterium bifidum probiotics.

    PubMed

    Khavari-Daneshvar, Hossein; Mosavi, Maryam; Khodayari, Hamid; Rahimi, Ebrahim; Ranji, Peyman; Mohseni, Amir Hossein; Mahmudian, Reyhaneh; Shidfar, Farzad; Agah, Shahram; Alizadeh, Ali Mohammad

    2017-04-18

    Thirty male BALB/c mice were equally divided into three groups: control, L. acidophilus, and B. bifidum for the assessment of the probiotics' stability in the gut microflora. First, the gut microflora of the mice was checked every 3 days (days 3, 6, 9, and 12) without probiotic consumption, and then the mice were daily given orally 1.5 g of probiotics in 30 cc of drinking water. The consumption of probiotics was then stopped for recovery and then the consumption continued for 5 months. On day 9 after the consumption of the probiotics, L. acidophilus and B. bifidum were significantly increased from 4% to 83% and from 1% to 61%, respectively. L. acidophilus count showed no significant decrease at the end of 5 months compared to day 9 of probiotic consumption (74%), but B. bifidum count was dramatically decreased to 45% and 36% at the end of 1 and 5 months, respectively. Our results revealed that, unlike B. bifidum, the amount of L. acidophilus remained almost unchanged in the long term, indicating more stability of L. acidophilus than B. bifidum in the gut microflora.

  12. Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression.

    PubMed

    Serafini, Fausta; Turroni, Francesca; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Zamboni, Nicole; Bottacini, Francesca; van Sinderen, Douwe; Margolles, Abelardo; Ventura, Marco

    2014-05-16

    Bifidobacteria constitute one of the dominant groups of microorganisms colonizing the human gut of infants. Their ability to utilize various host-derived glycans as well as dietary carbohydrates has received considerable scientific attention. However, very little is known about the role of fermented foods, such as kefir, or their constituent glycans, such as kefiran, as substrates for bifidobacterial growth and for the modulation of the expression of bifidobacterial host-effector molecules. Here, we show that Bifidobacterium bifidum PRL2010 exhibits high growth performance among the bifidobacterial strains tested when cultivated on kefir and/or kefiran polymer. Furthermore, a 16S rRNA metagenomic approach revealed that the microbiota of kefir is modified upon the addition of PRL2010 cells to the kefir matrix. Finally, our results show that kefir and kefiran are able to influence the transcriptome of B. bifidum PRL2010 causing increased transcription of genes involved in the metabolism of dietary glycans as well as genes that act as host-microbe effector molecules such as pili. Altogether, these data support the use of kefir as a valuable means for the delivery of effective microbial cells in probiotic therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. BopA Does Not Have a Major Role in the Adhesion of Bifidobacterium bifidum to Intestinal Epithelial Cells, Extracellular Matrix Proteins, and Mucus

    PubMed Central

    Kainulainen, Veera; Reunanen, Justus; Hiippala, Kaisa; Guglielmetti, Simone; Vesterlund, Satu; Palva, Airi

    2013-01-01

    The ability of bifidobacteria to adhere to the intestine of the human host is considered to be important for efficient colonization and achieving probiotic effects. Bifidobacterium bifidum strains DSM20456 and MIMBb75 adhere well to the human intestinal cell lines Caco-2 and HT-29. The surface lipoprotein BopA was previously described to be involved in mediating adherence of B. bifidum to epithelial cells, but thioacylated, purified BopA inhibited the adhesion of B. bifidum to epithelial cells in competitive adhesion assays only at very high concentrations, indicating an unspecific effect. In this study, the role of BopA in the adhesion of B. bifidum was readdressed. The gene encoding BopA was cloned and expressed without its lipobox and hydrophobic signal peptide in Escherichia coli, and an antiserum against the recombinant BopA was produced. The antiserum was used to demonstrate the abundant localization of BopA on the cell surface of B. bifidum. However, blocking of B. bifidum BopA with specific antiserum did not reduce adhesion of bacteria to epithelial cell lines, arguing that BopA is not an adhesin. Also, adhesion of B. bifidum to human colonic mucin and fibronectin was found to be BopA independent. The recombinant BopA bound only moderately to human epithelial cells and colonic mucus, and it failed to bind to fibronectin. Thus, our results contrast the earlier findings on the major role of BopA in adhesion, indicating that the strong adhesion of B. bifidum to epithelial cell lines is BopA independent. PMID:24014530

  14. Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults

    PubMed Central

    Gargari, Giorgio; Taverniti, Valentina; Balzaretti, Silvia; Ferrario, Chiara; Gardana, Claudio; Simonetti, Paolo

    2016-01-01

    ABSTRACT Modulation of the intestinal microbial ecosystem (IME) is a useful target to establish probiotic efficacy in a healthy population. We conducted a randomized, double-blind, crossover, and placebo-controlled intervention study to determine the impact of Bifidobacterium bifidum strain Bb on the IME of adult healthy volunteers of both sexes. High-throughput 16S rRNA gene sequencing was used to characterize the fecal microbiota before and after 4 weeks of daily probiotic cell consumption. The intake of approximately one billion live B. bifidum cells affected the relative abundance of dominant taxa in the fecal microbiota and modulated fecal butyrate levels. Specifically, Prevotellaceae (P = 0.041) and Prevotella (P = 0.034) were significantly decreased, whereas Ruminococcaceae (P = 0.039) and Rikenellaceae (P = 0.010) were significantly increased. We also observed that the probiotic intervention modulated the fecal concentrations of butyrate in a manner dependent on the initial levels of short-chain fatty acids (SCFAs). In conclusion, our study demonstrates that a single daily administration of Bifidobacterium bifidum strain Bb can significantly modify the IME in healthy (not diseased) adults. These findings demonstrate the need to reassess the notion that probiotics do not influence the complex and stable IME of a healthy individual. IMPORTANCE Foods and supplements claimed to contain health-promoting probiotic microorganisms are everywhere these days and mainly intended for consumption by healthy people. However, it is still debated what actual effects probiotic products may have on the healthy population. In this study, we report the results of an intervention trial aimed at assessing the modifications induced in the intestinal microbial ecosystem of healthy adults from the consumption of a probiotic product. Our results demonstrate that the introduction of a probiotic product in the dietary habits of healthy people may significantly modify dominant taxa of

  15. Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: a double-blind study.

    PubMed

    Ringel-Kulka, Tamar; Palsson, Olafur S; Maier, Danielle; Carroll, Ian; Galanko, Joseph A; Leyer, Gregory; Ringel, Yehuda

    2011-07-01

    Recent data suggest a role for the intestinal microbiota in the pathogenesis of functional bowel disorders (FBDs). Probiotic studies in FBDs generated inconsistent results suggesting a strain-specific and product-specific effect. To investigate the clinical efficacy of Lactobacillus acidophilus NCFM (L-NCFM) and Bifidobacterium lactis Bi-07 (B-LBi07) in nonconstipation FBDs. A double-blind, placebo-control clinical trial of the probiotic bacterias L-NCFM and B-LBi07 twice a day (2×10(11) CFU/d) versus placebo over 8 weeks. Primary endpoints were global relief of gastrointestinal symptoms and satisfaction with treatment. Secondary endpoints were change in symptoms severity, well-being, and quality of life. Microbiological effect was assessed by quantitative real time polymerase chain reaction on fecal samples. Sixty patients (probiotic, n=31; placebo, n=29), 72% females, 84% whites, mean age 37 years. Abdominal bloating improved in the probiotics compared with the placebo group at 4 weeks (4.10 vs 6.17, P=0.009; change in bloating severity P=0.02) and 8 weeks (4.26 vs 5.84, P=0.06; change in bloating severity P<0.01). Analyses on the irritable bowel syndrome subgroup (n=33) showed similar results. L-NCFM and B-LBi07 twice a day improve symptoms of bloating in patients with FBDs. These data supports the role of intestinal bacteria in the pathophysiology of FBD and the role for probiotic bacteria in the management of these disorders.

  16. Purification and identification of a growth-stimulating peptide for Bifidobacterium bifidum from natural rubber serum powder.

    PubMed

    Etoh, S; Asamura, K; Obu, A; Sonomoto, K; Ishizaki, A

    2000-10-01

    Natural rubber serum powder, which is a by-product obtained in the production of latex rubber, has a strong growth-stimulating activity for Bifidobacterium bifidum JCM 1254. The retained fraction obtained by ultrafiltration (molecular weight cutoff 1000) showed a growth-stimulating activity in a dose-dependent manner on B12 assay medium with ammonium sulfate. One of the growth stimulators was purified from the retained fraction by acetone precipitation, solid-phase extraction with a hydrophobic pretreatment column, and multistage reversed-phase HPLC. An increase of 53-fold in the specific activity, and a recovery of 1.3% were obtained. The amino acid composition and N-terminal sequence analysis of this growth stimulator provided the structure of Ala-Thr-Pro-Glu-Lys-Glu-Glu-Pro-Thr-Ala. The molecular mass was 1075 by MALDI-TOF MS analysis. These results showed that this growth stimulator was a decapeptide with the sequence shown above. This is the first report that clarified the structure of an active peptide for the growth of Bifidobacterium.

  17. Fermentation optimization of goat milk with Lactobacillus acidophilus and Bifidobacterium bifidum by Box-Behnken design.

    PubMed

    Shu, Guowei; Bao, Chunju; Chen, He; Wang, Changfeng; Yang, Hui

    2016-01-01

    Goat milk is only limited to the processing of goat milk powder and liquid milk, the products are mainly about milk powder and a few of them are made as milk tablet. Therefore, the study of probiotic goat milk will have great significance in the full use of goats and the development of the goat milk industry in China. The effect of fermentation temperature (35°C, 37°C, 39°C), strain ratio (1:1:1, 2:1:1, 3:1:1) and inoculum size (4%, 5%, 6%) on viable counts of L. acidophilus and B. bifidum, total bacteria and sensory value during fermentation process of L. acidophilus and B. bifidum goat yogurt (AB-goat yogurt) was investigated. The optimum fermentation conditions for AB-goat yogurt were: fermentation temperature 38°C, the strain ratio 2:1:1, inoculum size 6%. Under the optimum conditions, the viable counts of B. bifidum, L. acidophilus, total bacteria and sensory value reached (4.30 ±0.11)×107  cfu/mL, (1.39 ±0.09)×108  cfu/mL, (1.82±0.06)×109  cfu/mL and 7.90 ±0.14, respectively. The fermentation temperature, the strain ratio and inoculum size had a significant effect on the fermentation of AB-goat yogurt and these results are beneficial for developing AB-goat yogurt.

  18. Colonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis

    PubMed Central

    Grimm, Verena; Radulovic, Katarina; Riedel, Christian U.

    2015-01-01

    The effects of at least some probiotics are restricted to live, metabolically active bacteria at their site of action. Colonization of and persistence in the gastrointestinal tract is thus contributing to the beneficial effects of these strains. In the present study, colonization of an anti-inflammatory Bifidobacterium bifidum strain was studied in C57BL/6J mice under germ-free (GF) and specific pathogen-free (SPF) conditions as well as during dextran sulfate sodium (DSS)-induced colitis. B. bifidum S17/pMGC was unable to stably colonize C57BL/6J mice under SPF conditions. Mono-association of GF mice by three doses on consecutive days led to long-term, stable detection of up to 109 colony forming units (CFU) of B. bifidum S17/pMGC per g feces. This stable population was rapidly outcompeted upon transfer of mono-associated animals to SPF conditions. A B. animalis strain was isolated from the microbiota of these re-conventionalized mice. This B. animalis strain displayed significantly higher adhesion to murine CMT–93 intestinal epithelial cells (IECs) than to human Caco–2 IECs (p = 0.018). Conversely, B. bifidum S17/pMGC, i.e., a strain of human origin, adhered at significantly higher levels to human compared to murine IECs (p < 0.001). Disturbance of the gut ecology and induction of colitis by DSS-treatment did not promote colonization of the murine gastrointestinal tract (GIT) by B. bifidum S17/pMGC. Despite its poor colonization of the mouse GIT, B. bifidum S17/pMGC displayed a protective effect on DSS-induced colitis when administered as viable bacteria but not as UV-inactivated preparation. Collectively, these results suggest a selective disadvantage of B. bifidum S17/pMGC in the competition with the normal murine microbiota and an anti-inflammatory effect that requires live, metabolically active bacteria. PMID:26439388

  19. Colonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis.

    PubMed

    Grimm, Verena; Radulovic, Katarina; Riedel, Christian U

    2015-01-01

    The effects of at least some probiotics are restricted to live, metabolically active bacteria at their site of action. Colonization of and persistence in the gastrointestinal tract is thus contributing to the beneficial effects of these strains. In the present study, colonization of an anti-inflammatory Bifidobacterium bifidum strain was studied in C57BL/6J mice under germ-free (GF) and specific pathogen-free (SPF) conditions as well as during dextran sulfate sodium (DSS)-induced colitis. B. bifidum S17/pMGC was unable to stably colonize C57BL/6J mice under SPF conditions. Mono-association of GF mice by three doses on consecutive days led to long-term, stable detection of up to 109 colony forming units (CFU) of B. bifidum S17/pMGC per g feces. This stable population was rapidly outcompeted upon transfer of mono-associated animals to SPF conditions. A B. animalis strain was isolated from the microbiota of these re-conventionalized mice. This B. animalis strain displayed significantly higher adhesion to murine CMT-93 intestinal epithelial cells (IECs) than to human Caco-2 IECs (p = 0.018). Conversely, B. bifidum S17/pMGC, i.e., a strain of human origin, adhered at significantly higher levels to human compared to murine IECs (p < 0.001). Disturbance of the gut ecology and induction of colitis by DSS-treatment did not promote colonization of the murine gastrointestinal tract (GIT) by B. bifidum S17/pMGC. Despite its poor colonization of the mouse GIT, B. bifidum S17/pMGC displayed a protective effect on DSS-induced colitis when administered as viable bacteria but not as UV-inactivated preparation. Collectively, these results suggest a selective disadvantage of B. bifidum S17/pMGC in the competition with the normal murine microbiota and an anti-inflammatory effect that requires live, metabolically active bacteria.

  20. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum supplementation to standard triple therapy on Helicobacter pylori eradication and dynamic changes in intestinal flora.

    PubMed

    Wang, Yu-huan; Huang, Ying

    2014-03-01

    To investigate Lactobacillus acidophilus (L. acidophilus) and Bifidobacterium bifidum (B. bifidum) supplementation to triple therapy for Helicobacter pylori (H. pylori) eradication and dynamic changes in intestinal flora in children with H. pylori infection. One hundred H. pylori-infected children were randomly assigned to two groups: treatment group (n = 43), standard triple anti-H. pylori therapy plus probiotics of L. acidophilus and B. bifidum for 2 weeks followed by taking probiotics for another 4 weeks; control group (n = 45), standard triple anti-H. pylori therapy for 6 weeks. After 6-week treatment, ¹³C-urease breath test was performed and side effects were monitored during the observation period. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers was carried out for the analysis of human intestinal B. bifidum, L. acidophilus, and Escherichia coli (E. coli). As expected, treatment group could significantly enhance the H. pylori eradication rate (83.7 vs. 64.4 %, P < 0.05). B. bifidum, L. acidophilus, and E. coli showed no statistical difference before or after therapy in the treatment group. The number of B. bifidum and L. acidophilus was significantly decreased after 2-week treatment in the control group, but after 6-week treatment it significantly increased and nearly returned to the level before treatment. The number of E. coli increased significantly after 2-week treatment, while after 6-week treatment, it nearly decreased to the level before treatment. L. acidophilus and B. bifidum supplementation is effective for H. pylori eradication compared with triple therapy alone.

  1. Microencapsulation of Bifidobacterium bifidum F-35 in whey protein-based microcapsules by transglutaminase-induced gelation.

    PubMed

    Zou, Qiang; Liu, Xiaoming; Zhao, Jianxin; Tian, Fengwei; Zhang, He-ping; Zhang, Hao; Chen, Wei

    2012-05-01

    Bifidobacterium bifidum F-35 was microencapsulated into whey protein microcapsules (WPMs) by a transglutaminase (TGase)-induced method after optimization of gelation conditions. The performance of these WPMs was compared with that produced by a spray drying method (WPMs-A). WPMs produced by the TGase-induced gelation method (WPMs-B) had larger and denser structures in morphological examinations. Native gel and SDS-PAGE analyses showed that most of the polymerization observed in WPMs-B was due to stable covalent crosslinks catalyzed by TGase. The degradation properties of these WPMs were investigated in simulated gastric juice (SGJ) with or without pepsin. In the presence of pepsin, WPMs-A degraded more quickly than did WPMs-B. Finally, survival rates of the microencapsulated cells in both WPMs were significantly better than that of free cells and varied with the microencapsulation method. However, WPMs-B produced by TGase-induced gelation could provide better protection for microencapsulated cells in low pH conditions and during 1 mo of storage at 4 °C or at ambient temperature. © 2012 Institute of Food Technologists®

  2. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17.

    PubMed

    Godoy, Andre S; de Lima, Mariana Z T; Camilo, Cesar M; Polikarpov, Igor

    2016-04-01

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17 (BbGal43A) are described. BbGal43A was successfully produced and showed activity towards synthetic galactosides. BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences between BbGal43A and its characterized homologues.

  3. Fermentation of Dietetic Fiber from Green Bean and Prickly Pear Shell by Pure and Mixture Culture of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B.

    PubMed

    Mora-Cura, Y N; Meléndez-Rentería, N P; Delgado-García, M; Contreras-Esquivel, J C; Morlett-Chávez, J A; Aguilar, C N; Rodríguez-Herrera, R

    2017-06-01

    The aim of this study was to evaluate the fermentation of dietary fiber from green bean (Phaseolus vulgaris) and prickly pear shell (Opuntia ficus-indica) by Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum 450B growing as mono-culture and co-culture, the fermentation products, and proteins expressed during this process. The analysis of the fermentation profile showed a major growth of bacteria in the culture media of each dietary fiber supplemented with glucose, and particularly B. bifidum 450B at 48 h showed the highest growth. In the case of the co-culture, the growth was lower indicating the possible negative interaction between L. acidophilus LA-5 and B. bifidum 450B and may be due to the less amount of carbohydrates and the high content of non-soluble fiber that affected the nutrients availability for the bacterial strains. The pH changes indicated the presence of short-chain fatty acids (SCFAs), being acetate (46-100%) the main SCFA. Changes in the proteome concerned proteins that are involved in carbohydrate and other carbohydrate pathways. The characterization of the bacteria according to the growth, metabolites, and proteins expressed allows understanding the response to the change of environmental conditions and could be useful to understand L. acidophilus LA-5 and B. bifidum 450B strains' adaptation to specific applications.

  4. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice.

    PubMed

    Shandilya, Umesh Kumar; Sharma, Ankita; Kapila, Rajeev; Kansal, Vinod Kumar

    2016-07-01

    Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. This study investigated whether orally administrated probiotics could suppress sensitisation in whey proteins (WP)-induced allergy mouse model. Two types of probiotic Dahi were prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3. Mice were fed with probiotic Dahi (La-Dahi and LaBb-Dahi) from 7 days before sensitisation with WP, respectively, in addition to milk protein-free basal diet, and control group received no supplements. Feeding of probiotic Dahi suppressed the elevation of whey proteins-specific IgE and IgG response of WP-sensitised mice. In addition, sIgA levels were significantly (P < 0.001) increased in intestinal fluid collected from mice fed with La-Dahi. Production of T helper (Th)-1 cell-specific cytokines, i.e. interferon-γ (IFN-γ), interleukin (IL)-12, and IL-10 increased, while Th2-specific cytokines, i.e. IL-4 decreased in the supernatant of cultured splenocytes collected from mice fed with probiotic Dahi as compared to the other groups. Moreover, the splenic mRNA levels of IFN-γ, interleukin-10 were found to be significantly increased, while that of IL-4 decreased significantly in La-Dahi groups, as compared to control groups. Results of the present study indicate that probiotic Dahi skewed Th2-specific immune response towards Th1-specific response and suppressed IgE in serum. Collectively, this study shows the potential use of probiotics intervention in reducing the allergic response to whey proteins in mice. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  5. Structural Basis on the Catalytic Reaction Mechanism of Novel 1,2-Alpha L-Fucosidase (AFCA) From Bifidobacterium Bifidum

    SciTech Connect

    Nagae, M.; Tsuchiya, A.; Katayama, T.; Yamamoto, K.; Wakatsuki, S.; Kato, R.

    2009-06-03

    1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.

  6. TgaA, a VirB1-Like Component Belonging to a Putative Type IV Secretion System of Bifidobacterium bifidum MIMBb75

    PubMed Central

    Balzaretti, Silvia; Taverniti, Valentina; Miriani, Matteo; Milani, Christian; Scarafoni, Alessio; Corona, Silvia; Ciranna, Alessandro; Arioli, Stefania; Santala, Ville; Iametti, Stefania; Bonomi, Francesco; Ventura, Marco; Mora, Diego; Karp, Matti

    2014-01-01

    Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region. PMID:24951779

  7. TgaA, a VirB1-like component belonging to a putative type IV secretion system of Bifidobacterium bifidum MIMBb75.

    PubMed

    Guglielmetti, Simone; Balzaretti, Silvia; Taverniti, Valentina; Miriani, Matteo; Milani, Christian; Scarafoni, Alessio; Corona, Silvia; Ciranna, Alessandro; Arioli, Stefania; Santala, Ville; Iametti, Stefania; Bonomi, Francesco; Ventura, Marco; Mora, Diego; Karp, Matti

    2014-09-01

    Bifidobacterium bifidum MIMBb75 is a human intestinal isolate demonstrated to be interactive with the host and efficacious as a probiotic. However, the molecular biology of this microorganism is yet largely unknown. For this reason, we undertook whole-genome sequencing of B. bifidum MIMBb75 to identify potential genetic factors that would explain the metabolic and probiotic attributes of this bacterium. Comparative genomic analysis revealed a 45-kb chromosomal region that comprises 19 putative genes coding for a potential type IV secretion system (T4SS). Thus, we undertook the initial characterization of this genetic region by studying the putative virB1-like gene, named tgaA. Gene tgaA encodes a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT, cd00254.3) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP, pfam05257.4). By means of several in vitro assays, we experimentally confirmed that protein TgaA, consistent with its computationally assigned role, has peptidoglycan lytic activity, which is principally associated to the LT domain. Furthermore, immunofluorescence and immunogold labeling showed that the protein TgaA is abundantly expressed on the cell surface of B. bifidum MIMBb75. According to the literature, the T4SSs, which have not been characterized before in bifidobacteria, can have important implications for bacterial cell-to-cell communication as well as cross talk with host cells, justifying the interest for further studies aimed at the investigation of this genetic region.

  8. Isolation and structural identification of glycopolymers of Bifidobacterium bifidum BIM B-733D as putative players in pathogenesis of autoimmune thyroid diseases.

    PubMed

    Kiseleva, E P; Mikhailopulo, K I; Novik, G I; Szwajcer Dey, E; Zdorovenko, E L; Shashkov, A S; Knirel, Y A

    2013-12-01

    Bifidobacterium bifidum 791 (commercially available as B. bifidum BIM B-733D) cell-surface biopolymers (BPs) interact selectively with human serum thyroid peroxidase (TPO) and thyroglobulin (Tg) autoantibodies (anti TPO and anti Tg, respectively). BPanti-TPO and BPanti-Tg were isolated from the soluble fraction of B. bifidum BIM B-733D by affinity chromatography with anti-TPO or anti-Tg, respectively. Homogeneity of affinity eluates (AEanti-TPO and AEanti-Tg) was tested by size exclusion chromatography. For each AE, the elution profiles generated on the basis of absorbance at 280 nm do not conform to ELISA data for functional activity characteristic of BPs. Moreover, high functional activity was detected in chromatographic fractions that had significantly different molecular weights and no absorbance at 280 nm, which suggests a non-protein (carbohydrate) nature of BPanti-TPO and BPanti-Tg. The semi-preparative size exclusion chromatography of AEanti-TPO and AEanti-Tg with detection by refractometer gave 5,000-7,000 Da fractions containing substances that interact selectively with either anti TPO (BPanti-TPO) or anti-Tg (BPanti-Tg) according to ELISA data. Analysis by two-dimensional NMR spectroscopy including a 1H, 13C-heteronuclear single-quantum coherence experiment indicated that both substances are linear α-1,6-glucans. For the first time, an immunological similarity (molecular mimicry) of glycopolymers of B. bifidum BIM B-733D and human thyroid proteins, TPO and Tg, was shown. On the whole, our data point to a possible role of bifidobacteria in the pathogenesis of autoimmune thyroid diseases (ATD). The main requirements for triggering/acceleration or prevention/abrogation of ATD by bifidobacteria through molecular mimicry mechanism are hypothesised to be (1) genetic predisposition to ATD and (2) intestinal epithelium penetration by α-1,6-glucan.

  9. [Interaction between Bifidobacterium bifidum, Proteus vulgaris, and Klebsiella pneumoniae 204 in the gastrointestinal tract of gnotobiotic chicks].

    PubMed

    Timoshko, M A; Vil'shanskaia, F L; Pospelova, V V; Rakhimova, N G

    1981-03-01

    Experiments on gnotobiont chickens indicated that the strains B. bifidum 1/85 phi, P. vulgaris F-30 and K. pneumoniae 204, when introduced simultaneously into the gastrointestinal tract in a single administration, proliferate there with the pronounced predominance of bifidobacteria. 6 additional administrations of B. bifidum 1/85 phi culture resulted in the complete suppression of microorganisms belonging to the genera Rroteus and Klebsiella as early as 10 days after the introduction of bifidobacteria. These data suggest that it is necessary to use B. bifidum 1/85 phi in cases of intestinal dysbacteriosis characterized by the predominance of microorganisms belonging to the genera Proteus and Klebsiella.

  10. Continuous consumption of fermented milk containing Bifidobacterium bifidum YIT 10347 improves gastrointestinal and psychological symptoms in patients with functional gastrointestinal disorders

    PubMed Central

    URITA, Yoshihisa; GOTO, Mayu; WATANABE, Toshiyasu; MATSUZAKI, Makoto; GOMI, Atsushi; KANO, Mitsuyoshi; MIYAZAKI, Kouji; KANEKO, Hironori

    2015-01-01

    The aim of this study was to investigate whether consumption of probiotic fermented milk containing Bifidobacterium bifidum YIT 10347 improves symptoms in patients with functional gastrointestinal disorders (FGID). Thirty-seven FGID patients (18 male, 19 female) aged 12–80 years (mean ± SD, 52.6 ± 17.5 years) whose condition had not improved despite being seen at several medical institutions consumed 100 mL/day of B. bifidum YIT 10347 fermented milk for 4 weeks. Symptoms were evaluated after the enrollment period (BL: baseline), sample consumption period (CP) and 4 weeks after the CP (FP: follow-up period). Gastrointestinal symptoms were evaluated using the Gastrointestinal Symptom Rating Scale (GSRS) and the Frequency Scale for the Symptoms of Gastroesophageal Reflux Disease (FSSG); psychological symptoms were evaluated using the Profile of Mood States (POMS) short form. Concentrations of salivary stress markers and the oxidative stress marker urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) were measured. GSRS subscale scores for abdominal pain, diarrhea, and constipation significantly improved relative to BL after consumption of the fermented milk, as did FSSG subscale scores for symptoms of acid-related dyspepsia. Some subjective psychological symptoms improved. POMS scores significantly improved, and “Anger-Hostility” subscale scores significantly decreased after the consumption period, while “Vigor” subscale scores marginally increased during the consumption period. The concentrations of urinary 8-OHdG and the stress marker salivary cortisol were significantly lower at CP but returned to baseline levels at FP. Continuous consumption of B. bifidum YIT 10347 fermented milk is expected to improve gastrointestinal symptoms and reduce psychological stress in FGID patients. PMID:25918671

  11. Effect of denak (Oliveria decumbens Vent) on growth and survival of Lactobacillus acidophilus and Bifidobacterium bifidum for production of probiotic herbal milk and yoghurt.

    PubMed

    Ehsandoost, E; Gholami, S P; Nazemi, M

    2013-12-15

    This study was undertaken to determine the suitability of different doses (0, 0.5, 1.0 and 1.5%) of Denak powder (Oliveria decumbens Vent) on viability of Lactobacillus acidophilus and Bifidobacterium bifidum in milk and yoghurt during 21 day refrigerated storage for production of probiotic herbal milk and yoghurt. In order to determine the effect of different doses of Denak powder on growth of probiotic bacteria in milk and yoghurt, first lyophilized bacteria Lactobacillus acidophilus was added to 1 liter of low fat sterilized milk and was considered as control. Denak powder at the concentrations of 0.5, 1 and 1.5% were added to the samples and incubated until acidity reached 40 degrees Dornic and then left in refrigerator. Similar procedure was applied to the bacteria Bifidobacterium bifidum. The results of this experiment indicate the positive correlation between increased bacterial growth and increased Denak concentration. The investigation showed that the yoghurt containing 1% Denak powder had the best for taste, color, and insolubility. The sample with 1.5% Denak powder in milk and yoghurt had greater viscosity than the other samples investigated. The shelf lives of products were determined to be 21 days during which the bacterial count decreased but not less than 10(9). All the results suggest that Denak (Oliveria decumbens Vent) promoted the metabolism of lactic acid bacteria in milk and yoghurt. According to these findings, addition of Denak powder to milk and yoghurt can be recommended to take advantage of their beneficial properties on human health attributed to antimicrobial activities.

  12. Murein Lytic Enzyme TgaA of Bifidobacterium bifidum MIMBb75 Modulates Dendritic Cell Maturation through Its Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase (CHAP) Amidase Domain

    PubMed Central

    Zanoni, Ivan; Balzaretti, Silvia; Miriani, Matteo; Taverniti, Valentina; De Noni, Ivano; Presti, Ilaria; Stuknyte, Milda; Scarafoni, Alessio; Arioli, Stefania; Iametti, Stefania; Bonomi, Francesco; Mora, Diego; Karp, Matti; Granucci, Francesca

    2014-01-01

    Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system. PMID:24814791

  13. Murein lytic enzyme TgaA of Bifidobacterium bifidum MIMBb75 modulates dendritic cell maturation through its cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP) amidase domain.

    PubMed

    Guglielmetti, Simone; Zanoni, Ivan; Balzaretti, Silvia; Miriani, Matteo; Taverniti, Valentina; De Noni, Ivano; Presti, Ilaria; Stuknyte, Milda; Scarafoni, Alessio; Arioli, Stefania; Iametti, Stefania; Bonomi, Francesco; Mora, Diego; Karp, Matti; Granucci, Francesca

    2014-09-01

    Bifidobacteria are Gram-positive inhabitants of the human gastrointestinal tract that have evolved close interaction with their host and especially with the host's immune system. The molecular mechanisms underlying such interactions, however, are largely unidentified. In this study, we investigated the immunomodulatory potential of Bifidobacterium bifidum MIMBb75, a bacterium of human intestinal origin commercially used as a probiotic. Particularly, we focused our attention on TgaA, a protein expressed on the outer surface of MIMBb75's cells and homologous to other known bacterial immunoactive proteins. TgaA is a peptidoglycan lytic enzyme containing two active domains: lytic murein transglycosylase (LT) and cysteine- and histidine-dependent amidohydrolase/peptidase (CHAP). We ran immunological experiments stimulating dendritic cells (DCs) with the B. bifidum MIMBb75 and TgaA, with the result that both the bacterium and the protein activated DCs and triggered interleukin-2 (IL-2) production. In addition, we observed that the heterologous expression of TgaA in Bifidobacterium longum transferred to the bacterium the ability to induce IL-2. Subsequently, immunological experiments performed using two purified recombinant proteins corresponding to the single domains LT and CHAP demonstrated that the CHAP domain is the immune-reactive region of TgaA. Finally, we also showed that TgaA-dependent activation of DCs requires the protein CD14, marginally involves TRIF, and is independent of Toll-like receptor 4 (TLR4) and MyD88. In conclusion, our study suggests that the bacterial CHAP domain is a novel microbe-associated molecular pattern actively participating in the cross talk mechanisms between bifidobacteria and the host's immune system.

  14. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3′-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium

    PubMed Central

    Bondue, Pauline; Crèvecoeur, Sébastien; Brose, François; Daube, Georges; Seghaye, Marie-Christine; Griffiths, Mansel W.; LaPointe, Gisèle; Delcenserie, Véronique

    2016-01-01

    Complex oligosaccharides from human milk (HMO) possess an antimicrobial activity and can promote the growth of bifidobacteria such as Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulence effect on several pathogenic bacteria. Whey is rich in complex bovine milk oligosaccharides (BMO) structurally similar to HMO and B. crudilactis, a species of bovine origin, is able to metabolize some of those complex carbohydrates. This study focused on the ability of B. bifidum and B. crudilactis to grow in a culture medium supplemented in 3′-sialyllactose (3′SL) as the main source of carbon, a major BMO encountered in cow milk. Next, the effects of cell-free spent media (CFSM) were tested against virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Both strains were able to grow in presence of 3′SL, but B. crudilactis showed the best growth (7.92 ± 0.3 log cfu/ml) compared to B. bifidum (6.84 ± 0.9 log cfu/ml). Then, CFSM were tested for their effects on virulence gene expression by ler and hilA promoter activity of luminescent mutants of E. coli and S. Typhimurium, respectively, and on wild type strains of E. coli O157:H7 and S. Typhimurium using RT-qPCR. All CFSM resulted in significant under expression of the ler and hilA genes for the luminescent mutants and ler (ratios of −15.4 and −8.1 respectively) and qseA (ratios of −2.1 and −3.1) for the wild type strain of E. coli O157:H7. The 3′SL, a major BMO, combined with some bifidobacteria strains of bovine or human origin could therefore be an interesting synbiotic to maintain or restore the intestinal health of young children. These effects observed in vitro will be further investigated regarding the overall phenotype of pathogenic agents and the exact nature of the active molecules. PMID:27713728

  15. Cell-Free Spent Media Obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis Grown in Media Supplemented with 3'-Sialyllactose Modulate Virulence Gene Expression in Escherichia coli O157:H7 and Salmonella Typhimurium.

    PubMed

    Bondue, Pauline; Crèvecoeur, Sébastien; Brose, François; Daube, Georges; Seghaye, Marie-Christine; Griffiths, Mansel W; LaPointe, Gisèle; Delcenserie, Véronique

    2016-01-01

    Complex oligosaccharides from human milk (HMO) possess an antimicrobial activity and can promote the growth of bifidobacteria such as Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis. In addition, fermentation of carbohydrates by bifidobacteria can result in the production of metabolites presenting an antivirulence effect on several pathogenic bacteria. Whey is rich in complex bovine milk oligosaccharides (BMO) structurally similar to HMO and B. crudilactis, a species of bovine origin, is able to metabolize some of those complex carbohydrates. This study focused on the ability of B. bifidum and B. crudilactis to grow in a culture medium supplemented in 3'-sialyllactose (3'SL) as the main source of carbon, a major BMO encountered in cow milk. Next, the effects of cell-free spent media (CFSM) were tested against virulence expression of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium. Both strains were able to grow in presence of 3'SL, but B. crudilactis showed the best growth (7.92 ± 0.3 log cfu/ml) compared to B. bifidum (6.84 ± 0.9 log cfu/ml). Then, CFSM were tested for their effects on virulence gene expression by ler and hilA promoter activity of luminescent mutants of E. coli and S. Typhimurium, respectively, and on wild type strains of E. coli O157:H7 and S. Typhimurium using RT-qPCR. All CFSM resulted in significant under expression of the ler and hilA genes for the luminescent mutants and ler (ratios of -15.4 and -8.1 respectively) and qseA (ratios of -2.1 and -3.1) for the wild type strain of E. coli O157:H7. The 3'SL, a major BMO, combined with some bifidobacteria strains of bovine or human origin could therefore be an interesting synbiotic to maintain or restore the intestinal health of young children. These effects observed in vitro will be further investigated regarding the overall phenotype of pathogenic agents and the exact nature of the active molecules.

  16. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses.

    PubMed

    Kato, Shinichi; Hamouda, Nahla; Kano, Yoshitaro; Oikawa, Yousuke; Tanaka, Yoshiki; Matsumoto, Kenjiro; Amagase, Kikuko; Shimakawa, Masaki

    2017-10-01

    Bifidobacterium, a major component of the intestinal microbiota, has been clinically used for the treatment of diarrhoea and constipation. 5-Fluorouracil (5-FU), widely used for cancer chemotherapy, is known to frequently induce intestinal mucositis accompanied by severe diarrhoea. The present study examined the effect of Bifidobacterium bifidum G9-1 (BBG9-1) on 5-FU-induced intestinal mucositis in mice. Intestinal mucositis was induced by repeated administration of 5-FU for 6 days. BBG9-1 was administered orally once daily for 9 days, beginning 3 days before the onset of 5-FU treatment. Repeated administration of 5-FU caused severe intestinal mucositis, characterised by shortening of villi and destruction of crypts, accompanied by increases in intestinal myeloperoxidase activity and inflammatory cytokine expression, body weight loss, and diarrhoea on day 6. Daily administration of BBG9-1 significantly reduced the severity of intestinal mucositis and inflammatory responses and tended to attenuate clinical symptoms. In contrast, BBG9-1 failed to prevent apoptosis induction on day 1 after the first 5-FU administration. The structure of the intestinal microbiota, as analysed by weighted UniFrac distance, was largely altered by 5-FU treatment, but this change was mitigated by daily administration of BBG9-1. Moreover, 5-FU treatment decreased the abundance of Firmicutes and increased the abundance of Bacteroidetes, but these responses were also significantly inhibited by daily administration of BBG9-1. These results suggest that BBG9-1 has an ameliorative effect against 5-FU-induced intestinal mucositis through the attenuation of inflammatory responses via improve dysbiosis. BBG9-1 could be useful for the prevention of intestinal mucositis during cancer chemotherapy. © 2017 John Wiley & Sons Australia, Ltd.

  17. A way to follow the viability of encapsulated Bifidobacterium bifidum subjected to a freeze-drying process in order to target the colon: interest of flow cytometry.

    PubMed

    Martin-Dejardin, F; Ebel, B; Lemetais, G; Nguyen Thi Minh, H; Gervais, P; Cachon, R; Chambin, O

    2013-05-13

    The aim of this work was to apply flow cytometry in order to assess and compare the viability of freeze-dried entrapped bacteria with an usual technique by quantification by plate count techniques. It also aimed at studying the effect of various cryoprotectants on the viability of an entrapped Bifidobacterium bifidum subjected to freeze-drying to check their ability to be delivered all along the gastro-intestinal tract. The alginate-pectinate beads were chosen as the encapsulation matrix added with different protectants. The beads were characterized by scanning electron microscopy and the viability was checked by both methods. The best combination to improve viability of entrapped bacteria subjected to freeze-drying is made of glycerol 20% (one cryoprotectant) and sodium ascorbate 10% (one anti-oxidative compound). This study also demonstrates that flow cytometry allows assessment of entrapped bacteria viability. Indeed we showed that viability evaluated by plate method is correlated to that obtained by flow cytometry. So, flow cytometry is a rapid method to determine cell viability after encapsulation and freeze-drying. Finally, these beads seem to be a promising probiotic delivery system to target the colon. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Bifidobacterium bifidum OLB6378 Simultaneously Enhances Systemic and Mucosal Humoral Immunity in Low Birth Weight Infants: A Non-Randomized Study

    PubMed Central

    Tanaka, Katsunori; Tsukahara, Takamitsu; Yanagi, Takahide; Nakahara, Sayuri; Furukawa, Ouki; Tsutsui, Hidemi; Koshida, Shigeki

    2017-01-01

    Probiotic supplementation has been part of the discussion on methods to enhance humoral immunity. Administration of Bifidobacterium bifidum OLB6378 (OLB6378) reduced the incidence of late-onset sepsis in infants. In this non-randomized study, we aimed to determine the effect of administration of live OLB6378 on infants’ humoral immunity. Secondly, we tried to elucidate whether similar effects would be observed with administration of non-live OLB6378. Low birth weight (LBW) infants weighing 1500–2500 g were divided into three groups: Group N (no intervention), Group L (administered live OLB6378 concentrate), and Group H (administered non-live OLB6378 concentrate). The interventions were started within 48 h after birth and continued until six months of age. Serum immunoglobulin G (IgG) levels (IgG at one month/IgG at birth) were significantly higher in Group L than in Group N (p < 0.01). Group H exhibited significantly higher serum IgG levels (p < 0.01) at one month of age and significantly higher intestinal secretory immunoglobulin A (SIgA) levels (p < 0.05) at one and two months of age than Group N. No difference was observed in the mortality or morbidity between groups. Thus, OLB6378 administration in LBW infants enhanced humoral immunity, and non-live OLB6378, which is more useful as a food ingredient, showed a more marked effect than the viable bacteria. PMID:28245626

  19. Crystal structure of β1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by α-galactose.

    PubMed

    Godoy, Andre Schutzer; Camilo, Cesar Moises; Kadowaki, Marco Antonio; Muniz, Heloisa Dos S; Espirito Santo, Melissa; Murakami, Mario Tyago; Nascimento, Alessandro S; Polikarpov, Igor

    2016-11-01

    In a search for better comprehension of β-galactosidase function and specificity, we solved the crystal structures of the GH42 β-galactosidase BbgII from Bifidobacterium bifidum S17, a well-adapted probiotic microorganism from the human digestive tract, and its complex with d-α-galactose. BbgII is a three-domain molecule that forms barrel-shaped trimers in solution. BbgII interactions with d-α-galactose, a competitive inhibitor, showed a number of residues that are involved in the coordination of ligands. A combination of site-directed mutagenesis of these amino acid residues with enzymatic activity measurements confirmed that Glu161 and Glu320 are fundamental for catalysis and their substitution by alanines led to catalytically inactive mutants. Mutation Asn160Ala resulted in a two orders of magnitude decrease of the enzyme kcat without significant modification in its Km , whereas mutations Tyr289Phe and His371Phe simultaneously decreased kcat and increased Km values. Enzymatic activity of Glu368Ala mutant was too low to be detected. Our docking and molecular dynamics simulations showed that the enzyme recognizes and tightly binds substrates with β1→6 and β1→3 bonds, while binding of the substrates with β1→4 linkages is less favorable. Structural data are available in the PDB under the accession numbers 4UZS and 4UCF. © 2016 Federation of European Biochemical Societies.

  20. Crystal structure of a putative exo-β-1,3-galactanase from Bifidobacterium bifidum S17

    SciTech Connect

    Godoy, Andre S.; de Lima, Mariana Z. T.; Camilo, Cesar M.; Polikarpov, Igor

    2016-03-16

    Given the current interest in second-generation biofuels, carbohydrate-active enzymes have become the most important tool to overcome the structural recalcitrance of the plant cell wall. While some glycoside hydrolase families have been exhaustively described, others remain poorly characterized, especially with regard to structural information. The family 43 glycoside hydrolases are a diverse group of inverting enzymes; the available structure information on these enzymes is mainly from xylosidases and arabinofuranosidase. Currently, only one structure of an exo-β-1,3-galactanase is available. Here, the production, crystallization and structure determination of a putative exo-β-1,3-galactanase fromBifidobacterium bifidumS17 (BbGal43A) are described.BbGal43A was successfully produced and showed activity towards synthetic galactosides.BbGal43A was subsequently crystallized and data were collected to 1.4 Å resolution. The structure shows a single-domain molecule, differing from known homologues, and crystal contact analysis predicts the formation of a dimer in solution. Further biochemical studies are necessary to elucidate the differences betweenBbGal43A and its characterized homologues.

  1. Bifidobacterium bifidum Lacto-N-Biosidase, a Critical Enzyme for the Degradation of Human Milk Oligosaccharides with a Type 1 Structure▿

    PubMed Central

    Wada, Jun; Ando, Takuro; Kiyohara, Masashi; Ashida, Hisashi; Kitaoka, Motomitsu; Yamaguchi, Masanori; Kumagai, Hidehiko; Katayama, Takane; Yamamoto, Kenji

    2008-01-01

    Breast-fed infants often have intestinal microbiota dominated by bifidobacteria in contrast to formula-fed infants. We found that several bifidobacterial strains produce a lacto-N-biosidase that liberates lacto-N-biose I (Galβ1,3GlcNAc; type 1 chain) from lacto-N-tetraose (Galβ1,3GlcNAcβ1,3Galβ1,4Glc), which is a major component of human milk oligosaccharides, and subsequently isolated the gene from Bifidobacterium bifidum JCM1254. The gene, designated lnbB, was predicted to encode a protein of 1,112 amino acid residues containing a signal peptide and a membrane anchor at the N and C termini, respectively, and to possess the domain of glycoside hydrolase family 20, carbohydrate binding module 32, and bacterial immunoglobulin-like domain 2, in that order, from the N terminus. The recombinant enzyme showed substrate preference for the unmodified β-linked lacto-N-biose I structure. Lacto-N-biosidase activity was found in several bifidobacterial strains, but not in the other enteric bacteria, such as clostridia, bacteroides, and lactobacilli, under the tested conditions. These results, together with our recent finding of a novel metabolic pathway specific for lacto-N-biose I in bifidobacterial cells, suggest that some of the bifidobacterial strains are highly adapted for utilizing human milk oligosaccharides with a type 1 chain. PMID:18469123

  2. [Antagonistic interrelationships of Bifidobacterium bifidum i Proteus vulgaris in vitro in the digestive tract of gnotobiotic chicks].

    PubMed

    Timoshko, M A; Vil'shanskaia, F L; Pospelova, V V; Rakhimova, N G

    1979-07-01

    The antagonistic relations between Bacterium bifidum, strain I/850 phi, and Proteus vulgaris, strain F-30, were studied. These organisms, when introduced together in equal doses into the digestive tract of gnotobiotic chickens in a single administration, were shown to create certain ecological correlations in various organs with the prevalence of bifidobacteria which exerted no negative influence on Proteus vulgaris. The additional daily administration of bifidobacteria for 3 days running in doses 1000 times as great as the initial dose, the content of both dibifobacteria and Proteus vulgaris in the intestine being at that time at its maximum, resulted in the suppression of the growth of Proteus vulgaris. Our findings indicate that the influence of the pH of the medium should be considered in order to obtain the evidence of significantly pronounced antagonistic relations between the two organisms in vitro.

  3. Exploring the ameliorative potential of probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum on dextran sodium sulphate induced colitis in mice.

    PubMed

    Jadhav, Sagar R; Shandilya, Umesh Kr; Kansal, Vinod K

    2013-02-01

    Conventional medical therapies for ulcerative colitis (UC) are still limited due to the adverse side effects like dose-dependent diarrhoea and insufficient potency to keep in remission for long-term periods. So, new alternatives that provide more effective and safe therapies for ulcerative colitis are constantly being sought. In the present study, probiotic LaBb Dahi was selected for investigation of its therapeutic effect on DSS-induced colitis model in mice. LaBb Dahi was prepared by co-culturing Dahi culture of Lactococci along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 in buffalo milk. Four groups of mice (12 each) were fed for 17 d with buffalo milk (normal control), buffalo milk plus DSS (Colitis control), Dahi plus DSS, and LaBb Dahi plus DSS, respectively, with basal diet. The disease activity scores, weight loss, organ weight, colon length, myeloperoxidase (MPO) and β-glucoronidase activity was assessed, and the histopathological picture of the colon of mice was studied. All colitis control mice evidenced significant increase in MPO, β-glucoronidase activity and showed high disease activity scores along with histological damage to colonic tissue. Feeding with LaBb Dahi offered significant reduction in MPO activity, β-glucoronidase activity and improved disease activity scores. We found significant decline in length of colon, organ weight and body weight in colitis induced controls which were improved significantly by feeding LaBb Dahi. The present study suggests that LaBb Dahi can be used as a potential nutraceutical intervention to combat UC related changes and may offer effective adjunctive treatment for management of UC.

  4. Efficient and Regioselective Synthesis of β-GalNAc/GlcNAc-Lactose by a Bifunctional Transglycosylating β-N-Acetylhexosaminidase from Bifidobacterium bifidum

    PubMed Central

    Chen, Xiaodi; Xu, Li; Jin, Lan; Sun, Bin; Gu, Guofeng

    2016-01-01

    ABSTRACT β-N-Acetylhexosaminidases have attracted interest particularly for oligosaccharide synthesis, but their use remains limited by the rarity of enzyme sources , low efficiency, and relaxed regioselectivity of transglycosylation. In this work, genes of 13 β-N-acetylhexosaminidases, including 5 from Bacteroides fragilis ATCC 25285, 5 from Clostridium perfringens ATCC 13124, and 3 from Bifidobacterium bifidum JCM 1254, were cloned and heterogeneously expressed in Escherichia coli. The resulting recombinant enzymes were purified and screened for transglycosylation activity. A β-N-acetylhexosaminidase named BbhI, which belongs to glycoside hydrolase family 20 and was obtained from B. bifidum JCM 1254, possesses the bifunctional property of efficiently transferring both GalNAc and GlcNAc residues through β1-3 linkage to the Gal residue of lactose. The effects of initial substrate concentration, pH, temperature, and reaction time on transglycosylation activities of BbhI were studied in detail. With the use of 10 mM pNP-β-GalNAc or 20 mM pNP-β-GlcNAc as the donor and 400 mM lactose as the acceptor in phosphate buffer (pH 5.8), BbhI synthesized GalNAcβ1-3Galβ1-4Glc and GlcNAcβ1-3Galβ1-4Glc at maximal yields of 55.4% at 45°C and 4 h and 44.9% at 55°C and 1.5 h, respectively. The model docking of BbhI with lactose showed the possible molecular basis of strict regioselectivity of β1-3 linkage in β-N-acetylhexosaminyl lactose synthesis. IMPORTANCE Oligosaccharides play a crucial role in many biological events and therefore are promising potential therapeutic agents. However, their use is limited because large-scale production of oligosaccharides is difficult. The chemical synthesis requires multiple protecting group manipulations to control the regio- and stereoselectivity of glycosidic bonds. In comparison, enzymatic synthesis can produce oligosaccharides in one step by using glycosyltransferases and glycosidases. Given the lower price of their glycosyl

  5. Oral administration of Bifidobacterium bifidum G9-1 alleviates rotavirus gastroenteritis through regulation of intestinal homeostasis by inducing mucosal protective factors

    PubMed Central

    Kawahara, Tomohiro; Makizaki, Yutaka; Oikawa, Yosuke; Tanaka, Yoshiki; Maeda, Ayako; Shimakawa, Masaki; Komoto, Satoshi; Moriguchi, Kyoko; Ohno, Hiroshi; Taniguchi, Koki

    2017-01-01

    Human rotavirus (RV) infection is a leading cause of dehydrating diarrhea in infants and young children worldwide. Since therapeutic approaches to RV gastroenteritis are limited to alleviation of dehydration with oral rehydration solutions, more direct approaches to palliate symptoms of RV gastroenteritis are required. Treatments with probiotics have been increasingly recognized as alternative safe and low cost treatments for moderate infectious diarrhea. In this study, Bifidobacterium bifidum G9-1 (BBG9-1), which has been used as an intestinal drug for several decades, was shown to have a remarkable protective effect against RV gastroenteritis in a suckling mice model. As well as prophylactic oral administration of BBG9-1 from 2 days before RV infection, therapeutic oral administration of BBG9-1 from 1 day after RV infection significantly alleviated RV-induced diarrhea. Therapeutic administration of BBG9-1 reduced various types of damage in the small intestine, such as epithelial vacuolization and villous shortening, and significantly diminished the infectious RV titer in mixtures of cecal contents and feces. It was also shown that therapeutic administration of BBG9-1 significantly increased the number of acidic mucin-positive goblet cells and the gene expression of mucosal protective factors including MUC2, MUC3, MUC4, TGFβ1 and TFF3 in the small intestine. This led to alleviation of low gut permeability shown as decreased gene expression levels of occludin, claudin-1 and villin-1 after RV infection. Furthermore, in the small intestine, therapeutic administration of BBG9-1 significantly palliated the decreased gene expression of SGLT-1, which plays an important role in water absorption. In the large intestine, administered BBG9-1 was shown to replicate to assimilate undigested nutrients, resulting in normalization of the abnormally high osmotic pressure. These results suggested that water malabsorption caused by RV infection was alleviated in mice administered

  6. Quantitative Detection of Viable Bifidobacterium bifidum BF-1 Cells in Human Feces by Using Propidium Monoazide and Strain-Specific Primers

    PubMed Central

    Fujimoto, Junji

    2013-01-01

    We developed a PCR-based method to detect and quantify viable Bifidobacterium bifidum BF-1 cells in human feces. This method (PMA-qPCR) uses propidium monoazide (PMA) to distinguish viable from dead cells and quantitative PCR using a BF-1-specific primer set designed from the results of randomly amplified polymorphic DNA analysis. During long-term culture (10 days), the number of viable BF-1 cells detected by counting the number of CFU on modified MRS agar, by measuring the ATP contents converted to CFU, and by using PMA-qPCR decreased from about 1010 to 106 cells/ml; in contrast, the total number of (viable and dead) BF-1 cells detected by counting 4′,6-diamidino-2-phenylindolee (DAPI)-stained cells and by using qPCR without PMA and reverse transcription-qPCR remained constant. The number of viable BF-1 cells in fecal samples detected by using PMA-qPCR was highly and significantly correlated with the number of viable BF-1 cells added to the fecal samples, within the range of 105.3 to 1010.3 cells/g feces (wet weight) (r > 0.99, P < 0.001). After 12 healthy subjects ingested 1010.3 to 1011.0 CFU of BF-1 in a fermented milk product daily for 28 days, 104.5 ± 1.5 (mean ± standard deviation [SD]) BF-1 CFU/g was detected in fecal samples by using strain-specific selective agar; in contrast, 106.2 ± 0.4 viable BF-1 cells/g were detected by using PMA-qPCR, and a total of 107.6 ± 0.7 BF-1 cells/g were detected by using qPCR without PMA. Thus, the number of viable BF-1 cells detected by PMA-qPCR was about 50 times higher (P < 0.01) than that detected by the culture-dependent method. We conclude that strain-specific PMA-qPCR can be used to quickly and accurately evaluate viable BF-1 in feces. PMID:23354719

  7. Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Dennis-Wall, Jennifer C; Culpepper, Tyler; Nieves, Carmelo; Rowe, Cassie C; Burns, Alyssa M; Rusch, Carley T; Federico, Ashton; Ukhanova, Maria; Waugh, Sheldon; Mai, Volker; Christman, Mary C; Langkamp-Henken, Bobbi

    2017-03-01

    Background: Rhinoconjunctivitis-specific quality of life is often reduced during seasonal allergies. The Mini Rhinoconjunctivitis Quality of Life Questionnaire (MRQLQ) is a validated tool used to measure quality of life in people experiencing allergies (0 = not troubled to 6 = extremely troubled). Probiotics may improve quality of life during allergy season by increasing the percentage of regulatory T cells (Tregs) and inducing tolerance.Objective: The objective of this study was to determine whether consuming Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and B. longum MM-2 compared with placebo would result in beneficial effects on MRQLQ scores throughout allergy season in individuals who typically experience seasonal allergies. Secondary outcomes included changes in immune markers as part of a potential mechanism for changes in MRQLQ scores.Design: In this double-blind, placebo-controlled, parallel, randomized clinical trial, 173 participants (mean ± SEM: age 27 ± 1 y) who self-identified as having seasonal allergies received either a probiotic (2 capsules/d, 1.5 billion colony-forming units/capsule) or placebo during spring allergy season for 8 wk. MRQLQ scores were collected weekly throughout the study. Fasting blood samples were taken from a subgroup (placebo, n = 37; probiotic, n = 35) at baseline and week 6 (predicted peak of pollen) to determine serum immunoglobulin (Ig) E concentrations and Treg percentages.Results: The probiotic group reported an improvement in the MRQLQ global score from baseline to pollen peak (-0.68 ± 0.13) when compared with the placebo group (-0.19 ± 0.14; P = 0.0092). Both serum total IgE and the percentage of Tregs increased from baseline to week 6, but changes were not different between groups.Conclusions: This combination probiotic improved rhinoconjunctivitis-specific quality of life during allergy season for healthy individuals with self-reported seasonal allergies; however, the associated mechanism is still

  8. Effect of yogurt containing polydextrose, Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019: a randomized, double-blind, controlled study in chronic constipation.

    PubMed

    Magro, Daniéla Oliveira; de Oliveira, Lais Mariana R; Bernasconi, Isabela; Ruela, Marilia de Souza; Credidio, Laura; Barcelos, Irene K; Leal, Raquel F; Ayrizono, Maria de Lourdes Stesuko; Fagundes, João José; Teixeira, Leandro de B; Ouwehand, Arthur C; Coy, Claudio S R

    2014-07-24

    Constipation is a frequent complaint and the combination of a prebiotic and probiotics could have a potentially synergic effect on the intestinal transit. The present study therefore aims to investigate the combination of polydextrose (Litesse), L. acidophilus NCFM® and B. lactis HN019 in a yogurt on intestinal transit in subjects who suffer from constipation. Patients with constipation were randomly divided into two groups, Control Group (CG) and Treatment Group (TG), and had to eat 180 ml of unflavored yogurt every morning for 14 days. Those in the CG received only yogurt, while the TG received yogurt containing polydextrose, L. acidophilus NCFM (ATCC 700396) and B. lactis HN019 (AGAL NM97/09513). Favourable clinical response was assessed since Agachan score had a significant reduction at the end of the study in both groups and tended to be better in the TG. The subjects in the treatment group also had a shorter transit time at the end of the intervention compared to the control group (p = 0.01). The product containing yogurt with polydextrose, B. lactis HN019 and L. acidophilus NCFM® significantly shortened colonic transit time after two weeks in the TG compared to CG and may be an option for treatment of constipation.

  9. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates the formation of aberrant crypt foci, mucin-depleted foci, and cell proliferation on 1,2-dimethylhydrazine-induced colorectal carcinogenesis in Wistar rats.

    PubMed

    Mohania, Dheeraj; Kansal, Vinod K; Kruzliak, Peter; Kumari, Archana

    2014-08-01

    Aberrant crypt foci (ACF) and mucin-depleted foci (MDF) are pre-neoplastic lesions identified in the colon of carcinogen-treated rodents and in humans at high risk for colon cancer. The present study was carried out to divulge the protective potential of the probiotic Dahi containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 alone or in combination with piroxicam (PXC) on the development of early biomarkers of colorectal carcinogenesis in male Wistar rats administered 1,2-dimethylhydrazine (DMH). DMH was injected subcutaneously at the rate of 40 mg/kg body weight per animal twice a week for 2 weeks. A total of 120 male Wistar rats were randomly allocated to five groups, each group having 24 animals. The rats were fed with buffalo milk or probiotic supplement (20 grams) alone or as an adjunct with PXC in addition to a basal diet ad libitum for 32 weeks. Group I was offered buffalo milk (BM) and served as the control group. Group II was administered DMH along with BM and served as the DMH-control group; group III was administered BM-DMH-PXC, in which besides administering BM-DMH, PXC was also offered. Group IV was offered probiotic LaBb Dahi and DMH, and group V was offered both probiotic LaBb Dahi and PXC along with DMH. The rats were euthanized at the 8(th), 16(th), and 32(nd) week of the experiment and examined for development of ACF, aberrant crypts per ACF (AC/ACF), mucin-depleted foci (MDF), large MDF, and proliferating cell nuclear antigen (PCNA) labeling index. Administration of DMH in rats induced pre-neoplastic lesions (ACF and MDF) and increased the PCNA index in colorectal tissue. A significant (p<0.05) reduction in the number of ACF, AC/ACF, MDF, large MDF, and PCNA labeling index were observed in the probiotic LaBb Dahi group compared with the DMH control group. Feeding rats with LaBb Dahi or treatment with PXC diminished the initiation and progression of DMH-induced pre-neoplastic lesions and the PCNA index, and treatment with

  10. Effect of salt stress on morphology and membrane composition of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium bifidum, and their adhesion to human intestinal epithelial-like Caco-2 cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    The effects of NaCl reduction (10.0, 7.5, 5.0, 2.5, and 0% NaCl) and its substitution with KCl (50% substitution at each given concentration) on morphology of Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum was investigated using transmission electron microscopy. Changes in membrane composition, including fatty acids and phospholipids, were investigated using gas chromatography and thin layer chromatography. Adhesion ability of these bacteria to human intestinal epithelial-like Caco-2 cells, as affected by NaCl and its substitution with KCl, was also evaluated. Bacteria appeared elongated and the intracellular content appeared contracted when subjected to salt stress, as observed by transmission electron microscopy. Fatty acid content was altered with an increase in the ratio of unsaturated to saturated fatty acid content on increasing the NaCl-induced stress. Among the phospholipids, phosphatidylglycerol was reduced, whereas phosphatidylinositol and cardioplipin were increased when the bacteria were subjected to salt stress. There was a significant reduction in adhesion ability of the bacteria to Caco-2 cells when cultured in media supplemented with NaCl; however, the adhesion ability was improved on substitution with KCl at a given total salt concentration. The findings provide insights into bacterial membrane damage caused by NaCl.

  11. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high-level gene expression.

    PubMed

    Wang, Yan; Kim, Jin Yong; Park, Myeong Soo; Ji, Geun Eog

    2012-08-01

    For the development of a food-grade expression system for Bifidobacterium, a strong promoter leading to high-level expression of cloned gene is a prerequisite. For this purpose, a promoter screening host-vector system for Bifidobacterium has been established using β-glucosidase from Bifidobacterium lactis as a reporter and Bifidobacterium bifidum BGN4 as a host, which is β-glucosidase negative strain. Seven putative promoters showing constitutive high-level expression were selected through microarray analysis based on the genome sequence of B. bifidum BGN4. They were cloned into upstream of β-glucosidase gene and transformed into Escherichia coli DH5α and B. bifidum BGN4. Promoter activities were analyzed both in E. coli and B. bifidum BGN4 by measuring β-glucosidase activity. β-Glucosidase activities in all of the transformants showed growth-associated characteristics. Among them, P919 was the strongest in B. bifidum BGN4 and showed maximum activity at 18 h, while P895 was the strongest in E. coli DH5α at 7 h. This study shows that novel strong promoters such as P919 can be used for high-level expression of foreign genes in Bifidobacterium and will be useful for the construction of an efficient food-grade expression system.

  12. Production of a Functional Frozen Yogurt Fortified with Bifidobacterium spp.

    PubMed

    Abdelazez, Amro; Muhammad, Zafarullah; Zhang, Qiu-Xue; Zhu, Zong-Tao; Abdelmotaal, Heba; Sami, Rokayya; Meng, Xiang-Chen

    2017-01-01

    Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. (Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture (Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at -18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only.

  13. Production of a Functional Frozen Yogurt Fortified with Bifidobacterium spp.

    PubMed Central

    Muhammad, Zafarullah; Zhang, Qiu-Xue; Zhu, Zong-Tao

    2017-01-01

    Frozen dairy products have characteristics of both yogurt and ice cream and could be the persuasive carriers of probiotics. Functions of the frozen yogurt containing viable bifidobacterial cells are recognized and favored by the people of all ages. We developed a kind of yogurt supplemented by Bifidobacterium species. Firstly, five strains of Bifidobacterium spp. (Bifidobacterium bifidum ATCC 11547, Bifidobacterium longum ATCC 11549, Bifidobacterium infantis ATCC 11551, Bifidobacterium adolescentis ATCC 11550, and Bifidobacterium breve ATCC 11548) were evaluated based on the feasibility criteria of probiotics, comprising acid production, bile tolerance, and adhesion to epithelial cells. Formerly, we combined the optimum strains with yogurt culture (Lactobacillus delbrueckii subsp. bulgaricus EMCC 11102 and Streptococcus salivarius subsp. thermophilus EMCC 11044) for producing frozen yogurt. Finally, physiochemical properties and sensory evaluation of the frozen yogurt were investigated during storage of 60 days at −18°C. Results directed that Bifidobacterium adolescentis ATCC 11550 and Bifidobacterium infantis ATCC 11551 could be utilized with yogurt culture for producing frozen yogurt. Moreover, the frozen yogurt fermented by two bifidobacterial strains and yogurt culture gained the high evaluation in the physiochemical properties and sensory evaluation. In summary, our results revealed that there was no significant difference between frozen yogurt fermented by Bifidobacterium spp. and yogurt culture and that fermented by yogurt culture only. PMID:28691028

  14. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii.

    PubMed

    Ramirez-Farias, Carlett; Slezak, Kathleen; Fuller, Zoë; Duncan, Alan; Holtrop, Grietje; Louis, Petra

    2009-02-01

    Prebiotics are food ingredients that improve health by modulating the colonic microbiota. The bifidogenic effect of the prebiotic inulin is well established; however, it remains unclear which species of Bifidobacterium are stimulated in vivo and whether bacterial groups other than lactic acid bacteria are affected by inulin consumption. Changes in the faecal microbiota composition were examined by real-time PCR in twelve human volunteers after ingestion of inulin (10 g/d) for a 16-d period in comparison with a control period without any supplement intake. The prevalence of most bacterial groups examined did not change after inulin intake, although the low G+C % Gram-positive species Faecalibacterium prausnitzii exhibited a significant increase (10.3% for control period v. 14.5% during inulin intake, P=0.019). The composition of the genus Bifidobacterium was studied in four of the volunteers by clone library analysis. Between three and five Bifidobacterium spp. were found in each volunteer. Bifidobacterium adolescentis and Bifidobacterium longum were present in all volunteers, and Bifidobacterium pseudocatenulatum, Bifidobacterium animalis, Bifidobacterium bifidum and Bifidobacterium dentium were also detected. Real-time PCR was employed to quantify the four most prevalent Bifidobacterium spp., B. adolescentis, B. longum, B. pseudocatenulatum and B. bifidum, in ten volunteers carrying detectable levels of bifidobacteria. B. adolescentis showed the strongest response to inulin consumption, increasing from 0.89 to 3.9% of the total microbiota (P=0.001). B. bifidum was increased from 0.22 to 0.63% (P<0.001) for the five volunteers for whom this species was present.

  15. The impact of polyphenols on Bifidobacterium growth.

    PubMed

    Gwiazdowska, Daniela; Juś, Krzysztof; Jasnowska-Małecka, Joanna; Kluczyńska, Katarzyna

    2015-01-01

    Polyphenols are a common group of plant based bioactive compounds, that can affect human health because of their antioxidant and antimicrobial properties as well as free-radical scavenging activity. An increasing interest is observed in the interaction between polyphenols and microbiota occurring in food and the human gut. The aim of the work presented here, was to evaluate the effect of some polyphenolic compounds on the growth of two strains of Bifidobacterium: B. adolescentis and B. bifidum. The influence of some flavonoids: naringinin, hesperidin, rutin, quercetin as well as phenolic acids: gallic, caffeic, p-coumaric, ferulic, chlorogenic, vanillic and sinapic was determined by a 96-well microtiter plate assay. In the experiments the effect of three different concentrations of polyphenols: 2, 20 and 100 µg/ml on the growth of Bifidobacterium strains was investigated. All tested compounds influenced the growth of the examined bacteria. Both stimulatory and inhibitory effects were observed in comparison to the positive control. The strongest impact on the growth of bifidobacteria was observed during the first hours of incubation. The constant inhibitory effect was observed for hesperidin and quercetin addition and was dose-dependent. B. bifidum showed a stronger dependence on phenolic acids content in the medium than B. adolescentis during the first hours of incubation.

  16. [The vaginal Bifidobacterium flora in women of reproductive age].

    PubMed

    Korshunov, V M; Gudieva, Z A; Efimov, B A; Pikina, A P; Smeianov, V V; Reid, G; Korshunova, O V; Tiutiunnik, V L; Stepin, I I

    1999-01-01

    The composition of vaginal bifidoflora in 56 clinically healthy women of reproductive age was studied. The study revealed that four species of bifidobacteria, viz. Bifidobacterium bifidum, B. breve, B. adolescentis 2 and B. longum, dominated in the composition of this bifidobacterial population. Nine out of 11 isolated strains were found to be capable of inhibiting indicator microorganisms Staphylococcus aureus and Enterococcus faecalis when tested in vitro; in addition, strains B. adolescentis 2 F1, B. bifidum G1, B. breve P2 and B. longum Z4 inhibited Klebsiella ozaenae, Pseudomonas aeruginosa, Escherichia coli and were also active acid producers. Three of these 4 bifidobacterial strains were capable of adhesion to vaginal epitheliocytes, while B. bifidum G1 was practically incapable of adherence to these cells, similarly to B. bifidum strain 791 of intestinal origin. In addition, the spectra of antibiotic susceptibility varied from strain to strain, but all bifidobacterial strains were susceptible to benzylpenicillin and resistant to lomefloxacin, most of them being also resistant to cyprofloxacin and gentamicin. Thus the data presented in this work are indicative of the possibility and advantages of using bifidobacterial strains belonging to this ecological niche as probiotics for the correction of the microflora of the urogenital tract in females.

  17. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    PubMed

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM.

  18. Metabolism of Sialic Acid by Bifidobacterium breve UCC2003

    PubMed Central

    Egan, Muireann; O'Connell Motherway, Mary; Ventura, Marco

    2014-01-01

    Bifidobacteria constitute a specific group of commensal bacteria that inhabit the gastrointestinal tracts of humans and other mammals. Bifidobacterium breve UCC2003 has previously been shown to utilize several plant-derived carbohydrates that include cellodextrins, starch, and galactan. In the present study, we investigated the ability of this strain to utilize the mucin- and human milk oligosaccharide (HMO)-derived carbohydrate sialic acid. Using a combination of transcriptomic and functional genomic approaches, we identified a gene cluster dedicated to the uptake and metabolism of sialic acid. Furthermore, we demonstrate that B. breve UCC2003 can cross feed on sialic acid derived from the metabolism of 3′-sialyllactose, an abundant HMO, by another infant gut bifidobacterial strain, Bifidobacterium bifidum PRL2010. PMID:24814790

  19. Genomics and ecological overview of the genus Bifidobacterium.

    PubMed

    Turroni, Francesca; van Sinderen, Douwe; Ventura, Marco

    2011-09-01

    Members of the genus Bifidobacterium are high G+C Gram positive bacteria belonging to the phylum Actinobacteria, and represent common inhabitants of the gastro-intestinal tract (GIT) of mammals, birds and certain cold-blooded animals. The overall microbial population that resides in the GIT, referred to as the "gut microbiota", is an extremely complex community of microorganisms whose functions are believed to have a significant impact on human physiology. Different ecological relationships between bifidobacteria and their host can be developed, ranging from opportunistic pathogenic interactions (e.g. in the case of Bifidobacterium dentium) to a commensal or even health-promoting relationship (e.g. in the case of Bifidobacterium bifidum and Bifidobacterium breve species). Among the known health-promoting or probiotic microorganisms, bifidobacteria represent one of the most dominant group and some bifidobacterial species are frequently used as the probiotic ingredient in many functional foods. However, despite the generally accepted importance of bifidobacteria as constituents of the human microbiota, there is only limited information available on their phylogeny, physiology and genetics. Moreover, host-microbiota interactions and cross-talk between different members of the gut microbiota are far from completely understood although they represent a crucial factor in the development and maintenance of human physiology and immune system. The aim of this review is to highlight the genetic and functional features of bifidobacteria residing in the human GIT using genomic and ecology-based information. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Evaluation of genetic diversity among strains of the human gut commensal Bifidobacterium adolescentis

    PubMed Central

    Duranti, Sabrina; Milani, Christian; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Ferrario, Chiara; Mangifesta, Marta; Viappiani, Alice; Sánchez, Borja; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2016-01-01

    Bifidobacteria are members of the human gut microbiota, being numerically dominant in the colon of infants, while also being prevalent in the large intestine of adults. In this study, we determined and analyzed the pan-genome of Bifidobacterium adolescentis, which is one of many bacteria found in the human adult gut microbiota. In silico analysis of the genome sequences of eighteen B. adolescentis strains isolated from various environments, such as human milk, human feces and bovine rumen, revealed a high level of genetic variability, resulting in an open pan-genome. Compared to other bifidobacterial taxa such as Bifidobacterium bifidum and Bifidobacterium breve, the more extensive B. adolescentis pan-genome supports the hypothesis that the genetic arsenal of this taxon expanded so as to become more adaptable to the variable and changing ecological niche of the gut. These increased genetic capabilities are particularly evident for genes required for dietary glycan-breakdown. PMID:27035119

  1. ESR spin trapping for characterization of radical formation in Lactobacillus acidophilus NCFM and Listeria innocua.

    PubMed

    Hougaard, Anni B; Arneborg, Nils; Andersen, Mogens L; Skibsted, Leif H

    2013-09-01

    In this study, radicals in pure cultures of Lactobacillus acidophilus NCFM and Listeria innocua were detected in a quantitative way by electron spin resonance spectroscopy using spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) or N-tert-butyl-α-phenylnitrone (PBN). No adverse effect of spin trap addition on viability was observed for any of the bacterial strains. L. acidophilus NCFM had a higher production of radicals than L. innocua when incubated in a growth medium. Furthermore, by using DMPO in a buffer system, the radicals produced by L. acidophilus NCFM could be identified as hydroxyl radicals. The presence of polyethylene glycol, impermeable for bacterial cells, decreased the signal intensity of the ESR spectrum of the DMPO-OH adduct in cultures of L. acidophilus NCFM and indicated quenching of hydroxyl radicals outside the bacteria. This suggests that radical production is an extracellular event for L. acidophilus NCFM. © 2013.

  2. Sugar transport systems of Bifidobacterium longum NCC2705.

    PubMed

    Parche, Stephan; Amon, Johannes; Jankovic, Ivana; Rezzonico, Enea; Beleut, Manfred; Barutçu, Hande; Schendel, Inke; Eddy, Mike P; Burkovski, Andreas; Arigoni, Fabrizio; Titgemeyer, Fritz

    2007-01-01

    Here we present the complement of the carbohydrate uptake systems of the strictly anaerobic probiotic Bifidobacterium longum NCC2705. The genome analysis of this bacterium predicts that it has 19 permeases for the uptake of diverse carbohydrates. The majority belongs to the ATP-binding cassette transporter family with 13 systems identified. Among them are permeases for lactose, maltose, raffinose, and fructooligosaccharides, a commonly used prebiotic additive. We found genes that encode a complete phosphotransferase system (PTS) and genes for three permeases of the major facilitator superfamily. These systems could serve for the import of glucose, galactose, lactose, and sucrose. Growth analysis of NCC2705 cells combined with biochemical characterization and microarray data showed that the predicted substrates are consumed and that the corresponding transport and catabolic genes are expressed. Biochemical analysis of the PTS, in which proteins are central in regulation of carbon metabolism in many bacteria, revealed that B. longum has a glucose-specific PTS, while two other species (Bifidobacterium lactis and Bifidobacterium bifidum) have a fructose-6-phosphate-forming fructose-PTS instead. It became obvious that most carbohydrate systems are closely related to those from other actinomycetes, with a few exceptions. We hope that this report on B. longum carbohydrate transporter systems will serve as a guide for further in-depth analyses on the nutritional lifestyle of this beneficial bacterium. Copyright (c) 2007 S. Karger AG, Basel.

  3. Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese.

    PubMed

    Vinderola, C G; Prosello, W; Ghiberto, T D; Reinheimer, J A

    2000-09-01

    We evaluated the suitability of Argentinian Fresco cheese as a food carrier of probiotic cultures. We used cultures of Bifidobacterium bifidum (two strains), Bifidobacterium longum (two strains), Bifidobacterium sp. (one strain), Lactobacillus acidophilus (two strains), and Lactobacillus casei (two strains) in different combinations, as probiotic adjuncts. Probiotic, lactic starter (Lactococcus lactis and Streptococcus thermophilus), and contaminant (coliforms, yeasts, and molds) organisms were counted at 0, 30, and 60 d of refrigerated storage. Furthermore, the acid resistance of probiotic and starter bacteria was determined from hydrochloric solutions (pH 2 and 3) of Fresco cheese. The results showed that nine different combinations of bifidobacteria and L. acidophilus had a satisfactory viability (count decreases in 60 d <1 log order) in the cheese. Both combinations of bifidobacteria and L. casei cultures assayed also showed a satisfactory survival (counts decreased <1 log order for bifidobacteria but no decrease was detected for L. casei). On the other hand, the three combinations of bifidobacteria, L. acidophilus, and L. casei tested adapted well to the Fresco cheese environment. When a cheese homogenate at pH 3 was used to partially simulate the acidic conditions in the stomach, the probiotic cultures had an excellent ability to remain viable up to 3 h. At pH 2, the cell viability was more affected; B. bifidum was the most resistant organism. This study showed that the Argentinian Fresco cheese could be used as an adequate carrier of probiotic bacteria.

  4. Performances of new isolates of Bifidobacterium on fermentation of soymilk.

    PubMed

    Havas, Petra; Kun, Szilárd; Perger-Mészáros, Izabell; Rezessy-Szabó, Judit M; Nguyen, Quang D

    2015-12-01

    Growth and metabolic activity of several new, human origin isolates of Bifidobacterium strains were investigated. All tested bifidobacteria strains were grown well on the native soymilk medium without any additional nutrients. The fermentation processes cultured with initial cell concentrations in 10⁵ -10⁷ cfu/ml resulted in 10⁸ cfu/ml after 8-12 h of incubation in soymilk, and were kept viable up to the end of fermentation (48 h). Volumetric productivities of B. bifidum B3.2, B. bifidum B7.1 and B. breve B9.14 were 1.6 × 10¹⁰ cfu/L.h, 4.5 × 10¹⁰ cfu/L.h and 7.6 × 10⁹ cfu/L.h, respectively, whereas these values of B. lactis Bb-12 and B. longum Bb-46 probiotic strains were 2.7 × 10⁹ cfu/L.h and 1.0 x 10¹⁰ cfu/L.h. The α-galactosidase activities were also detected in the intracellular fraction of the disrupted cells. Productions of lactic and acetic acids were in the range of 23-60 mmol/L and 2.4-5.6 mmol/L, respectively. Molar ratios of acetate to lactate in all tested strains varied from 0.05-0.1 that are very promising for further technological development of probiotic fermented soy-based food products.

  5. [Expression of PTX3 gene in Caco-2 cells treated with Lactobacillus acidophilus NCFM].

    PubMed

    Lv, Xuena; Man, Chaoxin; Han, Linlin; Wang, Mingna; Zhang, Guanghui; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Jiang, Yujun

    2011-04-01

    To study the expression of immunity and inflammatory mediator factor PTX3 in intestinal epithelial cells treated with Lactobacillus acidophilus NCFM and further to reveal the regulatory mechanism. Caco-2 cells were cocultured with Lactobacillus acidophilus NCFM for 0, 2, 4, 8, 12 h and 0, 0.5, 1, 2, 4 h respectively, then the total RNA and protein were extracted. The expression of PTX3 gene was analyzed by Real Time RT-PCR. The phosphorylation levels of NF-kappaB was analyzed by Western Blot. Caco-2 cells were pretreated with PDTC for 30 min before cocultured with Lactobacillus acidophilus NCFM for 2 h, then the total RNA was extracted and the expression of PTX3 gene was analyzed by Real Time RT-PCR. Lactobacillus acidophilus NCFM could induce the expression of PTX3 in Caco-2 cells. The PTX3 expression peaked at 4 h after coculture. Then its expression gradually waned out. Lactobacillus acidophilus NCFM could rapidly activate the phosphorylation of NF-kappaB, and the expression of PTX3 was decreased notably after pretreated with PDTC for 30 min. Lactobacillus acidophilus NCFM could transiently regulate the immunity and inflammatory mediator factor PTX3 expression through rapidly activating NF-kappaB signaling pathway in Caco-2 cells.

  6. Probiotic Bifidobacterium species stimulate human SLC26A3 gene function and expression in intestinal epithelial cells.

    PubMed

    Kumar, Anoop; Hecht, Cameron; Priyamvada, Shubha; Anbazhagan, Arivarasu N; Alakkam, Anas; Borthakur, Alip; Alrefai, Waddah A; Gill, Ravinder K; Dudeja, Pradeep K

    2014-12-15

    SLC26A3, or downregulated in adenoma (DRA), plays a major role in mediating Cl(-) absorption in the mammalian intestine. Disturbances in DRA function and expression have been implicated in intestinal disorders such as congenital Cl(-) diarrhea and gut inflammation. We previously showed that an increase in DRA function and expression by Lactobacillus acidophilus and its culture supernatant (CS) might underlie antidiarrheal effects of this probiotic strain. However, the effects of Bifidobacterium species, important inhabitants of the human colon, on intestinal Cl(-)/HCO3 (-) exchange activity are not known. Our current results demonstrate that CS derived from Bifidobacterium breve, Bifidobacterium infantis, and Bifidobacterium bifidum increased anion exchange activity in Caco-2 cells (∼1.8- to 2.4-fold). Consistent with the increase in DRA function, CS also increased the protein, as well as the mRNA, level of DRA (but not putative anion transporter 1). CS of all three Bifidobacterium sp. increased DRA promoter activity (-1,183/+114 bp) in Caco-2 cells (1.5- to 1.8-fold). Furthermore, the increase in DRA mRNA expression by CS of B. breve and B. infantis was blocked in the presence of the transcription inhibitor actinomycin D (5 μM) and the ERK1/2 MAPK pathway inhibitor U0126 (10 μM). Administration of live B. breve, B. infantis, and B. bifidum by oral gavage to mice for 24 h increased DRA mRNA and protein levels in the colon. These data demonstrate an upregulation of DRA via activation of the ERK1/2 pathway that may underlie potential antidiarrheal effects of Bifidobacterium sp.

  7. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains.

    PubMed

    Goderska, Kamila; Czarnecki, Zbigniew

    2008-01-01

    Improved production methods of starter cultures, which constitute the most important element of probiotic preparations, were investigated. The aim of the presented research was to analyse changes in the viability of Lactobacillus. acidophilus and Bifidobacterium bifidum after stabilization (spray drying, liophilization, fluidization drying) and storage in refrigerated conditions for 4 months. The highest numbers of live cells, up to the fourth month of storage in refrigerated conditions, of the order of 10(7) cfu/g preparation were recorded for the B. bifidum DSM 20239 bacteria in which the N-Tack starch for spray drying was applied. Fluidization drying of encapsulated bacteria allowed obtaining a preparation of the comparable number of live bacterial cells up to the fourth month of storage with those encapsulated bacteria, which were subjected to freeze-drying but the former process was much shorter. The highest survivability of the encapsulated L. acidophilus DSM 20079 and B. bifidum DSM 20239 cells subjected to freeze-drying was obtained using skimmed milk as the cryoprotective substance. Stabilization of bacteria by microencapsulation can give a product easy to store and apply to produce dried food composition.

  8. Synthesis and Fermentation Properties of Novel Galacto-Oligosaccharides by β-Galactosidases from Bifidobacterium Species

    PubMed Central

    Rabiu, Bodun A.; Jay, Andrew J.; Gibson, Glenn R.; Rastall, Robert A.

    2001-01-01

    β-Galactosidase enzymes were extracted from pure cultures of Bifidobacterium angulatum, B. bifidum BB-12, B. adolescentis ANB-7, B. infantis DSM-20088, and B. pseudolongum DSM-20099 and used in glycosyl transfer reactions to synthesize oligosaccharides from lactose. At a lactose concentration of 30% (wt/wt) oligosaccharide yields of 24.7 to 47.6% occurred within 7 h. Examination of the products by thin-layer chromatography and methylation analysis revealed distinct product derived spectra from each enzyme. These were found to be different to that of Oligomate 55, a commercial prebiotic galacto-oligosaccharide. Fermentation testing of the oligosaccharides showed an increase in growth rate, compared to Oligomate 55, with products derived from B. angulatum, B. bifidum, B. infantis, and B. pseudolongum. However B. adolescentis had a lower growth rates on its oligosaccharide compared with Oligomate 55. Mixed culture testing of the B. bifidum BS-4 oligosaccharide showed that the overall prebiotic effect was equivalent to that of Oligomate 55. PMID:11375159

  9. Evolutionary architecture of the infant-adapted group of Bifidobacterium species associated with the probiotic function.

    PubMed

    Kwak, Min-Jung; Kwon, Soon-Kyeong; Yoon, Jae-Kyung; Song, Ju Yeon; Seo, Jae-Gu; Chung, Myung Jun; Kim, Jihyun F

    2016-10-01

    Bifidobacteria, often associated with the gastrointestinal tract of animals, are well known for their roles as probiotics. Among the dozens of Bifidobacterium species, Bifidobacterium bifidum, B. breve, and B. longum are the ones most frequently isolated from the feces of infants and known to help the digestion of human milk oligosaccharides. To investigate the correlation between the metabolic properties of bifidobacteria and their phylogeny, we performed a phylogenomic analysis based on 452 core genes of forty-four completely sequenced Bifidobacterium species. Results show that a major evolutionary event leading to the clade of the infant-adapted species is linked to carbohydrate metabolism, but it is not the only factor responsible for the adaptation of bifidobacteria to the gut. The genome of B. longum subsp. infantis, a typical bifidobacterium in the gut of breast-fed infants, encodes proteins associated with several kinds of species-specific metabolic pathways, including urea metabolism and biosynthesis of riboflavin and lantibiotics. Our results demonstrate that these metabolic features, which are associated with the probiotic function of bifidobacteria, are species-specific and highly correlate with their phylogeny. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Microencapsulation of Lactobacillus acidophilus NCFM using polymerized whey proteins as wall material.

    PubMed

    Jiang, Yujun; Zheng, Zhe; Zhang, Tiehua; Hendricks, Gregory; Guo, Mingruo

    2016-09-01

    Survivability of probiotics in foods is essential for developing functional food containing probiotics. We investigated polymerized whey protein (PWP)-based microencapsulation process which is developed for protecting probiotics like Lactobacillus acidophilus NCFM and compared with the method using sodium alginate (SA). The entrapment rate was 89.3 ± 4.8% using PWP, while it was 73.2 ± 1.4% for SA. The microencapsulated NCFM by PWP and SA were separately subjected to digestion juices and post-fermentation storage of fermented cows' and goats' milk using the encapsulated culture. The log viable count of NCFM in PWP-based microencapsulation was 4.56, compared with that of 4.26 in SA-based ones and 3.13 for free culture. Compared with using SA as wall material, PWP was more effective in protecting probiotic. Microencapsulation of L. acidophilus NCFM using PWP as wall material can be exploited in the development of fermented dairy products with better survivability of probiotic organism.

  11. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.

    PubMed

    Foley, Sophie; Stolarczyk, Emilie; Mouni, Fadoua; Brassart, Colette; Vidal, Olivier; Aïssi, Eliane; Bouquelet, Stéphane; Krzewinski, Frédéric

    2008-02-01

    Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial D: -fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the D: -fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism.

  12. Caenorhabditis elegans immune conditioning with the probiotic bacterium Lactobacillus acidophilus strain NCFM enhances gram-positive immune responses.

    PubMed

    Kim, Younghoon; Mylonakis, Eleftherios

    2012-07-01

    Although the immune response of Caenorhabditis elegans to microbial infections is well established, very little is known about the effects of health-promoting probiotic bacteria on evolutionarily conserved C. elegans host responses. We found that the probiotic Gram-positive bacterium Lactobacillus acidophilus NCFM is not harmful to C. elegans and that L. acidophilus NCFM is unable to colonize the C. elegans intestine. Conditioning with L. acidophilus NCFM significantly decreased the burden of a subsequent Enterococcus faecalis infection in the nematode intestine and prolonged the survival of nematodes exposed to pathogenic strains of E. faecalis and Staphylococcus aureus, including multidrug-resistant (MDR) isolates. Preexposure of nematodes to Bacillus subtilis did not provide any beneficial effects. Importantly, L. acidophilus NCFM activates key immune signaling pathways involved in C. elegans defenses against Gram-positive bacteria, including the p38 mitogen-activated protein kinase pathway (via TIR-1 and PMK-1) and the β-catenin signaling pathway (via BAR-1). Interestingly, conditioning with L. acidophilus NCFM had a minimal effect on Gram-negative infection with Pseudomonas aeruginosa or Salmonella enterica serovar Typhimurium and had no or a negative effect on defense genes associated with Gram-negative pathogens or general stress. In conclusion, we describe a new system for the study of probiotic immune agents and our findings demonstrate that probiotic conditioning with L. acidophilus NCFM modulates specific C. elegans immunity traits.

  13. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol.

    PubMed

    Majumder, Avishek; Sultan, Abida; Jersie-Christensen, Rosa R; Ejby, Morten; Schmidt, Bjarne Gregers; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2011-09-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium adapted to survive in the gastrointestinal tract and with potential health benefits to the host. Lactitol is a synthetic sugar alcohol used as a sugar replacement in low calorie foods and selectively stimulating growth of L. acidophilus NCFM. In the present study the whole-cell extract proteome of L. acidophilus NCFM grown on glucose until late exponential phase was resolved by 2-DE (pH 3-7). A total of 275 unique proteins assigned to various physiological processes were identified from 650 spots. Differential 2-DE (DIGE) (pH 4-7) of L. acidophilus NCFM grown on glucose and lactitol, revealed 68 spots with modified relative intensity. Thirty-two unique proteins were identified in 41 of these spots changing 1.6-12.7-fold in relative abundance by adaptation of L. acidophilus NCFM to growth on lactitol. These proteins included β-galactosidase small subunit, galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose-4-epimerase, which all are potentially involved in lactitol metabolism. This first comprehensive proteome analysis of L. acidophilus NCFM provides insights into protein abundance changes elicited by the prebiotic lactitol. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates

    PubMed Central

    Valdés-Varela, L.; Hernández-Barranco, Ana M.; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2016-01-01

    The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants. PMID:27242753

  15. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    PubMed

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Quantification of Human Fecal Bifidobacterium Species by Use of Quantitative Real-Time PCR Analysis Targeting the groEL Gene

    PubMed Central

    Junick, Jana

    2012-01-01

    Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log10 cells/g feces was approximately 50%. The quantification limit was 5 to 6 log10 groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR. PMID:22307308

  17. Synbiotic Lactobacillus acidophilus NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial.

    PubMed

    van Zanten, Gabriella C; Krych, Lukasz; Röytiö, Henna; Forssten, Sofia; Lahtinen, Sampo J; Abu Al-Soud, Waleed; Sørensen, Søren; Svensson, Birte; Jespersen, Lene; Jakobsen, Mogens

    2014-10-01

    Probiotics, prebiotics, and combinations thereof, that is synbiotics, have been reported to modulate gut microbiota of humans. In this study, effects of a novel synbiotic on the composition and metabolic activity of human gut microbiota were investigated. Healthy volunteers (n = 18) were enrolled in a double-blinded, randomized, and placebo-controlled cross-over study and received synbiotic [Lactobacillus acidophilus NCFM (10(9) CFU) and cellobiose (5 g)] or placebo daily for 3 weeks. Fecal samples were collected and lactobacilli numbers were quantified by qPCR. Furthermore, 454 tag-encoded amplicon pyrosequencing was used to monitor the effect of synbiotic on the composition of the microbiota. The synbiotic increased levels of Lactobacillus spp. and relative abundances of the genera Bifidobacterium, Collinsella, and Eubacterium while the genus Dialister was decreased (P < 0.05). No other effects were found on microbiota composition. Remarkably, however, the synbiotic increased concentrations of branched-chain fatty acids, measured by gas chromatography, while short-chain fatty acids were not affected. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Study on the Influence of Tea Extract on Probiotics in Skim Milk: From Probiotics Propagation to Metabolite.

    PubMed

    Li, Sha; Gong, Guangyu; Ma, Chengjie; Liu, Zhenmin; Cai, Jie

    2016-08-01

    In this study, the influence of tea extract (TE) on the growth of probiotics in skim milk was examined. Lactobacillus plantarum ST-III, Bifidobacterium bifidum Bb02, Lactobacillus acidophilus NCFM, and Lactobacillus rhamnosus GG were used in this study. The introduction of TE in milk significantly stimulated the propagation and acidification of L. rhamnosus GG and L. acidophilus NCFM. The antioxidant capacities and the total free amino acid contents of all fermented milk products were enhanced by the addition of TE; however, there were different antioxidant properties and free amino acid contents of fermented milk samples fermented by different bacteria. With a 9% (w/w) level, the fermentation with L. rhamnosus GG and L. acidophilus NCFM showed larger numbers of viable cells and faster acidifying rates, as well as excellent antioxidant capacity and abundant free amino acids.  The stimulative effects of TE on probiotics can be considered for industrial purposes and has practical implications for commercial applications.

  19. The role of components of Bifidobacterium and Lactobacillus in pathogenesis and serologic diagnosis of autoimmune thyroid diseases.

    PubMed

    Kiseleva, E P; Mikhailopulo, K I; Sviridov, O V; Novik, G I; Knirel, Y A; Szwajcer Dey, E

    2011-06-01

    During recent years, researchers have been focusing on the concept of an infectious etiology of autoimmune diseases. The most discussed theory is molecular mimicry, i.e. the emergence of autoreactive clones of T- and B-lymphocytes as a result of cross-immune response to homologous bacterial or viral antigen. Information on the role of probiotic microorganisms (PM) in the molecular mechanisms of autoimmune thyroid diseases (ATD) is limited. Using proteins and immunogenic peptides databanks and relevant computer programs, the homology between the amino acid sequences of thyroid peroxidase (TPO) and thyroglobulin (Tg), which are potential B- and T-cell epitopes of these antigens, and proteins of bifidobacteria and lactobacilli was established. Moreover, we have found components of cells of Bifidobacterium bifidum 791, Bifidobacterium adolescentis 94 BIM, Bifidobacterium longum B379M and Lactobacillus plantarum B-01 that selectively bind human antibodies to TPO (anti-TPO) and antibodies to Tg (anti-Tg) and compete with natural antigens for the binding of anti-TPO and anti-Tg in ELISA. Additionally, a three-fold difference was observed between the probability of detecting antibodies (Abs) to the antigens of L. plantarum B-01 and B. bifidum 791 in serum samples containing and those not containing anti-TPO. On the whole, our data are arguments in favour of the assumption of the possible role of PM of the genera Bifidobacterium and Lactobacillus in triggering ATD by the mechanism of molecular mimicry. The data obtained in silico and in vitro should be proven by use of animal models and clinical studies for extrapolations to the whole body. Possible antigenic properties of components/proteins of bifidobacteria and lactobacilli, selectively binding anti-TPO and anti-Tg should be taken into consideration. Natural human Abs to these bacterial components are probably able to cross-react with the TPO and Tg in the ELISA for detection of anti-TPO and anti-Tg, which are serologic

  20. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM.

    PubMed

    Hymes, Jeffrey P; Johnson, Brant R; Barrangou, Rodolphe; Klaenhammer, Todd R

    2016-05-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion off bpB lost the ability to adhere to mucin and fibronectin in vitro Homologues off bpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside theL. acidophilus homology group.

  1. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM.

    PubMed

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β-linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.

  2. Functional Analysis of an S-Layer-Associated Fibronectin-Binding Protein in Lactobacillus acidophilus NCFM

    PubMed Central

    Hymes, Jeffrey P.; Johnson, Brant R.; Barrangou, Rodolphe

    2016-01-01

    Bacterial surface layers (S-layers) are crystalline arrays of self-assembling proteinaceous subunits called S-layer proteins (Slps) that comprise the outermost layer of the cell envelope. Many additional proteins that are associated with or embedded within the S-layer have been identified in Lactobacillus acidophilus NCFM, an S-layer-forming bacterium that is widely used in fermented dairy products and probiotic supplements. One putative S-layer-associated protein (SLAP), LBA0191, was predicted to mediate adhesion to fibronectin based on the in silico detection of a fibronectin-binding domain. Fibronectin is a major component of the extracellular matrix (ECM) of intestinal epithelial cells. Adhesion to intestinal epithelial cells is considered an important trait for probiotic microorganisms during transit and potential association with the intestinal mucosa. To investigate the functional role of LBA0191 (designated FbpB) in L. acidophilus NCFM, an fbpB-deficient strain was constructed. The L. acidophilus mutant with a deletion of fbpB lost the ability to adhere to mucin and fibronectin in vitro. Homologues of fbpB were identified in five additional putative S-layer-forming species, but no homologues were detected in species outside the L. acidophilus homology group. PMID:26921419

  3. Transcriptional Analysis of Prebiotic Uptake and Catabolism by Lactobacillus acidophilus NCFM

    PubMed Central

    Andersen, Joakim Mark; Barrangou, Rodolphe; Hachem, Maher Abou; Lahtinen, Sampo J.; Goh, Yong-Jun; Svensson, Birte; Klaenhammer, Todd R.

    2012-01-01

    The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota. PMID:23028535

  4. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie; Lahtinen, Sampo J; Brix, Susanne; Abou Hachem, Maher; Svensson, Birte

    2017-06-23

    Adhesion to intestinal mucosa is a crucial property for probiotic bacteria. Adhesion is thought to increase host-bacterial interactions, thus potentially enabling health benefits to the host. Molecular events connected with adhesion and surface proteome changes were investigated for the probiotic Lactobacillus acidophilus NCFM cultured with established or emerging prebiotic carbohydrates as carbon source and in the presence of mucin, the glycoprotein of the epithelial mucus layer. Variation in adhesion to HT29-cells and mucin was associated with carbon source and mucin-induced subproteome abundancy differences. Specifically, while growth on fructooligosaccharides (FOS) only stimulated adhesion to intestinal HT-29 cells, cellobiose and polydextrose in addition increased adhesion to mucin. Adhesion to HT-29 cells increased by about 2-fold for bacteria grown on mucin-supplemented glucose. Comparative 2DE-MS surface proteome analysis showed different proteins in energy metabolism appearing on the surface, suggesting they exert moonlighting functions. Mucin-supplemented bacteria had relative abundance of pyruvate kinase and fructose-bisphosphate aldolase increased by about 2-fold while six spots with 3.2-2.1 fold reduced relative abundance comprised elongation factor G, phosphoglycerate kinase, BipAEFTU family GTP-binding protein, ribonucleoside triphosphate reductase, adenylosuccinate synthetase, 30S ribosomal protein S1, and manganese-dependent inorganic pyrophosphatase. Surface proteome of cellobiose- compared to glucose-grown L. acidophilus NCFM had phosphate starvation inducible protein stress-related, thermostable pullulanase, and elongation factor G increasing 4.4-2.4 fold, while GAPDH, elongation factor Ts, and pyruvate kinase were reduced by 2.0-1.5 fold in relative abundance. Addition of recombinant L. acidophilus NCFM elongation factor G and pyruvate kinase to a coated mucin layer significantly suppressed subsequent adhesion of the bacterium. Human diet is

  5. Use of tuf gene-based primers for the PCR detection of probiotic Bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods.

    PubMed

    Sheu, Sen-Je; Hwang, Wen-Zhe; Chiang, Yu-Cheng; Lin, Wen-Hsin; Chen, Hsin-Chih; Tsen, Hau-Yang

    2010-10-01

    Due to the increasing use of bifidobacteria in probiotic products, it is essential to establish a rapid method for the qualitative and quantitative assay of the bifidobacteria in commercial products. In this study, partial sequences of the tuf gene for 18 Bifidobacterium strains belonging to 14 species were determined. Alignment of these sequences showed that the similarities among these Bifidobacterium species were 82.24% to 99.72%. Based on these tuf gene sequences, 6 primer sets were designed for the polymerase chain reaction (PCR) assay of B. animalis subsp. animalis, B. animalis subsp. lactis, B. bifidum, B. breve, B. longum subsp. infantis, B. longum subsp. longum, and the genus of Bifidobacterium, respectively. These Bifidobacterium species are common probiotic species present in dairy and probiotic products. When each target Bifidobacterium spp. was assayed with the designed primers, PCR product with expected size was generated. In addition, for each target species, more than 70 bacterial strains other than the target species, including strains of other Bifidobacterium species, strains of Lactobacillus spp., Enterococcus spp., and other bacterial species, all generated negative results. PCR assay with primers specific to B. animalis subsp. lactis and B. longum subsp. longum confirmed the presence of these Bifidobacterium species in commercial yogurt products. In addition, for each product, enumeration of the bifidobacteria cells by culture method with BIM-25 agar and the quantitative real-time PCR showed similar cell counts. Such results indicated that within 15-d storage (4 °C) after manufacture, all the bifidobacteria cells originally present in yogurt products were viable and culturable during the storage.

  6. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun

    2013-01-01

    Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751

  7. Isolation and molecular identification of lactic acid bacteria and Bifidobacterium spp. from faeces of the blue-fronted Amazon parrot in Brazil.

    PubMed

    Allegretti, L; Revolledo, L; Astolfi-Ferreira, C S; Chacón, J L; Martins, L M; Seixas, G H F; Ferreira, A J P

    2014-12-01

    In Brazil, the blue-fronted Amazon parrot (Amazona aestiva) is a common pet. The faecal microbiota of these birds include a wide variety of bacterial species, the majority of which belong to the Gram-positive lactic acid bacteria (LAB) clade. The aim of this study was to investigate differences in the diversity and abundance of LAB and Bifidobacterium spp. in the cloacae between wild and captive birds and to select, identify and characterise LAB for consideration as a parrot probiotic. Cloacal swabs were collected from 26 wild and 26 captive birds. Bacterial DNA was extracted, and the 16S rRNA genes were amplified. The numbers of PCR-positive Enterococcus, Pediococcus, and Lactobacillus species isolated from wild and captive birds were significantly different (P<0.05). Enterococcus was the most frequently isolated genus, followed by Pediococcus, Lactobacillus, Lactococcus and Bifidobacterium. Enterococcus faecium, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus coryniformis, Lactobacillus sanfranciscensis and Bifidobacterium bifidum were the most frequently isolated species from all birds. This study increases our understanding of the faecal microbiota, and may help to improve the nutrition and habitat management of captive and wild parrots. The bacterial population identified in the faecal microbiota of clinically healthy wild and captive parrots can serve as a database to analyse variations in the gut microbiota of pathogen-infected parrots and to develop probiotics specific to these genera.

  8. Bifidobacterium, Bacteroides, and Clostridium spp. in fecal samples from breast-fed and bottle-fed infants with and without iron supplement.

    PubMed Central

    Mevissen-Verhage, E A; Marcelis, J H; de Vos, M N; Harmsen-van Amerongen, W C; Verhoef, J

    1987-01-01

    Bifidobacterium, Bacteroides, and Clostridium spp. isolated from the feces of 23 neonates during the first 3 months of life were identified. Of the 23 neonates, 10 were breast fed, 6 received an infant formula with iron supplement (5 mg/liter), and 7 received the formula without iron supplement (iron concentration, less than 0.5 mg/liter). The Bifidobacterium spp. most frequently isolated from the three groups of infants were B. longum, B. breve, B. adolescentis, and B. bifidum. The bacteroides spp. most frequently isolated were B. fragilis and B. vulgatus. The most common Clostridium sp. in the three groups of infants was C. perfringens. The type of milk did not select for species of Bifidobacterium, Bacteroides, or Clostridium, except for Clostridium butyricum, which was isolated significantly more often from bottle-fed infants with iron supplement than from the other groups, and Clostridium tertium, which was more often isolated from breast-fed infants. The species of the three anaerobic genera did not persist for a long period of time in the three groups of infants. PMID:3818925

  9. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways

    PubMed Central

    James, Kieran; Motherway, Mary O’Connell; Bottacini, Francesca; van Sinderen, Douwe

    2016-01-01

    In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species. PMID:27929046

  10. Increase of intestinal Bifidobacterium and suppression of coliform bacteria with short-term yogurt ingestion.

    PubMed

    Chen, R M; Wu, J J; Lee, S C; Huang, A H; Wu, H M

    1999-11-01

    To determine whether ingestion of yogurt would alter human intestinal bacterial composition and whether Bifidobacterium numbers would increase in the intestine, 34 healthy volunteers were studied. The experimental period was 26 d, including an initial 8 d without yogurt, 10 d with three bottles (230 ml each) of AB yogurt per day (President Enterprise Corporation, Tainan, Taiwan), and 8 d without yogurt. Stool samples were taken at 3- to 4-d intervals. The bacteria of each fresh stool sample were promptly analyzed by dilution and culture on blood, MacConkey, Center for Disease Control and NNLP agars, the agar contained nalidixic acid, neomycin sulfate, LiCl, and paromomycin sulfate for aerobes, coliforms, anaerobes, and bifidobacteria, respectively. The number of bacteria was determined as colony-forming units per gram of dried stool. Results indicated that ingestion of AB yogurt increased the counts of anaerobic bacteria, suppressed aerobic bacteria, and significantly elevated the bifidus to coliform ratio. Arbitrarily primed polymerase chain reaction was used to differentiate the identity of bifidobacteria in four volunteers before and after yogurt ingestion and confirmed that B. bifidum ingested from the yogurt survived and proliferated in the stool throughout the experiment. However, the elevated bifidus to coliform ratio gradually diminished and disappeared after yogurt consumption was discontinued. In conclusion, ingestion of yogurt increased the numbers of stool bifidobacteria and suppressed coliform bacteria. The ingested bifidobacteria survived for more than 8 d after yogurt consumption was discontinued.

  11. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model.

    PubMed

    Rodes, Laetitia; Khan, Afshan; Paul, Arghya; Coussa-Charley, Michael; Marinescu, Daniel; Tomaro-Duchesneau, Catherine; Shao, Wei; Kahouli, Imen; Prakash, Satya

    2013-04-01

    Gut-derived lipopolysaccharides (LPS) are critical to the development and progression of chronic low-grade inflammation and metabolic diseases. In this study, the effects of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharide and inflammatory cytokine concentrations were evaluated using a human colonic microbiota model. Lactobacillus reuteri, L. rhamnosus, L. plantarum, Bifidobacterium animalis, B. bifidum, B. longum, and B. longum subsp. infantis were identified from the literature for their anti-inflammatory potential. Each bacterial culture was administered daily to a human colonic microbiota model during 14 days. Colonic lipopolysaccharides, and Gram-positive and negative bacteria were quantified. RAW 264.7 macrophage cells were stimulated with supernatant from the human colonic microbiota model. Concentrations of TNF-alpha, IL-1beta, and IL-4 cytokines were measured. Lipopolysaccharide concentrations were significantly reduced with the administration of B. bifidum (-46.45 +/- 5.65%), L. rhamnosus (-30.40 +/- 5.08%), B. longum (-42.50 +/- 1.28%), and B. longum subsp. infantis (-68.85 +/- 5.32%) (p < 0.05). Cell counts of Gram-negative and positive bacteria were distinctly affected by the probiotic administered. There was a probiotic strain-specific effect on immunomodulatory responses of RAW 264.7 macrophage cells. B. longum subsp. infantis demonstrated higher capacities to reduce TNF-alpha concentrations (-69.41 +/- 2.78%; p < 0.05) and to increase IL-4 concentrations (+16.50 +/- 0.59%; p < 0.05). Colonic lipopolysaccharides were significantly correlated with TNF-alpha and IL-1beta concentrations (p < 0.05). These findings suggest that specific probiotic bacteria, such as B. longum subsp. infantis, might decrease colonic lipopolysaccharide concentrations, which might reduce the proinflammatory tone. This study has noteworthy applications in the field of biotherapeutics for the prevention and/or treatment of inflammatory and metabolic

  12. Oral administration of Bifidobacterim bifidum for modulating microflora, acid and bile resistance, and physiological indices in mice.

    PubMed

    Wang, Bao-Gui; Xu, Hai-Bo; Wei, Hua; Zeng, Zhe-Ling; Xu, Feng

    2015-02-01

    Bifidobacteria are generally acknowledged as major gut microflora used as probiotics, which promote human health. In this study, the effects of the administration of Bifidobacterim bifidum on modulating gastrointestinal (GI) tract microflora, acid and bile resistance, and physiological indices in BALB/c mice were investigated. Results showed that B. bifidum can significantly improve the ecosystem of the GI tract by increasing the amount of probiotics and reducing the populations of pathogenic bacteria, as measured by plate count and real-time PCR. After exposure to simulated GI tract conditions, the growth of gut microflora in the B. bifidum group was higher than that in the control group when incubated for 12 h in MRS or nutrient broth adjusted to pH 2.0 or 3.0 or in the presence of a concentration of bile salt (0.45% m/v). The blood biochemical index was examined, and the physiological effect of the cell-free extract of gut microflora was evaluated by measuring the activity of various enzymes, including α-glucosidases, esterase, and lactate dehydrogenase. This study suggested that a B. bifidum strain can stabilize blood sugar, lower cholesterol levels in serum, and improve metabolic activity. Moreover, B. bifidum was a promising enhancer of microbial diversity in mouse intestine and played a vital role in human physiological processes, which can benefit the health of a host.

  13. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas).

    PubMed

    Endo, Akihito; Futagawa-Endo, Yuka; Schumann, Peter; Pukall, Rüdiger; Dicks, Leon M T

    2012-03-01

    Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed.

  14. Effect of yogurt containing polydextrose, Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019: a randomized, double-blind, controlled study in chronic constipation

    PubMed Central

    2014-01-01

    Background Constipation is a frequent complaint and the combination of a prebiotic and probiotics could have a potentially synergic effect on the intestinal transit. The present study therefore aims to investigate the combination of polydextrose (Litesse®), L. acidophilus NCFM® and B. lactis HN019 in a yogurt on intestinal transit in subjects who suffer from constipation. Methods Patients with constipation were randomly divided into two groups, Control Group (CG) and Treatment Group (TG), and had to eat 180 ml of unflavored yogurt every morning for 14 days. Those in the CG received only yogurt, while the TG received yogurt containing polydextrose, L. acidophilus NCFM® (ATCC 700396) and B. lactis HN019 (AGAL NM97/09513). Results Favourable clinical response was assessed since Agachan score had a significant reduction at the end of the study in both groups and tended to be better in the TG. The subjects in the treatment group also had a shorter transit time at the end of the intervention compared to the control group (p = 0.01). Conclusion The product containing yogurt with polydextrose, B. lactis HN019 and L. acidophilus NCFM® significantly shortened colonic transit time after two weeks in the TG compared to CG and may be an option for treatment of constipation. PMID:25056655

  15. A case of pyometrocolpos with Bifidobacterium species.

    PubMed

    Bhaskar, Maanasa M; Sistla, Sujatha; Kumaravel, S

    2017-04-01

    Bifidobacterium species, a normal commensal of the human gastrointestinal tract, female genitourinary tract and vagina is usually considered non-pathogenic and is being used therapeutically as probiotic due to its beneficial effects. However, there are several case reports implicating Bifidobacteria as the causative agent in various infectious conditions. Infections with Bifidobacteria are often ignored or underreported as they are part of the normal gut microbiome. Here we discuss a case of pyometrocolpos with Bifidobacterium species. Clinical outcome of the patient was good after emergency drainage and antibiotic treatment with Cefoperazone sulbactam and Metronidazole. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Differential Proteome of the Probiotic Lactobacillus acidophilus NCFM Grown on the Potential Prebiotic Cellobiose Shows Upregulation of Two β -Glycoside Hydrolases.

    PubMed

    van Zanten, Gabriella C; Sparding, Nadja; Majumder, Avishek; Lahtinen, Sampo J; Svensson, Birte; Jacobsen, Susanne

    2015-01-01

    Probiotics, prebiotics, and combinations thereof, that is, synbiotics, are known to exert beneficial health effects in humans; however interactions between pro- and prebiotics remain poorly understood at the molecular level. The present study describes changes in abundance of different proteins of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) when grown on the potential prebiotic cellobiose as compared to glucose. Cytosolic cell extract proteomes after harvest at late exponential phase of NCFM grown on cellobiose or glucose were analyzed by two dimensional difference gel electrophoresis (2D-DIGE) in the acidic (pH 4-7) and the alkaline (pH 6-11) regions showing a total of 136 spots to change in abundance. Proteins were identified by MS or MS/MS from 81 of these spots representing 49 unique proteins and either increasing 1.5-13.9-fold or decreasing 1.5-7.8-fold in relative abundance. Many of these proteins were associated with energy metabolism, including the cellobiose related glycoside hydrolases phospho-β-glucosidase (LBA0881) and phospho-β-galactosidase II (LBA0726). The data provide insight into the utilization of the candidate prebiotic cellobiose by the probiotic bacterium NCFM. Several of the upregulated or downregulated identified proteins associated with utilization of cellobiose indicate the presence of carbon catabolite repression and regulation of enzymes involved in carbohydrate metabolism.

  17. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM

    PubMed Central

    Altermann, Eric; Russell, W. Michael; Azcarate-Peril, M. Andrea; Barrangou, Rodolphe; Buck, B. Logan; McAuliffe, Olivia; Souther, Nicole; Dobson, Alleson; Duong, Tri; Callanan, Michael; Lick, Sonja; Hamrick, Alice; Cano, Raul; Klaenhammer, Todd R.

    2005-01-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium that has been produced commercially since 1972. The complete genome is 1,993,564 nt and devoid of plasmids. The average GC content is 34.71% with 1,864 predicted ORFs, of which 72.5% were functionally classified. Nine phage-related integrases were predicted, but no complete prophages were found. However, three unique regions designated as potential autonomous units (PAUs) were identified. These units resemble a unique structure and bear characteristics of both plasmids and phages. Analysis of the three PAUs revealed the presence of two R/M systems and a prophage maintenance system killer protein. A spacers interspersed direct repeat locus containing 32 nearly perfect 29-bp repeats was discovered and may provide a unique molecular signature for this organism. In silico analyses predicted 17 transposase genes and a chromosomal locus for lactacin B, a class II bacteriocin. Several mucus- and fibronectin-binding proteins, implicated in adhesion to human intestinal cells, were also identified. Gene clusters for transport of a diverse group of carbohydrates, including fructooligosaccharides and raffinose, were present and often accompanied by transcriptional regulators of the lacI family. For protein degradation and peptide utilization, the organism encoded 20 putative peptidases, homologs for PrtP and PrtM, and two complete oligopeptide transport systems. Nine two-component regulatory systems were predicted, some associated with determinants implicated in bacteriocin production and acid tolerance. Collectively, these features within the genome sequence of L. acidophilus are likely to contribute to the organisms' gastric survival and promote interactions with the intestinal mucosa and microbiota. PMID:15671160

  18. Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products.

    PubMed

    Sohail, Asma; Turner, Mark S; Prabawati, Elisabeth Kartika; Coombes, Allan G A; Bhandari, Bhesh

    2012-07-02

    This study investigated the effect of microencapsulation on the survival of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM and their acidification in orange juice at 25°C for nine days and at 4°C over thirty five days of storage. Alginate micro beads (10-40 μm) containing the probiotics were produced by a novel dual aerosol method of alginate and CaCl(2) cross linking solution. Unencapsulated L. rhamnosus GG was found to have excellent survivability in orange juice at both temperatures. However unencapsulated L. acidophilus NCFM showed significant reduction in viability. Encapsulation of these two bacteria did not significantly enhance survivability but did reduce acidification at 25°C and 4°C. In agreement with this, encapsulation of L. rhamnosus GG also reduced acidification in pear and peach fruit-based foods at 25°C, however at 4°C difference in pH was insignificant between free and encapsulated cells. In conclusion, L. rhamnosus GG showed excellent survival in orange juice and microencapsulation has potential in reducing acidification and possible negative sensory effects of probiotics in orange juice and other fruit-based products.

  19. Surface layer protein from Lactobacillus acidophilus NCFM inhibit intestinal pathogen-induced apoptosis in HT-29 cells.

    PubMed

    Meng, Jun; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2017-03-01

    Intestinal pathogens have been proposed to adhere to epithelial cells and cause apoptosis. This study was to investigate the inhibitory effects of surface layer protein (SLP, 46kDa) from Lactobacillus acidophilus NCFM on Escherichia coli and Salmonella-induced apoptosis in HT-29 cells and the mechanism of the inhibition was also studied. The SLP could alleviate the chromatin condensation caused by intestinal pathogens as observed under fluorescent microscope. Flow cytometry analysis showed that the SLP decreased E. coli and Salmonella-induced apoptosis by 46% and 48%, respectively. The SLP could also inhibit the mitochondrial membrane potential reduction and Ca(2+) level increase in HT-29 cells. Furthermore, the activation of caspase-9 and caspase-3 induced by E. coli and Salmonella was significantly decreased by the addition of SLP. These results suggested that L. acidophilus NCFM SLP could protect HT-29 cells against intestinal pathogen-induced apoptosis through a mitochondria-mediated pathway. These findings may reveal a new method for the treatment of intestinal infection and provide a theoretical basis for the practical application of SLP in food, biological and pharmaceutical fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Novel Phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697

    PubMed Central

    Tamayo-Ramos, Juan Antonio; Sanz-Penella, Juan Mario; Yebra, María J.

    2012-01-01

    Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods. PMID:22582052

  1. Novel phytases from Bifidobacterium pseudocatenulatum ATCC 27919 and Bifidobacterium longum subsp. infantis ATCC 15697.

    PubMed

    Tamayo-Ramos, Juan Antonio; Sanz-Penella, Juan Mario; Yebra, María J; Monedero, Vicente; Haros, Monika

    2012-07-01

    Two novel phytases have been characterized from Bifidobacterium pseudocatenulatum and Bifidobacterium longum subsp. infantis. The enzymes belong to a new subclass within the histidine acid phytases, are highly specific for the hydrolysis of phytate, and render myo-inositol triphosphate as the final hydrolysis product. They represent the first phytases characterized from this group of probiotic microorganisms, opening the possibilities for their use in the processing of high-phytate-content foods.

  2. Short- and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505.

    PubMed

    Tanaka, Yoshiyuki; Takami, Kazuyo; Nishijima, Tomohiko; Aoki, Ryo; Mawatari, Takashi; Ikeda, Takayuki

    2015-01-01

    Bifidobacterium animalis subsp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestines and proliferate. The daily dynamics of the intestinal bifidobacteria following ingestion of probiotics are not yet clear. Moreover, the effects of long-term ingestion of probiotics on the intestinal microbiota have not been well studied. Two experiments were performed in the present study. In Experiment 1, 53 healthy female volunteers received B. lactis GCL2505; B. bifidum GCL2080, which can survive but not proliferate in the intestine; or yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus for 2 weeks, and the daily dynamics of intestinal bifidobacteria were investigated. The number of fecal bifidobacteria significantly increased on day 1, and this was maintained until day 14 in the B. lactis GCL2505 ingestion group. However, no significant change in the number of fecal bifidobacteria was observed in the other groups throughout the ingestion period. In Experiment 2, 38 constipated volunteers received either B. lactis GCL2505 or a placebo for 8 weeks. Both the number of fecal bifidobacteria and the frequency of defecation significantly increased throughout the ingestion period in the B. lactis GCL2505 ingestion group. These results suggested that the proliferation of ingested bifidobacteria within the intestine contributed to a rapid increase in the amount of intestinal bifidobacteria and subsequent maintenance of these levels. Moreover, B. lactis GCL2505 improved the intestinal microbiota more effectively than non-proliferating bifidobacteria and lactic acid bacteria.

  3. AcmB Is an S-Layer-Associated β-N-Acetylglucosaminidase and Functional Autolysin in Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.

    2016-01-01

    ABSTRACT Autolysins, also known as peptidoglycan hydrolases, are enzymes that hydrolyze specific bonds within bacterial cell wall peptidoglycan during cell division and daughter cell separation. Within the genome of Lactobacillus acidophilus NCFM, there are 11 genes encoding proteins with peptidoglycan hydrolase catalytic domains, 9 of which are predicted to be functional. Notably, 5 of the 9 putative autolysins in L. acidophilus NCFM are S-layer-associated proteins (SLAPs) noncovalently colocalized along with the surface (S)-layer at the cell surface. One of these SLAPs, AcmB, a β-N-acetylglucosaminidase encoded by the gene lba0176 (acmB), was selected for functional analysis. In silico analysis revealed that acmB orthologs are found exclusively in S-layer- forming species of Lactobacillus. Chromosomal deletion of acmB resulted in aberrant cell division, autolysis, and autoaggregation. Complementation of acmB in the ΔacmB mutant restored the wild-type phenotype, confirming the role of this SLAP in cell division. The absence of AcmB within the exoproteome had a pleiotropic effect on the extracellular proteins covalently and noncovalently bound to the peptidoglycan, which likely led to the observed decrease in the binding capacity of the ΔacmB strain for mucin and extracellular matrices fibronectin, laminin, and collagen in vitro. These data suggest a functional association between the S-layer and the multiple autolysins noncovalently colocalized at the cell surface of L. acidophilus NCFM and other S-layer-producing Lactobacillus species. IMPORTANCE Lactobacillus acidophilus is one of the most widely used probiotic microbes incorporated in many dairy foods and dietary supplements. This organism produces a surface (S)-layer, which is a self-assembling crystalline array found as the outermost layer of the cell wall. The S-layer, along with colocalized associated proteins, is an important mediator of probiotic activity through intestinal adhesion and modulation of

  4. Survival of free and microencapsulated Bifidobacterium: effect of honey addition.

    PubMed

    Favarin, Luciana; Laureano-Melo, Roberto; Luchese, Rosa Helena

    2015-01-01

    This study evaluated the effect of honey addition on the viability of free and emulsion encapsulated cells of two strains of Bifidobacterium that underwent simulation of human upper gastrointestinal transit. In the control condition, without honey, free cells were drastically reduced after exposure to gastrointestinal conditions. The reduction was more pronounced with Bifidobacterium J7 of human origin. On the other hand, when cells were encapsulated, the viability reduction was higher for strain Bifidobacterium Bb12. The microencapsulation improved the viability maintenance of both Bifidobacterium strains, in recommended amounts for probiotic activity, after exposure to simulated gastrointestinal conditions. Moreover, suspending free cells of both Bifidobacterium strains in honey solutions resulted in a protective effect, equivalent to the plain microencapsulation with sodium alginate 3%. It is concluded that microencapsulation and the addition of honey improved the ability of Bifidobacterium to tolerate gastrointestinal conditions in vitro.

  5. Bifidobacterium aquikefiri sp. nov., isolated from water kefir.

    PubMed

    Laureys, David; Cnockaert, Margo; De Vuyst, Luc; Vandamme, Peter

    2016-01-05

    A novel Bifidobacterium, strain LMG 28769T, was isolated from a household water kefir fermentation process. The cells were Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, oxidase-negative, and facultatively anaerobic short rods. Analysis of its 16S rRNA gene sequence revealed Bifidobacterium crudilactis and Bifidobacterium psychraerophilum (97.4 % and 97.1 % similarity towards the respective type strain sequences) as nearest phylogenetic neighbors. Its assignment to the genus Bifidobacterium was confirmed by the presence of fructose 6-phosphate phosphoketolase (F6PPK) activity. Analysis of the hsp60 gene sequence revealed a very low similarity with nucleotide sequences in the NCBI nucleotide database. The genotypic and phenotypic analyses allowed to differentiate strain LMG 28769T from all established Bifidobacterium species. Strain LMG 28769T (= CCUG 67145T = R-54638T) therefore represents a new species, for which the name Bifidobacterium aquikefiri sp. nov. is proposed.

  6. Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM.

    PubMed

    Møller, Marie S; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N; Lo Leggio, Leila; Svensson, Birte; Abou Hachem, Maher

    2012-08-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.

  7. Gut microbiota analysis reveals a marked shift to bifidobacteria by a starter infant formula containing a synbiotic of bovine milk-derived oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446.

    PubMed

    Simeoni, Umberto; Berger, Bernard; Junick, Jana; Blaut, Michael; Pecquet, Sophie; Rezzonico, Enea; Grathwohl, Dominik; Sprenger, Norbert; Brüssow, Harald; Szajewska, Hania; Bartoli, J-M; Brevaut-Malaty, V; Borszewska-Kornacka, M; Feleszko, W; François, P; Gire, C; Leclaire, M; Maurin, J-M; Schmidt, S; Skórka, A; Squizzaro, C; Verdot, J-J

    2016-07-01

    Non-digestible milk oligosaccharides were proposed as receptor decoys for pathogens and as nutrients for beneficial gut commensals like bifidobacteria. Bovine milk contains oligosaccharides, some of which are structurally identical or similar to those found in human milk. In a controlled, randomized double-blinded clinical trial we tested the effect of feeding a formula supplemented with a mixture of bovine milk-derived oligosaccharides (BMOS) generated from whey permeate, containing galacto-oligosaccharides and 3'- and 6'-sialyllactose, and the probiotic Bifidobacterium animalis subsp. lactis (B. lactis) strain CNCM I-3446. Breastfed infants served as reference group. Compared with a non-supplemented control formula, the test formula showed a similar tolerability and supported a similar growth in healthy newborns followed for 12 weeks. The control, but not the test group, differed from the breast-fed reference group by a higher faecal pH and a significantly higher diversity of the faecal microbiota. In the test group the probiotic B. lactis increased by 100-fold in the stool and was detected in all supplemented infants. BMOS stimulated a marked shift to a bifidobacterium-dominated faecal microbiota via increases in endogenous bifidobacteria (B. longum, B. breve, B. bifidum, B. pseudocatenulatum). © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Selective medium for isolation and enumeration of Bifidobacterium spp.

    PubMed Central

    Muñoa, F J; Pares, R

    1988-01-01

    A new method was developed for the isolation and enumeration of Bifidobacterium spp. from natural aquatic environments. The method was based on the utilization of a new medium, Bifidobacterium iodoacetate medium 25, and resuscitation techniques were used to isolate injured bifidobacteria. The new medium was tested with a nonselective reference medium on sewage and sewage-polluted surface waters. Relatively little colonial growth of any other bacterial genera occurred; when such colonies did grow, Bifidobacterium could be easily differentiated by its colonial morphology or, after Gram staining, by its typical bifidobacterial morphology. PMID:3415235

  9. The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes.

    PubMed

    Moslehi-Jenabian, Saloomeh; Vogensen, Finn Kvist; Jespersen, Lene

    2011-10-03

    The luxS gene involved in quorum sensing has been shown to control different behaviour of probiotic lactobacilli. In this study we investigated if luxS in Lactobacillus acidophilus NCFM was up-regulated in response to Listeria monocytogenes EGD-e. The two bacterial strains were grown in mono- and co-culture and the growth of both bacteria and the transcriptional level of luxS in L. acidophilus cells were monitored. Contrary to L. acidophilus, the growth of L. monocytogenes was significantly affected by co-cultivation. Transcriptional analysis showed that the expression of luxS increased during exponential growth in L. acidophilus cells with the highest level in the late-exponential growth phase, decreasing in the stationary phase. Following co-cultivation with L. monocytogenes, the transcriptional level of luxS increased significantly in mid-exponential growing cells of L. acidophilus after incubation with viable L. monocytogenes cells and by addition of cell-free culture supernatant of L. monocytogenes, whereas incubation with heat killed cells of L. monocytogenes had no effect on the transcriptional level. This could indicate that the up-regulation of luxS is due to a response to a secreted compound produced by L. monocytogenes cells.

  10. Bifid Shape Is Intrinsic to Bifidobacterium adolescentis

    PubMed Central

    Dhanashree; Rajashekharan, Sharika; Krishnaswamy, Balamurugan; Kammara, Rajagopal

    2017-01-01

    Although the genus Bifidobacterium was originally named for its bifid morphology, not all bifidobacterial species have a similar structure, and very few of them adopt a bifid shape under stress conditions. The exposure of respective bifidobacterial species to various conditions, such as different pH, temperatures, medium components, in vivo growth in Caenorhabditis elegans, and subculture, did not affect their diverse morphologies. Extensive scanning electron microscopy studies suggested that the bifid shape of B. adolescentis are maintained irrespective of the conditions. Hence, we conclude that the bifid morphology is intrinsic to B. adolescentis. Most bifidobacterial species are anaerobic and rod-shaped, whereas, after the first generation, they become microaerophilic or aerophilic. CaCl2 (treatment of B. animalis) signaling triggered a change from the rod shape to the bifid shape and vice versa in B. adolescentis. PMID:28377762

  11. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  12. Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM

    PubMed Central

    Møller, Marie S.; Fredslund, Folmer; Majumder, Avishek; Nakai, Hiroyuki; Poulsen, Jens-Christian N.; Lo Leggio, Leila; Svensson, Birte

    2012-01-01

    Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents. PMID:22685275

  13. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism.

    PubMed

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiaer, Hanne

    2010-10-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2(-/-) DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β.

  14. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism

    PubMed Central

    Weiss, Gudrun; Rasmussen, Simon; Zeuthen, Louise Hjerrild; Nielsen, Birgit Nøhr; Jarmer, Hanne; Jespersen, Lene; Frøkiær, Hanne

    2010-01-01

    Lactobacilli are probiotics that, among other health-promoting effects, have been ascribed immunostimulating and virus-preventive properties. Certain Lactobacillus spp. have been shown to possess strong interleukin-12 (IL-12) -inducing properties. As IL-12 production depends on the up-regulation of type I interferons (IFNs), we hypothesized that the strong IL-12-inducing capacity of Lactobacillus acidophilus NCFM in murine bone-marrow-derived dendritic cells (DCs) is caused by an up-regulation of IFN-β, which subsequently induces IL-12 and the double-stranded RNA binding Toll-like receptor-3 (TLR-3). The expression of the genes encoding IFN-β, TLR-3, IL-12 and IL-10 in DCs upon stimulation with L. acidophilus NCFM was determined. Lactobacillus acidophilus NCFM induced a much stronger expression of Ifn-β, Il-12 and Il-10 compared with the synthetic double-stranded RNA ligand Poly I:C, whereas the levels of expressed Tlr-3 were similar. Whole genome microarray gene expression analysis revealed that other genes related to viral defence were significantly up-regulated and among the strongest induced genes in DCs stimulated with L. acidophilus NCFM. The ability to induce IFN-β was also detected in another L. acidophilus strain (X37), but was not a property of other probiotic strains tested, i.e. Bifidobacterium bifidum Z9 and Escherichia coli Nissle 1917. The IFN-β expression was markedly reduced in TLR-2−/− DCs, dependent on endocytosis, and the major cause of the induction of Il-12 and Tlr-3 in DCs stimulated with L. acidophilus NCFM. Collectively, our results reveal that certain lactobacilli trigger the expression of viral defence genes in DCs in a TLR-2 manner dependent on IFN-β. PMID:20545783

  15. Gut microbiota of healthy elderly NSAID users is selectively modified with the administration of Lactobacillus acidophilus NCFM and lactitol.

    PubMed

    Björklund, Marika; Ouwehand, Arthur C; Forssten, Sofia D; Nikkilä, Janne; Tiihonen, Kirsti; Rautonen, Nina; Lahtinen, Sampo J

    2012-08-01

    Ageing changes gut microbiota composition and alters immune system function. Probiotics, prebiotics and synbiotics may improve the health status of elderly individuals by modifying the intestinal environment and the microbiota composition, and by stimulating the immune system. In this work, we studied the effects of synbiotic supplementation on the gut microbiota of healthy elderly volunteers. Fifty-one elders were randomly assigned to consume either a synbiotic dietary supplement or a placebo in addition to their usual diet for a 2-week period. The synbiotic product consisted of the probiotic Lactobacillus acidophilus NCFM and the prebiotic lactitol and was ingested twice a day, with a total daily dose of 10 g lactitol and 2 × 10(10) cells of probiotic bacteria. Before, during and after the intervention period fecal quantities of six phylogenetic bacterial groups were determined using quantitative PCR, and relative changes in total microbiota composition were assessed by percent guanine-plus-cytosine profiling. The microbiota profiles showed certain relative changes within the microbial community, and indicated an increase of bifidobacteria levels during synbiotic supplementation. Quantification by PCR confirmed the in changes in the microbiota composition; for example increases in total levels of endogenous bifidobacteria and lactobacilli were recorded. Throughout the 6-week study period there was a decrease unrelated to intervention in the Blautia coccoides-Eubacterium rectale bacterial group levels and Clostridium cluster XIVab levels, but this decrease appeared to be halted during the synbiotic intervention. In conclusion, putatively beneficial changes in microbiota were observed in the elderly subjects supplemented with the synbiotic product.

  16. [Surface proteins of bacteria of the genus Bifidobacterium].

    PubMed

    Dylus, Ewa; Buda, Barbara; Górska-Frączek, Sabina; Brzozowska, Ewa; Gamian, Andrzej

    2013-05-13

    Beneficial effects due to the presence of probiotic bacteria of the genus Bifidobacterium in the human intestinal tract are still an interesting object of study. So far activities have been confirmed of bifidobacteria in stimulation of the host immune system, stimulation of tumor cell apoptosis, improvement of bowel motility, alleviation of symptoms of lactose intolerance, cholesterol lowering capacity, prevention and treatment of diarrhea and irritable bowel syndrome, alleviation of allergy or atopic dermatitis, maintenance of homeostasis of the intestine, and stimulation of the development of normal intestinal microflora in infants. A multitude of therapeutic properties encourages researchers to investigate the possibility of using the potential of Bifidobacterium in the prevention and treatment of other conditions such as rheumatoid arthritis and depression. Although it is known that the beneficial effects are due to intestinal mucosal colonization by these bacteria, the cell components responsible for the colonization are still not determined. In addition to the beneficial effects of probiotic administration, there were also negative effects including sepsis. Therefore research has been directed to identify specific components of Bifidobacterium responsible for probiotic effects. Currently researchers are focused on identifying, isolating and evaluating the properties of surface proteins that are probably involved in the adhesion of bacterial cells to the intestinal epithelium, improving colonization. This paper is an overview of current knowledge on Bifidobacterium surface proteins. The ways of transport and anchoring proteins in Gram-positive bacterial cells, the assembly of cell wall, and a description of the genus Bifidobacterium are presented.

  17. Isotopomer-Flux Analysis of Bifidobacterium ssp. Carbohydrate Metabolism

    USDA-ARS?s Scientific Manuscript database

    Bifidobacteria are gram-positive microorganisms widely applied in fermented dairy products due to their health-promoting effects. Bifidobacterium ssp. may also represent up to 91% of microbial gut population in the infant colon, but considerably less in adults. Fructose-6 phosphate phosphoketolase...

  18. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM.

    PubMed

    Johnson, Brant R; O'Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms' immunomodulatory properties and interactions with some intestinal epithelial cell components.

  19. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.; O’Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components. PMID:28713337

  20. Draft Genome Sequences of Bifidobacterium angulatum GT102 and Bifidobacterium adolescentis 150: Focusing on the Genes Potentially Involved in the Gut-Brain Axis

    PubMed Central

    Dyachkova, Marina S.; Klimina, Ksenia M.; Kovtun, Alexey S.; Zakharevich, Natalia V.; Nezametdinova, Venera Z.; Averina, Olga V.

    2015-01-01

    The draft genome sequences of Bifidobacterium angulatum GT102 and Bifidobacterium adolescentis 150 strains isolated from the human intestinal microbiota are reported. Both strains are able to produce gamma-aminobutyric acid (GABA). Detailed genomes analysis will help to understand the role of GABA in the functioning of gut-brain axis. PMID:26139716

  1. Long-term multi-species Lactobacillus and Bifidobacterium dietary supplement enhances memory and changes regional brain metabolites in middle-aged rats.

    PubMed

    O'Hagan, Caroline; Li, Jia V; Marchesi, Julian R; Plummer, Sue; Garaiova, Iveta; Good, Mark A

    2017-10-01

    Ageing is associated with changes in the gut microbiome that may contribute to age-related changes in cognition. Previous work has shown that dietary supplements with multi-species live microorganisms can influence brain function, including induction of hippocampal synaptic plasticity and production of brain derived neurotrophic factor, in both young and aged rodents. However, the effect of such dietary supplements on memory processes has been less well documented, particularly in the context of aging. The main aim of the present study was to examine the impact of a long-term dietary supplement with a multi-species live Lactobacillus and Bifidobacteria mixture (Lactobacillus acidophilus CUL60, L. acidophilus CUL21, Bifidobacterium bifidum CUL20 and B. lactis CUL34) on tests of memory and behavioural flexibility in 15-17-month-old male rats. Following behavioural testing, the hippocampus and prefrontal cortex was extracted and analysed ex vivo using (1)H nuclear magnetic resonance ((1)H NMR) spectroscopy to examine brain metabolites. The results showed a small beneficial effect of the dietary supplement on watermaze spatial navigation and robust improvements in long-term object recognition memory and short-term memory for object-in-place associations. Short-term object novelty and object temporal order memory was not influenced by the dietary supplement in aging rats. (1)H NMR analysis revealed diet-related regional-specific changes in brain metabolites; which indicated changes in several pathways contributing to modulation of neural signaling. These data suggest that chronic dietary supplement with multi-species live microorganisms can alter brain metabolites in aging rats and have beneficial effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSL): Probiotics Able to Block the In Vitro Adherence of Rotavirus in MA104 Cells.

    PubMed

    Fernandez-Duarte, Karem Prunella; Olaya-Galán, Nury Nathalia; Salas-Cárdenas, Sandra Patricia; Lopez-Rozo, Jazmin; Gutierrez-Fernandez, Maria Fernanda

    2017-04-21

    Rotavirus is the leading worldwide cause of gastroenteritis in children under five years of age. Even though there are some available vaccines to prevent the disease, there are limited strategies for challenging diarrhea induced by rotavirus infection. For this reason, researchers are constantly searching for other approaches to control diarrhea by means of probiotics. In order to demonstrate the ability of some probiotic bacteria to interfere with the in vitro rotavirus infection in MA104 cells, strains of Lactobacillus sp. and Bifidobacterium sp. were tested in MA104 cells before the viral infection. As a preliminary assay, a blocking effect treatment was performed with viable bacteria. In this screening assay, four of initial ten bacteria showed a slight reduction of the viral infection (measured by percentage of infection). L. casei (Lafti L26-DSL), L. fermentum(ATCC 9338), B. adolescentis (DSM 20083), and B. bifidum (ATCC 11863) were used in further experiments. Three different treatments were tested in order to evaluate protein-based metabolites obtained from mentioned bacteria: (i) cell exposure to the protein-based metabolites before viral infection, (ii) exposure to protein-based metabolites after viral infection, and (iii) co-incubation of the virus and protein-based metabolites before viral infection to the cell culture. The best effect performed by protein-based metabolites was observed during the co-incubation assay of the virus and protein-based metabolites before adding them into the cell culture. The results showed 25 and 37% of infection in the presence of L. casei and B. adolescentis respectively. These results suggest that the antiviral effect may be occurring directly with the viral particle instead of making a blocking effect of the cellular receptors that are needed for the viral entrance.

  3. Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium

    PubMed Central

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes. PMID:25085493

  4. Phytase activity as a novel metabolic feature in Bifidobacterium.

    PubMed

    Haros, Monica; Bielecka, Maria; Sanz, Yolanda

    2005-06-15

    Phytase activity has been detected for the first time in Bifidobacterium spp. These bacteria were able to dephosphorylate phytic acid (myo-inositol hexaphosphate, IP(6)) and generate several myo-inositol phosphate intermediates (IP(3)-IP(5)). B. globosum and B. pseudocatenulatum were optimally active at neutral-alkaline pH and B. adolescentis, B. angulatum and B. longum at acid pH. B. pseudocatenulatum showed the highest levels of phytase activity. This species produced maximum activity in the exponential phase of growth and when fructo-oligosaccharides were used as carbon source in the culture medium. The potential role of phytase activity from Bifidobacterium spp. in the reduction of the antinutritional properties of IP(6) is discussed.

  5. Plasminogen-dependent proteolytic activity in Bifidobacterium lactis.

    PubMed

    Candela, Marco; Miccoli, Giacomo; Bergmann, Simone; Turroni, Silvia; Vitali, Beatrice; Hammerschmidt, Sven; Brigidi, Patrizia

    2008-08-01

    Bifidobacteria represent one of the most important health-promoting bacterial groups of the intestinal microbiota. The binding of plasminogen to species of Bifidobacterium has been recently reported. To further explore the interaction between bifidobacteria and plasminogen, we investigated the role of Bifidobacterium lactis BI07 plasminogen-dependent proteolytic activity in the degradation of host-specific substrates. Our experimental data demonstrate that the recruitment of plasminogen on the bacterial cell surface and its subsequent conversion into plasmin by host-derived plasminogen activators provide B. lactis BI07 with a surface-associated plasmin activity effective in degradation of physiological substrates such as extracellular matrix, fibronectin and fibrinogen. The ability of bifidobacteria to intervene in the host plasminogen/plasmin system may contribute to facilitating colonization of the host gastrointestinal tract.

  6. Genomic encyclopedia of type strains of the genus Bifidobacterium.

    PubMed

    Milani, Christian; Lugli, Gabriele Andrea; Duranti, Sabrina; Turroni, Francesca; Bottacini, Francesca; Mangifesta, Marta; Sanchez, Borja; Viappiani, Alice; Mancabelli, Leonardo; Taminiau, Bernard; Delcenserie, Véronique; Barrangou, Rodolphe; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2014-10-01

    Bifidobacteria represent one of the dominant microbial groups that are present in the gut of various animals, being particularly prevalent during the suckling stage of life of humans and other mammals. However, the overall genome structure of this group of microorganisms remains largely unexplored. Here, we sequenced the genomes of 42 representative (sub)species across the Bifidobacterium genus and used this information to explore the overall genetic picture of this bacterial group. Furthermore, the genomic data described here were used to reconstruct the evolutionary development of the Bifidobacterium genus. This reconstruction suggests that its evolution was substantially influenced by genetic adaptations to obtain access to glycans, thereby representing a common and potent evolutionary force in shaping bifidobacterial genomes.

  7. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates

    PubMed Central

    Garrido, Daniel; Ruiz-Moyano, Santiago; Jimenez-Espinoza, Rogelio; Eom, Hyun-Ju; Block, David E.; Mills, David A.

    2013-01-01

    Prebiotics are non-digestible substrates that stimulate the growth of beneficial microbial populations in the intestine, especially Bifidobacterium species. Among them, fructo- and galacto-oligosaccharides are commonly used in the food industry, especially as a supplement for infant formulas. Mechanistic details on the enrichment of bifidobacteria by these prebiotics are important to understand the effects of these dietary interventions. In this study the consumption of galactooligosaccharides was studied for 22 isolates of Bifidobacterium longum subsp. infantis, one of the most representative species in the infant gut microbiota. In general all isolates showed a vigorous growth on these oligosaccharides, but consumption of larger galactooligosaccharides was variable. Bifidobacterium infantis ATCC 15697 has five genes encoding β-galactosidases, and three of them were induced during bacterial growth on commercial galactooligosaccharides. Recombinant β-galactosidases from B. infantis ATCC 15697 displayed different preferences for β-galactosides such as 4′ and 6′-galactobiose, and four β-galactosidases in this strain released monosaccharides from galactooligosaccharides. Finally, we determined the amounts of short chain fatty acids produced by strain ATCC 15697 after growth on different prebiotics. We observed that biomass and product yields of substrate were higher for lactose and galactooligosaccharides, but the amount of acids produced per cell was larger after growth on human milk oligosaccharides. These results provide a molecular basis for galactooligosaccharide consumption in B. infantis, and also represent evidence for physiological differences in the metabolism of prebiotics that might have a differential impact on the host. PMID:23200660

  8. Intracellular granule formation in response to oxidative stress in Bifidobacterium.

    PubMed

    Qian, Yilei; Borowski, William J; Calhoon, Walter D

    2011-01-31

    Bacteria in the genus Bifidobacterium are commonly known as beneficial colonizers in the human gastrointestinal tract. We found that, when these anaerobic organisms were grown in culture media without the reducing agent, cysteine, they produced intensely stained intracellular granules reminiscent of polyphosphate granules (poly P) produced by other bacteria in response to certain environmental signals, such as starvation and oxidative stress. The addition of cysteine led to a significant reduction in granule formation in bifidobacteria. Specific microscopic staining showed that the intracellular granules in Bifidobacterium scardovii were consistent with the poly P granules. In addition, the expression of the putative polyphosphate kinase gene responsible for poly P synthesis showed a 16-fold increase in the granule-forming cultures of B. scardovii compared with the nongranule-forming cultures, suggesting a role of poly P production in the oxidative stress response. Furthermore, the granule-forming cells exhibited a higher acid tolerance and a higher degree of cell surface hydrophobicity than the nongranule-forming cells. Therefore, we propose that Bifidobacterium cells produce poly P as a part of the oxidative stress response, which in turn allows the cells to better tolerate other environmental stresses such as acidic pH and perhaps allows better host colonization in vivo. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  9. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp.

    PubMed

    Król, A; Pomastowski, P; Rafińska, K; Railean-Plugaru, V; Walczak, J; Buszewski, B

    2017-08-29

    The aim of the study was to neutralize zearalenone by lactic acid bacteria (LAB) such as Lactococcus lactis and Bifidobacterium sp. and investigate the mechanism of zearalenone (ZEA) binding. Neutralization of ZEA by LAB was confirmed by identification of binding kinetics and spectroscopic studies such as Fourier transform infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The obtained results showed that the kinetic process of zearalenone binding to L. lactis is not homogeneous but is expressed with an initial rapid stage with about 90% of ZEA biosorption and with a much slower second step. In case of Bifidobacterium sp., the neutralization process is homogeneous; the main stage can be described with about 88% of ZEA biosorption. MALDI-TOF-MS measurements and FTIR analysis confirmed the uptake of zearalenone molecules by bacterial species. Moreover, the assessment of dead and live lactic acid bacteria cells after zearalenone treatment was performed using fluorescence microscopy. Graphical abstract Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. was confirmed by identification of binding kinetics and spectroscopic studies such as FT-IR spectroscopy and MALDI-TOF-MS spectrometry. The mechanism of ZEA binding was also investigated.

  10. Characterization of novel thermophilic alpha-glucosidase from Bifidobacterium longum.

    PubMed

    Kim, Na-Ri; Jeong, Da-Woon; Ko, Dam-Seul; Shim, Jae-Hoon

    2017-06-01

    In this study, the gene encoding α-glucosidase from Bifidobacterium longum subsp. longum JCM1217 (BLAG) was cloned and expressed in Escherichia coli. The amino acid sequence alignment demonstrated that BLAG belongs to glycoside hydrolase (GH) family 13. The optimal temperature for enzyme activity was 75°C; about 80% of the catalytic activity was lost at 50°C, which is very unusual for enzymes from the Bifidobacterium genus. In the presence of 5mM of Co(2+) and Ca(2+), enzyme activity was reduced to 47% and 48%, respectively. Furthermore, BLAG lost catalytic activity following the addition of 5mM of Fe(2+) ion. The BLAG enzyme was able to hydrolyze α-1,2, α-1,3, α-1,4, and α-1,6 glycosidic O-linkages and liberated glucose from the non-reducing end of substrates. The kinetic study revealed that among the maltooligosaccharides, BLAG showed the highest kcat/Km value to maltotriose (G3), and had relatively low kcat/Km values on long-chain maltooligosaccharides. This is the first report describing the production of a thermophilic α-glucosidase from the Bifidobacterium genus. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04

    PubMed Central

    2013-01-01

    Background Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. Results The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. Conclusion This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract. PMID:23663691

  12. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04.

    PubMed

    Andersen, Joakim M; Barrangou, Rodolphe; Abou Hachem, Maher; Lahtinen, Sampo J; Goh, Yong Jun; Svensson, Birte; Klaenhammer, Todd R

    2013-05-10

    Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract.

  13. Phylogenetic Analysis of the Bifidobacterium Genus Using Glycolysis Enzyme Sequences

    PubMed Central

    Brandt, Katelyn; Barrangou, Rodolphe

    2016-01-01

    Bifidobacteria are important members of the human gastrointestinal tract that promote the establishment of a healthy microbial consortium in the gut of infants. Recent studies have established that the Bifidobacterium genus is a polymorphic phylogenetic clade, which encompasses a diversity of species and subspecies that encode a broad range of proteins implicated in complex and non-digestible carbohydrate uptake and catabolism, ranging from human breast milk oligosaccharides, to plant fibers. Recent genomic studies have created a need to properly place Bifidobacterium species in a phylogenetic tree. Current approaches, based on core-genome analyses come at the cost of intensive sequencing and demanding analytical processes. Here, we propose a typing method based on sequences of glycolysis genes and the proteins they encode, to provide insights into diversity, typing, and phylogeny in this complex and broad genus. We show that glycolysis genes occur broadly in these genomes, to encode the machinery necessary for the biochemical spine of the cell, and provide a robust phylogenetic marker. Furthermore, glycolytic sequences-based trees are congruent with both the classical 16S rRNA phylogeny, and core genome-based strain clustering. Furthermore, these glycolysis markers can also be used to provide insights into the adaptive evolution of this genus, especially with regards to trends toward a high GC content. This streamlined method may open new avenues for phylogenetic studies on a broad scale, given the widespread occurrence of the glycolysis pathway in bacteria, and the diversity of the sequences they encode. PMID:27242688

  14. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains.

    PubMed

    Raimondi, Stefano; Roncaglia, Lucia; De Lucia, Marzia; Amaretti, Alberto; Leonardi, Alan; Pagnoni, Ugo Maria; Rossi, Maddalena

    2009-01-01

    Twenty-two strains of Bifidobacterium, representative of eight major species of human origin, were screened for their ability to transform the isoflavones daidzin and daidzein. Most of the strains released the aglycone from daidzin and 12 gave yields higher than 90%. The kinetics of growth, daidzin consumption, and daidzein production indicated that the hydrolytic activity occurred during the growth. The supernatant of the majority of the strains did not release the aglycone from daidzin, suggesting that cell-associated beta-glucosidases (beta-Glu) are mainly responsible for the metabolism of soybean glyco-conjugates. Cell-associated beta-Glu was mainly intracellular and significantly varied among the species and the strains. The lack of beta-Glu was correlated with the inability to hydrolyze daidzin. Although S-equol production by anaerobic intestinal bacteria has been established, information on S-equol-producing bifidobacteria is contradictory. In this study, 22 bifidobacteria failed to transform daidzein into reduced metabolites under all the experimental conditions, excluding any role in the reductive pathway of daidzein toward the production of S-equol. These results suggest that selected probiotic strains of Bifidobacterium can be used to speed up the release of daidzein, improving its bioavailability for absorption by colonic mucosa and/or biotransformation to S-equol by other intestinal microorganisms.

  15. Fourier transform infra-red spectroscopy and flow cytometric assessment of the antibacterial mechanism of action of aqueous extract of garlic (Allium sativum) against selected probiotic Bifidobacterium strains.

    PubMed

    Booyens, Jemma; Thantsha, Mapitsi Silvester

    2014-08-06

    It is generally reported that garlic (Allium sativum) harms pathogenic but not beneficial bacteria. Although numerous studies supporting the alleged garlic effects on pathogens are available, there are limited studies to prove this claim for beneficial bacteria. We have recently shown that garlic exhibits antibacterial activity against probiotic bifidobacteria. The aim of the current study was to elucidate the mechanism of action of garlic clove extract (GCE) on Bifidobacterium bifidum LMG 11041, B. longum LMG 13197 and B. lactis Bb12 using Fourier transform infrared (FT-IR) spectroscopy and flow cytometry. Cultures (1 × 108 CFU ml-1) were individually incubated for 6 h at 37°C in garlic clove extract containing allicin at a corresponding predetermined minimum bactericidal concentration for each strain. For FTIR, an aliquot of each culture was deposited on CaF2 slide and vacuum dried. The slides were immediately viewed using a Bruker Vertex 70 V FT-IR spectrometer equipped with a Hyperion microscope and data analyzed using OPUS software (version 6, Bruker). Spectra were smoothed with a Savitsky-Goly function algorithim, base-line corrected and normalized. Samples for flow cytometry were stained using the Live/Dead BacLight bacterial viability kit L7012. Data compensation and analysis was performed using a BD FACSAria and FlowJo (version 7.6.1). Fourier transform infrared spectroscopy showed changes in spectral features of lipids and fatty acids in cell membranes, proteins, polysaccharides and nucleic acids. Spectral data as per principle component analysis (PCA) revealed segregation of control and GCE-treated cells for all the tested bifidobacteria. Flow cytometry not only showed increase in numbers of membrane damaged and possibly lysed cells after GCE treatment, but also displayed diffuse light scatter patterns for GCE treated cells, which is evidence for changes to the size, granularity and molecular content of the cells. Garlic has multiple target sites in

  16. Draft genome sequences of two Bifidobacterium sp. from the honey bee (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    We provide genome sequences for two strains of honey bee associated Bifidobacterium. Reflecting an oxygen-rich niche, both strains possessed catalase, peroxidase, superoxide-dismutase and respiratory chain enzymes indicative of oxidative metabolism. The strains show markedly different carbohydrate ...

  17. Draft Genome Sequence of the Probiotic Bifidobacterium longum subsp. longum Strain MC-42

    PubMed Central

    Tupikin, Alexey E.; Kalmykova, Anna I.

    2016-01-01

    Here, we report the draft genome sequence of Bifidobacterium longum subsp. longum strain MC-42 isolated from the feces of a healthy infant, and which was used in the commercially available probiotic product Biovestin. PMID:27979954

  18. Summary of probiotic activities of Bifidobacterium lactis HN019.

    PubMed

    Sanders, Mary Ellen

    2006-10-01

    The bacterium, Bifidobacterium lactis HN019, has been studied for a variety of traits important to its ability to function as a probiotic. Publications documenting identity, safety, antipathogenic effects, immune enhancement, and intestinal colonization are reviewed. Most studies documenting immune effects are short term in duration (< or =6 wk feeding periods), so longer term trials would be useful to determine to what extent effects are sustained. One year-long trial feeding both galacto-oligosaccharides and HN019 in children 1 to 3 years of age provided evidence for improved growth and reduction in infection incidence. HN019 is a well-characterized probiotic strain with documented probiotic effects of meaningful magnitude especially in the area of immune system modulation.

  19. Discovery of a Conjugative Megaplasmid in Bifidobacterium breve

    PubMed Central

    Bottacini, Francesca; O'Connell Motherway, Mary; Casey, Eoghan; McDonnell, Brian; Mahony, Jennifer; Ventura, Marco

    2014-01-01

    Bifidobacterium breve is a common and sometimes very abundant inhabitant of the human gut. Genome sequencing of B. breve JCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid. In silico characterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains of B. breve and B. longum subsp. longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in three B. longum subsp. longum strains. PMID:25326305

  20. Genetic Basis of Tetracycline Resistance in Bifidobacterium animalis subsp. lactis▿

    PubMed Central

    Gueimonde, Miguel; Flórez, Ana Belén; van Hoek, Angela H. A. M.; Stuer-Lauridsen, Birgitte; Strøman, Per; de los Reyes-Gavilán, Clara G.; Margolles, Abelardo

    2010-01-01

    All strains of Bifidobacterium animalis subsp. lactis described to date show medium level resistance to tetracycline. Screening of 26 strains from a variety of sources revealed the presence of tet(W) in all isolates. A transposase gene upstream of tet(W) was found in all strains, and both genes were cotranscribed in strain IPLAIC4. Mutants with increased tetracycline resistance as well as tetracycline-sensitive mutants of IPLAIC4 were isolated and genetically characterized. The native tet(W) gene was able to restore the resistance phenotype to a mutant with an alteration in tet(W) by functional complementation, indicating that tet(W) is necessary and sufficient for the tetracycline resistance seen in B. animalis subsp. lactis. PMID:20348299

  1. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus.

    PubMed

    Khoroshkin, Matvei S; Leyn, Semen A; Van Sinderen, Douwe; Rodionov, Dmitry A

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics.

  2. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus

    PubMed Central

    Khoroshkin, Matvei S.; Leyn, Semen A.; Van Sinderen, Douwe; Rodionov, Dmitry A.

    2016-01-01

    Bifidobacteria, which represent common commensals of mammalian gut, are believed to have positive effects on human health. The influence of certain non-digestible carbohydrates (and their use as so-called prebiotics) on growth and metabolic activity of bifidobacteria is of increasing interest; however, mechanisms of transcriptional control of carbohydrate metabolism are poorly understood in these species. We used a comparative genomics approach to reconstruct carbohydrate utilization pathways and transcriptional regulons in 10 Bifidobacterium genomes. Analysis of regulatory gene regions revealed candidate DNA motifs and reconstructed regulons for 268 transcription factors from the LacI, ROK, DeoR, AraC, GntR, and TetR families that form 64 orthologous groups of regulators. Most of the reconstructed regulons are local and control specific catabolic pathways for host- and diet-derived glycans and monosaccharides. Mosaic distributions of many of these local regulators across Bifidobacterium species correlate with distribution of corresponding catabolic pathways. In contrast, the maltose, galactose, sucrose, and fructose regulons, as well as a novel global LacI-family regulator that is predicted to control the central carbohydrate metabolism and arabinose catabolism genes, are universally present in all 10 studied bifidobacteria. A novel group of TetR-family regulators presumably controls the glucoside and galactoside utilization pathways. Paralogs of the ribose repressor RbsR control the pyrimidine nucleoside utilization genes. Multiple paralogs of the maltose regulator MalR co-regulate large sets of genes involved in maltodextrin utilization. The inferred metabolic regulons provide new insights on diverse carbohydrate utilization networks in bifidobacteria that can be employed in metabolic modeling, phenotype prediction and the rational development of novel prebiotics. PMID:26903998

  3. Benefits of Bifidobacterium animalis subsp. lactis Probiotic in Experimental Periodontitis.

    PubMed

    Oliveira, Luiz F F; Salvador, Sérgio L; Silva, Pedro H F; Furlaneto, Flávia A C; Figueiredo, Luciene; Casarin, Renato; Ervolino, Edilson; Palioto, Daniela B; Souza, Sérgio L S; Taba, Mario; Novaes, Arthur B; Messora, Michel R

    2017-02-01

    This study evaluates effects of topical administration of probiotic bacteria of the genus Bifidobacterium on experimental periodontitis (EP) in rats. Thirty-two rats were divided into groups C (control; without EP), EP (EP only), C-HN019 (control+probiotic), and EP-HN019 (EP+probiotic). On day 0 of the experiment, animals of groups EP and EP-HN019 received cotton ligatures around mandibular first molars (MFMs). In groups C-HN019 and EP-HN019, 1 mL of suspensions containing Bifidobacterium animalis subsp. lactis (B. lactis) HN019 was topically administered in the subgingival region of MFMs on days 0, 3, and 7. In groups C and EP, topical administrations were performed using a sham suspension (without probiotic). All animals were euthanized at day 14. Gingival tissue, hemimandibles, and oral biofilm were collected. Data were statistically analyzed (P <0.05). Group EP presented greater bone porosity, trabecular separation, and connective tissue attachment loss (CTAL) as well as reduced bone volume than all other groups (P <0.05). In group EP-HN019, there were greater proportions of Actinomyces and Streptococcus-like species and lower proportions of Veillonella parvula, Capnocytophaga sputigena, Eikenella corrodens, and Prevotella intermedia-like species than group EP. Group EP-HN019 presented greater expressions of osteoprotegerin and β-defensins than group EP (P <0.05). Group EP presented greater levels of interleukin-1β and receptor activator of nuclear factor-kappa B ligand than group EP-HN019 (P <0.05). Topical use of B. lactis HN019 promotes a protective effect against alveolar bone loss and CTALs attributable to EP in rats, modifying immunoinflammatory and microbiologic parameters.

  4. [Distribution of Bifidobacterium in oral cavities of children and the relations with caries].

    PubMed

    Zhai, Jing-Jing; Zou, Jing; Lu, Li-Ying

    2009-12-01

    To explore a selected-media of Bifidobacterium from oral cavity, to detect the distribution of Bifidobacterium in different sites of children and primarily investigate the relationship between oral Bifidobacterium and early childhood caries. 70 children aged from 3 to 5-year-old were selected, 30 children were caries-free and 40 were severe early childhood caries (S-ECC). Saliva was collected and plaque samples from the 30 healthy subjects were pooled. For S-ECC group, plaques were collected separately from four different sites as follows: Saliva, surfaces of intact enamel, surfaces of white spot-lesions, and deep dentin-lesions. Samples would be grown in the selected-media, and the whole DNA of bacteria was extracted. Polymerase chain reaction was performed with specific primers and the results were analyzed by the electrophoresis. Bifidobacterium were detected 0 in the caries-free children, while 47.5% in the S-ECC group. There was significant difference between two groups (P < 0.05) and there was no difference between different sites of teeth in S-ECC group (P > 0.05). 27.5% Bifidobacterium were detected in saliva, 27.5% on surfaces of intact enamel, 20.0% on surfaces of white spot-lesions and 22.5% in deep dentin-lesions. 10% Bifidobacterium dentium were detected in saliva, 7.5% on surfaces of intact enamel, 7.5% on surfaces of white spot-lesions and 10.0% in deep dentin-lesions. One type of modified selected media of Bifidobacterium in oral cavity was explored. Bifidobacterium may be related to the occurrence of the S-ECC and has nothing to do with different sites of teeth in children.

  5. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice.

    PubMed

    Yang, Chun; Fujita, Yuko; Ren, Qian; Ma, Min; Dong, Chao; Hashimoto, Kenji

    2017-04-03

    Accumulating evidence suggests that abnormalities in the composition of the gut microbiota may play a role in the pathogenesis of depression. Although approximately 30% mice are resilient to chronic social defeat stress (CSDS), the role of gut microbiota in this stress resilience is unknown. In this study, male C57BL/6 mice were exposed to a different CD1 aggressor mouse for 10 min on 10 consecutive days. A social interaction test was applied to distinguish between resilient and susceptible mice. Using 16S rRNA analysis, we examined the composition of gut microbiota in feces from control, resilient, and susceptible mice. The marked appearance of Bifidobacterium was detected in the resilient mice, whereas in the control and susceptible mice, Bifidobacterium were below the detection limit. Oral intake of Bifidobacterium significantly increased the number of resilient mice after CSDS compared with vehicle-treated mice. These findings suggest that Bifidobacterium may confer resilience to CSDS. Therefore, supplementation of Bifidobacterium may prevent the onset of depression from stress in humans. In addition, supplementation of Bifidobacterium may prevent or minimize relapse from remission induced by inflammation and/or stress in depressed patients.

  6. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis.

    PubMed

    Wei, Pijin; Yang, Yan; Liu, Zhaobing; Huang, Junli; Gong, Yahui; Sun, Hanxiao

    2016-07-01

    The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy.

  7. Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice

    PubMed Central

    Yang, Chun; Fujita, Yuko; Ren, Qian; Ma, Min; Dong, Chao; Hashimoto, Kenji

    2017-01-01

    Accumulating evidence suggests that abnormalities in the composition of the gut microbiota may play a role in the pathogenesis of depression. Although approximately 30% mice are resilient to chronic social defeat stress (CSDS), the role of gut microbiota in this stress resilience is unknown. In this study, male C57BL/6 mice were exposed to a different CD1 aggressor mouse for 10 min on 10 consecutive days. A social interaction test was applied to distinguish between resilient and susceptible mice. Using 16S rRNA analysis, we examined the composition of gut microbiota in feces from control, resilient, and susceptible mice. The marked appearance of Bifidobacterium was detected in the resilient mice, whereas in the control and susceptible mice, Bifidobacterium were below the detection limit. Oral intake of Bifidobacterium significantly increased the number of resilient mice after CSDS compared with vehicle-treated mice. These findings suggest that Bifidobacterium may confer resilience to CSDS. Therefore, supplementation of Bifidobacterium may prevent the onset of depression from stress in humans. In addition, supplementation of Bifidobacterium may prevent or minimize relapse from remission induced by inflammation and/or stress in depressed patients. PMID:28368029

  8. Comparative Sequence Analysis of the tuf and recA Genes and Restriction Fragment Length Polymorphism of the Internal Transcribed Spacer Region Sequences Supply Additional Tools for Discriminating Bifidobacterium lactis from Bifidobacterium animalis

    PubMed Central

    Ventura, Marco; Zink, Ralf

    2003-01-01

    The relationship between Bifidobacterium lactis and Bifidobacterium animalis was examined by comparative analysis of tuf and recA gene sequences and by restriction fragment length polymorphism analysis of their internal 16S-23S transcribed spacer region sequences. The bifidobacterial strains investigated could be divided into two distinct groups within a single species based on the tuf, recA, and 16S-23S spacer region sequence analysis. Therefore, all strains of B. lactis and B. animalis could be unified as the species B. animalis and divided into two subspecies, Bifidobacterium animalis subsp. lactis and Bifidobacterium animalis subsp. animalis. PMID:14660406

  9. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase.

    PubMed

    Nakai, Hiroyuki; Baumann, Martin J; Petersen, Bent O; Westphal, Yvonne; Schols, Henk; Dilokpimol, Adiphol; Hachem, Maher A; Lahtinen, Sampo J; Duus, Jens Ø; Svensson, Birte

    2009-12-01

    A gene cluster involved in maltodextrin transport and metabolism was identified in the genome of Lactobacillus acidophilus NCFM, which encoded a maltodextrin-binding protein, three maltodextrin ATP-binding cassette transporters and five glycosidases, all under the control of a transcriptional regulator of the LacI-GalR family. Enzymatic properties are described for recombinant maltose phosphorylase (MalP) of glycoside hydrolase family 65 (GH65), which is encoded by malP (GenBank: AAV43670.1) of this gene cluster and produced in Escherichia coli. MalP catalyses phosphorolysis of maltose with inversion of the anomeric configuration releasing beta-glucose 1-phosphate (beta-Glc 1-P) and glucose. The broad specificity of the aglycone binding site was demonstrated by products formed in reverse phosphorolysis using various carbohydrate acceptor substrates and beta-Glc 1-P as the donor. MalP showed strong preference for monosaccharide acceptors with equatorial 3-OH and 4-OH, such as glucose and mannose, and also reacted with 2-deoxy glucosamine and 2-deoxy N-acetyl glucosamine. By contrast, none of the tested di- and trisaccharides served as acceptors. Disaccharide yields obtained from 50 mmbeta-Glc 1-P and 50 mm glucose, glucosamine, N-acetyl glucosamine, mannose, xylose or l-fucose were 99, 80, 53, 93, 81 and 13%, respectively. Product structures were determined by NMR and ESI-MS to be alpha-Glcp-(1-->4)-Glcp (maltose), alpha-Glcp-(1-->4)-GlcNp (maltosamine), alpha-Glcp-(1-->4)-GlcNAcp (N-acetyl maltosamine), alpha-Glcp-(1-->4)-Manp, alpha-Glcp-(1-->4)-Xylp and alpha-Glcp-(1-->4)- L-Fucp, the three latter being novel compounds. Modelling using L. brevis GH65 as the template and superimposition of acarbose from a complex with Thermoanaerobacterium thermosaccharolyticum GH15 glucoamylase suggested that loop 3 of MalP involved in substrate recognition blocked the binding of candidate acceptors larger than monosaccharides.

  10. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder.

    PubMed

    Aizawa, Emiko; Tsuji, Hirokazu; Asahara, Takashi; Takahashi, Takuya; Teraishi, Toshiya; Yoshida, Sumiko; Ota, Miho; Koga, Norie; Hattori, Kotaro; Kunugi, Hiroshi

    2016-09-15

    Bifidobacterium and Lactobacillus in the gut have been suggested to have a beneficial effect on stress response and depressive disorder. We examined whether these bacterial counts are reduced in patients with major depressive disorder (MDD) than in healthy controls. Bifidobacterium and Lactobacillus counts in fecal samples were estimated in 43 patients and 57 controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction The patients had significantly lower Bifidobacterium counts (P=0.012) and tended to have lower Lactobacillus counts (P=0.067) than the controls. Individuals whose bacterial counts below the optimal cut-off point (9.53 and 6.49log10 cells/g for Bifidobacterium and Lactobacillus, respectively) were significantly more common in the patients than in the controls for both bacteria (Bifidobacterium: odds ratio 3.23, 95% confidence interval [CI] 1.38-7.54, P=0.010; Lactobacillus: 2.57, 95% CI 1.14-5.78, P=0.027). Using the same cut-off points, we observed an association between the bacterial counts and Irritable bowel syndrome. Frequency of fermented milk consumption was associated with higher Bifidobacterium counts in the patients. The findings should be interpreted with caution since effects of gender and diet were not fully taken into account in the analysis. Our results provide direct evidence, for the first time, that individuals with lower Bifidobacterium and/or Lactobacillus counts are more common in patients with MDD compared to controls. Our findings provide new insight into the pathophysiology of MDD and will enhance future research on the use of pro- and prebiotics in the treatment of MDD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains.

    PubMed

    Zhou, J S; Pillidge, C J; Gopal, P K; Gill, H S

    2005-02-01

    The antimicrobial susceptibilities and presence of plasmids in four new probiotic lactic acid bacteria (LAB) strains, Lactobacillus rhamnosus HN001 (DR20) HN067, Lactobacillus acidophilus HN017 and Bifidobacterium lactis HN019 (DR10), were determined. Resistance to 18 commonly used antibiotics was assessed by disk diffusion. The three Lactobacillus strains had similar antibiotic susceptibility profiles to those of Lactobacillus plantarum strain HN045 and two commercial probiotic Lactobacillus strains, GG and LA-1. The B. lactis strain HN019 had a similar profile to three commercial probiotic B. lactis strains (Bb12, HN049 and HN098). All 10 strains were sensitive to the Gram-positive spectrum antibiotics erythromycin and novobiocin, the broad-spectrum antibiotics rifampicin, spectinomycin, tetracycline and chloramphenicol and the beta-lactam antibiotics penicillin, ampicillin and cephalothin. By contrast, most strains were resistant to the Gram-negative spectrum antibiotics fusidic acid, nalidixic acid and polymyxin B and the aminoglycosides neomycin, gentamicin, kanamycin and streptomycin. All three L. rhamnosus strains (HN001, HN067 and GG) were resistant to vancomycin and several strains were also resistant to cloxacillin. Of the four new probiotic strains, only L. rhamnosus HN001 contained plasmids; however, a plasmid-free derivative of HN001 had the same antibiotic susceptibility profile as the parent strain.

  12. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut

    PubMed Central

    Underwood, Mark A.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.

    2015-01-01

    Oligosaccharides are abundant in human milk. Production of these highly diverse structures requires significant energy expenditure by the mother and yet these human milk oligosaccharides offer no direct nutritive value to her infant. A primary function of human milk oligosaccharides is to shape the infant’s intestinal microbiota with life-long consequences. Bifidobacterium longum subspecies infantis (B. infantis) is unique among gut bacteria in its prodigious capacity to digest and consume any human milk oligosaccharide structure, the result of a large repertoire of bacterial genes encoding an array of glycosidases and oligosaccharide transporters not found in other bacterial species. In vitro, B. infantis grows better than other bacterial strains in the presence of human milk oligosaccharides, displays anti-inflammatory activity in premature intestinal cells, and decreases intestinal permeability. In premature infants, B. infantis given in combination with human milk increases B. infantis and decreases Enterobacteriaceae in the feces. Probiotics containing B. infantis decrease the risk of necrotizing enterocolitis in premature infants. Colonization with B. infantis is also associated with increased vaccine responses. Probiotic organisms have historically been selected based on ease of production and stability. The advantages of B. infantis, selected through coevolution with human milk glycans, present an opportunity for focused manipulation of the infant intestinal microbiota. PMID:25303277

  13. Yacon flour and Bifidobacterium longum modulate bone health in rats.

    PubMed

    Rodrigues, Fabiana Carvalho; Castro, Adriano Simões Barbosa; Rodrigues, Vívian Carolina; Fernandes, Sérgio Antônio; Fontes, Edimar Aparecida Filomeno; de Oliveira, Tânia Toledo; Martino, Hércia Stampini Duarte; de Luces Fortes Ferreira, Célia Lúcia

    2012-07-01

    Yacon flour has been considered a food with prebiotic potential because of the high levels of fructooligosaccharides, which allows for its use in formulating synbiotic foods. The purpose of this study was to evaluate the effect of yacon flour and probiotic (Bifidobacterium longum) on the modulation of variables related to bone health. Thirty-two Wistar rats were divided into 4 groups: control, yacon flour, diet+B. longum, and yacon flour+B. longum. After euthanasia, the bones were removed for analysis of biomechanical properties (thickness, length, and strength of fracture) and mineral content (Ca, Mg, and P); the cecum was removed for analysis of the microbiota and short-chain fatty acids. Tibia Ca, P, and Mg content was significantly (P<.05) higher in groups fed diet+B. longum, yacon flour+B. longum than in the control group. An increase in fracture strength was observed in the yacon flour (8.1%), diet+B. longum (8.6%), and yacon flour+B. longum (14.6%) in comparison to the control group. Total anaerobe and weight of the cecum were higher (P<.05) in rats consuming the yacon flour diet compared with the other groups. Cecal concentration of propionate was higher in all experimental groups compared with the control (P<.05). Yacon flour in combination with B. longum helped increase the concentration of minerals in bones, an important factor in the prevention of diseases such as osteoporosis.

  14. Cellodextrin Utilization by Bifidobacterium breve UCC2003▿ †

    PubMed Central

    Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; MacSharry, John; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2011-01-01

    Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldRHis (produced by the incorporation of a His12-encoding sequence into the 3′ end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldRHis, which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins. PMID:21216899

  15. [Bifidobacterium scardovii isolated from 2 consecutive urine samples].

    PubMed

    Guevara Nuñez, Daiana; De Paulis, Adriana N; Bertona, Eugenia; Gutiérrez, Miguel Ángel; Vay, Carlos A; Suárez, Juan P; Predari, Silvia C

    2017-07-19

    Bifidobacterium scardovii species consists of facultative anaerobic gram-positive rods whose growth is stimulated by CO2 and anaerobiosis. Exceptionally it has been associated with infections in humans. An elderly male patient with a urinary tract infection due to B. scardovii and Enterococcus faecalis is presented here; both microorganisms were isolated from two consecutive urine samples. The bacillus did not grow on standard media, but on chocolate agar incubated in CO2 and on supplemented Brucella agar in an anaerobic atmosphere, incubated for 72h at 35°C. Gram staining with abundant irregular gram-positive rods with Y-shaped ends and some gram-positive cocci alerted to its presence. The importance of the Gram stain test in urine samples with pyuria and the growth on enriched media for long periods is highlighted here. In this case, if we had not had the Gram stain test results, and had considered only the E. faecalis growth, we would have lost the major etiologic agent. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Antioxidative properties and inhibitory effect of Bifidobacterium adolescentis on melanogenesis.

    PubMed

    Huang, Huey-Chun; Chang, Tsong-Min

    2012-09-01

    Melanin is a dark pigment produced by melanocytes. Tyrosinase is a key enzyme which catalyzes the rate-limiting step of melanogenesis. However, accumulation of melanin leads to various skin hyperpigmentation disorders. To find a novel skin-whitening agent, the antioxidant capacity of Bifidobacterium adolescentis culture filtrate and inhibitory effect on melanogenesis were investigated. The antioxidant effects of B. adolescentis culture filtrate include 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) radical cation scavenging activity and reducing power were measured spectrophotometrically. The reducing power is a useful index for the evaluation of potential antioxidants which carry out reduction of ferricyanide to ferrocyanide. Furthermore, the inhibitory effects of the bacterial culture filtrate on mushroom tyrosinase, B16F10 intracellular tyrosinase activity and melanin content were also determined. The results revealed that B. adolescentis culture filtrate (2.5, 5.0 and 7.5 %; v/v) effectively scavenged DPPH and ABTS radicals, and lower concentrations of the bacterial culture filtrates (0.5, 1.0 and 1.5 %; v/v) showed potent reducing power in a dose-dependent pattern. Additionally, the bacterial culture filtrate suppressed murine tyrosinase activity and decreased the amount of melanin in a dose-dependent manner. Our results demonstrated that B. adolescentis culture filtrate decreases the melanogenesis process of melanoma cells by inhibiting tyrosinase activity, which we suggest may be mediated through its antioxidant activity.

  17. Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract.

    PubMed

    Delgado, Susana; Flórez, Ana Belén; Mayo, Baltasar

    2005-04-01

    One hundred and twenty-two strains of Bifidobacterium and Lactobacillus species have been tested against 12 antibiotics and two antibiotic mixtures by a commercial system (Sensititre Anaero3; Treck Diagnostic Systems). The upper limits of some minimum inhibitory concentrations (MICs) were completed on MRS agar plates by the NCCLS procedure. All strains were sensitive to chloramphenicol and imipenem and most of the strains were resistant to metronidazole. Bifidobacteria isolates were susceptible to cefoxitin, whereas about half of the lactobacilli were resistant. Approximately 30% of the Bifidobacterium isolates were resistant to tetracycline, as well as five Lactobacillus strains belonging to four different species. None of the tested Bifidobacterium isolates was resistant to vancomycin, whereas a species-dependent resistance was found among the lactobacilli. Single strains of Bifidobacterium longum, Bifidobacterium pseudocatenulatum, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Lactobacillus brevis were resistant to erythromycin and/or clindamycin. Most of the observed resistances seemed to be intrinsic, but some others could be compatible with transmissible determinants.

  18. Qualitative and Semiquantitative Analysis of Fecal Bifidobacterium Species in Centenarians Living in Bama, Guangxi, China.

    PubMed

    Wang, Fang; Huang, Guohong; Cai, Da; Li, Danlei; Liang, Xiaolin; Yu, Ting; Shen, Peihong; Su, Haiyan; Liu, Jidong; Gu, Hongcang; Zhao, Mouming; Li, Quanyang

    2015-07-01

    Centenarians constitute a significant subpopulation in the Bama County of Guangxi province in China. The beneficial effects of intestinal microbiota, especially bifidobacteria of centenarians, have been widely accepted; however, knowledge about Bifidobacterium species in centenarians is not adequate. The aim of this study was to investigate the quantity and prevalence of fecal Bifidobacterium in healthy longevous individuals. Fecal samples from eight centenarians from Bama (aged 100 to 108 years), eight younger elderlies from Bama (aged 80 to 99 years), and eight younger elderlies from Nanning (aged 80 to 99 years) were analyzed using denaturing gradient gel electrophoresis, species-specific clone library, and quantitative polymerase chain reaction technology (qPCR). A total of eight different Bifidobacterium species were detected. B. dentium, B. longum, B. thermophilum, B. pseudocatenulatum/B. catenulatum, and B. adolescentis were common in fecal of centenarians and young elderly. B. minimum, B. saecularmay/B. pullorum/B. gallinarum, and B. mongoliense were found in centenarians but were absent in the younger elderlies. In addition, Bifidobacterium species found in centenarians were different from those found in Bama young elderly and Nanning young elderly, and the principal differences were the significant increase in the population of B. longum (P < 0.05) and B. dentium (P < 0.05) and the reduction in the frequency of B. adolescentis (P < 0.05), respectively. Centenarians tend to have more complex fecal Bifidobacterium species than young elderlies from different regions.

  19. Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species.

    PubMed

    Jin, Jong-Sik; Touyama, Mutsumi; Hisada, Takayoshi; Benno, Yoshimi

    2012-11-01

    Green tea is one of the most popular beverages in the world. Its beneficial health effects and components have been extensively reviewed. However, little is known about the influence of green tea consumption on the human intestinal microbiota (HIM), which plays a crucial role in human health. Ten volunteers who did not usually consume green tea, drank it for 10 days and then stopped drinking it for 7 days. Their fecal samples were collected at three time points: before beginning the 10-day green-tea regime, at the conclusion of that 10 days, and 7 days after stopping the regime. Their fecal samples were analyzed by terminal restriction fragment length polymorphism with specific primer-restriction enzyme systems for HIM and by using a real-time PCR method for the Bifidobacterium species. Although the HIM of each subject was relatively stable, the proportion of Bifidobacterium species played an important role in the classification of their fecal microbiota. Although there were inter-individual differences in the Bifidobacterium species, an overall tendency for the proportion of bifidobacteria to increase because of green tea consumption was noted. However, little change was observed in the composition of Bifidobacterium species in each sample. This suggests that the change in proportion was induced, not by an inter-species transition, but by an intra-species increase and/or decrease. In conclusion, green tea consumption might act as a prebiotic and improve the colon environment by increasing the proportion of the Bifidobacterium species.

  20. Diversity of gut Bifidobacterium species is not altered between allergic and non-allergic French infants.

    PubMed

    Waligora-Dupriet, A J; Campeotto, F; Romero, K; Mangin, I; Rouzaud, G; Ménard, O; Suau, A; Soulaines, P; Nicolis, I; Kapel, N; Dupont, C; Butel, M J

    2011-06-01

    Some clinical studies have suggested a relationship between allergic diseases and gut microbiota. We aimed to study bifidobacterial colonization at species and strain levels in ten allergic French infants included at their first clinical consultation and 20 controls matching for age at sampling, mode of delivery, per partum antibiotics, type of feeding and antibiotics in the first weeks of life. The faecal microbiota was analyzed by culture methods and TTGE. Bifidobacterial species and strains were identified using multiplex PCR and Box-PCR fingerprinting. No differences were observed between groups in the number of colonized infants or in the levels of colonization by the main aerobic and anaerobic genera. All infants were colonized with high levels of Bifidobacterium except for one in each group. One to 5 Bifidobacterium species and 1 to 7 strains were observed per subject independently of allergic status and age at sampling. Our study showed the infants to be colonized by several species and strains, including several strains from the same species. This diversity in Bifidobacterium colonization was not related with the allergic status and showed that the link between Bifidobacterium colonization and allergic diseases is complex and cannot be restricted to the role attributed to Bifidobacterium species.

  1. Improved Cloning Vectors for Bifidobacteria, Based on the Bifidobacterium catenulatum pBC1 Replicon▿

    PubMed Central

    Álvarez-Martín, Pablo; Belén Flórez, Ana; Margolles, Abelardo; del Solar, Gloria; Mayo, Baltasar

    2008-01-01

    This study reports the development of several cloning vectors for bifidobacteria based on the replicon of pBC1, a cryptic plasmid from Bifidobacterium catenulatum L48 thought to replicate via the theta mode. These vectors, in which antibiotic resistance genes encoding either erythromycin or tetracycline resistance acted as selection markers, were able to replicate in a series of eight Bifidobacterium species at frequencies ranging from 4.0 × 101 to 1.0 × 105 transformants μg−1 but not in Lactococcus lactis or Lactobacillus casei. They showed a relative copy number of around 30 molecules per chromosome equivalent and a good segregational stability, with more than 95% of the cells retaining the vectors after 80 to 100 generations in the absence of selection. Vectors contain multiple cloning sites of different lengths, and the lacZα peptide gene was introduced into one of the molecules, thus allowing the easy selection of colonies harboring recombinant plasmids in Escherichia coli. The functionality of the vectors for engineering Bifidobacterium strains was assessed by cloning and examining the expression of an α-l-arabinofuranosidase gene belonging to Bifidobacterium longum. E. coli and Bifidobacterium pseudocatenulatum recombinant clones were stable and showed an increase in α-arabinofuranosidase activity of over 100-fold compared to that of the untransformed hosts. PMID:18539807

  2. Improved cloning vectors for bifidobacteria, based on the Bifidobacterium catenulatum pBC1 replicon.

    PubMed

    Alvarez-Martín, Pablo; Belén Flórez, Ana; Margolles, Abelardo; del Solar, Gloria; Mayo, Baltasar

    2008-08-01

    This study reports the development of several cloning vectors for bifidobacteria based on the replicon of pBC1, a cryptic plasmid from Bifidobacterium catenulatum L48 thought to replicate via the theta mode. These vectors, in which antibiotic resistance genes encoding either erythromycin or tetracycline resistance acted as selection markers, were able to replicate in a series of eight Bifidobacterium species at frequencies ranging from 4.0 x 10(1) to 1.0 x 10(5) transformants microg(-1) but not in Lactococcus lactis or Lactobacillus casei. They showed a relative copy number of around 30 molecules per chromosome equivalent and a good segregational stability, with more than 95% of the cells retaining the vectors after 80 to 100 generations in the absence of selection. Vectors contain multiple cloning sites of different lengths, and the lacZalpha peptide gene was introduced into one of the molecules, thus allowing the easy selection of colonies harboring recombinant plasmids in Escherichia coli. The functionality of the vectors for engineering Bifidobacterium strains was assessed by cloning and examining the expression of an alpha-l-arabinofuranosidase gene belonging to Bifidobacterium longum. E. coli and Bifidobacterium pseudocatenulatum recombinant clones were stable and showed an increase in alpha-arabinofuranosidase activity of over 100-fold compared to that of the untransformed hosts.

  3. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores.

    PubMed

    Endo, Akihito; Futagawa-Endo, Yuka; Dicks, Leon M T

    2010-12-01

    The Lactobacillus and Bifidobacterium population in the feces of 26 animals (16 species) were studied by culture-dependent and culture-independent techniques. Lactobacilli were detected from a few herbivores, all carnivores and some omnivores. Lactobacillus johnsonii, Lactobacillus reuteri, Lactobacillus salivarius, Lactobacillus vaginalis and Lactobacillus ingluviei were the most dominant lactobacilli in carnivores. These species were, however, not predominant in herbivores and omnivores. Lactobacillus brevis, Lactobacillus casei, Lactobacillus parabuchneri, Lactobacillus plantarum, Lactobacillus sakei, Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides, usually present in raw plant material, were present in omnivores but not in carnivores. Bifidobacteria were detected in only four herbivores and two omnivores. Bifidobacterium pseudolongum was the only Bifidobacterium species detected in herbivores. Bifidobacteria detected in the two omnivores are phylogenetically not closely related to known species and are possible novel species in the genus.

  4. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery.

    PubMed

    Yeung, Timothy W; Üçok, Elif F; Tiani, Kendra A; McClements, David J; Sela, David A

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions.

  5. Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut

    PubMed Central

    Bottacini, Francesca; Milani, Christian; Turroni, Francesca; Sánchez, Borja; Foroni, Elena; Duranti, Sabrina; Serafini, Fausta; Viappiani, Alice; Strati, Francesco; Ferrarini, Alberto; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Fitzgerald, Gerald F.; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2012-01-01

    Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration. PMID:23028506

  6. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  7. Determination of Bifidobacterium and Lactobacillus in breast milk of healthy women by digital PCR.

    PubMed

    Qian, L; Song, H; Cai, W

    2016-09-01

    Breast milk is one of the most important sources of postnatal microbes. Quantitative real-time polymerase chain reaction (qRT-PCR) is currently used for the quantitative analysis of bacterial 16S rRNA genes in breast milk. However, this method relies on the use of standard curves and is imprecise when quantitating target DNA of low abundance. In contrast, droplet digital PCR (DD-PCR) provides an absolute quantitation without the need for calibration curves. A comparison between DD-PCR and qRT-PCR was conducted for the quantitation of Bifidobacterium and Lactobacillus 16S RNA genes in human breast milk, and the impacts of selected maternal factors were studied on the composition of these two bacteria in breast milk. From this study, DD-PCR reported between 0-34,460 16S rRNA gene copies of Bifidobacterium genera and between 1,108-634,000 16S rRNA gene copies of Lactobacillus genera in 1 ml breast milk. The 16S rRNA gene copy number of Lactobacillus genera was much greater than that of Bifidobacterium genera in breast milk. DD-PCR showed a 10-fold lower limit of quantitation as compared to qRT-PCR. A higher correlation and agreement was observed between qRT-PCR and DD-PCR in Lactobacillus quantitation as compared to Bifidobacterium quantitation. Based on our DD-PCR quantitation, a low abundance of Bifidobacterium bacteria in breast milk was correlated to higher pre-pregnancy body mass index (BMI). However, no significant difference was observed for these two bacteria in breast milk between mothers who had vaginal deliveries and caesarean deliveries. This study suggests that DD-PCR is a better tool to quantitate the bacterial load of breast milk compared to the conventional qRT-PCR method. The number of breast milk Bifidobacterium bacteria is influenced by maternal pre-pregnancy BMI.

  8. [Antimicrobial activity of oral quinolones against clinical isolates of Bifidobacterium group and Clostridium difficile].

    PubMed

    Kimura, Masao; Yamagishi, Yuka; Terada, Michinori; Ohki, Emiko; Tanaka, Kaori; Watanabe, Kunitomo; Mikamo, Hiroshige

    2010-04-01

    Administrations of antimicrobial agent influence human intestinal flora, and sometimes lead to cause Clostridium difficile colitis (CDC). It has been well known that antimicrobial agents, such as clindamycin (CLDM), ampicillin (ABPC) and cephems, frequently cause C. difficile colitis, however, recently some respiratory quinolones, such as garenoxacin (GRNX) and moxifloxacin (MFLX), have paid to attention. Bifidobacterium species would be highly associated with the preservation of normal intestinal flora, while C. difficile would be associated with diarrhea related with antibiotics administration. We investigated antimicrobial activity of GRNX, MFLX and levofloxacin (LVFX) by agar dilution methods based on CLSI recommendations. Forty-seven strains Bifidobacterium species isolated from healthy human intestinal flora and 51 strains of C. difficile isolated from C. difficile colitis patients between 2004 and 2006 were subjected to this study. MIC ranges of Bifidobacterium species for GRNX, MFLX and LVFX were 0.5-16, 0.06-2, and 0.5-8 microg/mL, respectively. MIC50 s of GRNX, MFLX and LVFX against Bifidobacterium species were 2, 0.5 and 4 microg/mL, respectively. MIC90 s of GRNX, MFLX and LVFX against Bifidobacterium species were 8, 2 and 8 microg/mL, respectively. MIC ranges of C. difficile for GRNX, MFLX and LVFX were 0.5 - > 64, 1-64, and 0.125-32 microg/mL, respectively. MIC50s of GRNX, MFLX and LVFX against C. difficile were 2, 2 and 0.5 microg/mL, respectively. MIC90 s of GRNX, MFLX and LVFX against C. difficile were 64, 16 and 8 microg/mL, respectively. LVFX would preserve Bifidobacterium species, and also would be bactericidal for C. difficile, which might lead to the low rate of gastrointestinal disorder in LVFX. GRNX would preserve Bifidobacterium species, however, might be lead to CDC in some cases, since antimicrobial activity for C. difficile has been weak compared with LVFX. Since MFLX would be bactericidal for Bifidobacterium species and antibacterial

  9. Role of Calcium Alginate and Mannitol in Protecting Bifidobacterium

    PubMed Central

    Dianawati, Dianawati; Mishra, Vijay

    2012-01-01

    Fourier transform infrared (FTIR) spectroscopy was carried out to ascertain the mechanism of Ca-alginate and mannitol protection of cell envelope components and secondary proteins of Bifidobacterium animalis subsp. lactis Bb12 after freeze-drying and after 10 weeks of storage at room temperature (25°C) at low water activities (aw) of 0.07, 0.1, and 0.2. Preparation of Ca-alginate and Ca-alginate-mannitol as microencapsulants was carried out by dropping an alginate or alginate-mannitol emulsion containing bacteria using a burette into CaCl2 solution to obtain Ca-alginate beads and Ca-alginate-mannitol beads, respectively. The wet beads were then freeze-dried. The aw of freeze-dried beads was then adjusted to 0.07, 0.1, and 0.2 using saturated salt solutions; controls were prepared by keeping Ca-alginate and Ca-alginate-mannitol in aluminum foil without aw adjustment. Mannitol in the Ca-alginate system interacted with cell envelopes during freeze-drying and during storage at low aws. In contrast, Ca-alginate protected cell envelopes after freeze-drying but not during 10-week storage. Unlike Ca-alginate, Ca-alginate-mannitol was effective in retarding the changes in secondary proteins during freeze-drying and during 10 weeks of storage at low aws. It appears that Ca-alginate-mannitol is more effective than Ca-alginate in preserving cell envelopes and proteins after freeze-drying and after 10 weeks of storage at room temperature (25°C). PMID:22843535

  10. Bifidobacterium infantis attenuates colitis by regulating T cell subset responses

    PubMed Central

    Zuo, Li; Yuan, Kai-Tao; Yu, Li; Meng, Qing-Hong; Chung, Peter Chee-Keung; Yang, Ding-Hua

    2014-01-01

    AIM: to investigate the effect of Bifidobacterium infantis (B. infantis) on the T cell subsets and in attenuating the severity of experimental colitis in mice. METHODS: Normal BALB/c mice were fed different doses of B. infantis for 3 wk, and T cell subsets and related cytokine profiles in mesenteric lymph nodes (MLNs) were detected by flow cytometry and real-time RT-PCR. Colitis was induced by administration of trinitrobenzene sulfonic acid (TNBS) in mice. Before colitis induction, mice were fed high dose B. infantis for 3 wk. Cytokine profiles in MLNs and histological changes of colonic tissue were examined 6 d after colitis induction. RESULTS: No significant change in cytokine profiles was observed in normal mice fed low dose B. infantis. However, Th1-related cytokines (IL-2, IFN-γ, IL-12p40), Th17-related transcription factor and cytokines (RORγt, IL-21, IL-23), regulatory T cell (Treg)-related transcription factor and cytokines (Foxp3, IL-10) were increased in normal mice fed high dose B. infantis. Furthermore, flow cytometry assay showed B. infantis increased the numbers of CD4+Foxp3+ Tregs and Th17 cells in MLNs. Colitis was successfully induced by TNBS in mice, characterized by colonic inflammation and aberrant Th1 and Th17 responses. Feeding high dose B. infantis for 3 wk before colitis induction decreased the inflammatory cell infiltration and goblet cell depletion and restored the intestinal epithelium. In addition, B. infantis feeding reduced Th1-related cytokines (T-bet, IL-2 and IFN-γ) and Th17-related cytokines (IL-12p40, RORγt, IL-17A, IL-21 and IL-23), and increased Treg-related molecules (Foxp3, IL-10 and TGF-β) in colitis mice. CONCLUSION: B. infantis effectively attenuates TNBS-induced colitis by decreasing Th1 and Th17 responses and increasing Foxp3+ Treg response in the colonic mucosa. PMID:25561798

  11. Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota▿

    PubMed Central

    Ruas-Madiedo, Patricia; Moreno, José Antonio; Salazar, Nuria; Delgado, Susana; Mayo, Baltasar; Margolles, Abelardo; de los Reyes-Gavilán, Clara G.

    2007-01-01

    Using phenotypic approaches, we have detected that 17% of human intestinal Lactobacillus and Bifidobacterium strains could be exopolysaccharide (EPS) producers. However, PCR techniques showed that only 7% harbored genes related to the synthesis of heteropolysaccharides. This is the first work to screen the human intestinal ecosystem for the detection of EPS-producing strains. PMID:17483284

  12. Screening of exopolysaccharide-producing Lactobacillus and Bifidobacterium strains isolated from the human intestinal microbiota.

    PubMed

    Ruas-Madiedo, Patricia; Moreno, José Antonio; Salazar, Nuria; Delgado, Susana; Mayo, Baltasar; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G

    2007-07-01

    Using phenotypic approaches, we have detected that 17% of human intestinal Lactobacillus and Bifidobacterium strains could be exopolysaccharide (EPS) producers. However, PCR techniques showed that only 7% harbored genes related to the synthesis of heteropolysaccharides. This is the first work to screen the human intestinal ecosystem for the detection of EPS-producing strains.

  13. Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla).

    PubMed

    Tsuchida, Sayaka; Takahashi, Shunsuke; Nguema, Pierre Philippe Mbehang; Fujita, Shiho; Kitahara, Maki; Yamagiwa, Juichi; Ngomanda, Alfred; Ohkuma, Moriya; Ushida, Kazunari

    2014-02-01

    Gram-staining-positive anaerobic rods were isolated from the faeces of a wild lowland gorilla (Gorilla gorilla gorilla) in Moukalaba-Doudou National Park, Gabon, and strain GG01(T) was taxonomically investigated. Based on phylogenetic analyses and specific phenotypic characteristics, the strain belonged to the genus Bifidobacterium. Phylogenetic analysis of its 16S rRNA gene sequence revealed that strain GG01(T) formed a single monophyletic cluster and had a distinct line of descent. Based on 16S rRNA gene sequence similarity, the type strains of Bifidobacterium catenulatum JCM 1194(T) (98.3%) and Bifidobacterium pseudocatenulatum (98.1%) JCM 1200(T) were the most closely related to this novel strain, although it was clear that they belonged to different species. hsp60 sequences also supported these relationships. The DNA G+C content of this novel strain was 60.1 mol%. Bifidobacterium moukalabense sp. nov. (type strain GG01(T) = JCM 18751(T) = DSM 27321(T)) is proposed.

  14. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium

    PubMed Central

    Briner, Alexandra E.; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Turroni, Francesca; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco; Barrangou, Rodolphe

    2015-01-01

    CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools. PMID:26230606

  15. Complete Genome Sequence of Bifidobacterium longum W11 (LMG P-21586), Used as a Probiotic Strain

    PubMed Central

    Inturri, Rosanna; Ventura, Marco; Lugli, Gabriele Andrea

    2017-01-01

    ABSTRACT We report the complete genome sequence of Bifidobacterium longum W11 (LMG P-21586) isolated from the intestinal microbiota of a healthy man. The analysis of the sequence may provide insights into the microbiological characteristics and the functional activity of this probiotic strain. PMID:28280022

  16. Complete Genome Sequence of Bifidobacterium breve CECT 7263, a Strain Isolated from Human Milk

    PubMed Central

    Jiménez, Esther; Villar-Tajadura, M. Antonia; Marín, María; Fontecha, Javier; Requena, Teresa; Arroyo, Rebeca; Fernández, Leónides

    2012-01-01

    Bifidobacterium breve is an actinobacterium frequently isolated from colonic microbiota of breastfeeding babies. Here, we report the complete and annotated genome sequence of a B. breve strain isolated from human milk, B. breve CECT 7263. The genome sequence will provide new insights into the biology of this potential probiotic organism and will allow the characterization of genes related to beneficial properties. PMID:22740680

  17. Genomic and fluxomic analysis of carbohydrate metabolism in Bifidobacterium spp: human symbiotic bacteria

    USDA-ARS?s Scientific Manuscript database

    Bifidobacteria are gram-positive microorganisms widely applied in fermented dairy products due to their health-promoting effects. Bifidobacterium ssp. may also represent up to 91% of microbial gut population in the infant colon, but considerably less in adults. Fructose-6 phosphate phosphoketolase...

  18. Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta).

    PubMed

    Modesto, Monica; Michelini, Samanta; Stefanini, Ilaria; Sandri, Camillo; Spiezio, Caterina; Pisi, Annamaria; Filippini, Gianfranco; Biavati, Bruno; Mattarelli, Paola

    2015-06-01

    Four Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains were isolated from a faecal sample of a 5-year-old ring-tailed lemur (Lemur catta). The strains showed a peculiar morphology, resembling a small coiled snake, a ring shape, or forming a little 'Y' shape. The isolated strains appeared identical, and LMC 13T was chosen as a representative strain and characterized further. Strain LMC 13T showed an A3β peptidoglycan type, similar to that found in Bifidobacterium longum. The DNA base composition was 57.2 mol% G+C. Almost-complete 16S rRNA, hsp60, rpoB, dnaJ, dnaG, purF, clpC and rpoC gene sequences were obtained, and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strain LMC 13T showed the highest similarity to B. longum subsp. suis ATCC 27533T (96.65 %) and Bifidobacterium saguini DSM 23967T (96.64 %). Strain LMC 13T was located in an actinobacterial cluster and was more closely related to the genus Bifidobacteriumthan to other genera in the Bifidobacteriaceae. On the basis of these results, strain LMC 13T represents a novel species within the genus Bifidobacterium, for which the name Bifidobacterium lemurum sp. nov. is proposed; the type strain is LMC 13T ( = DSM 28807T = JCM 30168T).

  19. Complete Genome Sequence of Bifidobacterium longum GT15: Unique Genes for Russian Strains

    PubMed Central

    Zakharevich, Natalia V.; Averina, Olga V.; Klimina, Ksenia M.; Kudryavtseva, Anna V.; Kasianov, Artem S.; Makeev, Vsevolod J.

    2014-01-01

    In this study, we report the first completely annotated genome sequence of the Russian-origin Bifidobacterium longum subsp. longum strain GT15. We discovered 35 unique genes (UGs) which were detected from only the B. longum GT15 genome and were absent from other B. longum strain genomes (not of Russian origin). PMID:25523785

  20. Complete Genome Sequence of Bifidobacterium longum W11 (LMG P-21586), Used as a Probiotic Strain.

    PubMed

    Inturri, Rosanna; Ventura, Marco; Ruas-Madiedo, Patricia; Lugli, Gabriele Andrea; Blandino, Giovanna

    2017-03-09

    We report the complete genome sequence of Bifidobacterium longum W11 (LMG P-21586) isolated from the intestinal microbiota of a healthy man. The analysis of the sequence may provide insights into the microbiological characteristics and the functional activity of this probiotic strain.

  1. Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus.

    PubMed

    Averina, Olga V; Zakharevich, Natalia V; Danilenko, Valery N

    2012-08-01

    Bifidobacteria are strictly anaerobic bacteria, that are an important component of human microbiote due to their probiotic characteristics. They are frequently exposed to a variety of stresses, therefore, identification of genes implicated in stress responses in bifidobacteria is critical for biomedicine and maintenance of industrial strains. The WhiB-like family proteins unique for Actinobacteria are transcriptional regulators involved in major cellular processes, including stress responses. The aim of this study was the identification of WhiB-like family proteins of the Bifidobacterium genus of the Actinobacteria class and functional characterization of conservative whiB-like genes. The DNA sequence database of 36 strains revealed a family of WhiB-encoding genes. It were identified the wblE orthologs in all Bifidobacteria species and the whiB2 orthologs in all bifidobacterial strains except of all strains of Bifidobacterium animalis subsp. lactis and Bifidobacterium gallicum. Some strains, in particular, those of the Bifidobacterium longum group, contain additional whiB-like genes of different length and a low degree of similarity in sequences. The wblE and whiB2 genes of the Bifidobacterium genus are evolutionary conservative and ancient genes. The real-time PCR analysis showed that transcription of wblE is induced by a variety of stress conditions such as heat shock, osmotic, oxidative stresses, by antibiotic tetracycline and bile salt treatment, the nutrient starvation and entry into late stationary phase. The wblE gene may play a significant role in general stress responses in bifidobacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus).

    PubMed

    Modesto, M; Michelini, S; Stefanini, I; Ferrara, A; Tacconi, S; Biavati, B; Mattarelli, P

    2014-08-01

    Six Gram-positive-staining, microaerophilic, non-spore-forming, fructose-6-phosphate phosphoketolase-positive bacterial strains with a peculiar morphology were isolated from faecal samples of baby common marmosets (Callithrix jacchus). Cells of these strains showed a morphology not reported previously for a bifidobacterial species, which resembled a coiled snake, always coiled or ring shaped or forming a 'Y' shape. Strains MRM 3/1(T) and MRM 4/2 were chosen as representative strains and characterized further. The bacteria utilized a wide range of carbohydrates and produced urease. Glucose was fermented to acetate and lactate. Strain MRM 3/1(T) showed a peptidoglycan type unique among members of the genus Bifidobacterium. The DNA base composition was 64.7 mol% G+C. Almost-complete 16S rRNA, hsp60, clpC and rpoB gene sequences were obtained and phylogenetic relationships were determined. Comparative analysis of 16S rRNA gene sequences showed that strains MRM 3/1(T) and MRM 4/2 had the highest similarities to Bifidobacterium scardovii DSM 13734(T) (94.6%) and Bifidobacterium stellenboschense DSM 23968(T) (94.5%). Analysis of hsp60 showed that both strains were closely related to B. stellenboschense DSM 23968(T) (97.5% similarity); however, despite this high degree of similarity, our isolates could be distinguished from B. stellenboschense DSM 23968(T) by low levels of DNA-DNA relatedness (30.4% with MRM 3/1(T)). Strains MRM 3/1(T) and MRM 4/2 were located in an actinobacterial cluster and were more closely related to the genus Bifidobacterium than to other genera in the family Bifidobacteriaceae. On the basis of these results, strains MRM 3/1(T) and MRM 4/2 represent a novel species within the genus Bifidobacterium, for which the name Bifidobacterium aesculapii sp. nov. is proposed; the type strain is MRM 3/1(T) ( = DSM 26737(T) = JCM 18761(T)).

  3. Use of specific primers based on the 16S-23S internal transcribed spacer (ITS) region for the screening Bifidobacterium adolescentis in yogurt products and human stool samples.

    PubMed

    Tsai, Cheng-Chih; Lai, Chieh-Hsien; Yu, Bi; Tsen, Hau-Yang

    2008-10-01

    Effective methods for the identification and enumeration of lactic acid producing bacteria (LAB) cells are important for the quality control and assurance of probiotic products. In this study, we designed a polymerase chain reaction (PCR) primer set from the sequence in 16S-23S internal transcribed spacer (ITS) region and used it for the specific detection of Bifidobacterium adolescentis, one of the Bifidobacterium species used in probiotics. Specificity of the PCR primers, i.e., bits-1/bits-2, was assured by assay strains of B. adolescentis, other Bifidobacterium species, and strains of non-Bifidobacterium spp. Coupled with the use of a known primer set specific for Bifidobacterium species, Bifidobacterium strains and B. adolescentis could be identified from LAB strains in fermented dairy products and human fecal samples.

  4. Metabolism of Four α-Glycosidic Linkage-Containing Oligosaccharides by Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell, Kerry Joan; O'Connell Motherway, Mary; O'Callaghan, John; Fitzgerald, Gerald F.; Ross, R. Paul; Ventura, Marco; Stanton, Catherine

    2013-01-01

    Members of the genus Bifidobacterium are common inhabitants of the gastrointestinal tracts of humans and other mammals, where they ferment many diet-derived carbohydrates that cannot be digested by their hosts. To extend our understanding of bifidobacterial carbohydrate utilization, we investigated the molecular mechanisms by which 11 strains of Bifidobacterium breve metabolize four distinct α-glucose- and/or α-galactose-containing oligosaccharides, namely, raffinose, stachyose, melibiose, and melezitose. Here we demonstrate that all B. breve strains examined possess the ability to utilize raffinose, stachyose, and melibiose. However, the ability to metabolize melezitose was not common to all B. breve strains tested. Transcriptomic and functional genomic approaches identified a gene cluster dedicated to the metabolism of α-galactose-containing carbohydrates, while an adjacent gene cluster, dedicated to the metabolism of α-glucose-containing melezitose, was identified in strains that are able to use this carbohydrate. PMID:23913435

  5. Draft genome sequences of two Bifidobacterium sp. from the honey bee (Apis mellifera).

    PubMed

    Anderson, Kirk E; Johansson, Andreas; Sheehan, Tim H; Mott, Brendon M; Corby-Harris, Vanessa; Johnstone, Laurel; Sprissler, Ryan; Fitz, William

    2013-12-18

    Widely considered probiotic organisms, Bifidobacteria are common inhabitants of the alimentary tract of animals including insects. Bifidobacteria identified from the honey bee are found in larval guts and throughout the alimentary tract, but attain their greatest abundance in the adult hind gut. To further understand the role of Bifidobacteria in honey bees, we sequenced two strains of Bifidobacterium cultured from different alimentary tract environments and life stages. Reflecting an oxygen-rich niche, both strains possessed catalase, peroxidase, superoxide-dismutase and respiratory chain enzymes indicative of oxidative metabolism. The strains show markedly different carbohydrate processing capabilities, with one possessing auxiliary and key enzymes of the Entner-Doudoroff pathway. As a result of long term co-evolution, honey bee associated Bifidobacterium may harbor considerable strain diversity reflecting adaptation to a variety of different honey bee microenvironments and hive-mediated vertical transmission between generations.

  6. Molecular and phenotypic traits of in-vitro-selected mutants of Bifidobacterium resistant to rifaximin.

    PubMed

    Vitali, Beatrice; Turroni, Silvia; Serina, Stefania; Sosio, Margherita; Vannini, Lucia; Candela, Marco; Guerzoni, Maria Elisabetta; Brigidi, Patrizia

    2008-06-01

    Nucleotide mutations inside a core region of the rpoB gene, encoding the beta subunit of RNA polymerase, were found in rifaximin-resistant mutants of Bifidobacterium. Five different missense mutations of codons 513, 516, 522 and 529 were identified. Further aspects of rifaximin resistance were investigated, using Bifidobacterium infantis BI07 as a model strain. Partial resistance of RNA polymerase of a BI07 mutant at a rifaximin concentration >10 microg/mL was observed by cell-free transcription assay. Mass spectrometry detection of rifaximin in the cellular pellet of the BI07 resistant mutant, as well as changes in biosynthesis of saturated and cyclopropane fatty acids during growth, suggested a reduction in membrane permeability for the antibiotic moiety.

  7. Use of a probiotic Bifidobacterium in a dry food matrix, an in vivo study.

    PubMed

    Ouwehand, Arthur C; Kurvinen, Teija; Rissanen, Päivi

    2004-08-15

    Probiotics are commonly included in dairy products. These products require cold storage and transportation, which limits their use. Here, we describe the inclusion of the probiotic strain Bifidobacterium lactis Bb-12 in a dry food matrix, an oat-based cereal bar, and its detection in faeces after consumption of this product. One week after cessation of B. lactis Bb-12 feeding, it could be identified in the faeces of five of the nine subjects.

  8. The Bifidobacterium dentium Bd1 Genome Sequence Reflects Its Genetic Adaptation to the Human Oral Cavity

    PubMed Central

    Ventura, Marco; Turroni, Francesca; Zomer, Aldert; Foroni, Elena; Giubellini, Vanessa; Bottacini, Francesca; Canchaya, Carlos; Claesson, Marcus J.; He, Fei; Mantzourani, Maria; Mulas, Laura; Ferrarini, Alberto; Gao, Beile; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Oggioni, Marco; Gupta, Radhey S.; Zhang, Ziding; Beighton, David; Fitzgerald, Gerald F.; O'Toole, Paul W.; van Sinderen, Douwe

    2009-01-01

    Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria). However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from opportunistic pathogens. PMID

  9. Complete genome sequences of probiotic strains Bifidobacterium animalis subsp. lactis B420 and Bi-07.

    PubMed

    Stahl, Buffy; Barrangou, Rodolphe

    2012-08-01

    We present the complete genomes of Bifidobacterium animalis subsp. lactis B420 and Bi-07. Comparative genomic analysis with the type strain DSMZ10140 revealed 40 to 55 single nucleotide polymorphisms (SNPs) and an indel in a clustered regularly interspaced short palindromic repeat (CRISPR) locus. These genetic differences provide a molecular basis for strain typing within the two main phylogenetic groups of this monomorphic species.

  10. Complete Genome Sequences of Probiotic Strains Bifidobacterium animalis subsp. lactis B420 and Bi-07

    PubMed Central

    Stahl, Buffy

    2012-01-01

    We present the complete genomes of Bifidobacterium animalis subsp. lactis B420 and Bi-07. Comparative genomic analysis with the type strain DSMZ10140 revealed 40 to 55 single nucleotide polymorphisms (SNPs) and an indel in a clustered regularly interspaced short palindromic repeat (CRISPR) locus. These genetic differences provide a molecular basis for strain typing within the two main phylogenetic groups of this monomorphic species. PMID:22815448

  11. Monoculture parameters successfully predict coculture growth kinetics of Bacteroides thetaiotaomicron and two Bifidobacterium strains.

    PubMed

    Van Wey, A S; Cookson, A L; Roy, N C; McNabb, W C; Soboleva, T K; Shorten, P R

    2014-11-17

    Microorganisms rarely live in isolation but are most often found in a consortium. This provides the potential for cross-feeding and nutrient competition among the microbial species, which make it challenging to predict the growth kinetics in coculture. In this paper we developed a mathematical model to describe substrate consumption and subsequent microbial growth and metabolite production for bacteria grown in monoculture. The model characterized substrate utilization kinetics of 18 Bifidobacterium strains. Some bifidobacterial strains demonstrated preferential degradation of oligofructose in that sugars with low degree of polymerization (DP) (DP≤3 or 4) were metabolized before sugars of higher DP, or vice versa. Thus, we expanded the model to describe the preferential degradation of oligofructose. In addition, we adapted the model to describe the competition between human colonic bacteria Bacteroides thetaiotaomicron LMG 11262 and Bifidobacterium longum LMG 11047 or Bifidobacterium breve Yakult for inulin as well as cross-feeding of breakdown products from the extracellular hydrolysis of inulin by B. thetaiotaomicron LMG 11262. We found that the coculture growth kinetics could be predicted based on the respective monoculture growth kinetics. Using growth kinetics from monoculture experiments to predict coculture dynamics will reduce the number of in vitro experiments required to parameterize multi-culture models.

  12. Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model.

    PubMed

    Mäkeläinen, H; Forssten, S; Saarinen, M; Stowell, J; Rautonen, N; Ouwehand, A C

    2010-03-01

    A semi-continuous, anaerobic colon simulator, with four vessels mimicking the conditions of the human large intestine, was used to study the fermentation of xylo-oligosaccharides (XOS). Three XOS compounds and a xylan preparation were fermented for 48 hours by human colonic microbes. Fructo-oligosaccharides (FOS) were used as a prebiotic reference. As a result of the fermentation, the numbers of Bifidobacterium increased in all XOS and xylan simulations when compared to the growth observed in the baseline simulations, and increased levels of Bifidobacterium lactis were measured with the two XOS compounds that had larger distribution of the degree of polymerisation. Fermentation of XOS and xylan increased the microbial production of short chain fatty acids in the simulator vessels; especially the amounts of butyrate and acetate were increased. XOS was more efficient than FOS in increasing the numbers of B. lactis in the colonic model, whereas FOS increased the Bifidobacterium longum numbers more. The selective fermentation of XOS by B. lactis has been demonstrated in pure culture studies, and these results further indicate that the combination of B. lactis and XOS would form a successful, selective synbiotic combination.

  13. Immune modulating capability of two exopolysaccharide-producing Bifidobacterium strains in a Wistar rat model.

    PubMed

    Salazar, Nuria; López, Patricia; Garrido, Pablo; Moran, Javier; Cabello, Estefanía; Gueimonde, Miguel; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 10(9) cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF- β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models.

  14. Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model

    PubMed Central

    López, Patricia; Moran, Javier; Cabello, Estefanía; Suárez, Ana; González, Celestino; de los Reyes-Gavilán, Clara G.

    2014-01-01

    Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wistar rats fed with a standard diet. Three intervention groups were fed daily for 24 days with 10% skimmed milk, or with 109 cfu of the corresponding strain suspended in the same vehicle. A significant increase of the suppressor-regulatory TGF-β cytokine occurred with both strains in comparison with a control (no intervention) group of rats; the highest levels were reached in rats fed IPLA R1. This strain presented an immune protective profile, as it was able to reduce the production of the proinflammatory IL-6. Moreover, phosphorylated Akt kinase decreased in gastroctemius muscle of rats fed the strain IPLA R1, without affecting the glucose, insulin, and HOMA index in blood, or levels of Glut-4 located in the membrane of muscle and adipose tissue cells. Therefore, the strain B. animalis subsp. lactis IPLA R1 is a probiotic candidate to be tested in mild grade inflammation animal models. PMID:24971309

  15. Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota

    PubMed Central

    Shimizu, Hidenori

    2015-01-01

    ABSTRACT A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132T and B. longum JCM1217T) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required. PMID:26486646

  16. Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics

    PubMed Central

    Lugli, Gabriele Andrea; Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Ferrario, Chiara; Viappiani, Alice; Mancabelli, Leonardo; Mangifesta, Marta; Taminiau, Bernard; Delcenserie, Véronique; van Sinderen, Douwe

    2014-01-01

    The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation. PMID:25107967

  17. Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota.

    PubMed

    Shimizu, Hidenori; Benno, Yoshimi

    2015-11-01

    A large number of commensal bacteria inhabit the intestinal tract, and interbacterial communication among gut microbiota is thought to occur. In order to analyze symbiotic relationships between probiotic strains and the gut microbiota, a ring with a membrane filter fitted to the bottom was used for in vitro investigations. Test strains comprising probiotic nitto strains (Lactobacillus acidophilus NT and Bifidobacterium longum NT) and type strains (L. acidophilus JCM1132(T) and B. longum JCM1217(T) ) were obtained from diluted fecal samples using the membrane filter to simulate interbacterial communication. Bifidobacterium spp., Streptococcus pasteurianus, Collinsella aerofaciens, and Clostridium spp. were the most abundant gut bacteria detected before coculture with the test strains. Results of the coculture experiments indicated that the test strains significantly promote the growth of Ruminococcus gnavus, Ruminococcus torques, and Veillonella spp. and inhibit the growth of Sutterella wadsworthensis. Differences in the relative abundances of gut bacterial strains were furthermore observed after coculture of the fecal samples with each test strain. Bifidobacterium spp., which was detected as the dominant strain in the fecal samples, was found to be unaffected by coculture with the test strains. In the present study, interbacterial communication using bacterial metabolites between the test strains and the gut microbiota was demonstrated by the coculture technique. The detailed mechanisms and effects of the complex interbacterial communications that occur among the gut microbiota are, however, still unclear. Further investigation of these relationships by coculture of several fecal samples with probiotic strains is urgently required.

  18. A proteomic approach towards understanding the cross talk between Bacteroides fragilis and Bifidobacterium longum in coculture.

    PubMed

    Rios-Covián, David; Sánchez, Borja; Martínez, Noelia; Cuesta, Isabel; Hernández-Barranco, Ana M; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel

    2016-07-01

    A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.

  19. Oral delivery of Bifidobacterium longum expressing α-melanocyte-stimulating hormone to combat ulcerative colitis.

    PubMed

    Wei, Pijin; Yang, Yan; Ding, Qing; Li, Xiuying; Sun, Hanxiao; Liu, Zhaobing; Huang, Junli; Gong, Yahui

    2016-02-01

    α-Melanocyte-stimulating hormone (α-MSH) is a tridecapeptide derived from pro-opiomelanocortin that exhibits potent anti-inflammatory properties by regulating the production of inflammatory mediators. This peptide has been well established in several inflammatory models, including inflammatory bowel disease (IBD). However, its extremely short duration in vivo limits its clinical application. To address this limitation, Bifidobacterium was used here as a carrier to deliver α-MSH. We utilized α-MSH-engineered Bifidobacterium against IBD, which is closely linked to immune and intestinal microbiota dysfunction. First, we constructed a Bifidobacterium longum secreting α-MSH (B. longum-α-MSH). We then tested the recombinant α-MSH expression and determined its bioactivity in HT-29 cells. To assess its effectiveness, B. longum-α-MSH was used against an ulcerative colitis (UC) model in rats induced by dextran sulfate sodium. The data showed that α-MSH expression in B. longum-α-MSH was effective, and its biological activity was similar to the synthesized one. This UC model experiment indicated that B. longum-α-MSH successfully colonized the intestinal gut, expressed bioactive α-MSH and had a significant anti-inflammatory effect. The results demonstrate the feasibility of preventing IBD by using B. longum-α-MSH.

  20. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04.

    PubMed

    Ejby, Morten; Fredslund, Folmer; Vujicic-Zagar, Andreja; Svensson, Birte; Slotboom, Dirk Jan; Abou Hachem, Maher

    2013-12-01

    Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo-oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl-04. The binding protein BlAXBP, which is associated with an ATP-binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad specificity for arabinosyl-decorated and undecorated xylo-oligosaccharides, with preference for tri- and tetra-saccharides. Crystal structures of BlAXBP in complex with four different ligands revealed the basis for this versatility. Uniquely, the protein was able to recognize oligosaccharides in two opposite orientations, which facilitates the optimization of interactions with the various ligands. Broad substrate specificity was further enhanced by a spacious binding pocket accommodating decorations at different mainchain positions and conformational flexibility of a lid-like loop. Phylogenetic and genetic analyses show that BlAXBP is highly conserved within Bifidobacterium, but is lacking in other gut microbiota members. These data indicate niche adaptation within Bifidobacterium and highlight the metabolic syntrophy (cross-feeding) among the gut microbiota.

  1. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome

    PubMed Central

    Soverini, Matteo; Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L.; Quercia, Sara; Castagnetti, Andrea; Biagi, Elena; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe–host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies. PMID:27462302

  2. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome.

    PubMed

    Soverini, Matteo; Rampelli, Simone; Turroni, Silvia; Schnorr, Stephanie L; Quercia, Sara; Castagnetti, Andrea; Biagi, Elena; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.

  3. Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria

    PubMed Central

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M.; Alvarez-Buylla, Jorge R.; Ruas-Madiedo, Patricia; Gueimonde, Miguel

    2013-01-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics. PMID:24077708

  4. Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria.

    PubMed

    Rios-Covian, David; Arboleya, Silvia; Hernandez-Barranco, Ana M; Alvarez-Buylla, Jorge R; Ruas-Madiedo, Patricia; Gueimonde, Miguel; de los Reyes-Gavilan, Clara G

    2013-12-01

    Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.

  5. Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment

    PubMed Central

    2013-01-01

    Background Bifidobacterium represents one of the largest genus within the Actinobacteria, and includes at present 32 species. These species share a high sequence homology of 16S rDNA and several molecular techniques already applied to discriminate among them give ambiguous results. The slightly higher variability of the hsp60 gene sequences with respect to the 16S rRNA sequences offers better opportunities to design or develop molecular assays, allowing identification and differentiation of closely related species. hsp60 can be considered an excellent additional marker for inferring the taxonomy of the members of Bifidobacterium genus. Results This work illustrates a simple and cheap molecular tool for the identification of Bifidobacterium species. The hsp60 universal primers were used in a simple PCR procedure for the direct amplification of 590 bp of the hsp60 sequence. The in silico restriction analysis of bifidobacterial hsp60 partial sequences allowed the identification of a single endonuclease (HaeIII) able to provide different PCR-restriction fragment length polymorphism (RFLP) patterns in the Bifidobacterium spp. type strains evaluated. The electrophoretic analyses allowed to confirm the different RFLP patterns. Conclusions The developed PCR-RFLP technique resulted in efficient discrimination of the tested species and subspecies and allowed the construction of a dichotomous key in order to differentiate the most widely distributed Bifidobacterium species as well as the subspecies belonging to B. pseudolongum and B. animalis. PMID:23815602

  6. Utilization of resistant starch of native tapioca, corn and waxy corn starches and their retrograded preparations by Bifidobacterium.

    PubMed

    Wronkowska, Malgorzata; Soral-Smietana, Maria; Biedrzycka, Elzbieta

    2008-02-01

    Anaerobic fermentation of native starches from tapioca, normal and waxy corn, and their laboratory modified preparations, by selected Bifidobacterium strains (Bifidobacterium pseudolongum KSI9, Bifidobacterium breve KN14, and Bifidobacterium animalis KS20a1) was carried out under in vitro conditions. The growth and acidifying properties of bifidobacteria and utilization of resistant starches were determined in relation to glucose in the control sample. The preparations obtained from normal and waxy corn starches were the best substrates for growth of B. breve KN14, even compared with glucose. The growth of B. animalis KS20a1 was comparable, both on native and modified starches, whereas the starch preparations better stimulated the growth and acidifying activity of B. pseudolongum KSI9, as compared with native starches. The resistant starch fractions of all preparations were generally utilized to a higher degree (64-85%) compared with native starches (56-79%). The results of the study indicate that tapioca and corn starches, both native and modified, could be substrates beneficial for the enhancement of Bifidobacterium intestinal populations.

  7. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea) as a Model Study.

    PubMed

    Hunaefi, Dase; Akumo, Divine N; Riedel, Heidi; Smetanska, Iryna

    2012-09-26

    High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant.

  8. The Effect of Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM Fermentation on Antioxidant Properties of Selected in Vitro Sprout Culture of Orthosiphon aristatus (Java Tea) as a Model Study

    PubMed Central

    Hunaefi, Dase; Akumo, Divine N.; Riedel, Heidi; Smetanska, Iryna

    2012-01-01

    High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613

  9. Evaluation of culture media for counts of Bifidobacterium animalis subsp. lactis Bb 12in yoghurt after refrigerated storage

    PubMed Central

    Fachin, Luciano; Moryia, Juliana; Neves Gândara, Ana Lourdes; Viotto, Walkiria Hanada

    2008-01-01

    The agar RCPB pH5 has been considered a good alternative for counts of Bifidobacterium in yoghurt. However, during the refrigerated storage of yoghurt it is extremely difficult to count this microorganism due to the size of the colonies, which are so small they require the aid of a stereoscope to count them. Another agar, MRS-LP, has been also recommended for counts of Bifidobacterium in the presence of yoghurt bacteria. This study evaluated the supplementation of RCPB pH5 agar with dehydrated liver extract and the salts KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O, aiming at improving the differentiation of Bifidobacterium in yoghurt after refrigerated storage, and also evaluated the selective count of Bifidobacterium in yoghurt using the agar MRS-LP. The agar MRS-LP presented the same cell recovery as non-fortified RCPB pH5 agar, used as a standard medium, thus being considered a good option for counts of Bifidobacterium in yoghurt. The fortified RCPB pH5 also presented the same recovery as the standard RCPB pH5 medium, however, the addition of dehydrated liver extract to the RCPB pH5 agar considerably increased the size of the Bifidobacterium colonies after refrigerated storage, making differentiation of the colonies much easier and reliable when compared to the standard non-fortified RPCP pH5. The addition of the salts (KH2PO4, K2HPO4, FeSO47H2O, MnSO4H2O and MgSO47H2O) had no influence on the performance of the RCPB pH5 agar. PMID:24031230

  10. High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome.

    PubMed

    Monteagudo-Mera, A; Arthur, J C; Jobin, C; Keku, T; Bruno-Barcena, J M; Azcarate-Peril, M A

    2016-01-01

    Prebiotics are selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon the host health. The aim of this study was to evaluate the influence of a β(1-4)galacto-oligosaccharides (GOS) formulation consisting of 90% pure GOS (GOS90), on the composition and activity of the mouse gut microbiota. Germ-free mice were colonised with microbiota from four pathogen-free wt 129 mice donors (SPF), and stools were collected during a feeding trial in which GOS90 was delivered orally for 14 days. Pyrosequencing of 16S rDNA amplicons showed that Bifidobacterium and specific Lactobacillus, Bacteroides and Clostridiales were more prevalent in GOS90-fed mice after 14 days, although the prebiotic impact on Bifidobacterium varied among individual mice. Prebiotic feeding also resulted in decreased abundance of Bacteroidales, Helicobacter and Clostridium. High-throughput quantitative PCR showed an increased abundance of Bifidobacterium adolescentis, Bifidobacterium pseudocatenulatum, Bifidobacterium lactis and Bifidobacterium gallicum in the prebiotic-fed mice. Control female mice showed a higher diversity (phylogenetic diversity (PD) = 15.1 ± 3.4 in stools and PD = 13.0 ± 0.6 in intestinal contents) than control males (PD = 7.8 ± 1.6 in stool samples and PD = 9.5 ± 1.0 in intestinal contents). GOS90 did not modify inflammatory biomarkers (interleukin (IL)-6, IL-12, IL-1β, interferon gamma and tumour necrosis factor alpha). Decreased butyrate, acetate and lactate concentrations in stools of prebiotic fed mice suggested an increase in colonic absorption and reduced excretion. Overall, our results demonstrate that GOS90 is capable of modulating the intestinal microbiome resulting in expansion of the probiome (autochtonous commensal intestinal bacteria considered to have a beneficial influence on health).

  11. Bifidobacterium lactis in Treatment of Children with Acute Diarrhea. A Randomized Double Blind Controlled Trial

    PubMed Central

    El-Soud, Neveen Helmy Abou; Said, Reem Nabil; Mosallam, Dalia Sayed; Barakat, Nahla Abdel Moniem; Sabry, Mohamed Ahmed

    2015-01-01

    BACKGROUND: Probiotics are becoming increasingly popular treatment for children diarrhea. Although there are several probiotic strains potentially useful, researches were often limited to certain strains. AIM: To test Bifidobacterium lactis on morbidity of acute diarrhea in children less than 2 years. SUBJECTS AND METHODS: A randomized double-blind controlled clinical trial was conducted in 50 children (1 - 23 months) admitted with acute diarrhea to the Pediatric Hospital, Cairo University and were randomly assigned to receive in addition to usual treatment of diarrhea according to WHO guidelines; one of two treatments either milk formula non-supplemented (n = 25) or supplemented (n = 25) with Bifidobacterium lactis 14.5 × 106 CFU/100 ml daily for one week. Primary outcomes were frequency and duration of diarrhea and hospital stay. Secondary outcomes were duration of fever and vomiting episodes. Safety and tolerance were also recorded. RESULTS: On admission, patients’ characteristics of both groups (50 cases) were similar. For children who received the probiotics for one week; mean duration of diarrhoea was shorter than in controls (3.12 ± 0.92 vs. 4.10 ± 0.94 days) (P = 0.02), number of motions per day was less than in controls (3.96 ± 0.62 vs. 4.46 ± 0.85) (P = 0.04) and discharge from hospital <2 days was more frequent than in controls (72% vs. 44%) (P = 0.048). There was no effect on fever (P = 0.63) or vomiting (P = 0.54). CONCLUSION: Bifidobacterium lactis probiotics in supplemented milk formula decreased significantly frequency, duration of diarrhea, and hospital stay than usual treatment alone in children with acute diarrhea. Additional researches on other uncommon local probiotic species should be encouraged. PMID:27275258

  12. Protective effect of Bifidobacterium pseudocatenulatum CECT7765 against induced bacterial antigen translocation in experimental cirrhosis.

    PubMed

    Moratalla, Alba; Gómez-Hurtado, Isabel; Santacruz, Arlette; Moya, Ángela; Peiró, Gloria; Zapater, Pedro; González-Navajas, José M; Giménez, Paula; Such, José; Sanz, Yolanda; Francés, Rubén

    2014-07-01

    Intervention in the gut ecosystem is considered as a potential strategy to treat liver diseases and their complications. We have evaluated the effects of Bifidobacterium pseudocatenulatum CECT7765 on bacterial translocation and the liver status in experimental cirrhosis. Liver damage was induced in Balb/c mice by weight-controlled oral administration of carbon tetrachloride. Laparotomies were performed at week 12. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10(9) cfu/daily) or placebo intragastrically. All animals received Escherichia coli (10(7) cfu/single dose) intragastrically 24 hours before laparotomy. A group of naïve non-treated animals was included as control. Liver tissue specimens, mesenteric lymph nodes, intestinal content and blood were collected. Liver histology, profibrogenic genes expression, bacterial DNA translocation, serum endotoxaemia and liver cytokine levels were measured. Bifidobacterium pseudocatenulatum CECT7765 showed no significant effect on structural liver damage, as determined by histological evaluation, alpha-smooth muscle actin distribution, profibrogenic gene expression levels, total hydroxyproline levels and malon dialdehyde production compared with mice receiving placebo. Interestingly, bacterial DNA translocation and serum endotoxin levels were significantly decreased in mice receiving the Bifidobacterium strain compared with placebo. Gut barrier integrity markers were up-regulated in mice receiving B. pseudocatenulatum CECT7765 and quantitatively correlated with intestinal gene copy numbers of the bifidobacterial strain. Gene expression levels of several anti-inflammatory mediators were also increased in mice receiving B. pseudocatenulatum CECT7765 compared with placebo. Oral administration of B. pseudocatenulatum CECT7765 is associated with improved gut barrier integrity and shows a beneficial effect against induced bacterial antigen translocation in the CCl4 -model of cirrhosis. © 2013 John

  13. Bifidobacterium pseudocatenulatum CECT 7765 supplementation restores altered vascular function in an experimental model of obese mice

    PubMed Central

    Mauricio, María D.; Serna, Eva; Fernández-Murga, María Leonor; Portero, Jesica; Aldasoro, Martín; Valles, Soraya L.; Sanz, Yolanda; Vila, José M.

    2017-01-01

    Aims. Bifidobacterium pseudocatenulatum CECT 7765 improves metabolic and immunological altered functions in high fat fed mice, however little is known about the effects of potential probiotics on vascular reactivity. The aim of the present study was to investigate the effects of a potential probiotic strain, Bifidobacterium pseudocatenulatum CECT 7765, on vascular response in obese mice. Methods. Aorta samples were obtained from mice, which were divided into three groups: a control group, receiving a standard diet; an obese group, receiving a high-fat diet; and an obese group receiving high-fat diet and a daily dose of B. pseudocatenulatum CECT 7765 by oral gavage. Aortic rings were suspended in organ baths for isometric recording of tension. mRNA expression of eNOS was evaluated by real-time polymerase chain reaction. Results. Contractions induced by KCl, noradrenaline and thromboxane analogue were 33%, 30% and 45% lower respectively in aortic rings from obese mice. Bifidobacteria administration reversed this effect. eNOS inhibition increased the response to noradrenaline in the three groups with a significant lower magnitude in aortic rings from obese mice receiving bifidobacteria supplement. Acetylcholine caused a greater vasodilation in aorta from obese group (46±3% for control and 69±4% for obese group; p<0.05) and bifidobacteria reversed it (57±5%). Response to sodium nitroprusside was displaced 2.9 times to the left in a parallel manner in obese group. Relaxation to sodium nitroprusside remained unchanged in the bifidobacteria fed group. There was about five-fold decreased mRNA expression of eNOS in aortic segments from the group receiving bifidobacteria. Conclusion. Bifidobacterium pseudocatenulatum CECT 7765 restores the obesity-induced altered vascular function mainly by reducing nitric oxide release. PMID:28539820

  14. Bifidobacterium animalis Causes Extensive Duodenitis and Mild Colonic Inflammation in Monoassociated Interleukin-10 Deficient Mice

    PubMed Central

    Moran, James P.; Walter, Jens; Tannock, Gerald W.; Tonkonogy, Susan L.; Sartor, R. Balfour

    2009-01-01

    Background We recently showed that Bifidobacterium animalis is more prevalent within the colons of IL-10 deficient (−/−) mice than in wild type (WT) animals colonized with the same specific pathogen free (SPF) fecal contents. Here we tested the ability of this organism to cause T cell-mediated intestinal inflammation by introducing it into germ-free (GF) IL-10−/− mice. Methods GF IL-10−/− or WT mice were monoassociated with Bifidobacterium animalis subsp. animalis ATCC 25527T or with Bifidobacterium infantis ATCC 15697T. Inflammation was measured by blinded histologic scores of the duodenum, cecum and colon and by spontaneous secretion of IL-12/IL-23 p40 from colonic explants. Bacterial antigen-specific CD4+ mesenteric lymph node (MLN) T cell recall responses were measured in response to antigen presenting cells (APC) pulsed with bacterial lysates. Results B. animalis caused marked duodenal inflammation and mild colitis in monoassociated IL-10−/− mice, whereas the intestinal tracts of WT animals remained free of inflammation. B. infantis colonization resulted in mild inflammation in the duodena of IL-10−/− mice. CD4+ MLN T cells from B. animalis monoassociated IL-10−/− mice secreted high levels of IFN-γ and IL-17 in response to B. animalis lysate. B. animalis equally colonized the different intestinal regions of WT and IL-10−/− mice. Conclusions B. animalis, a traditional probiotic species that is expanded in experimental colitis in this model, induces marked duodenal and mild colonic inflammation and TH1/TH17 immune responses when introduced alone into GF IL-10−/− mice. This suggests a potential pathogenic role for this commensal bacterial species in a susceptible host. PMID:19235917

  15. The mixture of bifidobacterium associated with fructo-oligosaccharides reduces the damage of the ocular surface.

    PubMed

    Chisari, G; Chisari, E M; Francaviglia, A; Chisari, C G

    2017-01-01

    Despite its high prevalence Dry Eye Syndrome (DES) in frequently under-recognized owing to its negative influence on patients visual function. This clinical trial was a pilot study to evaluate the effects of supplementation with mixture (Bifidobacterium lactis and Bifidobacterium bifido) on the tear film. Following the run-in period subjects were randomized in two groups: group A (N°20 subjects) and group B (N°20 subjects). Group A (control) treated only with substitute tear and group B treated with substitute tear + mixture (symbiotic). The data obtained in the two study groups A and B were, respectively the following: Schirmer 9.1±0.2 vs 12.7±0.4 (p< 0.001); Schirmer II 3.5±0.1 VS 4.7±0.2 (p<0.001); BUT 3.9±0.3 vs 6.3±0.2 (p<0.001). Culture test showed initial bacterial growth in group "A" (placebo) 18 out of 40 samples tested, corresponding to 45.0% and "B" after treatment ((symbiotic) was found positive culture whit growth of bacteria in 12 tests equal to 30.0%. The total numbers of isolations of aerobic and anaerobic bacteria found group A and B after treatment. A reduction of 15 to 11 strains of aerobic and anaerobic isolates from 9 to 5 has been found. The present study shows that the administration of bifidobacterium may represent a success full treatment in ameliorating dry eye syndrome (DES). The effect of imbalanced microbiota are not restricted by gastrointestinal abnormalities but could have systemic impact on immunity. Commensal bacteria or probiotics interact with the endogenous enteric microbiota and gut cells therein confereing health benefit to the host.

  16. The genome of Bifidobacterium pseudocatenulatum IPLA 36007, a human intestinal strain with isoflavone-activation activity

    PubMed Central

    2014-01-01

    Background Bifidobacterium species, including Bifidobacterium pseudocatenulatum, are among the dominant microbial populations of the human gastrointestinal tract. They are also major components of many commercial probiotic products. Resident and transient bifidobacteria are thought to have several beneficial health effects. However, our knowledge of how these bacteria interact and communicate with host cells remains poor. This knowledge is essential for scientific support of their purported health benefits and their rational inclusion in functional foods. Results This work describes the draft genome sequence of Bifidobacterium pseudocatenulatum IPLA 36007, a strain isolated as dominant from the feces of a healthy human. Besides several properties of probiosis, IPLA 36007 exhibited the capability of releasing aglycones from soy isoflavone glycosides. The genome contains 1,851 predicted genes, including 54 genes for tRNAs and fie copies of unique 16S, 23S and 5S rRNA genes. As key attributes of the IPLA 36007 genome we can mention the presence of a lysogenic phage, a cluster encoding type IV fimbriae, and a locus encoding a clustered, regularly interspaced, short, palindromic repeat (CRISPR)-Cas system. Four open reading frames (orfs) encoding β-glucosidases belonging to the glycosyl hydrolase family 3, which may act on isoflavone glycosides, were encountered. Additionally, one gene was found to code for a glycosyl hydrolase of family 1 that might also have β-glucosidase activity. Conclusion The availability of the B. pseudocatenulatum IPLA 36007 genome should allow the enzyme system involved in the release of soy isoflavone aglycones from isoflavone glycosides, and the molecular mechanisms underlying the strain’s probiotic properties, to be more easily understood. PMID:25097668

  17. Prebiotic Effects of Agave salmiana Fructans in Lactobacillus acidophilus and Bifidobacterium lactis Cultures.

    PubMed

    Castro-Zavala, Adriana; Juárez-Flores, Bertha I; Pinos-Rodríguez, Juan M; Delgado-Portales, Rosa E; Aguirre-Rivera, Juan R; Alcocer-Gouyonnet, Francisco

    2015-11-01

    Agave salmiana is a fructan rich species that is widely distributed in Mexico. The aim of this investigation was to extract the fructans of A. salmiana and evaluate their prebiotic effect in 48 hours in vitro cultures of Bifidobacterium lactis and Lactobacillus acidophilus and to compare this effect with other available fructan sources. A significant difference in pH, optical density and biomass was found in the cultures depending on the source of fructans and the type of bacteria. It was possible to determine a dose-response effect of the A. salmiana fructans and the growth of the studied strains.

  18. Relevance of Bifidobacterium animalis subsp. lactis plasminogen binding activity in the human gastrointestinal microenvironment.

    PubMed

    Candela, Marco; Turroni, Silvia; Centanni, Manuela; Fiori, Jessica; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2011-10-01

    Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract.

  19. Relevance of Bifidobacterium animalis subsp. lactis Plasminogen Binding Activity in the Human Gastrointestinal Microenvironment ▿

    PubMed Central

    Candela, Marco; Turroni, Silvia; Centanni, Manuela; Fiori, Jessica; Bergmann, Simone; Hammerschmidt, Sven; Brigidi, Patrizia

    2011-01-01

    Human plasmin(ogen) is regarded as a component of the molecular cross talk between the probiotic species Bifidobacterium animalis subsp. lactis and the human host. However, up to now, only in vitro studies have been reported. Here, we demonstrate that the probiotic strain B. animalis subsp. lactis BI07 is capable of recruiting plasmin(ogen) present at physiological concentrations in crude extracts from human feces. Our results provide evidence that supports the significance of the B. lactis-plasmin(ogen) interaction in the human gastrointestinal tract. PMID:21821753

  20. Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum

    PubMed Central

    von Ah, Ueli; Mozzetti, Valeria; Lacroix, Christophe; Kheadr, Ehab E; Fliss, Ismaïl; Meile, Leo

    2007-01-01

    Background Bifidobacteria are found at varying prevalence in human microbiota and seem to play an important role in the human gastrointestinal tract (GIT). Bifidobacteria are highly adapted to the human GIT which is reflected in the genome sequence of a Bifidobacterim longum isolate. The competitiveness against other bacteria is not fully understood yet but may be related to the production of antimicrobial compounds such as bacteriocins. In a previous study, 34 Bifidobacterium isolates have been isolated from baby faeces among which six showed proteinaceous antilisterial activity against Listeria monocytogenes. In this study, one of these isolates, RBL67, was further identified and characterized. Results Bifidobacterium isolate RBL67 was classified and characterized using a polyphasic approach. RBL67 was classified as Bifidobacterium thermophilum based on phenotypic and DNA-DNA hybridization characteristics, although 16S rDNA analyses and partial groEL sequences showed higher homology with B. thermacidophilum subsp. porcinum and B. thermacidophilum subsp. thermacidophilum, respectively. RBL67 was moderately oxygen-tolerant and was able to grow at pH 4 and at a temperature of 47°C. Conclusion In order to assign RBL67 to a species, a polyphasic approach was used. This resulted in the classification of RBL67 as a Bifidobacterium thermophilum strain. To our knowledge, this is the first report about B. thermophilum isolated from baby faeces since the B. thermophilum strains were related to ruminants and swine faeces before. B. thermophilum was previously only isolated from animal sources and was therefore suggested to be used as differential species between animal and human contamination. Our findings may disapprove this suggestion and further studies are now conducted to determine whether B. thermophilum is distributed broader in human faeces. Furthermore, the postulated differentiation between human and animal strains by growth above 45°C is no longer valid since B

  1. Structures of cell-wall phosphate-containing glycopolymers of Bifidobacterium longum BIM B-476-D.

    PubMed

    Valueva, Olga A; Shashkov, Alexander S; Zdorovenko, Evelina L; Chizhov, Alexander O; Kiseleva, Elena; Novik, Galina; Knirel, Yuriy A

    2013-05-24

    Glycopolymers with oligosaccharyl phosphate repeats of two types and ribitol and glycerol teichoic acids were isolated from cell wall of Bifidobacterium longum BIM B-476-D by stepwise extraction with 10% CCl3CO2H. The following structures of the glycopolymers were established by sugar analysis, selective cleavage with aq 2% HOAc, dephosphorylation with 48% HF, 2D NMR spectroscopy, and high-resolution ESI MS: [structure: see text]. The ribitol teichoic acid also contains minor D-alanine, whose position was not determined. Copyright © 2013. Published by Elsevier Ltd.

  2. Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink.

    PubMed

    Guglielmetti, Simone; Fracassetti, Daniela; Taverniti, Valentina; Del Bo', Cristian; Vendrame, Stefano; Klimis-Zacas, Dorothy; Arioli, Stefania; Riso, Patrizia; Porrini, Marisa

    2013-08-28

    Bifidobacteria are gaining increasing interest as health-promoting bacteria. Nonetheless, the genus comprises several species, which can exert different effects on human host. Previous studies showed that wild blueberry drink consumption could selectively increase intestinal bifidobacteria, suggesting an important role for the polyphenols and fiber present in wild blueberries. This study evaluated the modulation of the most common and abundant bifidobacterial taxonomic groups inhabiting the human gut in the same fecal samples. The analyses carried out showed that B. adolescentis, B. breve, B. catenulatum/pseudocatelulatum, and B. longum subsp. longum were always present in the group of subjects enrolled, whereas B. bifidum and B. longum subsp. infantis were not. Furthermore, it was found that the most predominant bifidobacterial species were B. longum subsp. longum and B. adolescentis. The results obtained revealed a high interindividual variability; however, a significant increase of B. longum subsp. infantis cell concentration was observed in the feces of volunteers after the wild blueberry drink treatment. This bifidobacterial group was shown to possess immunomodulatory abilities and to relieve symptoms and promote the regression of several gastrointestinal disorders. Thus, an increased cell concentration of B. longum subsp. infantis in the human gut could be considered of potential health benefit. In conclusion, wild blueberry consumption resulted in a specific bifidogenic effect that could positively affect certain populations of bifidobacteria with demonstrated health-promoting properties.

  3. Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950

    PubMed Central

    Natividad, Jane M. M.; Hayes, Christina L.; Motta, Jean-Paul; Jury, Jennifer; Galipeau, Heather J.; Philip, Vivek; Garcia-Rodenas, Clara L.; Kiyama, Hiroshi; Bercik, Premysl

    2013-01-01

    The intestinal microbiota is a key determinant of gut homeostasis, which is achieved, in part, through regulation of antimicrobial peptide secretion. The aim of this study was to determine the efficiency by which members of the intestinal microbiota induce the antimicrobial peptide REGIII and to elucidate the underlying pathways. We showed that germfree mice have low levels of REGIII-γ in their ileum and colon compared to mice with different intestinal microbiota backgrounds. Colonization with a microbiota of low diversity (altered Schaedler flora) did not induce the expression of REGIII-γ as effectively as a complex community (specific pathogen free). Monocolonization with the probiotic Bifidobacterium breve, but not with the nonprobiotic commensal Escherichia coli JM83, upregulated REGIII-γ expression. Induction of REGIII-γ by B. breve was abrogated in mice lacking MyD88 and Ticam1 signaling. Both live and heat-inactivated B. breve but not spent culture medium from B. breve induced the expression of REGIII-α, the human ortholog and homolog of REGIII-γ, in human colonic epithelial cells (Caco-2). Taken together, the results suggest that REGIII-γ expression in the intestine correlates with the richness of microbiota composition. Also, specific bacteria such as Bifidobacterium breve NCC2950 effectively induce REGIII production in the intestine via the MyD88-Ticam1 pathway. Treatment with this probiotic may enhance the mucosal barrier and protect the host from infection and inflammation. PMID:24096422

  4. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950.

    PubMed

    Natividad, Jane M M; Hayes, Christina L; Motta, Jean-Paul; Jury, Jennifer; Galipeau, Heather J; Philip, Vivek; Garcia-Rodenas, Clara L; Kiyama, Hiroshi; Bercik, Premysl; Verdu, Elena F

    2013-12-01

    The intestinal microbiota is a key determinant of gut homeostasis, which is achieved, in part, through regulation of antimicrobial peptide secretion. The aim of this study was to determine the efficiency by which members of the intestinal microbiota induce the antimicrobial peptide REGIII and to elucidate the underlying pathways. We showed that germfree mice have low levels of REGIII-γ in their ileum and colon compared to mice with different intestinal microbiota backgrounds. Colonization with a microbiota of low diversity (altered Schaedler flora) did not induce the expression of REGIII-γ as effectively as a complex community (specific pathogen free). Monocolonization with the probiotic Bifidobacterium breve, but not with the nonprobiotic commensal Escherichia coli JM83, upregulated REGIII-γ expression. Induction of REGIII-γ by B. breve was abrogated in mice lacking MyD88 and Ticam1 signaling. Both live and heat-inactivated B. breve but not spent culture medium from B. breve induced the expression of REGIII-α, the human ortholog and homolog of REGIII-γ, in human colonic epithelial cells (Caco-2). Taken together, the results suggest that REGIII-γ expression in the intestine correlates with the richness of microbiota composition. Also, specific bacteria such as Bifidobacterium breve NCC2950 effectively induce REGIII production in the intestine via the MyD88-Ticam1 pathway. Treatment with this probiotic may enhance the mucosal barrier and protect the host from infection and inflammation.

  5. Impact of maternal bifidobacteria and the mode of delivery on Bifidobacterium microbiota in infants.

    PubMed

    Sirilun, S; Takahashi, H; Boonyaritichaikij, S; Chaiyasut, C; Lertruangpanya, P; Koga, Y; Mikami, K

    2015-01-01

    The aim of this study is to examine the influence of maternal intestinal and vaginal bifidobacteria on the colonisation of bifidobacteria in the gut of infants. Faecal samples from 120 healthy pregnant mothers within 1 month of delivery and from their infants at 1 month of age and 98 vaginal swabs from the mothers at the time of delivery were collected at a maternity hospital in Chiang Mai, Thailand. The faecal and vaginal samples were assayed by real-time PCR assays to detect Bifidobacterium species and to estimate the bifidobacterial copy numbers. After adjusting for the numbers of each Bifidobacterium species, delivery mode, and antibiotic use in infants by the age of 1 month, total counts of bifidobacteria in the mothers' faeces were associated with increased copy numbers of bifidobacteria in the faeces of breastfed infants. A caesarean section was also significantly associated with a decrease in the copy numbers of bifidobacteria in the faeces of infants. No significant correlation was found between the bifidobacterial copies of the vaginal swabs and those of the infants' faeces. The intestinal bifidobacterial status of exclusively breastfed infants was significantly positive affected by vaginal delivery and high bifidobacterial copy numbers in their mothers' gut.

  6. Novel Probiotic Bifidobacterium longum subsp. infantis CECT 7210 Strain Active against Rotavirus Infections▿

    PubMed Central

    Moreno Muñoz, José Antonio; Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Ramón, Daniel; Genovés, Salvador; Montava, Rebeca; Ribes, Juan Manuel; Buesa, Javier; Fàbrega, Joan; Rivero, Montserrat

    2011-01-01

    Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. It is well known that breast-feeding and vaccination afford infants protection. Since breast-feeding has drastically decreased in developed countries, efforts have been focused on the potential use of probiotics as preventive agents. In this study, a novel Bifidobacterium longum subsp. infantis strain was isolated from infant feces and selected, based on its capacity to inhibit in vitro rotavirus Wa replication (up to 36.05% infectious foci reduction) and also to protect cells from virus infection (up to 48.50% infectious foci reduction) in both MA-104 and HT-29 cell lines. Furthermore, studies using a BALB/c mouse model have proved that this strain provides preliminary in vivo protection against rotavirus infection. The strain has been deposited in the Spanish Type Culture Collection under the accession number CECT 7210. This novel strain has the main properties required of a probiotic, such as resistance to gastrointestinal juices, biliary salts, NaCl, and low pH, as well as adhesion to intestinal mucus and sensitivity to antibiotics. The food safety status has been confirmed by the absence of undesirable metabolite production and in acute ingestion studies of mice. Overall, these results demonstrate that Bifidobacterium longum subsp. infantis CECT 7210 can be considered a probiotic able to inhibit rotavirus infection. PMID:22003027

  7. Oral administration of live Bifidobacterium substrains isolated from centenarians enhances intestinal function in mice.

    PubMed

    Yang, Haiying; Liu, Aiping; Zhang, Ming; Ibrahim, Salam A; Pang, Zhihua; Leng, Xiaojing; Ren, Fazheng

    2009-10-01

    We studied the effects of two bifidobacteria strains isolated from healthy centenarians on intestinal function in mice. Bifidobacterium adolescentis BBMN23 and Bifidobacterium longum BBMN68 were orally administrated to specific pathogen-free BALB/c mice at different doses (2 x 10(11), 2 x 10(9), or 2 x 10(7) CFU/kg body weight) each day for 4 weeks. Villus height, crypt depth, villus width, and villus/crypt ratio (V/C) were determined. The content of duodenal secreted immunoglobulin A (sIgA) was also evaluated. There were clear increases in height and width of duodenal villi in both treated groups. Crypt depths were deeper in animals treated with BBMN23 than in controls, while depths were reduced in animals receiving BBMN68. The V/C ratio was increased after feeding with BBMN68, while BBMN23 had no significant effect. Both strains improved the sIgA content of the duodenum. These results suggest that BBMN23 and BBMN68 may improve intestinal digestion and ability and enhance immune barrier function in the intestine.

  8. Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71.

    PubMed

    Yu, Zhijian; Huang, Zhen; Sao, Chongwen; Huang, Yuanjian; Zhang, Fan; Ma, Guihong; Chen, Zhong; Zeng, Zhongming; Qiwen, Deng; Zeng, Weiseng

    2013-05-01

    Bifidobacterium longum is an attractive candidate for delivering biologically active proteins by the mucosal route due to its non-pathogenic and colonizing properties. Enterovirus 71 (EV71) has aroused widespread attention recently due to several epidemics, and great attention should be paid to the fact that there are currently no effective antiviral drugs or vaccines against EV71 infection. In this report, we described a recombinant B. longum that could be used to develop an oral vaccine against EV71 infection. A VP1 expression vector (pBBADs-VP1) was constructed by amplifying the EV71 VP1 gene and inserting it into the E. coli-Bifidobacterium shuttle expression vector pBBAD/Xs. Then, the expression of VP1 protein in pBBADs-VP1-transformed bacteria was demonstrated by western blot. In vivo studies indicated that oral immunization of BALB/c mice with pBBADs-VP1-transformed bacteria induced potent immune responses against EV71 infection, including virus-neutralising titers, anti-EV71-VP1 antibody and the induction of Th1 immune responses in the spleen and Peyer's patches. Importantly, immunization of mother mice with this recombinant VP1-expressing B. longum conferred protection to neonatal mice. These results demonstrate that the novel oral vaccine utilizing B. longum expressing the VP1 protein might successfully elicit a specific immune response against EV71 infection.

  9. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    PubMed Central

    Grill, J.; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH. PMID:16535071

  10. Construction, characterization and exemplificative application of bioluminescent Bifidobacterium longum biovar longum.

    PubMed

    Guglielmetti, Simone; Ciranna, Alessandro; Mora, Diego; Parini, Carlo; Karp, Matti

    2008-06-10

    The aim of this work was to construct a bifidobacterial biosensor that could be used to analyze the metabolic state of cells. We transformed by electroporation the human intestinal bacterium Bifidobacterium longum biovar longum with a vector (pGBL8b) containing the insect luciferase gene from a click beetle (Pyrophorus plagiophthalamus) and studied the basic parameters affecting light production in the bioluminescent phenotype. We detected a minimum of 4000 cells, which indicates that the insect luciferase expression in Bifidobacterium longum is extremely good, and a measurement requires only a few minutes of incubation in ambient oxygen conditions. A pH of 7.0 was optimal for incorporating the substrate d-luciferin, and the substrate saturation effect occurred at 125 microM. We employed bioluminescent B. longum for a quick test of the efficacy of different carbohydrates to preserve cell physiology under acidic conditions. The prebiotic compounds Actilight and lactulose were the most active in preventing loss of intracellular ATP during incubation at pH 3. Glucose and inulin were less active, though still effective. In sum, our results show that bioluminescent B. longum, transformed with the pGBL8b plasmid, is a valuable tool for rapidly studying the physiological state of anaerobic bacterial cells under different environmental conditions.

  11. Molecular Clues To Understand the Aerotolerance Phenotype of Bifidobacterium animalis subsp. lactis

    PubMed Central

    Ruiz, Lorena; Gueimonde, Miguel; Ruas-Madiedo, Patricia; Ribbera, Angela; de los Reyes-Gavilán, Clara G.; Ventura, Marco; Sánchez, Borja

    2012-01-01

    Oxygen is one of the abiotic factors negatively affecting the survival of Bifidobacterium strains used as probiotics, mainly due to the induction of lethal oxidative damage. Aerobic conditions are present during the process of manufacture and storage of functional foods, and aerotolerance is a desired trait for bifidobacteria intended for use in industry. In the present study, the molecular response of Bifidobacterium animalis subsp. lactis IPLA4549 to aerobic conditions is presented. Molecular targets affected by oxygen were studied using two-dimensional electrophoresis (2DE) and quantitative reverse transcriptase (qRT) PCR. Globally, oxygen stress induced a shift in the glycolytic pathway toward the production of acetic acid with a concomitant increase in ATP formation. Several changes in the expression of genes coding for enzymes involved in redox reactions were detected, although the redox ratio remained unaltered. Interestingly, cells grown under aerobic conditions were characterized by higher activity of coproporphyrinogen III oxidase, which can directly detoxify molecular oxygen, and by higher NADH oxidase specific activity, which can oxidize NADH using hydrogen peroxide. In turn, this is in agreement with the glycolytic shift toward acetate production, in that more NADH molecules may be available due to the lower level of lactic acid formation. These findings further our ability to elucidate the mechanisms by which B. animalis copes with an oxygen-containing atmosphere. PMID:22101052

  12. In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms.

    PubMed

    Van der Meulen, Roel; Makras, Lefteris; Verbrugghe, Kristof; Adriany, Tom; De Vuyst, Luc

    2006-02-01

    The growth of pure cultures of Bacteroides thetaiotaomicron LMG 11262 and Bacteroides fragilis LMG 10263 on fructose and oligofructose was examined and compared to that of Bifidobacterium longum BB536 through in vitro laboratory fermentations. Gas chromatography (GC) analysis was used to determine the different fractions of oligofructose and their degradation during the fermentation process. Both B. thetaiotaomicron LMG 11262 and B. fragilis LMG 10263 were able to grow on oligofructose as fast as on fructose, succinic acid being the major metabolite produced by both strains. B. longum BB536 grew slower on oligofructose than on fructose. Acetic acid and lactic acid were the main metabolites produced when fructose was used as the sole energy source. Increased amounts of formic acid and ethanol were produced when oligofructose was used as an energy source at the cost of lactic acid. Detailed kinetic analysis revealed a preferential metabolism of the short oligofructose fractions (e.g., F2 and F3) for B. longum BB536. After depletion of the short fractions, the larger oligofructose fractions (e.g., F4, GF4, F5, GF5, and F6) were metabolized, too. Both Bacteroides strains did not display such a preferential metabolism and degraded all oligofructose fractions simultaneously, transiently increasing the fructose concentration in the medium. This suggests a different mechanism for oligofructose breakdown between the strain of Bifidobacterium and both strains of Bacteroides, which helps to explain the bifidogenic nature of inulin-type fructans.

  13. Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections.

    PubMed

    Muñoz, José Antonio Moreno; Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Ramón, Daniel; Genovés, Salvador; Montava, Rebeca; Ribes, Juan Manuel; Buesa, Javier; Fàbrega, Joan; Rivero, Montserrat

    2011-12-01

    Rotavirus is the leading cause of severe acute gastroenteritis among children worldwide. It is well known that breast-feeding and vaccination afford infants protection. Since breast-feeding has drastically decreased in developed countries, efforts have been focused on the potential use of probiotics as preventive agents. In this study, a novel Bifidobacterium longum subsp. infantis strain was isolated from infant feces and selected, based on its capacity to inhibit in vitro rotavirus Wa replication (up to 36.05% infectious foci reduction) and also to protect cells from virus infection (up to 48.50% infectious foci reduction) in both MA-104 and HT-29 cell lines. Furthermore, studies using a BALB/c mouse model have proved that this strain provides preliminary in vivo protection against rotavirus infection. The strain has been deposited in the Spanish Type Culture Collection under the accession number CECT 7210. This novel strain has the main properties required of a probiotic, such as resistance to gastrointestinal juices, biliary salts, NaCl, and low pH, as well as adhesion to intestinal mucus and sensitivity to antibiotics. The food safety status has been confirmed by the absence of undesirable metabolite production and in acute ingestion studies of mice. Overall, these results demonstrate that Bifidobacterium longum subsp. infantis CECT 7210 can be considered a probiotic able to inhibit rotavirus infection.

  14. In vitro evaluation of the probiotic properties of human intestinal Bifidobacterium species and selection of new probiotic candidates.

    PubMed

    Delgado, S; O'Sullivan, E; Fitzgerald, G; Mayo, B

    2008-04-01

    The aim of this work was to identify and select new probiotic strains among majority intestinal bifidobacterial species from healthy Spaniards. One hundred and eighty isolates belonging to seven Bifidobacterium species were subjected to a subtractive system of in vitro analysis addressing beneficial and undesirable traits. Approx. 45% of the isolates were able to grow in 2% bovine bile, and about 20% of these grew at pH 3.5. Undesirable enzymatic activities, such as alpha-chymotrypsin, beta-glucuronidase and N-acetyl-beta-glucosaminidase were not detected. Atypical antibiotic resistances were not observed, except for tetracycline resistance in a single strain. Intestinal pathogens were inhibited to some extent by all analysed strains. All selected strains adhered to human epithelial cells in a strain-dependent manner, and none was able to degrade pig mucin. Based on these in vitro analyses, strains of Bifidobacterium catenulatum, Bifidobacterium longum and Bifidobacterium pseudocatenulatum are here proposed as new probiotic candidates. Although in vivo analyses are still needed, these strains belonging to unusual species in the portfolio of probiotic suppliers are thought to be more appropriated than those currently in use, as they show desirable properties and are preponderant among human intestinal populations.

  15. In vitro study of the prebiotic xylooligosaccharide (XOS) on the growth of Bifidobacterium spp and Lactobacillus spp.

    PubMed

    Li, Zhaoping; Summanen, Paula H; Komoriya, Tomoe; Finegold, Sydney M

    2015-01-01

    We recently demonstrated that XOS increased the counts of Bifidobacterium in vivo without increasing Lactobacillus in healthy adults. In the current study, we evaluated the effect of XOS on the growth of 35 Bifidobacterium and 29 Lactobacillus strains in in vitro conditions. Bacteria were identified by 16S rRNA sequence analysis. The growth stimulation was determined by agar dilution technique on plates containing two-fold serial dilutions of XOS (100-0.1 mg/ml). The growth of 86% of Bifidobacterium strains was stimulated at 1.56 mg/ml XOS and 100% at 6.25 mg/ml XOS. The growth of 38% of Lactobacillus strains was stimulated at 1.56 mg/ml XOS and 62% at 6.25 mg/ml XOS; 31% of Lactobacillus were not stimulated by XOS. Our results further suggest that XOS may be beneficial in stimulating intestinal Bifidobacterium without having much effect on Lactobacillus. The potential role for XOS in managing obesity should be investigated further.

  16. Genome Sequence of the Bacterium Bifidobacterium longum Strain CMCC P0001, a Probiotic Strain Used for Treating Gastrointestinal Disease

    PubMed Central

    Yu, Hongjing; Liu, Lu; Chang, Zhen; Wang, Shasha; Wen, Bin; Yin, Peijun; Liu, Datao; Chen, Bei

    2013-01-01

    Bifidobacterium longum subsp. longum CMCC P0001, a standard probiotic strain in China, has been widely used in clinical medicine for more than 20 years. Here we report the genome features of B. longum strain CMCC P0001. PMID:24029762

  17. Genome Sequence of the Bacterium Bifidobacterium longum Strain CMCC P0001, a Probiotic Strain Used for Treating Gastrointestinal Disease.

    PubMed

    Yu, Hongjing; Liu, Lu; Chang, Zhen; Wang, Shasha; Wen, Bin; Yin, Peijun; Liu, Datao; Chen, Bei; Zhang, Jundong

    2013-09-12

    Bifidobacterium longum subsp. longum CMCC P0001, a standard probiotic strain in China, has been widely used in clinical medicine for more than 20 years. Here we report the genome features of B. longum strain CMCC P0001.

  18. Complete Genome Sequence of Bifidobacterium longum subsp. infantis Strain CECT 7210, a Probiotic Strain Active against Rotavirus Infections

    PubMed Central

    Rivero, Montserrat; Codoñer, Francisco M.; Martinez-Blanch, Juan F.; Ramón, Daniel; Genovés, Salvador

    2015-01-01

    Bifidobacterium longum subsp. infantis CECT 7210 is a probiotic strain able to inhibit rotavirus in vitro and protect against viral infection in both cell cultures and mice. Here, we report its complete genome sequence, as deciphered by PacBio single-molecule real-time (SMRT) technology. An analysis of the sequence may provide insights into its functional activity. PMID:25838473

  19. Ability of Bifidobacterium breve to grow on different types of milk: exploring the metabolism of milk through genome analysis.

    PubMed

    Turroni, Francesca; Foroni, Elena; Serafini, Fausta; Viappiani, Alice; Montanini, Barbara; Bottacini, Francesca; Ferrarini, Alberto; Bacchini, Pier Luigi; Rota, Claudio; Delledonne, Massimo; Ottonello, Simone; van Sinderen, Douwe; Ventura, Marco

    2011-10-01

    We have investigated the occurrence of bifidobacteria in human milk samples, and we provide evidence regarding the predominance of members of the Bifidobacterium breve species in this environment. Moreover, evaluation of the growth capabilities and transcriptomic analyses of one representative isolate of this species, i.e., B. breve 4L, on different milk types were performed.

  20. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution.

    PubMed

    Sun, Zhihong; Zhang, Wenyi; Guo, Chenyi; Yang, Xianwei; Liu, Wenjun; Wu, Yarong; Song, Yuqin; Kwok, Lai Yu; Cui, Yujun; Menghe, Bilige; Yang, Ruifu; Hu, Liangping; Zhang, Heping

    2015-01-01

    Bifidobacteria are well known for their human health-promoting effects and are therefore widely applied in the food industry. Members of the Bifidobacterium genus were first identified from the human gastrointestinal tract and were then found to be widely distributed across various ecological niches. Although the genetic diversity of Bifidobacterium has been determined based on several marker genes or a few genomes, the global diversity and evolution scenario for the entire genus remain unresolved. The present study comparatively analyzed the genomes of 45 type strains. We built a robust genealogy for Bifidobacterium based on 402 core genes and defined its root according to the phylogeny of the tree of bacteria. Our results support that all human isolates are of younger lineages, and although species isolated from bees dominate the more ancient lineages, the bee was not necessarily the original host for bifidobacteria. Moreover, the species isolated from different hosts are enriched with specific gene sets, suggesting host-specific adaptation. Notably, bee-specific genes are strongly associated with respiratory metabolism and are potential in helping those bacteria adapt to the oxygen-rich gut environment in bees. This study provides a snapshot of the genetic diversity and evolution of Bifidobacterium, paving the way for future studies on the taxonomy and functional genomics of the genus.

  1. Screening of Cholesterol-lowering Bifidobacterium from Guizhou Xiang Pigs, and Evaluation of Its Tolerance to Oxygen, Acid, and Bile

    PubMed Central

    Zhang, Rujiao; He, Laping; Zhang, Ling; Li, Cuiqin; Zhu, Qiujin

    2016-01-01

    Cardiovascular and cerebrovascular diseases seriously harm human health, and Bifidobacterium is the most beneficial probiotic in the gastrointestinal tract of humans. This work aimed to screen cholesterol-lowering Bifidobacterium from Guizhou Xiang Pig and evaluate its tolerance to oxygen, acid, and bile. Twenty-seven aerotolerant strains with similar colony to Bifidobacterium were isolated through incubation at 37℃ in 20% (v/v) CO2-80% (v/v) atmospheric air by using Mupirocin lithium modified MRS agar medium, modified PTYG with added CaCO3, and modified PTYG supplemented with X-gal. Ten strains with cholesterol-lowering rates above 20% (w/w) were used for further screening. The selected strains’ tolerance to acid and bile was then determined. A combination of colony and cell morphology, physiological, and biochemical experiments, as well as 16S rRNA gene-sequence analysis, was performed. Results suggested that BZ25 with excellent characteristics of high cholesterol-removal rate of 36.32% (w/w), as well as tolerance to acid and bile, was identified as Bifidobacterium animalis subsp. lactis. To further evaluate Bifidobacterium BZ25’s growth characteristic and tolerance to oxygen, culture experiments were performed in liquid medium and an agar plate. Findings suggested that BZ25 grew well both in environmental 20% (v/v) CO2-80% (v/v) atmospheric air and in 100% atmospheric air because BZ25 reached an absorbance of 1.185 at 600 nm in 100% atmospheric air. Moreover, BZ25 was aerotolerant and can grow in an agar medium under the environmental condition of 100% atmospheric air. This study can lay a preliminary foundation for the potential industrial applications of BZ25. PMID:27499662

  2. Draft Genome Sequence of Bifidobacterium lemurum DSM 28807T Isolated from the Gastrointestinal Tracts of Ring-Tailed Lemurs (Lemur catta)

    PubMed Central

    Toh, Hidehiro; Matsubara, Takehiro; Tomida, Shuta; Mimura, Iyo; Arakawa, Kensuke; Kikusui, Takefumi

    2017-01-01

    ABSTRACT Bifidobacterium lemurum DSM 28807T was isolated from the gastrointestinal tracts of ring-tailed lemurs (Lemur catta). Here, we report the first draft genome sequence of this organism. PMID:28232445

  3. Draft Genome Sequence of Bifidobacterium lemurum DSM 28807(T) Isolated from the Gastrointestinal Tracts of Ring-Tailed Lemurs (Lemur catta).

    PubMed

    Toh, Hidehiro; Matsubara, Takehiro; Tomida, Shuta; Mimura, Iyo; Arakawa, Kensuke; Kikusui, Takefumi; Morita, Hidetoshi

    2017-02-23

    Bifidobacterium lemurum DSM 28807(T) was isolated from the gastrointestinal tracts of ring-tailed lemurs (Lemur catta). Here, we report the first draft genome sequence of this organism. Copyright © 2017 Toh et al.

  4. Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats.

    PubMed

    Al-Sheraji, S H; Amin, I; Azlan, A; Manap, M Y; Hassan, F A

    2015-01-01

    The present study investigated the effects of Bifidobacterium longum BB536 on lipid profile, liver and kidney function, and body fat in hypercholesterolaemic rats. 40 Sprague-Dawley rats were randomly divided into five groups. The negative control group received a standard diet. The positive control group received a cholesterol-enriched diet, whereas the intervention groups received a cholesterol-enriched diet supplemented with B. longum BB536 alone or in combination with inulin or Mangifera pajang fibrous polysaccharides. After 8 weeks, plasma lipids, and liver and kidney function were tested. Intake of the cholesterol-enriched diet increased total cholesterol, alanine aminotransferase, gamma-glutamyl transferase, creatinine, urea, liver weight, adipose tissue weight, liver lipid deposition and adipocyte size. B. longum BB536 supplementation significantly reduced total cholesterol, liver lipid deposition and adipocyte size, and positively affected liver and kidney function. These effects were significantly increased in the presence of inulin and M. pajang fibrous polysaccharides.

  5. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    PubMed Central

    Phoem, Atchara N.; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P.

    2015-01-01

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832

  6. Protection against Influenza Virus Infection of Mice Fed Bifidobacterium breve YIT4064

    PubMed Central

    Yasui, Hisako; Kiyoshima, Junko; Hori, Tetuji; Shida, Kan

    1999-01-01

    Mice fed Bifidobacterium breve YIT4064 and immunized orally with influenza virus were more strongly protected against influenza virus infection of the lower respiratory tract than ones immunized with influenza virus only. The number of mice with enhanced anti-influenza virus immunoglobulin G (IgG) in serum upon oral administration of B. breve YIT4064 and oral immunization with influenza virus was significantly greater than that upon oral immunization with influenza virus only. These findings demonstrated that the oral administration of B. breve YIT4064 increased anti-influenza virus IgG antibodies in serum and protected against influenza virus infection. The oral administration of B. breve YIT4064 may enhance antigen-specific IgG against various pathogenic antigens taken orally and induce protection against various virus infections. PMID:10066652

  7. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    SciTech Connect

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric; Lambie, Suzanne C.; Perry, Rechelle; Teh, Koon Hoong; Otter, Don E.; Shapiro, Nicole; Woyke, Tanja; Leahy, Sinead C.

    2016-07-29

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.

  8. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase

    PubMed Central

    dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-01-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å. PMID:23695585

  9. Characterization and Application of BiLA, a Psychrophilic α-Amylase from Bifidobacterium longum.

    PubMed

    Lee, Hye-Won; Jeon, Hye-Yeon; Choi, Hye-Jeong; Kim, Na-Ri; Choung, Woo-Jae; Koo, Ye-Seul; Ko, Dam-Seul; You, SangGuan; Shim, Jae-Hoon

    2016-04-06

    In this study, a novel α-amylase was cloned from Bifidobacterium longum and named BiLA. The enzyme exhibited optimal activity at 20 °C and a pH value of 5.0. Kinetic analysis using various carbohydrate substrates revealed that BiLA had the highest k(cat/)K(m) value for amylose. Interestingly, analysis of the enzymatic reaction products demonstrated that BiLA specifically catalyzed the hydrolysis of oligosaccharides and starches up to G5 from the nonreducing ends. To determine whether BiLA can be used to generate slowly digestible starch (SDS), starch was treated with BiLA, and the kinetic parameters were analyzed using porcine pancreatic α-amylase (PPA) and amyloglucosidase (AMG). Compared to normal starch, BiLA-treated starch showed lower k(cat)/K(m) values with PPA and AMG, suggesting that BiLA is a potential candidate for the production of SDS.

  10. Optimization of galacto-oligosaccharide production by Bifidobacterium infantis RW-8120 using response surface methodology.

    PubMed

    Roy, D; Daoudi, L; Azaola, A

    2002-11-01

    Oligosaccharide (OS) production, cell concentration (2 x 10(9) colony-forming unit/ml), lactose concentration (25% wt/vol), reaction time (6 h), and temperature (50 degrees C) were chosen as the central condition of the central composite design (CCD) for optimizing the production process using Bifidobacterium infantis RW-8120 in skim milk. Statistical analysis (P<0.01) revealed that the most relevant variable concerning OS production and yield was the lactose concentration. The coefficient of determination (R(2)) is good for the second-order OS production model (0.92) and fairly good for the second-order nonlinear OS yield model (0.816). An increase of lactose concentration and temperature resulted in a higher OS production. The optimal values for OS production appear to be near the area associated with the central points of the modeling design except for the lactose concentration, which was 40% (wt/vol) of the final volume.

  11. Genomic Characterization and Transcriptional Studies of the Starch-Utilizing Strain Bifidobacterium adolescentis 22L

    PubMed Central

    Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Milani, Christian; Viappiani, Alice; Mangifesta, Marta; Gioiosa, Laura; Palanza, Paola; van Sinderen, Douwe

    2014-01-01

    Bifidobacteria are members of the gut microbiota, but the genetic basis for their adaptation to the human gut is poorly understood. The analysis of the 2,203,222-bp genome of Bifidobacterium adolescentis 22L revealed a nutrient acquisition strategy that targets diet/plant-derived glycans, in particular starch and starch-like carbohydrates. Starch-like carbohydrates were shown to support the growth of B. adolescentis 22L. Transcriptome profiling of 22L cultures grown under in vitro conditions or during colonization of the murine gut by RNA sequencing and quantitative real-time PCR assays revealed the expression of a set of chromosomal loci responsible for starch metabolism as well as for pilus production. Such extracellular structures include so-called sortase-dependent and type IVb pili, which may be involved in gut colonization of 22L through adhesion to extracellular matrix proteins. PMID:25063659

  12. Mosaic Tetracycline Resistance Genes and Their Flanking Regions in Bifidobacterium thermophilum and Lactobacillus johnsonii▿

    PubMed Central

    van Hoek, Angela H. A. M.; Mayrhofer, Sigrid; Domig, Konrad J.; Flórez, Ana B.; Ammor, Mohammed S.; Mayo, Baltasar; Aarts, Henk J. M.

    2008-01-01

    For the first time, mosaic tetracycline resistance genes were identified in Lactobacillus johnsonii and in Bifidobacterium thermophilum strains. The L. johnsonii strain investigated contains a complex hybrid gene, tet(O/W/32/O/W/O), whereas the five bifidobacterial strains possess two different mosaic tet genes: i.e., tet(W/32/O) and tet(O/W). As reported by others, the crossover points of the mosaic tet gene segments were found at similar positions within the genes, suggesting a hot spot for recombination. Analysis of the sequences flanking these genes revealed that the upstream part corresponds to the 5′ end of the mosaic open reading frame. In contrast, the downstream region was shown to be more variable. Surprisingly, in one of the B. thermophilum strains a third tet determinant was identified, coding for the efflux pump Tet(L). PMID:17967912

  13. Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell Motherway, Mary; O'Driscoll, Jonathan; Fitzgerald, Gerald F.; Van Sinderen, Douwe

    2009-01-01

    Summary In silico analysis of the Bifidobacterium breve UCC2003 genome predicted two distinct loci, which encode three different restriction/modification systems, each comprising a modification methylase and a restriction endonuclease. Based on sequence homology and observed protection against restriction we conclude that the first restriction endonuclease, designated BbrI, is an isoschizomer of BbeI, the second, BbrII, is a neoschizomer of SalI, while the third, BbrIII, is an isoschizomer of PstI. Expression of each of the B. breve UCC2003 methylase‐encoding genes in B. breve JCM 7017 established that BbrII and BbrIII are active and restrict incoming DNA. By exploiting knowledge on restriction/modification in B. breve UCC2003 we successfully increased the transformation efficiency to a level that allows the reliable generation of mutants by homologous recombination using a non‐replicative plasmid. PMID:21261927

  14. Selection of a Bifidobacterium animalis subsp. lactis Strain with a Decreased Ability To Produce Acetic Acid

    PubMed Central

    Margolles, Abelardo

    2012-01-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain. PMID:22389372

  15. Bifidobacterium infantis 35624: a novel probiotic for the treatment of irritable bowel syndrome.

    PubMed

    Brenner, Darren M; Chey, William D

    2009-01-01

    Irritable bowel syndrome (IBS) is a common disorder with widespread prevalence. Due to its heterogeneous pathogenesis, efficacious treatments are lacking. The few medications that are effective for treating global IBS symptoms have either been withdrawn or restricted due to detrimental side effects; thus, safe and effective alternatives are urgently needed. Increasing data have revealed that inflammatory changes may play a role in the development of IBS, and probiotics, commensal organisms with inherent health benefits, may alter that milieu. Although their exact mechanisms of action remain elusive, it is clear that the beneficial properties inherent to each probiotic species are strain specific. Bifidobacterium infantis 35624 ( B infantis 35624; Bifantis, The Procter & Gamble Company, Cincinnati, OH), is a probiotic with unique abilities to reduce intestinal inflammation. Two randomized, controlled trials have validated its efficacy for treating both individual and global IBS symptoms without evidence to suggest an increase in adverse events. B. infantis 35624 appears safe and effective for the treatment of IBS.

  16. Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L.

    PubMed

    Duranti, Sabrina; Turroni, Francesca; Lugli, Gabriele Andrea; Milani, Christian; Viappiani, Alice; Mangifesta, Marta; Gioiosa, Laura; Palanza, Paola; van Sinderen, Douwe; Ventura, Marco

    2014-10-01

    Bifidobacteria are members of the gut microbiota, but the genetic basis for their adaptation to the human gut is poorly understood. The analysis of the 2,203,222-bp genome of Bifidobacterium adolescentis 22L revealed a nutrient acquisition strategy that targets diet/plant-derived glycans, in particular starch and starch-like carbohydrates. Starch-like carbohydrates were shown to support the growth of B. adolescentis 22L. Transcriptome profiling of 22L cultures grown under in vitro conditions or during colonization of the murine gut by RNA sequencing and quantitative real-time PCR assays revealed the expression of a set of chromosomal loci responsible for starch metabolism as well as for pilus production. Such extracellular structures include so-called sortase-dependent and type IVb pili, which may be involved in gut colonization of 22L through adhesion to extracellular matrix proteins. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Selection of a Bifidobacterium animalis subsp. lactis strain with a decreased ability to produce acetic acid.

    PubMed

    Margolles, Abelardo; Sánchez, Borja

    2012-05-01

    We have characterized a new strain, Bifidobacterium animalis subsp. lactis CECT 7953, obtained by random UV mutagenesis, which produces less acetic acid than the wild type (CECT 7954) in three different experimental settings: De Man-Rogosa-Sharpe broth without sodium acetate, resting cells, and skim milk. Genome sequencing revealed a single Phe-Ser substitution in the acetate kinase gene product that seems to be responsible for the strain's reduced acid production. Accordingly, acetate kinase specific activity was lower in the low acetate producer. Strain CECT 7953 produced less acetate, less ethanol, and more yoghourt-related volatile compounds in skim milk than the wild type did. Thus, CECT 7953 shows promising potential for the development of dairy products fermented exclusively by a bifidobacterial strain.

  18. Applications of microencapsulated Bifidobacterium longum with Eleutherine americana in fresh milk tofu and pineapple juice.

    PubMed

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-04-03

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice.

  19. Comparative Genomics of Bifidobacterium animalis subsp. lactis Reveals a Strict Monophyletic Bifidobacterial Taxon

    PubMed Central

    Milani, Christian; Duranti, Sabrina; Lugli, Gabriele Andrea; Bottacini, Francesca; Strati, Francesco; Arioli, Stefania; Foroni, Elena; Turroni, Francesca; van Sinderen, Douwe

    2013-01-01

    Strains of Bifidobacterium animalis subsp. lactis are extensively exploited by the food industry as health-promoting bacteria, although the genetic variability of members belonging to this taxon has so far not received much scientific attention. In this article, we describe the complete genetic makeup of the B. animalis subsp. lactis Bl12 genome and discuss the genetic relatedness of this strain with other sequenced strains belonging to this taxon. Moreover, a detailed comparative genomic analysis of B. animalis subsp. lactis genomes was performed, which revealed a closely related and isogenic nature of all currently available B. animalis subsp. lactis strains, thus strongly suggesting a closed pan-genome structure of this bacterial group. PMID:23645200

  20. Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum.

    PubMed

    Chaplin, Andrei V; Efimov, Boris A; Smeianov, Vladimir V; Kafarskaia, Lyudmila I; Pikina, Alla P; Shkoporov, Andrei N

    2015-01-01

    Members of genus Bifidobacterium are Gram-positive bacteria, representing a large part of the human infant microbiota and moderately common in adults. However, our knowledge about their diversity, intraspecific phylogeny and long-term persistence in humans is still limited. Bifidobacterium longum is generally considered to be the most common and prevalent species in the intestinal microbiota. In this work we studied whole genome sequences of 28 strains of B. longum, including 8 sequences described in this paper. Part of these strains were isolated from healthy children during a long observation period (up to 10 years between isolation from the same patient). The three known subspecies (longum, infantis and suis) could be clearly divided using sequence-based phylogenetic methods, gene content and the average nucleotide identity. The profiles of glycoside hydrolase genes reflected the different ecological specializations of these three subspecies. The high impact of horizontal gene transfer on genomic diversity was observed, which is possibly due to a large number of prophages and rapidly spreading plasmids. The pan-genome characteristics of the subspecies longum corresponded to the open pan-genome model. While the major part of the strain-specific genetic loci represented transposons and phage-derived regions, a large number of cell envelope synthesis genes were also observed within this category, representing high variability of cell surface molecules. We observed the cases of isolation of high genetically similar strains of B. longum from the same patients after long periods of time, however, we didn't succeed in the isolation of genetically identical bacteria: a fact, reflecting the high plasticity of microbiota in children.

  1. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  2. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner.

    PubMed

    Hughes, K R; Harnisch, L C; Alcon-Giner, C; Mitra, S; Wright, C J; Ketskemety, J; van Sinderen, D; Watson, A J M; Hall, L J

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi-a process termed 'cell shedding'. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes.

  3. Survival of Bifidobacterium longum and its effect on physicochemical properties and sensorial attributes of white brined cheese.

    PubMed

    Gursoy, Oguz; Gokce, Ramazan; Con, Ahmet Hilmi; Kinik, Ozer

    2014-11-01

    Survival of the probiotic adjunct culture Bifidobacterium longum and cheese starters during ripening of white brined cheese, effect of the probiotic culture on physicochemical properties and sensorial attributes of cheeses were investigated throughout 90 d of ripening. Bifidobacterium longum were able to survive at higher levels (>10(7 )cfu/g cheese) than the therapeutic minimum (10(6)-10(7 )cfu/g cheese) after 90 d and did not have any negative effect on the survival of Streptococcus spp. (including common cheese starters). Incorporation of the probiotic adjunct into white brined cheese and high levels of their survival rates during ripening had an insignificant effect on the composition of cheeses. Results indicated that white brined cheese is a suitable food matrix for the delivery of B. longum used in this study, and white brined cheeses with B. longum may be considered as a probiotic dairy product.

  4. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner

    PubMed Central

    Hughes, K. R.; Harnisch, L. C.; Alcon-Giner, C.; Mitra, S.; Wright, C. J.; Ketskemety, J.

    2017-01-01

    Certain members of the microbiota genus Bifidobacterium are known to positively influence host well-being. Importantly, reduced bifidobacterial levels are associated with inflammatory bowel disease (IBD) patients, who also have impaired epithelial barrier function, including elevated rates of apoptotic extrusion of small intestinal epithelial cells (IECs) from villi—a process termed ‘cell shedding’. Using a mouse model of pathological cell shedding, we show that mice receiving Bifidobacterium breve UCC2003 exhibit significantly reduced rates of small IEC shedding. Bifidobacterial-induced protection appears to be mediated by a specific bifidobacterial surface exopolysaccharide and interactions with host MyD88 resulting in downregulation of intrinsic and extrinsic apoptotic responses to protect epithelial cells under highly inflammatory conditions. Our results reveal an important and previously undescribed role for B. breve, in positively modulating epithelial cell shedding outcomes via bacterial- and host-dependent factors, supporting the notion that manipulation of the microbiota affects intestinal disease outcomes. PMID:28123052

  5. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation.

    PubMed

    Aoki, Ryo; Kamikado, Kohei; Suda, Wataru; Takii, Hiroshi; Mikami, Yumiko; Suganuma, Natsuki; Hattori, Masahira; Koga, Yasuhiro

    2017-03-02

    The gut microbiota is an important contributor to the worldwide prevalence of metabolic syndrome (MS), which includes obesity and diabetes. The anti-MS effects exerted by Bifidobacterium animalis ssp. lactis GCL2505 (BlaG), a highly proliferative Bifidobacterium strain in the gut, and B. longum ssp. longum JCM1217(T) (BloJ) were comparatively examined. BlaG treatment reduced visceral fat accumulation and improved glucose tolerance, whereas BloJ had no effect on these parameters. Gut microbial analysis revealed that BlaG exerted stronger effects on the overall bacterial structure of the gut microbiota than BloJ, including enrichment of the genus Bifidobacterium. The levels of acetate and glucagon-like peptide-1 were increased by BlaG treatment in both the gut and plasma, but not by BloJ treatment. Correlation analysis suggested that the elevation of gut acetate levels by BlaG treatment plays a pivotal role in the BlaG-induced anti-MS effects. These findings indicated that BlaG, a highly viable and proliferative probiotic, improves metabolic disorders by modulating gut microbiota, which results in the elevation of SCFAs, especially acetate.

  6. The effect of quercetin on genetic expression of the commensal gut microbes Bifidobacterium catenulatum, Enterococcus caccae and Ruminococcus gauvreauii.

    PubMed

    Firrman, Jenni; Liu, LinShu; Zhang, Liqing; Arango Argoty, Gustavo; Wang, Minqian; Tomasula, Peggy; Kobori, Masuko; Pontious, Sherri; Xiao, Weidong

    2016-12-01

    Quercetin is one of the most abundant polyphenols found in fruits and vegetables. The ability of the gut microbiota to metabolize quercetin has been previously documented; however, the effect that quercetin may have on commensal gut microbes remains unclear. In the present study, the effects of quercetin on the commensal gut microbes Ruminococcus gauvreauii, Bifidobacterium catenulatum and Enterococcus caccae were determined through evaluation of growth patterns and cell morphology, and analysis of genetic expression profiles between quercetin treated and non-treated groups using Single Molecule RNA sequencing via Helicos technology. Results of this study revealed that phenotypically, quercetin did not prevent growth of Ruminococcus gauvreauii, mildly suppressed growth of Bifidobacterium catenulatum, and moderately inhibited growth of Enterococcus caccae. Genetic analysis revealed that in response to quercetin, Ruminococcus gauvreauii down regulated genes responsible for protein folding, purine synthesis and metabolism. Bifidobacterium catenulatum increased expression of the ABC transport pathway and decreased metabolic pathways and cell wall synthesis. Enterococcus caccae upregulated genes responsible for energy production and metabolism, and downregulated pathways of stress response, translation and sugar transport. For the first time, the effect of quercetin on the growth and genetic expression of three different commensal gut bacteria was documented. The data provides insight into the interactions between genetic regulation and growth. This is also a unique demonstration of how RNA single molecule sequencing can be used to study the gut microbiota.

  7. Description of a new species, Bifidobacterium crudilactis sp. nov., isolated from raw milk and raw milk cheeses.

    PubMed

    Delcenserie, V; Gavini, F; Beerens, H; Tresse, O; Franssen, C; Daube, G

    2007-07-01

    A new Bifidobacterium species is described based on the study of ten Gram-positive strains with fructose-6-phosphate phosphoketolase activity. They are part of a phenotypic group comprising 141 strains isolated from raw milk and raw milk cheeses in French raw milk cheese factories. This group was separated by a numerical analysis based on API 50CH, API 32A tests and growth at 46 degrees C. A strong similarity of 16S rRNA sequences (99.8%) was shown between strain FR62/b/3(T) and Bifidobacterium psychraerophilum LMG 21775(T). However, low DNA-DNA relatedness was observed between their DNAs (31%). The new isolates are able to grow at low temperatures (all ten strains up to 5 degrees C) and strain FR62/b/3(T) grows under aerobic conditions, as does B. psychraerophilum. However, contrary to B. psychraerophilum, they do not ferment L-arabinose, D-xylose, arbutin or melezitose, but they do acidify lactose. The DNA G+C content of FR62/b/3(T) is 56.4mol%. Therefore, the name Bifidobacterium crudilactis sp. nov. is proposed, with its type strain being FR62/b/3(T) (=LMG 23609(T)=CNCM I-3342(T)).

  8. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation

    PubMed Central

    Aoki, Ryo; Kamikado, Kohei; Suda, Wataru; Takii, Hiroshi; Mikami, Yumiko; Suganuma, Natsuki; Hattori, Masahira; Koga, Yasuhiro

    2017-01-01

    The gut microbiota is an important contributor to the worldwide prevalence of metabolic syndrome (MS), which includes obesity and diabetes. The anti-MS effects exerted by Bifidobacterium animalis ssp. lactis GCL2505 (BlaG), a highly proliferative Bifidobacterium strain in the gut, and B. longum ssp. longum JCM1217T (BloJ) were comparatively examined. BlaG treatment reduced visceral fat accumulation and improved glucose tolerance, whereas BloJ had no effect on these parameters. Gut microbial analysis revealed that BlaG exerted stronger effects on the overall bacterial structure of the gut microbiota than BloJ, including enrichment of the genus Bifidobacterium. The levels of acetate and glucagon-like peptide-1 were increased by BlaG treatment in both the gut and plasma, but not by BloJ treatment. Correlation analysis suggested that the elevation of gut acetate levels by BlaG treatment plays a pivotal role in the BlaG-induced anti-MS effects. These findings indicated that BlaG, a highly viable and proliferative probiotic, improves metabolic disorders by modulating gut microbiota, which results in the elevation of SCFAs, especially acetate. PMID:28252037

  9. Molecular characterization of Bifidobacterium longum biovar longum NAL8 plasmids and construction of a novel replicon screening system.

    PubMed

    Guglielmetti, Simone; Karp, Matti; Mora, Diego; Tamagnini, Isabella; Parini, Carlo

    2007-04-01

    In this study, we performed molecular characterization and sequence analysis of three plasmids from the human intestinal isolate Bifidobacterium longum biovar longum NAL8 and developed a novel vector screening system. Plasmids pNAL8H (10 kb) and pNAL8M (4.9 kb) show close sequence similarity to and the same gene organization as the already characterized B. longum plasmids. The B. longum plasmid pNAC1 was identified as being most closely related to pNAL8L (3.5 kb). However, DNA sequence analysis suggested that direct repeat-rich sites could have promoted several recombination events to diversify the two plasmid molecules. We verified the likely rolling circle replication of plasmid pNAL8L and studied the phylogenetic relationship in all the Bifidobacterium plasmids fully sequenced to date based on in silico comparative sequence analysis of their replication proteins and iteron regions. Our transformation experiments confirmed that the ColE1 replication origin from high-copy-number pUC vectors could interfere with the replication apparatus of Bifidobacterium plasmids and give rise to false positive clones. As a result, we developed a system suitable for avoiding possible interference by other functional replication modules on the vector and for screening functional replicons from wild-type plasmids.

  10. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome.

    PubMed

    Chen, Jinjin; Wang, Ren; Li, Xiao-Fang; Wang, Rui-Liang

    2012-05-01

    The aim of the present study was to investigate the effects of Bifidobacterium adolescentis (Bif) supplementation on visceral fat accumulation and insulin sensitivity of the metabolic syndrome in HF-diet-fed rats. Adult male Wistar rats (n 10 per group) were fed four different experimental diets for 12 weeks as follows: standard diet; high-fat (HF) diet; a mix of HF diet and Bif; a mix of standard diet and Bif. Liver, mesenteric fat, epididymal fat, retroperitoneal fat, and inguinal fat, pancreas and triceps surae in all four groups of the rats were weighed, while liver steatosis and insulin sensitivity were evaluated at the end point of the study. As the number of intestinal Bifidobacterium species decreased obviously, fat pad weight and body weight increased significantly in the HF group compared with in the other three groups (P <0·05). Addition of Bif led to a reduction in body weight and fat pad weight (P <0·05). With an increase in liver weight, more severe steatosis of hepatocytes was observed in the HF group compared with in the other three groups. A significant decrease of the glucose infusion rate and pancreas weight was found in the HF group (P <0·05). This deleterious effect was alleviated when Bif was added to the diets. Bifidobacterium supplementation ameliorated visceral fat accumulation and insulin sensitivity of the metabolic syndrome in HF-diet-fed rats.

  11. Effect of bifidobacterium on defensin-5 expression in intestinal injury of preweaning rats

    PubMed Central

    Wang, Wei; Yang, Shu-Fen; Ren, Li-Hong; Zhang, Xiu-Xiu; Yu, Shui-Lian

    2015-01-01

    AIM: To investigate the protective effect of bifidobacterium in endotoxin-induced intestinal injury in preweaning rats. METHODS: Preweaning rats were randomly divided into three groups (n = 40 for each): a control group (group C), a model group (group E) and a treatment group (group T). Both groups E and T were intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 5 mg/kg (5 mg/L in normal saline), and group T was intragastrically administrated with bifidobacterium suspension (2.0 × 109 CFU/mL, 0.5 mL each time, twice a day, until the end of the experiment) 7 d before LPS administration. Group C was intraperitoneally injected with normal saline. After intraperitoneal injection and intragastric administration, the rats were placed back to the initial cage to receive breast feeding. The rats were killed at 2, 6, 12, 24 or 72 h, respectively, after endotoxin or physiological saline injection to collect serum and ileal tissue samples. Myeloperoxidase (MPO) contents in serum and ileum were detected at different times, and expression of ileal defensin-5 mRNA was evaluated by reverse transcription-polymerase chain reaction. RESULTS: Serum and ileal MPO contents in group E were significantly higher than those in group C (serum contents: 107.50 ± 17.70 vs 157.14 ± 24.67, P < 0.05; ileal contents: 1.03 ± 0.21 vs 1.57 ± 0.33, P < 0.05), which peaked at 12 h and 6 h, respectively. MPO contents in group T were significantly lower than those in group E (serum contents: 114.38 ± 24.56 vs 145.25 ± 23.62, P < 0.05; ileal contents: 1.25 ± 0.24 vs 1.57 ± 0.33, P < 0.05). The expression of defensin-5 mRNA in group E was significantly higher than that in group C (0.953 ± 0.238 vs 0.631 ± 0.146, P < 0.05), which peaked at 2 h, and then decreased gradually. The expression of defensin-5 mRNA in group T was significantly lower than that in group E (0.487 ± 0.149 vs 0.758 ± 0.160, P < 0.05) apparently in 24 h. The expression of defensin-5 mRNA at 2 h in group T

  12. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization.

    PubMed

    Tanaka, H; Hashiba, H; Kok, J; Mierau, I

    2000-06-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized. Furthermore, we describe for the first time cloning and analysis of the gene encoding BSH (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to 130,000 and a subunit molecular weight of 35,024, as determined from the deduced amino acid sequence, indicating that the enzyme is a tetramer. The pH optimum of B. longum BSH is between 5 and 7, and the temperature optimum is 40 degrees C. The enzyme is strongly inhibited by thiol enzyme inhibitors, indicating that a Cys residue is likely to be involved in the catalytic reaction. The BSH of B. longum can hydrolyze all six major human bile salts and at least two animal bile salts. A slight preference for glycine-conjugated bile acids was detected based on both the specificity and the K(m) values. The nucleotide sequence of bsh was determined and used for homology studies, transcript analysis, and construction and analysis of various mutants. The levels of homology with BSH of other bacteria and with penicillin V acylase (PVA) of Bacillus sphaericus were high. On the basis of the similarity of BSH and PVA, whose crystal structure has been elucidated, BSH can be classified as an N-terminal nucleophile hydrolase with Cys as the N-terminal amino acid. This classification was confirmed by the fact that a Cys1Ala exchange by site-directed mutagenesis resulted in an inactive protein. Reverse transcription-PCR experiments revealed that bsh is part of an operon containing at least two genes, bsh and glnE (GlnE is glutamine synthetase adenylyltransferase). Two UV-induced BSH-negative mutants and one spontaneous BSH-negative mutant were isolated from B. longum SBT2928 cultures and characterized. These mutants had point mutations that inactivated bsh by premature termination, frameshift, or amino acid exchange.

  13. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets.

    PubMed

    Lawley, Blair; Munro, Karen; Hughes, Alan; Hodgkinson, Alison J; Prosser, Colin G; Lowry, Dianne; Zhou, Shao J; Makrides, Maria; Gibson, Robert A; Lay, Christophe; Chew, Charmaine; Lee, Pheng Soon; Wong, Khai Hong; Tannock, Gerald W

    2017-01-01

    Members of the genus Bifidobacterium are abundant in the feces of babies during the exclusively-milk-diet period of life. Bifidobacterium longum is reported to be a common member of the infant fecal microbiota. However, B. longum is composed of three subspecies, two of which are represented in the bowel microbiota (B. longum subsp. longum; B. longum subsp. infantis). B. longum subspecies are not differentiated in many studies, so that their prevalence and relative abundances are not accurately known. This may largely be due to difficulty in assigning subspecies identity using DNA sequences of 16S rRNA or tuf genes that are commonly used in bacterial taxonomy. We developed a qPCR method targeting the sialidase gene (subsp. infantis) and sugar kinase gene (subsp. longum) to differentiate the subspecies using specific primers and probes. Specificity of the primers/probes was tested by in silico, pangenomic search, and using DNA from standard cultures of bifidobacterial species. The utility of the method was further examined using DNA from feces that had been collected from infants inhabiting various geographical regions. A pangenomic search of the NCBI genomic database showed that the PCR primers/probes targeted only the respective genes of the two subspecies. The primers/probes showed total specificity when tested against DNA extracted from the gold standard strains (type cultures) of bifidobacterial species detected in infant feces. Use of the qPCR method with DNA extracted from the feces of infants of different ages, delivery method and nutrition, showed that subsp. infantis was detectable (0-32.4% prevalence) in the feces of Australian (n = 90), South-East Asian (n = 24), and Chinese babies (n = 91), but in all cases at low abundance (<0.01-4.6%) compared to subsp. longum (0.1-33.7% abundance; 21.4-100% prevalence). Our qPCR method differentiates B. longum subspecies longum and infantis using characteristic functional genes. It can be used as an

  14. Analysis of host-inducing proteome changes in bifidobacterium longum NCC2705 grown in Vivo.

    PubMed

    Yuan, Jing; Wang, Bin; Sun, Zhongke; Bo, Xin; Yuan, Xitong; He, Xiang; Zhao, Hongqing; Du, Xinying; Wang, Fang; Jiang, Zheng; Zhang, Ling; Jia, Leili; Wang, Yufei; Wei, Kaihua; Wang, Jie; Zhang, Xuemin; Sun, Yansong; Huang, Liuyu; Zeng, Ming

    2008-01-01

    To investigate the molecular mechanisms underlying the adaptation of Bifidobacterium longum to the intestinal tract, we utilized a new model for rabbit intestinal culture of B. longum and reported the changes in proteomic profiles after incubation in the in vivo environment. By 2D-PAGE coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and/or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analyses, proteomic profiles of B. longum strain NCC2705 grown in the in vivo and in vitro environments were compared. Confirmed by semiquantitative RT-PCR, which exhibited at least a 3-fold change or greater, 19 up-regulated proteins, 14 down-regulated proteins, and 4 proteins with mobility changes were identified during intestinal growth. These identified proteins include key stress proteins, metabolism-related proteins, and proteins related to translation. Our results indicate that some useful proteins are expressed at higher levels in cells during intestinal growth. These proteins reflected the adaptation of B. longum NCC2705 to the intestine, such as EF-Tu which contributes to the retention or attachment as a Bifidobacterium adhesin-like factor, bile salt hydrolase (BSH) which might play an important role in the molecular mechanisms for the initial interaction of probiotic with the intestinal environment, and stress proteins which defend B. longum against the action of bile salts and other harmful ingredients of the gastrointestinal tract (GIT). The most striking fact of our observation was that four proteins GlnA1, PurC, LuxS, and Pgk exhibit clear post-translational modification. Western blot (WB) analysis and Pro-Q Diamond staining revealed that substances of the GIT trigger Pgk and LuxS phosphorylation at Ser/Thr residues for bacteria grown in vivo. These proteins were identified for the first time as bifidobacterial phosphoproteins. Our data suggest that the phosphorylated autoinducer-2 production

  15. Differentiation of Bifidobacterium longum subspecies longum and infantis by quantitative PCR using functional gene targets

    PubMed Central

    Munro, Karen; Hughes, Alan; Hodgkinson, Alison J.; Prosser, Colin G.; Lowry, Dianne; Zhou, Shao J.; Makrides, Maria; Gibson, Robert A.; Lay, Christophe; Chew, Charmaine; Lee, Pheng Soon; Wong, Khai Hong; Tannock, Gerald W.

    2017-01-01

    Background Members of the genus Bifidobacterium are abundant in the feces of babies during the exclusively-milk-diet period of life. Bifidobacterium longum is reported to be a common member of the infant fecal microbiota. However, B. longum is composed of three subspecies, two of which are represented in the bowel microbiota (B. longum subsp. longum; B. longum subsp. infantis). B. longum subspecies are not differentiated in many studies, so that their prevalence and relative abundances are not accurately known. This may largely be due to difficulty in assigning subspecies identity using DNA sequences of 16S rRNA or tuf genes that are commonly used in bacterial taxonomy. Methods We developed a qPCR method targeting the sialidase gene (subsp. infantis) and sugar kinase gene (subsp. longum) to differentiate the subspecies using specific primers and probes. Specificity of the primers/probes was tested by in silico, pangenomic search, and using DNA from standard cultures of bifidobacterial species. The utility of the method was further examined using DNA from feces that had been collected from infants inhabiting various geographical regions. Results A pangenomic search of the NCBI genomic database showed that the PCR primers/probes targeted only the respective genes of the two subspecies. The primers/probes showed total specificity when tested against DNA extracted from the gold standard strains (type cultures) of bifidobacterial species detected in infant feces. Use of the qPCR method with DNA extracted from the feces of infants of different ages, delivery method and nutrition, showed that subsp. infantis was detectable (0–32.4% prevalence) in the feces of Australian (n = 90), South-East Asian (n = 24), and Chinese babies (n = 91), but in all cases at low abundance (<0.01–4.6%) compared to subsp. longum (0.1–33.7% abundance; 21.4–100% prevalence). Discussion Our qPCR method differentiates B. longum subspecies longum and infantis using characteristic

  16. Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624™

    PubMed Central

    Altmann, Friedrich; Kosma, Paul; O’Callaghan, Amy; Leahy, Sinead; Bottacini, Francesca; Molloy, Evelyn; Plattner, Stephan; Schiavi, Elisa; Gleinser, Marita; Groeger, David; Grant, Ray; Rodriguez Perez, Noelia; Healy, Selena; Svehla, Elisabeth; Windwarder, Markus; Hofinger, Andreas; O’Connell Motherway, Mary; Akdis, Cezmi A.; Xu, Jun; Roper, Jennifer; van Sinderen, Douwe; O’Mahony, Liam

    2016-01-01

    The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide. PMID:27656878

  17. Portrait of a canine probiotic Bifidobacterium--from gut to gut.

    PubMed

    O'Mahony, D; Murphy, K Barry; MacSharry, J; Boileau, T; Sunvold, G; Reinhart, G; Kiely, B; Shanahan, F; O'Mahony, L

    2009-10-20

    The gastrointestinal environment is a complex interactive system involving the host, ingested dietary components, and numerous microbial species. We hypothesized that isolation and screening of Lactobacilli and Bifidobacteria adherent to healthy canine gastrointestinal tissue would yield strains with commensal activity in canines. The aims of this study were (1) to isolate a bank of commensal organisms from the canine gastrointestinal tract; (2) to screen these novel microbial isolates for potential probiotic effects; (3) to select one organism from these screens and test its impact on the canine microbiota. Lactic acid bacteria (LAB) were isolated from resected canine gastrointestinal tissue and screened in vitro for putative probiotic activities. Murine studies examined gastrointestinal transit and inhibition of Salmonella typhimurium translocation. One strain was progressed to a canine study where its impact on the gastrointestinal microbiota was determined. Of the 420 isolates from the canine gut, 62 strains were characterised as LAB. Following assessment of the strain bank with regard to pH sensitivity, bile resistance, pathogen inhibition and survival following freeze-drying, four Lactobacillus strains and two Bifidobacteria strains were selected for further examination. Bifidobacterium animalis AHC7 adhered to epithelial cells, transited the murine gastrointestinal tract to high numbers and significantly reduced S. typhimurium translocation. B. animalis AHC7 consumption significantly reduced the carriage of Clostridia, in particular Clostridium difficile, in dogs. This study describes the isolation and screening of canine-derived bacterial strains with commensal traits. The results demonstrate that B. animalis AHC7 has significant potential for improving canine gastrointestinal health.

  18. Foam-Mat Freeze-Drying of Bifidobacterium longum RO175: Viability and Refrigerated Storage Stability.

    PubMed

    Izquierdo-López, Danilo; Goulet, Jacques; Ratti, Cristina

    2017-01-01

    Foaming as a pretreatment was used prior to freeze-drying of Bifidobacterium longum RO175 to investigate the potential acceleration of the drying rate and increase in microorganism viability after the process. A study on storage of foamed and nonfoamed freeze-dried products at 4 °C completed this study. B. longum RO175 in foamed medium could be freeze-dried in 1/7 to 1/4 of the time required for nonfoamed suspensions. In addition, foamed suspensions presented higher viability immediately after freeze-drying (13.6% compared to 12.81 % or 11.46%, depending on the cryoprotective media). Refrigerated storage led to a reduction in B. longum RO175 viability for all tested protective agents (foamed and nonfoamed). No correlation between glass transition temperature and stability of probiotic powders was observed during storage. In addition, lower viability after 56 d of storage was observed for foamed materials, probably due to foam porous structure and higher hygroscopicity, and oxygen presence and moisture pickup during storage. © 2016 Institute of Food Technologists®.

  19. Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624™.

    PubMed

    Altmann, Friedrich; Kosma, Paul; O'Callaghan, Amy; Leahy, Sinead; Bottacini, Francesca; Molloy, Evelyn; Plattner, Stephan; Schiavi, Elisa; Gleinser, Marita; Groeger, David; Grant, Ray; Rodriguez Perez, Noelia; Healy, Selena; Svehla, Elisabeth; Windwarder, Markus; Hofinger, Andreas; O'Connell Motherway, Mary; Akdis, Cezmi A; Xu, Jun; Roper, Jennifer; van Sinderen, Douwe; O'Mahony, Liam

    The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

  20. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    PubMed

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  1. Plasmacytoid Dendritic Cells Are Crucial in Bifidobacterium adolescentis-Mediated Inhibition of Yersinia enterocolitica Infection

    PubMed Central

    Wittmann, Alexandra; Autenrieth, Ingo B.; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection. PMID:23977019

  2. Fermented inulin hydrolysate by Bifidobacterium breve as cholesterol binder in functional food application

    NASA Astrophysics Data System (ADS)

    Melanie, Hakiki; Susilowati, Agustine; Maryati, Yati

    2017-01-01

    Inulin hydrolysate is a result of inulin hydrolysis by inulinase enzyme of Scopulariopsis sp.-CBS1 fungi isolated from dahlia tuber skin in the formation of fructooligosaccharides (FOS) as dietary fiber. Inulin hydrolysate fermented by Bifidobacterium breve has a potential as cholesterol binder in digestive system due to dietary fiber content in inulin. This study was conducted to evaluate the best cholesterol binding capacity by the variation of lactic acid bacteria (LAB) culture concentration of 10%, 20% and 30% (v/v), respectively. Fermentation process were conducted with inulin hydrolysate concentration of 25% (w/v), skim milk 7,5% (w/v) and various LAB culture concentration at 40 °C for 0, 12, 24, 36 and 48 hours. The results showed that the variation of LAB culture concentrations affect the cholesterol binding ability in fermented inulin hydrolysate. The fermentation process with 10% LAB culture concentration at 40°C for 48 hours resulted in the highest cholesterol binding capacity (CBC) of 13,69 mg/g at pH 7and 14,44 mg/g at pH 2 with composition of total acids of 0,787%, soluble dietary fiber of 0,396%, insoluble dietary fiber of 5,47%, total solids of 14,476%, total sugars of 472,484 mg/mL, reducing sugar of 92 mg/mL and total plate count (TPC) of 7,278 log CFU/mL, respectively.

  3. Metabolism of a plant derived galactose‐containing polysaccharide by Bifidobacterium breve UCC2003

    PubMed Central

    O'Connell Motherway, Mary; Fitzgerald, Gerald F.; van Sinderen, Douwe

    2011-01-01

    Summary In this study, we describe the functional characterization of the Bifidobacterium breve UCC2003 gal locus, which is dedicated to the utilization of galactan, a plant‐derived polysaccharide. Using a combination of molecular approaches we conclude that the galA gene of B. breve UCC2003 encodes a β‐1,4‐endogalactanase producing galacto‐oligosaccharides, which are specifically internalized by an ABC transport system, encoded by galBCDE, and which are then hydrolysed to galactose moieties by a dedicated intracellular β‐galactosidase, specified by galG. The generated galactose molecules are presumed to be fed into the fructose‐6‐phosphate phosphoketolase pathway via the Leloir pathway, thereby allowing B. breve UCC2003 to use galactan as its sole carbon and energy source. In addition to these findings we demonstrate that GalR is a LacI‐type DNA‐binding protein, which not only appears to control transcription of the galCDEGR operon, but also that of the galA gene. PMID:21375716

  4. Bifidobacterium animalis ssp. lactis 420 Protects against Indomethacin-Induced Gastric Permeability in Rats.

    PubMed

    Lyra, Anna; Saarinen, Markku; Putaala, Heli; Olli, Kaisa; Lahtinen, Sampo J; Ouwehand, Arthur C; Madetoja, Mari; Tiihonen, Kirsti

    2012-01-01

    Gastrointestinal (GI) adverse effects such as erosion and increased permeability are common during the use of nonsteroidal anti-inflammatory drugs (NSAIDs). Our objective was to assess whether Bifidobacterium animalis ssp. lactis 420 protects against NSAID-induced GI side effects in a rat model. A total of 120 male Wistar rats were allocated into groups designated as control, NSAID, and probiotic. The NSAID and probiotic groups were challenged with indomethacin (10 mg/kg(-1); single dose). The probiotic group was also supplemented daily with 10(10) CFU of B. lactis 420 for seven days prior to the indomethacin administration. The control group rats received no indomethacin or probiotic. The permeability of the rat intestine was analysed using carbohydrate probes and the visual damage of the rat stomach mucosa was graded according to severity. B. lactis 420 significantly reduced the indomethacin-induced increase in stomach permeability. However, the protective effect on the visual mucosal damage was not significant. The incidence of severe NSAID-induced lesions was, nevertheless, reduced from 50% to 33% with the probiotic treatment. To conclude, the B. lactis 420 supplementation protected the rats from an NSAID-induced increase in stomach permeability and may reduce the formation of more serious GI mucosal damage and/or enhance the recovery rate of the stomach mucosa.

  5. Bifidobacterium animalis subsp. lactis 420 mitigates the pathological impact of myocardial infarction in the mouse.

    PubMed

    Danilo, C A; Constantopoulos, E; McKee, L A; Chen, H; Regan, J A; Lipovka, Y; Lahtinen, S; Stenman, L K; Nguyen, T-V V; Doyle, K P; Slepian, M J; Khalpey, Z I; Konhilas, J P

    2017-04-26

    There is a growing appreciation that our microbial environment in the gut plays a critical role in the maintenance of health and the pathogenesis of disease. Probiotic, beneficial gut microbes, administration can directly attenuate cardiac injury and post-myocardial infarction (MI) remodelling, yet the mechanisms of cardioprotection are unknown. We hypothesised that administration of Bifidobacterium animalis subsp. lactis 420 (B420), a probiotic with known anti-inflammatory properties, to mice will mitigate the pathological impact of MI, and that anti-inflammatory T regulatory (Treg) immune cells are necessary to impart protection against MI as a result of B420 administration. Wild-type male mice were administered B420, saline or Lactobacillus salivarius 33 (Ls-33) by gavage daily for 14 or 35 days, and underwent ischemia/reperfusion (I/R). Pretreatment with B420 for 10 or 28 days attenuated cardiac injury from I/R and reduced levels of inflammatory markers. Depletion of Treg cells by administration of anti-CD25 monoclonal antibodies eliminated B420-mediated cardio-protection. Further cytokine analysis revealed a shift from a pro-inflammatory to an anti-inflammatory environment in the probiotic treated post-MI hearts compared to controls. To summarise, B420 administration mitigates the pathological impact of MI. Next, we show that Treg immune cells are necessary to mediate B420-mediated protection against MI. Finally, we identify putative cellular, epigenetic and/or post-translational mechanisms of B420-mediated protection against MI.

  6. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice.

    PubMed

    Shu, Q; Lin, H; Rutherfurd, K J; Fenwick, S G; Prasad, J; Gopal, P K; Gill, H S

    2000-01-01

    The ability of a newly identified probiotic lactic acid bacterial strain, Bifidobacterium lactis (HN019), to confer protection against Salmonella typhimurium was investigated in BALB/c mice. Feeding mice with B. lactis conferred a significant degree of protection against single or multiple oral challenge with virulent S. typhimurium, in comparison to control mice that did not receive B. lactis. Protection included a ten-fold increase in survival rate, significantly higher post-challenge food intake and weight gain, and reduced pathogen translocation to visceral tissues (spleen and liver). Furthermore, the degree of pathogen translocation showed a significant inverse correlation with splenic lymphocyte proliferative responses to mitogens, blood and peritoneal cell phagocytic activity and intestinal mucosal anti-S. typhimurium antibody titers in infected mice; all of these immune parameters were enhanced in mice fed B. lactis. Together, these results suggest that dietary B. lactis can provide a significant degree of protection against Salmonella infection by enhancing various parameters of immune function that are relevant to the immunological control of salmonellosis. Thus dietary supplementation with B. lactis provides a unique opportunity for developing immune-enhancing probiotic dairy food products with proven health benefits.

  7. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis

    PubMed Central

    Min, Yang Won; Park, Sang Un; Jang, Yeon Sil; Kim, Young-Ho; Rhee, Poong-Lyul; Ko, Seo Hyun; Joo, Nami; Kim, Sun Im; Kim, Cheol-Hyun; Chang, Dong Kyung

    2012-01-01

    AIM: To investigate whether composite yogurt with acacia dietary fiber and Bifidobacterium lactis (B. lactis) has additive effects in irritable bowel syndrome (IBS). METHODS: A total of 130 patients were randomly allocated to consume, twice daily for 8 wk, either the composite yogurt or the control product. The composite yogurt contained acacia dietary fiber and high-dose B. lactis together with two classic yogurt starter cultures. Patients were evaluated using the visual analog scale via a structured questionnaire administered at baseline and after treatment. RESULTS: Improvements in bowel habit satisfaction and overall IBS symptoms from baseline were significantly higher in the test group than in the control group (27.16 vs 15.51, P = 0.010, 64.2 ± 17.0 vs 50.4 ± 20.5, P < 0.001; respectively). In constipation-predominant IBS, improvement in overall IBS symptoms was significantly higher in the test group than in the control group (72.4 ± 18.4 vs 50.0 ± 21.8, P < 0.001). In patients with diarrhea-predominant IBS, improvement in bowel habit satisfaction from baseline was significantly higher in the test group than in the control group (32.90 vs 7.81, P = 0.006). CONCLUSION: Our data suggest that composite yogurt enriched with acacia fiber and B. lactis has greater therapeutic effects in patients with IBS than standard yogurt. PMID:22969230

  8. Induction of Sucrose Utilization Genes from Bifidobacterium lactis by Sucrose and Raffinose

    PubMed Central

    Trindade, Marla I.; Abratt, Valerie R.; Reid, Sharon J.

    2003-01-01

    The probiotic organism Bifidobacterium lactis was isolated from a yoghurt starter culture with the aim of analyzing its use of carbohydrates for the development of prebiotics. A sucrose utilization gene cluster of B. lactis was identified by complementation of a gene library in Escherichia coli. Three genes, encoding a sucrose phosphorylase (ScrP), a GalR-LacI-type transcriptional regulator (ScrR), and a sucrose transporter (ScrT), were identified by sequence analysis. The scrP gene was expressed constitutively from its own promoter in E. coli grown in complete medium, and the strain hydrolyzed sucrose in a reaction that was dependent on the presence of phosphates. Primer extension experiments with scrP performed by using RNA isolated from B. lactis identified the transcriptional start site 102 bp upstream of the ATG start codon, immediately adjacent to a palindromic sequence resembling a regulator binding site. In B. lactis, total sucrase activity was induced by the presence of sucrose, raffinose, or oligofructose in the culture medium and was repressed by glucose. RNA analysis of the scrP, scrR, and scrT genes in B. lactis indicated that expression of these genes was influenced by transcriptional regulation and that all three genes were similarly induced by sucrose and raffinose and repressed by glucose. Analysis of the sucrase activities of deletion constructs in heterologous E. coli indicated that ScrR functions as a positive regulator. PMID:12513973

  9. Safety of Bifidobacterium animalis Subsp. Lactis (B. lactis) Strain BB-12-Supplemented Yogurt in Healthy Children.

    PubMed

    Tan, Tina P; Ba, Zhaoyong; Sanders, Mary E; D'Amico, Frank J; Roberts, Robert F; Smith, Keisha H; Merenstein, Daniel J

    2017-02-01

    Probiotics are live microorganisms that may provide health benefits to the individual when consumed in sufficient quantities. For studies conducted on health or disease endpoints on probiotics in the United States, the Food and Administration has required those studies to be conducted as investigational new drugs. This phase I, double-blinded, randomized, controlled safety study represents the first requirement of this pathway. The purpose of the study was to determine the safety of Bifidobacterium animalis subsp. lactis (B lactis) strain BB-12 (BB-12)-supplemented yogurt when consumed by a generally healthy group of children. The secondary aim was to assess the effect of BB-12-supplemented yogurt on the gut microbiota of the children. Sixty children ages 1 to 5 years were randomly assigned to consume 4 ounces of either BB-12-supplemented yogurt or nonsupplemented control yogurt daily for 10 days. The primary outcome was to assess safety and tolerability, as determined by the number of reported adverse events. A total of 186 nonserious adverse events were reported, with no significant differences between the control and BB-12 groups. No significant changes due to probiotic treatment were observed in the gut microbiota of the study cohort. BB-12-supplemented yogurt is safe and well-tolerated when consumed by healthy children. The present study will form the basis for future randomized clinical trials investigating the potential effects of BB-12-supplemented yogurt in different disease states.

  10. Does yogurt enriched with Bifidobacterium longum affect colonic microbiology and fecal metabolites in health subjects?

    PubMed

    Bartram, H P; Scheppach, W; Gerlach, S; Ruckdeschel, G; Kelber, E; Kasper, H

    1994-02-01

    Diet-induced changes in the colonic microflora seem to play a role in colon carcinogenesis. In this study the effects of a yogurt (500 mL/d for 3 wk) enriched with Bifidobacterium longum and 5 g lactulose/L (A) on the fecal bacterial flora and various risk indexes for colon carcinogenesis were tested in 12 healthy volunteers and compared with a conventional yogurt (B). Increased excretion of bifidobacteria (P < 0.017) was found after consumption of both yogurts compared with the prestudy periods, whereas cultural counts of aerobes and anaerobes were not different. Breath-hydrogen exhalation was elevated and mouth-to-cecum transit time was accelerated in the period of yogurt A ingestion (P < 0.05) whereas no differences were found for oral-anal mean transit time, stool weight and pH, and fecal concentrations of short-chain fatty acids, bile acids, and neutral sterols. The results generally indicate great stability of the human fecal flora to this kind of dietary intervention.

  11. Sensory characteristics and volatile composition of a cereal beverage fermented with Bifidobacterium breve NCIMB 702257.

    PubMed

    Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S

    2014-04-01

    Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage.

  12. Effect of composite yogurt enriched with acacia fiber and Bifidobacterium lactis.

    PubMed

    Min, Yang Won; Park, Sang Un; Jang, Yeon Sil; Kim, Young-Ho; Rhee, Poong-Lyul; Ko, Seo Hyun; Joo, Nami; Kim, Sun Im; Kim, Cheol-Hyun; Chang, Dong Kyung

    2012-09-07

    To investigate whether composite yogurt with acacia dietary fiber and Bifidobacterium lactis (B. lactis) has additive effects in irritable bowel syndrome (IBS). A total of 130 patients were randomly allocated to consume, twice daily for 8 wk, either the composite yogurt or the control product. The composite yogurt contained acacia dietary fiber and high-dose B. lactis together with two classic yogurt starter cultures. Patients were evaluated using the visual analog scale via a structured questionnaire administered at baseline and after treatment. Improvements in bowel habit satisfaction and overall IBS symptoms from baseline were significantly higher in the test group than in the control group (27.16 vs 15.51, P = 0.010, 64.2 ± 17.0 vs 50.4 ± 20.5, P < 0.001; respectively). In constipation-predominant IBS, improvement in overall IBS symptoms was significantly higher in the test group than in the control group (72.4 ± 18.4 vs 50.0 ± 21.8, P < 0.001). In patients with diarrhea-predominant IBS, improvement in bowel habit satisfaction from baseline was significantly higher in the test group than in the control group (32.90 vs 7.81, P = 0.006). Our data suggest that composite yogurt enriched with acacia fiber and B. lactis has greater therapeutic effects in patients with IBS than standard yogurt.

  13. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    PubMed

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4(+)T and CD8(+)T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  14. Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains.

    PubMed

    Lahtinen, S J; Ouwehand, A C; Salminen, S J; Forssell, P; Myllärinen, P

    2007-05-01

    To assess the applicability of starch- and lipid-based encapsulation methods for improving the viability and culturability of two Bifidobacterium longum strains stored in fermented and nonfermented foods. Cells were encapsulated with partially hydrolysed potato starch granules combined with amylose coating, or entrapped in cocoa butter matrix. The tested B. longum strains were not adherent to the starch granules, and the culturability of the cells stored in fermented and nonfermented foods was not improved by starch-based encapsulation. Encapsulation of the cells in cocoa butter was found to increase the plate counts during storage. In addition to plate counts, viability of the cells was measured by fluorescent microscopy using LIVE/DEAD BacLight viability assay. Microscopic counts of the viable cells did not change significantly during storage, suggesting that the cells remained alive despite becoming unable to grow on nutrient agar plates. Encapsulation with cocoa butter increased the culturability of the cells, but encapsulation with hydrolysed potato starch had no effect. Culture-independent viability assay suggested that cells remained viable despite being unable to grow on agar plates. This study indicates that encapsulation techniques may be useful in improving the culturability of bacteria, but the plate counts may yield insufficient data on the actual viability of the cells.

  15. In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp.

    PubMed

    Sims, Ian M; Ryan, Jason L J; Kim, Sang H

    2014-02-01

    The utilisation of various prebiotic oligosaccharides by probiotic strains of Bifidobacterium lactis, Lactobacillus rhamnosus and Lactobacillus acidophilus was investigated in order to determine the synbiotic potential of various prebiotic/probiotic combinations. Analysis by HPLC and high-performance anion-exchange chromatography of the cell-free medium taken during growth of the three probiotic bacteria showed differences in the consumption of the various oligosaccharides. Analysis of galactooligosaccharides showed that both L. rhamnosus and B. lactis consumed mostly mono- and di-saccharide, while L. acidophilus consumed oligosaccharides up to trisaccharide. Both B. lactis and L. acidophilus utilised fructooligosaccharides and inulin, but showed different patterns of oligosaccharide consumption. Only L. rhamnosus grew on β-glucan oligosaccharides and preferentially consumed the trisaccharide. The results indicate the synbiotic potential of the various probiotic/prebiotic combinations, particularly L. acidophilus/galactooligosaccharides, L. acidophilus/fructooligosaccharides or inulin and L. rhamnosus/β-glucan oligosaccharides.

  16. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life

    PubMed Central

    Rigo-Adrover, Maria del Mar; Franch, Àngels; Castell, Margarida; Pérez-Cano, Francisco José

    2016-01-01

    This study aimed to investigate the effect of supplementation with the probiotic Bifidobacterium breve M-16V on the maturation of the intestinal and circulating immune system during suckling. In order to achieve this purpose, neonatal Lewis rats were supplemented with the probiotic strain from the 6th to the 18th day of life. The animals were weighed during the study, and faecal samples were obtained and evaluated daily. On day 19, rats were euthanized and intestinal wash samples, mesenteric lymph node (MLN) cells, splenocytes and intraepithelial lymphocytes (IEL) were obtained. The probiotic supplementation in early life did not modify the growth curve and did not enhance the systemic immune maturation. However, it increased the proportion of cells bearing TLR4 in the MLN and IEL, and enhanced the percentage of the integrin αEβ7+ and CD62L+ cells in the MLN and that of the integrin αEβ7+ cells in the IEL, suggesting an enhancement of the homing process of naïve T lymphocytes to the MLN, and the retention of activated lymphocytes in the intraepithelial compartment. Interestingly, B. breve M-16V enhanced the intestinal IgA synthesis. In conclusion, supplementation with the probiotic strain B. breve M-16V during suckling improves the development of mucosal immunity in early life. PMID:27820846

  17. Suitability of Bifidobacterium spp. and Lactobacillus plantarum as probiotics intended for fruit juices containing citrus extracts.

    PubMed

    Bevilacqua, Antonio; Campaniello, Daniela; Corbo, Maria Rosaria; Maddalena, Lucia; Sinigaglia, Milena

    2013-11-01

    A strain of Lactobacillus plantarum and 4 strains of bifidobacteria were inoculated in apple juice and in a commercial beverage labeled as "red-fruit juice," containing citrus extracts as natural preservatives; the suitability of the probiotics was evaluated in relation to their resistance to 2 kinds of citrus extracts (biocitro and lemon extract), survival in juices at 4 and 37 °C, and inhibition of Zygosaccharomyces bailii. Cell count of L. plantarum and bifidobacteria over time was fitted through the Weibull equation, for the evaluation of the first reduction time (δ), death time, and microbiological shelf life (the break-point was set to 7 log cfu/mL). Bifidobacterium animalis subsp. lactis experienced the highest δ-value (23.21 d) and death time (96.59 d) in the red-fruit juice at 4 °C, whereas L. plantarum was the most promising strain in apple juice at 37 °C. Biocitro and lemon extract did not exert a biocidal effect toward probiotics; moreover, the probiotics controlled the growth of Z. bailii and the combination of L. plantarum with 40 ppm of biocitro reduced the level of the yeast after 18 d by 2 log cfu/mL.

  18. Bifidobacterium infantis has a beneficial effect on 5-fluorouracil-induced intestinal mucositis in rats.

    PubMed

    Yuan, K-T; Yu, H-L; Feng, W-D; Chong, P; Yang, T; Xue, C-L; Yu, M; Shi, H-P

    2015-03-01

    Intestinal mucositis is a common toxic side effect in cancer patients receiving high-dose chemotherapy. This study aimed to evaluate the beneficial effects of Bifidobacterium infantis in a rat model of intestinal mucositis induced by 5-fluorouracil (5-FU). Thirty male Sprague-Dawley rats were divided into three groups: control, 5-FU, and 5-FU + B. infantis. A single intraperitoneal injection of 5-FU (150 mg/kg) was used to induce intestinal mucositis. B. infantis (1×109 cfu) was administered for 11 days, starting from 7 days before 5-FU injection. Intestinal mucositis was evaluated based on body weight, villus height, immunohistological expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa beta (NF-κB), levels of the pro-inflammatory factors interleukin 1 beta and tumour necrosis factor alpha, and myeloperoxidase (MPO) concentration. The results showed that the 5-FU + B. infantis group demonstrated a higher body weight and villus height, increased expression of PCNA, reduced expression of NF-κB and pro-inflammatory factors, and lower MPO concentration compared to the 5-FU group. These data suggest that probiotic B. infantis is effective in reducing chemotherapy-induced intestinal mucositis in rats.

  19. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans.

    PubMed

    Garrido, Daniel; Kim, Jae Han; German, J Bruce; Raybould, Helen E; Mills, David A

    2011-03-15

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process.

  20. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community

    PubMed Central

    Sugahara, Hirosuke; Odamaki, Toshitaka; Fukuda, Shinji; Kato, Tamotsu; Xiao, Jin-zhong; Abe, Fumiaki; Kikuchi, Jun; Ohno, Hiroshi

    2015-01-01

    Probiotics are well known as health-promoting agents that modulate intestinal microbiota. However, the molecular mechanisms underlying this effect remain unclear. Using gnotobiotic mice harboring 15 strains of predominant human gut-derived microbiota (HGM), we investigated the effects of Bifidobacterium longum BB536 (BB536-HGM) supplementation on the gut luminal metabolism. Nuclear magnetic resonance (NMR)-based metabolomics showed significantly increased fecal levels of pimelate, a precursor of biotin, and butyrate in the BB536-HGM group. In addition, the bioassay revealed significantly elevated fecal levels of biotin in the BB536-HGM group. Metatranscriptomic analysis of fecal microbiota followed by an in vitro bioassay indicated that the elevated biotin level was due to an alteration in metabolism related to biotin synthesis by Bacteroides caccae in this mouse model. Furthermore, the proportion of Eubacterium rectale, a butyrate producer, was significantly higher in the BB536-HGM group than in the group without B. longum BB536 supplementation. Our findings help to elucidate the molecular basis underlying the effect of B. longum BB536 on the gut luminal metabolism through its interactions with the microbial community. PMID:26315217

  1. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community.

    PubMed

    Sugahara, Hirosuke; Odamaki, Toshitaka; Fukuda, Shinji; Kato, Tamotsu; Xiao, Jin-zhong; Abe, Fumiaki; Kikuchi, Jun; Ohno, Hiroshi

    2015-08-28

    Probiotics are well known as health-promoting agents that modulate intestinal microbiota. However, the molecular mechanisms underlying this effect remain unclear. Using gnotobiotic mice harboring 15 strains of predominant human gut-derived microbiota (HGM), we investigated the effects of Bifidobacterium longum BB536 (BB536-HGM) supplementation on the gut luminal metabolism. Nuclear magnetic resonance (NMR)-based metabolomics showed significantly increased fecal levels of pimelate, a precursor of biotin, and butyrate in the BB536-HGM group. In addition, the bioassay revealed significantly elevated fecal levels of biotin in the BB536-HGM group. Metatranscriptomic analysis of fecal microbiota followed by an in vitro bioassay indicated that the elevated biotin level was due to an alteration in metabolism related to biotin synthesis by Bacteroides caccae in this mouse model. Furthermore, the proportion of Eubacterium rectale, a butyrate producer, was significantly higher in the BB536-HGM group than in the group without B. longum BB536 supplementation. Our findings help to elucidate the molecular basis underlying the effect of B. longum BB536 on the gut luminal metabolism through its interactions with the microbial community.

  2. Growth and final product formation by Bifidobacterium infantis in aerated fermentations.

    PubMed

    González, R; Blancas, A; Santillana, R; Azaola, A; Wacher, C

    2004-10-01

    Fermentation conditions were developed to allow Bifidobacterium infantis to grow in the presence of air. Batch fermentations in TPYG medium, starting from anoxic conditions followed by the application of low airflow rates [0.02-0.1 air volume, per liquid media volume, per minute (vvm)], were analyzed for growth, oxygen uptake, and product formation by the bacterium. Under all aerated fermentations, B. infantis showed high aerotolerance, with a maximum oxygen-specific consumption rate of 0.34 mmol oxygen per gram dry cell weight per hour in the presence of 0.06 vvm. Similar growth yields were obtained under oxic and anoxic conditions (0.11-0.13 and 0.11 g dry cell weight per mmol glucose, respectively). Oxygen also influenced metabolite formation since lactate production and its molar relation to acetate increased and formate decreased with aeration rate. Under anoxic conditions, a maximum concentration of 8.1 mM lactate and an acetate/lactate ratio of 3.5:1 were obtained, while under oxic conditions the lactate concentration increased more than two-fold and the acetate/lactate molar ratio decreased to 1.5:1. The possibility of balancing acetate/lactate molar ratios for organoleptic purposes as well as for obtaining good growth under microaerated conditions was demonstrated.

  3. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression.

    PubMed

    Kim, Jung-Hwan; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Seong-Hoon; Jang, Min Seong; Lee, Eun-Jung; Moon, Sook Jin; Yun, Chang Ho; Im, Sin-Hyeog; Jeong, Seok-Geun; Park, Beom-Young; Kim, Kyong-Tai; Seoh, Ju-Young; Kim, Yoon-Keun; Oh, Sung-Jong; Ham, Jun-Sang; Yang, Bo-Gie; Jang, Myoung Ho

    2016-02-01

    The incidence of food allergies has increased dramatically during the last decade. Recently, probiotics have been studied for the prevention and treatment of allergic disease. We examined whether Bifidobacterium longum KACC 91563 and Enterococcus faecalis KACC 91532 have the capacity to suppress food allergies. B longum KACC 91563 and E faecalis KACC 91532 were administered to BALB/c wild-type mice, in which food allergy was induced by using ovalbumin and alum. Food allergy symptoms and various immune responses were assessed. B longum KACC 91563, but not E faecalis KACC 91532, alleviated food allergy symptoms. Extracellular vesicles of B longum KACC 91563 bound specifically to mast cells and induced apoptosis without affecting T-cell immune responses. Furthermore, injection of family 5 extracellular solute-binding protein, a main component of extracellular vesicles, into mice markedly reduced the occurrence of diarrhea in a mouse food allergy model. B longum KACC 91563 induces apoptosis of mast cells specifically and alleviates food allergy symptoms. Accordingly, B longum KACC 91563 and family 5 extracellular solute-binding protein exhibit potential as therapeutic approaches for food allergies. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Bioaccessible Antioxidants in Milk Fermented by Bifidobacterium longum subsp. longum Strains

    PubMed Central

    Gagnon, Mérilie; Savard, Patricia; Rivière, Audrey; LaPointe, Gisèle

    2015-01-01

    Bifidobacterium longum subsp. longum is among the dominant species of the human gastrointestinal microbiota and could thus have potential as probiotics. New targets such as antioxidant properties have interest for beneficial effects on health. The objective of this study was to evaluate the bioaccessibility of antioxidants in milk fermented by selected B. longum subsp. longum strains during in vitro dynamic digestion. The antioxidant capacity of cell extracts from 38 strains, of which 32 belong to B. longum subsp. longum, was evaluated with the ORAC (oxygen radical absorbance capacity) method. On the basis of screening and gene sequence typing by multilocus locus sequence analysis (MLSA), five strains were chosen for fermenting reconstituted skim milk. Antioxidant capacity varied among the strains tested (P = 0.0009). Two strains of B. longum subsp. longum (CUETM 172 and 171) showed significantly higher ORAC values than the other bifidobacteria strains. However, there does not appear to be a relationship between gene sequence types and antioxidant capacity. The milk fermented by each of the five strains selected (CUETM 268, 172, 245, 247, or PRO 16-10) did not have higher initial ORAC values compared to the nonfermented milk samples. However, higher bioaccessibility of antioxidants in fermented milk (175–358%) was observed during digestion. PMID:25802836

  5. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.

    PubMed

    van den Broek, L A M; van Boxtel, E L; Kievit, R P; Verhoef, R; Beldman, G; Voragen, A G J

    2004-08-01

    Clones of a genomic library of Bifidobacterium adolescentis were grown in minimal medium with sucrose as sole carbon source. An enzymatic fructose dehydrogenase assay was used to identify sucrose-degrading enzymes. Plasmids were isolated from the positive colonies and sequence analysis revealed that two types of insert were present, which only differed with respect to their orientation in the plasmid. An open reading frame of 1,515 nucleotides with high homology for sucrose phosphorylases was detected on these inserts. The gene was designated SucP and encoded a protein of 56,189 Da. SucP was heterologously expressed in Escherichia coli, purified, and characterized. The molecular mass of SucP was 58 kDa, as estimated by SDS-PAGE, while 129 kDa was found with gel permeation, suggesting that the native enzyme was a dimer. The enzyme showed high activity towards sucrose and a lower extent towards alpha-glucose-1-phosphate. The transglucosylation properties were investigated using a broad range of monomeric sugars as acceptor substrate for the recombinant enzyme, while alpha-glucose-1-phosphate served as donor. D- and L-arabinose, D- and L-arabitol, and xylitol showed the highest production of transglucosylation products. The investigated disaccharides and trisaccharides were not suitable as acceptors. The structure of the transglucosylation product obtained with D-arabinose as acceptor was elucidated by NMR. The structure of the synthesized non-reducing dimer was alpha-Glcp(1-->1)beta-Araf.

  6. Purification and characterization of oxygen-inducible haem catalase from oxygen-tolerant Bifidobacterium asteroides.

    PubMed

    Hayashi, Kyohei; Maekawa, Itaru; Tanaka, Kunifusa; Ijyuin, Susumu; Shiwa, Yu; Suzuki, Ippei; Niimura, Youichi; Kawasaki, Shinji

    2013-01-01

    Bifidobacterium asteroides, originally isolated from honeybee intestine, was found to grow under 20% O(2) conditions in liquid shaking culture using MRS broth. Catalase activity was detected only in cells that were exposed to O(2) and grown in medium containing a haem source, and these cells showed higher viability on exposure to H(2)O(2). Passage through multiple column chromatography steps enabled purification of the active protein, which was identified as a homologue of haem catalase on the basis of its N-terminal sequence. The enzyme is a homodimer composed of a subunit with a molecular mass of 55 kDa, and the absorption spectrum shows the typical profile of bacterial haem catalase. A gene encoding haem catalase, which has an amino acid sequence coinciding with the N-terminal amino acid sequence of the purified protein, was found in the draft genome sequence data of B. asteroides. Expression of the katA gene was induced in response to O(2) exposure. The haem catalase from B. asteroides shows about 70-80% identity with those from lactobacilli and other lactic acid bacteria, and no homologues were found in other bifidobacterial genomes.

  7. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    PubMed Central

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric; Lambie, Suzanne C.; Perry, Rechelle; Teh, Koon Hoong; Otter, Don E.; Shapiro, Nicole; Woyke, Tanja; Leahy, Sinead C.

    2016-01-01

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present study provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat. PMID:27468806

  8. Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans

    PubMed Central

    Garrido, Daniel; Kim, Jae Han; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2011-01-01

    Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process. PMID:21423604

  9. Production of probiotic cheese (cheddar-like cheese) using enriched cream fermented by Bifidobacterium infantis.

    PubMed

    Daigle, A; Roy, D; Bélanger, G; Vuillemard, J C

    1999-06-01

    Probiotic cheeses (Cheddar-like cheese) were produced with microfiltered milk standardized with cream enriched with native phosphocaseinate retentate and fermented by Bifidobacterium infantis. During the manufacture and storage of cheeses, viability of the bifidobacteria was determined. Biochemical changes such as proteolysis, sugar metabolism, and organic acids production were estimated. No bifidobacteria growth was observed during cheese-making steps. Bifidobacteria survived very well in cheeses packed in vacuum sealed bags kept at 4 degrees C for 84 d and remained above 3 x 10(6) cfu/g of cheese. No significant difference was observed between cheeses produced with or without bifidobacteria for fat, protein, moisture, salt, ash, or pH. After 12 wk of storage, more than 56% of the as1-CN was hydrolyzed in cheeses that were produced with bifidobacteria and inoculated at 10(8) cfu/g in the cream, and > 45% of hydrolysis was observed in the control cheese. However, no significant differences in the electrophoretic sodium dodecyl sulfate-PAGE patterns were observed in cheeses at any period of storage. At the first day after manufacture, lactose was completely hydrolyzed in cheeses made with bifidobacteria, which suggested high beta-galactosidase activity by B. infantis. Small quantities of acetic acid were detected in bifidus cheeses. The results indicated that B. infantis introduced into hard pressed cheese exhibited excellent viability during storage for 12 wk and could be metabolically active.

  10. Genomic Microdiversity of Bifidobacterium pseudocatenulatum Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention

    PubMed Central

    Wu, Guojun; Zhang, Chenhong; Wu, Huan; Wang, Ruirui; Shen, Jian; Wang, Linghua; Zhao, Yufeng; Pang, Xiaoyan; Zhang, Xiaojun; Zhao, Liping

    2017-01-01

    ABSTRACT The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95) of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups), including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized. PMID:28196965

  11. Fermentation of protopanaxadiol type ginsenosides (PD) with probiotic Bifidobacterium lactis and Lactobacillus rhamnosus.

    PubMed

    Tan, Joanne Sh; Yeo, Chia-Rou; Popovich, David G

    2017-07-01

    Ginsenosides are believed to be the principal components behind the pharmacological actions of ginseng, and their bioactive properties are closely related to the type, position, and number of sugar moieties attached to the aglycone; thus, modification of the sugar chains may markedly change their biological activities. In this study, major protopanaxadiol type ginsenosides (PD) Rb1, Rc, and Rb2 were isolated from Panax ginseng and were transformed using two probiotic strains namely Bifidobacterium lactis Bi-07 and Lactobacillus rhamnosus HN001 to obtain specific deglycosylated ginsenosides. It was demonstrated that B. lactis transformed ginsenosides Rb1, Rc, and Rb2 to Rd within 1 h of fermentation and rare ginsenoside F2 by the conversion of Rd after 12-h fermentation. The maximum Rd concentration was 147.52 ± 1.45 μg/mL after 48-h fermentation as compared to 45.85 ± 0.71 μg/mL before fermentation. In contrast, L. rhamnosus transformed Rb1, Rc, and Rb2 into Rd as the final metabolite after 72-h fermentation. B. lactis displayed significantly (p < 0.05) higher β-glucosidase activity against p-nitrophenyl-β-glucopyranoside than L. rhamnosus and higher bioconversion efficiency during fermentation. The present study suggests that the fermentation of major PD type ginsenosides with B. lactis Bi-07 may serve as an effective means to afford bioactive deglycosylated ginsenosides and to create novel ginsenoside extracts.

  12. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Kim, Mi Jin; Kim, Jung Hyun; Chung, Myung Jun; Kim, Kyung Jae; Ha, Nam Joo

    2008-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as anti-tumor activity. The aim of the present work was to study the growth inhibition of tumor cells by butanol extract of Bifidobacterium adolescentis isolated from healthy young Koreans. Methods The anti-proliferative activity of B. adolescentis isolates was assessed by XTT assays on three human colon cancer cell lines (Caco-2, HT-29, and SW480). The effects of B. adolescentis SPM0212 butanol extract on tumor necrosis factor-α (TNF-α) and nitric oxide (NO) production were tested using the murine macrophage RAW 264.7 cell line. Results The butanol extract of B. adolescentis SPM0212 dose-dependently inhibited the growth of Caco-2, HT-29, and SW480 cells by 70%, 30%, and 40%, respectively, at 200 μg/mL. Additionally, the butanol extract of B. adolescentis SPM0212 induced macrophage activation and significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells. Conclusion The butanol extract of B. adolescentis SPM0212 increased activity of the host immune system and may improve human health by helping to prevent colon cancer as a biological response modifier. PMID:18950540

  13. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407

    PubMed Central

    Liu, Chang; Zhang, Zhuo-Yang; Dong, Ke; Guo, Xiao-Kui

    2010-01-01

    AIM: To elucidate the adherence and immunomodulatory properties of a probiotic strain Bifidobacterium lactis (B. lactis) HN019. METHODS: Adhesion assays of B. lactis HN019 and Salmonella typhimurium (S. typhimurium) ATCC 14028 to INT-407 cells were carried out by detecting copies of species-specific genes with real-time polymerase chain reaction. Morphological study was further conducted by transmission electron microscopy. Interleukin-1β (IL-1β), interleukin-8, and tumor necrosis factor-α (TNF-α) gene expression were assessed while enzyme linked immunosorbent assay was used to detect IL-8 protein secretion. RESULTS: The attachment of S. typhimurium ATCC 14028 to INT407 intestinal epithelial cells was inhibited significantly by B. lactis HN019. B. lactis HN019 could be internalized into the INT-407 cells and attenuated IL-8 mRNA level at both baseline and S. typhimurium-induced pro-inflammatory responses. IL-8 secretion was reduced while IL-1β and TNF-α mRNA expression level remained unchanged at baseline after treated with B. lactis HN019. CONCLUSION: B. lactis HN019 does not up-regulate the intestinal epithelium expressed pro-inflammatory cytokine, it showed the potential to protect enterocytes from an acute inflammatory response induced by enteropathogen. PMID:20458767

  14. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on intestinal epithelial cells INT-407.

    PubMed

    Liu, Chang; Zhang, Zhuo-Yang; Dong, Ke; Guo, Xiao-Kui

    2010-05-14

    To elucidate the adherence and immunomodulatory properties of a probiotic strain Bifidobacterium lactis (B. lactis) HN019. Adhesion assays of B. lactis HN019 and Salmonella typhimurium (S. typhimurium) ATCC 14028 to INT-407 cells were carried out by detecting copies of species-specific genes with real-time polymerase chain reaction. Morphological study was further conducted by transmission electron microscopy. Interleukin-1beta (IL-1beta), interleukin-8, and tumor necrosis factor-alpha (TNF-alpha) gene expression were assessed while enzyme linked immunosorbent assay was used to detect IL-8 protein secretion. The attachment of S. typhimurium ATCC 14028 to INT407 intestinal epithelial cells was inhibited significantly by B. lactis HN019. B. lactis HN019 could be internalized into the INT-407 cells and attenuated IL-8 mRNA level at both baseline and S. typhimurium-induced pro-inflammatory responses. IL-8 secretion was reduced while IL-1beta and TNF-alpha mRNA expression level remained unchanged at baseline after treated with B. lactis HN019. B. lactis HN019 does not up-regulate the intestinal epithelium expressed pro-inflammatory cytokine, it showed the potential to protect enterocytes from an acute inflammatory response induced by enteropathogen.

  15. The Effects of Bifidobacterium breve on Immune Mediators and Proteome of HT29 Cells Monolayers

    PubMed Central

    Sánchez, Borja; González-Rodríguez, Irene; Arboleya, Silvia; López, Patricia; Suárez, Ana

    2015-01-01

    The use of beneficial microorganisms, the so-called probiotics, to improve human health is gaining popularity. However, not all of the probiotic strains trigger the same responses and they differ in their interaction with the host. In spite of the limited knowledge on mechanisms of action some of the probiotic effects seem to be exerted through maintenance of the gastrointestinal barrier function and modulation of the immune system. In the present work, we have addressed in vitro the response of the intestinal epithelial cell line HT29 to the strain Bifidobacterium breve IPLA20004. In the array of 84 genes involved in inflammation tested, the expression of 12 was modified by the bifidobacteria. The genes of chemokine CXCL6, the chemokine receptor CCR7, and, specially, the complement component C3 were upregulated. Indeed, HT29 cells cocultivated with B. breve produced significantly higher levels of protein C3a. The proteome of HT29 cells showed increased levels of cytokeratin-8 in the presence of B. breve. Altogether, it seems that B. breve IPLA20004 could favor the recruitment of innate immune cells to the mucosa reinforcing, as well as the physical barrier of the intestinal epithelium. PMID:25793196

  16. Effects of synbiotic-based Bifidobacterium animalis in female rats experimentally infected with Toxoplasma gondii.

    PubMed

    Ribeiro, Cláudia Mello; Costa, Veruska Maia; Gomes, Maria Isabel Franchi Vasconcelos; Golim, Marjorie Assis; Modolo, José Rafael; Langoni, Hélio

    2011-03-01

    The aim of this study was to assess the effects of a synbiotic composed of Bifidobacterium animalis and fructooligosaccharides on female rats infected with Toxoplasma gondii. Female Wistar rats, treated or not with dexamethasone, were daily supplemented with synbiotics for 21 days. After 15 days of supplementation, the rats were orally infected with 10(4)T. gondii bradyzoites. Blood samples were collected to measure the levels of IFN-γ, IL-10 and T. gondii antibodies. All synbiotic-supplemented rats survived until the end of the experiment; however, non-supplemented dexamethasone-treated rats died between the fifth and the eighth days after T. gondii infection. Dexamethasone-treated rats supplemented with synbiotics (P<0.05) were capable of synthesizing IFN-γ, and this immunological response was essential to ensure their survival. In addition, brain cysts were found in one rat not supplemented with synbiotics. Results suggest that the synbiotic composed of B. animalis and fructooligosaccharides may be beneficial to toxoplasmosis control.

  17. Allergic Patients with Long-Term Asthma Display Low Levels of Bifidobacterium adolescentis

    PubMed Central

    Hevia, Arancha; Milani, Christian; López, Patricia; Donado, Carmen D.; Cuervo, Adriana; González, Sonia; Suárez, Ana; Turroni, Francesca; Gueimonde, Miguel; Ventura, Marco; Sánchez, Borja; Margolles, Abelardo

    2016-01-01

    Accumulated evidence suggests a relationship between specific allergic processes, such as atopic eczema in children, and an aberrant fecal microbiota. However, little is known about the complete microbiota profile of adult individuals suffering from asthma. We determined the fecal microbiota in 21 adult patients suffering allergic asthma (age 39.43 ± 10.98 years old) and compare it with the fecal microbiota of 22 healthy controls (age 39.29 ± 9.21 years old) using culture independent techniques. An Ion-Torrent 16S rRNA gene-based amplification and sequencing protocol was used to determine the fecal microbiota profile of the individuals. Sequence microbiota analysis showed that the microbial alpha-diversity was not significantly different between healthy and allergic individuals and no clear clustering of the samples was obtained using an unsupervised principal component analysis. However, the analysis of specific bacterial groups allowed us to detect significantly lower levels of bifidobacteria in patients with long-term asthma. Also, in allergic individuals the Bifidobacterium adolescentis species prevailed within the bifidobacterial population. The reduction in the levels on bifidobacteria in patients with long-term asthma suggests a new target in allergy research and opens possibilities for the therapeutic modulation of the gut microbiota in this group of patients. PMID:26840903

  18. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum.

    PubMed

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-02-26

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP⁺-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP⁺ over NAD⁺ in the presence of Mg(2+) and Mn(2+), respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn(2+)) and 65 °C (with Mg(2+)), and pH 7.5 (with Mn(2+)) and pH 8.0 (with Mg(2+)). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn(2+) or Mg(2+). Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP⁺ to NAD⁺ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP⁺ use by the IDH family.

  19. [Effect of Bifidobacterium on the immunity in BALB/c mice].

    PubMed

    Fan, Jinbo; Hou, Yu; Zhou, Suzhen; Cai, Xitong

    2015-04-04

    We studied the system immunofuctions of two Bifidobacterium strains isolated from food. There were 10 SPF BALB/c mice in each group. The control group was given only sterile skim milk. The positive control group was given sterile skim milk containing commercial strain BB-12. The treatment group was given sterile skim milk containing different dosages of B. adolescentis BB-2 or B. longum BB-3. The immune parameters including cellular immunity (delayed-type hypersensitivity [DTH], splenic lymphocyte proliferation and natural killer [NK] cell activity), humoral immunity (serum hemolytic activity in immunized animals), and nonspecific immunity (peritoneal macrophages phagocytsis) were measured. Ingestion of B. adolescentis BB-2 or B. longum BB-3 could increase the DTH response. Macrophage phagocytsis was also enhanced, while activities of the NK cells and levels of the serum hemolysin were also significantly higher than that in the control group. There was a significant increase in splenic lymphocyte proliferation in bifidobacteria treated mice compared to the control. Ingestion of B. adolescentis BB-2 or B. longum BB-3 could enhance both innate and acquired immunity in healthy BALB/c mice.

  20. Transcriptome analysis of Bifidobacterium longum strains that show a differential response to hydrogen peroxide stress.

    PubMed

    Oberg, Taylor S; Ward, Robert E; Steele, James L; Broadbent, Jeff R

    2015-10-20

    Consumer and commercial interest in foods containing probiotic bifidobacteria is increasing. However, because bifidobacteria are anaerobic, oxidative stress can diminish cell viability during production and storage of bioactive foods. We previously found Bifidobacterium longum strain NCC2705 had significantly greater intrinsic and inducible resistance to hydrogen peroxide (H2O2) than strain D2957. Here, we explored the basis for these differences by examining the transcriptional responses of both strains to sub-lethal H2O2 exposure for 5- or 60-min. Strain NCC2705 had 288 genes that were differentially expressed after the 5-min treatment and 114 differentially expressed genes after the 60-min treatment. In contrast, strain D2957 had only 21 and 90 differentially expressed genes after the 5- and 60-min treatments, respectively. Both strains showed up-regulation of genes coding enzymes implicated in oxidative stress resistance, such as thioredoxin, thioredoxin reductase, peroxiredoxin, ferredoxin, glutaredoxin, and anaerobic ribonucleotide reductase, but induction levels were typically highest in NCC2705. Compared to D2957, NCC2705 also had more up-regulated genes involved in transcriptional regulation and more down-regulated genes involved in sugar transport and metabolism. These results provide a greater understanding of the molecular basis for oxidative stress resistance in B. longum and the factors that contribute to strain-to-strain variability in survival in bioactive food products.

  1. Biochemical Characterization and Complete Conversion of Coenzyme Specificity of Isocitrate Dehydrogenase from Bifidobacterium longum

    PubMed Central

    Huang, Shi-Ping; Cheng, Hong-Mei; Wang, Peng; Zhu, Guo-Ping

    2016-01-01

    Bifidobacterium longum is a very important gram-positive non-pathogenic bacterium in the human gastrointestinal tract for keeping the digestive and immune system healthy. Isocitrate dehydrogenase (IDH) from B. longum (BlIDH), a novel member in Type II subfamily, was overexpressed, purified and biochemically characterized in detail. The active form of BlIDH was an 83-kDa homodimer. Kinetic analysis showed BlIDH was a NADP+-dependent IDH (NADP-IDH), with a 567- and 193-fold preference for NADP+ over NAD+ in the presence of Mg2+ and Mn2+, respectively. The maximal activity for BlIDH occurred at 60 °C (with Mn2+) and 65 °C (with Mg2+), and pH 7.5 (with Mn2+) and pH 8.0 (with Mg2+). Heat-inactivation profiles revealed that BlIDH retained 50% of maximal activity after incubation at 45 °C for 20 min with either Mn2+ or Mg2+. Furthermore, the coenzyme specificity of BlIDH can be completely reversed from NADP+ to NAD+ by a factor of 2387 by replacing six residues. This current work, the first report on the coenzyme specificity conversion of Type II NADP-IDHs, would provide better insight into the evolution of NADP+ use by the IDH family. PMID:26927087

  2. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    PubMed

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  3. Bifidobacterium lactis 420 and fish oil enhance intestinal epithelial integrity in Caco-2 cells.

    PubMed

    Mokkala, Kati; Laitinen, Kirsi; Röytiö, Henna

    2016-03-01

    Increased intestinal permeability is a predisposing factor for low-grade inflammation-associated conditions, including obesity and type 2 diabetes. Dietary components may influence intestinal barrier integrity. We hypothesized that the dietary supplements Bifidobacterium lactis 420, Lactobacillus rhamnosus HN001, and fish oil have beneficial impacts on intestinal barrier integrity. In addition, we hypothesized that the coadministration of these components results in synergistic benefits to the integrity of the intestinal barrier. To study this, we investigated the impact of cell-free culture supernatant from dietary supplements B lactis 420 and L rhamnosus HN001, and fish oil, separately and in combination, on intestinal permeability in a CaCo-2 cell model. Administered separately, both B lactis 420 supernatant and fish oil significantly increased the integrity of the intestinal epithelial barrier, as determined by an increase in transepithelial electrical resistance (TEER), whereas L rhamnosus did not. The TEER increase with B lactis 420 was dose dependent. Interestingly, a combination of B lactis 420 supernatant and fish oil negated the increase in TEER of the single components. mRNA expression of tight junction proteins, measured by real-time quantitative polymerase chain reaction, was not altered, but the mRNA expression of myosin light chain kinase increased after fish oil treatment. To conclude, single dietary components, namely, B lactis 420 and fish oil, induced beneficial effects on intestinal barrier integrity in vitro, whereas a combination of 2 beneficial test compounds resulted in a null effect.

  4. Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity

    PubMed Central

    Chenoll, Empar; Casinos, Beatriz; Bataller, Esther; Buesa, Javier; Ramón, Daniel; Genovés, Salvador; Fábrega, Joan; Rivero Urgell, Montserrat; Moreno Muñoz, José A.

    2016-01-01

    Rotavirus is one of the main causes of acute diarrhea and enteritis in infants. Currently, studies are underway to assess the use of probiotics to improve rotavirus vaccine protection. A previous work demonstrated that the probiotic strain Bifidobacterium longum subsp. infantis CECT 7210 is able to hinder rotavirus replication both in vitro and in vivo. The present study takes a systematic approach in order to identify the molecule directly involved in rotavirus inhibition. Supernatant protease digestions revealed both the proteinaceous nature of the active substance and the fact that the molecule responsible for inhibiting rotavirus replication is released to the supernatant. Following purification by cationic exchange chromatography, active fractions were obtained and the functional compound was identified as an 11-amino acid peptide (MHQPHQPLPPT, named 11-mer peptide) with a molecular mass of 1.282 KDa. The functionality of 11-mer was verified using the synthesized peptide in Wa, Ito, and VA70 rotavirus infections of both HT-29 and MA-104 cell lines. Finally, protease activity was detected in B. longum subsp. infantis CECT 7210 supernatant, which releases 11-mer peptide. A preliminary identification of the protease is also included in the study. PMID:27199974

  5. Preparation of Eleutherine americana-Alginate Complex Microcapsules and Application in Bifidobacterium longum

    PubMed Central

    Phoem, Atchara N; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P

    2015-01-01

    Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosaccharide extract demonstrated their resistance to low pH and partial tolerance to human α-amylase. Microencapsulated B. longum with E. americana and oligosaccharide extract prepared by the extrusion technique survived better than that by the emulsion technique under adverse conditions. Survival of microencapsulated cells after exposure to the juices and refrigeration storage was higher than free cells at Weeks 2 and 4. In addition, the viability of microencapsulated cells was better than free cells at 65 °C for 15 min. This work suggested that microencapsulated B. longum with E. americana offers the effective delivery of probiotics to colon and maintains their survival in food products. PMID:25629556

  6. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract

    DOE PAGES

    Kelly, William J.; Cookson, Adrian L.; Altermann, Eric; ...

    2016-07-29

    Ruminant animals contribute significantly to the global value of agriculture and rely on a complex microbial community for efficient digestion. However, little is known of how this microbial-host relationship develops and is maintained. To begin to address this, we have determined the ability of three Bifidobacterium species isolated from the faeces of newborn calves to grow on carbohydrates typical of a newborn ruminant diet. Genome sequences have been determined for these bacteria with analysis of the genomes providing insights into the host association and identification of several genes that may mediate interactions with the ruminant gastrointestinal tract. The present studymore » provides a starting point from which we can define the role of potential beneficial microbes in the nutrition of young ruminants and begin to influence the interactions between the microbiota and the host. The differences observed in genomic content hint at niche partitioning among the bifidobacterial species analysed and the different strategies they employ to successfully adapt to this habitat.« less

  7. Production of bacteriocin-like inhibitory substance by Bifidobacterium lactis in skim milk supplemented with additives.

    PubMed

    Martinez, Fabio Andres Castillo; Domínguez, José Manuel; Converti, Attilio; Oliveira, Ricardo Pinheiro de Souza

    2015-08-01

    Bacteriocins are natural compounds used as food biopreservatives instead of chemical preservatives. Bifidobacterium animalis subsp. lactis (Bifid. lactis) was shown to produce a bacteriocin-like inhibitory substance (BLIS) able to inhibit the growth of Listeria monocytogenes selected as an indicator microorganism. To enhance this production by the strain Bifid. lactis BL 04, skim milk (SM) was used as a fermentation medium either in the presence or in the absence of yeast extract, Tween 80 or inulin as stimulating additives, and the results in terms of bacterial growth and BLIS production were compared with those obtained in a traditional high cost complex medium such as Man, Rogosa and Sharpe (MRS). To this purpose, all the cultivations were carried out in flasks at 200 rpm under anaerobic conditions ensured by a nitrogen flowrate of 1.0 L/min for 48 h, and BLIS production was quantified by means of a modified agar diffusion assay at low values of both temperature and concentration of List. monocytogenes. Although all these ingredients were shown to exert positive influence on BLIS production in both media, yeast extract and SM were by far the best ingredient and the best medium, respectively, allowing for a BLIS production at the late exponential phase of 2000 AU/ml.

  8. Bifidobacterium animalis ssp. lactis 420 Protects against Indomethacin-Induced Gastric Permeability in Rats

    PubMed Central

    Lyra, Anna; Saarinen, Markku; Putaala, Heli; Olli, Kaisa; Lahtinen, Sampo J.; Ouwehand, Arthur C.; Madetoja, Mari; Tiihonen, Kirsti

    2012-01-01

    Gastrointestinal (GI) adverse effects such as erosion and increased permeability are common during the use of nonsteroidal anti-inflammatory drugs (NSAIDs). Our objective was to assess whether Bifidobacterium animalis ssp. lactis 420 protects against NSAID-induced GI side effects in a rat model. A total of 120 male Wistar rats were allocated into groups designated as control, NSAID, and probiotic. The NSAID and probiotic groups were challenged with indomethacin (10 mg/kg−1; single dose). The probiotic group was also supplemented daily with 1010 CFU of B. lactis 420 for seven days prior to the indomethacin administration. The control group rats received no indomethacin or probiotic. The permeability of the rat intestine was analysed using carbohydrate probes and the visual damage of the rat stomach mucosa was graded according to severity. B. lactis 420 significantly reduced the indomethacin-induced increase in stomach permeability. However, the protective effect on the visual mucosal damage was not significant. The incidence of severe NSAID-induced lesions was, nevertheless, reduced from 50% to 33% with the probiotic treatment. To conclude, the B. lactis 420 supplementation protected the rats from an NSAID-induced increase in stomach permeability and may reduce the formation of more serious GI mucosal damage and/or enhance the recovery rate of the stomach mucosa. PMID:22848210

  9. Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans.

    PubMed

    Falony, Gwen; Calmeyn, Thomas; Leroy, Frédéric; De Vuyst, Luc

    2009-04-01

    Four bifidobacteria, each representing a cluster of strains with specific inulin-type-fructan degradation capacities, were grown in coculture fermentations with Bacteroides thetaiotaomicron LMG 11262, a strain able to metabolize both oligofructose and inulin. In a medium for colon bacteria with inulin as the sole added energy source, the ability of the bifidobacteria to compete for this substrate reflected phenotypical variation. Bifidobacterium breve Yakult, a strain that was not able to degrade oligofructose or inulin, was outcompeted by B. thetaiotaomicron LMG 11262. Bifidobacterium adolescentis LMG 10734, a strain that could degrade oligofructose (displaying a preferential breakdown mechanism) but that did not grow on inulin, managed to become competitive when oligofructose and short fractions of inulin started to accumulate in the fermentation medium. Bifidobacterium angulatum LMG 11039(T), a strain that was previously shown to degrade all oligofructose fractions simultaneously and to be able to partially break down inulin, was competitive from the beginning of the fermentation, consuming short fractions of inulin from the moment they appeared. Bifidobacterium longum LMG 11047, representing a cluster of bifidobacteria that shared both high fructose consumption and oligofructose degradation rates and were able to perform partial breakdown of inulin, was the dominating strain in a coculture with B. thetaiotaomicron LMG 11262. These observations indicate that distinct subgroups within the large-intestinal Bifidobacterium population will be stimulated by different groups of prebiotic inulin-type fructans, a variation that could be reflected in differences concerning their health-promoting effects.

  10. In Silico Assigned Resistance Genes Confer Bifidobacterium with Partial Resistance to Aminoglycosides but Not to Β-Lactams

    PubMed Central

    Fouhy, Fiona; O’Connell Motherway, Mary; Fitzgerald, Gerald F.; Ross, R. Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D.

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria. PMID:24324818

  11. The Sortase-Dependent Fimbriome of the Genus Bifidobacterium: Extracellular Structures with Potential To Modulate Microbe-Host Dialogue.

    PubMed

    Milani, Christian; Mangifesta, Marta; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Mancino, Walter; Viappiani, Alice; Faccini, Andrea; van Sinderen, Douwe; Ventura, Marco; Turroni, Francesca

    2017-10-01

    Bifidobacteria are important gut commensals of mammals, including humans, of any age. However, the molecular mechanisms by which these microorganisms establish themselves in the mammalian gut and persist in this environment are largely unknown. Here, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events and for which we were able to perform evolutionary mapping. Functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are pivotal in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut.IMPORTANCE Adhesion of bifidobacterial cells to the mucosa of the large intestine is considered a hallmark for the persistence and colonization of these bacteria in the human gut. In this context, we analyzed the genetic diversity of the predicted arsenal of sortase-dependent pili of known and sequenced members of the Bifidobacterium genus, and constructed a bifidobacterial sortase-dependent fimbriome database. Our analyses revealed considerable genetic variability of the sortase-dependent fimbriome among bifidobacterial (sub)species, which appears to have been due to horizontal gene transfer events. In addition, functional assessment by transcriptome analysis and binding assays involving different substrates demonstrates how bifidobacterial pili are crucial in promoting various abilities for adhesion to glycans and extracellular matrix proteins, thereby supporting the ecological success of bifidobacteria in the mammalian gut. This study

  12. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis.

    PubMed

    Garrido, Daniel; Ruiz-Moyano, Santiago; Mills, David A

    2012-08-01

    Human milk contains high amounts of complex oligosaccharides, which can be utilized especially by Bifidobacterium species in the infant gut as a carbon and energy source. N-acetyl-D-glucosamine is a building block of these oligosaccharides, and molecular details on the release and utilization of this monosaccharide are not fully understood. In this work we have studied some of the enzymatic properties of three N-acetyl-β-D-hexosaminidases encoded by the genome of the intestinal isolate Bifidobacterium longum subsp. infantis ATCC 15697 and the gene expression of the corresponding genes during bacterial growth on human milk oligosaccharides. These enzymes belong to the glycosyl hydrolase family 20, with several homologs in bifidobacteria. Their optimum pH was 5.0 and optimum temperature was 37 °C. The three enzymes were active on the GlcNAcβ1-3 linkage found in lacto-N-tetraose, the most abundant human milk oligosaccharide. Blon_0459 and Blon_0732, but not Blon_2355, cleaved branched GlcNAcβ1-6 linkages found in lacto-N-hexaose, another oligosaccharide abundant in breast milk. Bifidobacterium infantis N-acetyl-β-D-hexosaminidases were induced during early growth in vitro on human milk oligosaccharides, and also during growth on lacto-N-tetraose or lacto-N-neotetraose. The up-regulation of enzymes that convert this monosaccharide into UDP-N-acetylglucosamine by human milk oligosaccharides suggested that this activated sugar is used in peptidoglycan biosynthesis. These results emphasize the complexity of human milk oligosaccharide consumption by this infant intestinal isolate, and provide new clues into this process.

  13. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    PubMed

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics.

  14. Bifidobacterium pseudocatenulatum CECT7765 promotes a TLR2-dependent anti-inflammatory response in intestinal lymphocytes from mice with cirrhosis.

    PubMed

    Moratalla, Alba; Gómez-Hurtado, Isabel; Moya-Pérez, Ángela; Zapater, Pedro; Peiró, Gloria; González-Navajas, José M; Gómez Del Pulgar, Eva Maria; Such, José; Sanz, Yolanda; Francés, Rubén

    2016-02-01

    Intestinal homeostasis plays an important role in bacteria-derived complications in cirrhosis. Intestinal lymphocytes are responsible for immune effector functions and can be modulated by certain probiotics. We evaluate the interaction between Bifidobacterium pseudocatenulatum CECT7765 and intestinal lymphocytes in mice with cirrhosis. Cirrhosis was induced by intragastrical administration of carbon tetrachloride in Balb/C mice. One week prior to laparotomy, animals received B. pseudocatenulatum CECT7765 (10(7), 10(9) or 10(10) cfu/daily) or placebo. Chemokine receptor and cytokine expression were evaluated in intestinal lymphocytes. Gut permeability was studied by FITC-LPS recovery in vivo. Luminal antigens, inflammation and functional markers were evaluated in liver samples. Bifidobacterium pseudocatenulatum CECT7765 decreased the expression of pro-inflammatory chemokine receptors CCR6, CCR9, CXCR3 and CXCR6 in intestinal lymphocytes from cirrhotic mice in a concentration-dependent manner. The bifidobacterial strain induced a shift towards an anti-inflammatory cytokine profile in this cell subset. B. pseudocatenulatum CECT7765-induced inflammatory modulation was TLR2-mediated, as in vitro TLR2 blockade inhibited the reduction of TNF-alpha and its receptors and the increase of IL-10 and IL-10 receptor secretion. The recovery rate of administered fluorescence-labelled endotoxin was significantly and dose-dependently lowered with the bifidobacterial strain. The reduced intestinal permeability was associated with a decreased burden of bacterial antigens in the liver of mice treated with B. pseudocatenulatum CECT7765. Liver function and inflammation were improved with the use of the bifidobacterial strain at the highest dose tested (10(10) cfu). Bifidobacterium pseudocatenulatum CECT7765 improves gut homeostasis and prevents gut-derived complications in experimental chronic liver disease.

  15. In silico assigned resistance genes confer Bifidobacterium with partial resistance to aminoglycosides but not to β-lactams.

    PubMed

    Fouhy, Fiona; O'Connell Motherway, Mary; Fitzgerald, Gerald F; Ross, R Paul; Stanton, Catherine; van Sinderen, Douwe; Cotter, Paul D

    2013-01-01

    Bifidobacteria have received significant attention due to their contribution to human gut health and the use of specific strains as probiotics. It is thus not surprising that there has also been significant interest with respect to their antibiotic resistance profile. Numerous culture-based studies have demonstrated that bifidobacteria are resistant to the majority of aminoglycosides, but are sensitive to β-lactams. However, limited research exists with respect to the genetic basis for the resistance of bifidobacteria to aminoglycosides. Here we performed an in-depth in silico analysis of putative Bifidobacterium-encoded aminoglycoside resistance proteins and β-lactamases and assess the contribution of these proteins to antibiotic resistance. The in silico-based screen detected putative aminoglycoside and β-lactam resistance proteins across the Bifidobacterium genus. Laboratory-based investigations of a number of representative bifidobacteria strains confirmed that despite containing putative β-lactamases, these strains were sensitive to β-lactams. In contrast, all strains were resistant to the aminoglycosides tested. To assess the contribution of genes encoding putative aminoglycoside resistance proteins in Bifidobacterium sp. two genes, namely Bbr_0651 and Bbr_1586, were targeted for insertional inactivation in B. breve UCC2003. As compared to the wild-type, the UCC2003 insertion mutant strains exhibited decreased resistance to gentamycin, kanamycin and streptomycin. This study highlights the associated risks of relying on the in silico assignment of gene function. Although several putative β-lactam resistance proteins are located in bifidobacteria, their presence does not coincide with resistance to these antibiotics. In contrast however, this approach has resulted in the identification of two loci that contribute to the aminoglycoside resistance of B. breve UCC2003 and, potentially, many other bifidobacteria.

  16. High purity galacto-oligosaccharides (GOS) enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome

    PubMed Central

    Monteagudo-Mera, A.; Arthur, J.C.; Jobin, C.; Keku, T.; Bruno-Barcena, J.M.; Azcarate-Peril, M.A

    2016-01-01

    Prebiotics are selectively fermented ingredients that result in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon the host health. The aim of this study was to evaluate the influence of a β (1–4) galacto-oligosaccharides formulation consisting of 90% pure GOS (GOS90), on the composition and activity of the mouse gut microbiota. Germ-free mice were colonized with microbiota from four pathogen-free wt 129 mice donors (SPF), and stools were collected during a feeding trial in which GOS90 was delivered orally for 14 days. Pyrosequencing of 16S rDNA amplicons showed that Bifidobacterium and specific Lactobacillus, Bacteroides and Clostridiales were more prevalent in GOS90-fed mice after 14 days, although the prebiotic impact on Bifidobacterium varied among individual mice. Prebiotic feeding also resulted in decreased abundance of Bacteroidales, Helicobacter and Clostridium. High-throughput quantitative PCR showed an increased abundance of Bifidobacterium adolescentis, B. pseudocatenulatum, B. lactis and B. gallicum in the prebiotic-fed mice. Control female mice showed a higher diversity (Phylogenetic Diversity PD = 15.1 ± 3.4 in stools and PD = 13.0 ± 0.6 in intestinal contents) than control males (PD = 7.8 ± 1.6 in stool samples and PD = 9.5 ± 1.0 in intestinal contents). GOS90 did not modify inflammatory biomarkers (IL-6, IL-12, IL-1β, IFN-γ and TNF-α). Decreased butyrate, acetate and lactate concentrations in stools of prebiotic fed mice suggested an increase in colonic absorption and reduced excretion. Overall, our results demonstrate that GOS90 is capable of modulating the intestinal microbiome resulting in expansion of the probiome (autochtonous commensal intestinal bacteria considered to have a beneficial influence on health). PMID:26839072

  17. [Construction and identification of the Bifidobacterium expression system pGEX-TSOL18/B. longum of Taenia solium].

    PubMed

    Zhou, Bi-Ying; Liu, Mei-Chen; He, Li-Fang

    2014-06-01

    The TSOL18 gene of Taenia solium was synthesized and cloned into Escherichia coli-Bifidobacteria shuttle vector pGEX-1lambdaT. The recombinant plasmid pGEX-TSOL18 was transformed into Bifidobacterium longum with electroporation. The recombinant plasmid containing TSOL18 gene was identified by restriction endonuclease analysis, PCR and DNA sequencing. The length of synthesized TSOL18 gene was 393 bp. The results indicated that the Bifidobacteria expression system pGEX-TSOL18/B. longum was successfully constructed.

  18. Transport of Glucose by Bifidobacterium animalis subsp. lactis Occurs via Facilitated Diffusion▿

    PubMed Central

    Briczinski, E. P.; Phillips, A. T.; Roberts, R. F.

    2008-01-01

    Two strains of Bifidobacterium animalis subsp. lactis were indistinguishable by several nucleic acid-based techniques; however, the type strain DSMZ 10140 was glucose utilization positive, while RB 4825, an industrially employed strain, was unable to grow rapidly on glucose as the principal carbon source. This difference was attributed to the presence of a low-affinity facilitated-diffusion glucose transporter identified in DSMZ 10140 but lacking in RB 4825. Uptake of d-[U-14C]glucose in DSMZ 10140 was stimulated by monovalent cations (ammonium, sodium, potassium, and lithium) and inhibited by divalent cations (calcium and magnesium). When competitor carbohydrates were included in the uptake assays, stereospecific inhibition was exhibited, with greater competition by methyl-β-glucoside than methyl-α-glucoside. Significant inhibition (>30%) was observed with phloretin, an inhibitor of facilitated diffusion of glucose, whereas there was no inhibition by sodium fluoride, iodoacetate, sodium arsenate, sodium azide, 2,4-dinitrophenol, monensin, or valinomycin, which typically reduce energy-driven transport. Based on kinetic analyses, the mean values for Kt and Vmax were 14.8 ± 3.4 mM d-glucose and 0.13 ± 0.03 μmol glucose/min/mg cell protein, respectively. Glucose uptake by several glucose-utilizing commercial strains of B. animalis subsp. lactis was also inhibited by phloretin, indicating the presence of facilitated diffusion glucose transporters in those strains. Since DSMZ 10140 has been previously reported to lack a functional glucose phosphoenolpyruvate phosphotransferase system, the glucose transporter identified here is responsible for much of the organism's glucose uptake. PMID:18791026

  19. Pediatric functional constipation treatment with Bifidobacterium-containing yogurt: A crossover, double-blind, controlled trial

    PubMed Central

    Guerra, Paula VP; Lima, Luiza N; Souza, Tassia C; Mazochi, Vanessa; Penna, Francisco J; Silva, Andreia M; Nicoli, Jacques R; Guimarães, Elizabet V

    2011-01-01

    AIM: To evaluate the treatment of pediatric functional chronic intestinal constipation (FCIC) with a probiotic goat yogurt. METHODS: A crossover double-blind formula-controlled trial was carried out on 59 students (age range: 5-15 years) of a public school in Belo Horizonte, MG, Brazil, presenting a FCIC diagnostic, according to Roma III criteria. The students were randomized in two groups to receive a goat yogurt supplemented with 109 colony forming unit/mL Bifidobacterium longum (B. longum) (probiotic) daily or only the yogurt for a period of 5 wk (formula). Afterwards, the groups were intercrossed for another 5 wk. Defecation frequency, stool consistency and abdominal and defecation pain were assessed. RESULTS: Both treatment groups demonstrated improvement in defecation frequency compared to baseline. However, the group treated with probiotic showed most significant improvement in the first phase of the study. An inversion was observed after crossing over, resulting in a reduction in stool frequency when this group was treated by formula. Probiotic and formula improved stool consistency in the first phase of treatment, but the improvement obtained with probiotic was significantly higher (P = 0.03). In the second phase of treatment, the group initially treated with probiotic showed worseningstool consistency when using formula. However, the difference was not significant. A significant improvement in abdominal pain and defecation pain was observed with both probiotic and formula in the first phase of treatment, but again the improvement was more significant for the group treated with B. longum during phase I (P < 0.05). When all data of the crossover study were analyzed, significant differences were observed between probiotic yogurt and yogurt only for defecation frequency (P = 0.012), defecation pain (P = 0.046) and abdominal pain (P = 0.015). CONCLUSION: An improvement in defecation frequency and abdominal pain was observed using both supplemented and non

  20. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    PubMed Central

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445

  1. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology.

    PubMed

    Pedroso, D L; Dogenski, M; Thomazini, M; Heinemann, R J B; Favaro-Trindade, C S

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (10(3) CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at -18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved.

  2. Genomic Overview and Biological Functions of Exopolysaccharide Biosynthesis in Bifidobacterium spp.

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Milani, Christian; Ventura, Marco; Margolles, Abelardo

    2014-01-01

    For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication processes with their surrounding environment and to their contribution to host health maintenance. In this review, we provide a fresh perspective on the genetics and activity of these polymers in members of the Bifidobacterium genus, a common gut inhabitant of humans and animals that has been associated with several health-promoting effects. Bifidobacteria can use EPS to protect themselves against the harsh conditions of the gastrointestinal tract, thus improving their persistence in the host. Indeed, the relevant function of EPS for bifidobacteria is underlined by the fact that most genomes sequenced until now contain genes related to EPS biosynthesis. A high interspecies variability in the number of genes and structural organization is denoted among species/subspecies; thus, eps clusters in this genus do not display a consensus genetic architecture. Their different G+C content compared to that of the whole genome suggests that eps genes have been acquired by horizontal transfer. From the host perspective, EPS-producing bifidobacteria are able to trigger both innate and adaptive immune responses, and they are able to modulate the composition and activity of the gut microbiota. Thus, these polymers seem to be critical in understanding the physiology of bifidobacteria and their interaction with the host. PMID:24123746

  3. Bifidobacterium animalis subsp. lactis decreases urinary oxalate excretion in a mouse model of primary hyperoxaluria

    PubMed Central

    Whittamore, Jonathan M.; Hatch, Marguerite

    2015-01-01

    Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can infuence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice defcient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt−/−, a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt−/− mice when compared to treatment with B. adolescent-is. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64 % of WT mice, but only 37 % of Agxt−/− mice were colonized. Examining intestinal oxalate fuxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially infuence dietary hyperoxaluria in mice. PMID:25269440

  4. Promotion of Intestinal Peristalsis by Bifidobacterium spp. Capable of Hydrolysing Sennosides in Mice

    PubMed Central

    Matsumoto, Mitsuharu; Ishige, Atsushi; Yazawa, Yuka; Kondo, Manami; Muramatsu, Koji; Watanabe, Kenji

    2012-01-01

    Background While there are a variety of identifiable causes of constipation, even idiopathic constipation has different possible mechanisms. Sennosides, the main laxative constituents of Daio, an ancient Kampo medicine, are prodrugs that are converted to an active principle, rheinanthrone, by intestinal microbiota. In this study, we aimed to determine the sennoside hydrolysis ability of lactic acid bacterial strains and bifidobacteria in the intestine and to investigate their effect on intestinal peristalsis in mice. Methodology/Principal Findings A total of 88 lactic acid bacterial strains and 47 bifidobacterial strains were evaluated for their ability to hydrolyze sennosides. Our results revealed that 4 strains, all belonging to the genus Bifidobacterium, had strong sennoside hydrolysis ability, exhibiting a decrease of >70% of sennoside content. By thin-layer chromatography analysis, rheinanthrone was detected in the medium cultured with B. pseudocatenulatum LKM10070 and B. animalis subsp. lactis LKM512. The fecal sennoside contents significantly (P<0.001) decreased upon oral administration of these strains as compared with the control. Intestinal peristalsis activity was measured by the moved distance of the charcoal powder administered orally. The distance travelled by the charcoal powder in LKM512-treated mice was significantly longer than that of control (P<0.05). Intestinal microbiota were analysed by real-time PCR and terminal-restriction fragment length polymorphism. The diversity of the intestinal microbiota was reduced by kanamycin treatment and the diversity was not recovered by LKM512 treatment. Conclusion/Significance We demonstrated that intestinal peristalsis was promoted by rheinanthrone produced by hydrolysis of sennoside by strain LKM512 and LKM10070. PMID:22384059

  5. Bifidobacterium pseudolongum are efficient indicators of animal fecal contamination in raw milk cheese industry

    PubMed Central

    2011-01-01

    Background The contamination of raw milk cheeses (St-Marcellin and Brie) from two plants in France was studied at several steps of production (raw milk, after addition of rennet - St-Marcellin - or after second maturation - Brie -, after removal from the mold and during ripening) using bifidobacteria as indicators of fecal contamination. Results Bifidobacterium semi-quantitative counts were compared using PCR-RFLP and real-time PCR. B. pseudolongum were detected in 77% (PCR-RFLP; 1.75 to 2.29 log cfu ml-1) and 68% (real-time PCR; 2.19 to 2.73 log cfu ml-1) of St-Marcellin samples and in 87% (PCR-RFLP; 1.17 to 2.40 log cfu ml-1) of Brie cheeses samples. Mean counts of B. pseudolongum remained stable along both processes. Two other populations of bifidobacteria were detected during the ripening stage of St-Marcellin, respectively in 61% and 18% of the samples (PCR-RFLP). The presence of these populations explains the increase in total bifidobacteria observed during ripening. Further characterization of these populations is currently under process. Forty-eight percents (St-Marcellin) and 70% (Brie) of the samples were B. pseudolongum positive/E. coli negative while only 10% (St-Marcellin) and 3% (Brie) were B. pseudolongum negative/E. coli positive. Conclusions The increase of total bifidobacteria during ripening in Marcellin's process does not allow their use as fecal indicator. The presence of B. pseudolongum along the processes defined a contamination from animal origin since this species is predominant in cow dung and has never been isolated in human feces. B. pseudolongum was more sensitive as an indicator than E. coli along the two different cheese processes. B. pseudolongum should be used as fecal indicator rather than E. coli to assess the quality of raw milk and raw milk cheeses. PMID:21816092

  6. Transport of glucose by Bifidobacterium animalis subsp. lactis occurs via facilitated diffusion.

    PubMed

    Briczinski, E P; Phillips, A T; Roberts, R F

    2008-11-01

    Two strains of Bifidobacterium animalis subsp. lactis were indistinguishable by several nucleic acid-based techniques; however, the type strain DSMZ 10140 was glucose utilization positive, while RB 4825, an industrially employed strain, was unable to grow rapidly on glucose as the principal carbon source. This difference was attributed to the presence of a low-affinity facilitated-diffusion glucose transporter identified in DSMZ 10140 but lacking in RB 4825. Uptake of D-[U-(14)C]glucose in DSMZ 10140 was stimulated by monovalent cations (ammonium, sodium, potassium, and lithium) and inhibited by divalent cations (calcium and magnesium). When competitor carbohydrates were included in the uptake assays, stereospecific inhibition was exhibited, with greater competition by methyl-beta-glucoside than methyl-alpha-glucoside. Significant inhibition (>30%) was observed with phloretin, an inhibitor of facilitated diffusion of glucose, whereas there was no inhibition by sodium fluoride, iodoacetate, sodium arsenate, sodium azide, 2,4-dinitrophenol, monensin, or valinomycin, which typically reduce energy-driven transport. Based on kinetic analyses, the mean values for K(t) and V(max) were 14.8 +/- 3.4 mM D-glucose and 0.13 +/- 0.03 micromol glucose/min/mg cell protein, respectively. Glucose uptake by several glucose-utilizing commercial strains of B. animalis subsp. lactis was also inhibited by phloretin, indicating the presence of facilitated diffusion glucose transporters in those strains. Since DSMZ 10140 has been previously reported to lack a functional glucose phosphoenolpyruvate phosphotransferase system, the glucose transporter identified here is responsible for much of the organism's glucose uptake.

  7. Probiotics Lactobacillus plantarum and bifidobacterium B94: cognitive function in demyelinated model

    PubMed Central

    Goudarzvand, Mahdi; Rasouli koohi, Samira; Khodaii, Zohreh; Soleymanzadeh Moghadam, Somayeh

    2016-01-01

    Background: Multiple Sclerosis (MS) is a disease of the immune system that creates damage of Learning and memory in that. Using probiotic supplements is recommended for preventing MS disease and improving memory. This study aimed to investigate the effect of Lactobacillus plantarum (LP) and bifidobacterium B94 (BB94), on acquisition phase of spatial memory in the local demyelination of rats` hippocampus. Methods: In this study, 32 male Wistar rats were divided into control, damage group and treatment groups. Treatment groups were including (LP) and (BB94). After the induction of demyelination by 3 μl of EB into the right dentate gyrus of the hippocampus in treatment groups, 1.5×108 probiotic bacteria were administered by gavage for 28 days. Data was analyzed using one-way ANOVA and Tukey post-hoc tests (p≤0.05). Results: Findings demonstrated that injection of EB caused a significant increase in traveled distance (p<0.01) and also escape latency (p<0.05) compared with control group. Also, effect administrations of (LP) and (BB94) on traveled distance and escape latency were reviewed, and it was determined that administration of them do not cause significant reduction in the traveled distance compared with the lesion group. Also mentioned probiotics has no significant effect on swimming speed compared with lesion and saline groups. Conclusion: According to some studies, probiotics have a positive impact on improving the performance of spatial memory and learning, although the results of the current study could not indicate finality of this assumption. It seems that more researches is needed on this subject. PMID:27579282

  8. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    PubMed Central

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  9. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019.

    PubMed

    Gill, H S; Rutherfurd, K J; Cross, M L; Gopal, P K

    2001-12-01

    The aging process can lead to a decline in cellular immunity. Therefore, the elderly could benefit from safe and effective interventions that restore cellular immune functions. We determined whether dietary supplementation with the known immunostimulating probiotic Bifidobacterium lactis HN019 could enhance aspects of cellular immunity in elderly subjects. Thirty healthy elderly volunteers (age range: 63-84 y; median: 69 y) participated in a 3-stage dietary supplementation trial lasting 9 wk. During stage 1 (run-in), subjects consumed low-fat milk (200 mL twice daily for 3 wk) as a base-diet control. During stage 2 (intervention), they consumed milk supplemented with B. lactis HN019 in a typical dose (5 x 10(10) organisms/d) or a low dose (5 x 10(9) organisms/d) for 3 wk. During stage 3 (washout), they consumed low-fat milk for 3 wk. Changes in the relative proportions of leukocyte subsets and ex vivo leukocyte phagocytic and tumor-cell-killing activity were determined longitudinally by assaying peripheral blood samples. Increases in the proportions of total, helper (CD4(+)), and activated (CD25(+)) T lymphocytes and natural killer cells were measured in the subjects' blood after consumption of B. lactis HN019. The ex vivo phagocytic capacity of mononuclear and polymorphonuclear phagocytes and the tumoricidal activity of natural killer cells were also elevated after B. lactis HN019 consumption. The greatest changes in immunity were found in subjects who had poor pretreatment immune responses. In general, the 2 doses of B. lactis HN019 had similar effectiveness. B. lactis HN019 could be an effective probiotic dietary supplement for enhancing some aspects of cellular immunity in the elderly.

  10. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019).

    PubMed

    Arunachalam, K; Gill, H S; Chandra, R K

    2000-03-01

    To determine the effects of dietary consumption of Bifidobacterium lactis (strain HN019, DR10TM) on natural immunity. A randomized, double blind, placebo-controlled clinical trial. Janeway Medical Centre, Memorial University, St Johns, Newfoundland. Twenty-five healthy elderly volunteers (median age 69 y; range 60-83 y). Twelve control subjects consumed 180 ml low-fat/low-lactose milk twice daily for a period of 6 weeks; 13 test subjects consumed milk supplemented with 1.5x1011 colony-forming units of B. lactis twice daily. Indices of natural immunity, including interferon production, phagocytic capacity and phagocyte-mediated bactericidal activity, were determined via peripheral blood at 0, 3, 6 and 12 weeks post-trial commencement. Subjects who consumed milk containing B. lactis for 6 weeks produced significantly enhanced levels of interferon-alpha, upon stimulation of their peripheral blood mononuclear cells in culture, in comparison to the placebo control group who received milk alone. There were also significant increases in polymorphonuclear cell phagocytic capacity among test group subjects, following consumption of milk supplemented with B. lactis, while individuals who consumed B. lactis-supplemented milk or milk alone showed enhanced phagocyte-mediated bactericidal activity. The results demonstrate that dietary consumption of B. lactis HN019 can enhance natural immunity in healthy elderly subjects, and that a relatively short-term dietary regime (6 weeks) is sufficient to impart measurable improvements in immunity that may offer significant health benefits to consumers. Financial support for this project was provided by the New Zealand Dairy Board.

  11. Probiotic Bifidobacterium breve Induces IL-10-Producing Tr1 Cells in the Colon

    PubMed Central

    Ueda, Yoshiyasu; Takahashi, Takuya; Asahara, Takashi; Tsuji, Hirokazu; Tsuji, Noriko M.; Kiyono, Hiroshi; Ma, Ji Su; Kusu, Takashi; Okumura, Ryu; Hara, Hiromitsu; Yoshida, Hiroki; Yamamoto, Masahiro; Nomoto, Koji; Takeda, Kiyoshi

    2012-01-01

    Specific intestinal microbiota has been shown to induce Foxp3+ regulatory T cell development. However, it remains unclear how development of another regulatory T cell subset, Tr1 cells, is regulated in the intestine. Here, we analyzed the role of two probiotic strains of intestinal bacteria, Lactobacillus casei and Bifidobacterium breve in T cell development in the intestine. B. breve, but not L. casei, induced development of IL-10-producing Tr1 cells that express cMaf, IL-21, and Ahr in the large intestine. Intestinal CD103+ dendritic cells (DCs) mediated B. breve-induced development of IL-10-producing T cells. CD103+ DCs from Il10−/−, Tlr2−/−, and Myd88−/− mice showed defective B. breve-induced Tr1 cell development. B. breve-treated CD103+ DCs failed to induce IL-10 production from co-cultured Il27ra−/− T cells. B. breve treatment of Tlr2−/− mice did not increase IL-10-producing T cells in the colonic lamina propria. Thus, B. breve activates intestinal CD103+ DCs to produce IL-10 and IL-27 via the TLR2/MyD88 pathway thereby inducing IL-10-producing Tr1 cells in the large intestine. Oral B. breve administration ameliorated colitis in immunocompromised mice given naïve CD4+ T cells from wild-type mice, but not Il10−/− mice. These findings demonstrate that B. breve prevents intestinal inflammation through the induction of intestinal IL-10-producing Tr1 cells. PMID:22693446

  12. Pediatric functional constipation treatment with Bifidobacterium-containing yogurt: a crossover, double-blind, controlled trial.

    PubMed

    Guerra, Paula V P; Lima, Luiza N; Souza, Tassia C; Mazochi, Vanessa; Penna, Francisco J; Silva, Andreia M; Nicoli, Jacques R; Guimarães, Elizabet V

    2011-09-14

    To evaluate the treatment of pediatric functional chronic intestinal constipation (FCIC) with a probiotic goat yogurt. A crossover double-blind formula-controlled trial was carried out on 59 students (age range: 5-15 years) of a public school in Belo Horizonte, MG, Brazil, presenting a FCIC diagnostic, according to Roma III criteria. The students were randomized in two groups to receive a goat yogurt supplemented with 10(9) colony forming unit/mL Bifidobacterium longum (B. longum) (probiotic) daily or only the yogurt for a period of 5 wk (formula). Afterwards, the groups were intercrossed for another 5 wk. Defecation frequency, stool consistency and abdominal and defecation pain were assessed. Both treatment groups demonstrated improvement in defecation frequency compared to baseline. However, the group treated with probiotic showed most significant improvement in the first phase of the study. An inversion was observed after crossing over, resulting in a reduction in stool frequency when this group was treated by formula. Probiotic and formula improved stool consistency in the first phase of treatment, but the improvement obtained with probiotic was significantly higher (P = 0.03). In the second phase of treatment, the group initially treated with probiotic showed worsening stool consistency when using formula. However, the difference was not significant. A significant improvement in abdominal pain and defecation pain was observed with both probiotic and formula in the first phase of treatment, but again the improvement was more significant for the group treated with B. longum during phase I (P < 0.05). When all data of the crossover study were analyzed, significant differences were observed between probiotic yogurt and yogurt only for defecation frequency (P = 0.012), defecation pain (P = 0.046) and abdominal pain (P = 0.015). An improvement in defecation frequency and abdominal pain was observed using both supplemented and non-supplemented yogurt, but an

  13. Genetic and Physiological Responses of Bifidobacterium animalis subsp. lactis to Hydrogen Peroxide Stress

    PubMed Central

    Oberg, Taylor S.; Ward, Robert E.; Steele, James L.

    2013-01-01

    Consumer interest in probiotic bifidobacteria is increasing, but industry efforts to secure high cell viability in foods is undermined by these anaerobes' sensitivity to oxidative stress. To address this limitation, we investigated genetic and physiological responses of two fully sequenced Bifidobacterium animalis subsp. lactis strains, BL-04 and DSM 10140, to hydrogen peroxide (H2O2) stress. Although the genome sequences for these strains are highly clonal, prior work showed that they differ in both intrinsic and inducible H2O2 resistance. Transcriptome analysis of early-stationary-phase cells exposed to a sublethal H2O2 concentration detected significant (P < 0.05) changes in expression of 138 genes in strain BL-04 after 5 min and 27 genes after 20 min. Surprisingly, no significant changes in gene expression were detected in DSM 10140 at either time. Genomic data suggested that differences in H2O2 stress resistance might be due to a mutation in a BL-04 gene encoding long-chain fatty acid coenzyme A (CoA) ligase. To explore this possibility, membrane fatty acids were isolated and analyzed by gas chromatography-mass spectrometry (GC-MS). Results confirmed that the strains had significantly different lipid profiles: the BL-04 membrane contained higher percentages of C14:0 and C16:0 and lower percentages of C18:1n9. Alteration of the DSM 10140 membrane lipid composition using modified growth medium to more closely mimic that of BL-04 yielded cells that showed increased intrinsic resistance to lethal H2O2 challenge but did not display an inducible H2O2 stress response. The results show that deliberate stress induction or membrane lipid modification can be employed to significantly improve H2O2 resistance in B. animalis subsp. lactis strains. PMID:23772066

  14. Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy.

    PubMed

    Taipale, Teemu; Pienihäkkinen, Kaisu; Isolauri, Erika; Larsen, Charlotte; Brockmann, Elke; Alanen, Pentti; Jokela, Jorma; Söderling, Eva

    2011-02-01

    The impact of controlled administration of Bifidobacterium animalis subsp. lactis BB-12 (BB-12) on the risk of acute infectious diseases was studied in healthy newborn infants. In this double-blind, placebo-controlled study, 109 newborn 1-month-old infants were assigned randomly to a probiotic group receiving a BB-12-containing tablet (n 55) or to a control group receiving a control tablet (n 54). Test tablets were administered to the infants twice a day (daily dose of BB-12 10 billion colony-forming units) from the age of 1-2 months to 8 months with a novel slow-release pacifier or a spoon. Breastfeeding habits, pacifier use, dietary habits, medications and all signs and symptoms of acute infections were registered. At the age of 8 months, faecal samples were collected for BB-12 determination (quantitative PCR method). The baseline characteristics of the two groups were similar, as was the duration of exclusive breastfeeding. BB-12 was recovered (detection limit log 5) in the faeces of 62% of the infants receiving the BB-12 tablet. The daily duration of pacifier sucking was not associated with the occurrence of acute otitis media. No significant differences between the groups were observed in reported gastrointestinal symptoms, otitis media or use of antibiotics. However, the infants receiving BB-12 were reported to have experienced fewer respiratory infections (65 v. 94%; risk ratio 0·69; 95% CI 0·53, 0·89; P = 0·014) than the control infants. Controlled administration of BB-12 in early childhood may reduce respiratory infections.

  15. Bifidobacterium animalis protects intestine from damage induced by zinc deficiency in rats.

    PubMed

    Mengheri, E; Nobili, F; Vignolini, F; Pesenti, M; Brandi, G; Biavati, B

    1999-12-01

    We investigated the potential beneficial effects of Bifidobacterium animalis on intestinal damage using zinc-deficient (ZD) rats as a model for intestinal alterations. The ZD rats were fed diets containing 1 mg Zn/kg for 20 (ZD(20)) or 40 (ZD(40)) d to induce damage that differed in severity. Subgroups of these rats, the ZD(20) + B and ZD(40) + B groups, received a suspension of B. animalis (3.5 x 10(8) colony forming units) daily for the last 10 d. Another subgroup, the ZD(40) + B + 7 d group, was fed the ZD diet for 7 d after the B. animalis treatment period. Zinc deficiency induced ulcerations, edema, inflammatory cell infiltration and dilatation of blood vessels in duodenum, jejunum and ileum, with increasing severity between 20 and 40 d of zinc deficiency. The mucosa of the ZD(20) + B group was well preserved, and most of the morphologic alterations induced by zinc deficiency were normalized in the ZD(40) + B group. The high fecal concentrations of B. animalis in the ZD(40) + B and ZD(40) + B + 7 d groups indicate that these bifidobacteria survived passage through the gastrointestinal tract and proliferated. Electron microscopy confirmed the elevated numbers of bifidobacteria in cecum. Treatment with B. animalis resulted in greater epithelial cell proliferation and disaccharidase activities in the ZD(40) + B group compared with the ZD(40) group. These findings indicate that B. animalis can protect the intestine from alterations induced by zinc deficiency, suggesting that this bacterium may play a role in intestinal mucosal defense.

  16. A Bifidobacterium probiotic strain and its soluble factors alleviate chloride secretion by human intestinal epithelial cells.

    PubMed

    Heuvelin, Elise; Lebreton, Corinne; Bichara, Maurice; Cerf-Bensussan, Nadine; Heyman, Martine

    2010-01-01

    Previous studies indicate that certain probiotic bacterial strains or their soluble products can alleviate proinflammatory cytokine secretion by intestinal epithelial cells (IEC), but their impact on epithelial chloride (Cl(-)) secretion remains elusive. To further decipher the mechanisms of the cross-talk between bacteria/soluble factors and epithelial cells, we analyzed the capacity of the probiotic strain Bifidobacterium breve C50 (Bb C50), its conditioned medium, and other commensal Gram (+) bacteria to modulate epithelial Cl(-) secretion. The effect of Bb C50 on carbachol- (CCh) or forskolin (Fsk)-induced Cl(-) secretion was measured in an IEC line in Ussing chambers. The mechanisms involved in the regulation of Cl(-) secretion were assessed by measuring intracellular Ca(2+) concentration, phosphatase activity, protein kinase (PK) C and PKA activation, and cystic fibrosis transmembrane conductance regulator (CFTR) expression. CCh- or Fsk-induced Cl(-) secretion [short-circuit current (Isc): 151 +/- 28 and 98 +/- 14 microA/cm(2), respectively] was inhibited dose-dependently by Bb C50 (Isc 33 +/- 12 and 49 +/- 7 microA/cm(2) at multiplicity of infection 100; P < 0.02). Fsk-induced Cl(-) secretion was also inhibited by Lactobacillus rhamnosus 10893. No other inhibitory effect was recorded with the other Gram (+) bacteria tested. The inhibitory effect of Bb C50 on CCh-induced Cl(-) secretion targeted a step downstream of epithelial Ca(2+) mobilization and was associated with decreased PKC activity. Thus, Bb C50 and secreted soluble factors, by inhibiting phosphorylation processes, may promote intestinal homeostasis by controlling Cl(-) secretion.

  17. Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats.

    PubMed

    Wu, Wenshen; Wang, Yanli; Zou, Jingjing; Long, Fang; Yan, Huiheng; Zeng, Lijuan; Chen, Yunbin

    2017-01-05

    Necrotizing enterocolitis (NEC) is a serious gastrointestinal disorder that is often seen in premature infants. Probiotics decrease the risk of NEC; however, the mechanism by which probiotics work is not clear. The goal of this study was to evaluate the preventive effect of Bifidobacterium adolescentis in an NEC rat model. Sprague-Dawley neonatal rats were obtained by caesarean section after 20-21 d gestation and randomly divided into the following 3 groups: dam fed (DF), formula fed (FF), and formula + B. adolescentis (FB). Those in the FF and FB groups developed NEC after exposure to asphyxia and cold stress. All rats were sacrificed 72 h after birth and intestinal injury and mRNA expression of TLR4, TOLLIP and SIGIRR were assessed. B. adolescentis significantly increased the 72-h survival rate from 56.3% in the FF group to 86.7% in the FB group. B. adolescentis significantly reduced the histological score from a median of 3.0 in the FF group to a median of 1.0 in the FB group,and significantly decreased the rate of NEC-like intestinal injury from 77.8% in the FF group to 23.1% in the FB group. The mRNA expression of TLR4 increased 3.6 fold in the FF group but decreased by 2 fold from B. adolescentis treatment. mRNA expression of TOLLIP and SIGIRR decreased 4.3 and 3.7 fold, respectively, in the FF group. B. adolescentis significantly increased mRNA expression of TOLLIP and SIGIRR by 3.7 fold and 2.6 fold, respectively. This study demonstrated B. adolescentis prevents NEC in preterm neonatal rats and that the mechanism for this action might be associated with the alteration of TLR4, TOLLIP, and SIGIRR expression.

  18. Effects of the Food Manufacturing Chain on the Viability and Functionality of Bifidobacterium animalis through Simulated Gastrointestinal Conditions

    PubMed Central

    Jantama, Sirima Suvarnakuta; Prasitpuriprecha, Chutinun; Kanchanatawee, Sunthorn

    2016-01-01

    The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications. PMID:27333286

  19. Probiotic characters of Bifidobacterium and Lactobacillus are a result of the ongoing gene acquisition and genome minimization evolutionary trends.

    PubMed

    Papizadeh, Moslem; Rohani, Mahdi; Nahrevanian, Hossein; Javadi, Abdolreza; Pourshafie, Mohammad Reza

    2017-10-01

    Bifidobacterium and Lactobacillus are the main probiotic genera. Collectively, these two genera harbor over 200 species among which are many strains have been introduced as probiotics. These health-promoting microbes confer health benefits upon the host and so used in food productions and as supplements. Considering the economic importance of probiotics, the biochemistry, genomics, phylogeny and physiology of such genera have been exhaustively studied. According to the genomic data, the probiotic capabilities are strain specific which may be a result of the niche-specialization of the genomes of these bacteria to certain ecological niches like gastrointestinal tract of a diverse range of animals. These microbes have a wide distribution but the culture-based studies and either genomics data suggest selective affinity of some Lactobacillus and either Bifidobacterium species to certain ecological niches. An ongoing genome degradation, which is thought to be a result of passage through an evolutionary bottleneck, is the major trend in the evolution of lactobacilli. Further, evolutionary events resulted into two categories of lactobacilli: habitat generalists and habitat specialists. In place, the main trend in the evolution of bifidobacteria tend to be the gene acquisition. However, probiotic features are the results of a co-evolutionary relationship between these bacteria and their hosts and the aforementioned evolutionary tends have driven the evolution of these probiotic genera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  1. PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption.

    PubMed

    Brigidi, Patrizia; Swennen, Erwin; Vitali, Beatrice; Rossi, Maddalena; Matteuzzi, Diego

    2003-03-25

    Streptococcus thermophilus, Bifidobacterium infantis Y1 and Bifidobacterium breve Y8 strains were identified and enumerated by PCR assay in human fecal samples after intake of the pharmaceutical preparation VSL-3 or yogurt. ThI/ThII primer set, specific for S. thermophilus, was selected testing its specificity against several strains of enterococci, streptococci and other genera colonizing the human intestine. A culture-independent PCR protocol, developed in this study, allowed to directly detect and enumerate S. thermophilus in human feces, excluding culture-based techniques or time consuming DNA isolation and purification procedures. Intestinal persistence of S. thermophilus was studied in feces of 10 healthy subjects given VSL-3 or yogurt. Streptococcal population was detected after 3 days of administration and persisted for 6 days after the treatment suspension. In the same trial, the colonization kinetics of B. infantis Y1 and B. breve Y8 were studied by amplification of colonies with the strain-specific primer sets InfY-BV.L/R and BreY-BV.R/L, showing a host-dependent transient colonization behaviour. PCR analysis of feces from 10 patients affected by inflammatory bowel diseases (IBD) and treated with VSL-3 for 2 months showed a colonization pattern of S. thermophilus, B. infantis Y1 and B. breve Y8 similar to that observed with the healthy subjects.

  2. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes.

    PubMed

    Falony, Gwen; Lazidou, Katerina; Verschaeren, An; Weckx, Stefan; Maes, Dominique; De Vuyst, Luc

    2009-01-01

    Kinetic analyses of bacterial growth, carbohydrate consumption, and metabolite production of 18 Bifidobacterium strains grown on fructose, oligofructose, or inulin were performed. A principal component analysis of the data sets, expanded with the results of a genetic screen concerning the presence of a beta-fructofuranosidase gene previously encountered in Bifidobacterium animalis subsp. lactis DSM 10140(T), revealed the existence of four clusters among the bifidobacteria tested. Strains belonging to a first cluster could not degrade oligofructose or inulin. Strains in a second cluster could degrade oligofructose, displaying a preferential breakdown mechanism, but did not grow on inulin. Fructose consumption was faster than oligofructose degradation. A third cluster was composed of strains that degraded all oligofructose fractions simultaneously and could partially break down inulin. Oligofructose degradation was substantially faster than fructose consumption. A fourth, smaller cluster consisted of strains that shared high fructose consumption and oligofructose degradation rates and were able to perform partial breakdown of inulin. For all strains, a metabolic shift toward more acetate, formate, and ethanol production, at the expense of lactate production, was observed during growth on less readily fermentable energy sources. No correlation between breakdown patterns and the presence of the beta-fructofuranosidase gene could be detected. These variations indicate niche-specific adaptation of bifidobacteria and could have in vivo implications on the strain specificity of the stimulatory effect of inulin-type fructans on bifidobacteria.

  3. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures.

    PubMed

    Mäkeläinen, H; Saarinen, M; Stowell, J; Rautonen, N; Ouwehand, A C

    2010-06-01

    The current screening study aimed at identifying promising prebiotic and synbiotic candidates. The fermentation of xylo-oligosaccharides, xylan, galacto-oligosaccharide, fructo-oligosaccharide, polydextrose, lactitol, gentiobiose and pullulan was investigated in vitro. The ability of these established and potential prebiotic candidates to function as a sole carbon source for probiotic (Bifidobacterium and Lactobacillus), intestinal and potential pathogenic microbes (Eubacterium, Bacteroides, Clostridium, Escherichia coli, Salmonella, and Staphylococcus) was assessed in pure cultures. Xylo-oligosaccharides were fermented with high specificity by the tested Bifidobacterium lactis strains and lactitol by lactobacilli, whereas galacto-oligosaccharides, fructo-oligosaccharides and gentiobiose were utilised by a larger group of microbes. Xylan, polydextrose and pullulan were utilised to a limited extent by only a few of the tested microbes. The results of this screening study indicate that xylo-oligosaccharides and lactitol support the growth of a limited number of beneficial microbes in pure cultures. Such a high degree of specificity has not been previously reported for established prebiotics. Based on these results, the most promising prebiotics and synbiotic combinations can be selected for further testing.

  4. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    PubMed

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  5. Evaluation of amplified ribosomal DNA restriction analysis (ARDRA) and species-specific PCR for identification of Bifidobacterium species.

    PubMed

    Krízová, Jana; Spanová, Alena; Rittich, Bohuslav

    2006-01-01

    Molecular biological methods based on genus-specific PCR, species-specific PCR, and amplified ribosomal DNA restriction analysis (ARDRA) of two PCR amplicons (523 and 914bp) using six restriction enzymes were used to differentiate among species of Bifidobacterium. The techniques were established using DNA from 16 type and reference strains of bifidobacteria of 11 species. The discrimination power of 914bp amplicon digestion was higher than that of 523bp amplicon digestion. The 914bp amplicon digestion by six restrictases provided unique patterns for nine species; B. catenulatum and B. pseudocatenulatum were not differentiated yet. The NciI digestion of the 914bp PCR product enabled to discriminate between each of B. animalis, B. lactis, and B. gallicum. The reference strain B. adolescentis CCM 3761 was reclassified as a member of the B. catenulatum/B. pseudocatenulatum group. The above-mentioned methods were applied for the identification of seven strains of Bifidobacterium spp. collected in the Culture Collection of Dairy Microorganisms (CCDM). The strains collected in CCDM were differentiated to the species level. Six strains were identified as B. lactis, one strain as B. adolescentis.

  6. Effects of the Food Manufacturing Chain on the Viability and Functionality of Bifidobacterium animalis through Simulated Gastrointestinal Conditions.

    PubMed

    Charnchai, Pattra; Jantama, Sirima Suvarnakuta; Prasitpuriprecha, Chutinun; Kanchanatawee, Sunthorn; Jantama, Kaemwich

    2016-01-01

    The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications.

  7. Autoinducer-2 Plays a Crucial Role in Gut Colonization and Probiotic Functionality of Bifidobacterium breve UCC2003

    PubMed Central

    Bottacini, Francesca; Lanigan, Noreen; Casey, Pat G.; Huys, Geert; Nelis, Hans J.; van Sinderen, Douwe; Coenye, Tom

    2014-01-01

    In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition. PMID:24871429

  8. Production of conjugated linoleic acid (CLA) by Bifidobacterium breve LMC520 and its compatibility with CLA-producing rumen bacteria.

    PubMed

    Park, Hui Gyu; Heo, Wan; Kim, Sang Bum; Kim, Hyun Seop; Bae, Gui Seck; Chung, Soo Hyun; Seo, Ho-Chan; Kim, Young Jun

    2011-02-09

    This study was performed to characterize the ability of an active Bifidobacterium strain to produce conjugated linoleic acid (CLA) and to test its possible utilization as a probiotic compatible to the ruminal condition. Bifidobacterium breve LMC520 can actively convert linoleic acid (LA) to cis-9,trans-11-CLA, which is a major isomer derived from microbial conversion. LMC520 showed reasonable tolerance under acidic conditions (pH 2.5 with 1% pepsin) and in the presence of oxgall (0-3%). The growth and CLA production of LMC520 were tested under ruminal conditions and compared with those of Butyrivibrio fibrisolvens A38, which is a major CLA producer in the rumen as an intermediate in the biohydrogenation (BH) process. LMC520 converted 15% of LA to CLA under ruminal conditions, which was 2 times higher activity than that of A38, and there was no decline in CLA level during prolonged incubation of 48 h. The BH activity of LMC520 was comparable to that of A38. When LMC520 was cocultured with A38, even with slight decrease of CLA due to high BH activity by A38, but the level of CLA was maintained by the high CLA-producing activity of LMC520. This comparative study shows the potential of this strain to be applied as a functional probiotic not only for humans but also for ruminants as well as to increase CLA production.

  9. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003.

    PubMed

    Christiaen, Steven E A; O'Connell Motherway, Mary; Bottacini, Francesca; Lanigan, Noreen; Casey, Pat G; Huys, Geert; Nelis, Hans J; van Sinderen, Douwe; Coenye, Tom

    2014-01-01

    In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.

  10. Effect of Bifidobacterium breve on the Intestinal Microbiota of Coeliac Children on a Gluten Free Diet: A Pilot Study

    PubMed Central

    Quagliariello, Andrea; Aloisio, Irene; Bozzi Cionci, Nicole; Luiselli, Donata; D’Auria, Giuseppe; Martinez-Priego, Llúcia; Pérez-Villarroya, David; Langerholc, Tomaž; Primec, Maša; Mičetić-Turk, Dušanka; Di Gioia, Diana

    2016-01-01

    Coeliac disease (CD) is associated with alterations of the intestinal microbiota. Although several Bifidobacterium strains showed anti-inflammatory activity and prevention of toxic gliadin peptides generation in vitro, few data are available on their efficacy when administered to CD subjects. This study evaluated the effect of administration for three months of a food supplement based on two Bifidobacterium breve strains (B632 and BR03) to restore the gut microbial balance in coeliac children on a gluten free diet (GFD). Microbial DNA was extracted from faeces of 40 coeliac children before and after probiotic or placebo administration and 16 healthy children (Control group). Sequencing of the amplified V3-V4 hypervariable region of 16S rRNA gene as well as qPCR of Bidobacterium spp., Lactobacillus spp., Bacteroides fragilis group Clostridium sensu stricto and enterobacteria were performed. The comparison between CD subjects and Control group revealed an alteration in the intestinal microbial composition of coeliacs mainly characterized by a reduction of the Firmicutes/Bacteroidetes ratio, of Actinobacteria and Euryarchaeota. Regarding the effects of the probiotic, an increase of Actinobacteria was found as well as a re-establishment of the physiological Firmicutes/Bacteroidetes ratio. Therefore, a three-month administration of B. breve strains helps in restoring the healthy percentage of main microbial components. PMID:27782071

  11. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed.

    PubMed Central

    Carrillo, M; Estrada, E; Hazen, T C

    1985-01-01

    The density of Bifidobacterium spp., fecal coliforms, Escherichia coli, and total anaerobic bacteria, acridine orange direct counts, percentages of total bacterial community activity and respiration, and 12 physical and chemical parameters were measured simultaneously at six sites for 12 months in the Mameyes River rain forest watershed, Puerto Rico. The densities of all bacteria were higher than those reported for uncontaminated temperate rivers, even though other water quality parameters would indicate that all uncontaminated sites were oligotrophic. The highest densities for all indicator bacteria were at the site receiving sewage effluent; however, the highest elevation site in the watershed had the next highest densities. Correlations between bacterial densities, nitrates, temperature, phosphates, and total phosphorus indicated that all viable counts were related to nutrient levels, regardless of the site sampled. In situ diffusion chamber studies at two different sites indicated that E. coli could survive, remain physiologically active, and regrow at rates that were dependent on nutrient levels of the ambient waters. Bifidobacterium adolescentis did not survive at either site but did show different rates of decline and physiological activity at the two sites. Bifidobacteria show promise as a better indicator of recent fecal contamination in tropical freshwaters than E. coli or fecal coliforms; however, the YN-6 medium did not prove to be effective for enumeration of bifidobacteria. The coliform maximum contaminant levels for assessing water usability for drinking and recreation appear to be unworkable in tropical freshwaters. PMID:3901921

  12. Comparison of the Complete Genome Sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04 ▿ †

    PubMed Central

    Barrangou, Rodolphe; Briczinski, Elizabeth P.; Traeger, Lindsay L.; Loquasto, Joseph R.; Richards, Melissa; Horvath, Philippe; Coûté-Monvoisin, Anne-Claire; Leyer, Gregory; Rendulic, Snjezana; Steele, James L.; Broadbent, Jeffery R.; Oberg, Taylor; Dudley, Edward G.; Schuster, Stephan; Romero, Dennis A.; Roberts, Robert F.

    2009-01-01

    Bifidobacteria are important members of the human gut flora, especially in infants. Comparative genomic analysis of two Bifidobacterium animalis subsp. lactis strains revealed evolution by internal deletion of consecutive spacer-repeat units within a novel clustered regularly interspaced short palindromic repeat locus, which represented the largest differential content between the two genomes. Additionally, 47 single nucleotide polymorphisms were identified, consisting primarily of nonsynonymous mutations, indicating positive selection and/or recent divergence. A particular nonsynonymous mutation in a putative glucose transporter was linked to a negative phenotypic effect on the ability of the variant to catabolize glucose, consistent with a modification in the predicted protein transmembrane topology. Comparative genome sequence analysis of three Bifidobacterium species provided a core genome set of 1,117 orthologs complemented by a pan-genome of 2,445 genes. The genome sequences of the intestinal bacterium B. animalis subsp. lactis provide insights into rapid genome evolution and the genetic basis for adaptation to the human gut environment, notably with regard to catabolism of dietary carbohydrates, resistance to bile and acid, and interaction with the intestinal epithelium. The high degree of genome conservation observed between the two strains in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies and explains the inability to differentiate the strains by standard techniques such as pulsed-field gel electrophoresis. PMID:19376856

  13. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells.

    PubMed

    Ruas-Madiedo, P; Medrano, M; Salazar, N; De Los Reyes-Gavilán, C G; Pérez, P F; Abraham, A G

    2010-12-01

    To evaluate the capability of the exopolysaccharides (EPS) produced by lactobacilli and bifidobacteria from human and dairy origin to antagonize the cytotoxic effect of bacterial toxins. The cytotoxicity of Bacillus cereus extracellular factors on Caco-2 colonocytes in the presence/absence of the EPS was determined by measuring the integrity of the tissue monolayer and the damage to the cell membrane (extracellular lactate dehydrogenase activity). Additionally, the protective effect of EPS against the haemolytic activity of the streptolysin-O was evaluated on rabbit erythrocytes. The EPS produced by Bifidobacterium animalis ssp. lactis A1 and IPLA-R1, Bifidobacterium longum NB667 and Lactobacillus rhamnosus GG were able to counteract the toxic effect of bacterial toxins on the eukaryotic cells at 1mg ml(-1) EPS concentration. The EPS A1 was the most effective in counteracting the effect of B. cereus toxins on colonocytes, even at lower doses (0·5mg ml(-1) ), whereas EPS NB667 elicited the highest haemolysis reduction on erythrocytes. The production of EPS by lactobacilli and bifidobacteria could antagonize the toxicity of bacterial pathogens, this effect being EPS and biological marker dependent. This work allows gaining insight about the mechanisms that probiotics could exert to improve the host health. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  14. Analyses of the bifid shunt and carbohydrate metabolism in Bifidobacterium spp. using **13C-labeled substrates and gas chromatography-mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Bifidobacteria are Gram-positive, anaerobic bacteria whose presence in the gastrointestinal tract (GIT) is widely considered as a positive influence on human health. This is especially true in the early development of the infant GIT. Analyses of the genome sequence of Bifidobacterium longum sugges...

  15. Ethnic diversity of gut microbiota: species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects.

    PubMed

    Ishikawa, Eiji; Matsuki, Takahiro; Kubota, Hiroyuki; Makino, Hiroshi; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Fujimoto, Junji; Watanabe, Koichi; Watanuki, Masaaki; Tanaka, Ryuichiro

    2013-08-01

    The composition of the human gut microbiota is related to host health, and it is thought that dietary habits may play a role in shaping this composition. Here, we examined the population size and prevalence of six predominant bacterial genera and the species compositions of genus Bifidobacterium (g-Bifid) and Bacteroides fragilis group (g-Bfra) in 42 healthy Belgian adults by quantitative PCR (qPCR) over a period of one month. The population sizes and prevalence of these bacteria were basically stable throughout the study period. The predominant g-Bifid species were Bifidobacterium adolescentis and Bifidobacterium longum ss. longum, and the predominant g-Bfra species were Bacteroides vulgatus, Bacteroides uniformis, and Bacteroides ovatus. The Belgian gut microbiota data were then compared with gut microbiota data from 46 Japanese subjects collected according to the same protocol (Matsuki et al., Appl. Environ. Microbiol. 70, 167-173, 2004). The population size and prevalence of Bifidobacterium catenulatum group were significantly lower in the Belgian gut microbiota than in the Japanese gut microbiota (P < 0.001); however, the population size and prevalence of g-Bifid did not differ. This species-level qPCR analysis will be helpful for investigating the diversity of gut microbiota among ethnic groups. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Preliminary selection for potential probiotic Bifidobacterium isolated from subjects of different Chinese ethnic groups and evaluation of their fermentation and storage characteristics in bovine milk.

    PubMed

    Liu, W J; Chen, Y F; Kwok, L Y; Li, M H; Sun, T; Sun, C L; Wang, X N; Dan, T; Menghebilige; Zhang, H P; Sun, T S

    2013-01-01

    A total of 29 strains of Bifidobacterium were isolated from 18 samples of human feces in different ethnic minority regions of China. All isolates were identified as Bifidobacterium longum (9 strains) and Bifidobacterium pseudocatenulatum (20 strains) based on 16S rRNA gene sequencing and phylogenetic analysis. These strains were preliminarily tested for their suitability to become probiotics by assessing their ability to survive adequately at low pH conditions and their tolerance of different concentrations of bile salts and simulated gastrointestinal juices. In vitro tests were sequentially used to predict the survival of these strains in the simulated conditions in the human gastrointestinal tract. These strains were first exposed to pH 2.5 for 3h, and 7 out of the 29 strains were discriminated from the others by their high survival rates. Out of these 7 strains, 4 were found to grow and survive well at an even lower pH of 2.0 and in high bile salt concentration. Apart from the gastrointestinal survival capacity, both fermentation efficiency and storage characteristics are important criteria for selecting for suitable potential probiotic strains. Therefore, the fermentation efficiency in bovine milk and the bacterial viability during the storage in the resultant fermented milk were also evaluated for these 4 selected strains. In this study, we isolated and identified 29 novel Bifidobacterium strains. Based on our initial evaluation, at least 4 of them may serve as valuable resources for further dairy probiotic strain selection.

  17. Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. lactis A1dOxR

    PubMed Central

    Hidalgo-Cantabrana, Claudio; Sánchez, Borja; Moine, Deborah; Berger, Bernard; de los Reyes-Gavilán, Clara G.; Gueimonde, Miguel; Margolles, Abelardo

    2013-01-01

    The proteome of the ropy strain Bifidobacterium animalis subsp. lactis A1dOxR, compared to that of its nonropy isogenic strain, showed an overproduction of a protein involved in rhamnose biosynthesis. Results were confirmed by gene expression analysis, and this fact agreed with the high rhamnose content of the ropy exopolysaccharide. PMID:23584772

  18. Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial.

    PubMed

    Costeloe, Kate; Hardy, Pollyanna; Juszczak, Edmund; Wilks, Mark; Millar, Michael R

    2016-02-13

    Probiotics may reduce necrotising enterocolitis and late-onset sepsis after preterm birth. However, there has been concern about the rigour and generalisability of some trials and there is no agreement about whether or not they should be used routinely. We aimed to test the effectiveness of the probiotic Bifidobacterium breve BBG-001 to reduce necrotising enterocolitis, late-onset sepsis, and death in preterm infants. In this multicentre, randomised controlled phase 3 study (the PiPS trial), we recruited infants born between 23 and 30 weeks' gestational age within 48 h of birth from 24 hospitals in southeast England. Infants were randomly assigned (1:1) to probiotic or placebo via a minimisation algorithm randomisation programme. The probiotic intervention was B breve BBG-001 suspended in dilute elemental infant formula given enterally in a daily dose of 8·2 to 9·2 log10 CFU; the placebo was dilute infant formula alone. Clinicians and families were masked to allocation. The primary outcomes were necrotising enterocolitis (Bell stage 2 or 3), blood culture positive sepsis more than 72 h after birth; and death before discharge from hospital. All primary analyses were by intention to treat. This trial is registered with ISRCTN, number 05511098 and EudraCT, number 2006-003445-17. Between July 1, 2010, and July 31, 2013, 1315 infants were recruited; of whom 654 were allocated to probiotic and 661 to placebo. Five infants had consent withdrawn after randomisation, thus 650 were analysed in the probiotic group and 660 in the placebo group. Rates of the primary outcomes did not differ significantly between the probiotic and placebo groups. 61 infants (9%) in the probiotic group had necrotising enterocolitis compared with 66 (10%) in the placebo group (adjusted risk ratio 0·93 (95% CI 0·68-1·27); 73 (11%) infants in the probiotics group had sepsis compared with 77 (12%) in the placebo group (0·97 (0·73-1·29); and 54 (8%) deaths occurred before discharge home in the

  19. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007.

    PubMed

    Guadamuro, Lucía; Flórez, Ana Belén; Alegría, Ángel; Vázquez, Lucía; Mayo, Baltasar

    2017-10-01

    Bifidobacterium pseudocatenulatum IPLA 36007 acts on isoflavone glycosides, releasing their corresponding aglycones. This strain-specific activity might be a key step in making isoflavones bioavailable and harnessing their oestrogenic activity. To investigate the molecular mechanisms involved in this activity, four glycosyl hydrolase-encoding genes in the IPLA 36007 genome (AW18_01575, AW18_09810, AW18_08145, and AW18_08090) were selected, synthesized with heterologous promoter and terminator signals (r-β-gluA, r-β-gluB, r-β-gluD and r-β-gluE, respectively), cloned into Escherichia coli, overexpressed as His-tagged proteins, and the enzymes purified and characterized. All four enzymes - GluAHis, GluBHis, GluDHis and GluEHis - proved to have β-glucosidase activity and deglycosylated (although at different rates) the isoflavone glycosides daidzin and genistin, releasing the aglycone moieties daidzein and genistein, respectively. GluDHis and GluEHis were also shown to hydrolyse β-glucosyl disaccharides such as cellobiose and gentiobiose, while GluAHis and GluBHis did not. Differences in activity were recorded for all four β-glucosidases at different pHs and temperatures under otherwise similar assay conditions, suggesting they have complementary activities under different environmental conditions. Two of the recombinant genes, r-β-gluA, and r-β-gluD, were cloned and expressed in the model lactic acid bacterium Lactococcus lactis, suggesting starter and probiotic organisms could be endowed with β-glucosidase activity. B. pseudocatenulatum IPLA 36007 contains additional β-glucosidases to those studied in this work, indicating a high level of redundancy for this enzymatic activity. Knowledge of glycoside-degrading enzymes should facilitate the development of novel, more effective or more selective prebiotics or functional foods for the promotion of bifidobacterial numbers in the human gut. It might also be of interest in the development of novel probiotics

  20. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice.

    PubMed

    Moya-Pérez, A; Perez-Villalba, A; Benítez-Páez, A; Campillo, I; Sanz, Y

    2017-10-01

    Emerging evidence suggests that there is a window of opportunity within the early developmental period, when microbiota-based interventions could play a major role in modulating the gut-brain axis and, thereby, in preventing mood disorders. This study aims at evaluating the effects and mode of action of Bifidobacterium pseudocatenulatum CECT 7765 in a murine model of chronic stress induced by maternal separation (MS). C57Bl/6J male breast-fed pups were divided into four groups, which were subjected or not to MS and supplemented with placebo or B. pseudocatenulatum CECT7765 until postnatal period (P) 21 and followed-up until P41. Behavioral tests were performed and neuroendocrine parameters were analyzed including corticosterone, cytokine/chemokine concentrations and neurotransmitters. Microbiota was also analyzed in stools by 16S rRNA gene sequencing. B. pseudocatenulatum CECT 7765 administration attenuated some aspects of the excessive MS-induced stress response of the hypothalamic-pituitary-adrenal (HPA) axis, particularly corticosterone production at baseline and in response to subsequent acute stress in adulthood. B. pseudocatenulatum CECT 7765 also down-regulated MS-induced intestinal inflammation (reducing interferon gamma [IFN-γ]) and intestinal hypercatecholaminergic activity (reducing dopamine [DA] and adrenaline [A] concentrations) at P21. These effects have a long-term impact on the central nervous system (CNS) of adult mice since MS mice fed B. pseudocatenulatum CECT 7765 showed lower anxiety levels than placebo-fed MS mice, as well as normal neurotransmitter levels in the hypothalamus. The anti-inflammatory effect of B. pseudocatenulatum CECT 7765 seemed to be related to an improvement in glucocorticoid sensitivity in mesenteric lymph node immunocompetent cells at P21. The administration of B. pseudocatenulatum CECT 7765 to MS animals also reversed intestinal dysbiosis affecting the proportions of ten Operational Taxonomic Units (OTUs) at P21, which

  1. Improving the storage stability of Bifidobacterium breve in low pH fruit juice.

    PubMed

    Saarela, M; Alakomi, H L; Mättö, J; Ahonen, A M; Puhakka, A; Tynkkynen, S

    2011-09-01

    Bifidobacterial food applications are limited since bifidobacteria are sensitive to e.g. acidic conditions prevalent in many food matrices. The aim of the present study was to investigate whether a low pH selection step alone or combined to UV mutagenesis could improve the viability of an acid sensitive Bifidobacterium strain, B. breve 99, in low pH food matrices. Furthermore, the potential of carriers and an oat fibre preparation to further improve the stability was studied. The best performing low pH tolerant variants in the present study were generated by UV-mutagenesis with 70-700μJ/cm(2) followed by incubation in growth medium at pH 4.5. The most promising variants regarding the low pH tolerance showed, in repeated tests with cells grown without pH control, about one Log-value better survival in pH 3.8 fruit juice after one week storage at 4°C compared to wild-type B. breve 99. Cells grown with pH control, PDX formulated and then frozen showed poorer viability in low pH fruit juice than cells grown with no pH control. For frozen concentrates pH 3.8 was too stressful and no or small differences between the variants and the wild-type strain were seen. The differences detected at pH 3.8 with the cells grown without pH control were also seen with the frozen concentrates at pH 4.5. Some improvement in the stability could be achieved by using a combination of trehalose, vitamin C and PDX as a freezing carrier material, whereas a significant improvement in the stability was seen when oat fibre was added into the fruit juice together with the frozen cells. Due to the initial very poor fruit juice tolerance of B. breve 99 the obtained improvement in the stability was not enough for commercial applications. However, the same methods could be applied to initially better performing strains to further improve their stability in the fruit juice.

  2. Galactooligosaccharides derived from lactose and lactulose: influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth.

    PubMed

    Cardelle-Cobas, Alejandra; Corzo, Nieves; Olano, Agustin; Peláez, Carmen; Requena, Teresa; Ávila, Marta

    2011-09-01

    The effect of structure on the fermentative properties of potential prebiotic trisaccharides derived from lactulose like 6'-galactosyl-lactulose (β-d-galactopyranosyl-(1→6)-β-d-galactopyranosyl-(1→4)-β-d-fructopyranose), 4'-galactosyl-lactulose (β-d-galactopyranosyl-(1→4)-β-d-galactopyranosyl-(1→4)-β-d-fructopyranose), and 1-galactosyl-lactulose (β-d-galactopyranosyl-(1→4)-β-d-fructopyranosyl-(1→1)-β-d-galactopyranose); and from lactose like 4'-galactosyl-lactose (β-d-galactopyranosyl-(1→4)-β-d-galactopyranosyl-(1→4)-β-d-glucopyranose) and 6'-galactosyl-lactose (β-d-galactopyranosyl-(1→6)-β-d-galactopyranosyl-(1→4)-β-d-glucopyranose), has been assessed in vitro. Fermentations with twelve pure strains of Lactobacillus, Streptococcus and Bifidobacterium were carried out using the purified trisaccharides as the sole carbon source, and bacteria growth was evaluated at 600nm by means of a microplate reader during 48h. Maximum growth rates (μ(max)) and lag phase were calculated. In general, all the strains tested were able to utilize lactulose and pure trisaccharides derived from lactulose and lactose when they were used as sole carbon source. Nonetheless, glycosidic linkage and/or the monosaccharide composition of the trisaccharides affected the individual strains lag phase, cell densities and growth rates. A general preference towards β-galactosyl residues β(1-6) and β(1-1) linked over those β(1-4) linked was observed, and some strains showed higher cell densities and speed of growth on 6'-galactosyl-lactulose than on 6'-galactosyl-lactose. This is the first study of the effect of lactulose-derived oligosaccharides on pure culture growth which shows that transglycosylation of lactulose allows for obtaining galactooligosaccharides with new glycosidic structures and would open new routes to the synthesis of compounds with potential prebiotic effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Development of antimicrobial synbiotics using potentially-probiotic faecal isolates of Lactobacillus fermentum and Bifidobacterium longum.

    PubMed

    Likotrafiti, Eleni; Tuohy, Kieran M; Gibson, Glenn R; Rastall, Robert A

    2013-04-01

    The aims of the present study were to investigate in vitro the antimicrobial activity of Lactobacillus fermentum and Bifidobacterium longum, isolated from faeces of healthy elderly individuals, against enterohaemorrhagic Escherichia coli (E. coli O157:H7) and enteropathogenic E. coli (E. coli O86), to determine the capability of the selected strains to tolerate acid and bile in vitro, to select suitable carbohydrates in order to enhance the growth and maximise antimicrobial activity of the putative probiotic organisms and examine the adhesion properties of the synbiotics. Antimicrobial activity of the putative probiotics and synbiotics was investigated by a microtitre method using cell-free culture supernatants (CFCS). Results of the antimicrobial assay showed that both putative probiotic strains produced compounds at pH 5 that lead to higher lag phases of both E. coli O157:H7 and E. coli O86. When half the quantity of cell-free culture supernatants of both probiotic strains was used at pH 5, B. longum maintained the same antimicrobial effect against both strains of E. coli, whereas L. fermentum lead to a higher lag phase of E. coli O86 only. Neutralization of the culture supernatants with alkali reduced the antimicrobial effect with only cell-free supernatant of L. fermentum causing lower maximum growth rates of E. coli O157:H7 and E. coli O86. L. fermentum appeared to be acid tolerant whereas B. longum was more susceptible to acid and both isolates were bile tolerant. A short chain fructooligosaccharide (scFOS) and an isomalto-oligosaccharide (IMO) proved to be the most effective substrates, enhancing antimicrobial activity for L. fermentum and B. longum respectively. The adhesion of the synbiotic combinations showed that L. fermentum, exhibited higher percentage of adhesion when grown on glucose and as a synbiotic combination with scFOS whereas B. longum exhibited lowest percentage of adhesion when grown on both glucose and IMO. Copyright

  4. Quantitative analysis of S. mutans, Lactobacillus and Bifidobacterium found in initial and mature plaques in Thai children with early childhood caries.

    PubMed

    Mitrakul, K; Chanvitan, S; Jeamset, A; Vongsawan, K

    2017-07-18

    To quantify Streptococcus mutans, lactobacillus and bifidobacterium in initial and mature plaque collected from children with severe early childhood caries (S-ECC) and caries-free (CF) groups and to analyse the association between these bacteria and caries-related factors in each group. A collection of 120 initial and overnight supra-gingival plaques were collected from Thai children aged 2-5 years-old (S-ECC = 60, CF = 60). Plaque, gingival indices and decayed, missing, filled tooth (dmft) scores were recorded. A questionnaire was used to assess the parents' attitudes and behaviour regarding the child's oral hygiene care and diet. After DNA extraction, quantitative real-time polymerase chain reaction (PCR) using fluorescent dye (SYBR green) was performed. Levels of Streptococcus mutans, lactobacillus and bifidobacterium in both initial and mature plaques of S-ECC were significantly higher than those from the caries-free group (p < 0.05). The ratio of S. mutans, lactobacillus, and bifidobacterium to the total bacteria in S-ECC was significantly higher than in the caries-free group (p < 0.05). Levels of lactobacillus and bifidobacterium in both plaques significantly correlated with dmft scores and the plaque index, while S. mutans levels only correlated with dmft scores (p < 0.05). Factors that were significantly associated with caries were parents's education, duration of bottle feeding, especially during sleeping and the frequency of consuming cariogenic food between meals (p < 0.05). Levels of S. mutans, lactobacillus, bifidobacterium and the ratio of these bacteria to total bacteria in both initial and mature plaques were significantly higher in children with S-ECC and related to dmft scores, oral hygiene and dietary habits.

  5. A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain.

    PubMed

    Baffoni, Loredana; Gaggìa, Francesca; Di Gioia, Diana; Santini, Cecilia; Mogna, Luca; Biavati, Bruno

    2012-07-02

    With the ban of dietary antimicrobial agents, the use of probiotics, prebiotics and synbiotics has attracted a great deal of attention in order to improve intestinal health and control food-borne pathogens, which is an important concern for the production of safe meat and meat products. Recently, Campylobacter jejuni has emerged as a leading bacterial cause of food-borne gastroenteritis in humans, and epidemiological evidences indicate poultry and poultry products as the main source of human infection. This work aimed at the development of a synbiotic mixture capable of modulating the gut microbiota of broiler chickens to obtain an increase of the beneficial bacteria (i.e. bifidobacteria, lactobacilli) and a competitive reduction of C. jejuni. The prebiotic compound used in the mixture was chosen after an in vivo trial: a fructooligosaccharide and a galactooligosaccharide were separately administered to broilers mixed with normal feed at a concentration of 0.5% and 3%, respectively. Quantitative PCR on DNA extracted from fecal samples revealed a significant (p<0.05) increase of Bifidobacterium spp. in broilers treated with the galactooligosaccharide, coupled to a decrease (p<0.05) of Campylobacter spp. The galactooligosaccharide was then combined with a probiotic Bifidobacterium strain (B. longum subsp. longum PCB133), possessing in vitro antimicrobial activity against C. jejuni. The strain was microencapsulated in a lipid matrix to ensure viability into the feed and resistance to stomach transit. Finally, the synbiotic mixture was administered to broiler chickens for 14 days mixed with normal feed in order to have an intake of 10(9)CFU of PCB133/day. Bifidobacterium spp., Lactobacillus spp., Campylobacter spp., B. longum subsp. longum and C. jejuni were quantified in fecal samples. PCB133 was recovered in feces of all animals. C. jejuni concentration in poultry feces was significantly (p<0.05) reduced in chickens administered with the synbiotic mixture. This study

  6. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution.

    PubMed

    Lee, K Y; Heo, T R

    2000-02-01

    Bifidobacterium longum KCTC 3128 and HLC 3742 were independently immobilized (entrapped) in calcium alginate beads containing 2, 3, and 4% sodium alginate. When the bifidobacteria entrapped in calcium alginate beads were exposed to simulated gastric juices and a bile salt solution, the death rate of the cells in the beads decreased proportionally with an increase in both the alginate gel concentration and bead size. The initial cell numbers in the beads affected the numbers of survivors after exposure to these solutions; however, the death rates of the viable cells were not affected. Accordingly, a mathematical model was formulated which expressed the influences of several parameters (gel concentration, bead size, and initial cell numbers) on the survival of entrapped bifidobacteria after sequential exposure to simulated gastric juices followed by a bile salt solution. The model proposed in this paper may be useful for estimating the survival of bifidobacteria in beads and establishing optimal entrapment conditions.

  7. Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment

    PubMed Central

    Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Ferrario, Chiara; van Sinderen, Douwe

    2015-01-01

    Bifidobacteria represent one of the dominant microbial groups that occur in the gut of various animals, being particularly prevalent during the suckling period of humans and other mammals. Their ability to compete with other gut bacteria is largely attributed to their saccharolytic features. Comparative and functional genomic as well as transcriptomic analyses have revealed the genetic background that underpins the overall saccharolytic phenotype for each of the 47 bifidobacterial (sub)species representing the genus Bifidobacterium, while also generating insightful information regarding carbohydrate resource sharing and cross-feeding among bifidobacteria. The abundance of bifidobacterial saccharolytic features in human microbiomes supports the notion that metabolic accessibility to dietary and/or host-derived glycans is a potent evolutionary force that has shaped the bifidobacterial genome. PMID:26590291

  8. The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage.

    PubMed

    Pop, Oana Lelia; Brandau, Thorsten; Schwinn, Jens; Vodnar, Dan Cristian; Socaciu, Carmen

    2015-07-01

    Seven different types of natural polymers namely hydroxypropyl methylcellulose (HPMC), sodium-carboxymethyl cellulose (Na-CMC), microcrystalline cellulose (MCC), starch BR-07, starch BR-08, dextrin and pullulan were used in order to develop the optimal formula for the entrapment of Bifidobacterium lactis 300B in Ca-alginate based granules. Laminar flow drip casting with Brace-Encapsulator was used in order to prepare the granules. The results showed that alginate/pullulan and alginate/HPMC formulation provide high protection for the bacterial strain used for encapsulation. These two formulations were further used to obtain freeze dried granules, for which the viability in time and at different temperatures was tested. The final results showed a higher viability than the level of the therapeutic minimum (>10(7) CFU/g) after 15 days of storage. Other parameters like entrapment efficiency, production rate, sphericity, flowability were also discussed.

  9. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants.

    PubMed

    Corrêa, Naflesia B O; Péret Filho, Luciano A; Penna, Francisco J; Lima, Fátima M L S; Nicoli, Jacques R

    2005-01-01

    This clinical trial was carried out to determine whether oral treatment with a commercial probiotic formula containing Bifidobacterium lactis and Streptococcus thermophilus would reduce the frequency of antibiotic-associated diarrhea (AAD) in infants. In this double-bind formula controlled study, 80 infants, 6 to 36 months of age, were randomly assigned to receive a commercial formula containing 10 viable cells of B. lactis and 10 viable cells of S. thermophilus at the initiation of antibiotics for a duration of 15 days. The infants were assessed daily for formula intake, stool frequency, and stool consistency for a total duration of 30 days. Seventy-seven infants received nonsupplemented formula for the entire duration. There was a significant difference in the incidence of AAD in the children receiving probiotic-supplemented formula (16%) than nonsupplemented formula (31%). The present study shows that prevention against AAD in infants was obtained by oral treatment with daily dose of B. lactis and S. thermophilus.

  10. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome

    PubMed Central

    Sela, D. A.; Chapman, J.; Adeuya, A.; Kim, J. H.; Chen, F.; Whitehead, T. R.; Lapidus, A.; Rokhsar, D. S.; Lebrilla, C. B.; German, J. B.; Price, N. P.; Richardson, P. M.; Mills, D. A.

    2008-01-01

    Following birth, the breast-fed infant gastrointestinal tract is rapidly colonized by a microbial consortium often dominated by bifidobacteria. Accordingly, the complete genome sequence of Bifidobacterium longum subsp. infantis ATCC15697 reflects a competitive nutrient-utilization strategy targeting milk-borne molecules which lack a nutritive value to the neonate. Several chromosomal loci reflect potential adaptation to the infant host including a 43 kbp cluster encoding catabolic genes, extracellular solute binding proteins and permeases predicted to be active on milk oligosaccharides. An examination of in vivo metabolism has detected the hallmarks of milk oligosaccharide utilization via the central fermentative pathway using metabolomic and proteomic approaches. Finally, conservation of gene clusters in multiple isolates corroborates the genomic mechanism underlying milk utilization for this infant-associated phylotype. PMID:19033196

  11. Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome.

    PubMed

    Maldonado-Gómez, María X; Martínez, Inés; Bottacini, Francesca; O'Callaghan, Amy; Ventura, Marco; van Sinderen, Douwe; Hillmann, Benjamin; Vangay, Pajau; Knights, Dan; Hutkins, Robert W; Walter, Jens

    2016-10-12

    Live bacteria (such as probiotics) have long been used to modulate gut microbiota and human physiology, but their colonization is mostly transient. Conceptual understanding of the ecological principles as they apply to exogenously introduced microbes in gut ecosystems is lacking. We find that, when orally administered to humans, Bifidobacterium longum AH1206 stably persists in the gut of 30% of individuals for at least 6 months without causing gastrointestinal symptoms or impacting the composition of the resident gut microbiota. AH1206 engraftment was associated with low abundance of resident B. longum and underrepresentation of specific carbohydrate utilization genes in the pre-treatment microbiome. Thus, phylogenetic limiting and resource availability are two factors that control the niche opportunity for AH1206 colonization. These findings suggest that bacterial species and functional genes absent in the gut microbiome of individual humans can be reestablished, providing opportunities for precise and personalized microbiome reconstitution. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy.

    PubMed

    Hamaji, Yoshinori; Fujimori, Minoru; Sasaki, Takayuki; Matsuhashi, Hitomi; Matsui-Seki, Keiichi; Shimatani-Shibata, Yuko; Kano, Yasunobu; Amano, Jun; Taniguchi, Shun'ichiro

    2007-04-01

    In our previous studies, a strain of the nonpathogenic, anaerobic, intestinal bacterium, Bifidobacterium longum (B. longum), was found to be localized selectively and to proliferate within solid tumors after systemic administration. In addition, B. longum transformed with the shuttle-plasmid encoding the cytosine deaminase (CD) gene expressed active CD, which deaminated the prodrug 5-fluorocytosine (5-FC) to the anticancer agent 5-fluorouracil (5-FU). We also reported antitumor efficacy with the same plasmid in several animal experiments. In this study, we constructed a novel shuttle-plasmid, pAV001-HU-eCD-M968, which included the mutant CD gene with a mutation at the active site to increase the enzymatic activity. In addition, the plasmid-transformed B. longum produces mutant CD and strongly increased (by 10-fold) its 5-FC to 5-FU enzymatic activity. The use of B. longum harboring the new shuttle-plasmid increases the effectiveness of our enzyme/prodrug strategy.

  13. Clinical benefits of probiotic canine-derived Bifidobacterium animalis strain AHC7 in dogs with acute idiopathic diarrhea.

    PubMed

    Kelley, R L; Minikhiem, Debbie; Kiely, Barry; O'Mahony, Liam; O'Sullivan, David; Boileau, Tom; Park, Jean Soon

    2009-01-01

    This study evaluated the effect of supplementation with canine-derived probiotic Bifidobacterium animalis strain AHC7 (lams Prostora, Procter & Gamble Pet Care) on the resolution rate of acute idiopathic diarrhea in dogs randomly assigned to receive a placebo (n=18) or the probiotic (n=13). Nutritional management with the probiotic fed at 2 x 10(10) CFU/day significantly reduced the time to resolution (3.9 +/- 2.3 versus 6.6 +/- 2.7 days; P < .01) and reduced the percentage of dogs that were administered metronidazole (38.5% versus 50.0%) compared with placebo. Probiotic B. animalis AHC7 may provide veterinarians another tool for management of acute diarrhea in dogs.

  14. CTAB-mediated, single-step preparation of competent Escherichia coli, Bifidobacterium sp. and Kluyveromyces lactis cells.

    PubMed

    Rajagopal, Kammara; Singh, Praveen Kumar; Kumar, Rajesh; Siddiqui, Kaneez Fatima

    2014-12-01

    An efficient and reproducible method for transformation depends on the competency of the organism. We have developed a simple method for the preparation of competent Escherichia coli, Kluyveromyces lactis, and Bifidobacterium sp. by using a buffer containing cetyl trimethyl ammonium bromide (CTAB) and permits efficient uptake of plasmid DNA and ligation-reaction products. Cells are harvested, washed, mixed with 1-10 μg/ml CTAB, incubated, and followed by a buffer wash. For long-term storage of competent cells, bacteria may be frozen in 10% glycerol without the addition of other components. The transformation process is very simple; plasmid DNA and the cells are mixed and incubated for 5-60 min at 4 °C; no heat pulse is required, and the duration of incubation at 4 °C is not crucial.

  15. Effect of a fermented milk containing Bifidobacterium lactis DN-173010 on Chinese constipated women

    PubMed Central

    Yang, Yue-Xin; He, Mei; Hu, Gang; Wei, Jie; Pages, Philippe; Yang, Xian-Hua; Bourdu-Naturel, Sophie

    2008-01-01

    AIM: To investigate the effect of a fermented milk containing Bifidobacterium lactis DN-173010 and yogurt strains (BIO®) on adult women with constipation in Beijing. METHODS: A total of 135 adult females with constipation were randomly allocated to consume for 2 wk either 100 g of the test fermented milk or 100 g of an acidified milk containing non-living bacteria (control). Stool frequency, defecation condition scores, stool consistency and food intake were recorded at baseline and after 1 and 2 wk in an intention-to-treat population of 126 subjects. In parallel, safety evaluation parameters were performed. RESULTS: At baseline, no differences were found between groups. Following consumption of test product, stool frequency was significantly increased after 1 wk (3.5 ± 1.5 vs 2.4 ± 0.6, P < 0.01) and 2 wk (4.1 ± 1.7 vs 2.4 ± 0.6, P < 0.01), vs baseline. Similarly, after 1 and 2 wk, of test product consumption, defecation condition (1.1 ± 0.9 vs 1.9 ± 1.2, P < 0.01 and 0.8 ± 1.0 vs 1.9 ± 1.2, P < 0.01, respectively) and stool consistency (1.0 ± 0.8 vs 1.5 ± 1.1, P < 0.01 and 0.6 ± 0.8 vs 1.5 ± 1.1, P < 0.01, respectively) were significantly improved. Compared with the control group, stool frequency was also significantly increased (3.5 ± 1.5 vs 2.5 ± 0.9, P < 0.01 and 4.1 ± 1.7 vs 2.6 ± 1.0, P < 0.01, respectively), and defecation condition (1.1 ± 0.9 vs 1.6 ± 1.1, P < 0.01 and 0.8 ± 1.0 vs 1.6 ± 1.1, P < 0.01, respectively) and stool consistency (1.0 ± 0.8 vs 1.4 ± 1.0, P < 0.05 and 0.6 ± 0.8 vs 1.3 ± 1.0, P < 0.01, respectively) significantly decreased after 1 and 2 wk of product consumption. During the same period, food intake did not change between the two groups, and safety parameters of the subjects were within normal ranges. CONCLUSION: This study suggests a beneficial effect of a fermented milk containing B. lactis DN-173010 on stool frequency, defecation condition and stool consistency in adult women with constipation constipated

  16. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect.

    PubMed

    Murata, Kozue; Tomosada, Yohsuke; Villena, Julio; Chiba, Eriko; Shimazu, Tomoyuki; Aso, Hisashi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Saito, Tadao; Kitazawa, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4(+)CD25(high) Foxp3(+) lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117.

  17. Integrated Role of Bifidobacterium animalis subsp. lactis Supplementation in Gut Microbiota, Immunity, and Metabolism of Infant Rhesus Monkeys

    PubMed Central

    He, Xuan; Dekker, James W.; Haggarty, Neill W.; Lönnerdal, Bo

    2016-01-01

    ABSTRACT To investigate the impact of probiotic supplementation of infant formula on immune parameters, intestinal microbiota, and metabolism, five individually housed infant rhesus monkeys exclusively fed standard infant formula supplemented with probiotics (Bifidobacterium animalis subsp. lactis HN019) from birth until 3 months of age were compared with five standard formula-fed and five breast-fed monkeys. Anthropometric measurements, serum insulin, immune parameters, fecal microbiota, and metabolic profiles of serum, urine, and feces were evaluated. Consumption of B. lactis-supplemented formula reduced microbial diversity, restructured the fecal microbial community, and altered the fecal metabolome at the last two time points, in addition to increasing short-chain fatty acids in serum and urine. Circulating CCL22 was lower and threonine, branched-chain amino acids, urea, and allantoin, as well as dimethylglycine in serum and urine, were increased in the group supplemented with B. lactis compared with the standard formula-fed group. These results support a role of probiotics as effectors of gut microbial activity regulating amino acid utilization and nitrogen cycling. Future risk-benefit analyses are still needed to consolidate the existing knowledge on the long-term consequences of probiotic administration during infancy. IMPORTANCE Probiotics are becoming increasingly popular due to their perceived effects on health, despite a lack of mechanistic information on how they impart these benefits. Infant formula and complementary foods are common targets for supplementation with probiotics. However, different probiotic strains have different properties, and there is a lack of data on long-term health effects on the consumer. Given the increasing interest in supplementation with probiotics and the fact that the gastrointestinal tracts of infants are still immature, we sought to determine whether consumption of infant formula containing the probiotic

  18. Integrated Role of Bifidobacterium animalis subsp. lactis Supplementation in Gut Microbiota, Immunity, and Metabolism of Infant Rhesus Monkeys.

    PubMed

    He, Xuan; Slupsky, Carolyn M; Dekker, James W; Haggarty, Neill W; Lönnerdal, Bo

    2016-01-01

    To investigate the impact of probiotic supplementation of infant formula on immune parameters, intestinal microbiota, and metabolism, five individually housed infant rhesus monkeys exclusively fed standard infant formula supplemented with probiotics (Bifidobacterium animalis subsp. lactis HN019) from birth until 3 months of age were compared with five standard formula-fed and five breast-fed monkeys. Anthropometric measurements, serum insulin, immune parameters, fecal microbiota, and metabolic profiles of serum, urine, and feces were evaluated. Consumption of B. lactis-supplemented formula reduced microbial diversity, restructured the fecal microbial community, and altered the fecal metabolome at the last two time points, in addition to increasing short-chain fatty acids in serum and urine. Circulating CCL22 was lower and threonine, branched-chain amino acids, urea, and allantoin, as well as dimethylglycine in serum and urine, were increased in the group supplemented with B. lactis compared with the standard formula-fed group. These results support a role of probiotics as effectors of gut microbial activity regulating amino acid utilization and nitrogen cycling. Future risk-benefit analyses are still needed to consolidate the existing knowledge on the long-term consequences of probiotic administration during infancy. IMPORTANCE Probiotics are becoming increasingly popular due to their perceived effects on health, despite a lack of mechanistic information on how they impart these benefits. Infant formula and complementary foods are common targets for supplementation with probiotics. However, different probiotic strains have different properties, and there is a lack of data on long-term health effects on the consumer. Given the increasing interest in supplementation with probiotics and the fact that the gastrointestinal tracts of infants are still immature, we sought to determine whether consumption of infant formula containing the probiotic Bifidobacterium

  19. Effect of Bifidobacterium thermophilum RBL67 and fructo-oligosaccharides on the gut microbiota in Göttingen minipigs.

    PubMed

    Tanner, Sabine A; Lacroix, Christophe; Del'Homme, Christophe; Jans, Christoph; Zihler Berner, Annina; Bernalier-Donadille, Annick; Chassard, Christophe

    2015-09-14

    Modulating the gut microbiota via dietary interventions is a common strategy to enhance the natural defence mechanisms of the host. Several in vitro studies have highlighted the probiotic potential of Bifidobacterium thermophilum RBL67 (RBL67) selected for its anti-Salmonella effects. The present study aimed to investigate the impact of RBL67 alone and combined with fructo-oligosaccharides (FOS) on the gut microbiota of Göttingen minipigs. Minipigs were fed a basal diet supplemented with 8 g/d probiotic powder (1×109 CFU/g in skim milk matrix) (probiotic diet (PRO)), 8 g/d probiotic powder plus 8 g/d FOS (synbiotic diet (SYN)) or 8 g/d skim milk powder (control), following a cross-sectional study design. Faecal and caecal microbiota compositions were analysed with pyrosequencing of 16S rRNA genes and quantitative PCR. Metabolic activity in the caecum and colon was measured by HPLC. 16S rRNA gene amplicon sequencing revealed that minipig faeces show close similarity to pig microbiota. During the treatments and at the time of killing of animals, RBL67 was consistently detected in faeces, caecum and colon at numbers of 105-106 16S rRNA copies/g content after feeding PRO and SYN diets. At the time of killing of animals, significantly higher Bifidobacterium numbers in the caecum and colon of SYN-fed minipigs were measured compared with PRO. Our data indicate that the Göttingen minipig may be a suitable model for gut microbiota research in pigs. Data from this first in vivo study of RBL67 colonisation suggest that the combination with FOS may represent a valuable symbiotic strategy to increase probiotic bacteria levels and survival in gastrointestinal tracts for feed and food applications.

  20. Changes in growth and survival of Bifidobacterium by coculture with Propionibacterium in soy milk, cow's milk, and modified MRS medium.

    PubMed

    Wu, Qian Qian; You, Hyun Ju; Ahn, Hyung Jin; Kwon, Bin; Ji, Geun Eog

    2012-06-15

    Bifidobacterium adolescentis Int57 (Int57) and Propionibacterium freudenreichii subsp. shermanii ATCC 13673 (ATCC 13673) were grown either in coculture or as pure cultures in different media, such as cow's milk, soybean milk, and modified MRS medium. The viable cell counts of bacteria, changes in pH, concentrations of organic acids, and contents of various sugars were analyzed during incubation up to 7days. In soy milk, the survival of cocultured Int57 was six times higher than the monocultured cells, and ATCC 13673 cocultured with Int57 consumed 69.4% of lactic acid produced by Int57 at the end of fermentation. In cow's milk, coculture with ATCC 13673 increased the growth of Int57 from 24h until 120h by approximately tenfold and did not affect the survival of Int57 cells. After 96h of fermentation of modified MRS, the survival of ATCC 13673 cells cocultured with Int57 increased by 3.2- to 7.4-folds as compared with ATCC 13673 monoculture, whereas the growth of Int57 cells was unaffected. The growth and metabolic patterns of two strains during coculture showed noticeable differences between food grade media and laboratory media. The consumption of stachyose in soy milk during coculture of Int57 with ATCC 13673 was increased by more than twice compared with Int57 monoculture, and completed within 24h. The combinational use of Bifidobacterium and Propionibacterium could be applied to the development of fermented milk or soy milk products. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect

    PubMed Central

    MURATA, Kozue; TOMOSADA, Yohsuke; VILLENA, Julio; CHIBA, Eriko; SHIMAZU, Tomoyuki; ASO, Hisashi; IWABUCHI, Noriyuki; XIAO, Jin-zhong; SAITO, Tadao; KITAZAWA, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4+CD25high Foxp3+ lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117. PMID:24936377

  2. The effect of soymilk intake on the fecal microbiota, particularly Bifidobacterium species, and intestinal environment of healthy adults: a pilot study.

    PubMed

    Fujisawa, Tomohiko; Ohashi, Yuji; Shin, Ryoichi; Narai-Kanayama, Asako; Nakagaki, Takenori

    2017-01-01

    The influence of soymilk on the fecal microbiota, particularly Bifidobacterium species, and metabolic activities were investigated in eight healthy adult humans. During the soymilk intake period, the number of bifidobacteria in feces was significantly higher (p<0.05) on day 14 of the soymilk intake period than before the intake period, whereas that of Enterobacteriaceae was significantly lower (p<0.05) on days 7 and 14 of the soymilk intake period than before the intake period. In an investigation of Bifidobacterium at the species or group level, the numbers of all species and groups studied slightly increased during the soymilk intake period. These results show that the intake of soymilk may contribute to improving the intestinal environment.

  3. Rapid MALDI-TOF-MS analysis in the study of interaction between whole bacterial cells and human target molecules: binding of Bifidobacterium to human plasminogen.

    PubMed

    Candela, Marco; Fiori, Jessica; Dipalo, Samuele; Naldi, Marina; Gotti, Roberto; Brigidi, Patrizia

    2008-06-01

    MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)-mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.

  4. The effect of soymilk intake on the fecal microbiota, particularly Bifidobacterium species, and intestinal environment of healthy adults: a pilot study

    PubMed Central

    FUJISAWA, Tomohiko; OHASHI, Yuji; SHIN, Ryoichi; NARAI-KANAYAMA, Asako; NAKAGAKI, Takenori

    2016-01-01

    The influence of soymilk on the fecal microbiota, particularly Bifidobacterium species, and metabolic activities were investigated in eight healthy adult humans. During the soymilk intake period, the number of bifidobacteria in feces was significantly higher (p<0.05) on day 14 of the soymilk intake period than before the intake period, whereas that of Enterobacteriaceae was significantly lower (p<0.05) on days 7 and 14 of the soymilk intake period than before the intake period. In an investigation of Bifidobacterium at the species or group level, the numbers of all species and groups studied slightly increased during the soymilk intake period. These results show that the intake of soymilk may contribute to improving the intestinal environment. PMID:28243549

  5. Secreted Factors from Bifidobacterium animalis subsp. lactis Inhibit NF-κB-Mediated Interleukin-8 Gene Expression in Caco-2 Cells▿

    PubMed Central

    Wang, Zhonggui; Wang, Jinfeng; Cheng, Yi; Liu, Xin; Huang, Ying

    2011-01-01

    The objective of the present study was to evaluate the anti-inflammatory effects of Bifidobacterium animalis subsp. lactis strain BB12 in stimulated Caco-2 cells and to characterize the factors responsible for these anti-inflammatory effects. Characterization and purification studies indicate that BB12's anti-inflammatory factors might include a 50-kDa proteinaceous compound that is stable under a variety of heat and pH conditions. PMID:21926200

  6. Human intestinal mucosa-associated Lactobacillus and Bifidobacterium strains with probiotic properties modulate IL-10, IL-6 and IL-12 gene expression in THP-1 cells.

    PubMed

    Čitar, M; Hacin, B; Tompa, G; Štempelj, M; Rogelj, I; Dolinšek, J; Narat, M; Matijašić, B Bogovič

    2015-01-01

    Lactobacilli and bifidobacteria are considered one of the permanent genera of the physiological human intestinal microbiota and represent an enormous pool of potential probiotic candidates. Approximately 450 isolates of presumptive Lactobacillus or Bifidobacterium strains were obtained from bioptic samples of colonic and ileal mucosa from 15 adolescents aged 12 to 18 years. On the basis of randomly amplified polymorphic DNA (RAPD)-PCR analysis, 20 strains were selected for further taxonomic classification and characterisation, as well as assessment of probiotic properties and safety. Importantly, selected strains showed the capability of colonising different parts of the intestine. The most frequently isolated species was Lactobacillus paracasei followed by Lactobacillus fermentum. The majority of isolates were susceptible to antimicrobials of human and veterinary importance, however, tetracycline and/or erythromycin resistance was observed in Lactobacillus plantarum and L. fermentum strains. Thirteen strains were able to ferment more than 19 different carbon sources and three out of five tested strains exerted antagonistic activity against several different indicator strains. Two Lactobacillus isolates (L. paracasei L350 and L. fermentum L930 bb) and one Bifidobacterium isolate (Bifidobacterium animalis subsp. animalis IM386) fulfilled in vitro selection criteria for probiotic strains and exhibited strong downregulation of pro-inflammatory cytokines IL-6 and IL-12 and upregulation of anti-inflammatory IL-10. The selected strains represent suitable candidates for further studies regarding their positive influence on host health and could play an important role in ameliorating the symptoms of inflammatory bowel diseases.

  7. Measurements of Intra- and Extra-Cellular 5-Methyltetrahydrofolate Indicate that Bifidobacterium Adolescentis DSM 20083T and Bifidobacterium Pseudocatenulatum DSM 20438T Do Not Actively Excrete 5-Methyltetrahydrofolate In vitro

    PubMed Central

    Kopp, Markus; Dürr, Kerstin; Steigleder, Matthias; Clavel, Thomas; Rychlik, Michael

    2017-01-01

    Certain intestinal bifidobacteria have the ability to synthesize folates. In vitro experiments revealed a high production, cellular accumulation, and release of reduced folate vitamers like 5-methyltetrahydrofolate and tetrahydrofolate in folate-free medium (FFM). However, it is still unclear to which extent synthesized folates are polyglutamylated and probably not available for transport, and if they are actively released by excretion. To address these questions, we characterized intra- and extra-cellular pteroylmonoglutamates and polyglutamylated 5-methyltetrahydrofolate (5-CH3-H4PteGlu2−4) in Bifidobacterium adolescentis DSM 20083T and Bifidobacterium pseudocatenulatum DSM 20438T in vitro. Folates were measured by means of stable isotope dilution assays (SIDA) coupled with LC-MS/MS analysis using [2H4]-5-methyltetrahydrofolic acid, [2H4]-tetrahydrofolic acid, and [2H4]-5-formyltetrahydrofolic acid as internal standards. Cell viability was examined by fluorescence microscopy. Quantitation of folate production by B. adolescentis during the stationary phase revealed a linear increase of dead cells paralleled by increasing concentration of 5-formyltetrahydrofolate and 5-methyltetrahydrofolate (100% 5-CH3-H4PteGlu4) in FFM, whereas the intracellular concentrations of these vitamers remained constant. After 24 h, B. adolescentis (125 mg cells, wet weight) produced a total amount of 0.846 nmol 5-CH3-H4folate: 0.385 ± 0.059 nmol (46 ± 7%) and 0.461 ± 0.095 nmol (54 ± 11%) measured in the intracellular (viable cells; 52 ± 3% measured by fluorescence microscopy) and extracellular (lysed cells; 48 ± 3%) fraction, respectively. For B. pseudocatenulatum (124 mg cells, wet weight), 1.135 nmol 5-CH3-H4folate was produced after 24 h, and a similar proportionality between intra- and extra-cellular folate concentrations and viable/lysed cells was observed. These results indicate that the strains tested produce and accumulate 5-CH3-H4PteGlu4 for cellular metabolism, and

  8. Mechanistic Study of Utilization of Water-Insoluble Saccharomyces cerevisiae Glucans by Bifidobacterium breve Strain JCM1192.

    PubMed

    Keung, Hoi Yee; Li, Tsz Kai; Sham, Lok To; Cheung, Man Kit; Cheung, Peter Chi Keung; Kwan, Hoi Shan

    2017-04-01

    Bifidobacteria exert beneficial effects on hosts and are extensively used as probiotics. However, due to the genetic inaccessibility of these bacteria, little is known about their mechanisms of carbohydrate utilization and regulation. Bifidobacterium breve strain JCM1192 can grow on water-insoluble yeast (Saccharomyces cerevisiae) cell wall glucans (YCWG), which were recently considered as potential prebiotics. According to the results of (1)H nuclear magnetic resonance (NMR) spectrometry, the YCWG were composed of highly branched (1→3,1→6)-β-glucans and (1→4,1→6)-α-glucans. Although the YCWG were composed of 78.3% β-glucans and 21.7% α-glucans, only α-glucans were consumed by the B. breve strain. The ABC transporter (malEFG1) and pullulanase (aapA) genes were transcriptionally upregulated in the metabolism of insoluble yeast glucans, suggesting their potential involvement in the process. A nonsense mutation identified in the gene encoding an ABC transporter ATP-binding protein (MalK) led to growth failure of an ethyl methanesulfonate-generated mutant with yeast glucans. Coculture of the wild-type strain and the mutant showed that this protein was responsible for the import of yeast glucans or their breakdown products, rather than the export of α-glucan-catabolizing enzymes. Further characterization of the carbohydrate utilization of the mutant and three of its revertants indicated that this mutation was pleiotropic: the mutant could not grow with maltose, glycogen, dextrin, raffinose, cellobiose, melibiose, or turanose. We propose that insoluble yeast α-glucans are hydrolyzed by extracellular pullulanase into maltose and/or maltooligosaccharides, which are then transported into the cell by the ABC transport system composed of MalEFG1 and MalK. The mechanism elucidated here will facilitate the development of B. breve and water-insoluble yeast glucans as novel synbiotics.IMPORTANCE In general, Bifidobacterium strains are genetically intractable

  9. Bifidobacterium lactis DSM 10140: Identification of the atp (atpBEFHAGDC) Operon and Analysis of Its Genetic Structure, Characteristics, and Phylogeny

    PubMed Central

    Ventura, Marco; Canchaya, Carlos; van Sinderen, Douwe; Fitzgerald, Gerald F.; Zink, Ralf

    2004-01-01

    The atp operon is highly conserved among eubacteria, and it has been considered a molecular marker as an alternative to the 16S rRNA gene. PCR primers were designed from the consensus sequences of the atpD gene to amplify partial atpD sequences from 12 Bifidobacterium species and nine Lactobacillus species. All PCR products were sequenced and aligned with other atpD sequences retrieved from public databases. Genes encoding the subunits of the F1F0-ATPase of Bifidobacterium lactis DSM 10140 (atpBEFHAGDC) were cloned and sequenced. The deduced amino acid sequences of these subunits showed significant homology with the sequences of other organisms. We identified specific sequence signatures for the genus Bifidobacterium and for the closely related taxa Bifidobacterium lactis and Bifidobacterium animalis and Lactobacillus gasseri and Lactobacillus johnsonii, which could provide an alternative to current methods for identification of lactic acid bacterial species. Northern blot analysis showed that there was a transcript at approximately 7.3 kb, which corresponded to the size of the atp operon, and a transcript at 4.5 kb, which corresponded to the atpC, atpD, atpG, and atpA genes. The transcription initiation sites of these two mRNAs were mapped by primer extension, and the results revealed no consensus promoter sequences. Phylogenetic analysis of the atpD genes demonstrated that the Lactobacillus atpD gene clustered with the genera Listeria, Lactococcus, Streptococcus, and Enterococcus and that the higher G+C content and highly biased codon usage with respect to the genome average support the hypothesis that there was probably horizontal gene transfer. The acid inducibility of the atp operon of B. lactis DSM 10140 was verified by slot blot hybridization by using RNA isolated from acid-treated cultures of B. lactis DSM 10140. The rapid increase in the level of atp operon transcripts upon exposure to low pH suggested that the ATPase complex of B. lactis DSM 10140 was

  10. Immunoreactive Proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by Gnotobiotic Mono-Colonized Mice Sera, Immune Rabbit Sera and Non-immune Human Sera

    PubMed Central

    Górska, Sabina; Dylus, Ewa; Rudawska, Angelika; Brzozowska, Ewa; Srutkova, Dagmar; Schwarzer, Martin; Razim, Agnieszka; Kozakova, Hana; Gamian, Andrzej

    2016-01-01

    The Bifidobacteria show great diversity in the cell surface architecture which may influence the physicochemical properties of the bacterial cell and strain specific properties. The immunomodulatory role of bifidobacteria has been extensively studied, however studies on the immunoreactivity of their protein molecules are very limited. Here, we compared six different methods of protein isolation and purification and we report identification of immunogenic and immunoreactive protein of two human Bifidobacterium longum ssp. longum strains. We evaluated potential immunoreactive properties of proteins employing polyclonal sera obtained from germ free mouse, rabbit and human. The protein yield was isolation method-dependent and the reactivity of proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and have them sequenced. Among the immunoreactive proteins we identified enolase, aspartokinase, pyruvate kinase, DnaK (B. longum ssp. longum CCM 7952) and sugar ABC transporter ATP-binding protein, phosphoglycerate kinase, peptidoglycan synthethase penicillin-binding protein 3, transaldolase, ribosomal proteins and glyceraldehyde 3-phosphate dehydrogenase (B. longum ssp. longum CCDM 372). PMID:27746766

  11. A nutritious medida (Sudanese cereal thin porridge) prepared by fermenting malted brown rice flour with Bifidobacterium longum BB 536.

    PubMed

    Kabier, Barka M; Mustafa, Suhaimi; Kharidah, Muhammad; Suraini, Abd-Aziz; Abdul Manap, Yazid

    2004-09-01

    The nutritive value of spontaneously fermented brown rice flour medida, a Sudanese cereal thin porridge, is low. This study was carried out to improve the nutritional quality of medida. The flour was soaked and malted at 30◦C to optimise the protein content. Flour malted for two days had the highest protein content. Skim milk was added to the malted brown rice flour medida and fermented using Bifidobacterium longum BB 536. Maximum count of B. longum BB 536 up to 9 log CFU/ ml was attained at 4.6 final fermentation pH. The resultant viscosity was similar to that of the spontaneously fermented brown rice flour medida. There was significant (P< 0.01) increase in both the energy density and the protein content, having increased 12 folds and 24 folds, respectively. The essential amino acids including lysine and methionine were highly augmented. The resultant medida have stable flowing characteristics and meet the whole protein and energy requirements for infants and children aged 1 - 10 years old.

  12. Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation conditions.

    PubMed

    Shamekhi, Fatemeh; Shuhaimi, Mustafa; Ariff, Arbakariya; Manap, Yazid A

    2013-03-01

    The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics-calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p > 0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.

  13. Effect of alginate and chitosan on viability and release behavior of Bifidobacterium pseudocatenulatum G4 in simulated gastrointestinal fluid.

    PubMed

    Kamalian, Nikoo; Mirhosseini, Hamed; Mustafa, Shuhaimi; Manap, Mohd Yazid Abd

    2014-10-13

    The main aim of this study was to investigate the effect of different coating materials (i.e. Na-alginate and chitosan) on the viability and release behavior of Bifidobacterium pseudocatenulatum G4 in the simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). This study reports the viability of encapsulated B. pseudocatenulatum G4 coated using different alginate (2-4 g/100mL) and chitosan (0.2-0.8 g/100mL) concentrations. The results indicated that the highest concentration of alginate (4.4142 g/100mL) along with 0.5578 g/100mL chitosan resulted in the highest viability of B. pseudocatenulatum G4. The release behavior of the encapsulated probiotics in SGF (pH 1.5) in 2h followed by 4h in SIF (pH 7.4) was also assessed. The resistance rate of alginate-chitosan capsule in SGF was higher than SIF. The alginate-chitosan encapsulated cells had also more resistance than alginate capsules. The current study revealed that alginate encapsulated B. Pseudocatenulatum G4 exhibited longer survival than its free cells (control).

  14. A Conserved Two-Component Signal Transduction System Controls the Response to Phosphate Starvation in Bifidobacterium breve UCC2003

    PubMed Central

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F.; MacSharry, John; Zomer, Aldert

    2012-01-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (Pi) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted Pi transporter system, as well as that of phoU, which encodes a putative Pi-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of Pi limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to Pi starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003. PMID:22635988

  15. The effect of probiotic bacteria (Lactobacillus acidophilus and Bifidobacterium lactis) on the accumulation of lead in rat brains.

    PubMed

    Zanjani, Saman Yahyavi; Eskandari, Mohammad Reza; Kamali, Koorosh; Mohseni, Mehran

    2017-01-01

    Lead is a toxic metal present in different concentrations in a wide variety of food products. Exposure to lead, even to low levels, causes acute and chronic toxicities. Lead can cross the blood-brain barrier and accumulate in the nervous system. Probiotics are live microorganisms that, when used in adequate amounts, confer a health benefit on the host. Although a recent study demonstrated that the studied bacteria have a protective effect against acute lead toxicity, no research has been found that shows the long-term impact of these bacteria in vivo. The current study surveyed the protective effects of two species of probiotics, Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, that are most widely used in many functional foods against oral lead exposure (4 weeks) in rat brains. The results revealed that, at the end of the second week of chronic exposure to lead and probiotic bacteria, the lowest level of lead belonged to the Lactobacillus group. At the end of the fourth week, the lowest amount of lead was related to the group receiving both types of probiotics. With the physiological benefits of probiotic consumption, the bacterial solution in this study did not show high efficacy in reducing brain lead concentrations.

  16. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596

    PubMed Central

    Garrido, Daniel; Ruiz-Moyano, Santiago; Kirmiz, Nina; Davis, Jasmine C.; Totten, Sarah M.; Lemay, Danielle G.; Ugalde, Juan A.; German, J. Bruce; Lebrilla, Carlito B.; Mills, David A.

    2016-01-01

    The infant intestinal microbiota is often colonized by two subspecies of Bifidobacterium longum: subsp. infantis (B. infantis) and subsp. longum (B. longum). Competitive growth of B. infantis in the neonate intestine has been linked to the utilization of human milk oligosaccharides (HMO). However, little is known how B. longum consumes HMO. In this study, infant-borne B. longum strains exhibited varying HMO growth phenotypes. While all strains efficiently utilized lacto-N-tetraose, certain strains additionally metabolized fucosylated HMO. B. longum SC596 grew vigorously on HMO, and glycoprofiling revealed a preference for consumption of fucosylated HMO. Transcriptomes of SC596 during early-stage growth on HMO were more similar to growth on fucosyllactose, transiting later to a pattern similar to growth on neutral HMO. B. longum SC596 contains a novel gene cluster devoted to the utilization of fucosylated HMO, including genes for import of fucosylated molecules, fucose metabolism and two α-fucosidases. This cluster showed a modular induction during early growth on HMO and fucosyllactose. This work clarifies the genomic and physiological variation of infant-borne B. longum to HMO consumption, which resembles B. infantis. The capability to preferentially consume fucosylated HMO suggests a competitive advantage for these unique B. longum strains in the breast-fed infant gut. PMID:27756904

  17. A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003.

    PubMed

    Alvarez-Martin, Pablo; Fernández, Matilde; O'Connell-Motherway, Mary; O'Connell, Kerry Joan; Sauvageot, Nicolas; Fitzgerald, Gerald F; MacSharry, John; Zomer, Aldert; van Sinderen, Douwe

    2012-08-01

    This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.

  18. Influence of Technological Treatments on the Functionality of Bifidobacterium lactis INL1, a Breast Milk-Derived Probiotic.

    PubMed

    Zacarías, María Florencia; Souza, Tassia Costa; Zaburlín, Natalia; Carmona Cara, Denise; Reinheimer, Jorge; Nicoli, Jacques; Vinderola, Gabriel

    2017-09-11

    The aim of this study is to evaluate the influence of the technological processing on the functionality of the human breast milk probiotic strain Bifidobacterium lactis INL1. In vitro antagonistic activity of B. lactis INL1 was detected for Gram-positive and Gram-negative pathogens. B. lactis INL1 was administered to mice as fresh (F), frozen (Z), spray-dried (S), or lyophilized (L) culture. Immune parameters (IgA, IL-10, and IFN-γ) were determined and histological analysis was performed to assess functionality and protection capacity against Salmonella. In BALB/c mice, F and S cultures induced an increase in the number of IgA-producing cells in the small intestine and IL-10 levels were increased for L culture in the large intestine. In Swiss mice, B. lactis INL1 increased secretory-IgA levels in the small intestine before and after Salmonella infection, both as F or dehydrated culture. Also, an attenuation of damage in the intestinal epithelium and less inflammatory infiltrates were observed in animals that received F and S cultures, whereas in liver only F showed some effect. The anti-inflammatory effect was confirmed in both tissues by myeloperoxidase activity and by IFN-γ levels in the intestinal content. B. lactis INL1 showed inhibitory activity against pathogens and confirmed its probiotic potential in animal models. Technological processing of the probiotic strain affected its functionality. © 2017 Institute of Food Technologists®.

  19. Flavonols enhanced production of anti-inflammatory substance(s) by Bifidobacterium adolescentis: prebiotic actions of galangin, quercetin, and fisetin.

    PubMed

    Kawabata, Kyuichi; Sugiyama, Yuta; Sakano, Taiken; Ohigashi, Hajime

    2013-01-01

    The gut microbiota is capable of the bioconversion of flavonoids whereas influences of probiotic anaerobes on the bioactivities of flavonoids and vice versa are still unclear. Here, we investigated functional interactions with respect to the anti-inflammatory activity between flavonols and probiotic bacteria. Ten enteric (6 probiotic and 4 indigenous) bacteria were incubated with flavonols (galangin, kaempferol, quercetin, myricetin, and fisetin) under anaerobic conditions, and the supernatants were assessed for their effects on nitric oxide (NO) production in lipopolysaccaride-stimulated RAW264 cells. Although the conditioned medium from the flavonol mono-culture and almost all of the tested co-cultures failed to inhibit NO production, the medium from the Bifidobacterium adolescentis/flavonols (galangin, quercetin, and fisetin) co-culture highly suppressed NO production. This activity increased during the 1-6 H incubation in a time-dependent manner and was not observed in the co-culture using heat-inactivated B. adolescentis. Interestingly, when the B. adolescentis cell number was increased, the supernatant from the mono-culture of the bacteria showed NO suppression, suggesting that B. adolescentis may produce NO suppressant(s), and flavonols may have a promoting effect. These findings indicate that flavonols have a prebiotic-like effect on the anti-inflammatory activity of B. adolescentis.

  20. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: a randomized controlled trial

    PubMed Central

    TAKAHASHI, Shota; ANZAWA, Daisuke; TAKAMI, Kazuyo; ISHIZUKA, Akihiro; MAWATARI, Takashi; KAMIKADO, Kohei; SUGIMURA, Haruhi; NISHIJIMA, Tomohiko

    2016-01-01

    Bifidobacterium animalis ssp. lactis GCL2505 (B. lactis GCL2505) is able to survive passage through the intestine and then proliferate, leading to an increase in the amount of gut bifidobacteria. In the present study, we evaluated the impact of B. lactis GCL2505 on abdominal visceral fat storage in overweight and mildly obese Japanese adults. This clinical study was a double-blind, randomized, placebo-controlled, parallel-group comparative trial performed for 12 weeks. Healthy Japanese subjects (N=137) with body mass indices ranging from 23 to 30 kg/m2 consumed either fermented milk containing B. lactis GCL2505 or a placebo every day, and then visceral and subcutaneous abdominal fat areas were measured by computed tomography as the primary endpoints. The number of fecal bifidobacteria was also measured. Visceral fat area, but not subcutaneous fat area, was significantly reduced from baseline at 8 and 12 weeks in the GCL2505 group, compared with the placebo group. The total number of fecal bifidobacteria was significantly increased in the GCL2505 group. These results indicate that B. lactis GCL2505 reduces abdominal visceral fat, a key factor associated with metabolic disorders. This finding suggests that this probiotic strain can potentially serve as a specific functional food to achieve visceral fat reduction in overweight or mildly obese individuals. PMID:27867803

  1. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products.

    PubMed

    Cheng, D-L; Hashimoto, K; Uda, Y

    2004-03-01

    Three strains of Bifidobacterium sp., B. pseudocatenulatum, B. adolescentis, and B. longum were studied for their ability to digest glucosinolates, sinigrin (SNG) and glucotropaeolin (GTL), in vitro. All strains digested both glucosinolates during 24-48 h cultivation, accompanied by a decline in the medium pH from 7.1 to 5.2. The digestion of glucosinolates by a cell-free extract prepared from sonicated cells of B. adolescentis, but not cultivated broth, increased in the presence of 0.5 mM l-ascorbic acid. Also, a time-dependent formation of allyl isothiocyanate (AITC) was observed when the cell-free extract was incubated with 0.25 mM SNG for 120 min at pH 7.0. These reaction features suggest that the digestive activity may have been due to an enzyme similar to myrosinase, an enzyme of plant origin. GC-MS analysis of the Bifidobacterial cultured broth showed that the major products were 3-butenenitrile (BCN) and phenylacetonitrile (PhACN), from SNG and GTL, respectively and nitriles, probably due to a decrease in the pH of the media. AITC and benzyl isothiocyanate (BzITC) were barely detectable in the broth. It was concluded that the three species of Bifidobacteria could be involved in digestive degradation of glucosinolates in the human intestinal tract.

  2. Prophylactic Supplementation of Bifidobacterium longum 51A Protects Mice from Ovariectomy-Induced Exacerbated Allergic Airway Inflammation and Airway Hyperresponsiveness

    PubMed Central

    Mendes, Eduardo; Acetturi, Beatriz G.; Thomas, Andrew M.; Martins, Flaviano dos S.; Crisma, Amanda R.; Murata, Gilson; Braga, Tárcio T.; Camâra, Niels O. S.; Franco, Adriana L. dos S.; Setubal, João C.; Ribeiro, Willian R.; Valduga, Claudete J.; Curi, Rui; Dias-Neto, Emmanuel; Tavares-de-Lima, Wothan; Ferreira, Caroline M.

    2017-01-01

    Asthma is a chronic inflammatory disease that affects more females than males after puberty, and its symptoms and severity in women change during menstruation and menopause. Recently, evidence has demonstrated that interactions among the microbiota, female sex hormones, and immunity are associated with the development of autoimmune diseases. However, no studies have investigated if therapeutic gut microbiota modulation strategies could affect asthma exacerbation during menstruation and menopause. Here we aimed to examine the preventive effects of a probiotic, Bifidobacterium longum 51A, on airway inflammation exacerbation in allergic ovariectomized mice. We first evaluated the gut microbiota composition and diversity in mice 10 days after ovariectomy. Next, we examined whether re-exposure of ovariectomized allergic mice to antigen (ovalbumin) would lead to exacerbation of lung inflammation. Finally, we evaluated the preventive and treatment effect of B. longum 51A on lung inflammation and airway hyperresponsiveness. Our results showed that whereas ovariectomy caused no alterations in the gut microbiota composition and diversity in this animal model, 10 days after ovariectomy, preventive use administration of B. longum 51A, rather than its use after surgery was capable of attenuate the exacerbated lung inflammation and hyperresponsiveness in ovariectomized allergic mice. This prophylactic effect of B. longum 51A involves acetate production, which led to increased fecal acetate levels and, consequently, increased Treg cells in ovariectomized allergic mice. PMID:28959241

  3. Efficacy of Bifidobacterium breve NCC2950 against DSS-induced colitis is dependent on bacterial preparation and timing of administration.

    PubMed

    Hayes, C L; Natividad, J M M; Jury, J; Martin, R; Langella, P; Verdu, E F

    2014-03-01

    Probiotics have been proposed as a therapy for inflammatory bowel disease, but variations in strains, formulations, and protocols used in clinical trials have hindered the creation of guidelines for their use. Thus, preclinical insight into the mechanisms of specific probiotic strains and mode of administration would be useful to guide future clinical trial design. In this study, live, heat inactivated (HI), and spent culture medium preparations of the probiotic Bifidobacterium breve NCC2950 were administered to specific pathogen free C57BL/6 mice before or during colitis, as well as before colitis reactivation. Five days of 3.5% dextran sulphate sodium in drinking water was used to induce colitis. Pretreatment with live B. breve reduced disease severity, myeloperoxidase activity, microscopic damage, cytokine production, interleukin (IL)-12/IL-10 ratio, and lymphocyte infiltration in the colon. B. breve did not attenuate on-going colitis. After acute colitis, disease symptoms were normalised sooner with live and HI B. breve treatment; however, reactivation of colitis was not prevented. These findings indicate that the efficacy of a probiotic to modulate intestinal inflammation is dependent on the formulation as well as state of inflammation when administered. Overall, live B. breve was most efficacious in preventing acute colitis. Live and HI B. breve also promoted recovery from diarrhoea and colon bleeding after a bout of acute colitis.

  4. Effect of yogurt containing Bifidobacterium animalis subsp . lactis DN-173010 probiotic on dental plaque and saliva in orthodontic patients.

    PubMed

    Pinto, G S; Cenci, M S; Azevedo, M S; Epifanio, M; Jones, M H

    2014-01-01

    To assess how consumption of yogurt containing Bifidobacterium animalis subsp. lactis DN-173010 probiotic for a period of 2 weeks affects salivary and dental plaque levels of mutans streptococci and lactobacilli in patients undergoing orthodontic treatment. A crossover, double-blind, randomized and placebo-controlled clinical trial was performed with 26 volunteers. The study was divided into four periods. During periods 2 and 4, the volunteers ingested yogurt containing probiotic or control yogurt daily for 2 weeks. Periods 1 and 3 were a 1-week run-in period and 4-week washout period, respectively. Saliva and dental plaque samples were collected from each participant at the end of each period. Mutans streptococci, lactobacilli, and total cultivable microorganisms were counted. Values were compared between groups and across periods with the Wilcoxon's test. There was no difference between the yogurt containing probiotic and the control yogurt for any of the studied variables (all p > 0.05). A reduction in counts of total cultivable microorganisms was observed in dental plaque samples after ingestion of either yogurts (both p < 0.05 vs. baseline), but not in saliva (p < 0.05). Daily ingestion of yogurt with or without B. animalis subsp. lactis for a period of 2 weeks was beneficial in reducing total microbial counts in dental plaque. Therefore, no additional benefits were achieved by the use of the tested probiotic strain.

  5. Oral administration of Bifidobacterium breve attenuates UV-induced barrier perturbation and oxidative stress in hairless mice skin.

    PubMed

    Ishii, Yuki; Sugimoto, Saho; Izawa, Naoki; Sone, Toshiro; Chiba, Katsuyoshi; Miyazaki, Kouji

    2014-07-01

    Recent studies have shown that some probiotics affect not only the gut but also the skin. However, the effects of probiotics on ultraviolet (UV)-induced skin damage are poorly understood. In this study, we aim to examine whether oral administration of live Bifidobacterium breve strain Yakult (BBY), a typical probiotic, can attenuate skin barrier perturbation caused by UV and reactive oxygen species (ROS) in hairless mice. The mice were orally supplemented with a vehicle only or BBY once a day for nine successive days. Mouse dorsal skin was irradiated with UV from days 6 to 9. The day after the final irradiation, the transepidermal water loss (TEWL), stratum corneum hydration, and oxidation-related factors of the skin were evaluated. We elucidated that BBY prevented the UV-induced increase in TEWL and decrease in stratum corneum hydration. In addition, BBY significantly suppressed the UV-induced increase in hydrogen peroxide levels, oxidation of proteins and lipids, and xanthine oxidase activity in the skin. Conversely, antioxidant capacity did not change regardless of whether BBY was administered or not. In parameters we evaluated, there was a positive correlation between the increase in TEWL and the oxidation levels of proteins and lipids. Our results suggest that oral administration of BBY attenuates UV-induced barrier perturbation and oxidative stress of the skin, and this antioxidative effect is not attributed to enhancement of antioxidant capacity but to the prevention of ROS generation.

  6. Effects of orally ingested Bifidobacterium longum on the mucosal IgA response of mice to dietary antigens.

    PubMed

    Takahashi, T; Nakagawa, E; Nara, T; Yajima, T; Kuwata, T

    1998-01-01

    To study the effects of lactic acid bacteria on the mucosal defence against dietary protein antigens, we compared the mucosal IgA responses to beta-lactoglobulin (beta-LG) of two groups of mice fed a whey protein diet with and without a culture condensate of Bifidobacterium longum. Both total IgA and anti-beta-LG IgA levels in tissue extracts of the small intestinal wall were significantly higher in mice fed the B. longum diet for 2 weeks than in control ones. Peyer's patch (PP) cells from B. longum-fed mice had a much larger increase in in vitro IgA production than ones from control mice. Furthermore, the in vitro IgA response to beta-LG was detected only when PP cells from B. longum-fed mice were assayed. These results suggest that orally ingested lactic acid bacteria may protect a host from invasion of the intestinal mucosa by dietary antigens that have escaped enzymatic digestion in the intestine.

  7. [High expression of alpha-D-galactosidase gene (aga1) of Bifidobacterium breve 203 in Escherichia coli].

    PubMed

    Lu, Yu; Zhao, Han; Wang, Qin-peng; Liu, Wei-feng; Xiao, Min

    2005-04-01

    Alpha-D-galactosidase gene (agal) of Bifidobacterium breve 203 was cloned into temperature expression vector pBV220 and transformed into E. coli. The recombinant plasmid pBVagal was induced to express with temperature. The specific activities of recombinant enzyme Agal in E. coli DH5alpha, E. coli DH10B and E. coli BL21 were 28.08 U/mg, 19.44 U/mg and 13.85 U/mg, respectively. The recombinant plasmid pBVagal is more stable in E. coli BL21. The molecular weight of Agal as determined by SDS-PAGE was about 67 kD. The optimum pH of Agal was pH 4.0-4.4, and it was stable between pH 3.6 and 6.0 (kept at 4 degrees C overnight). The optimum temperature of Agal was 45 degrees C, and it was stable below 40 degrees C (incubated for 30 min). Km-values for p-nitrophenyl-alpha-galactopyranoside (pNPGal) and melibiose were calculated with 1.43 mmol/L and 261 mmol/L, respectively. No transgalactosylation activity was found when Agal hydrolyzed melibiose or raffinose. The results suggest that Agal is much different from reported alpha-D-galactosidase from Bi. breve 203. Agal is another kind of alpha-D-galactosidase in the same bifidobacteria strain.

  8. Assessment of the synbiotic properites of human milk oligosaccharides and Bifidobacterium longum subsp. infantis in vitro and in humanised mice.

    PubMed

    Musilova, S; Modrackova, N; Hermanova, P; Hudcovic, T; Svejstil, R; Rada, V; Tejnecky, V; Bunesova, V

    2017-04-26

    The mode of delivery plays a crucial role in infant gastrointestinal tract colonisation, which in the case of caesarean section is characterised by the presence of clostridia and low bifidobacterial counts. Gut colonisation can be modified by probiotics, prebiotics or synbiotics. Human milk oligosaccharides (HMOs) are infant prebiotics that show a bifidogenic effect. Moreover, genome sequencing of Bifidobacterium longum subsp. infantis within the infant microbiome revealed adaptations for milk utilisation. This study aimed to evaluate the synbiotic effect of B. longum subsp. infantis, HMOs and human milk (HM) both in vitro and in vivo (in a humanised mouse model) in the presence of faecal microbiota from infants born by caesarean section. The combination of B. longum and HMOs or HM reduced the clostridia and G-bacteria counts both in vitro and in vivo. The bifidobacterial population in vitro significantly increased and produce high concentrations of acetate and lactate. In vitro competition assays confirmed that the tested bifidobacterial strain is a potential probiotic for infants and, together with HMOs or HM, acts as a synbiotic. It is also able to inhibit potentially pathogenic bacteria. The synbiotic effects identified in vitro were not observed in vivo. However, there was a significant reduction in clostridia counts in both experimental animal groups (HMOs + B. longum and HM + B. longum), and a specific immune response via increased interleukin (IL)-10 and IL-6 production. Animal models do not perfectly mimic human conditions; however, they are essential for testing the safety of functional foods.

  9. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity

    PubMed Central

    Collins, James W.; Akin, Ali R.; Kosta, Artemis; Zhang, Ning; Tangney, Mark; Francis, Kevin P.

    2012-01-01

    Citrobacter rodentium, which colonizes the gut mucosa via formation of attaching and effacing (A/E) lesions, causes transmissible colonic hyperplasia. The aim of this study was to evaluate whether prophylactic treatment with Bifidobacterium breve UCC2003 can improve the outcome of C. rodentium infection. Six-week-old albino C57BL/6 mice were pre-treated for 3 days with B. breve, challenged with bioluminescent C. rodentium and administered B. breve or PBS-C for 8 days post-infection; control mice were either administered B. breve and mock-infected with PBS, or mock-treated with PBS-C and mock-infected with PBS. C. rodentium colonization was monitored by bacterial enumeration from faeces and by a combination of both 2D bioluminescence imaging (BLI) and composite 3D diffuse light imaging tomography with µCT imaging (DLIT-µCT). At day 8 post-infection, colons were removed and assessed for crypt hyperplasia, histology by light microscopy, bacterial colonization by immunofluorescence, and A/E lesion formation by electron microscopy. Prophylactic administration of B. breve did not prevent C. rodentium colonization or A/E lesion formation. However, this treatment did alter C. rodentium distribution within the large intestine and significantly reduced colonic crypt hyperplasia at the peak of bacterial infection. These results show that B. breve could not competitively exclude C. rodentium, but reduced pathogen-induced colonic inflammation. PMID:22902730

  10. Effects of probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary Streptococcus mutans and Lactobacillus levels

    PubMed Central

    Tehrani, Maryam Hajnorouzali; Akhlaghi, Najmeh; Talebian, Leila; Emami, Jaber; Keyhani, Siamak Etzad

    2016-01-01

    Aims: The aim of the present study was to evaluate the effect of a probiotic drop containing Lactobacillus rhamnosus, Bifidobacterium infantis, and Lactobacillus reuteri on salivary counts of Streptococcus mutans (SM) and Lactobacillus (LB) in children 3–6 years of age. Settings and Design: Sixty-one healthy children were randomly allocated into two parallel blocks in this double-blind, randomized controlled trial (IRCT2014120320202N1) from May to June 2015. Subjects and Methods: Finally 53 participants consumed five drops of placebo (n = 23) or probiotic (n = 30) every night for 2 weeks. Before intervention and 1 day after completion of the intervention, unstimulated salivary samples were collected, and microbiologic evaluations were carried out. Statistical Analysis: Data were analyzed with descriptive statistical methods Wilcoxon signed ranks, Mann–Whitney, and logistic regression. Results: SM level decreased significantly in probiotic group after intervention (P = 0.045), and there were significant differences in salivary SM counts after intervention between two groups (P = 0.04). In probiotic group, LB counts decreased significantly after intervention (P = 0.048); however, there were no significant differences between two groups (P = 0.216). Conclusions: Use of this probiotic drop decreased salivary counts of SM; however, LB counts did not change. In addition, use of the drop in children with higher salivary counts appeared to be more effective. PMID:27994413

  11. Cytotoxic damage of soybean agglutinin on intestinal epithelial cells of broiler chicks: in vitro protection by Bifidobacterium infantis CRL1395.

    PubMed

    Babot, Jaime D; Argañaraz-Martínez, Eloy; Lorenzo-Pisarello, María J; Apella, María C; Perez Chaia, Adriana

    2016-06-01

    Plant lectins, which are proteins/glycoproteins present in a wide range of vegetables, fruits, cereals and beans, are resistant to digestive enzymes and food cooking temperatures. They bind reversibly to specific glycosidic residues expressed on the membrane of intestinal epithelial cells (IEC) and cause anti-nutritional effects in humans and animals. Soybean lectin (SBA) has been detected in poultry diets, and its ability to bind to the intestinal epithelium has been reported. The development of new methods for removing SBA from feeds or to prevent interaction with the intestinal mucosa is of interest. In this study, the in vitro cytotoxicity of SBA on IEC of chicks was demonstrated for the first time. The LD50, assessed after 2 h exposure of IEC to SBA, was 6.13 μg mL(-1) The ability of Bifidobacterium infantis CRL1395 to bind SBA on the bacterial envelope was confirmed, and prevention of IEC cytotoxicity by lectin removal was demonstrated. Safety of B. infantis CRL1395, resistance to gastrointestinal stress and adhesion were also determined. It was concluded that the early administration of B. infantis CRL1395 to chicks would effectively reduce the toxicity of SBA. Besides, it would favour the colonization of the gut with a beneficial microbiota.

  12. Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice

    PubMed Central

    Wang, Linlin; Hu, Lujun; Xu, Qi; Yin, Boxing; Fang, Dongsheng; Wang, Gang; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-01-01

    Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains’ growth rates, adhesive capacity and effects on the gut microbiome and microenvironment. PMID:28230723

  13. Survival of Bifidobacterium longum LMG 13197 microencapsulated in Vegetal or Vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt.

    PubMed

    Amakiri, Andreal Chioma; Thantsha, Mapitsi Silvester

    2016-01-01

    Vegetal BM 297 ATO is a food grade lipid based material extracted from vegetables, and certified for human consumption. In this study, Bifidobacterium longum LMG 13197 was encapsulated in Vegetal BM 297 ATO-inulin by freeze drying, followed by evaluation of its survival in simulated gastrointestinal fluids and yoghurt. Furthermore, the effect of incorporation of such microparticles on physico-chemical properties of yoghurt was examined. Unencapsulated and encapsulated B. longum cells were exposed to simulated gastrointestinal fluids for 6 h and yoghurt at 4 °C for 6 weeks, and then evaluated for viability using plate counts. By the end of exposure to simulated gastrointestinal fluids, encapsulated cells were >5 log units higher than their unencapsulated counterparts. Furthermore, their levels in yoghurt remained above 10(6) cfu mL(-1) until the end of 6 weeks of storage while unencapsulated levels were at this level up to 5 weeks. There were no significant differences in pH values of yoghurts containing encapsulated cells throughout the storage (p > 0.05). However, significant differences in the lightness and yellowness of these yoghurts were recorded, although the total colour change was negligible. Vegetal-inulin encapsulation protected probiotics in gastrointestinal fluids and yoghurt with negligible effects to its appearance, thus can be used for fortification of yoghurt with probiotics.

  14. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 Favorably Modulates Gut Microbiota and Reduces Circulating Endotoxins in F344 Rats

    PubMed Central

    Saha, Shyamali; Prakash, Satya

    2014-01-01

    The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases. PMID:24967382

  15. The substitution of a traditional starter culture in mutton fermented sausages by Lactobacillus acidophilus and Bifidobacterium animalis.

    PubMed

    Holko, I; Hrabě, J; Šalaková, A; Rada, V

    2013-07-01

    Common starter cultures used in fermented mutton sausages were substituted by probiotic strains of Lactobacillus acidophilus CCDM 476 and Bifidobacterium animalis 241a. Technological properties of the traditional and the probiotic sausages were compared. The potential probiotic effect was evaluated by enumeration of bifidobacteria and lactobacilli in stool samples of 15 volunteers before and after a 14-day consumption period. The numbers of lactobacilli (10(7) cfu/g) and bifidobacteria (10(3) cfu/g) in the final product did not affect the technological properties. The use of L. acidophilus as a starter culture was found more beneficial than the use of B. animalis. Even after 60 days of storage, high counts of L. acidophilus (10(6) cfu/g) were detected; on the other hand, the counts of B. animalis were under the detection limit. Regarding sensory properties, the probiotic products showed better texture, and, curiously, a reduction of the typical smell of mutton. The numbers of lactobacilli in stool samples increased significantly after the consumption of the probiotic sausages.

  16. Impact of coculturing Bifidobacterium animalis subsp. lactis HN019 with yeasts on microbial viability and metabolite formation.

    PubMed

    Toh, M; Liu, S-Q

    2017-10-01

    To evaluate the impact of coculturing Bifidobacterium animalis subsp. lactis HN019 with yeasts on microbial viability and metabolite production. Monocultures and bacteria-yeast cocultures of B. lactis HN019 and 10 different yeast strains belonging to different species in skim milk media were fermented at 37°C. The presence of yeasts enhanced the growth rate and metabolic activities of B. lactis HN019, which might be attributed to their antioxidative properties. The viability of yeasts, when cocultured with bifidobacteria, was either unaffected or suppressed, depending on the strain. When the B. lactis HN019 monoculture and cocultures with Saccharomyces cerevisiae EC-1118, Pichia kluyveri FrootZen and Kluyveromyces lactis KL71 were fermented to pH 4·7, there were no significant differences in their organic acid composition. On the other hand, cocultures produced significantly high